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PREFACE

This book is designed primarily as a text for a course in abstract algebra for
the training of secondary teachers of mathematics. It can also be used as an in-
troductory course for mathematics majors, especially where such an introduction
is desired at the freshman or sophomore level. Details frequently glossed over
in more advanced texts have been included in order to make this text as nearly
self-teaching as possible. Where a certain level of maturity is often presupposed,
this book is intended to develop such maturity, along with the understanding
of subject matter necessary to teach modern high-school algebra courses. The
material included satisfies the recent recommendations for teacher training set
forth by study groups sponsored by the Mathematical Association of America
and others.

The purpose of this book is to introduce the subject of abstract algebra in
a way which emphasizes the nature of the subject and the techniques of rigorous
proof characteristic of modern mathematics. The topics treated were chosen
from those felt to be most fundamental and at the same time most closely related
to topics appearing in up-to-date high school texts. The point of view adopted
is to proceed, wherever this is feasible, from concepts familiar to the beginning
student to those which are more abstract and less generally known.

This second edition represents a careful revision of the earlier text. Although
the general content and purpose have remained unchanged, classroom experience
has suggested a number of changes to be made in the text. The first half of the
book has been completely rewritten. Chapter 2 has been deleted as a separate
chapter. The examples from this chapter have been incorporated into the text
at the places where they provide the maximum motivation for theoretical ma-
terial. Special topics which the author found expedient to skip in a regular course
have been omitted and some sections have been condensed or combined. These
changes make it possible to proceed more rapidly to a discussion of more im-
portant topics.

Several sections in the original text, including the sections on integers and
on elementary properties of rings, were so informal in nature as to make later
reference difficult. These sections have been rewritten with a more appropriate
presentation. More explanation has been given in sections which students found
unusually difficult.

Additional exercises have been included to give greater challenge to the
better students, without removing the more mechanical problems for the average
student. Finally, answers to many exercises and hints for those which require
proofs have been added.

Chapter 1 introduces the basic concepts of set, relation, function, and the
standard logical terminology which are needed in subsequent chapters. Emphasis
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is placed on set-theoretic definitions with comparison given to other more tra-
ditional definitions. Since modern high-school texts contain much of this ma-
terial, a careful treatment is important for later use and as a significant part of the
teacher’s training.

Chapter 2 treats the principle of mathematical induction, ring theory, and an
introduction to number theory in a discussion of divisibility in the ring of integers.

Chapter 3 introduces the fields of rational numbers, real numbers, and complex
numbers. The rational numbers are discussed most thoroughly with a careful
construction based on equivalence sets of ordered pairs of integers. Real and
complex numbers are treated more briefly in accordance with CUPM recom-
mendations, but adequately for an introductory course.

Chapter 4 presents the elementary theory of groups with special emphasis on
the group of symmetries of the square and groups of permutations. Chapter 5
is a short chapter describing the applications of group theory to Euclidean
geometry.

Chapter 6 extends the earlier material on rings and fields, and Chapter 7
discusses the integral domain of polynomials over a field. Emphasis is placed
on computational procedures. The theory of equations contained in Chapter 7
is developed in general with exercises and examples relating to specific coefficient
domains which include finite fields as well as the fields of rational and real
numbers.

This text contains ample material for a semester or a two-quarter course
meeting three times a week. Most sections were planned for a single day’s
work; however, it will occasionally be advisable to spend more time on sections
of greater difficulty or more general interest. Chapters 4, 5, 6, and 7 are largely
independent and require only Chapters 1 through 3 as background. Chapter 6,
in particular, may readily be omitted in a shorter course. If it is desired to place
less emphasis on number systems, Chapter 3 may be omitted by assuming that
the properties of number systems are known.

The author wishes to apologize for the many topics of interest not adequately
covered in this text. The needs of future secondary teachers have been given
first priority in selecting the material to be included. - -In addition, the attempt
has been made to provide a sound foundation for advanced work in algebraic
theory. It is hoped that the introduction given here will stimulate the reader
to pursue these topics further in more course work or through individual study.

Suggestions for this revision have come from many individuals and although
it was impossible to incorporate them all, they were greatly appreciated. I would
especially like to thank Donald Freeburg, whose thoughtful and detailed com-
ments have been most useful. I also appreciate the encouragement and help
provided by the staff of Addison-Wesley in carrying out the project.

Bozeman, Montana J.E. W.
December 1972
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CHAPTER |

FUNDAMENTAL CONCEPTS

1-1 INTRODUCTION

One of the basic difficulties encountered in the study of any subject is the problem
of language. In every field of endeavor, there are terms peculiar to the area which
must be mastered before any serious progress can be made. In cases where the
terminology is presumed known and therefore not described specifically, a serious
obstacle is raised in the path of the student who may be convinced that the subject
is beyond his ability or who may try to apply interpretations of words not suited
to the subject matter and thus become hopelessly confused. This chapter is an
attempt to help overcome this difficulty by discussing certain concepts, terms,
and interpretations that are basic to mathematics.

Many of the concepts introduced here are as important in analysis or geom-
etry as in algebra. The notions of set, relation, and function, as well as the mean-
ings of the standard connectives of logic, are important in most areas of mathematics.
The concept of an equivalence relation, which appears in many branches of math-
ematics, is of singular interest in algebra. Its importance in the study of algebra
cannot be overemphasized. It will form an essential part of nearly every topic
discussed throughout this book.

1-2 LOGICAL TERMS

The terms defined in this section are familiar to the reader. However, the correct
mathematical usage is not always compatible with commonly understood usage
in other areas of discourse. It is well, then, to spend the time necessary to make
sure that these terms which will be used throughout the text are clearly understood
at the outset.

By a statement, or proposition, we will understand the content of any declara-
tive sentence, that is, any sentence which states a fact. It will be assumed that
whenever we make a statement, we are asserting the truth of the statement. By
the negation of a statement we mean the sentence which asserts that the statement
is false. The negation of the statement “two is less than three” might be written
“it is false that two is less than three,” but is more commonly written “two is not
less than three.” Whatever the wording, the negation of a statement has the

1



2 Fundamental concepts 1-2

property of being false whenever the original statement is true and true whenever
the original statement is false. We will designate arbitrary statements by italic
lower-case letters such as p or ¢, and the negation of the statement p by the sym-
bolism “not-p.” Thus if p is the statement “it is raining,” then not-p is the state-
ment “it is not raining.”

There are several ways to combine statements to form new statements. If
p and q represent arbitrary statements, we may form the statement “p and g¢,”
called the conjunction of p with q. This new statement has the property of being
true whenever both p and q are true, and false if either or both of p and g are false.
Since this usage is customary in ordinary conversation, we will not discuss it
further here.

Another way to combine statements p and q is to form the statement “either
p or g,” called the disjunction (more precisely, the inclusive disjunction) of p with gq.
In mathematical usage this statement will always bear the connotation “either
p or g or both.” Whenever it is desired to express the alternative meaning “either
p or g but not both,” the phrase “but not both” will always be included. This
last interpretation is referred to as exclusive disjunction, and while it is very com-
monly understood in ordinary conversation, it is rarely intended in a mathematical
context. “Either p or ¢,” as used here, will have the property of being true in case
either one or both of p and g are true and of being false only in case both p and ¢
are false. For example, both of the following are true statements:

Either three is an odd integer or three is even.
Either three is an odd integer or three is greater than two.

The negation of the statement “p and ¢” is the statement, “either not-p or not-q.’
Similarly, the negation of “either p or ¢” is the statement “not-p and not-q.”

Most mathematical theorems are written in the form “if p, then ¢” for some
statements p and ¢q: Consider, for instance, the theorem “if a triangle is isosceles,
then the base angles are equal.” This type of statement is called a material im-
plication and will be written in symbols as p— ¢, where p is called the antecedent
of the implication and g is the consequent of the implication. Because such im-
plications are most commonly used where the antecedent is a true statement,
a great deal of misunderstanding arises concerning the truth of the statement for
the various cases. We will define the statement p — g to be true if p is true and ¢
is true, or if p is false no matter whether g is true or false. Then p— g will be
false only if p is true and q is false. For the following four implications, the first
and the last two are true, and only the second is false.

If x is an odd integer, then x? is odd. (True)
If x is an odd integer, then x? is even. (False)
If 2 is odd, then 4 is even. (True)
If 2 is odd, then 4 is odd. (True)

The negation of the implication, “if p, then g,” is the statement “p and not-q.”
Associated with any implication are two others which are very important.
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If p— g is any implication, then the implication ¢ — p is called the converse of
the given implication. The converse is a new implication formed from the old
which may be true or false independently of the truth or falsity of the original
implication. There are many theorems in mathematics whose converses are true,
but there are also many others whose converses are false. The theorem “if a
triangle is equilateral, then it is isosceles” has as its converse the statement “if a
triangle is isosceles, then it is equilateral.” Of these, the first is true and the second
is false. In stating or proving a theorem, one should be very careful to distinguish
between an implication and its converse.

A second implication associated with a given implication p— g is the im-
plication, “not-q — not-p,” called the contrapositive of the given implication.
The contrapositive of an implication has the property of being true if and only
if the given implication is true. The reader should check this by referring to the
definitions of negation and implication. Because of this property, the contra-
positive is useful in mathematics. It often happens that a given theorem is difficult
to prove, but that if the contrapositive is taken, the proof becomes easy. The
proof that the contrapositive is true is an acceptable proof that the theorem holds.
As an example, suppose we consider the following theorem concerning the integer x:
“If x? is odd, then x is odd.” Instead of trying to examine all odd square integers,
we will prove instead that the contrapositive is true. Namely, “if x is not odd,
then x2 isnot odd.” To say that xis not odd is to say that x = 2k for some integer k.
But then x? = 4k?, which is clearly not an odd integer, and the proof is complete.

It should be added that our definition of converse and contrapositive refers
to implications with a single antecedent. Implications with more than one an-
tecedent, such as “if p and g, then r,” possess more than one converse or contra-
positive. We will usually avoid such cases by stating theorems so that the converse
or contrapositive can be formed by the rules given here, and leave the more involved
cases for advanced courses in logic.

There are various ways in which an implication may be stated in mathematical
theorems. Some usages involve the phrases necessary condition or sufficient
condition. For example, instead of saying “if a triangle is equilateral, then 1t 1s
isosceles,” we might equally well say “the fact that a triangle is equilateral is a
sufficient condition that it be isosceles,” or “in order that a triangle be equilateral,
it is necessary that it be isosceles.” Several minor variations of this wording
arise in forming readable sentences. Still another form is to replace “if p, then g”
by the statement “p only if ¢,” which is equivalent. We might say, for example,
that “a triangle is equilateral only if it is isosceles.” This may be used inter-
changeably with the statements above. The meanings of these connectives are
expressed by the following abbreviated statements, which are equivalent:

If p, then q.

q if p.

p only if q.

p is a sufficient condition for q.
q is a necessary condition for p.
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In certain theorems we wish to state that an implication p— g and its con-
verse q— p are both true. Symbolically, we represent this by writing p < gq.
In words, we state this as “p if and only if ¢” or as “p is necessary and sufficient
for q.” The theorem “a triangle is isosceles if and only if the base angles of the
triangle are equal” is an example of such a statement. Another example is the
theorem “a necessary and sufficient condition that two lines be parallel is that
either they have the same slope or neither one has a slope.”

We conclude this section with a final remark concerning methods of proof.
A direct proof of an implication is a proof which begins with the assumption that
the antecedent is true and proceeds by logically clear steps to the conclusion
that the consequent must also be true. An indirect proof is a proof which begins
with the assumption that the consequent is false and proceeds by logically clear
steps, using any given antecedents, to the conclusion that one of the given ante-
cedents or some known true statement must then be false. We say that this
establishes a contradiction. Since our logical system presupposes that no such
contradictions can exist, our assumption that the consequent is false cannot be
correct. Hence the consequent must be true, and the proof is complete. The
simplest example of an indirect proof is that in which the contrapositive of the
given implication is proved to be true.

EXERCISES
1. Write the negation of each of the following statements without using the phrase “it is
false that.”

a) Three is odd and six is even.

b) Either this triangle is a right triangle or it is isosceles.

c) If a triangle is isosceles, then the median drawn to one of its sides is perpendicular
to that side.

d) The equation ax = b can be solved for x if and only if a is not zero.

2. Give the converse and the contrapositive of each of the following implications:

a) If a is less than b, then 2a is less than 2b.

b) If two lines are perpendicular to the same line, they are parallel.

c) If x> = 4,then x = +2.

d) If a function f(x) has a derivative at x = q, then it is continuous at x = a.

. Rewrite each of the implications in Exercise 2, using the “only if” terminology.
. Rewrite each of the implications in Exercise 2, using the word “sufficient.”

. Rewrite each of the implications in Exercise 2, using the word “necessary.”

. Write a true implication whose converse is also true.

. Write a true implication whose converse is false.

L N o A W

. Verify directly that the implication “if p, then ¢” is true or false in exactly the same cases
as its contrapositive by considering the three cases, p and q both true, both false, or one
true and one false.
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1-3 SETS

Certain words in mathematics are so fundamental that they cannot be defined.
Point and line are undefined in plane geometry, although the student quickly
develops an intuitive understanding of their meaning from examples and illus-
trations. Similarly, we will take the words set and element as undefined. The
word set is synonymous with collection, class, and aggregate and has the property
of being associated with certain other objects called elements, which are said
to be members of the set. Examples of sets are the set of all chairs in a given room,
the set of days in a given year, and the set of the names of all past Presidents of
the United States. In these examples. each chair is an element in the set of chairs,
each day is an element in the set of days, and each name is an element in the set
of names. Sets more common in mathematics courses are the set of all right
triangles in a plane, the set of all lines through a given point in space, or the set
of all numbers. While sets of interest usually contain elements with some rather
obvious common property, as in the above examples, this is not a necessary restric-
tion. The mere fact that the elements belong to the same set is itself a common
property. Thus a set might consist of this book, the planet Mars, and the six
letters of the word “number.”

It will be assumed that whenever a set is given, it will be possible to determine
from the description whether or not any given object is a member of the set. We
say that the set is well defined in this case and no other sets will be considered.
For instance, “the set of all boys” is not well defined. However, “the set of all
living male humans between the ages of 2 and 19 years, inclusive, on July 1, 1971,
whose legal residence on this date is within the boundaries of the United States
of America” is a well-defined set. Here we must assume that legal residence and
the other words are clearly defined. It is usually easier to describe precisely
those sets which occur in mathematics than those sets which occur in everyday
life. However, in every application of set theory, it is important that the elements
which belong to each set be clearly understood. This is equally significant in
preparing a legal document and in mathematics.

We will usually denote sets by capital letters and elements of sets by lower-
case letters. Suppose that for some set A, x is a member of the set. We will
indicate this by writing x € A and will read this as “x is a member of A,” or “x belongs
to A,” or “xisin A” If yis an element which is not a member of A, we write y ¢ A.
If Z is used to denote the set of all integers, positive, negative, and zero, we may
write 3€ Z, —2€Z,1¢ Z.

There are several ways in which a set may be specified. The most obvious
is the method used above where the set was given by describing the elements
belonging to the set in a sentence. Another method is to list, within braces, each
element of the set. For example, if the set of those positive integers less than 10
is denoted by T, it can be given by writing

T ={1,2,3,4,56,7,8,9}

The final notation for sets, sometimes referred to as the set-builder notation,
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consists of a pair of braces within which occur a generic symbol or variable followed
by a vertical bar and a statement involving the variable. The set represented by
the notation is the set of all objects such that a replacement of the variable in the
statement by the name of the object converts the sentence into a true statement.
The set is often called the solution set of the statement. The statement may be
given in words, or with symbols in the form of an equation or inequality.

For example, if Z denotes the set of all integers, the set T mentioned above
may be specified in the following way:

T = {x|x € Z, x is positive, and x is less than 10}. We read this notation as
“the set of all x such that x is in Z, x is positive, and x is less than 10.” As a fur-
ther example, the set S = { —3, —2, — 1,0, 1, 2, 3} may be expressed as:

S ={x|xeZ and |x| < 3}.

In some cases where there is no danger of ambiguity, the notation may be abbre-
viated by omitting the name of the larger set. For instance, in a discussion dealing
only with integers, the following notations could be used for the sets S and T
above:

X

S={x||x] <3}, T={x]0<x<10}

In some instances a single symbol such as x is not suitable for representing a
general element of the set. For instance, consider the set E of all quadratic equa-
tions in the unknown x whose coefficients are integers. This set is an important
onein elementary algebra. Each member of the set has the form ax? + bx + ¢ = 0,
where a, b, and c are integers. Hence a suitable notation for the set E would be:

E = {ax? + bx + ¢ = 0] a, b, and c are integers}.

Example 1-1. Describe in words the set {x|x?> <5 and xeZ}. This set is the
set containing all integers whose square is less than 5. The elements in the set
are 0, + 1, and + 2.

Example 1-2. Use one of the notations for sets to specify the set of all values of
cos x for x a real number. We might denote this set by

{cos x | x is a real number},
or by
{y|y = cos x for a real number x},
or by
{z| =1 < z < 1 and z is a real number}.

Each of these notations represents the same set, namely, the possible values of
cos x. There is, of course, no single correct answer. The set is a specific set but
there are many ways in which one may express it.

Example 1-3. Use one of the notations given to specify the set of all points in
the cartesian plane lying outside the circle with center at the origin having radius 5.
In analytic geometry, a point in the cartesian plane is represented by a pair (x, y)
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of real numbers. Thus we may specify this set of points by the notation {(x, y)
| x*> + y* > 25}. The inequality x* + y* > 25 is derived by considering points
whose distance from the origin exceeds 5. When the distance formula from
analytic geometry is used, this condition requires that the point (x, y) satisfy the
condition

V& =02+ (y—0?>5,
or that x? + y? > 25.

The language of sets is largely self-evident, and is so basic to mathematics
that most readers will be familiar with the terminology from earlier courses. We
shall formalize the definitions of the more common terms for reference in writing
proofs and to ensure a common background of understanding throughout the
remainder of this text.

Definition 1. Two sets are equal if and only if they contain exactly the same
elements.

Forexample, {a,b, c} = {b,a,c},but{a,b,c} # {1,2,3}and {a, b, c} # {a, b, c,d}.
It is also clear from the definition that a set is determined by its elements and not
by the notation used in expressing the set. Thus

{1,2,3} = {x|xeZ and 0 <x < 4}.

Definition 2. A set X is a subset of a set Y if each element which is a member
of X is also a member of Y. When X is a subset of Y, we write X = Y. If]
in addition, there is at least one element in Y which is not a member of X,
we say X is a proper subset of Y, and denote this by X < Y.

For example, both of the statements {a,b} < {a,b,c} and {a, b} < {a,b,c}
are correct. The latter notation calls attention to the fact that {a, b} is a proper
subset of {a, b, c}, but either is a correct statement. We may also state, correctly,
that {a, b} < {a, b}, whereas the statement {a, b} < {a, b} is false.

In many proofs (such as Example 1-8) which require that we show two sets
to be equal, it is convenient to note the following relationship:

X =Y ifand only if XcYand YS X.

The condition that the sets X and Y are equal is clearly equivalent, from our
definitions, to the statement that each element in X is a member of Y and each
element of Y is an element of X. These two statements are equivalent to stating
that each of X and Y is a subset of the other.

Many formulas and theorems which are stated in the language of sets require
statements of exception which can be avoided by considering as a special set a
set which contains no elements. We call this set the empty set and denote it by .
An alternative notation which is often used is the symbol { }, suggesting a listing
of no elements. This latter notation should not be confused with the symbol {7}
which is not the empty set, but a set having one element, . We shall have oc-
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casion to consider sets whose elements are themselves sets and the symbol {(}
might appear in this context, but is never a correct notation for the empty set.

Definition 3. The empty set, denoted by (7, is a set which contains no elements.

Example 1-4. The set X = {a,b,c} contains eight subsets, seven of which are
proper subsets. They are &, {a}, {b}, {c}, {a, b}, {a,c}, {b,c}, and {a,b,c}. The
fact that ¥ is a subset of X can be proved by noting that since ¢ contains no ele-
ments, we can correctly state that each element of (¢ is an element of X. We
sometimes refer to this by saying that the requirement is vacuously fulfilled.

In the previous example, note that three of the subsets listed contain a single
element. We will always distinguish between a set having one element and the
element itself. Referring to this example, it is correct to write a€ X or {a} < X.
In the first case we are thinking of a as an element in X and in the second case
we are thinking of that subset of X which contains the single element a.

In connection with a set and its subsets, there is a special case of considerable
interest in algebra. It sometimes happens that for a certain set S there is a col-
lection of subsets X, X,,..., X, which have the property that every element
of the set S is a member of one and only one of the subsets X,, X,,..., X,. That
is, no two of the X’s have an element in common and every element of S is a member
of some one of the X’s. When this is the case, we say that X, X,,..., X, form
a partition of S. For example, the sets, X, = {1}, X, = {2,4,5}, and X; =
{3,6,7,8,9}, form a partition of the set T mentioned above. Note that the par-
tition consists of the three sets X, X,, and X;. Each of the sets X, X,, and X,
is referred to as a member of the partition.

Definition 4. If X,, X,,..., X, are subsets of a set S such that each element
of S is an element in one and only one of the subsets X,, X,,..., X,, then
{X,X,,...,X,} is called a partition of S, and each of the sets X, X,,..., X,
is a member of the partition.

Example 1-5. Give one partition of the set R of all real numbers. There are,
of course, many correct answers. One such answer is {X, X,, X3}, where X, =
{x|x is a real number and x < 0}, X, = {x| x is a real number and 0 < x < 10},
and X; = {x|x is a real number and x > 10}.

There are two ways in which new sets can be formed from given sets that
will be important in our discussions. These new sets are described in the follow-
ing definition.

Definition 5. If X and Y are arbitrary sets, then the union of X and Y, denoted
X v Y, is defined to be
XuUY = {s|eitherse X orse Y},
and the intersection of X and Y, denoted by X N Y, is defined to be
XnY={t|teXandt eV}
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The union of two sets is the set formed by combining the given sets. It is com-
posed of those elements which are elements of either one (or both) of the given
sets. The intersection of two sets, on the other hand, consists of those elements
which are elements of both sets. In the case that the two sets have no elements
in common, then the intersection of the sets is the empty set.

Example 1-6. If X = (a,b,¢), Y =(b,c,d)and Z = (d, e, f},then X U Y = {a, b,
¢d}), XuZ={ab,cdef}, XnY=1{bc},and X nZ = .

Example 1-7. We will prove that if X and Y are arbitrary sets, then X n Y < X.
Let x be any element in X n X.By definition of intersection, xe X. By definition
of subset, we may conclude that X n Y < X, since every element of X n Yisin X.

Example 1-8. We will prove that if X < Ythen X Y =Y.

Proof. Suppose that X < Y. Let s be an arbitrary element of X U Y. By
definition of union, either se X or se Y. But since X = Y, seY in either case
by definition of subset. Hence every element of X U Yisin Yand Xu Y < Y.

Conversely, suppose te€ Y. Then, by definition of union, te X U Y. Hence
every element of Yisin X u Yand Y € X u Y. From these two results we
conclude that X U Y = Y.

EXERCISES

1. List all subsets of the set {a,b,c,d}.

2. Describe in words each of the following sets, wiere Z is the set of all integers, positive,
negative, and zero.

a) {x|xe€Z,and x is a prime}. [Note: A prime is an integer n, neither 0 nor +1, which
contains no factors other than +n and +1.]

b) {x|xeZand x > 10}

0 {x|xeZandx — 7 =3}

d) {x|xeZ and x is a multiple of 3}

3. Use one of the notations for sets given in this section to specify each of the following
sets.

a) The set consisting of ‘the three smallest integers which are larger than 10.

b) The set of all linear equations in two unknowns having real numbers as coefficients.

c) The set of all values of sin x for x a real number.

d) The set of all points in the cartesian plane lying on the line which passes through the
points (1,0) and (0,1).

e) The set of all points in the cartesian plane lying above and to the right of the line
mentioned in d) above.

f) The set of all integers which are solutions of the equation x?> + x + 1 = 0.

g) The set of all points in the cartesian plane lying within or on a circle of radius 2 with
center at the origin.

4. Find three different partitions for the set Z of all integers.
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5. Let X ={1,3,5}, Y ={2,4,6} and Z = {3,4,5,6}. Find each of the following,

a) XuY b) XuZ g YuZ
d XY e XnZ HYnZ

6. Let X and Y be arbitrary sets. Prove each of the following.
a) JgeX b) XX JXcXuY
dXuX=X ) XnX=X N Xug =X
g Xng=0

7. Prove that if X < Y then X nY = X.

8. Determine whether each of the following is true or false. Consider the statement false
if the notation is used incorrectly.
a) {1,3,5} = {x| x is an odd integer between 0 and 6}
b) {1,2} < {1,2}
o) {1,2} ={1,2}
d) xe{a,x,7}
e) {x}e{a,x,7}
D {a.b} < {{a.b}, {c.d}}
8 {a.b} e {{a.b}. (c.d}}
h) Forallsets Xand ,XuY=YuXand XnY=YnX
i) Forallsets X,Y,andZ, Xn(YuZ)=XnY)u(X N 2Z)
j) Forallsets Xand , X u(XnY)=X

1-4 PRODUCT SETS

In analytic geometry the properties of plane figures are studied with the help
of a rectangular coordinate system which represents each point in the plane as
an ordered pair of real numbers. The word ordered refers to the fact that the
point (a, b) is distinct from the point (b, @), in case a # b. This in only one of
the possible uses for ordered pairs, which we will interpret as the general ele-
ments of product sets, to be defined below.

We define an ordered pair to be a set containing exactly two elements, with
the additional property that the elements can be distinguished as a first element
and a second element. Whereas the set {q, b} is identical to the set {b, a}, the
ordered pair (a, b) is distinct from the ordered pair (b, a). We will use paren-
theses for ordered pairs to emphasize this fact. The first and second elements
of an ordered pair may be elements taken from the same set, or from different
sets, depending on the circumstances. For instance, in the ordered pairs repre-
senting points in a plane, both elements are members of the set of real numbers.
However, suppose that seats are to be assigned by number to the members of
a class; we might consider a solution of the seating problem to be the finding
of a suitable set of ordered pairs in which each first element is a name and each
second element a seat number. (Smith, 14) might be one of the ordered pairs
selected.

Definition. The cartesian product, or simply the product, of two sets X and Y
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will be denoted by X X Y, and is defined as the set of all ordered pairs (x, y)
such that xe X and ye Y. We can write this in set notation as follows:

X xY=A{(x,y)|xe X and ye Y}.
Example1-9. Suppose that X = {1,2,3} and Y = {$, #}, then
X xY={(L8$), (1 #),29,2 #)39,G, #)}
Note that X x Y # Y xX. As a further example,
Y xY={%9.6 #).#.9,#, #)

With this definition we see that the cartesian plane of analytic geometry may
be interpreted as a geometric representation of the product set R X R, where
R is the set of real numbers. If Z is the set of integers, Z x Z is represented in
the plane by the set of all points having integers as coordinates.

Example 1-10. Consider the statistical experiment of rolling together two dice the
first red and the second blue. The possible “outcomes” of this experiment may be
thought of as the elements of the product set S x S, where S = {1,2,3,4,5,6}.
The product set contains as elements the 36 ordered pairs having the integers
from 1 through 6 as first and second elements. The first element of each ordered
pair represents the face showing on the red die and the second element of each
ordered pair represents the face showing on the blue die. Among the elements of
this product set are (1, 1), (1, 2), (2, 1), etc.

The concept of the product of two sets can be extended to the product of any
number of sets. We have no use for infinite products, so we will define the prod-
uct of only a finite number n of sets. An n-tuple is a set having exactly n ele-
ments, with the further property that these elements can be distinguished as

first, second, . . ., nth elements of the set. The notation (a,, a,,...,a,) is used
to denote an n-tuple. This is a natural extension of the notion of ordered pairs.
Now, if sets A,, 4,,..., A, are given, the cartesian product of these sets, in this

order, is represented by 4, x 4, x - x A, and is defined as follows:

Ay x Ay, x - x A,
= {(ay, a5,...,a,)|a;e A; foreach i=1,2,...,n}.
That is, a cartesian product of n sets in a given order is the set of all n-tuples of
elements which can be formed such that the ith element of each n-tuple is an
element in the ith set. In the case n = 2 this definition reduces to that already
given for the product of two sets and hence this definition is an extension of
the former.

EXERCISES

1. If M is the set {1, 3, 4}, write out the nine elements of the product set M x M.

2. If N is the set {2,4,6} and M is the set of Exercise 1, write out the elements of M x N
and of N x M.
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3. What set of points in the plane corresponds to the set Z° x Z°, where Z° is the set of
nonnegative integers, that is, Z° = {0,1,2,3,...}?

4. Construct an example that might occur in business of a product set in which not both
elements of the ordered pairs are numbers.

5. Consider the following experiment. Four coins, a penny, a nickel, a dime, and a quarter,

are placed in a hat. From the hat a blindfolded person draws a coin. The coin is then
flipped and the result is recorded as to which coin is drawn and whether the coin lands

heads or tails. Define a product set whose elements may be considered as the eight
possible outcomes of this experiment. List all eight elements of the product set.
6. Let A ={1,3,5},B={3,4,5}, and C = {0,1}. Determine each of the following sets
and list all elements of each set.
a) AuB)x C
b) C x (AN B)
¢) (AnC) x (AN B)
d) (A x C)n (A x B)

7. Let S = {1,2}. List the elements of S x S x S.

1-5 RELATIONS AND THEIR GRAPHS

Relations occur frequently in mathematics and in everyday life. The symbol
< represents a relation that is satisfied by certain pairs of real numbers. For
instance, 1 < 2, but it is not true that 3 < 2. The phrase “is a brother of” is
an example of a relation used in everyday conversation.

In order to be precise, we will formulate a definition of a relation which at
first appears to have little connection with the intuitive idea one gains from con-
sidering examples like those above, but which we will show includes these examples
in a very natural way.

Definition. A binary relation R from a subset of X into a set Y is any subset
of the product X x Y.

The word “binary” will usually be omitted when we speak of relations. As
an example, if X = {1,2,3} and Y = {$, #}, three possible relations from a
subset of X into Y are

Rl = {(19 $)s (la #)a (25 $)}a R2 = {(35 #)}:
and
R3 = {(2, $)a (2a #)s (3a $)a (39 # )}

In any relation R, from a subset of A into B, the subset of elements of A which
appear in R as first elements of pairs is called the domain of the relation. The
set of elements of B which appear in R as second elements of pairs is called the
range of the relation. The domain of Rj, above, is {2, 3}, and the range of R,
is {$, #}, the entire set Y. By a relation from X into Y we will mean a relation
whose domain is the entire set X.
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In many cases where a relation is of interest, the two sets involved are the
same set. If a relation R from a subset of S into S is used, it will be referred to
as a relation in S. Both examples at the beginning of this section are of this type.
The relation < is a relation in R, the set of real numbers. To see that < really
represents a subset of R x R, we consider all pairs of real numbers (a, b) such
that a < b is a true statement. This subset of R x R is the subset corresponding
to the relation < We might write that

< ={(a, b)| a < b for real numbers a and b}.

Again, if the relation “is a brother of”is designated by the set B, we may say that
B is a relation in the set M of all men. That is, B is a subset of M x M, defined
as the sets of all pairs (x, y), where x and y are men such that the sentence “x is
a brother of y” is true:

B = {(x, y)| x and y are men and x is a brother of y}.

A custom which is confusing to the beginning student but in very common
use involves two quite different uses for the symbol R representing a relation.
Suppose that R is a relation from a subset of X into a set Y and that (x, y) is a
pair belonging to R. The most natural notation which describes (x, y) as a member
of the subset R is to write (x, y)e R. However, it is customary to write x R y
instead.

xRy means (x,y)eR.

Since this notation is in common use, we will adopt it here, even though it is con-
fusing. With this explanation it should now be clear that <, as commonly
used, is actually a relation satisfying our formal definition. The statements
a < b and (a, b)e < are equivalent, even though they appear quite different.

Since a relation is a set, it should be clear from the discussion of set notations
that a relation can be expressed in many ways. It may be given by listing the
members of the set, it may be described in words, or it may be given in the usual
set notation, using open sentences, equations, or inequalities. Consider the
relation P = {(x,y)| x+ y = 1} defined in the set of all real numbers. This
relation contains as elements the pairs of real numbers representing the points
on a line in the cartesian plane. Both the domain and the range of the relation
are the set of all real numbers. It is natural to graph this relation in the plane
in the way that equations are graphed in elementary algebra and analytic geometry.
The graph of the relation is shown in Fig. 1-1.

Graphs of relations from a subset of A4 into a set B are commonly used where
A and B are sets of numbers. These graphs are drawn in the usual rectangular
coordinate system.

Example 1-11. Consider the set S = {1, 2, 3,4, 5} and the relation Q in S de-
fined by Q = {(x, y)| x < y}. The graph of this relation is shown in Fig. 1-2.
The domain of the relation is the set {1,2,3,4} and the range is the set
{2,3,4,5).



14  Fundamental concepts 1-5

Y
Y 5+ e ®© e e
\ 4+ e e e
1
3+ o e
2+ o

X.
—1 ) e
1 2 3 4 5

Fig. 1-1. Graph (incomplete)of therelation ~ Fig. 1-2. Graph of the relation {(x, y) | x<y}
P={xy|x+y=1}L in the set s = {1, —2,3,4, 5}.

Example 1-12. Consider the relation T = {(x, y)| x* + y* < 4} defined in the set
Z of all integers. The graph is given in Fig. 1-3. Both the domain and the
range of this relation are the set {—2, —1,0, 1, 2}.

|
N
|
—
-9
Y )

Fig. 1-3. Graph of the relation {(x, y) | x2 + y? < 4} in the set Z of all integers.

Example 1-13. We will graph a part of the relation {(x,y)|x + 2y > 6} con-
sidered as a relation in the set of all real numbers. Considering first the subset
{(x,y)| x + 2y = 6}, we note that the graph is the straight line passing through
the points (0, 3) and (6,0). Next, any point P(x,, y,) in the plane above and
to the right of this line can be compared to a point Q on the line with the same
ordinate y,, but having abscissa x,. Since x; > x,, x; + 2y; > x, + 2y, = 6,
where x, + 2y, = 6 because (x,, y,)lies on the line x + 2y > 6. Thus the co-
ordinates of the point P satisfy the inequality x + 2y > 6, indicating that the
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point P is included in the graph. Similarly, any point below and to the left of
the line fails to satisfy the given inequality and hence is not part of the graph.
The graph of the given relation is therefore the half-plane consisting of points
above and to the right of the line x + 2y = 6, as well as all points on this line.
Part of the graph is shown in Fig. 1-4.

Y

\'
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1.._

TN X
123456\

Fig. 1-4. Graph of part of the relation {(x, y) | x + 2y > 6} in the set of real numbers.

The terminology and notation used here are rapidly becoming standard in
high school texts. (See Johnson [13], Brumfiel [4],and others)*. The set specified
by an equation or inequality is often referred to as the solution set of the equa-
tion or inequality. Thus we say that the solution set of the equation 3x + 2y = 5
is the set {(x, y)|3x + 2y = 5}. We no longer require a student to “graph the
equation 3x + 2y = 5,” but instead direct him to “graph the solution set of the
equation 3x + 2y = 5.” This terminology is more precise and provides a better
basis for generalization to advanced course work in college.

This terminology is part of the material often referred to as “new mathe-
matics.” It should be understood that this mathematics is not new at all. Only
the language is new, and it is much more comprehensible than that used in elemen-
tary texts a few years ago.

EXERCISES

1. Graph a reasonable part of the relation {(x,y)|y = 2x} considered (a) in the set of real
numbers and (b) in the set of integers. In each case find the domain and the range of

the relation.

2. Graph a reasonable portion of the relation {(x,y)|y = |x|} considered (a) in the set of
real numbers and (b) in the set of integers. In each case give the domain and the range
of the relation.

3. Let X be the set {1,2,3,4,5} and Y be the set {1,2,3}. Graph the product set X x Y
and the relation {(x,y)|x > y} from a subset of X into Y. Give the domain and the
range of this relation.

* Numbers refer to references following Chapter 7.
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4. Graph the relation {(x,y)| x> + y* = 25} (a) in the set of real numbers and (b) in the
set of integers.

5. Graph a reasonable portion of the relation {(x,y)|y = x?} considered as a relation
from the set of real numbers into the set of nonnegative real numbers.

6. Graph a reasonable portion of the relation {(x,y)|y = 2x + 1} considered as a relation
in the set of real numbers.

7. Describe in words and with set notation the relation “is similar to” in the set of triangles
in the plane.

8. Describe in words and with set notation the relation “has the same area as” in the set
of all polygons in the plane.

1-6 FUNCTIONS

The concept of a function is an important one in mathematics, equally useful
in analysis and in algebra. The study of functions of a real variable is the central
topic of most college freshman mathematics courses. We are primarily inter-
ested in functions defined in various sets other than the real numbers, but it is
possible to formulate the definition in such a way that it is adequate for use in
any area of mathematics where the concept of function appears.

Definition 1. A function from a subset of X into a set Y is a binary relation
from a subset of X into Y, with the additional properties that (a) the relation
is not the empty set and (b) if (x, a) and (x, b) are both members of the relation,
then a = b.

In other words, a function is a nonempty relation in which each element in
the domain of the relation appears as the first element of only a single ordered
pair in the subset defining the relation. The domain of a function and the range
of a function are defined as for the more general term, relation. That is, the
domain is the set of all first elements and the range is the set of all second elements
in the set of pairs which specifies the function. If the domain of a function
from a subset of X into Y is the entire set X, we call the function a function from
X intoY. The statement that F is a function from X into Y is sometimes ab-
breviated to the notation F: X — Y. This shortened notation is especially useful
in cases where we wish to discuss an arbitrary function F, rather than a particular
one specified by an equation or inequality.

If F is a function from a subset of X into Y, then F is a set of ordered pairs
(x, y). Since each x appears only once as a first element of a pair in F, an al-
ternative notation for a function is possible. We write F(x) = y to represent
the fact that the pair (x, y) is an element of F:

F(x) =y means that (x,y)e F.

This notation is usually referred to as functional notation. 1t would not be
satisfactory for the representation of an arbitrary relation because for each x
there could be several pairs in the relation containing x as a first element, mak-



1-6 Functions 17

ing the notation F(x) ambiguous. It frequently happens that a single element y
appears many times as the second element of pairs in a particular function. For
example, the real function sin x consists of those pairs (x, sin x) for real numbers
x. For each real number x there is exactly one value of sin x, but each number
from —1 to 1 appears infinitely many times as the sine of a number x. We see
that (0, 0), (%, 0), and, in general, (nn, 0) for any integer n are all pairs in the set
describing the function sin x.

In Section 1-5, the relation graphed in Fig. 1-1 is a function. The relations
in Fig. 1-2 and Fig. 1-3 are not functions, since some values of x appear in more
than one of the pairs of the relation.

The word “mapping” is synonymous with the word “function.” It is cus-
tomary to use function in freshman mathematics, in calculus, and in many other
places in analysis. Mapping, on the other hand, is used much more commonly
in algebra and certain other areas of mathematics. We will use these words
interchangeably, but in order to conform to standard practice, we will in most
instances use mapping.

For the reader who is acquainted with functions but may feel that the defini-
tion given here is somewhat abstract, let us consider the definition of a function
often given in mathematics texts and compare it with our definition. A common
definition reads, “A variable y is said to be a function of a variable x if and-only
if each value of x determines a unique value of y.” First, we point out that a
variable is merely a symbol representing an arbitrary element of some set. Thus
this definition refers to two sets, the set of permissible values of x and the set
of corresponding values of y. Next, suppose that for each value of x and the
y that it “determines,” we write the pair (x, y). Then the statement that each
x determines a unique y is merely the statement that if two pairs contain the same
first element, then the second elements of these pairs must be equal. This
definition is then equivalent to ours but is considered less rigorous, partly
because the word “determines” is not.clearly defined and suggests some form
of computational procedure or formula which is not an essential requirement
of a function.

Mappings (or functions) may be specified in any of the ways mentioned for
relations. They may be given by one or more equations, by a listing of pairs,
by sentences, or by a variety of ways.

For a given function F, when (x, y) is an element in F, or equivalently when
v = F(x), we speak of y as the value of F at x. When the word “mapping” is
used for F, it is more common to refer to y as the image of x under the mapping F.
We would still write y = F(x) in this case. Again, where we refer to F as a
mapping, the range of F is often called the image set of F.

Whenever we consider a mapping from a set X into a set Y, there are some
other wordings in common use. We frequently say that we have a mapping of
X into Y rather than from X into Y. Again, if F is the mapping (function) con-
sidered, we say that F maps X into Y. As when using the word “function,” we
often denote this mapping by F: X — Y.



18 Fundamental concepts 1-6

In general, mappings are many-to-one, by which we mean that many elements
in the domain of this mapping have the same image element in the range. Re-
call, for example, the function sin x mentioned above. We say that a mapping
(or function) is one-to-one provided that distinct elements in the domain always
have distinct images in the range. The mapping F = {(x, y)| y = 3x — 2} from
the real numbers into the real numbers is one-to-one since each value of y in the
range of F is the image of only a single x in the domain of F. A more precise
definition follows.

Definition 2. A mapping F from a subset of a set X into a set Y is one-to-one
if and only if whenever (a, y) and (b, y) are pairs in F, it follows that a = b.

Example 1-13. Prove that the mapping F = {(x, y)| y = 3x — 2} from the real
numbers into the real numbers is one-to-one.

Proof. Suppose that (a, y) and (b, y) are in F for some real numbers a, b, and y.
Then y =3a — 2 and y = 3b — 2. Therefore 3a — 2 = 3b — 2 from which it
follows that a = b, so F is one-to-one.

Example 1-14. Prove that the mapping G = {(x, y)| y = x?} from the real num-
bers into the real numbers is not one-to-one.

Proof. From the definition of G, we see that the pairs (2,4) and (—2,4) both belong
to G. Since 2 # —2, G is not a one-to-one mapping.

Whenever a mapping is specified by listing all pairs explicitly, one can check
whether or not the mapping is one-to-one by inspection. For example, the map-
ping H from the set {1,2,3} into the set {2,4,6,8} given by H = {(1,6), (2,2),
(3,8)} is clearly one-to-one since no two pairs contain the same second element.

It is sometimes convenient to express the fact that a mapping F from a set
X into a set Y has the property that every element of Y is in the image set of the
mapping F. We describe this case by saying that F maps X onto Y. Thus if F
maps X onto Y, for every ye Y there is an x € X such that F(x) = y. The word
“into” which appears in the definition is always correct but when special attention
is drawn to this property, the word “onto” is used instead.

Example 1-15. Prove that the mapping F = {(x, y) |y = 3x — 2} from the set of
real numbers into itself is a mapping onto the set of real numbers.

Proof. Let r be any real number. Then (r + 2)/3 is also a real number. But
from the definition of F,

r+2 r+
3 ) =3 3

Hence r is the image of (r + 2)/3. Since r was arbitrary, the image set of F is
the entire set of real numbers and F is a mapping from the real numbers onto the
real numbers.

£ 2=
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Example 1-16. Prove that the mapping K = {(x, y)| x€Z and y = 2x} is not a
mapping from Z onto Z.

Proof. For every integer x, K(x) = 2x is an even integer. Hence no odd integer
is in the image set of K and hence K is not a mapping onto Z.

In advanced texts in algebra some other terms are often used to describe the
special kinds of mappings we have referred to. A one-to-one mapping from
a set X into a set Y is also called an injection. A mapping from X onto Y is re-
ferred to as a surjection. A mapping which is both one-to-one and onto, hence
both an injection and a surjection, is often termed a bijection. These terms are
mentioned to help in the reading of supplementary material, but will not be used
further in this text.

A special mapping from a set S onto itself is worthy of comment. It is called
the identity mapping and consists of the set of all pairs (x, x) for x e S. This mapping
is clearly one-to-one and onto. The word “identity” used in describing the
mapping comes from a standard use of the term which appears in a later section.

EXERCISES

Exercises 1, 2, and 3 below all refer to the set S = {1,2,3,4}. In each case a mapping from
a subset of S into S is given.

L P={(1,4,21),3,2)}
a) What is the domain of P?
b) What is the image set of P?
c¢) Does P map S onto S?
d) Is P one-to-one?
2.0=1{(13),2 4}
a) Is Q a one-to-one mapping from a subset of S into S?
b) Is Q a one-to-one mapping from a subset of S onto S?
¢) Is Q a mapping from S into S?
3.R={2,1,3,4,(1,2),43)}
a) Is R a mapping from S into S?
b) Is R a mapping from S onto S?
c) Is R a one-to-one mapping from § into S?
d) Is R a one-to-one mapping from S onto S?
4. Which of the relations described in Exercises 1 through 6 of Section 1-5 are mappings?
Of those that are mappings, which are one-to-one?
5. For the function F = {(x,y)|2x + 3y = 12}, find F(0), F(1), F(5), and F(—2), where F
is considered a function from the set of real numbers into itself.
6. Find the image set for the mapping {(x,y)|y = 3x}, considered as a mapping from the
set of all integers into itself.

7. Find a one-to-one mapping from the set of real numbers 0 < x < 1 onto the set of real
numbers 0 < x < 3.
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8. Suppose that a particular function F from X into Y is given by describing the ordered
pairs belonging to the set F. If the elements in each pair in F are reversed in order, is
the set of pairs so formed a function from Y into X? Explain. For what kinds of func-
tions would your answer be different?

9. Prove that the mapping F from Z into Z (Z is the set of all integers) given by F = {(x, )|
y = x — 5} is a one-to-one mapping from Z onto Z.

10. Prove that the mapping G from the set of real numbers into itself given by G = {(x, y)|
y = x% + 2} is neither one-to-one nor onto.

1-7 BINARY OPERATIONS

The operations of addition, subtraction, multiplication, and division of real
numbers are examples of binary operations familiar to every student. Less
familiar are the binary operations of intersection and union defined for sets. In
combining arithmetic fractions by finding a common denominator, still another
binary operation is important—finding the least common multiple (LCM) of
two numbers. We will formulate a definition general enough to include all
these cases.

Definition. A binary operation on a set A is a function from a subset of 4 x A
into a set B.

In most, but not all, cases the domain of the function is the entire set 4 x A,
and the set B is A itself. To distinguish this special case, we say that the set 4
is closed with respect to the binary operation if the domain of the operationis 4 x A4
and the range is a subset of A. The binary operations mentioned in the first
paragraph of this section are examples of the definition. Addition, multiplication,
and subtraction can be considered as binary operations on the set of real numbers
or on the set of integers, as well as on many other sets of numbers. The first two
sets are closed with respect to these operations. Division is an operation on the
set of real numbers R, but R is not closed with respect to division, since the domain
of the operation is not all of R x R; that is, division by zero is not defined.
Division is also an operation on the set of integers, but again the set is not closed
with respect to the operation. Division by zero is still not defined, and the
division of one integer by another is not always an integer and hence the range
of the operation is not a subset of the integers.

To make our definition clear, we will formulate, for comparison, the operation
of division for real numbers in set notation and in the usual way. As a function
from a subset of R x R into R, the operation of division should be written as
a set of pairs whose first elements are elements from R x R, and whose second
elements are in R. We could write this as follows:

{((@, b),c)|aeR,0#beR,and c = a + b}.

Since this notation is very clumsy, we will write division in the usual way, as
a + b = c. Similarly, for any operation on a set A, we use a symbol represent-
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ing the operation as a connective between the elements of the pair in the product
set A x A and equate this to the image element under the mapping which gives
the function. For example, the operation of set union is written A U B = C.
Where the operation has no commonly used symbol, we will often use o or *to
indicate the operation.

Consider the operation * defined on the set of real numbers by

axb=a+ b— ab,

where the operations of addition, subtraction, and multiplication on the right
side are the usual ones. We easily compute 2%*3 = —1,5%7 = —23, and
(=3) %5 =17. The set of real numbers is closed with respect to this opera-
tion. Ifweinterpreted this operation as an operation on the set of positive integers,
the set would not be closed with respect to the operation.

The definition of a binary operation is somewhat abstract, and necessarily
so, since it must apply in many different circumstances in the material which
follows. Loosely speaking, we may think of a binary operation as a rule by
which two elements can be combined to produce a third element in a unique
way. The student should reread the definition to satisfy himself that this is a
reasonable interpretation.

There are certain standard terms used to distinguish binary operations hav-
ing special properties. An operation * on the set 4 is commutative if and only if
x*xy = y=* x for every x and y in A for which the operation is defined.

Commutative law for * : x x y = y % x.

Addition and multiplication for numbers, and intersection and union for sets,
are examples of commutative operations. Division, however, is not commuta-
tive for numbers, since, example, 7 + 14 # 14 = 7.

A binary operation * on a set A is associative if x * (y % z) = (x x y) * z for
every x, y, and z in A for which the operation is defined.

Associative law for = : x = (y % z) = (x % y) % z.

Again, addition and multiplication of numbers, and intersection and union
for sets, are examples of associative operations. Division of numbers is not
associative, since, for example, (12 + 3) + 2 # 12 + (3 + 2). The operation = for
numbers, defined above as a*b = a + b — ab, is both commutative and associa-
tive. Associativity can be proved as follows. For any real numbers x, y, and z,

X (yrz)=x%*(y+z-y2)
=x+y+z—yz—x(y+z—yz)
=X+y+2z—yz—Xxy—Xxz+ Xyz

X+y+z—xy—xz—yz+ xyz.
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Similarly,

(x*p)*xz=(x+y—xy)*z
=x+y-—-xy+z—(x+y—xyz
=X+y—Xxy+z—xz—yz+ Xxyz
=X+y+z—-—Xxy—xz-—yz+ xyz.

Since both expressions equal the same number, we have shown that x = (y * z) =
(x * y) *z, and hence that « is associative.

It sometimes happens that a set has two operations of interest and that these
operations are related by an identity called the distributive law. Suppose that
we refer to these operations as * and o, defined on a set A. Then * is left-distribu-
tive over o (equivalently, it satisfies the left-distributive law) provided that

x#(yoz)=(xxy)o(xxz)

for every x, y, and z in A for which the operations are defined. We define right-
distributive similarly.

Left-distributive law for « over o :x#* (yoz) = (x * y) o (x * 2).
Right-distributive law for « over o : (yoz) x x = (y xx) o (z % x).

For numbers, multiplications is both right- and left-distributive over addition.
That is

ab+c)=ab+a and (b+ c)a = ba+ ca.

In sets, each of the operations of intersection and union is both right- and left-
distributive over the other. That is, for left-distributive, we have

XnYuZ)=XnY)uXn2)
and also
Xul¥YnZ)=XuY)n(Xu2.

As a final comment, we note that to prove that the commutative, associative,
or distributive laws hold for given operations on a set, it is necessary to prove
that the required identity is valid for every combination of elements in the set.
This calls for a general proof, using literal representation of arbitrary elements.
However, to prove that one of these laws does not hold, it is sufficient to give
a single example, using specific elements, in which the identity fails to hold. This
is referred to as a proof by counterexample.

In addition to the properties which characterize binary operations in relation
to the way in which arbitrary elements combine, other equally important properties
refer only to special elements in the set. By way of introduction, consider the
number zero. Zero is unique among the set of integers because of certain properties
1t possesses in relation to the operation of addition. We learn, as children, that
zero means none of something and, for purposes of counting, this property of
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the number zero is significant. However, to the mathematician other properties
are more important. Zero is that integer with the property that0 + x = x + 0 =
x for every integer x. We refer to this property by saying that zero is the additive
identity element for the set of integers. Clearly, zero is the only additive identity
in the set. We may define identity relative to any operation on an arbitrary set.

Definition of identity element. The element e is an identity element with re-
spect to the operation % on the set M if and only if exx = x xe = x for
every x in the set M.

From the definition, it follows that the integer 1 is the identity with respect
to the operation of multiplication in the set of integers or in any set of numbers
which contains 1. To distinguish 1 from the additive identity 0, we refer to 1 as
the multiplicative identity, rather than to use the longer phrase “identity with
respect to multiplication.”

Not every operation possesses an identity element in a given set. For example,
there is no identity with respect to subtraction in the set of integers, or in any set
of numbers. The number 0 might be considered a possibility, since x — 0 = x
for every integer x. However, the definition of identity would also require that
0 — x = x for all x, which is false. For instance, 0 — 3 = —3, and —3 # 3.
A little calculation will convince the reader that no other integer fares any better
as a candidate for a subtractive identity. This illustration should remind you
that to prove a given element e is the identity with respect to an operation * in
a set, it is essential to verify that both of the equations x x e = x and e* x = x
are satisfied for every x in the set.

Example 1-17. Let % be the operation in the set of real numbers, defined pre-
viously by axb = a + b — ab. We will find the identity relative to % and prove
that it is the identity. If a number e is to be the identity relative to * then
exx = x for every real number x. In other wordse + x — ex = x. Then e(l — x)
= 0, which implies that e = 0, at least if x # 1. This computation suggests
that O is the identity with respect to %, but a proof that this guess is correct must
be based on the definition, as follows.

For every real number x, 0« x =0+ x — 0-x = x,andx*0=x+0—x-0
= x. Hence 0 is the identity with respect to % in the set of real numbers.

The reader is familiar with the concept of negative numbers and the way in
which these are introduced in the elementary grades. Algebraically, we can
describe negative numbers in another way. The negative, or opposite, of a number
x is that number which adds to x to produce 0 as a sum. A similar concept is
that of the reciprocal of a number. A reciprocal of a number x is that number
which when multiplied by x produces 1, the multiplicative identity, as a product.
Both ideas are incorporated in the definition of inverse which follows.

Definition of inverse. The element x’ is the inverse of x relative to the opera-
tion % on a set M if and only if x * X' = X' * x = ¢, where e is the identity
element relative to the operation * in M.
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From this definition we see that the negative of a number is the inverse of the
number relative to the operation of addition. We shorten this to the statement
that the negative of a number is its additive inverse. From the equations
54+ (—=5)=0and(—5) + 5 = 0 we may deduce that the additive inverse of 5is — 5
and that the additive inverse of —5is 5. In common notation, the latter is written
as —(—5) = 5, a familiar result for signed numbers. In this usage the negative
sign is a notation for the additive inverse of a number.

Similarly, from the equations 2(}) = 1 and (4)2 = 1 we deduce that the mul-
tiplicative inverse of 2 is 1/2 and the multiplicative inverse of 1/2 is 2. Just as
the word negative is a common term for “additive inverse,” the word reciprocal
is used as interchangeable with “multiplicative inverse.”

Example 1-18. Let us find the inverse relative to the operation % of Example 1-17
for the number 3. If yis to be the inverse of 3 relative to «, then atleast 3 xy = 0
must be true since 0 is the identity with respect to*. Thatis,3 +y — 3y =0,
or —2y = —3, or y = 3/2. We prove that 3/2 is the correct inverse of 3 with
the following computations. First, 3*3 =3 +3-33) =2 -2 =0, and also
}43=3+3-@3=%-3=0

EXERCISES

1. a) Is the set of all intégers closed with respect to the operation of subtraction?
b) Give a numerical counterexample which shows that the set of positive integers is not
closed with respect to subtraction.

2. Give numerical counterexamples to show that.
a) subtraction is not commutative in the set of integers;
b) subtraction is not associative in the set of integers.

3. Is multiplication left-distributive over subtraction for the set of real numbers? Give
some examples illustrating this.

4. Show that division is right-distributive, but not left-distributive, over addition, con-
sidering the set of real numbers.

5. Prove or disprove that multiplication is left-distributive over the operation *, where
axb=a+ b — ab for real numbers.

6. Let the letter m be the symbol for the operation least common multiple (LCM), described
in the first paragraph of this section. Find the values of the following (for example,
6m15 = 30)

a) 3m9 b) 21 m 35 c) 8m20 d) 11m13

7. Is the operation m in Exercise 6 commutative? associative? Show that m is not left-
distributive over addition.

8. For the set of real numbers, we define two binary operations $ and, # (in terms of ordin-
ary arithmetic operations) as follows:

a$b=2ab and a#b=a+ 2b
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a) Is $ commutative? If not, give a counterexample.
b) Is # commutative? If not, give a counterexample.
¢) Prove or disprove that $ is associative.
d) Prove or disprove that # is associative.
e) Prove or disprove that § is left-distributive over # .
f) Prove or disprove that # is left-distributive over $.
9. Is there an identity element for the operation of division in the set of real numbers?
Explain.
10. a) Find the inverse relative to the operation * defined in Example 1-17 of the number 5
and prove that your answer is correct.
b) Does the number 1 have an inverse relative to  in the set of real numbers? Explain.
11. Let o be the binary operation in the set R of real numbers defined by ach =a + b — 3.
a) Find the identity with respect to o in R, and prove that your answer is correct.
b) Find the inverse of 4 relative to the operation o in R and prove that your answer is

correct.
c) Prove that the operation o is commutative in R.
d) Prove that the operation o is associative in R.
e) Prove by a numerical counterexample that the operation o is not left-distributive

over the operation * of Example 1-17.

1-8 EQUIVALENCE RELATIONS AND PARTITIONS

A special class of relations, called equivalence relations, is of great importance
in mathematics. The relation of equality is an example of such a relation and,
in fact, we may consider the concept of equivalence relation as a generalization
of the notion of equality. Other examples are the relations implied when we
say that two triangles are congruent, or that two triangles are similar in plane

geometry.
Since an equivalence relation is to be, first of all, a relation as defined in

Section 1-5, we have a choice of two notations. For this reason, we will give
two equivalent forms of the definition, one using each of the possible notations.
(See Andree [23] and Crouch [28].) The reader should compare these two
definitions to make sure that he understands why they are equivalent. In the
future we will occasionally use the second form, but will more often use the nota-

tion of the first form.

Definition (first form). An equivalence relation R in a set A is a relation in A
which satisfies the three properties below.

Reflexive property: a R aforallain A.
Symmetric property: If a R b for some a and b in 4, then b R a.

Transitive property: Ifa Rband b R c for some a, b,and cin 4,thena Rc.

Whenever R is an equivalence relation and x and y are elements such that
x R y holds, we say that x is equivalent to y.
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Consider the relation “is similar to” in the set of all triangles in the plane.
That is, if x and y are triangles, the statement “x is similar to y” corresponds to
the notation x R y in the definition. The reflexive property requires, in this case,
that each triangle in the plane must be similar to itself. The symmetric property
requires that if one triangle is similar to a second, then it must follow that the
second is similar to the first. Finally, if we have three triangles such that the
first is similar to the second and the second is similar to the third, then the transitive
property would require that the first be similar to the third. Since these properties
are true for similarity, we have verified the fact that the relation “is similar to”
is an equivalence relation in the set of all plane triangles.

Suppose that we consider the relation of < for the set of real numbers. For
any real number g, a < g, so that < has the reflexive property. It is easy to
find numbers a and b such that a < b but b is not less than or equal to a. For
instance 2 < 3,while3 < 2isfalse. Thus < does not have the symmetric property
and is not an equivalence relation. It is true, however, that < has the transitive
property. That is, if a, b, and ¢ are numbers such that a < b and b < ¢, then
it follows that a < c.

The following form of the definition of an equivalence relation makes use of
the notation of sets. It is hoped that this statement of the definition may clarify
points about which the reader may still be in doubt. The first form is included
primarily because of its widespread use in the literature and the second form is
included in order to fit the concept into the formal definitions previously given
in set notation. In this second form, the notation (x, y)e R replaces x R y as
used in the first form. Either notation is appropriate in any reference to equiva-
lence relations made in this text.

Definition (second form). An equivalence relation R in a set A is a relation
in A [that is, a set of ordered pairs (x, y) of elements of 4] which satisfies the
three properties below.

Reflexive property: (a, a)e R for all a in R.
Symmetric property: If (a, b)e R for some a and b in A, then (b, a) € R.

Transitive property: If (a, b) € R and (b, ¢) € R for some a, b, and ¢ in R.
then (a, ¢) € R.

Whenever R is an equivalence relation and x and y are elements such that
(x, ) € R, we say that x is equivalent to y.

Example 1-19. To illustrate the meaning of the definition, let us consider the
problem of defining an equivalence relation in the set S = {1, 3,5, 7} by listing
the pairs in the relation. There are, of course, many such relations. For ex-
ample, the set R, = {(1, 1), (3,3), (5,5), (7,7)} is an equivalence relation in S.
To satisfy the reflexive property, each equivalence relation in S must contain
at least these four pairs. The symmetric property is satisfied, since if the first
and second elements of any pair in R, are interchanged, the resulting pair is again
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a pair in R;. Finally the transitive property is trivially satisfied, since no two
distinct pairs of the forms (a, b) and (b, ¢) exist in R,.

Example 1-20. Let us construct (define) a second, and more interesting, equiva-
lence relation R, in the set S = {1,3,5,7}. Suppose that we begin with the
pairs of R; and also include the pair (3, 5) in R,. Then if R, is to be an equiv-
alence relation, we must include the pair (5, 3) as well. 1n order to satisty the
symmetric property. This set would be an equivalence relation as it now stands,
but suppose that (5, 7) is included. Then to preserve symmetry, (7, 5) must be
added. If we stopped now, R, would not satisfy the transitive property, since
(3, 5) and (5, 7) belong to R, but (3, 7) does not. Therefore we will include (3, 7)
and with it (7, 3), to again preserve symmetry. Now

R, ={(1,1),(3,3),(55),(7,7),(3,5),(53),(57,(7,9,3,7),(7, 3)}

is an equivalence relation, although further checking of the transitive property
needs to be done to verify this. For instance, (3, 7) and (7, 5) belong to R,, which
requires that (3, 5) must be in R,, as is the case. Can you find another instance
of the transitive property which has not been checked for R,?

Now suppose that in a given set 4 we have an equivalence relation denoted
by ~. That is, a is equivalent to b whenever a ~ b is a valid statement. Con-
sider the set of all elements x in A which have the property that a ~ x for some
fixed element a. This set is the equivalence set containing a, and a is called a
representative for the set. The equivalence set is denoted by [a]:

[a] = {xe A|a ~x}.

Suppose that b and ¢ are any two elements in [a]. Then a ~ b and a ~ ¢, by
definition. Using the symmetric property, we know that b ~ a. Now com-
bining b ~ a with a ~ ¢ by the transitive property, we have established that b ~ c.
Hence any two elements of the same equivalence set are equivalent. In particular,
if b ~ a then [a] = [b]; that is, any element of a set will serve as a representative
forthatset. Itisalso clear that noelementcan belongto more than one equivalence
set in A. Suppose that x € [a] and x e [b]. Then, by the above argument,
[x] = [a] and [x] = [b]. Hence [a] = [b]. For any element c in 4, we may
form [c], so we have shown that each element in 4 belongs to one and only one
of the equivalence sets of 4, formed with respect to the equivalence relation ~.
In the terminology introduced earlier, every equivalence relation on a set 4 pro-
vides a partition of the set into equivalence sets of elements. We have just proved
a result, which we state below as a theorem. This theorem will be referred to
in later sections.

Theorem 1-1. Let ~ be an equivalence relation in a set A and let [a] denote

the equivalence set of all elements of A equivalent to a, where ae A. Then,

for any a,be A,

1) [a] = [b] if and only if a ~ b.

2) If [a] # [b] then [a] n [b] = O, the empty set.

3) The set of equivalence sets in 4 forms a partition of A.
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Example 1-21. Let us find the equivalence sets for the relations R, and R, of
Examples 1-19 and 1-20. Since in Example 1-19 each element of S is equivalent
only to itself, the four equivalence sets for R, are [1] = {1}, [3] = {3}, [5] = {5},
and [7] ={7}. In Example 1-20, the element 1€ S is equivalent only to itself,
since the only pair involving 1 is the pair (1,1). However, each of 3, 5, and 7 is
paired with each of the others and hence is equivalent to each of the others in ad-
dition to itself. There are two equivalence sets in S for this relation, [1] = {1}
and [3] = {3,5,7}. The latter set could also have been designated [5] or [7]
since any of 3, 5, or 7 will serve as a representative of the set.

The converse of statement (3) in the preceding theorem is also true. That is,
ifsets X, X,,..., X, form a partition of a set 4, then they serve to define an equiv-
alence relation R on the set R, where x R y if and only if x and y belong to the
same set X; for some i. That this is an equivalence relation is easy to verify. Any
element x is in the same set with itself so that x R x, the reflexive property. Suppose
that x R y, meaning that x and y belong to the same set X;, Then y and x are
in the same set X, so that y R x, the symmetric property. Finally, if x R y and
¥ R z, this says that x and y are in the same set and also that y and z are in the
same set. Since in a partition no element is in more than one set, x and z must
be in the same set and x R z. This is the transitive property, and hence R is an
equivalence relation.

Example 1-22. As a final example, consider the set of nonnegative integers,

={0,1,2,3,...} and define in Z° the relation ~, where a ~ b if and only
if division of @ and b by the integer 5 leaves the same remainder in each case. For
example, 9 ~ 24, since the division of 9 by 5 leaves a remainder of 4 and division
of 24 by S leaves a remainder of 4. This relation has the following equivalence
sets, which form a partition of Z°:

[0] = {0,5,10.15, ...},
[11 = {1,6,11,16, ...},
[21 ={2,7,12,17, ...},
[31 = {3,8,13,18, ...},
[4] = {4,9,14,19, ...}
Note that [0] = [5] = [10] = ... and that, [3] = [8] = [13] = .... Another

notation for this equivalence relation is to write a = b (mod 5) whenever a ~ b
as defined above. We read this as “a is congruent to b modulo 5.” Such con-
gruences are treated more fully in Appendix B.

Example 1-23. Suppose that it is desired to find a relation in the set T = {a, b, c}
which is reflexive and symmetric but not transitive, and to specify this relation
by listing the pairs in the relation. For the relation to be reflexive, the pairs (g, a),
(b, b) and (c,c) must be included. If we include the pairs (a, b) and (b, ¢) but omit
the pair (a, c), then the relation will fail to be transitive. Finally, the pairs (b, a)



and (c, b) must be included to satisfy the symmetric property. Hence a suitable
answer is the relation

R; = {(a, a), (b, b), (¢, ¢), (a, b), (b, c), (b, a), (¢, b)}.

EXERCISES

1. Consider the relation “is perpendicular to” as a relation in the set of all lines in a plane.
Is this relation reflexive? symmetric? transitive? Explain.

2. Consider the relation # as a relation in the set of integers. Show by a counterexample

3.

that this relation is not transitive.
Consider the relation < in the collection of all subsets of the set Z of integers.

a) Prove this relation is reflexive and transitive.
b) Prove by a counterexample that the relation is not symmetric.

4. Let S be the set S = {1,2,3,4,5} and consider the relation

6.

R ={(1,3),(2,4),(3,5),(1,1),(2,2), 4,2),3, 1)}.
Explain why this relation on S has none of the three properties of an equivalence relation.

. Let S be the set of Exercise 4 and construct an equivalence relation on S by listing pairs
of elements of S. Give a relation containing eight or more such pairs.

The set S of Exercise 4 has a partition consisting of the sets {1, 3,5} and {2,4}. This
partition determines an equivalence relation. List the pairs in this relation.

7. Let T = {a,b,c,d,e} and let R be the equivalence relation R = {(a,a), (b,b), (c,c), (d,d)

(e, ), (a,b), (b, a), (a, c), (c, a), (b, ¢), (¢, b), (d, e), (e, d)}.
a) Find the equivalence sets [a] and [d].
b) Are there any other equivalence sets besides those asked for in (a)?

8. Define the relation R on the set of all integers as follows: a R b if and only if a and b have

a common factor other than +1. Is this relation an equivalence relation? Show proof
for your answer.

9. Find a relation which is transitive but not reflexive. Specify the set and the relation

in the set.

10. Find a relation which is reflexive and symmetric but not transitive. Specify the set and

11.

12.

the relation in the set.
Let 4 be the set {1,2,3,4}. Define, by listing pairs, a relation in A which is

a) symmetric but not transitive.

b) transitive but not symmetric.

¢) symmetric and transitive but not reflexive.

d) reflexive and transitive but not symmetric.

e) reflexive but neither symmetric nor transitive.
f) symmetric but neither reflexive nor transitive.
g) transitive but neither reflexive nor symmetric.

Define the relation R in the set Z of integers by a R b if and only if a — b = 3k for some
integer k.

a) Prove that R is an equivalence relation in Z.
b) Determine the three equivalence sets for this relation.






CHAPTER 2

INTEGERS AND RINGS

2-1 THE PRINCIPLE OF MATHEMATICAL INDUCTION

The natural numbers, also referred to as the positive integers or the positive whole
numbers, consist of the integers 1,2, 3, ..., n, ..., the numbers used for counting.
‘When we wish to refer to this set by a single symbol, we will use the notation Z™.
This set has already been mentioned in several examples and problems. It is
possible to specify this set by means of axioms, such as Peano’s well-known set,
but such a treatment is not appropriate at this stage of our development of abstract
algebra. For supplementary reading, the student is urged to look up one of the
many references on the subject (for instance, Beaumont and Pierce [24]).

We will assume, then, that the elementary properties of the set of natural
numbers and of the operations of addition and multiplication in the set are known.
However, one of the axioms of the system is not referred to in elementary mathe-
matics and is therefore not as familiar. This axiom can be stated in any of three
equivalent ways; we will wish to refer to each of these statements in the future
so all three forms will be presented in this section. An axiom of a system needs
no proof, but we must choose one form of the statement as our initial assumption
and then other forms should be proven equivalent. These proofs of equivalence
are rather difficult and will be given only in part. The interested reader may
consult other sources for further details or attempt the proofs on his own.

The first form of the axiom is called the well-ordering principle (abbreviated
WOP) and is stated below.

The Well-Ordering Principle: Every nonempty set of natural numbers con-
tains a least natural number.

By a least element of a set S of natural numbers, we mean an element ne S
such that for every x in S either n equals x or n is less than x. This principle is
intuitively evident, but it should be pointed out that not all sets possess this property.
The set of integers, for example, does not. The set T = {3k | ke Z} is a nonempty
set of integers. This set has no least element, since if any number m is a candidate
for the honor, it fails to qualify since m—-3 is another integer in the set and is smaller
than m. Similarly, the set of positive real numbers fails to satisfy the WOP. The
set Q = {x | x is a positive real number less than 10} is a nonempty set of positive
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real numbers. However, for each number r € Q, the number /2 is also in Q and
hence Q has no least element.

Be sure to notice that the WOP is a property of Z* which refers not just to
the set Z* itself but to all nonempty subsets of Z*. From it we can deduce that
Z™ contains a smallest number, namely the integer 1, but also that every subset
of Z* which is nonempty has a least element as well. 'What this element is depends,
of course, on the subset under consideration. The principle of mathematical
induction is equivalent to the WOP in the sense that if either property is assumed
to be true, the other may then be derived as a theorem. One or the other of these
principles must be taken as an axiom for Z*, since neither can be derived from
other properties of Z*. The value of the principle of induction is that it provides
a method of proof which is often easier to use than the WOP. The statement
below is often referred to as the first principle of mathematical induction, to distinguish
it from a slightly different form which will be introduced at the end of this section.

First principle of mathematical induction: I[f S is any set of natural numbers
which contains the integer 1 and which contains the integer n + 1 for every
integer n in S, then S contains every positive integer.

Before we give the proof, it might be well to illustrate the meaning of the prin-
ciple with an example. Suppose that people are standing in a line of unknown
length at the gate of a football stadium awaiting admission. Two facts are known
concerning the people in line: (a) the first person in line holds a ticket, and (b) each
person standing immediately behind a person with a ticket also holds a ticket.
Thus person number two must have a ticket, since he stands behind number one,
who is known to have a ticket. Similarly, since number three is immediately
behind number two, he must have a ticket, etc. It then seems intuitively clear
that every person in line holds a ticket. This reasoning reflects the content of
the principle of mathematical induction. To be exactly analogous, the line would
need to be of infinite length, but the general idea is the same. We could think
of the set S mentioned in the principle of mathematical induction as the set of
numbers corresponding to people with tickets. The given information states
that 1 is in the set S and that for each nin S, n + 1 is also in S. Thus we could
reason by the principle of mathematical induction that S contains all integers,
at least to the number of people in the line. The principle of mathe matical in-
duction is merely a formal statement of a property of Z* which we intuitively
feel is self-evident.

Theorem 2-1. The first principle of mathematical induction holds in the set
of natural numbers.

Proof. Assume that a set S of natural numbers has the two properties that 1 € §
and n + 1€ S whenever ne S. Let F be the set of all natural numbers which are
not in S. To prove the result, we need only show that F = &, so that S = Z*.
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Suppose, on the contrary, that F # . By the WOP, F must then contain a
smallest integer m. Thus meF, but m — 1 ¢ F, since m is the smallest integer
in F. Further, m # 1, since 1 is an element of S, not of F. Since m — 1 ¢ F,
m — 1 must be an element in S. (Note that since m # 1, m — 1 # 0 and so is
a natural number.) Now by the second property of S, since m — 1 is in S,
m—1+4+1=mmustalsobeinS. This means that misinboth S and F, a contra-
diction. Therefore the assumption that F # & leads to a contradiction and so
must be false. Thatis. F = & and S = Z*, as was to be proved.

To illustrate the value of the principle of mathematical induction, we will
use it in two ways: first as a means of stating a definition, and second as a method
of proof.

Definition of positive integral exponents. If r is any real number, then ! = r
and r"*! = . r for every natural number n.

To see that this definition actually defines the meaning of positive integral
exponents, think of the set S in the principle of mathematical induction as the
set of integers n for which " is defined. Then 1€ S by the first part of the defi-
nition, and for every ne S, n + 1 is also in S, by the second part. Applying the
principle of mathematical induction, S = Z*, and we have defined " for every
nin Z*. This definition is referred to either as an inductive definition or as a
recursive definition. It is more precise than definitions which describe * by
stating the number of factors r which are to be multiplied to give »*. Further,
this definition is easier to use in proofs involving exponents, as can be seen from
the next example.

The principle of mathematical induction can be used in the proof of many
theorems which state a property that is to hold for every natural number n. Sup-
pose we refer to such a property as P,. We apply the principle of mathematical
induction by thinking of S as the set of integers for which the property P, is true.
First, we show that 1 € S, or, in other words, that P, is true. Here, P, represents
P, in the case n = 1. Next, we show that whenever an integer k is in the set S,
that is, whenever P, is true, it must follow that k + 1 is in S, that is, P, , is true.
Note that we do not attempt to prove that P, is true directly, but only that P,
is true in any case where P, is true. This corresponds exactly to the formulation
of the principle of mathematical induction. These two parts of the proof allow
us to state by the principle of mathematical induction that every natural number
nisin S, or equivalently, that P, is valid for every natural number m. This completes
the proof of the theorem.

As an example of such a proof, let us prove the following theorems:

Theorem 2-2. If a is a real number and m an arbitrary natural number, then
a™t" = g™a" for every natural number n.

Proof (by induction on n). Suppose that n = 1. The theorem reads a™*! = a™a'

in this case. Since a! = a by definition, this statement is identical to the second
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part of the definition of the meaning of exponents and hence is true. That is,
1 belongs to the set of natural numbers for which the theorem is true. Next,
assume that k is a value of n for which the theorem is true. That is, assume that
am™*t* = g"g*. (This is called the induction hypothesis.) If each side of this
equation is multiplied by a, the result is @™ **a = (a"a*)a. Using the associative
law for numbers, this implies that a"**a = a”(a*a). Now by our definition of
exponent, we have that a"***! = g"g**1. This equation shows that the theorem
is true when n = k + 1, and hence k + 1 is in the set of natural numbers for which
the theorem holds. By the principle of mathematical induction, the theorem
holds for every natural number n.

The step in a proof by induction which is most apt to confuse the student is
the induction hypothesis. When the proof reads, “Assume that the theorem is
true when n = k,” the student is tempted to ask, “But how do we know it is true
when n = k?” Note that the statement of the principle of mathematical induction
requires that the integer n + 1 (or k + 1 if k is used as the generic symbol) belong
to the set S only in the case that n belongs to S. Our assumption that the theorem
holds for n = k, then, is simply a way of selecting an arbitrary integer in S to begin
the proof of this property. There is, of course, at least one integer in S, the integer 1,
as was shown in the first part of the proof.

A slight modification of the principle of mathematical induction is to the case
where, instead of stating that 1 € S, we have 2€ S, or i € S for some i larger than 1.
Then if n + 1€ S for every ne S, it follows that S contains all natural numbers
not less than 2, or not less than i, as the case may be. The proof of this modifi-
cation is left to the reader. This formulation is useful when a theorem holds
only for integers larger than 1 or some other fixed integer. Consider, as an exam-
ple, the following.

Theorem 2-3. For every natural number n greater than 1, the number of

straight lines determined by n points in the plane, no three of which are

collinear, is (n/2)(n — 1).

Proof. The number of lines determined by 2 points is 1. Since

2 -
5(2—1)—1,

the theorem is true in the case n = 2. Assume that k is any integer for which
the theorem is true, and consider k + 1 points, no three collinear. Excluding
any one point, the remaining k points determine (k/2)(k — 1) lines, since the the-
orem is true for n = k. From the excluded point one and only one line can be
drawn to each of the remaining k points. Since no three points are collinear,
these k lines are distinct. The total number of lines determined by the k + 1
points is therefore
k+ %(k — 1) = 32k + k(k — 1))

_k+1

= (e + 1) = =3

[k + 1) — 1]
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Comparison with the formula in the theorem shows that the formula holds for
the case n = k + 1. By the principle of mathematical induction the theorem
holds for all natural numbers n.

In these theorems, the first case has been trivial. This is not always true, as
one can see in Exercise 10, below.

A common fallacy in problems where a proof by induction should be used is
that checking a number of special cases of the theorem constitutes a proof.
Example 2-1 is a rather trivial example but it illustrates the fallacy clearly. In
many problems it is not this easy to see where the difficulty lies, but the student
should always remember that no proof is acceptable which checks only special
cases, unless there are only a finite number of cases to consider and every one is
checked separately.

Example 2-1. Consider the false theorem that every natural number n is less
than 100. Although this theorem is clearly false, since 200 is not less than 100,
it is true for each of the integers 1, 2, 3,...,99. Thus we could consider, and
verify, the theorem for each of these 99 cases, and yet the theorem is false. Clearly
a theorem is not proved by considering three cases, or ten, or for that matter any
number of cases short of every case that could arise. This example illustrates
that to prove that a theorem holds for every natural number the principle of
induction is a very useful tool indeed. Many theorems can be proved only by
its use, or the use of one of the principles to which it is equivalent.

Example 2-1 illustrates that in a proof by induction the step using the induc-
tion hypothesis cannot be dispensed with. We can also illustrate that a proof
by induction is not valid if the first step is omitted —that in which we prove a
theorem for the case n = 1. Consider, for instance, the following example.

Example 2-2. The statement that 2" = 0 for every natural number n is clearly
false. However, suppose that we attempt a “proof” by induction in which we
deliberately omit the first step. Assume that k is an integer for which 2¥ = 0.
Then 2¢*! = 2%k, by properties of exponents. Since 2 = 0,2*-k = 0, or, in
other words, 2¥*! = 0. We have shown that if the theorem holds for n = k then
it must also hold for n = k + 1. This illustrates that the omission of the step
where the theorem is proved for n = 1 is serious and leads to an invalid proof.

We have shown with these examples that each part of the procedure in a proof by
induction is essential. The omission of either part will invalidate the proof.
In writing an induction proof, we must be careful to follow the procedure out-
lined, step by step.

We will conclude this section with a statement of the second principle of
mathematical induction. No examples of the use of this form of the principle
are given here, and none of the exercises require it. It is best for the student to
use only the first principle until it becomes very familiar. We include the second
principle here because it follows, as does the first principle, from the well-order-
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ing principle, and the proof is so nearly the same that we may safely omit it. We
will use this second form for the first time in Section 2-11.

Second principle of mathematical induction: If S is any set of natural numbers
which contains the natural number n whenever it contains all natural
numbers m < n, then S contains every natural number.

Note that although the number 1 is not specifically mentioned in the second
principle, we are still required to show that 1 € S[S always contains all natural
numbers smaller than 1, since there are no such numbers (they constitute the
empty set)]. Hence, to apply the principle, we must show that 1€ S, just as we
did in applying the first principle.

EXERCISES

1. Show that replacing the word “least” by “greatest” in the well-ordering principle gives
a false theorem for Z*.

2. Consider the set S = {I/n|n is a natural number}. Use the well-ordering principle
to prove there exists a largest number in S. What is this largest number? Is there a
smallest number in S?

3. Use the principle of mathematical induction to prove that each of the following holds
for every natural number n.

a) 1+2+3+.,.+n=g(n+1)

b) 12422432+ ... +nt=tnmn+1D2n+ 1)
)27 42724273 4 . 42"=1-2""
d)3+324334+ ... +3=33-1)

4. (Sum of a finite arithmetic progression.) Use the principle of mathematical induction
to prove that

a+@+d+@+2d+...+a+m-1) d=§[2a+(n—l)d]
for every natural number n.

5. (Sum of a finite geometric progression.) Use the principle of mathematical induction
to prove that
a(l —r"

a+ar+ar*+ ... +ar" ! = N
—r

for every natural number n, where a and r are real numbers.

6. Consider the false theorem that n> — n + 5 is a prime for every natural number n. (A
prime is an integer p which is not 0, nor 41, and which contains no factors other than
+1 and +p). Show that this theorem holds for n =1, n =2, n =3, and n = 4, but
that it does not hold for n = 5.

7. Consider the false theorem that 2 + 4 + 6 + *** + 2n = n? + n + 100 for every natural
number n. Show that this theorem does not hold for n = 1 but that if it holds for any
integer n = k, then it also holds for n = k + 1.
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8. Use the principle of mathematical induction and the definition of exponent to prove
that if a is a real number and m is a natural number, then (a™)" = a™ for every natural
number n.

9. Use the principle of mathematical induction to prove that for every natural number n,

1.1 1 1
- = P _<2__.
Ldghgt o+ 5<2-2

(Here the symbol a < b means either a < b or a = b.)

10. Use the principle of mathematical induction to prove that for every natural number
n greater than 2, the sum of the interior angles of a convex polygon of n sides is (n — 2) - 180°.
(Assume, for the purpose of this exercise, that you know that the sum of the angles
in a triangle is 180°. However, a complete proof should include the proof of this fact.)

11. Prove or disprove that the WOP holds for the set of positive even integers.

2-2 THE INTEGERS

The purpose of this section is to summarize the algebraic properties of the set of
integers. We will assume that these properties are known from earlier courses
and merely collect them in a form suitable for reference in later sections. The
set, referred to as Z throughout the text, is the set

Z={0,+1,+2 +3,...}.

The set Z is described in terms of two binary operations, addition and multi-
plication. The operations of subtraction and division are later defined in terms
of these two basic operations. The first list of properties to be considered are
contained in the following theorem. The theorem is not proved since we have
not stated axioms for the system on which a proof could be based. The integers
contain the natural numbers as a proper subset. All properties of the natural
numbers discussed in the preceding section still hold when considered as a subset
of the integers.

Theorem 2-4. The set Z of integers together with the binary operations of
addition and multiplication form a mathematical system in which the follow-
ing properties hold:

a) Z is closed with respect to both addition and multiplication.

b) Addition is associative in Z.

c) The number 0 is the additive identity in Z.

d) Each element ae Z has an additive inverse in Z, denoted by — a.

e) Addition is commutative in Z.

f) Multiplication is associative in Z.

g) Multiplication is both left-distributive and right-distributive over addition
in Z.

h) Multiplication is commutative in Z.

i) The number 1 is the multiplicative identity in Z.

j) If a and b are elements of Z such that ab = 0, then either a = 0 or b = 0.
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The order in which the properties in Theorem 2-4 are listed is immaterial
except that the statement referring to additive identity should precede that referring
to additive inverse, since the existence of the latter depends upon the existence
of the former. In a system such as Z in which the two operations of addition
and multiplication are both defined, we commonly refer to the additive identity
as the zero of the system and to the multiplicative identity as the unity. Similarly,
the additive inverse of an element is called its negative, and the multiplicative
inverse, if one exists, is called the reciprocal or merely the inverse of the element.
In Z only 1 and — 1 have reciprocals in the system.

The final property of Z listed in the theorem needs further comment. If]
in any system, the product of two nonzero elements is the zero of the system, we
say the numbers are zero divisors. We could rephrase property (j) above as the
statement that Z contains no zero divisors. We will examine a system in the
next section which contains zero divisors. Consequently the fact that Z has
none is worthy of note.

Definition of subtraction. If a and b are integers, the binary operation of
subtraction is denoted by a — b and defined to mean a + (— b).

In words, the definition of subtraction says that to subtract one integer from
another, we add the negative of the integer to the other. All properties of sub-
traction for integers can be derived from those of addition. An illustration is
contained in the following example.

Example 2-3. Prove that 3 — 2 = 1 using addition facts for positive integers,
the definition of subtraction, and the properties of Theorem 2—4.

Proof. 3 —2=3+4(-2) by definition of subtraction,
1+2)+ (-2 an assumed addition fact,
1+[2+(-2)] by the associative law,
=140 by definition of negative,

=1 since 0 is the additive identity.

The operation of division for integers can also be defined by stating that
a + b =c if and only if bc = a. Thus properties of division depend on those
of multiplication. This operation is less important than subtraction because
the set Z is not closed with respect to division.

Another interesting property, which holds for addition but not for multipli-
cation of integers, deals with the existence of solutions of equations. Every
equation of the form

a+x=b> or y+c=d

for integers a, b, ¢, and d has a single solution for x or y among the set of integers.
A solution for the first is the integer b — a, as may be verified by substitution
into the equation. On the other hand, the equation 3x = 7 has no solution
among the integers. That is, we can solve equations of this simple type involv-
ing addition, but we cannot always solve such equations involving multiplication.
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Example 2-4. Solve the equation 7 + x = 3 in the set Z.

Since the negative of 7 is an integer, by property (d) above, we may add — 7
to each member of the equation to obtain

-7+ +x)=-T7T+3, from which follows

(-7+7N+x=-7+3 by the associative law of addition,
O+x=-7+3 by definition of negative,
x=-7+3 by definition of zero,
x=—4 since —7 +3 = —4.

This solution is checked by substitution of — 4 into the given equation.

In working with equations involving integers, two properties known as can-
cellation laws are important:

Cancellation law for addition: If a + x = b + x for integers a,b, and x,
then a = b.

Cancellation law for multiplication: If ax = bx for integers a,b, and x, and
x # 0, then a = b.

We will see that these cancellation laws are not valid in all mathematical sys-
tems and therefore it is important to check for them when considering new systems.

The final properties of integers that we will mention here have to do with
inequalities. We say the set of integers {orms an ordered system. Other systems
like those in Section 2-3 are not ordered. A mathematical system consisting
of a set S with two operations of addition and multiplication is said to be ordered
if there exists a subset P of S with the properties that (a) P is closed under addition,
(b) P is closed under multiplication, and (c) for each nonzero element x of S, either
x or the additive inverse of x, but not both, is an element in P. The set P is called
the positive set of S. The positive set in Z is merely the set Z* of natural numbers.
Inequalities are defined for Z as follows and similarly for any ordered system.

Definition of inequalities. If a and b are integers then a < b if and only if
b —a=1Z"% The symbol < is called an order relation. We read “a < b”
as “a is less than b.”

In addition to the symbol “<” of the definition, three other symbols are also
used. First, b > a is taken to mean the same as a < b. We read “b > a” as
“b is greater than a.” The symbol “a < b” is read “a is less than or equal to b”
and means that either a < b or a = b. Similarly, “b > a” is read “b is greater
than or equal to ¢” and means that either b > a or b = a. Some elementary
properties of inequality are listed in the following theorem.

Theorem 2-5. Let a, b, and ¢ denote integers.

a) Ifa<b,thena+c<b+canda—c<b—c
b) Ifa < band 0 < c, then ac < bc.

c) Ifa < band ¢ < 0, then bc < ac.
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Proof. We will prove half of (a) and the part (c), leaving the remaining parts
of the proof for the reader. Suppose that a < b. Then by definition b —a =k
where ke Z*. But b—a=(b+ ¢) — (a + ¢) so that (b + ¢) — (a + ¢) is also
equal to ke Z*. Hence a + ¢ < b + ¢, which is the first part of (a).

Now assume that a < b and ¢ < 0. Then b —a=keZ", as before. Fur-
ther, since ¢ < 0, c¢ Z™ and by properties of the positive set, —ceZ*. Since Z™*
is closed under multiplication k(—c)e Z*, or (b — a)(—c)eZ*, or ac — bce Z*
But this means that bc < ac, which completes the proof of part (c).

Many theorems refer in some way to two integers m and n. In proving the
theorem it is often necessary to compare the integers in size and to make a special
case for the proof depending upon which is larger. (See Section 2-7 for an ex-
ample.) It is helpful to know exactly what the possibilities are. The following
principle gives us the answer.

Law of trichotomy. For any two integers m and n, one and only one of the
following statements is true:

aym=n bym<n cgn<m

We will not give a formal proof of this intuitively obvious statement. How-
ever, it can be thought of as a reformulation of the properties of the positive set Z*
mentioned earlier. Condition (a) merely gives the possibility that n — m is zero
and the remaining conditions state that either n —m is in Z™ or its negative, m — n,
is in Z*. Hence the law of trichotomy is just another way of saying that the
integers form an ordered system.

EXERCISES

1. Which of the properties listed in Theorem 2-4 hold in the set of even integers? In the
set of negative integers, {—1, —2, —3,...}? In the set Z*?

2. Prove, or disprove, that there is an identity element in Z for the operation of subtraction.
3. Let T be the set of all subsets of a given set S.

a) What is the identity element for the operation of union in T?

b) What is the identity element for the operation of intersection in T7?

¢) Explain why elements of T (that is, subsets of S) do not have inverses in T relative
to either the operation of union or intersection.

d) Do cancellation laws for union and intersection hold in T? Explain.

4. Prove, by counterexample, that Z is not closed with respect to division.

5. Prove that if a and b are integers, then —(a + b) = (—a) + (—b).

6. Assume that the addition facts for natural numbers are known, the definition of subtrac-
tion is known, and that the properties of Z given in Theorem 2-4 are known. Then
prove, as in Example 2-3, that
a)8—-5=3 and b)(-2)+7=5.

Use, in addition, the result in Exercise 5, and prove that
c)2—-5=-3 and d)3-7= -4
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7. Prove the two parts of Theorem 2-5 not proved in the text.

8. The set R of all real numbers has no zero divisors. Explain how this fact is used in solving
quadratic equations by the method of factoring.

9. Let ao b be defined to mean a® for integers a and b.
a) Is o commutative in Z?
b) Is o associative in Z?
c) Is there an identity in Z for the operation o?
d) One cancellation law for o would read, if aox = bo x, then a = b. Does this law

hold in Z?
10. Prove that if a, b, and c are integers such that a < b and b < c, then it is always the case

that a < ¢. (This is the transitive property of inequality.)

2-3 THE INTEGERS MODULO=

The set of integers are an important example of a general mathematical system
which we will define in the next section. Before presenting the definition of such
systems, it will be helpful to consider other systems which share some, but not all,
the properties of the integers. These examples will be new to the reader. Their
description will help to focus our attention on significant features shared by
seemingly diverse systems and to provide motivation for the classification scheme
that is a central topic in the study of modern algebra.

First, we will consider the finite mathematical system known as the set of
integers modulo 7. Any other prime integer would serve as well, but the example
will be more meaningful if we restrict the discussion to a specific prime. The set,
which we will refer to as Z,, contains seven symbols, as follows:

Z,=1{0,1,2,3,4,5,6}.

The student should be warned that, while the symbols appear to be integers and
behave in some instances like integers, they should be thought of as new symbols
whose properties at the moment are completely unknown and must be introduced
by definitions. This point of view is one of several which may be used in dis-
cussing Z,.

First, we will define for the set, two binary operations, called addition and
multiplication, which will be denoted by the symbols commonly associated with
these operations. If we wish Z, to be closed with respect to these operations,
it is not possible to use ordinary addition and multiplication of integers. For
instance, under ordinary addition 4 + 5 is not an element of the set Z,. We
define the operation of addition in Z, to be the ordinary arithmetic sum less the
largest multiple of 7 contained in this sum. Thus4 + 5 =2and 5 + 6 = 4 in the
set Z,. The result could be considered as the remainder obtained after the ordinary
sum is divided by 7, and hence the result is always an element of Z,. When it is nec-
essary to differentiate between this sum in Z, and the ordinary arithmetic sum in
the set of integers, we refer to the addition in Z, as addition modulo 7. Ordinarily,

the context will make clear which operation is involved.
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Multiplication in Z, is defined similarly. That is, the product of two elements
of Z, is obtained by first multiplying the two integers in the ordinary way, then
subtracting the largest multiple of 7 contained in this product. We refer to this
multiplication in Z, as multiplication modulo 7. Clearly, this operation is closed
for the set Z,. As examples, 3:5=1and 4-6 =3 in Z,.

In Section 2-2 we assumed that the reader was familiar with the operations
of addition and multiplication of integers. Had this not been the case, it would
have been difficult to explain fully how computations are performed. However,
in a finite system such as Z, it is entirely feasible to give briefly all sums and prod-
ucts of elements in the system. This is customarily done with tables of opera-
tions like those in Table 2-1. These tables are labeled in the upper left corner
with the name of the operation involved. The entries in the body of the table
for addition modulo 7 are the values of a + b for all a and b in Z,. The sum
a + b is entered to the right of the symbol a in the left column and directly below
the symbol b in the column heading. Thus 3 + 4 appears in row four opposite
the symbol 3 and in column five, underneath the symbol 4. We read that
34+ 4 =0. Notethat the sum 4 + 3 is entered separately opposite 4 and under 3.
These two sums are the same, but we will study systems in which this is not always
the case. It is important, then, to be able to read the table correctly. All other
operation tables will be read in this way. The use of these tables will greatly
shorten the work of computation necessary for the exercises given in this section.

TABLE 2-1
TABLES OF ADDITION AND MULTIPLICATION MODULO 7 IN Z.

=

+[{0 1 2 3 4 5 6 1 3 456
0j]0 1 2 3 456 0[O0 0 0 0 0 0,0
1{1r 23 45 6 0 101 2 3 456
2(2 3 4 5 6 01 210 2 4 6 1 35
3(3 456 01 2 3/0 3 6 2 51 4
414 5 6 01 2 3 410 41 5 2 6 3
515 6 01 2 3 4 510 5316 4 2
6(6 01 2 3 4 5 610 6 5 4 3 2 1

Since both addition and multiplication modulo 7 are performed by first taking
the ordinary sum or product, the associative, commutative, and distributive laws
for integers carry over directly to the new operations. Further, zero is the additive
identity in Z, and one is the multiplicative identity in Z,.

In order to appreciate the general definition of negative, or additive inverse,
given in Section 1-7, suppose that we consider negatives in Z,. Recall that x
is the negative of y if and only if x + y = 0. Thus 2 is the negative of 5 and,
conversely, 5 is the negative of 2in Z,. This follows from the fact that 5 + 2 =0
modulo 7. Similarly, the negative of 1 is'6 and the negative of 3 is 4. We may
write that —5 =2, —3 = 4, and — 1 = 6 in the set Z,.
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As before, we may introduce subtraction as the operation of adding the negative
of the element to be subtracted. Thus 5—-3=5+4=2 in Z,. Similarly,
1—-6=1+1=2in Z,. This last example suggests that it would be incorrect
to think of 6 as larger than 1. In fact, it can be proved that no order relation,
with properties such as < has for the set of integers, can be defined in the set Z,.
This is a significant point of difference between Z and Z,.

Another point of difference between Z and Z, is that division of two elements
in Z usually gives a number not in Z, but division may be defined in a reasonable
way in Z, so that the result is always an element of Z,. To do this, first consider
multiplicative inverses of elements of Z,. Recall that x is the multiplicative
inverse of y in Z, if and only if xy = 1. (This was formerly stated xy = yx = 1.
Why is it permissible to omit the middle member of this equation?) Since2-4 =1
in Z,, 2 is the inverse of 4 and, conversely, 4 is the inverse of 2. We might indicate
this by writing £ = 4, but a more common notation in abstract algebra is to write
2~ ! = 4. This latter notation for multiplicative inverses will be used consistently
throughout this text. As examples, 37! = 5and 67! = 6in Z,. The element 0
has no inverse, but we will discover that in most mathematical systems the additive
identity has no multiplicative inverse.

Now the operation of division can be introduced in terms of inverses. We
define a = b to be a-b~! for all a and b in Z, for which b~ exists, and a = 0
is not defined. Thus we havethat2 + 3 =2-5=3and3+6=3:6=4inZ,.

Both cancellation laws hold in the set Z,. We may prove the cancellation
law for multiplication as follows. Suppose that ax = bx for q,b, and x in Z,,
and x # 0. Since x # 0, x~! is an element of Z,. Then (ax)x~! = (bx)x~ .
Using the associative law for multiplication, we have a(xx~!) = b(xx~!). But
xx '=1and a-1=aand b-1=b, so that a =b. This completes the proof.
Note that although the cancellation law holds in the set Z of integers as well,
this method of proof would be impossible, since inverses of integers are not in
general integers, and hence could not be used for proofs in Z.

The simple equations mentioned in Section 2-2 can be solved in Z,. The
equation a + x = b, where a and b are in Z,, has the solution b — g, and the
equation ax = b has the solution ba™?, provided that a is not zero. As numerical
examples, we can see by substitution that x = 6 is the solution of the equation
3 + x = 2, and that x = 3 is the solution of the equation 3x = 2. The formulas
given above may be used in solving such equations, or the equations may be solved
by trial and error, since Z, contains only 7 elements as possible solutions.

It is also possible to solve some, but not all, quadratic equations in Z;. The
equation x> = 4 has 2 and 5 as solutions, which is not surprising when you recall
that 5= —2. The equation 3x? = 6 has 3 and 4 as solutions. The equation
x? = 5, on the other hand, has no solutions in the set Z,, as can be shown by
substitution of each of the 7 elements in Z, into the equation.

Instead of considering Z, and operations modulo 7, we could equally well
consider Z, = {0,1,2,...,p — 1}, where p is any prime, and define operations
modulo p in an analogous way. If this were done, all the statements of this section
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would remain valid except the specific numerical examples. As we will see, this
is not the case for Z,, where n is an integer which is not prime.

For contrast with the preceding system, consider Zg = {01, 2, 3, 4, 5}, the set
of integers modulo 6. Let the operations of addition and multiplication modulo 6
be defined analogously to the operations in Z,. That is, the sum and product
modulo 6 are formed from the ordinary sum and product by subtracting the largest
multiple of six, which leaves the difference nonnegative. Thus3 +4 =1,3-5 =3,
and 34 =0 modulo 6. Table 2-2 gives addition and multiplication tables
modulo 6.

TABLE 2-2
TABLES FOR ADDITION AND MULTIPLICATION MODULO 6 IN 26
+|/0 1 2 3 4 5 01 2 3 45
010 1 2 3 4 5 0/]0 0 0 0 0O
11 2 3 4 5 0 1101 2 3 45
212 3 4 5 01 210 2 4 0 2 4
3134501 2 310 3 0 3 0 3
414 5 01 2 3 410 4 2 0 4 2
515 01 2 3 4 510 5 4 3 2 1

In Zg, as in Z,, the commutative, associative, and distributive laws hold for
these operations. Zero is the additive identity, and each element has a negative,
justasin Z;,, Thus —2=4and —1=5in Z,. Subtraction is defined as be-
fore. For example,2 —3=2+4+3=5,1-4=1+2=3,and5—-2=5+4=3
in Z¢;. The cancellation law for addition also holds, and it is possible to solve
all equations of the form a + x = b for a and b in Z,. So as far as addition and
subtraction are concerned, Z, and Z, have the same properties, although, of
course, numerical answers differ.

As soon as we consider multiplication, differences become apparent. The
element 1 is the multiplicative identity, but when we look for multiplicative in-
verses, we find that not every element has an inverse in Z,, Wenotethat1:-1 =1
and 5-5=1,sothat 17' =1 and 5! = 5. Next, let us examine the products
which can be formed with 2:2:0=0,2-1=2,2-2=4,2:-3=0,24=2,
and 25 = 4 modulo 6. Since there is no element x in Z4 such that 2x = 1,2 has
no multiplicative inverse in Z¢. Similarly, 3 and 4 do not have multiplicative
inverses in Z¢. Note that since 2x = 1 has no solution in Zg, not all equations
of the form ax = b can be solved. This is another point of difference between
Z. and Z,.

Since division is defined in terms of inverses, we can divide only by 1 or §
in Zg. Division is important in a mathematical system primarily when it is pos-
sible to divide by all nonzero elements of the system. Thus in Z, the operation
of division is of little value. It might serve as an example of an operation on a
set with a very limited domain, but it has/no practical application.

The cancellation law for multiplication fails to hold in Z¢. As we noted in
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a preceding paragraph, 2-2 = 2-5, and yet 2 # 5. This implies also that fac-
torization is not unique, since 4 may be factored in two ways, as 2-2 and as 2- 5.

As a final remark, we note that 2 - 3 = 0 and yet neither 2 nor 3 is zero. - When-
ever a product ab is zero and neither a nor b is zero in a mathematical system.
we say that a and b are zero divisors. In Zg, 2, 3, and 4 are all zero divisors. The
existence, or lack of, zero divisors in a system is of considerable interest. Recall
that in the algebra of numbers we solve an equation like

x—2)(x—3)=0

by reasoning as follows: Since the product of x — 2 and x — 3 is zero only if
one of the factors is zero, we set each factor separately equal to zero and obtain
solutions x = 2 and x = 3. This technique is available only because in the system
of real numbers we have no zero divisors. This method is not valid when we
are working with a system such as Z,. For example, consider this same equation
as an equation in Z,. The equation is satisfied by x = 5, for then x — 2 =3
and x — 3 =2and 3:2 =0. This illustration points up the fact that methods
of factoring and solving equations are not automatic in a mathematical system,
but depend on the properties of the system, in particular upon whether or not
zero divisors exist in the system.

The preceding remarks raise a question concerning the procedure for solving
equations in Z, or Z4. Since factoring and the associated methods we learned
in previous courses do not always apply, how can equations be solved in these
systems? The best method for solving equations in Z¢, Z, and other finite systems
is trial and error, as illustrated in the next two examples.

Example 2-5. Solve the equation 2x? + 3x +1 =0 in Zs Let f(x) denote
2x? 4+ 3x + 1, where operations are modulo 6. Then f(0)=0+0+1=1,
) =2124+314+1=0, f2)=2224+324+1=2443241=2+0
+1=3, f3)=2"32+33+1=234+33+1=0+3+1=4, f4=2-4
+34+1=24+34+1=2404+1=3,f5=2-524+3-54+1=2"1
+3-54+41=2+3+1=0. From these calculations we see that the splutions
of the equation are x = 1 and x = 5, and no others.

Example 2-6. Solve the equation x? = 2 in Z,. If we let g(x) = x2, then in Z,,
90) =0, g(1) =1, g(2) = 4, g3) = 2, g(4) = 2, g(5) =4, and g(6) = 1. Hence
x = 3 and x = 4 are the solutions of x*> = 2 in Z,.

We can generalize the definitions of the two preceding systems as follows.
Let Z,={0,1,2,...,n — 1} and refer to this set as the set of integers modulo
n for an arbitrary natural-number n. Operations of addition and multiplication
modulo n are defined analogously to the special cases for 7 and 6 just described.
That is, addition modulo n is the operation in Z, defined by first performing ord-
inary addition and then subtracting the largest multiple of n contained in the
result. Multiplication modulo n is performed in a similar way. When n is a
prime, a system similar to Z, is obtained in which inverses for nonzero elements
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exist, there are no zero divisors, division by nonzero elements is always possible, etc.
If, however, n is not prime, then Z, resembles Z,. Some elements fail to have
inverses, factorization is not unique, zero divisors exist, etc.

All systems Z, share some properties with the set Z of integers and these
properties form the basis of the definition of a class of systems called rings, which
is the subject of the next section.

EXERCISES
1. Evaluate the following numerical expressions in Z,, using arithmetic modulo 7.
a)3—-6 b)1-5
c)2:5+4-3 d3=+6
e)2+5 f) 2:37 +5.471
2. Find all solutions to the following equations in Z,, where all operations are modulo 7.
a)x—3=6 b)2—x=5
¢) 5x =4 d)3x+2=5
e) x> =1 H 3x2=6
g x3=6 h)y x2 +2x+6=0
) x> +x+2=0 ) (x—4)?2=4
3. Evaluate in Zg:
a)3—4 b) 1 -3 c) —2+5 d -3-4
e) 3(1 —5) f) 3-1-3-5
4. Find all solutions to the following equations in Z,, where all operations are modulo 6.
a) x?4+x=0 b) x2 =2
c) 2x24+x+3=0 d 4x*+5x+2=0

5. Show that 3 and 4 have no multiplicative inverses in the set Zg.

6. Prove that the cancellation law for addition holds in Z, using the fact that each element
of Z¢ has a negative in Zg.

7. a) Prove the cancellation law for multiplication holds in Z,, using the fact that every
nonzero element in Z, has a multiplicative inverse in Z,.

b) Prove, using the cancellation law for multiplication, that Z, has no zero divisors.

8. a) Factor 3 in two different ways in Z¢ neither involving the factor 1.
b) Compare the set of elements in Z which can be factored in more than one way with
the set of zero divisors in Zj.
c) How is the set of zero divisors in Z related to the set of elements with multiplicative
inverses?
d) Give an example, other than the one in the text, to show that the cancellation law
for multiplication does not hold in Zg.

9. Consider that Z5 = {0, 1, 2, 3, 4}, with addition and multiplication defined modulo 5
(multiples of 5 are subtracted in forming sums and products). Evaluate the following
expressions in Zs.

a)3—4 by 1 -3
c)2+4 d) 3+2
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10. Solve the following equations in Z,, or show that they have no solutions. All opera-
tions are modulo 5.

a)x—3=2 b)2—-—x=4

c) 3x=4 d) 2x =3

e) 4x =2 ) x2=4

g x2=3 h)y x> +4x+2=0

2-4 RINGS AND INTEGRAL DOMAINS

In discussing the set Z of integers and the operations of addition and multiplication,
we have verified a number of properties which hold in many other mathematical
systems as well. It is convenient to classify systems according to their properties.
This is helpful in several ways. The most obvious value is that it enables us to
prove general theorems valid for all systems having similar characteristics and
thus avoid the necessity of reproducing proofs for each new system.

The first mathematical systems we will investigate are called rings. In regard
to the definition of a ring, two operations are involved, which will usually be
referred to as addition and multiplication. Actually, it is not important that
these operations be written as + and -, or that they even resemble the operations
of addition and multiplication of numbers. They could just as easily be written
xand o, or in any other way, so long as the corresponding conditions are satisfied.
We will also adopt the convention of referring to the additive identity as zero
(denoted 0), additive inverses as negatives, the multiplicative identity as unity
(denoted 1), and multiplicative inverses simply as inverses. This will help avoid
any confusion in distinguishing between the two operations in an unfamiliar
situation.

Definition. A ring is a set R of elements on which are defined two binary
operations, written as + and -, satisfying the following conditions:

1) R is closed with respect to addition.

2) Addition is associative in R.

3) R contains a zero element.

4) For each element a in R, there exists a negative —a in the set R.
5) Addition is commutative in R.

6) R is closed with respect to multiplication.

7) Multiplication in associative in R.

8) Multiplication is left- and right-distributive over addition.

As examples, the set Z of integers, the set Z, of integers modulo 7, the set Z,
of integers modulo 6, and the sets Z, of integers modulo n for each natural number
n, are all rings. The properties of these sets which establish the fact that they
are rings have been previously discussed. For example, properties (a) through
(g) of Theorem 2—4 show that Z is a ring. The set R of all real numbeis is another
example of a ring, although we have not verified this fact.
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A ring is called a commutative ring if and only if the operation of multiplication
is commutative. All of the preceding examples of a ring are commutative. A
ring is a ring with unity if and only if there is a multiplicative identity (unity element)
in the ring.

A ring is an integral domain if and only if it is a commutative ring with unity
in which there are no zero divisors. The set Z of integers and the set Z, of in-
tegers modulo 7 are integral domains, but Z¢ is not an integral domain.

If a ring S is a subset of a ring R and has the same operations, then we call S
a subring of R. The set of even integers is a subring of the set of all integers. (See
Exercise 2 of this section.) This ring of even integers is an example of a ring
with no unity element. We can state that Z, is not a subring of the ring of integers.
We might consider Z, a subset of Z, since the symbols look the same, but addi-
tion and multiplication are defined differently in Z, than in Z. In any ring R
the zero element alone is a subring, called the zero ring.

If a subset S of a ring R is being checked to determine whether or not the set
is a ring, and hence a subring of R, it is helpful to notice that several properties
need not be checked. Properties (2), (5), (7), and (8) all hold in S by virtue of the
fact that they are known to hold in R. We sometimes speak of such properties
as inherited properties. For example, the associative law of addition holds for
every triple of elements of R by definition of a ring. Then this property must
hold for every triple of elements in S, since each element of S is also an element
of R. The remaining properties must be checked since they could conceivably
hold in the set R as a whole and still fail to hold in some subset of R.

Example 2-7. Prove that the set S = {a + b\/f |a and beZ} is a ring. If we
assume the fact stated, but not proved, in the text that the set R of all real numbers
forms a ring, then we need only show that S is a subring of R. This means we
only need to verify properties (1), (3), (4), and (6). Note that the definition of S
states that a number is in S if and only if it can be expressed in the form a + b\/2
where a and b are integers. To verify property (1), suppose that a + bﬁ and
c+ dﬁ are any elements in S. Then the sum is (@ + ¢) + (b + d)ﬁ. Since
Z is closed under addition, a + ¢ and b + d are integers and hence this sum is
another element of S. The zero real number is, of course, the number 0 and
can be written as 0 + Oﬁ which shows that S contains a zero, satisfying property
). Ifa+ bﬁ is any element of S then it has a negative which can be written
as(—a) + (— b)ﬁ. But if @ and b are integers, then so are (—a) and (—b), and
hence each element in S has a negative in S, which is property (4). Finally, when-
ever a + bﬁ and ¢ + d./2 are elements in S, the product is the number (ac +
2bd) + (ad + bc)\/z By closure properties of Z, the numbers ac + 2bd and
ad + bc are both in Z so the product of two elements of S is always an element
of S. This establishes property (6), and completes the proof that S is a ring.

In addition to the examples already presented, let us consider two more
examples of rings. The second of these examples will only have meaning if you
have previously taken a course in calculus. It is included to illustrate the fact
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that there are applications in calculus for the ideas we are discussing here. A final
important example of rings is the subject of the next section.

Example 2-8. Let R = {w, x, y, z} and let addition and multiplication be defined
by the following tables. As in Section 2-5, the sum x + y, for instance, appears
in the row opposite x and the column headed y. We note that x + y = z. Sim-
ilarly, wz = w and xz = z.

+{w X z w X y z
wilw X y z wlw www
X |x w z y X w Xx y z
yly z w Xx y ww w w
zlz y x w z w X y z

We will not show proof that this set is a ring. Many of the conditions are
obviously satisfied, but checking associativity and d1str1but1v1ty would require
checking each possible combination of elements-64 cases for each law—and
will be omitted. The reader should check several cases for each law. This ring
is not commutative, since, for example, yz = w while zy = y.

Example 2-9. Let S denote the set of all functions f such that f: I — R, where
I is the interval 0 < x < 1 and R is the set of real numbers, and such that each
function f in S is continuous. Then dsfine the operations of addition and mul-
tiplication for two functions f and g in S by

(f+9x =/(x)+g(x) and fg(x) = f(x)g(x),

for each xeI. Since the sum and product of continuous functions are continu-
ous, both operations are closed on S. The remaining properties of a ring will
not be proved, but should be checked by the reader. Note that this ring is
commutative and has for its unity element the function u defined by u(x) = 1
for0<x< L

EXERCISES

1. Which of the following are rings with respect to addition and multiplication of numbers?

a) {a + bi|a and b are integers and i = —1}.

b) {a + b\/3|aand b are rational numbers}.

¢) {a + bY2|a and b are rational numbers}.

d) {5m|mis an integer}. e) {m/2|mis an integer}.
f) {m/2"|mand n are integers}.

2. Prove that the even integers form a commutative ring under ordinary addition and
multiplication, but not an integral domain.
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3. Let Z, = {0,1,2, ...,n-1} with the operations of addition and multiplication modulo n.

a) Prove that Z, is a ring for any integer n greater than 0.
b) Prove that Z, is not an integral domain if n is not prime.

4. Prove that the set consisting of the zero element alone is a subring of the ring of integers.

5. For the ring R of Example 2-8, what is the zero element? Is there a unity element? Are
there zero divisors? Check each of the associative and distributive laws in three special
cases for this ring.

6. For the ring S of Example 2-9, what is the zero element? Show that the ring has zero
divisors. Find the sum and product of the functions f and g in S if f(x) = x?> + 3 and
g(x) =2 — 3x%, for xel.

7. Prove or disprove that the set T = {a b} is a ring with operations given by the following

tables.
+|a a b

b .
ala b ala a
b|b a bla b

8. Consider that Z; = {0, 1,2, 3,4, 5}, with the operation of addition modulo 6 and “mul-
tiplication” defined by x © y = y for every x and y in Z,. Prove or disprove that this
set is a ring.

9. If A and B are subrings of a ring R, show that A n B is a subring of R.

10. Let T be the set {0, +3, +6, +9, ...} consisting of integers which are multiples of 3,
and let F be the set {0, +5, £10, +15, ...} consisting of integers which are multiples
of 5. Then both T and F are subrings of Z.

a) What is theset T n F?

b) Is the set T N F a subring of Z?

¢) What is the set T U F?

d) Prove by counterexample that T U F is not a subring of Z.

2-5 TWO-BY-TWO MATRICES*

A final example of a ring is the set of two-by-two matrices. We include the example
because of its practical importance in other branches of mathematics, and for the
excellent example it provides of a ring which is not commutative. For simplicity,
we have not chosen to discuss the more general ring of n-by-n matrices for arbitrary
n, but all remarks apply with obvious changes in the more general case. Matrix
theory is important as a tool in handling simul{aneous linear equations or inequal-
ities and in many other areas in advanced mathematics courses.

A two-by-two-matrix is an array of four elements, which we will assume in
this section are real numbers, repreSented by the following notation.

a b
General two-by-two matrix: (c d>.
We will usually abbreviate “two-by-two” to the symbol 2 x 2. It should be

* Section 2-5 may be omitted without loss of continuity.
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pointed out for the student who has worked with determinants that whereas
a determinant represents a single number, the value of the determinant, a matrix
is an array of numbers and has no numerical value. In this notation, the numbers
a and b are said to form the first row, while ¢ and d form the second row. The
numbers a and ¢ form the first column and b and d the second column. In ad-
dition, we say that a and d form the principal diagonal of the matrix. The symbol
2 x 2 reflects the fact that the matrix has two rows and two columns. In general,
an m X n matrix would be an array of elements having m rows and n columns.

Matrices arise naturally in many practical situations. For instance, any
page from a book of tables contains a matrix of some size. As a practical ex-
ample, suppose that two books, one on calculus and one on algebra, are sold
both new and used in a certain bookstore. The matrix of prices might be indicated
as follows (entries are in dollars):

New Used
Calculus (/895 5.50
Algebra \6.75 4.50)°

We say that the 2 x 2 matrices 4 and B are equal if and only if each of the
elements in the first equals the corresponding element of the second. That is,

€a-C )

if and only ifa =w, b =x,c=y,and d = z.

Let us refer to the set of all 2 x 2 matrices with real numbers as elements
as the set M, at least throughout this section. As a binary operation on the set
M, we define the sum of matrices A and B to be the matrix obtained by adding
the corresponding elements of A and B. This sum is written A + B. As an

example,
15 2 8 3 13
+ = :
<3 0) <9 4> (12 4)

Addition is clearly commutative. To show that the addition of matrices is as-
sociative, consider the following proof using arbitrary 2 x 2 matrices:

RS RA

b e+i f+j o . N
d) + ( g+k h+ m) by definition of matrix addition,

§
<a+(e+t) b+(f+j)>

ct@+k) d+(+m) by definition of matrix addition,

@+e)+i b+f)+j by the associative law for
c+g9)+k d+h+m addition of numbers,
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(¢ te b+f + b by definition of matrix addition,
c+g d+h k m

. b + e f + v by definition of matrix addition.
c d g h k m

This establishes the associative law for the addition of 2 x 2 matrices. We
included this proof to illustrate the method, but will omit general proofs for
most other laws in this section. The student should check other laws in several
special cases.

The zero element (additive identity) in M is the matrix

6 o)

as can be seen from the fact that adding this matrix to any element of M leaves
the element unchanged. We denote the zero matrix by 0. The negative of

© )
(= 2

(Can you verify this?) The notation for the negative of a matrix A4 is the stand-
ard symbol —A. Subtraction is defined, as usual, to be the addition of the neg-
ative. That is, if 4 and B represent 2 x 2 matrices, 4 — B = A + (—B).

In order to provide motivation for the definition of multiplication, we turn
to a problem from analytic geometry. In addition to furnishing a reason for
our definition, this example illustrates one of the important applications for
matrices. In Euclidean geometry as well as in other geometries, matrix methods
are invaluable in the study of transformations.

In analytic geometry, transformations of coordinates in the plane are con-
sidered for the purpose of simplifying equations of curves. Rotations of co-
ordinates take the form

is the matrix

X' =ex+ fy and y =gx+ hy,

with certain restrictions upon the real numbers e, f, g, and h. Once the form of
the equations is understood, one can identify a rotation by simply specifying
the matrix B formed from the constants, namely,

()

Now suppose that a second rotation is to follow the first and is given by

x"=ax' +by and y' =cx +dy.
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This rotation corresponds to the matrix

()

To obtain a single rotation equivalent to the sequence of the two rotations in-
dicated above, we can substitute the first set of equations directly into the second
set of equations and collect terms as follows:

x" = a(ex + fy) + blgx + hy) = (ae + bg)x + (af + bh)y,
y' = clex + fy) + d(gx + hy) = (ce + dg)x + (cf + dh)y.

This rotation is associated with the matrix

C = ae+ bg af + bh
“\ce+dg cf +dh)’

The rotations above with matrices A and B, as well as all transformations in
geometry, are mappings. The rotations have the added property of being one-
to-one. The product of these two mappings is as follows: If « is the rotation with
matrix A4, and f is the rotation with matrix B, the product af is defined to be the
mapping resulting from first performing the rotation f and then performing o
upon the result. Thus if P is any point, we represent the image of P under f§ as
B(P) in the usual functional notation. Then (xf)(P) is defined to be a(B(P)).
The matrix of af is the matrix C given in the preceding paragraph. Using this
example for our guide, we will define the product of the matrices A and B to be
C, as summarized in the following definition.

_fa b (e f
() )

then the product of A and B is given by

a b\(e f\ (ae+bg af + bh
c d)\g h) \ce+dg cf +dn)

The notion of a matrix was first invented in order to treat problems of the type illustrated
by our example. It was natural, then, to define the product of two matrices in a way which
fitted in with this application. Much of mathematics is developed in a similar way. From
a real problem in physics, economics, another branch of mathematics, or some other area
of endeavor, an idea for a useful mathematical model (mathematical system) arises. The
definitions and structure given the model are motivated by the properties of elements in the

original problem. It often happens that such a model is later found to have a much wider
field of application than the problem which led to its invention.

Definition. If

An easy way to remember the above definition is to note that the element in
row i, column j, in the product is obtained by multiplying the elements of row
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i of the left factor by the corresponding elements of column j from the right factor
and adding the results. This is true for i and j each equal to 1 or 2. A little
practice will make this operation easy to perform.

Multiplication in the set M of 2 x 2 matrices is associative, but not com-
mutative. Some examples illustrating associativity are contained in the exer-
cises. To show that multiplication is not commutative, we need only consider
the following example:

COOC (2 )
GG ¢ Y

The left- and right-distributive laws of multiplication over addition hold in
M. Again, we will illustrate this with examples in the exercises and omit the
proof.

The unity element of M (multiplicative identity element) is the matrix

¢

(By actual multiplication, check the fact that I4 = AI = A for an arbitrary ma-
trix A4 in M.) When we consider multiplicative inverses, we find that in some
cases inverses exist and in other cases they do not exist. For the matrices

2 3 2 -3
X-(l 2) and Y=<_1 2)

we find that XY = YX =1I,sothat Y = X ' and X = Y~ !. However, for the

matrix
3 6
Z =
G 3

no inverse exists. It can be shown that a matrix

(9

has an inverse if and only if ad — ¢b # 0. The reader is encouraged to find such
a method for 2 x 2 matrices, in the cases where an inverse exists, before reading
further.

As was the case in Zg, we find that M contains zero divisors. For example,

G )6 o)

whereas
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Because of the existence of zero divisors, there is no valid cancellation law for
multiplication in M. Similarly, not all equations of the form AX = B can be
solved in M.

EXERCISES
1. Given the matrices
2 -3 3 =2
A= (l 5) and B = <0 4),
find (a) A + B, (b) AB, (c) BA, (d) 54, (¢) 3B, () A— B, (g) B — A.
2. Given the matrices

(51 (=2 0 (31
G N ) R |
find (a) X(YZ), (b) (XY)Z, (c) X(Y + Z), (d) XY + XZ, () (X + Y)Z, N XZ + YZ

3. Construct an example (other than that in Exercise 2) to illustrate the assaciative law
in M.

4. Construct examples (other than that in Exercise 2) to illustrate each of the left- and right-
distributive laws in M.

S. Find an instance of zero divisors in M other than that in the text.
6. Show by example that the cancellation law for multiplication does not hold in M.

7. Given the two rotations

{xl =) and {

= - X, " 3 ' ’
y y = - )2[-" + %J’ )
find x” in terms of x and y (a) by direct substitution, and (b) by multiplying the matrices

associated with the two rotations to find the matrix of the combined rotation.

8. Prove that [ is the identity with respect to multiplication for the set M.

(0
0=t )

Consider both the products (kI)A and A(kI).
10. Describe the effect on the matrix
a b
A=
()

9. Describe the effect on the matrix

of multiplication by the matrix
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of multiplying on the left by each of the following matrices:

o o6y oG

Try to formulate a general statement of these effects.

d) ((1) f)

2-6 ELEMENTARY THEOREMS ABOUT RINGS

The concept of a ring has been introduced in order that general theorems may
be derived for a large class of mathematical systems at once. In this section we
will consider several results concerning the operations of addition and multipli-
cation, many of which have already been proved for the set of integers, the ring
of 2 x 2 matrices, and the rings Z, and Z,. However, these proofs could replace
the earlier proofs and will serve for many other systems to be considered at a
later time.

We say an element with given properties is unique in the set, if it is the only
element in the set having these properties. Condition (3) in the definition of a
ring requires the existence of a zero element and condition (4) states that each
element in a ring has a negative in the ring. No mention of uniqueness of these
elements appears in the definition. The next theorem states that these elements
are unique and certain others are unique if they exist at all.

Theorem 2-6. If R is a ring, then

a) the zero of R is unique,

b) for each element a in R, the negative of a is a unique element in R,
c) if R has a unity element it is unique, and

d) if an element a in R has an inverse in R it is unique.

Proof. a) Suppose that z and z’' both have the property required of the zero
element in a ring R; namely, that for everyainR,z+a=a+z=agandz + a =
a + z' = a. Then,ontheonehand,z + z' = z/,since zisazeroof R. On the other
hand, z + 2z’ = z, since z' is also a zero of R. Therefore, z/ = z, which proves
the zero of R is unique. In the future we will denote this unique zero by 0.

b) Now assume that n and n’' are each negatives of an element g in R. That is,
n+a=a+n=0andn +a=a+n =0."Then,

n=n+0 by definition of zero,
=n+ (a + n') by definition of negative,
=(n+a) +n by the associative law of addition,
=0+n by definition of negative,
=n by definition of zero.

Hence n = n’, proving that the negative of an element is unique.
The proofs of parts (c) and (d) are similar, and left for the reader.
It is convenient to have an easily recognizable symbol for the zero of a ring
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and for the unity element, whenever it exists. From now on, we will denote the
zero of a ring by the symbol 0 and the unity element, when it exists, by 1. The
use of bold-face type will distinguish between these elements and the integers 0
and 1 which may also be referred to in the same context.

The following example is an interesting one which will be helpful in under-
standing what is meant when we say that the unity of a ring is unique.

Example 2-10. Consider the subset S = {0,2,4, 6,8} of Z,,, with addition and
multiplication modulo 10. Notice, in this subset that0:6 = 0,26 =2,4-6 = 4,
6:6 =6,and 8-6 = 8. Since multiplication is commutative, 6 is a unity element
for this ring S. But S is a subring of Z,, which has 1 for its unity. Does this
contradict our statement that a ring has only one unity? No, because 6 acts as
unity only in S. For example, 7-6 = 2 in Z,,, so that 6 is not a unity for Z,,.
That is, a subring may have a unity different from that of the ring. However,
in this case, the unity of the subring will not be a unity for the entire ring. Further,
the unity of the entire ring cannot be an element in the subring or else the subring
would then be a ring with two different unity elements, which is impossible.

In the examples of rings we have considered, the cancellation law of addition
has always held, but the cancellation law of multiplication held in some rings,
but not in others. The next theorem, then, contains all we can expect in the
way of cancellation laws for rings.

Theorem 2-7. (Cancellation law for addition) If R is a ring and q, b, ¢ are
elements in R such that a + ¢ = b + ¢, then a = b.

Proof. Suppose that a, b, and ¢ are elements of the ring R and thata + ¢ = b + c.
By definition of a ring, —ce R and hence (@ + ¢) + (—c¢) = (b +¢) + (—c¢). By
the associative law of addition, a + [¢ + (—¢)] =b + [c+ (—¢)], or a + 0 =
b + 0 and therefore a = b, as we were to prove.

We have noted in our examples that multiplication by zero always gives zero
as a result. We state this in the following theorem.

Theorem 2-8. If R is a ring and a €e R thena-0=0-a=0.

Proof. Let aeR, a ring with 0 as its zero element. Thena 0 + a-a = a0 + a)
=a-a=0+d'u. Hence,a 0 + a-a =0 + a-a, and by the cancellation law
of addition,a-0 = 0. The other half of the theorem is proved similarly.

In the next theorem, which deals with negatives, be sure to notice how the
fact that an element in a ring has a unique negative is used in the proof.

Theorem 2-9. Let R be a ring with elements a and b in R. Then(a) —(—a)
=a, (b) a(—b) = (—a)b = —(ab), (c) (—a)(—b) =ab, and (d) —(a + b) =
(—a) + (=b).

Proof. a) If aeR, a ring, then by definition of a ring, —ae R. The definition
of negative requires that a + (—da) = (—a) + a = 0. These two equations also
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imply that a is a negative for —a, by definition. Since each element has a unique
negative in R we may conclude that —(—a) = a.

b) Next, for a,be R, —b, ab, and —(ab) are in R by definition of a ring, and

a(—b) =0 + a(—D) by definition of zero,

[—(ab) + ab] + a(—b) by definition of negative,

= —(ab) + [ab + a(—b)] by the associative law of addition,
= —(ab) + a[b + (—b)] by the distributive property,

= —(ab)+a-0 by definition of negative,
= —(ab) + 0 by theorem 2-8,
= —(ab) by definition of zero.

Therefore a(—b) = — (ab). The other half of part (b) can be proved in a similar
way.

c) For a, b € R, (—a)(—b) = —[a(—b)] = —[—(ab)] = ab. Here the reasons
for each step are an earlier part of this theorem.

Part (d) is proved by showing that (@ + b) + [(—da) + (—=b)] = 0. (See Ex-
ercise 5, Section 2-2, where the same theorem was mentioned for integers.) The
details are left for the reader.

There are other elementary properties of rings which we will not state formally
as theorems. For example, every equation a + x = b or y + a = b has a unique
solution if a and b are elements of any ring. Direct substitution verifies that
x = (—a) + b is a solution of the first and that y = b + (—a) is a solution of the
second. Uniqueness can be proved by an application of the cancellation law.
On the other hand, equations such as ax = b or ya = b may have solutions in
a ring, or not, depending on the ring. All such equations have solutions in the
rings Z, for p a prime but not, in all cases, in the other rings we have discussed.
The equation 7x = 5, for example, has no solutions in Z.

The associative law of addition provides a means of regrouping a sum of
three terms, each representing an element in a ring. This law can be extended
to allow regrouping of four, five, or more terms, as well. The next example
ilustrates how this can be done in a special case.'

Example 2-11. Prove that (@ + b) + (c+ d) +e=a+ (b + (c + (d + e))),
where a, b, c, d, e € R, a ring.

Proof. ((a+b)+(c+d)+e=(a+Db)+(c+4d+e
=(a+b)+(c+(d+e)
=a+ b+ (c+d+e)).
The reason for each step is the associative law of addition. Notice that in the
first step a + b and ¢ + d were each considered as names for single elements of R.
In the third step (¢ + (d + e)) was considered as a single element. In each case
this allowed us to use the associative law which applies to just three elements as
a tool for regrouping a sum containing five elements.
Once the method of Example 2-11 is understood it is customary to change
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the grouping symbols in a sum of arbitrary length without explaining each in-
termediate step. In fact, when no special grouping is considered important, it
is common to write a sum with no grouping symbols at all. The value of the
sum is independent of the grouping or association used so we frequently omit
parentheses entirely. For example, the sum a + b + ¢ + d could be interpreted
as (@ + b) + (c + d) or as a + (b + (c + d)), and either would be correct.

Similarly, the associative law of multiplication, the commutative laws of ad-
dition and multiplication, and the distributive laws can be generalized. The
proofs of these laws are tedious in spite of the fact that the laws are reasonably
self-evident. For this reason, we omit the proofs. The easiest to prove, the
generalized distributive law, is included as an exercise and the others are proved
in an appendix. In this section we will state the theorems but give no proof.
The proofs of the theorems do not require all the properties of rings, and are stated
in terms of the most general conditions under which they hold.

Theorem 2-10. (Generalized associative law) Let S be a set which is closed
with respect to an associative binary operation of addition (or multiplication).
Then the sum (or product) of n elements a,, a,, ..., a, in S, taken in that order,
is a unique element of S independent of the way in which grouping symbols
such as parentheses are inserted into the sum (or product).

Theorem 2-11. (Generalized commutative law) Let S be a set which is closed
with respect to a binary operation of addition (or multiplication) which is
both associative and commutative. Then the sum (or product) of n elements
of S is a unique element of S independent of the order in which the elements
of the sum (or product) are written.

Theorem 2-12. (Generalized distributive law) If S is a set closed with respect
to addition and multiplication, if addition is associative and multiplication
is left-distributive over addition, then x(a, + a, + - + a,) = xa,; + xa, +
-+ + xa,, where x, a,, a,,...,a, are any elements of S. A similar statement
holds for the right-distributive law.

EXERCISES

1. Solve each of the following equations in Z, in Z,, and finally in Z.
a)2+x=95 b) x -3=1 c)S+x=3
d3-x=5 e) x—4=2

2. Solve the following equations in the ring of 2 x 2 matrices and check your solution.
2 1 37 2 5 4 2
X = —_— =
) (—3 4) * (1 5) b X (3 —1> (3 1>
7 1 2 1
- X =
o (5 4) (7 6>
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3. Simplify each of the following by removing all parentheses or other grouping symbols.
Assume that all letters represent elements of an arbitrary ring.

a) a—[b—cld+e)] b) a — [blc — d) — e(f — g)]
In the following proofs be sure to use only the definition of a ring and the theorems
and results we have proved previously. Give a justification for each step of your proof.

4. a) Prove that if a ring has a unity then it is unique.
b) Prove that if an element a in a ring R has an inverse in R then this inverse is unique.
. Prove that 0-a = 0 for every element a in a ring R.

. Prove that (—a)b = — (ab) for every pair of elements a and b in a ring R.

. Prove that a(b — ¢) = ab — ac and that (b — c)a = ba — ca for any a, b, and ¢ in a,ring R.

0 IO wn

. Prove that the following hold for arbitrary elements of a ring R.

a) (x+y) (z+ w=(xz+ xw) + (yz + yw)
b) (@ + b) (c — d) = (ac + bc) — (ad + bd)

9. Prove that in a ring with unity having at least two elements, 0 # 1.

10. Prove Theorem 2-12 by induction on n. Begin the proof with the case n = 2, which
is exactly property (8) of the definition of a ring and hence needs no further proof.

2-7 COEFFICIENTS AND EXPONENTS

Integral coefficients and exponents for elements in rings mean the same for general
rings as for real numbers, with the exception that negative exponents have
meaning only when inverses exist. The main purpose of this section is not,
then, to present anything new, but rather to present a familiar topic in a more
precise manner than is customary at the time a student first encounters these
notions. We will treat coefficients and exponents simultaneously to emphasize
the basic similarities between them, one referring to addition and the other to
multiplication.

Consider a ring R which may or may not have further broperties such as
commutativity or the possession of a unity element. First, we.will formulate
an inductive definition of positive integral exponents and coefficients.

Definition. If x is an element of the ring R, then

a) 1-x = xand x' = x, where 1 is the natural number 1.

b) (n + 1)x = nx + x and x"*! = x"x for every natural number n greater
than or equal to 1.

In the expression nx, n is a coefficient of x, and in the expression x", n is an
exponent. Note that some confusion could result in interpretation of this definition.
If R has a unity element 1, then 1:-x = x. This definition, however, concerns
the integer 1 rather than the unity element of the ring. Until now no meaning
has been attached to the product of an integer and a ring element. In dealing
with number systems this distinction is not necessary, since integral coefficients
also belong to the set of numbers being considered. However, if 4 is a matrix,
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24 does not represent the product of two matrices, but means 4 + A, according
to the foregoing definition.

Next, we will state the basic theorem concerning positive integral exponents.
Note the close analogy between properties of coefficients and those of exponents.

Theorem 2-13. Let a and b be elements in an arbitrary ring R, and let m be a
natural number. Then, for every natural number n,

a) n*0=0(0€eR)and 1" =1 (1€ R). The latter is valid in any case where
R is a ring with unity.

b) n(a + b) = na + nb and (ab)" = a"b". The latter holds if and only if
ab = ba.

¢) (m + n)a = ma + na and a"*" = a™a"
d) (nm)a = n(ma) and (@™)* = a™

The proof of each part of this theorem can best be done by induction on n.
We will give the proof of only two parts and leave the rest, which can be proved
in a similar manner, for the reader.

To prove that (m + n)a = ma + na, we consider first the case where n = 1.
The theorem reads, in this case, (m + 1)a = ma + a, which is merely the second
part of the definition of coefficient and hence is valid. Next, we assume that
(m + k)a = ma + ka for some integer k, and we will prove that [m + (k + 1)]a
=ma + (k + 1)a.

[m+(k+ 1)Ja=[(m+k)+ 1]a by associativity in Z™,
=m+ k)a + a by definition of coefficient,
= (ma + ka) + a by our induction hypothesis,
= ma + (ka + a) by associativity in R,
=ma + (k + 1)a by definition of coefficient.

From the assumption that the theorem is valid for the integer k, we have proved
that it is valid for the integer k + 1. By the principle of mathematical induc-
tion, the theorem holds for every natural number n.

To prove that (a™)" = a™, we consider first the case n = 1. The theorem
reads, in this case, (a™)! = a™'. Since m-1 = m, this is merely the first state-
ment of the definition of exponent and hence is valid. Now assume that (a")* =
a™ for some integer k. We will prove that (a™)**! = gmk* 1),

(@™*t! = (@™)*a™ by definition of exponent,
= a"*q" by our induction hypothesis,
= a™*™ by (c) of this theorem,
= g"**1 by the distributive law in Z.

Thus the theorem is valid for the integer k + 1 whenever it is valid for the integer
k. By the principle of mathematical induction the theorem is valid for every
natural number n.
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It is important to remember that in Theorem 2-13 the symbols n and m represent
natural numbers, whereas a and b are elements of a ring. The statement n(a + b)

= na + nb looks like the distributive law in the ring R, but it is not. The symbol
n is not an element of R and the equation does not refer to multiplication in R

but to a property of coefficients.

A second important fact that is evident from this theorem is that the concepts
of coefficient and exponent are closely related. The only difference is that coeffi-
cients are used in connection with addition, whereas exponents relate to multi-
plication. Thus 3a is a short notation for a + a + a, while a® is a short notation
for a-a-a. If this relationship is kept in mind it will be easier to remember both
sets of properties. I

Now we need to extend the definition to include 0 and negative integers,
whenever this is possible.

Definition. If x is an element of the ring R, then

a) 0-x = 0, where O is the integer 0 and 0 is the zero element of R.

b) x° =1, the unity of R, if R is a ring with unity. But x° is not defined if
R has no unity.

¢) (—n)x = n(—x) for every natural number n.

d) x™" = (x"Y" if x~! exists in R. But x™" is not defined if x~! does not
exist.

Note that here, as before, we have used different type to distinguish between
integers and ring elements. That is, 0 is the integer zero and 0 is the additive
identity of the ring. Similarly, 1 is the integer one, while 1 is the unity element
of the ring.

In the proof of the next theorem, we make use of the fact that in an arbitrary
ring with unity 1, 1" = 1 for every natural number m. While this may seem
obvious, it cannot be used without proof. The proof is by induction on m. If
m = 1, the equation reads 1! = 1. Since this is merely the statement of the
definition, (part a), for the element 1 in a ring, the equatjon is valid in this case.
Now assume, as the induction hypothesis, that 1* = 1 for an integer k. Since
1¥*1 = 1*- 1 by definition (part b), and since 1 = 1 and 1 - 1 = 1, we have that
1¥*! = 1. Hence whenever the equation is valid for m = k it is also valid for
m =k + 1. By the principle of mathematical induction, 1™ = 1 for every natural
number m.

Theorem 2-14. The properties of coefficients and exponents stated for positive
integers in Theorem 2-13 hold for negative integers or combinations of positive
and negative integers in all cases where the quantities involved are defined.

These properties can be derived directly from the definition and from Theo-
rem 2-13. To illustrate the technique, we will prove that a™*" = a™a" in the
case n = —k is a negative integer and a is an element of a ring R. We assume
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for this proof that 1 e R and a~! exists. Otherwise no proof is needed, because
the expressions are not defined. For the proof we will consider the three possible
cases, in the light of the law of trichotomy.

First, assume that k = m, that is, n = —m. Then
amtr = gmk replacing n by its equal, —k,
=a° since k = m,
=1 by definition of 4°,
=1" by the statements preceding the theorem,
= (aa” )" since aa~! = 1, by definition of a ™,
=a™a”y" by Theorem 2-13 (b), since aa™! = a™ la,
=a"a™" by definition of negative exponent,
= g"q" since n = —m.
Next suppose that k > m, then k = m + t for some natural number t. We
still are using the fact that n = —k. Then
amtr = gk replacing n by —k,
=qa ' since k = m + t,
= (a" 'Yy by definition of negative exponent,
= 1(a" ) since 1 is the unity of R,
= (aa”"YY"(a™ ) since aa~! =1,
= [a™(a™")"](a" ) by Theorem 2-13 (b) since aa™* = a™! q,
= a™[(a” Y"a" )] by the associative law in R,
= g™a” )yt by Theorem 2-13 (c) for natural numbers m, t,
= a™a ) since k = m + t,
=qa™a"* by definition of negative exponent,
= a"a" replacing —k by its equal, n.
Finally, if k < m, then m = k + s for some natural number s, and
amtn = gnk replacing n by —k,
=a' sincem — k = s,
= a¥(1) since 1 is the unity in R,
= a’(1% from our proof that 1¥ = 1, above,
= a%(aa” ) sinceaa™! =1,

a’[d{a=")*¥] by Theorem 2-13(b)sinceaa™! = a~ ! a,
(a*a")(a~ ) by the associative law in R,

= a* a1 by Theorem 2-13(c) for natural numbers s, k,
=atkqk by definition of negative exponent,
= ga"a" sinces + k =mand —k = n.

In this proof and the proofs of the other properties, the idea is to transform
the expression so that the properties of positive exponents (or coefficients) can
be applied. None of the proofs is difficult, but they are long, and it is felt that
this example is sufficient to illustrate the method.

The following example presents an unfamiliar situation involving exponents.
It is included to help fix in mind the precise statement of the definitions.
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Example 2-12. Consider the set of real numbers with an operation of “multi-
plication” given by a*b = a + b — ab for every a,b. Suppose we try to find
x~2 if x is the real number 3, where exponents are interpreted in terms of the
operationx. Since x~2 = (x~!)? by the definition, we need to find 3. Further,
37! is defined as the number y such that 3 # y is the identity. In Example 1-17
in Section 1-7, the identity for this operation was found to be the number 0, since
0* a=a=*0 = afor every real number a. Therefore the inverse of 3 will be the
number y such that 3xy =0. Hence 3+ y — 3y =0,0r y(1 —3) = —3, or
y=3. Thatis, 37! = 3 in this system. Hence 372 =(3"1)? =3 =33 =3,
the desired answer.

EXERCISES

1. Assume that R is the ring Z4 with operations modulo 6. Compute each of the following
for the element a =3 eR.
a) 3a b) 10a c) a* d) o’ e) (—5)a f) (—=10)a

2. Assume that R is the ring Z, with operations modulo 7. Compute each of the following
for the element a = 5eR.
a) 3a b) 10a c) a® d) o’
e) (—5a ) (—10)a g a? h) a”3

3. Assume that R is the ring of 2 x 2 matrices with the usual matrix operations. Compute
each of the following for the element

a= (1 3>€R. Note that a~ ! = <2/5 3/1())

2 /5 —1/10)
a) 3a b) 10a c) a® d) a*
e) (—3)a ) (—10)a g) a? h) a3
4. If 0 is the additive indentity of a ring R, prove by induction that n-0 = 0 for every-natural
number n.
5. Prove that if R is a ring, a€ R, and m is a natural number that (—m)a = — (ma). [Hint:

Show that ma + (—m)a = 0. Be sure to remember that m is a coefficient and not a
ring element].

6. Prove the statement that (nm)a = n(ma) in Theorem 2-13.
7. Prove the statement that a™*" = g™a" in Theorem 2-13.

8. Let R be a ring with unity, not necessarily commutative. Suppose that a and b are el-
ements of R such that a™ ! and b~ ! both existin R. Prove that (ab) ™! exists in R by proving
that (ab)™* = b~ ta™".

[Hint: Prove that (ab)(b~'a"') and (b~ 'a”!)(ab) both equal the unity of R.]

9. Prove that if a and b are elements of a commutative ring R with unity, such that a~!

and b~! exist in R, then (ab)" = a"b" for every negative integer n. Use the result in
Exercise 8 in this proof, but do not use induction.

10. Prove that if a is any element of a ring R and m is a natural number, then (m + n)a =
ma + na for every negative integer n.
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11. Discuss the possibility of assigning a meaning to fractional exponents for elements in
aring. In particular, find all elements a in Z, for which a'/? could be reasonably defined.
Are there elements for which this is not possible? Why?

12. Consider the operation of “addition” in the set of integers definedbya®b=a + b — 1.
(Compare this with Example 2-12.)

a) Find 3x for x = 5, where 3 is interpreted as a coefficient defined relative to the op-
eration @.

b) Find the identity for this operation.

c) Find the inverse of 5 with respect to this operation.

d) Evaluate (—3)x for x = 5, where —3 is considered a coefficient defined relative to
the operation @®.

2-8 DIVISIBILITY AND PRIMES

We have noted that the set of integers is not closed for the operation of division,
since the domain of the operation is not the entire set Z x Z and the range includes
numbers other than integers. However, it is possible in certain cases to divide
one integer by another, and many properties of the integers depend on whether
or not this is the case. In order to discuss divisibility, we need another definition.

Definition of divisor.  An integer b divides the integer a if and only if there
exists an integer ¢ such that a = bc. In this case we say that b is a divisor of a
(also a factor of a) and that a is a multiple of b. We write this as b | a.

We note immediately that b|0 (read “b divides 0”), since b-0 = O for every
integer b. Similarly, for every integer b, + 1|b and +b|b. If we consider
“divides” as a relation, we see by the above remark that this relation is reflexive.
It is not symmetric, since 2 /4 but 42. (The symbol is read “does not divide.”)
The relation is transitive, since if a b and b|c, then b = ax and ¢ = by for in-
tegers x and y. Hence ¢ = by = (ax)y = a(xy), which shows that a|c.

Another immediate consequence of the definition is the fact that if b|a for
positive integers a and b, then b < a. Suppose that b|a. Then a = bc for some
positive integer c. Now 1 < ¢, and upon multiplying by b, we have that b <
bc = a.

Integers a and b are associates if and only if a|b and b |a. For any integer a,
a and —a are associates. In Exercise 2 of this section you will be asked to prove
that there are no other associates of a.

Definition of prime. A nonzero integer p is a prime if and only if it is neither
1 nor —1 and has no divisors other than +1 and +p.

As examples, 2, — 3,97,and 8191 are primes. One of the reasons for discussing
primes is the fact, to be proved later, that every positive integer larger than 1 is
uniquely expressible as a product of prime factors. This is useful in constructing
proofs of theorems in many branches of mathematics.

Before proving the fundamental factorization theorem, we need to investigate
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the division of integers more thoroughly. While it is not true that each integer
is a divisor of every other, problems involving division with arbitrary integers
are commonly introduced early in the elementary grades. Such problems are
“solved” by finding a quotient and remainder as an answer. We will make this
process more precise, as indicated in the following theorem.

Division algorithm. If m and n are integers with m # 0, then there exist
unique integers ¢ and r such that n = mq + r where 0 < r < | m|.

We refer to g as the quotient and r as the remainder in the division of n by m
We will prove the theorem in the case n and m are both natural numbers. If
n =0, then ¢ = 0 and r = 0 satisfy the theorem. The examples will show how
to treat cases where m or n or both are negative.

The proof depends on the well-ordering principle (WOP). Let S be the set of
all natural numbers of the form n — mt, for arbitrary integerst. Sincen =n— m-0,
the set S is nonempty. By the WOP S contains a least integer s, = n — mq,,
where g, is some specific value of t. By the law ot trichotomy, m < sy, m = s,
or s, < m. Suppose that m > s,. Then s, — m is a natural number and

S —m=n-—mqy —m=n—m(q, + 1).

That is, s, — m€ S and s, — m < s,, which contradicts the statement that s, was
the smallest integer in S. Therefore, s, < m. Suppose next that s, = m. Then

n=mqo+ So=mqo +m=(q + )m + 0.

In this case, we let g + 1 = g and 0 = r to give the g and r required by the the-
orem. Finally, if s, < m, we have completed the proof, since ¢ = g, and r = s,
satisfy the requirements of the theorem.

To prove uniqueness, assume that n =mq + r = mq' + v/, where gq,r, ¢,
and r' are nonnegative integers, 0 < r <m, and 0 < ¥ <m. Assume for con-
venience that r <#. (If ¥ <r, we need only multiply the following equation
by — 1, and the argument is valid.) Thenm(g — ¢)=r —rand0 < v —r < m.
Unless ' — r = g — q' = 0, this is a contradiction of an earlier result. (If b|a for
positive integers a and b, then b < a.) Hence ¥ —r =0 and ¢ — ¢' = 0 or,
equivalently, ¥ = rand ¢’ = q. This shows that p and g are unique, and completes
the proof.

Example 2-13. If n = 59 and m = — 14, find the quotient ¢ and the remainder
r when n is divided by m. Find the g and r which satisfy the conditions of the
division algorithm. Express n in the form mgq + r.

First we perform a usual long division, ignoring the sign of m.

4
14)59
56

3
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Thus 59 = 14(4) + 3. Since m is negative, we can modify this by inspection
to give 59 = (— 14)(—4) + 8. Then g = —4, and r = 3. Note that 0 < 3 <
| —14|.

Example 2-14. If n = — 79 and m = 11, find the quotient ¢ and the remainder
r when n is divided by m. Find ¢ and r satisfying the conditions of the division
algorithm and express n in the form mq + r.

First, by long division, ignoring signs, we determine that 79 = 11(7) + 2.
Since n'= — 79, we may multiply through by — 1, giving — 79 = 11(—7) — 2.
However, the remainder r of —2 does not satisfy the condition 0 < r < |m]|.
Adding and subtracting 11 (the value of m) to the right of this equation gives
—19=11(-7)—114+11 —2=11(—8) + 9. Since 0 <9 < 11, we see that
the correct quotient is — 8 and the remainder is 9.

This is admittedly not the way a student would ordinarily think of the solu-
tion to this problem. Although long division involving negatives is not ordinarily
taught in school, the tendency would be to accept — 7 as quotient and — 2 as
remainder. In order for the quotient and remainder to be unique, it is necessary
to specify a single procedure as the correct one. We will always use the answer
which satisfies the conditions stated in the division algorithm. The fact that the
quotient and remainder are unique, and not subject to the whim of the person
performing the division, is important in theoretical work. It is not just a trick
to force students into getting identical answers in order to help the paper grading,
but is useful in proving theorems about integers, as we shall see.

EXERCISES
1. Find (a) all divisors of 24, (b) all multiples of —5, and (c) all primes p such that —10 < p
< 30. (All are to be found within the set Z of integers.)
2. Prove that the only associate of the integer a is —a. [Hint: If a and b are positive
integers and b | a, then b < a.]

3. For each of the following pairs of values of m and n, find the quotient g and the remainder
r in the division of n by m, and express n in the form n = gm + r. Do this so that the
conditions of the division algorithm are satisfied.

a) n=5Tm=3 b)n="7m=38 ) n=39,m=23
dn=—-13,m=5 e) n=126m = —11 ) n=—46,m= -7
g n=—125m=23 h)n=0m==6 i) n=-235m= —17

. Find a prime larger than 400 and different from any example in the text.

. Show that 4307 is not a prime.

. Prove that if x = y + z and if d divides any two of x, y, and z, then d divides the third.
. Let S be the set of all divisors of 40 and let T be the set of ali divisors of 36.

a) Determine the sets S and T.
b) Find S n T, he set of common divisors of 40 and 36.
c) Find the largest number in S n T, called the greatest common divisor of 40 and 36.

R e Y A
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8. Let U be the set of all multiples of 6 and V be the set of all multiples of 4.

a) Determine the sets U and V.

b) Find U N V, the set of common multiples of 6 and 4.

¢) Find the smallest positive integer in U n ¥, called the least common multiple of 4
and 6.

9. Use the method of Exercise 7 to find the greatest common divisor of 396 and 504.

10. Show that if a divides the product bc, for integers a, b, and c, it does not follow that a
must divide either b or c separately. Can you suggest a restriction on a, b, or ¢ so that
if a bc, and if ab, then it must follow that a | c?

2-9 GREATEST COMMON DIVISOR AND EUCLID’'S ALGORITHM

The notion of a common divisor for two or more integers is of importance in
combining or simplifying fractions and in many other practical problems in
mathematics.

Definition of greatest common divisor. A greatest common divisor (GCD) of
two integers a and b (not both zero) is a positive integer d such that

a) d|a and d|b, and

b) if, for an integer ¢, ¢ | @ and ¢ b, then c| d.

We will denote such a divisor by d = D(a, b).

The definition does not assert that such a divisor exists, or that it is unique
when it does exist. The following theorem establishes these facts. There are
more elegant ways to prove the theorem than the method employed here. This
method was chosen because it is constructive; that is, it provides a method by
which the GCD can be computed in specific cases.

Theorem 2-15. Every pair of integers a and b, not both zero, has a unique
GCD D(a, b) which can be expressed in the form D(a, b) = ma + nb for some
integers m and n.

Since it follows directly from the definition that D(a, b) = D(|a|, |b), it is suf-
ficient to consider the case where a and b are both nonnegative.

If a =b, then D(a,b) = a=>b and no proof is required. Suppose, then,
that b < a. (This assumption does not effect the generality of the proof, but
amounts only to naming the smaller of the integers b and the larger a.) By the
division algorithm, there exist unique integers q, and r, such that

a=gq.b+r where 0 < r, <b.
Next, we divide by r, and obtain, according to the division algorithm,
b=gq,r; +r, where 0<r, <r,.

We continue this process for as long as the remainder is nonzero. At each step,
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the divisor of the preceding step is divided by the remainder at that step to produce
a new quotient and remainder. We can tabulate the results as follows.

a=gqb+r where 0 < r; < b,
b =gy +r1, where 0 <r, <ry,
Fy =dqsf; + 73 where 0 < ry <7,
1) :
Tie3 = Qi-1li—2 + Fi—y where 0 < r;_, < r;_,,
Fiogp = qitioy + 7 where 0 < r; < r;_y,

ric1 = Qisrti +0.

This process must terminate with a remainder of zero, as shown, because of the
inequalities b > r; > r, > --. Since only finitely many integers lie between
0 and b, some r must be zero. Now if r;,, = 0, as indicated, ;| r;_, by the last
equation of the system (1). By the preceding equation r;|r;_,, since it divides
both r; and r;_,. (See Exercise 6 of Section 2-8.) Working back through the
equations (1) in this way, we see that ;| r; for each j < i. Finally, r;|b, and from
the first equation, it follows that ;| a. Hence r; is a divisor of both @ and b. Now
suppose that ¢ divides both a and b. By the first equation of (1), ¢ |r,. Proceed-
ing as before, ¢|r; for each j <i. In particular, ¢|r; Therefore, r; = D(a,b),
the GCD of a and b.

Uniqueness follows from the uniqueness of each of the r;, for j < i, or it can
be proved directly.

That D (a,b) can be expressed in the form D(a,b) = ma + nb for integers
m and n also follows from the system of equations (1). Beginning with the second
from the last equation, r; = r,_, — q;#;_;. Solving the preceding equation for
r;_; and substituting, we obtain

ri ="ty — q(rics — qi—1i—2)

Continuing in this way, we can eliminate each r; for j < i, leaving the desired

expression r; = ma + nb for some m and n.
The expression ma + nb is called a linear combination of a and b.

Example 2-15. To illustrate the procedure followed in the theorem, consider the
integers 26 and 118. We desire to find D(26, 118) and express it as a linear
combination of 26 and 118, that is, as 26m + 118n for some integers m and n.
The following are equations (1) for this numerical example:

118 = 4(26) + 14,
26 = 1(14) + 12,
14 =1(12) + 2,
12 =6(2) + 0.
Hence 2 = D(26,118). Further, from the next-to-last equation,
=14 — 12.
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But since 12 = 26 — 14, by the second equation, we have that
2=14 - (26 — 14)
=2(14) — 26.
Now, from the first equation, 14 = 118 — 4(26), so that
2 =2[118 — 4(26)] — 26
= 2(118) — 9(26).

The integers m and n required to express D(26, 118) as a linear combination of 26
and 118 are therefore — 9 and 2, respectively. The only difficulty here is in recog-
nizing which simplifications should be performed and which should be avoided in
the numerical work. A general rule is to collect coefficients of the integers corre-
sponding to each of the remainders and to a and b, but not to simplify further.

This permits the elimination of each remainder in turn and the recognition of the
coefficients of a and b required.

Example 2-16. If m|n, then D(m,n) = |m|, and it is not necessary to employ
the algorithm. The correct linear combination can be chosen by inspection.
For instance, D(— 11,33) = 11 and 11 = (— 1)(— 11) + 0(33).

The process of successive division represented by equations (1) in the proof
of the theorem is referred to as Euclid’s algorithm. The name arises from ‘the
fact that this process for finding the GCD of two integers is described early in
Book VII of Euclid’s Elements, although it was probably known much earlier
than this.

Two integers a and b are relatively prime if and only if their GCD is 1. Thus 9
and 16 are relatively prime, although clearly neither is a prime integer. The
condition that integers be relatively prime can also be stated as the condition
that they have no common factors except + 1.

In the special case of relatively prime integers, the theorem can be stated in
the form of the following corollary. This corollary is frequently used in mathe-
matical proofs in many areas of mathematics. (See, for example, the proof of
Theorem 2-16, Section 2-10.)

Corollary. If a and b are relatively prime integers, then there exist integers
m and n such that 1 = ma + nb.

Example 2-17. Express 1 as a linear combination of the relatively prime integers
8 and 27. Employing Euclid’s algorithm, we find that

27 = 3(8) + 3,
8 =2(3) + 2,
3=112) + 1,

2=2()+0.
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Hence
1=3-12)=3—-1[8-23)] =3(3) — (8 =3[27 — 3(8)] — (8)
= 3(27) — 10(8).

The expressioﬁ 1 = 3(27) — 10(8) is the desired result.

The definition of GCD can be extended, by induction, to finite sets of integers,
but this will be left as an exercise.

EXERCISES

1. Reduce the following fractions to lowest terms.
a) 360/405 b) 1037/2379 c) 3880/18,333 d) 4949/7081
2. Find each of the GCD’s D(a, b) indicated below, and find integers m and n such that
D(a, b) = ma + nb in each case.
a) D(17,629) b) D(91,259) c) D(—120, 168)
d) D(168,896) e) D(96, 133) f) D(110, —273)
3. Without using Euclid’s algorithm, prove that D(a, b) is unique.

4. Prove that if n is a positive integer, D(na, nb) = n[D(a, b)] for all integers a and b, not
both zero.

5. Write a definition for the GCD of three integers, no two of which are zero.
6. Find the GCD of the three integers 994, 1065, and 2485.

2-10 UNIQUE FACTORIZATION THEOREM

A significant fact”about the set of integers, as we mentioned earlier, is the uni-
queness of factorization. This property is not characteristic of all rings, as examples
for Z4 demonstrated. Matrices also fail to factor into unique factors. The
student can readily check this fact by constructing counterexamples. The exist-
ence of zero divisors in a system is closely related to the uniqueness of factorization
but does not serve as a suitable necessary and sufficient condition. Rather than
attempt to establish such conditions, we will prove the unique factorization
theorem separately in the two systems where the property is most significant
for elementary mathematics, the ring of integers and the ring of polynomials
over a field (Chapter 7). Two preliminary results are useful for constructing the
proof in the case of the integers.

Theorem 2-16. If the integer a divides the product bc of integers b and c,

and if a and b are relatively prime, then a divides c.

Suppose that a and b are relatively prime. Then by Theorem 2-15, there
exist integers m and n such that 1 = ma + nb. Multiplying by ¢, we have that
¢ = cma + nbc. Now it is assumed that a | be, so that bc = ka for some integer k.
Substituting this into the above equation gives

¢ = c¢cma + nka = (cm + nk)a
and hence a | c as we were to prove.
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Corollary. If the prime p divides the product a,q, ... a,, where each g; is
an integer for i = 1,2, ..., n, then p divides at least one a;.

The proof will be by induction onn. If n = 1 the result is valid, since it reduces
to the statement that if p|a, then p|a,. Suppose, as the induction hypothesis,
that the result is true for all products of n factors, and assume that p = a,a, = a,a,+1-
Denote by b the product aja, - a,. Then p|ba,,,. If p|a,,,, the theorem
is satisfied. If p/a,.; then, since p is prime, p and a, ., are relatively prime and
by Theorem 2-16, p | b. Since b is a product of n factors, the induction hypothesis
applies and p | a; for at least one i < n. So in either case p|a; for at least one
i < n+ 1, and by the principle of mathematical induction the theorem is valid
for all positive integers n.

Two remarks should be made concerning the fundamental theorem which
follows. First, while the theorem is stated only for positive integers in order to
simplify the proof, it extends readily to negative integers. Any negative integer k
may be written as k = —t for the positive integer t. The theorem may then
be applied to t. The second remark concerns the word “product.” An integer
may be a prime, in which case we consider it as a product of one prime, itself.
This enables us to state the theorem in the following simplified form.

Theorem 2-17 (the unique factorization theorem). Every integer n > 1 can
be expressed uniquely as a product of positive primes except for the order in
which the factors occur.

We will first prove that the factorization can be made in at least one way.
This proof will use the second principle of mathematical induction. The reader
should note in the proof the reasons why this principle is more readily applicable
than the first principle. If n = 2, no proof is needed, since 2 is prime and we
have agreed to interpret this as a product of one prime. Assume, as our induction
hypothesis, that the theorem is valid for all integers k such that 2 < k < n and
consider the integer n. If n is prime, we have finished the proof. If n is not prime,
then n = ab for integers a and b each greater than 1 and less than n. By our
induction hypothesis, a and b can be written as products of positive primes,
a=pp, " p,andb=gq,q, " q. Thenn=ab=pp, - pq:q, " qis a prod-
uct of positive primes. By the second principle of mathematical induction, every
positive integer larger than 1 can be factored into prime factors in at least one
way.

To prove that the factorization is unique, we will use the first principle of
mathematical induction to prove the following statement: If a positive integer m
can be factored in any way as a product of n prime factors, then it can be factored
into prime factors in no other way. Suppose that n = 1, then m is a prime and
has no other factors, by the definition of a prime. Suppose that the result is
valid for the case of n factors, and consider an integer m which can be factored
asm = p,p, "' p,+1, Where py, >+, p,,, are primes. If m = q,q, - q, for primes
41,9, - - - 45, We need to show that each p; = g; for some j and that n + 1 = s.
Thus p, |m and hence p, | q,q, *** g By the corollary to Theorem 2-15, p, | g;
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for some j <s. Since p; and gq; are both positive primes, p; = q;, Now
D2P3 *** Pn+1 1S @ product of n primes and equals

9192 """ 9j-19j+1 " 4s-

By our induction hypothesis, a product of n primes can be factored in no other
way. Therefore, the product of ¢’s must contain prime factors identical to those
in the product of p’s. That is, m can be factored in only one way. By the first
principle of mathematical induction, the factorization into prime factors is unique
for every possible number of factors. This completes the proof.

A method for finding the greatest common divisor of two integers by the use
of Euclid’s algorithm was suggested in Section 2-9. An alternative method is
now available, using the unique factorization theorem. If two or more integers
are factored into prime factors, their GCD can be found by inspection as the
product of those prime factors common to all the integers. In simple cases, this
method is often more practical than the previous method.

The least common multiple (LCM) of two or more integers is defined as a
positive integer m such that each of the given integers divides m, and if k is any
integer such that each of the given integers divides k, then m divides k. The LCM
of a set of integers can also be found by inspection of the prime factors of the given
integers. The LCM is the product of all factors appearing in any integer, each
factor repeated the maximum number of times it appears in any one of the given
integers. Thus 48 = 2%-3 and 54 = 332 have 2*-3% = 432 as LCM.

EXERCISES
L. Factor each of the following integers into prime factors.
a) 432 b) 2310 c) 97 d) 8259

2. Factor the real number 10 in two ways, using real numbers as factors. (These factors
will not all be integers.)

3. There are no primes in the system of real numbers, since each nonzero number divides
every real number. Show that in the set of real numbers (a) 2|3, (b) 2| 10, and (c) 5| \?/7

4. Factor the matrix
3 4
5 6

in two ways as a product of 2 x 2 matrices.

5. Unique factorization of polynomials will be discussed later. From your knowledge
of high school algebra, try to formulate such a theorem for polynomials. Take into
account the fact that, for instance, x — 3 = 1(3x — 9).

6. Use the method of prime factors to find the GCD and the LCM of each of the following
sets of numbers.

a) 45and 75 b) 2310 and 273 c) 99,231, and 792

7. Show that if integers m and n exist such that am + bn = 1 for integers a and b, then a
and b are relatively prime. (This is the converse of part of the theorem in Section 2-9)

8. Prove that if D(a, b) = 1, then D(a",b) =1 for every positive integer n.






CHAPTER 3

OTHER NUMBER SYSTEMS

3-1 THE RATIONAL NUMBERS

Rational numbers are customarily written as fractions, quotients of two integers.
For several reasons we will use another notation to introduce rational numbers.
First, the fraction notation suggests an indicated division and at the outset we
will not define division. We prefer to avoid the use of fractional notation until
such time as division is introduced. A second, and more general, objection to
the familiar notation is that with this notation it is difficult to indicate clearly
which properties of the rationals are to be considered as definition and which
properties are to be proved from known properties of the integers. This dis-
tinction is made easier by the use of a notation which does not suggest to the reader
that he already knows the familiar properties of rational numbers. Finally,
the notation we will use helps to clarify familiar properties of fractions. For
example, the precise meaning of the statement that § = 1 is reflected in our notation,
and will be made clear by our definitions.

It is important that both the prospective teacher and the future mathematician
have a through understanding of the number systems which form the basis for
so much of the mathematics taught at all levels. Much of the material in our
development would not be suitable for classroom use in the high school. How-
ever, the insight and understanding gained in a detailed study of the rational
numbers are essential background for effective teaching.

Our point of view, then, will be that the integers are known and that from
them we will construct a new system whose properties must be carefully estab-
lished by formal proof. Our notation will help to emphasize that we assume
nothing beyond the definition about this new system. We will show, in the next
section, that this new system is actually an extension of the set of integers.

Definition 1. Let S be the set of all ordered pairs (a, b) of integers in which
the second element is nonzero.

S ={(a,b)|a,beZ and b # 0}.
Define the relation ~ on the set S by (a, b) ~ (c, d) if and only if ad = bc.
This definition represents the first step in the construction of the rational

numbers from the integers. We have not yet defined a rational number. Before
75
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we can do that we need to investigate the properties of the relation we have defined
on S. As examples, we note that (2,3) ~ (4,6) since 26 = 3-4 = 12 and
(=3, 1)~B3 —1)since (—3)(=1)=1-3=3.

Theorem 3-1. The relation ~ is an equivalence relation in the set S.

Proof. First, if (a,b)e S, then (a,b) ~ (a, b), since ab = ba by the commutative
property of multiplication in Z. Hence the reflexive property of ~ has been
established.

We will leave the proof of the symmetric property for the reader and prove
that the transitive property holds. If (a,b) ~ (c,d) and (c,d) ~ (e, f) for (a,b),
(c,d), and (e, f) in S, then, by definition, ad = bc and cf = de. Multiplying,
we obtain (ad)(cf) = (bc)(de). By the generalized commutative property (af)(cd)
= (be)(cd). Now d # 0 by definition of S and if ¢ # 0 then c¢d # 0 and it follows
from the cancellation law that af = be. Hence (a, b) ~ (e, f) by definition of ~.
However, if ¢ = 0 then from ad = bc we can deduce that a = 0, since d # 0. Also
we deduce from c¢f = dethate = 0. Then (a, b) is the pair (0, b) and (e, f) is (0, f).
But in this case (a,b) ~ (e, f) since 0- f =b-0 =0. We have proved that in
either case (a, b) ~ (e, f) and therefore the transitive property holds. This com-
pletes the proof that ~ is an equivalence relation in S.

This equivalence relation partitions S into equivalence sets. As usual, we
denote by [, b] an equivalence set containing the pair (q, b).

Definition 2. The set of rational numbers is the set Q of all equivalence sets
in S relative to the relation ~.

Q = {[a,b]|(a,b) € S}

Note that a rational number is not a pair (a, b) of integers, but an equivalence
set of such pairs. For example [1,2] is a rational number where [1,2] = {(1, 2),
(2,4), (=3, —6), (45,90), ...}. This notation is not precise, in that only a few
elements of the set of equivalent pairs are listed. Can you name other pairs in
the set [1,2]? This rational number [1, 2] can be expressed alternately as [2, 4],
[— 3, — 6], and in many other ways. If this does not seem clear, it would be well
to review the section on equivalence relations and equivalence sets before pro-
ceeding.

In any new system the meaning of equality is important. Equality of elements
in Q means equality of sets, which we have already defined. Since various names
for the same element (set) in Q exist, as we have pointed out, we state the condition
that two names represent the same set in the following theorem. The theorem
stated is a property of equivalence relations, and the proof is a direct consequence
of Theorem 1-1 of Chapter 1.

Theorem 3-2. If [a, b] and [c, d] are two elements of Q, then [a, b] = [c, d]
if and only if ad = bc.
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The next step in the process of constructing the rational numbers is to define
suitable binary operations of addition and multiplication in Q. Before we do
this, let us consider some of the difficulties that are inherent in the problem. For
example, suppose that we decided to define addition in Q by [a, b] + [c,d] =
[a+ ¢, b + d]. There are two difficulties with this seemingly natural definition.
First, although b and d are nonzero, it is quite possible that b + d = 0. In this
case the notation [a + ¢, b + d] does not represent an element of Q, since every
pair in S has a second element which is nonzero. Thus Q would not be closed
relative to this operation, an undesirable situation. There is another difficulty
which is more subtle but equally serious. The rational numbers [1,2] and [2, 4]
are equal and yet if they are each added to [3, 1], different answers are obtained.
Thatis, [1,2] + [3,1]1 =[4, 3]while [2,4] + [3,1] = [5,5] Now,[4,3] # [5,5]
since 4-5 # 3-5. This definition gives results which depend on the name used
for a particular number and not on the number itself. We refer to this by saying
that the operation is not well defined. This is just a way of emphasizing the fact
that we have not really defined a binary operation. The number assigned as
the sum of two numbers is not unique. The following definition describes the
essential property of binary operations which we have violated in this example.

Definition 3. The operation = in a set T is well defined provided that, whenever
a=da and b = b’ for elements a,b,a’,and b’ in T, then axb = a'x b'.

Our example used a special case covered by the definition in which b and b’
were identical. Hence the definition of our example will not serve as a suitable
definition of addition. We now proceed with a more appropriate definition
of operations in Q.

Definition 4. Addition and multiplication in the set Q of rational numbers
are defined by the following equations:

[a,b] + [c,d] = [ad + bc, bd],
[a, b1 [c,d] = [ac, bd].

The student will gain insight into the properties of fractions by associating,
in his mind, the set [a, b] with the fraction a/b in the statements that follow. He
should remember, however, that we will not formally justify this association until
the next section.

The definitions of addition and multiplication in Q depend on operations with
the representatives used to express the equivalence sets. It is necessary to justify
that these operations are well defined. That is, we must verify that the sum or
product of two rational numbers depends only upon the numbers themselves
and not upon the representation used in writing them. The following example
illustrates this notion, but of course does not constitute a proof.

Example 3-1. By our definitions, [2,5] = [4,10] and [ - 3,2] =[9, — 6]. Add-
ing, we see that [2,5] +[—3.2] =[—11,10] while [4,10] + [9, — 6] =
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[66, — 60]. Although these two answers look different, [ — 11, 10] = [66, — 60],
since (— 11)(— 60) = (10)(66). Similarly, [2,5]1[— 3,2] = [—6, 10] and [4, 10]
[9, —6] = [36, —60]. Again, the results are the same although expressed in
terms of different representatives. Thus [ — 6, 10] = [36, — 60], since (— 6)( — 60)
= (10)(36).

Theorem 3-3. Addition and multiplication of rational numbers are well

defined operations and the set of rational numbers is closed with respect to
both operations.

To prove this theorem, suppose that [a,b] and [c, d] are any two elements
of Q. Then b # 0 and d # 0 from the definition of elements of Q. Since there
are no zero divisors in the set of integers, bd # 0, so that [ad + bc, bd] and [ac, bd]
are both elements of Q. Note that the domain of both operations is the entire
set Q x Q. Thus Q is closed with respect to addition and multiplication.

Now suppose that [a,b] = [d,b'] and that [c,d] =[c',d]. This means
that
1) ab’ = ba’ and cd = dc'.

Now
[a, b] + [c,d] = [ad + bc, bd]
and
[a,b] + [c,d]=[ad + bc,bd]
To show that addition is well defined, we need to prove that
[ad + bc,bd] = [a'd + b'c',b'd']

Multiplying the first of equations (1) by dd’, we obtain ab'dd’ = ba’'dd’. Mul-
tiplying the second of equations (1) by bb’, we obtain cd’'bb’ = dc'bb’. Adding
these two equations gives

2) ab'dd’ + cd'bb’ = ba'dd’ + dc'bb'.
Factoring the terms in (2) leads to
3) (ad + be)b'd’ = (a'd’ + b'c)bd.

Here we have used properties such as the commutative, associative, and distrib-
utive laws for integers to obtain (3). Now by the definition of equality, equation (3)
is just the condition that [ad + bc,bd] = [a'd’ + b'c’,b'd’]. This completes the
proof that addition is well defined.

The proof that multiplication is well defined will be left for the reader. The
method is similar to the proof for addition. The main step in proving equality
of the two products considered follows by multiplying the equations (1).

This completes the description of the set of rational numbers. Remember
that each rational number is a set containing many pairs of integers. If this idea
seems difficult to you, it is primarily because it is new. Some modern elementary
texts use exactly this approach in presenting rational numbers in the seventh or
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eighth grades. The following example illustrates some of the computations with
rational numbers which follow from our definitions.

Example 3-2. If x = [2,3] and y = [—5,2] let us find x + y, xy, x> and 3y,
where 2 is an exponent and 3 is a coefficient.
x+y=[231+[-52]1=1[2-2+3(-5).,3-21 =[-11,6],
xy=1[2,31[-52]=[-10,6], x> =1[2,31[2,3] =[4,9], and
3y=[-521+[-52] +[-5,21 =[—20,41 + [- 5,21 = [- 60, 8].

EXERCISES
1. Perform the indicated operations in Q.

a) [3,2102, 5] b) [2,5](3,2]

o [3,21 +[2,5] d) [2,5]1 + 13,21

e) [4,71+ [0,3] n [4,7103,3]

g) [1,21(3,5] + [4,3]) h) [1,2103,5] + [1,21[4,3]

i) Prove that your answers to () and (f) are each equal to [4, 7]. What does this sug-
gest?

j) Prove that your answers to (g) and (h) are equal to each other. What does this sug-
gest?

2. Use the definitions of coefficient and exponent from Section 2-7 to find the following
elements of Q.
a) 2[5,31 b) 5[-2,3] o [3,4P
d) [2, -5]1* e) 3([2, —11+ [1, -2]) f [2,3702,3P

3. Let the “operation” * be defined in Q by [a, b] * [c,d] = [a — ¢, bd]. Prove by counter-
example that = is not well defined.

4. Let the “operation” o be defined in Q by [a,b] o [c,d] = [ac,b — d]. Prove by counter-
examples that Q is not closed with respect to o and that o is not well defined.

5. Complete the proof of Theorem 3-1 by proving that the symmetric property of ~ holds
in S.

6. Complete the proof of Theorem 3-3 by proving that multiplication is well defined in Q.

7. Prove that multiplication is commutative in Q.

8. Prove that addition is commutative in Q.

9. a) Prove that if m is the LCM of b and d then [a, b] + [c,d] = [x, m] for some integer x.
b) If in part (a), m = b'b and m = d'd, determine x in terms of a, ¢, b’ and d'.

10. An error sometimes found in students’ .work goes as follows:
[2,3] # [3, 5] and [3, 4] # [5, 6]. But [2, 3][3, 4] = [3, 5][5, 6] and hence multiplica-
tion is not well defined in Q. Discuss this incorrect proof and point out why this is not
a correct application of the definition of the term well defined.

3-2 PROPERTIES OF RATIONAL NUMBERS

We defined the set of rational numbers in the previous section. Now we wish
to classify the system in terms of its algebraic properties. We will first find that
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the system is a commutative ring with unity and no zero divisors. The proof
of two of the required properties were assigned as exercises in the last section and
several other properties were suggested by the numerical examples. In addition
to the ring properties, we will establish one further property which will lead to
the definition of a field. Before we begin, we can establish one elementary
property of rational numbers which will be useful in our proofs.

Theorem 3—4. If [a, b] is any element of Q, then [a, b] = [ax, bx] for every
nonzero integer x.

This follows from the definition of equality and from the commutative law of
multiplication in Z, since all that is required for equality is that axb = bxa.

We will use Theorem 3—4 in several of the following proofs. In words, this
theorem states that a rational number is not changed if both the first and second
elements of the pair are multiplied by a nonzero integer. This can be recognized
as a familiar property of fractions.

Theorem 3-5. The set Q of rational numbers with the operations of addition
and multiplication defined above is a commutative ring with unity.

We have already shown in Theorem 3-3 that Q is closed with respect to both
operations.

Associativity of addition can be proved as follows. Assume that [q, b], [c, 4],
and [e, f] are any three elements of Q. Then

[a,b] + ([c,d] + [e, f]) = [a,b] + [cf + de,df ]
= [adf + bcf + bde, bdf]
= [ad + bc, bd] + [e, f]
= ([a,b] + [c,d]) + [e, /]

Each step in this proof depends upon the definition of addition in Q, or upon
properties of Z, or both. The reader should supply these reasons to be sure he
clearly understands the steps.

The zero element of Q is the set [0, b] for any integer b # 0. Note that
[0,b] = [0, x] for any integer x # 0. That the set [0, b] is the zero set can be
justified by considering the following, where [c, d] is any element of Q:

[0,b] + [c,d] = [0-d + bc, bd]
= [bc, bd]
= [c,d].
It is also true that [c, d] + [0,b] = [c,d]. This can be proved directly, as above,

or will follow from the commutativity of addition, mentioned later.
The negative of an arbitrary element [a, b] in Q is the element [ — a, b], since

[a,b] + [—a,b] = [ab — ab, bb] = [0, bb],
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the zero set of Q. We can also write the negative of [a, b] as [a, — b], since by
Theorem 3-4, [a, — b] = [— a,b].

Addition in Q is commutative, as the student may readily verify. The assoc-
iativity of multiplication follows directly from associativity of the integers.

The left-distributive law of multiplication over addition is proved by con-
sidering three arbitrary elements, [a, b], [c, d], and [e, /], in Q:

[a,b1([c,d] + [e, f1) = [a,b][cf + de,df ]
= [acf + ade, bdf]
= [acbf + bdae, b*df]
= [ac, bd] + [ae, bf]
= [a,b][c,d] + [a,b][e, ]

Again, the student should supply reasons for each step. Note that at one step
we used the property derived earlier, that the set is not changed if both first and
second elements of the pair are multiplied by the same nonzero integer, in this
case the integer b. Since multiplication is clearly commutative, there is no need
to establish the right-distributive law. We have shown, then, that Q is a com-
mutative ring.

The ring Q has a unity element [1,1]. Note that [1,1] = [a, a] for every
nonzero integer a. To show that [1,1] is the unity element of Q, consider an
arbitrary element [c,d] in Q. Then [1,1]1[c,d] = [c,d] = [c,d]1[1,1]. This
completes the proof of Theorem 3-5.

Theorem 3-6. Q has no zero divisors and every nonzero element of Q has
an inverse.

To prove that Q has no zero divisors, suppose that [a, b][c, d] = [0, x] for
some x # 0. That is, we assume that the product of two elements of Q is zero.
Then [ac,bd] = [0,x], and from the definition of equality, acx = bd-0 = 0.
Since x # 0 and Q has no zero divisors, either a or ¢ must be zero, and hence
either [a, b] or [c, d] is the zero element of Q.

To show that every nonzero element of Q has a multiplicative inverse, suppose
that [a, b] is not the zero of Q. Then a # 0 and [b, a] is an element of Q.

[a, b][b, a]l = [ab, ba] = [ab, ab].

But [ab, ab] is the unity element of Q so that [b, a] is the inverse of [a,b]. We
write [b, a] = [a,b] ™.

These properties of Q given in Theorem 3-6 serve to classify Q as a field, an
algebraic structure to be considered in more detail in Chapter 5. To be specific,
and for ease of future reference, the definition of a field is included here.

Definition. A field is a commutative ring with unity element in which every
nonzero element has a multiplicative inverse.

This definition does not specifically require that a field have no zero divisors.
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However, from the fact that every nonzero element has a multiplicative inverse,
it is easy to prove that there can be no zero divisors in a field.

Since Q is a ring, subtraction is defined as usual to be the result of adding the
negative of the element to be subtracted. Thus

[a,b] — [c,d] = [a,b] + [— ¢, d] = [ad — bc, bd].

In Q, as in every field, division by nonzero elements may be defined in terms of
multiplication by the inverse. That is, [a, b] + [c,d] where ¢ # 0 is defined as
[a,b1[c,d]1™! = [a,b]1[d,c]. This is the familiar rule of inverting the divisor and
multiplying, commonly used in manipulating fractions. The validity of the rule
depends on the definition of the operation of division and the fact that we proved
the inverse of [a,b] to be [b,a] if a # 0. The definitions of integral coefficients
and integral exponents in Section 2-7 apply to Q as to any ring.

Example 3-3. The following computations are included as illustrations of the
definitions of coefficients and exponents, considered for the ring Q of rational
numbers.

—2[4,31=2(-[4,3D)=2[-431=[-4,31+[-431=[-24,9],
which can be written as [— 8, 3].
[-2,3172=(0[-231"" =13 -21> =3, —-21[3, - 2] = [9,4].

These computations can be shortened, but rules for manipulating rational
numbers have not been derived. We can apply the definitions directly until further
properties are established by proof. Among the short cuts referred to are such
rules as the one for adding “fractions with a common denominator.” In our
notation this rule would read as follows:

[a,b] + [c,b] = [a + ¢, b].

Can you prove that this rule holds in Q?

As an exercise, the student should prove that the cancellation laws for addition
and multiplication hold in Q and that equations of the forma + x = band cx = d,
for ¢ # 0, can be solved in Q. The solutions are of the form indicated earlier
for other systems in which these solutions exist.

EXERCISES

1. Use the definitions of exponents and coefficients given in Section 2-7 to evaluate the
following as elements in Q.

a) 3[27 5] b) [2, 3]2 C) _2[_2, 3]

d) —3[4,7] e) [3,5172 h [-23]7
g) 0[3,4] h) [5,71° i) [17,171°



3-3 The integers as a subset of the rational numbers 83

2. Solve each of the following equations in Q or show that they have no solution.

a) [3,11+ X =[7,11] b) [3, -21+ X =[2,7]
o [3,51-X=17,2] d) 3[4, 31+ X =2[3,2]
e) [3,51X =14,7] H [4,61x = [0,2]

g) [0,5]x =1[2,3] h) X +[2,7] =[5,3]

In the following proofs give all details with reasons for each step. Use the [ ] notation
for elements of Q.

3. Prove the associative law of multiplication in Q.

4. Prove the right-distributive law of multiplication over addition for Q, either directly
from the properties of integers or from the left-distributive law and the commutativity
of multiplication.

5. Prove that equations of the form a + x = b, where a and b are in Q, have solutions in Q.

6. Prove that equations of the form cx = d, where ¢ # 0 and ¢ and d are in Q, have so-
lutions in Q.

7. Prove that [a,b] + [c,b] = [a + ¢, b], the property referred to in the next-to-last
paragraph of this section.

8. Prove the cancellation law of addition in Q, namely that if a + x = b + x for a,b,x
in Q, then a = b.

9. Prove the cancellation law of multiplication in Q, namely, that if ax = bx for x # 0
then a = b.

10. Prove that a field has no zero divisors.

*11. Prove that in any ring the cancellation law for multiplication is equivalent to the fact
that the ring has no zero divisors. Do this by showing that if we assume either prop-
erty is true, the other can be proved as a theorem.

*12. Among the rings Z, of integers modulo n, for various integers n, some are fields and
some are not.
a) Prove, by counterexample, that Z, is not a field if n is not a prime.

b) Prove that Z , is a field if p is a prime. Remember that all properties of a field except
the existence of inverses have been previously proved.

3-3 THE INTEGERS AS A SUBSET OF THE RATIONAL NUMBERS

The relation between the integers and the rational numbers has not been specifically
pointed out in the preceding section. While the definition of the rationals de-
pended on properties of integers, the student would not likely suspect that
the integers are essentially a subset of the set of rational numbers. We propose
to clarify the situation in this section. To do this we need to define a new concept
which we will illustrate first with an example.

Consider the set S = {a, b, c} with operations of multiplication and addition
defined in S by the following tables.

* An asterisk before a problem indicates that the problem is more difficult than most.
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One can check that S, with the operations defined by the tables, forms a ring and
in fact a field. The zero of the ring is ¢ and the unity is a. If we were to change
the name of the element c to 0, change the name of a to 1 and change the name
of b to 2, the tables would become the tables for the ring Z; of integers modulo 3.
That is, the only difference between the rings S and Z, is the name by which we
refer to the elements. They have identical algebraic properties. For example,
in S, b?> = a while the counterpart of b, in Z,, namely 2, has the property that
22 =1 and 1 is the counterpart of a. From this we deduce that the inverse of b
in S is b and correspondingly the inverse of 2 in Z; is 2. When the situation de-
scribed here exits between two systems, we say that the systems are isomorphic.

The process of “renaming” elements of a ring does not sound very mathematical.
We need to formulate this idea in precise mathematical terminology. This is
accomplished by the following definition.

Definition of isomorphism. A mapping ¢ from a ring R onto a ring S is an
isomorphism from R onto S if and only if ¢ is a one-to-one mapping such
that for all elements ¢ and b in R

1) ¢la+Db) =9+ eb) and 2) o¢ab) = p(a)p(b).
If an isomorphism from R onto S exists then we say that R is isomorphic to S.

In this definition the mapping ¢ provides the “renaming” of elements. For
each ae R, ¢(a) is an element of S which we can visualize as a new name for the
element a. The two conditions formulate the idea that the algebraic properties
of the two systems are identical. When we require that ¢(a + b) = ¢(a) + @(b)
we are stating that the sum of two elements of R corresponds to the sum of the
corresponding elements of S. That is, it really does not matter whether we perform
the addition in R indicated by a + b or in S as indicated by ¢(a) + ¢(b) since
the results correspond under the renaming process given by the mapping ¢. We
refer to condition (1) by saying that ¢ preserves addition and to (2) by saying that ¢
preserves multiplication.

The isomorphism we described between S and Z, can be written in the notation
of mappings as ¢(c) =0, ¢(a) = 1, and @(b) = 2. Note that the mapping is a
one-to-one mapping of S onto Z;. The fact that this mapping preserves both
addition and multiplication is proved by checking our earlier comment that
with the indicated change of name the tables for S become the tables for Z,. For
example, ¢(a + b) = ¢(c) = 0 while ¢(a) + ¢(b) =1+ 2 =0. Here the sum
a + bwas obtained from the addition table for S and the sum 1 + 2 was determined
by definition of addition in Zj.
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Now we return to the discussion of the rational numbers. Let I be the set
of all equivalence sets in Z which can be represented by a pair having the integer
1 as second element. That is,

I = {[n, 1] | nis any integer}.

We now define the mapping ¢ of I into Z by ¢([n,1]) = n. Clearly, this is a
one-to-one mapping of I onto Z, since for each integer n there is exactly one set
[, 1], and conversely.

We will show that the mapping ¢ preserves the operations of addition and
multiplication. Let [n, 1] and [m, 1] be any two elements of I. Then

@ ([n,1]1 + [m,1]) = o([n + m,1])
=n+m

= ¢([n, 11) + o([m, 11).

The justification for the first equality is the definition of addition in Q; for the
second and third equalities it is the definition of the mapping ¢. Similarly,

@([n, 11[m, 11) = o ([nm, 11)

= nm
= o([n, 11)o([m, 11).
This discussion has proved the following theorem.

Theorem 3-7. The subset I = {[n, 1]|n is an integer} of the set Q of rational
numbers is isomorphic to the set Z of integers. The isomorphism ¢ is given
by ¢([n,1]) = n for all [n,1]el.

The usual notation for integers and rational numbers is introduced in the
following way. We agree to write any set in Q of the form [n, 1] simply as n.
Further, any set [a, b] in Q will written in the future as a/b and will be called a
fraction. This convention permits us to write an integer n in the alternative
form n/1 whenever this is convenient.

In order to justify the dual use of a fraction for representing a rational number
and also for representing a division of two integers, consider the problem of divid-
ing an integer m by the integer n # 0. The integers m and n may be written in
the form [m, 1] and [n, 1] according to our notational convention. Then by
our definition of division in the preceding section,

m+n=[m1] =+ [n 1] = [m 11[1,n] = [m, n].

The result of dividing m by n, then, is the rational number [m, n], which we have
agreed to write as m/n, and the distinction between the notations is that m =+ n
represents an instance of the binary operation + while m/n is the rational number
representing the result of that division. In common usage, this distinction is
lost and the two symbols are often used interchangeably. It is important, however,
to recognize the distinction and to understand the precise meaning of each symbol.
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In adopting the notation a/b to replace the more cumbersome notation [a, b],
we omit the symbol which suggests the fact that a rational number is an equivalence
set of elements. For the understanding of rational numbers it is important that
this fact be kept in mind. When we state that £ = %, we are using the fact that
1 and } are elements of the same equivalence set and hence either symbol can be
used as a representative for the set. When we proved that [ax, bx] = [4,b]
for any nonzero integer x, we derived the familiar rule that permits the multi-
plication or division of numerator and denominator in a fraction by the same
nonzero integer. The standard methods of adding, subtracting, and simplifying

fractions are all based on this fundamental identity.

EXERCISES
1

1. Provethati 4+ {=2 using the set notation for rational numbers. (For instance, = [1, 3].)
Give detailed reasons for each step.

2. Prove in detail, using set notation, how to add a/b + e/f if the GCD of b and f is d.
Let b = b'd and f = f’'d. Use the common denominator b'f’d.

3. Derive the rule for division of fractions which states, “To divide one fraction by another,
invert the divisor and multiply.” Use set notation.

4. Prove that a fraction is not changed when numerator and denominator are divided by
the same nonzero integer. Use set notation.

S. Refer to Exercise 7 at the end of Section 2-4. Prove that the ring T of this exercise is
isomorphic to Z,. Specify a mapping from T onto Z, and prove it has the properties
required of an isomorphism. You only have two choices of mappings but one choice
will not work.

*6. Prove that if the construction of Section 3-1 which defined the rational numbers were
repeated, using the set E of even integers instead of the set of all integers, the result would
have been a system isomorphic to Q.

*7. Prove that if an integral domain D has only a finite number of elements, then D is a field.

3-4 RATIONAL NUMBERS AND RATIONAL POINTS ON A LINE

In developing the number systems used in elementary mathematics, the most
difficult step is probably the extension of the rational numbers to the system of
real numbers. From the various methods available, we have chosen a method
which associates the real numbers with points on a line. The approach used here
will be partly intuitive, but should be readily understood and can be made more
rigorous in advanced courses. In order to prepare the student for this extension,
we will first discuss the rational points on a line and two methods by which the
correspondence between rational numbers and rational points can be established.

-4 -3-2-1 01 2 3 4
H———t—t—t—t——

/

Fig. 3-1. Points on a line.
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First, we will consider the problem of constructing, by straightedge and com-
pass, the points on a line associated with rational numbers. Consider any line [,
as in Fig. 3—1, with two arbitrary points chosen as reference points. We associate
the numbers 0 and 1 with these points and refer to the numbers as the coordinates
of the points. The point with coordinate 0 is referred to as the origin, and the
point with coordinate 1 as the unit point. Customarily, the unit point is taken
to the right of the origin, but this is not essential. Using the distance from the
origin to the unit point as radius, we may lay off at equal intervals points with
coordinates 2,3, ... to the right of the unit point, and points with coordinates
—1, —2,... to the left of the origin. Thus we may construct a point on line /
for each integer, positive or negative.

To construct the point corresponding to the rational number p/q, we may
first divide the distance from the origin to the unit point into g equal segments
of length 1/q, using the familiar construction from plane geometry involving
similar triangles. Then we lay off p segments of length 1/q, to the right of the
origin when pg > 0, and to the left of the origin when pg < 0. This serves, theo-
retically, to assign a point on the line to each rational number. The rational
number is termed the coordinate of the associated point. As a practical method,
this procedure has its shortcomings, since accurate construction is impossible
for all but the simplest cases. However, it should be clear that it is possible to
conceive of such a process which does associate points on the line with each
rational number.

It is easy to show that there are points on the line that do not correspond to
any rational number. For instance, suppose that we construct a right triangle,
with each leg 1 unit long (the distance from the origin to the unit point). The
hypotenuse is then \/5 units long, and we can construct the point on line / that
is \/E units to the right of the origin. This is not one of the points with a rational
coordinate. Suppose that \/5 = p/q, where p and g are relatively prime integers,
that is, p/q is a rational number expressed in “lowest terms.” Then 2 = p?/q?
or 2g®> = p%. That is, 2 divides p?, and since 2 is prime, by the corollary to Theo-
rem 3-11 of Section 3-11, 2 divides p; hence p = 2k for some integer k. Upon
substitution we have 2¢> = (2k)> = 4k*>. The cancellation law implies that
¢*> = 2k*. Hence, by the argument above, 2 divides g. Since 2|p and 2|g,
this is a contradiction of the assumption that p and q are relatively prime. Hence,
\/5 cannot be a rational number. This illustrates the fact that points exist on the
line which do not have rational coordinates. We introduce real numbers in
the next section to provide coordinates for all points on the line.

In spite of the fact that there are points on the line which do not have rational
coordinates, there are no intervals, or segments, of the line which are completely
free of rational points. To make this clear, we need to extend the notion of order,
defined for integers, to the set of rational numbers. We say that the rational
number p/q is positive, and write p/q > 0, if the integer pg > 0. The set of all
positive rational numbers will be designated as Q,. We need to show that Q,, is
well defined. That is, since any rational number p/q may be expressed in many
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ways (for instance p/q = 2p/2q), we need to show that the designation of being
positive does not depend upon the form used. To establish this, we consider
p/q in the notation [p, q]. Suppose that [p, q] = [r, s] and that pg > 0. We
need to show that rs > 0, as well. Since [p, q] = [r, s], we have that ps = rq.
Since neither p nor s is zero, ps is nonzero. Then (ps)?> = rgps > 0. Now since
pq > 0 and (pq)(rs) > O, it follows that rs > 0, as was to be proved.

Next we define inequalities for rational numbers. If r and s are rational
numbers, r < s if and only if s — r is positive. The student should check to
see that, for the case where r and s are integers, this definition coincides with the
earlier definition of <.

The properties of inequalities given in Section 2-2 for integers are valid for
the rational numbers as well. We restate the properties in the following theorem.

Theorem 3-8. For rational numbers q, b, and c:
Ifa<b,thenat+c<b+ec
Ifa < band 0 < ¢, then ac < be.
Ifa < band ¢ < 0, then bc < ac.

b) (Law of trichotomy): For any two rational numbers, m and n, either m < n,
m=mn,orn<m.

The proof follows from the definition and from properties of integers. We
will prove two parts of the theorem as examples and leave the remaining parts
as exercises for the reader.

First, we prove that if @ < b, then a + ¢ < b + ¢ for rational numbers a, b,
and ¢. If a < b, then b — ae Q, by definition. But

b—a=b—-a+0=b—-a+(c—c)=0b+c)—(a+ o).

Hence (b + ¢) — (a + ¢)€ Q, and, by definition, a + ¢ < b + c.

Now suppose that a < b and 0 < ¢. This part of the proof depends upon
the expression of a, b, and ¢ in terms of integers. Let a = m/n, b = p/q, and
¢ = s/t. Then

psnt — qtms
bc —ac=———.
qint
To prove that ac < bc, we need to prove that bc — ace Q,, or that the integer
gtnt(psnt — qtms) > 0 in order to satisfy the definition of Q,. To do this, first
consider b — a, an element of Q,, since it is given that a < b. Thus
p m _pn—gm
b-a=-——=——"-
q n qn
is an element of Q,, and therefore gn(pn — gm) > 0. This inequality involves
only the integers m, n, p, and g, so we may use known properties of integers in
continuing the proof. Now t*> > 0 and sr > 0, since ¢ = s/t is positive. We
may multiply the preceding inequality by t?st. Hence gtnt(psnt — msqt) > 0,
which is the condition needed to prove that ac < bc, as shown above. Other
parts of the theorem are proved in a similar manner.
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Next, a rational number t is between the rational numbers r and s if either
r<t<sor s<t<r The following theorem states a property of rational
numbers referred to as the density property. Because of this property, we say
that the set of rational numbers is a dense set and that the set of points with rational
coordinates is dense in the line L

Theorem 3-9. Between any two distinct rational numbers there is another
rational number.

To prove this theorem, consider the rational numbers r and s, where for con-
venience we assume that » < s. Then we will show that (r + s)/2 is between
rand s. Sincer <s,r + r <r + s and hence r < (r + s)/2, using Theorem 3-8.
Similarly, r + s < s + s, and (r + s)/2 <s. Together, these statements imply
that r < (r + s)/2 < s, which completes the proof. This theorem can be extended
by introduction to show that between any two rational numbers there exist n
other rational numbers for any positive integer n.

This theorem proves the contention made earlier that no interval of the line
is free of rational points, but only for the case where the interval has end points
which are rational. The theorem is true for arbitrary intervals, but the proof is
not given here.

So far, we have shown that each rational number may be associated with a
point on a given line and that there is at least one point on this line not assoc-
iated with any rational number. In the next section we will provide a method
of identifying all points on a line, which leads in a natural way to a definition of
real numbers.

EXERCISES

1. Using a straightedge and compass, construct the points on a line / which have the coor-
dinates given below. Select two fixed points (origin and unit point) as reference points,
as indicated in the text.

a) b) 0 -3 d) - ¢

2. Find a point with a coordinate that is not a rational number, other than /2, and prove
that this coordinate is not rational.

3. Write out the proof of Theorem 3-8, except for the parts proved in the text.

4. Prove that if r < s for positive rational numbers r and s, then 1/s < 1/r.

5. Prove that for rational numbers r and s such that r < s, there exist n rational numbers
Xy X5, X, such that r < x; < x, < *** < x, < s for every natural number n.

3-5 DECIMAL REPRESENTATION AND THE REAL NUMBER SYSTEM

Every reader is familiar with the decimal representation of rational numbers.
The decimal expression in the number r = 5.27, for instance, means that r = 5 +
2(f5) + 7({%)*. Again, § may be written as 4 = 0.3333..., which means that

§ = 3(d) + 3P + 3G +
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Thus we are familiar with two types of decimals—those which can be written
with a finite number of digits, called terminating decimals, and those which re-
quire an infinite sequence of digits, called infinite decimals.

In practice, the method of finding the decimal representation for a rational
number is to perform a long division to obtain as many digits as are required
for a particular application. We may show, formally, that this is always possible
by applying the division algorithm. If m/n is a positive rational number, there
exist nonnegative integers q and r such that m = gqn + r, where r < n. We refer
to g as the integral part of m/n. From this equation, m/n = q + r/n. Next,
we consider 10r and n and find integers g, and r;, with r, < n, such that 10r =
qin = q.n + ry, from which r/n = q,(1/10) + r,/10n. Substitution gives m/n = q
+ ¢,(1/10) + r,/10n. Applying the algorithm to 10r; and n, we find integers g,
and r, such that 10r, = q,n + r,, from which

r1/10n = q,(1/10)*> + r,/100n
Now,
m/n = q + q,(1/10) + q,(1/10)* + r,/100n.

Continuing in this way, we may construct as many terms in the decimal repres-
entation of m/n as we like. We would write m/n as q + 0.9,9,95 ..., where ¢ is
the integral part of m/n and q,, ¢q,,. . . are the digits in the decimal part of m/n.
In some cases r; = 0 for some i, resulting in a terminating decimal, and in other
cases no r; is zero, which leads to an infinite decimal. Note that since each
r; < n, 10r; < 10n, and hence each ¢; < 10, for i = 1, 2, 3,... We may express
every decimal as an infinite decimal simply by adding to any terminating decimal
a sequence of zeros. Thus 2.5000 ... = 2.5. For convenience, we will consider
every decimal as an infinite decimal.

A decimal such as 0.213575757 ... is termed a repeating decimal. That is, a
repeating decimal is one which, except for certain initial digits, contains only a
finite set of digits in a given order, repeated throughout the remainder of the
sequence of digits. Every positive rational number is given by a repeating deci-
mal, allowing the possibility of repetition of zeros in the terminating case. To
establish this, one need only consider the possible remainders, {, r,, 75, . . . obtained
in converting m/n into decimal form. Each remainder is, by the division al-
gorithm, less than n. Hence at most n of these remainders can be different after
the first step which determines the integral part of m/n. After at most n + 1
steps we encounter a remainder equal to one of the preceding remainders and
from this point on, the sequence of quotients and remainders must repeat the
preceding sequence, and hence produce a repeating decimal.

The converse is also true; namely, that every repeating decimal equals a
positive rational number. The general proof is complicated by notational
difficulties, so we will first illustrate the fact by an example.

Example 3-4. Suppose that
r = 3.12753753753 . ..
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Multiplying by 1000, we obtain
1000r = 3127.53753753 ...
Subtracting these equations gives
999r = 3124.41.
Now we multiply by 100 and divide by 99,900 to obtain

312441 104147
"= 799900 ~ 33300 °

which is a rational number.
In the general case, consider a number s in the form

s=q+0aa,...abb,...bbb,...b,...,
where q is the integral part, each a;, as well as each b, is a digit in the decimal part,
and b,b, ... b, repeats. Then, upon multiplying by 10"** we have
10"**ks = 10"**q + a, ... ab, ... bby ... b, ...
Upon subtracting 10*s from this expression, we have
10"*%s — 10%s = 10"**q — 10*q + a, ... ayb, ... b, — a; ... .
Solving for s gives

_10"*q —10%g + ay ... a0by ... b, —a;...q

S 10n+k _ 10k

which is the quotient of two integers, and hence is rational.

Thus we have shown that the set of positive rational numbers is given by the
set of repeating decimals. We extend this in a similar way to the set of negative
rational numbers, prefixing a negative sign to the repeating decimals which
correspond to negative rational numbers. The number zero corresponds to the
repeating decimal composed entirely of zeros. This establishes a one-to-one
correspondence between the set of all rational numbers and the set of all positive,
negative, and zero repeating decimals, exclusive of those which repeat the digit 9.
Such a decimal may always be replaced by one terminating in zeros. Thus
6.7999 ... = 6.8000. .., and 3.124999 ... = 3.125000. ..

Example 3-5. We will prove, as an illustration, that 3.999... =4.000... A
general proof could be given, but the example will illustrate the principle. Let
§=3999... Then 10s = 39.999... and 10s — s = 36.000... In other words,
9s = 36, or s = 4. Thus we have proved that 3.999... =4.000...

We define the set of positive real numbers to be the set of all positive infinite
decimals. This includes the terminating decimals, since we allow the use of
zeros in the decimal representation. The infinite repeating decimals correspond
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to rational numbers, and the nonrepeating decimals correspond to irrational
numbers such as \/_2) To see that there are other irrational numbers, consider
first the rational number 0.252525... We may construct an irrational number
by inserting the digit 3 after the first 5, two digits 3 after the second 5, three digits
3 after the third 5, etc. This gives the decimal 0.253253325333 . . ., which clearly
does not repeat. Obviously, an irrational number can be constructed in a similar
way from any given rational number. Hence it is clear that there exist many
irrational numbers.

To associate the real numbers with points on a line, we proceed as follows:
The points with integers as coordinates are selected as in Section 3-4. Each
unit interval, for instance, the interval between the points with coordinates n
and n + 1, is divided into 10 equal parts labeled O, 1, 2,...,9. Each such part
is divided again into 10 parts and numbered 0, 1,2,...,9. In turn, each of the
new intervals is subdivided into 10 parts, and the process is continued indefi-
nitely. Let a real number r be written as r = g + 0.a,a,a; ..., where ¢ is the
integral part and ay, a,, a;, . . . are the successive digits in the decimal part of r.
To select the point corresponding to this number, we first choose a sequence of
intervals. The interval g to g + 1 (that is, the interval between points with these
coordinates) is selected as the first interval. The second interval is chosen as
part a, of the 10 subintervals into which the first interval is divided. The third
interval is part a, of the next smaller set of intervals into which the second chosen
interval is divided. Continuing this process, we select an infinite set of intervals,
each a subinterval of the preceding one. The lengths of these intervals are, re-
spectively, the numbers of the set {1, 15, 135, - - - }. Such a sequence of intervals
is an example of a nested set of intervals. In general, a nested set of intervals is
a sequence of intervals, each included in the preceding, whose lengths approach
zero as a limit. (We have not defined limit in this text, but the reader is referred
to any elementary calculus text. In our case, the condition is satisfied.) The
following principle is equivalent to several other theorems in analysis, one of
which is taken as an axiom. We will assume this without proof.

Axiom. In any given nested set of intervals there exists one and only one
point lying on every interval.

Because of this axiom, the sequence of intervals selected in the preceding
paragraph determines a unique point, that point which belongs to every interval
of the sequence. This point is given the number r as its coordinate. It can be
proved that for rational numbers, this point is identical to the point assigned to
the number r by the constructive method of Section 3-4.

Conversely, suppose that P is any point on a line /; for the moment we assume
that P is to the right of the origin. Assume further that the line has been divided
into intervals and subintervals as described in preceding paragraphs. We will
describe a process by which P is associated with a real number p that will be the
coordinate of point P as presented above. If P lies between two points with
integers as coordinates, say q and g + 1, we say that P belongs to this interval
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and write g as the integral part of the real number p. If, on the other hand, P
is a point with integral coordinate g, we say that P belongs to the interval from
q to g + 1, and again assign g as the integral part of the number p. Next con-
sider the 10 parts into which the interval from g to q¢ + 1 is divided. If Pis a
division point of such an interval, we say that P belongs to the interval on the
right of P. Otherwise, P is within some interval, and we say that P belongs to
this interval. If the number of this interval is a, (recall that the possible num-
bers are 0, 1,...,9), we assign a; as the first digit in the decimal part of p.
Continuing in this way, we obtain a sequence of numbers a,, a,, ds,...cor-
responding to a nested set of intervals to which the point P belongs. Since one
and only one point belongs to each such set of intervals, P is the point with co-
ordinate p = q + 0.a,a,a; ..., as defined in the preceding paragraph. Thus
each point on the line to the right of the origin corresponds to a positive real
number, and conversely each positive real number corresponds to a point on the
line to the right of the origin.

In a similar way we extend this correspondence to the set of all real numbers
and all points on the line by matching the negative real numbers with points on
the line to the left of the origin.

To complete our description of the real numbers as a mathematical system,
it would be necessary to define addition and multiplication of real numbers and
to derive the formal properties of the system. This can be done but the notational
difficulties encountered are severe, and it is felt that in a first course it will be
excusable to omit these definitions and proofs. The reader is encouraged to
consult other sources, such as Beaumont and Pierce [24], for further details.

Without formal definition, we assert that the familiar rules of elementary
arithmetic hold for operations with real numbers expressed in decimal form.
It is, of course, impossible to carry out the addition or multiplication of infinite
decimals, but as many digits of the sum or product as are desired can be obtained
by using a sufficient number of digits from the given decimals. For instance,
suppose that ¢ = 1.3333... and % = 0.285714285714. .. are to be multiplied in
decimal form. We obtain the product 0.38095 . .. to five decimal places by using
six-decimal digits in each of the expressions for $ and 2. If more digits are des-
ired in the answer, we need to use more than six decimal digits in the factors.
Since the exact number of digits needed depends primarily upon the integral
parts of the two numbers, no general rule may be given.

It can be shown that the real numbers form a field, and that the order relation
mentioned for rational numbers can be extended to an order relation for the
real numbers. These properties will be discussed in the next section.

While our treatment of the real numbers in incomplete, it is hoped that the
presentation given here in connection with the points on a line will help develop
an intuitive appreciation for the system. Other developments lead more readily
to formal derivation of the properties of the real number system, but require
either considerably more algebraic background or a knowledge of some rather
deep theorems of analysis.
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EXERCISES

1. Convert each of the following rational numbers into an infinite repeating decimal.
a) 3 b) 3 0 7 d) 5

2. Convert each of the following repeating decimals into the form p/q, where p and g are
integers.
a) 2.4444 . .. b) 3.125125125 ... c) 52.717171 ...
d) 7.123412341234 . .. e) 0.23157157157 ... f) 3.26518051805180 ...

3. Use the method of successive subdivision to locate the points having each of the following
coordinates.
a) 2.15000 ... b) —1.27000. .. c) 3.213000 ...

4. Construct the point with coordinate \/ 2, and use the method of subdivision to determine
the decimal representation \/5 as accurately as possible from your graph.

5. Use the facts that 7 = 3.1415926536 and e = 2.7182818285, approximately, to find = + e
and = e correct to five decimal places.

6. Determine, by listing the end points of each interval, the first five of the sequence of
nested intervals to which the number = belongs.

7. Show that 2.1999... = 2.20000. .. by converting each to a rational number in the form
m/n for m and n integers.

3-6 PROPERTIES OF THE REAL NUMBER SYSTEM

In this section we will adopt a new point of view, and consider the real numbers
in terms of axioms which define the system rather than as an extension of the
system of rational numbers. In order to make the axioms clear, we need two
new definitions.

Definition 1. A field F is ordered if and only if it contains a set of elements F,
called the set of positive elements of F, having the following properties.

a) F,isclosed under addition and multiplication. That is, the sum or product
of any two elements in F, is also in F,.

b) For every element r in F, r =0, re F,, or —reF,

In an ordered field F, with a set of positive elements F, inequalities are defined
as follows. For elements r and s in F, r < s if and only if s — re F,. Further,
r < s if either r < s orr =s.

The rational numbers are an example of an ordered field. The set of positive
elements is Q,, where Q, = {x|xeQ and x > 0}, as defined in Section 3-4.
The properties required in the definition can easily be shown to be equivalent to
the properties for inequalities given for the rational numbers in Section 3-4. To
obtain this equivalence one need only recall that r < s means that s — r is positive.
From these remarks, it is clear that Theorem 3-8 of Section 3-4 holds for every
ordered field.

We could have proved that the real numbers, as defined in terms of infinite
decimals, constitute an ordered field. It can also be shown that the ordering of
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the real numbers is such that r < s, for real numbers r and s, if and only if 7 is the
coordinate of a point on the real line which lies to the left of the point with co-
ordinate s. That is, the ordering of real numbers corresponds directly to the
natural left-right ordering of points on the real line. This is true provided, of
course, that the unit point is chosen to the right of the origin.

Definition 2. A set S of elements in an ordered field is said to have an upper
bound if and only if there exists an element b in the field such that x < b for
every xe S. If a set S has an upper bound, we say that S is bounded, or more
specifically, bounded from above. An upper bound b is a least upper bound (ab-
breviated lub) of the set S if and only if b is an upper bound and every upper
bound b’ of S satisfies b < b'.

Intuitively, a lub is the smallest upper bound for the set. It is not true that
every bounded set in an arbitrary ordered field has a lub in the field. The field
of rational numbers is ordered but does not have this property. The following
definition distinguishes ordered fields with this property.

Definition 3. An ordered field F is complete if and only if every nonempty
set S in F which is bounded from above has a lub in F.

The rational numbers do not constitute a complete ordered field. Consider,
for example, the set S of all rational numbers which are less than /2. Then S
is a bounded set, since 10 is certainly an upper bound for S. The set S is non-
empty, since 1€ S. One lub for S is \/2, which is not a rational number. To
show that S has no lub in the set of rational numbers, we need only to show that
ﬁ is the only lub for S. If any number r is a lub of S, then r < /2 by the defi-
nition, applied to the lub » and the upper bound \/7 Similarly, ﬁ < r by the
definition, applied to the lub /2 and the upper bound r. Together, these in-
equalities imply that r = \/2. In a similar way we can show that whenever a
set has a lub in an ordered field, this lub is unique.

Every real number can be thought of as a lub of some set of rational numbers.
Although this set is not unique, we may always construct one such set from the
infinite decimal which represents the number. Rather than consider the general
case, we will use an example which illustrates the method. For the number
m =3.14159 ..., we can let S = {3, 3.1, 3.14, 3.141, 3.1415,...}, where the suc-
cessive rational numbers in the set are formed by taking successive decimal
approximations of =. Then S clearly is bounded. For instance, 4 is an upper
bound. Since the field of real numbers is complete, S has a real number as a lub.
This lub is called 7, and in the approach to real numbers based on the definition
in this section, this lub is defined to be the meaning of the decimal 3.14159. ..
Similarly, every infinite decimal would be defined in the axiomatic treatment of
the real numbers as the least upper bound of the set of rational numbers formed
from successive decimal approximations.

We now state the definition that could have served as a starting point in the
discussion of the real number system. The definition is included to emphasize
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that there is no single best method for describing the system; rather, there are
several methods, each having its own merit. In the following definition, each
of the properties that define a field, as well as each of the explicitly stated properties,
is an axiom of the real number system. From these axioms all the familiar
properties of numbers could be developed. The derivations (not given here)
are not so readily followed as the constructive methods we have employed in
building up the system from the simpler systems of integers and rational numbers.

Definition 4. The elements of a complete ordered field are called real numbers
and the field is the real number field.

In order to make this definition meaningful, it is necessary to prove that any
two complete ordered fields are isomorphic. Then we would be sure that there
is only one field of real numbers and not several. We will not give this proof,
since we have already described the real numbers in another way.

We have described two of many methods by which real numbers may be
defined. The first method is to use infinite decimals as the basic definition, and
it is followed by the proof that the set has the properties of a complete ordered
field, a proof we omitted. The other approach is to begin with the definition of
the real numbers as a complete ordered field. In this treatment, as we have seen,
infinite decimals can then be introduced in terms of least upper bounds of sets.
For further details the student is urged to consult other references that use one
or the other of these approaches. Birkhoff and Maclane [25] use the second
approach in their book, while Lightstone [38] uses the first.

A third method of defining real numbers, that of employing the theory of the
Dedekind cut, is in many ways the best constructive method for extending the
rational numbers to the real numbers. This method allows the derivation of the
properties of a complete ordered field in a reasonably direct way. The student
will find this treatment in McCoy [39] or Beaumont and Pierce [24]. The book,
What Is Mathematics [27], by Courant and Robbins, discusses in a general way
and compares several methods of describing the real numbers.

The reader will certainly have noticed that although we give a rather thorough
treatment of the integers and the rational numbers, our treatment of real num-
bers has been considerably less complete. The reason for this is that the difficulties
encountered in giving a thorough treatment of the real numbers are much greater
than those involved in the earlier systems. In fact, the difficulties are so great
that it took mathematicians centuries to develop a satisfactory treatment. An
idea of the problems that arose in this connection can be found from books
such as Kline’s Mathematics: A Cultural Approach [37]. To profit from a complete
treatment of the real numbers, a student should have a much more extensive
background in algebra and analysis than has been assumed for this chapter. We
have tried to include enough material to provide the background for teaching
at the high school level without getting hopelessly involved in abstract math-
ematics. The reader should accept this material as an introduction, to be followed
by further reading at a later time.
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EXERCISES
1. Prove that the field of rational numbers is an ordered field.

2. Prove that Theorem 3-8 of Section 3-4 holds for every ordered field.
3. Prove that if a lub for a set S exists, in an ordered field, then it is unique.

4. Specify a set of rational numbers which has no lub among the rational numbers. What
real number is the lub for the set?

5. Find the lub for each of the following sets.
a) {x|x is a negative integer}
b) {3, —2,5,10, —7,0}
¢) {1/n|nis a nonzero integer}
d) {y|y + |2 — x| = 0, where x is a real number}
e) {x|x =35 — 2y — y? where y is a real number}
) {x|x=5—2y— y* where y is an integer}
6. Look up the discussion of real numbers in some book on algebra, number theory, or

analysis, such as the references mentioned in the text, and write a brief report of your
findings.

3-7 THE FIELD OF COMPLEX NUMBERS

In describing the various number systems, we began with the natural numbers,
and by a succession of extensions considered the integers, the rational numbers,
and the real numbers. A final extension to the set of complex numbers is to be
considered in this section. One might justify these extensions by considering the
problem of solving equations of various types and the number systems required
to guarantee the existence of solutions. The general equation of the form
a + x = b for a and b natural numbers can always be solved if we allow integers
as solutions, but not if we restrict the solutions to natural numbers. The equa-
tion ¢x = d for ¢ and d integers does not always have an integral solution but
always has a solution in the field of rational numbers. To solve equations of the
form x2 = r for r a positive rational number, we need to consider the real
number system. Finally, the real numbers are not sufficient to solve quadratic
equations with real coefficients, and a further extension is required. For instance,
the solution of the equation x* + 1 = 0 is not a real number. With the intro-
duction of the complex numbers, however, the process terminates. It can be
shown that every polynomial equation with complex coefficients has only com-
plex numbers as solutions. The precise meaning of “polynomial” equation has
not yet been specified in this text, but the reader is familiar with such equations
from elementary algebra. Regarding the property of solving equations men-
tioned above, we refer to the complex numbers as being an algebraically closed
field. The complex numbers will be the first field considered here that is alge-
braically closed.
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Definition 5. The complex number system is the set C of all pairs (a, b) where a
and b are real numbers with operations of addition and multiplication defined
by

(a,b) + (¢, d) =(a + ¢, b + 4d),

(a, b)(c, d) = (ac — bd, ad + bc).

In connection with this definition, it is to be understood that (a, b) = (c, d)
if and only if a = ¢ and b = d. Further, the operations within the parentheses
used to define the sum and product of complex numbers are the operations for
real numbers. In the complex number (a, b), a is called the real part of (a, b)
and b is called the imaginary part of (a, b).

The complex numbers may be represented graphically by letting the pair
(a, b) signifying a complex number correspond to the point in the cartesian
coordinate plane having coordinates (a, b). We refer to this plane, whose points
are interpreted as complex numbers, as the complex plane. The points which lie
on the x-axis are points of the form (q, 0), representing complex numbers whose
imaginary parts are zero. We will show later that these are the real numbers,
and because of this, the x-axis in the complex plane is referred to as the real axis.
The points lying on the y-axis are of the form (0, b), representing complex numbers
whose real part is zero. This axis is referred to as the imaginary axis, and the
corresponding numbers are referred to as pure imaginary numbers. The words
“real” and “imaginary” as used here are unfortunate choices in that they sug-
gest an unjustified distinction between the two types of numbers. Imaginary
numbers are just as realistic as real numbers, and are valuable practical concepts
in such applied fields as electrical engineering. In fact, imaginary numbers are
used in advanced courses in defining and working with such practical functions
as the elementary trigonometric functions, sin x and cos x.

Theorem 3-10. The set of complex numbers forms a field.

Closure and commutativity for addition and multiplication are apparent from
the definition and properties of the real numbers. Likewise, the associative law
of addition is an immediate consequence of the associative law for real numbers.

The pair (0, 0) is the additive identity, or zero, element of C. The negative
of the complex number (a, b) is the number (—a, —b), since

(a,b) + (—a, —b) = (0,0).

The associative law of multiplication is not self-evident, so the proof will be
given. Let (a, b), (c, d) and (e, f) represent any three complex numbers. Then,

(aa b) [(C, d)(es f)] = (as b)(ce - dfs Cf + de)
= (ace — adf — bcf — bde, acf + ade + bce — bdf)
= (ac — bd, ad + bc)(e, f)
= [(a, b)(c, D] (e, f).
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The reason for each step is either the definition of multiplication of complex
numbers or properties of real numbers, and should be supplied by the student.

The left-distributive law of multiplication over addition can be proved as
follows, where (a, b), (c, d), and (e, f) are arbitrary complex numbers:

(a,b)[(c, d) + (&, f)] = (a, b)(c + e, d + f)
= (ac + ae — bd — bf, ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf, af + be)
= (a, b)(c, d) + (a, b)(e, f).

Again, the reasons should be supplied by the student. The right-distributive
law follows from the left and commutativity of multiplication. This completes
the proof that C is a commutative ring.
The element (1, 0) is the unity in C, since (1, 0)(a, b) = (a, b) for every (a, b) in C.
Suppose that (a, b) is any nonzero element of C. Since (a, b) # (0, 0), either
a#0orb#0, and hence a? + b2 > 0. The multiplicative inverse of (a, b) is

a —b
a2+b2’a2+b2 ’

-b a®> +b* —ab + ab
(a’b)<a + b%’a? +b2> <a2 + b2’ a® + b? >_(1’0)’
the unity of C. This completes the proof that C is a field.
Next, we will show that the complex numbers contain a subset isomorphic to
the set of real numbers. Let the set of real numbers be designated by R, and let R’
denote the set of all complex numbers of the form (r,0). The mapping ¢ from
R into R’, defined as ¢(r) = (r, 0), is clearly a one-to-one mapping of R onto R'.
This follows from the fact that (r, 0) = (s, 0) if and only if r = s by definition of
equality in C. Further, ¢ preserves both addition and multiplication since

@(rs) = (rs, 0) = (r, 0)(s, 0) = (r)p(s)

since

and
o(r+5s)=@F+50 =m0 + (s,0) = o) + o)

Hence R and R’ are isomorphic. That is, except for notation, R and R’ are the
same set.

The element (0, 1) is of special interest in the field of complex numbers. First,
we note that (0,1)> = (0, 1)(0, 1) = (—1, 0), the negative of the unity element in
C. Next, if (a, b) is any complex number,

(a, b) = (a, 0) + (b, 0)(0, 1).

Recall that (a, 0) and (b, 0) are numbers in R’, the set isomorphic to the real
numbers. If we designate (0, 1) by the symbol i, and use the real numbers a and



100 Other number systems 3-7

b instead of their counterparts (a, 0) and (b, 0), we obtain the notation (a, b) =
a + bi. This is called the normal form for the complex number (a, b). In this
notation, as before, we call a the real part and b the imaginary part of the complex
number a + bi. From now on, we will use this notation exclusively. That is,
any complex number will be expressed as a + bi, where a and b are real numbers
and i is a special symbol identified by the property that i> = — 1. The notation
is reasonable in the light of the discussion above.

Associated with any complex number z = a + bi is the number Z called the
conjugate of z and defined by Z = a — bi. The conjugate of a complex number
is of interest in several conections, including the discussion of solutions of equations.

Example 3-6. As numerical examples of the rules and definitions of this section,
consider the following:

R+3))—5+4)=2+3i—5—-4i=-3—1.
Also,

RQ+)B—-2)=6—-2>+3i—4i=8 —i

In these cases i is treated as any letter in elementary algebra, except that i? is
alwaysreplaced by —1. That this is true can be readily checked from the definition
of operations in C.

As a final remark, division is defined for complex numbers in the same way
that it is defined in an arbitrary field—as multiplication by the inverse. Thus
(a + bi) = (c + di) = (a + bi)(c + di)” !, where the form of the inverse has been
given above. We will also write such a quotient in the usual fractional form
as (a + bil/(c + di). In practice, a specific procedure is available for computation
as follows:

a+bi a+bi c—di

c+di c+di c—di
_ (ac + bd) + (bc — ad)i
- CZ + d2
_ac+bd+bc—adi
S+ d 24+ d

The multiplication of numerator and denominator of the fraction by the con-
jugate of the denominator produces a fraction which can be readily placed in

normal form.
Example 3-7.
2+4+3i —3+45i
-3 -5 =345

~214+i  -21 1,

!

= 9125 " 34 Tt

@2+ 3i) + (=3 — 5i) =




3-7

The field of complex numbers 101

EXERCISES

1.

10.

Find the negative, the inverse, and the conjugate of each of the following complex num-
bers. Express all answers in normal form, that is, as a + bi for real numbers a and b.
a) (2,3) b) (4,6) ©) (1,0 d) (0,2) e) 1 +i

H 2—i g 3 +./2i h) 7 -./3i i) i j) 3

. Perform the following operations and reduce all answers to normal form.

a) Q+)+B-17) b) (5 — 6i) — (4 + 8i) c) (2 + 3i)5 — 6i)
-0 e) (1 — )2 + 3i)° ) B+4)+(1—i)

9 Q+3)= G- h)@_'%%i_—i) ) @+ 30629

i /2 +3i

2 - /3i

. Prove that the commutative law of multiplication holds in C. Give complete reasons

for each step in the proof.

. Without using the left-distributive law, prove that the right-distributive law of multipli-

cation over addition holds in C. Give complete reasons for each step in the proof.

. Prove that z - Z is a nonnegative real number for any complex number z and its conjugate

z. Show also that z-z = 0 if and only if z = 0.

. Prove directly (without using the fact that a nonzero complex number has an inverse)

that there are no zero divisors in the set of complex numbers.

. Graph, in the complex plane, the complex numbers u = 2 + 3i and v =3 — 5i. Also

locate —u, —v,i,,u + v,u — v, and uv on the same graph.

. Prove that the “parallelogram law” for the addition of complex numbers holds. That

is,if u = a + biand v = ¢ + di are graphed in the complex plane, then u + v is the fourth
vertex of the parallelogram having the origin, u, and v as its first three vertices.

. Show that the set R” of all complex numbers of the form (0, a) is not isomorphic to the

set of real numbers under the mapping 6 defined by 6(r) = (0, r) for every real number r.

Using the notation of pairs, justify explicitly the computational procedure (given in the
last paragraph of this section) for reducing a quotient of complex numbers to normal
form.






CHAPTER 4

GROUPS

4-1 PERMUTATIONS OF n SYMBOLS

The emphasis in earlier chapters has been on mathematical structures in which
two operations, addition and multiplication, are basic. These systems, which
arise naturally in connection with sets of numbers, were introduced first because
they are closer to the experience of the average student than the systems to be
discussed here.

We turn our attention to structures called groups, which have a single basic
operation. We will look at some systems with more than one operation but will
restrict our attention to a single operation, such as addition. Other systems to
be considered possess only one natural operation. The structures with only a
single operation are simpler, in that they usually require fewer axioms for their
specification. We have delayed the treatment of groups until now because examples
are less familiar to the student.

The set of all permutations of n symbols with which this section deals is an impor-
tant example of a system with a single operation, written as multiplication. While
it is possible to define a second operation, division, it is neither necessary nor
customary to do so. The most significant property of permutations is the fact
that every group is essentially the same as some set of permutations. For the
moment, however, we will consider permutations as simply another example of
a mathematical system.

A permutation of n symbols is a one-to-one mapping of the set of n symbols
onto itself. For convenience we will use the integers 1,2, 3,...,n to represent
the set of n symbols. Any other set could be used, but this choice is standard.
One notation for such a mapping is to write the integers in natural order on one
line and the image elements on the line below, so that the image of each integer
appears directly beneath that integer. We will enclose this array in brackets
to distinguish it from matrices. For any arrangement i, i,, ..., i, of the integers
1,2,...,n, the permutation which maps 1 into i,, 2 into i,,..., n into i, is indi-
cated below.

1 2 3 ...
General form of a permutation: [ o n}
P AR P A

103
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As an example, let § be the permutation in the set of permutations of the integers
from 1 to 5 such that 6(1) =2, 62) =1, 6(3) = 4, 6(4) = 5, and 6(5) = 3. The
notation here is the standard functional notation introduced in Section 1-6.
That is, 6(a) is the notation for the image of a under the mapping . We would

write this permutation as
0 - 1 2 3 45
21 4 5 3)

We will denote the set of all permutations on the integers 1,2,..., n by the
symbol S,. If « and f are two of these permutations, we define the product of
aand B by af(i) = a(B(i)) foreachi = 1,2,...,n. Thatis,« times § means perform
the mapping S first, then perform the mapping o on the result. Consider as an
example the permutation # defined above and the following permutation o, in Ss:

- 1 2 3 45
s 4 3 2 1)
To determine 0o, we apply the definition separately to each integer 1 through 5.

Thus, 6a(1) = 0(c(1)) = 6(5) = 3 and 00(2) = 6(c(2)) = 6(4) = 5. Continuing in
this way, we see that

0 1 2 3 4 5]
g = .
3 5 4 1 2]
We can compute g6 in the same way and obtain
0 — 1 2 3 4 5]
=la s 21 3]

Next, we define equality for two permutations to mean that every element
of the set has the same image element under each of the two permutations. It
is now apparent that in the above example, 85 # ¢6. The binary operation
of multiplication for permutations is not commutative. The set S, is closed,
however, with respect to the operation, and the operation can be shown to be
associative. The proof of associativity is not difficult, but will be postponed
until later. The student should check associativity in several specific cases.

The identity permutation for S, is denoted by ¢ and is given below:

8_123...n
11 2 3 ... onl

That this permutation has the property required of an identity element can be
readily verified by inspection.

Each permutation in S, has a multiplicative inverse, and this inverse can be
found by reading the permutation from bottom to top instead of from top to
bottom. In general, if a permutation ¢ in S, maps the integer m onto i,, then
¢~ ! will map i, onto m. That is, if p(m) = i, then ¢ ~!(i,) = m for each integer
m. Therefore, o~ *o(m) = ¢~ *(p(m)) = ¢~ '(i,) = m. Thus ¢~ '¢ = ¢, the iden-
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tity element, since the image of each integer under the mapping ¢ ~ !¢ is the same
as under the mapping & Now since a permutation is a one-to-one mapping,
the set of integers appearing as image elements is the entire set, and we may consider
i as the general member of the set for the purpose of examining gp ~: pp ! (i,,)
= @@ '(in) = @@m) = i, Thus pp~! is also the identity mapping. This
shows that ¢! is the multiplicative inverse of ¢. Using this result, the inverse

of 6 defined above is
0-1 — 1 2 3 4 5
2 1 5 3 4]

The student should check the products 610 and #0~! to verify this statement.
Note that since multiplication is not commutative, both products need to be
checked. An element and its inverse commute even though the operation is
not commutative in general.

Because inverses of permutations exist, S, satisfies the cancellation law for
multiplication. There is no zero element to form an exception, and consequently
this law is stated for permutations as follows: If a8 = 6 for permutations o, f,
and 0, then « = . This can be proved by multiplying both sides of the first
equation by ™! and simplifying.

Equations of the form ax = 8, where o« and § are in §,, always have solu-
tions in S,. The form of this solution is « ™!, since a(a™'B) = (xax”})B = B = B.
Note that Ba~' is ordinarily not a solution of the equation. Referring to the
permutations 6 and o defined earlier, we can find the solution for x = ¢ as x =

0~ 'o. That is,
x_12345
14 3 51 2

will satisfy the equation.

EXERCISES

1. Check the example in this section to verify that 00~ = 0710 = &.
2. Check the solution of the equation given in the last paragraph of this section.

3. Given the permutations

az“l 2 3 4 5 6]

3 2 1 4 6 5]

B__l 2 3 4 5 6]

12 05 4 1 3 6f

and : :
[t 2 3 4 5 6

"le s 3 1 2 4

find (a) «, (b) fo, (c) ™', (d) B, (e) ™', () aBy), () (@B)y, (h) the solu-

tion of ax = B, (i) the solution of fx = y.
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4. Write out all permutations in S;, ie., the permutations on the integers 1, 2, 3. Let p,
be &, the identity, and label the remaining five as p,, ps, p4, s pPe in some order for use
in later problems. ’

5. Find the inverse of each permutation p; in Exercise 4.

6. Fill out a complete “multiplication table” for S5, as we did for Z, and Z¢ in Section 2-3,
where the general entry in the table is the product of the element listed on the left margin
times the element listed at the top, in that order. In each position write the actual result
rather than the indicated product. If p;p, = ps, for instance, write ps in place of p;p,
in the table.

7. Check the associative law in S, in three specific examples. Note that this does not
constitute a proof.

8. Consider the subset A; of S; as follows:

w23 Brs B

Show that A, is closed for the operation of multiplication and that each element in A,
has an inverse in A4;.

9. How many permutations are there in the set S, for an arbitrary positive integer n?

10. An element other than the identity is an involution if its square is the identity. Find
all involutions, if any, in the set S;. (Here, ¢ means ¢ ' g, as one might expect.)

4-2 DEFINITION AND EXAMPLES OF GROUPS

There are several reasons why a chapter on groups should be included in an
introductory text on algebra designed primarily for prospective teachers. The
most practical reason is the light that the concept of a group sheds upon the subject
of geometry. A brief discussion of geometry as it relates to group theory is
contained in Chapter 5, Sections 5-1 and 5-2.

The reader can expect to profit from a study of groups in another way as well.
The rather simple axiomatic structure of a group furnishes an excellent opportunity
to develop an understanding of the axiomatic method, which is the heart of
mathematics. In the study of number systems, it is difficult for the student to
free himself of the large body of facts accumulated over a lifetime in order to ap-
preciate the necessity for precise proofs based directly on axioms and definitions.
Since groups are less familiar, one more readily sees the necessity for a rigorous
formal treatment. The simplicity of the axiom set makes this formal treatment
a reasonable and pleasant task.

Definition. A group is a set G of elements, together with a binary operation o,

satisfying the following postulates.

1) The set G is closed with respect to the operatione.

2) The operation o is associative in G.

3) There exists in G an identity element e for the operationo.

4) For each element a in G there exists an inverse a~! in G, relative to the
operationo,
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A group is a commutative group if and only if the operation is commutative.

The student should recall the definitions of closure and associativity given in
Chapter 1, Section 1-7. In particular, since it is not required that the operation
in a group be commutative, recall that an identity element is an element e of G
such thateox = xoe = x for every xe G. Similarly, a™! is an inverse of a in G if
and only if aca™' =a ' oa =e In showing that a set is a group, justifica-
tion should be given for each part of these equalities.

As an example of a group, the set of all permutations of n symbols is a group
under the operation of multiplication of permutations. This group is referred
to as the symmetric group on n symbols and is designated by S,. Each of the
sets of all integers, of all real numbers, and of all complex numbers forms a group
under the operation of addition. In fact, a more general statement can be
made. If R is any ring, then the set of all elements in R, together with the
operation of addition, forms a group, often referred to as the additive group
of the ring R.

There are two groups naturally associated with any field. Since a field is first
of all a ring, one of these groups is the additive group of the field. Let F denote
an arbitrary field, and let F’ be the set of all nonzero elements of F. It is easy to
verify, directly from the axioms for a field, that F’ is a group under the operation
of multiplication. This group is referred to as the multiplicative group of the
field F.

Further specific examples of groups are the sets Z, and Z, that were intro-
duced with the operations of addition modulo 6 and modulo 7, respectively, in
Chapter 2. The nonzero elements of Z, also form a group under the operation
of multiplication modulo 7. Why is this not also true for the nonzero elements
of Z4?

As a final example, the set of all 2 x 2 matrices with integers as elements
forms a group under the operation of addition. Why do the nonzero 2 x 2
matrices not form a group under the operation of multiplication?

That each of the above sets is a group under the specified operations follows
from the discussion of properties given when the sets were first introduced. There
are many other groups, some of which are of considerable importance. We
will introduce four more examples of somewhat different types to illustrate
further the nature of a group and to indicate the steps necessary in proving that
a set is a group. Further examples will appear in the exercises.

Example 4-1. Let S be the set S = {2,4, 6,8} and define the operation to be
multiplication modulo 10. Thus 2-6 = 2, and 4-8 = 2. Table 4-1 is a com-
plete multiplication table for S. Each entry in the table corresponds to the
product, modulo 10, of the element from the left margin opposite the given
entry and the element from the top margin above the given entry, taken in that
order. By inspection of the table, we verify that S is closed under the operation.
It follows from the associativity of ordinary multiplication of integers that the
operation is associative. The identity element is 6, as one can verify readily
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from the table. We see that 2 and 8 are inverses of each other, while both 4
and 6 are their own inverses. Thus we have verified that the set forms a group,
and, in fact, that it is a commutative group. Here we have used inspection of
the group table as the primary method of proof. This method can be used on
groups with only a small number of elements, but it does not work for many
other groups.

TABLE 4-1 TABLE 4-2
1 i -1 =N

1 1 i -1 —i
i i -1 —i 1
-1 -1 —i 1 i
—i | —i 1 i -1

Example 4-2. Consider the set M = {1, — 1, i, — i} of the fourth roots of the
complex number 1 and the operation of multiplication of complex numbers.
Again, the multiplication table will be helpful. From Table 4-2 it can be seen
that the set is closed under multiplication and that multiplication is commuta-
tive. Since multiplication is associative for the set of all complex numbers, it is
associative for the set M. The identity element is 1 and both 1 and — 1 are their
own inverses. The inverse of iis — i, and that of —iisi. Hence, the set M forms
a commutative group under multiplication.

Example 4-3. Symmetries of the square. A plane figure is symmetric with respect
to a line m if for every point P on the figure there is a second point Q such that
the line m is the perpendicular bisector of the segment PQ. A circle is symmetric
with respect to every diameter, and an equilateral triangle is symmetric with
respect to every median. If a figure is symmetric with respect to a line, the line
is termed a line, or axis, of symmetry for the figure. If m is a line of symmetry
for a figure F, then a revolution of F in space through an angle of 180°, using line m
as an axis, leaves the figure unchanged. Such a rotation is termed a reflection
. in the line m.

Consider a square located in the coordinate plane so that its center is at the
origin and its sides are parallel to the coordinate axes, as in Fig. 4-1. This figure
has four lines of symmetry, the coordinate axes and the two diagonals. For
convenience, we will call the diagonal in quadrants I and III the first diagonal,
and that in quadrants II and IV the second diagonal. Because of the symmetric
properties of the square, there is a set of motions which carry the square into
itself. We may think of the square as being cut from a piece of paper and placed
on the coordinate plane so that it may be moved freely. We will number the
vertices of the square, as indicated in Fig. 4-1, so that we may identify each vertex
in any position. The motions which carry the square into itself are the reflection
of the square in each of its four lines of symmetry and counterclockwise rotations
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Y-axis
 First diagonal

v
N

N 11

X-axis

/ N 4

AN
7 ® Second diagonal
Fig. 4-1. Lines of symmetry for the square.

in the plane of multiples of 90°, using the origin as a center of rotation. We identify
all rotations leaving the square in the same final position, and designate the rotation
by an angle less than 360° which has this result. We now agree to identify these

motions by the following symbols:

R,—counterclockwise rotation in the plane of 0°
R,—counterclockwise rotation in the plane of 90°
R,—counterclockwise rotation in the plane of 180°
R;—counterclockwise rotation in the plane of 270°
X—reflection in the x-axis
Y—reflection in the y-axis
D,—reflection in the first diagonal
D,—reflection in the second diagonal

If a motion is applied to the square, the motion may always be identified by the
final position of the square, as indicated by the position of the numbered vertices.
If two motions leave the square in the same final position, then they are said to
be equal. Figure 4-2 illustrates the effect of two of these motions on the square.

2 1 3 2 2 1 2 3
R3 D 2
—_— R
3 4 4 1 3 4 1 4
(a) (b)

Fig. 4-2. Effect of motions R; and D,.

Next, an operation referred to as multiplication is defined for the set
S ={Ro,R;,R,,R3,X,Y,D,D,}.

If a and b represent any two motions, then ab is defined to be the motion resulting
from the performance of motion a followed by motion b. Thus R,D, means the
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notion obtained by first rotating the square 180° counterclockwise and then
reflecting the result in the first diagonal. Figure 4-3 illustrates this product.
The end result is the same as that of the motion D,. Consequently, we say that
R,D, = D,. In this way we may construct a table for the operation of mul-

2 1 4 3 2 3
R, D,
2, T
3 4 1 2 1 4

Fig. 4-3. The motion R, D,.

tiplication of motions. From Table 4-3 it can be seen that the set of motions is
closed under multiplication, that R, is the identity, and that each element has
an inverse. The associative law holds, but this is not self-evident. A general
argument might be given to show associativity, but it will be omitted. Another
possibility is to verify the law by consideration of all possible triples of elements

TABLE 4-3
Ro R1 Rz R3 X Y D 1 DZ

D;|D; Y D, X R; Ry Ro R,
D,|D, X Dy Y R,y R; R, Ry

and their products as they appear in the statement of the law. This would involve
checking 216 cases. The student should verify the law in several specific cases, even
though this will not constitute a complete proof. The set is a group, commonly
called the group of symmetries of the square. It is not commutative. Why?

Example 4-4. The final example is not of special interest except to emphasize
the fact that not all groups are finite and that the group table cannot always be
used in proving that a given set is a group. Let P be the set of all real numbers
except the integer 1. Let the operation = be defined by a*xb =a + b — ab,
where +, —, and - are the usual arithmetic operations. Then P is a group with
respect to the operation x, as we now prove.

For any real numbers a and b in P (that is, any real numbers except 1), a* b
is a real number. In order to show that this number is in P, we only show that
it cannot be 1. Suppose that a + b — ab = 1. Then, since a # 1, we can solve
for b in terms of a and obtain b = (1 — a)/(1 — a), or, in other words, we see that
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b = 1. Butthis cannot be the case since b € P and P does not contain the number 1.
Hence it is impossible that a +b = 1. This shows that the set P is closed under
the operationx.

The operation = is associative on the set P. This fact was given in Section 1-7
and will not be repeated here. The student should turn back and review the
proof.

To find the identity element, we ask if there is a number x in P such that
a*xx = aforeveryain P. Thisimpliesthata + x — ax = a,or thatx(1 — a) = 0.
Since 1 is not in P, 1 — a # 0 and hence x = 0. By direct evaluation we can
check that a *0 = 0% a = a for every a in P. That is, O is the identity in P.

The inverse y of an element a in P must satisfya*y =0,0ora+ y — ay = 0,
since 0 is the identity in P. Solving for y, we find that y = (— a)/(1 — a). This
solution is possible, since a # 1,and ais a real number. Furthermore, this number
isnot 1, and hence is in P. By direct evaluation we may check that for this value
ofy,a xy = yx a = 0, and hence every element a in P has an inverse in the set P.
This completes the proof that P is a group under the operationx. It is also easy
to verify that * is commutative, so that P is a commutative group.

It is a common convention in mathematics that when a group is commutative,
we usually write the operation as addition, using the symbol + and denoting
the identity by the symbol 0. In this case we use the term abelian rather than
the term commutative to refer to the group. The term abelian originated as a
commemoration of the work of the famous mathematician Niels Henrik Abel
(1802-1829). For nonabelian groups, or for groups where the operation is not
known to be commutative at the outset, the group operation is customarily written
as ordinary multiplication, a convention that we will follow in the future.

EXERCISES

1. Determine whether or not each of the following sets forms a group with respect to the
given operation. If the set is a group, prove it, and if not, show why not.
a) The set of real numbers of the form a + bﬁ where a and b are integers and the oper-

ation is addition.
b) The set of nonzero real numbers of the form a + b\/2 where a and b are rational

numbers and the operation is multiplication.

¢) Theset {0, 1, 2, 3, 4, 5, 6} with the operation of multiplication modulo 7.

d) The set {1, 2, 3, 4} with the operation of multiplication modulo 5.

e) The set {1, 5,7, 11} with the operation of multiplication modulo 12.

f) The set of all integers except the integer 1, with the operation * defined in Example 4-4.

g) The set {R,, R;, R,, R;} defined as in Example 4-3, with the operation given in the
example.

h) The set {R,, X, Y, D,, D,} defined as in Example 4-3, with the operation given in the
example.

i) The set of permutations,

s

with the operation of multiplication of permutations.
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9.
10.

j) The set of permutations,
T= 123 , 123 ,

1231132

with the operation of multiplication of permutations.

k) The set U = {x, y}, with the operation given in the table below.

Xy

x|x y
yly x

£

such that a, b, ¢, and d are real numbers and ad — bc # 0, with the operation of multi-
plication of matrices.

1) The set of all 2 x 2 matrices

. Prove that neither of the following is a group.

a) The nonzero elements of Z4, with multiplication modulo 6.
b) The set of nonzero 2 x 2 matrices, with matrix multiplication.

. Each of the motions of the square described in Example 4-3 may be represented as a

permutation of the vertices. Thus D, corresponds to the permutation.

1234
3214}

List the permutations corresponding to each of the elements of the group of Example 4-3
and check, by multiplication of permutations, at least five entries in the group table.

. Prove by a counterexample that the group of symmetries of the square is not commu-

tative.

. Prove that the set of all elements of an arbitrary ring form a group with respect to the

operation of addition.

. Prove that the nonzero elements of any field form a commutative group with respect

to the operation of multiplication.

. Explain the significance of postulates (1), (3), and (4) of the definition of a group in de-

termining the nature and arrangement of elements in the table of a group with a finite
number of elements.

. Describe the group of symmetries for an equilateral triangle, in a manner similar to that

in Example 4-3.
Describe the group of symmetries of a regular hexagon.
Describe the group of symmetries of a circle.

4-3 ELEMENTARY PROPERTIES OF GROUPS

The definition in Section 4-1 requires that each group must contain an identity
element e, but does not specifically exclude the possibility that there may be two
or more distinct identities. In the proof of the next theorem, we will show that
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this cannot happen. Similarly, postulate (4) requires that for each element in
the group, there is at least one inverse, but it does not specify that an element
in a group never has more than one inverse. The following theorem clarifies
the situation.

Theorem 4-1. (a) The identity element of a group G is unique. (b) Each
element in a group G has a unique inverse.

Suppose, first, that a group contains identity elements e and ¢’. Then, since e
is an identity element, ee’ = ¢'. Similarly, ¢’ is an identity element and hence
e¢ = e. Therefore, e = ee’ = ¢'. That is, any two identity elements must be
equal and hence the identity element of a group is unique.

Next, suppose that both a~! and a’ are inverses of the element a in a group G,
sothat a™'a =aa™! = eand da = aa’ = e. Then:

a =ed by definition of the identity e,
= (a"ta)a by definition of the inverse a ™!,
= a” Yaa) by the associative law,
=a le by definition of the inverse a’,
=a! by definition of the identity e.

Thus the assumption that two elements are both inverses of a leads to the con-
clusion that they are equal, that is, the same element. This is exactly what is
needed to say that the inverse of an element is unique, and hence completes the
proof of the theorem.

We have examined mathematical systems in which the cancellation law for
one or more operations is valid, and in which equations of simple types have
solutions within the system. The following theorem states these properties for
groups.

Theorem 4-2. (a) (Cancellation law). If a, b, and ¢ are elements of a group G
and ac = bc, then a = b. Similarly, if ca = ¢b, then a = b.

(b) If a and b are elements of a group G, then there exist unique elements x
and y in G such that ax = b and ya = b.

To prove the first part of (a), we assume that ac = bc for elements a, b, and ¢
in G. Since G is a group, ¢! is also an element of G. Multiplying both members
of the given equation on the right by ¢!, we obtain (ac)c™! = (bc)c™!. Using
the associative law, we see that a(cc™!) = b(cc™!). This equation reduces to
a = b since cc”! equals e, the identity element of G. The proof of the second
cancellation law is similar and is left to the reader.

Now, to show that there exists an element x in G such that ax = b for any a
and b in G, we consider x = a~'b. This element is a solution since a(a™'b) =
(aa”')b = eb = b. Next, suppose that both the elements x and x’ satisfy the
equation. That is, ax = b and ax’ = b. Then ax = ax’, and by the cancellation
law, x = x’. Thus the solution is seen to be unique. The solution for the equa-
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tion ya = b is y = ba™!, and is also unique. This can be checked by direct

substitution into the equation, as was done for the case shown. Note that in a
noncommutative group the order of the factors is important.

These theorems and the next are not difficult, but they are extremely im-
portant. They form the basis for computations involving group elements. The
counterparts of the theorems are valid for the real number system as well, but
familiarity with real numbers is apt to cause one to take them for granted. One
of the values to be gained from a study of group theory is the development of an
appreciation for such concepts. The theorems of this section will form the basis
for many proofs in later sections.

Theorem 4-3. (a) If a is an element of a group G, then (a™')™' =a. (b) If
a and b are elements of a group G, then (ab)™! = b~ 'a™ 1.

We will prove only part (b) of the theorem. The proof of part (a) is similar.
Since g and b are in G, a~ ' and b~ ! are also elements of G. Then,

(b~ 'a ) (ab) = (b~ 'a” Ha)b by the associative law,
= (b""(a 'a)b by the associative law,

= (b "'e)b by definition of the inverse a™?,
=b"" by definition of the identity e,
=e by definition of the inverse b~ *.

By the same sequence of arguments, it can be shown that (ab)(b~'a™!) reduces
to the element e. Hence b~ 'a~! has the properties that are required of the inverse
of the element ab. We have already proved that each element has a unique inverse.
Hence (ab)™! = b~ 'a™!, and the proof is complete.

The generalized associative law, Theorem 2-10, Section 2-6, holds in every
group G. This law states that a product of elements is not changed by a change
in location of parentheses within the product. The proof given in Appendix A
requires only that the operation be associative. Hence the proof applies to any
group and need not be repeated. From now on, unless the grouping is intended
for emphasis, we will omit the parentheses in writing products. The reader
should note how this convention would simplify the notation used in the proof of
Theorem 4-3.

Integral exponents can be defined for group elements as they were for rings
(see Section 2-7). Since every element in a group has an inverse, negative powers
of group elements are always defined. The definition and the basic theorem on
exponents are repeated for convenience, but the proofs are omitted. The proofs
given for rings need no change to be valid for groups as well.

Definition of integral exponents. If a is an element of a group G, then

a) a® = e, where e is the identity of G.
b) a' = a, and a"*! = a"a for every natural number n.
¢) a~" = (a~ )" for every natural number n.
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Theorem 4-4. If a is an element of a group G, with identity e, and if m and n
are integers (positive, negative, or zero), then

a) &' =e, b) """ = a™a", c) (@™ = a™.

If the group G is commutative, the law of exponents (ab)" = a"b" also holds.
If the group is not commutative, there may be special cases for which the law
holds, but it will not be true in general.

Groups may be classified in many ways. We have already mentioned the
classification into commutative and noncommutative groups. Another classi-
fication comes from consideration of the number of elements in a group. A
finite group is a group containing only a finite number of elements. The order
of a finite group G is the number of elements in G. An infinite group is a group
containing infinititely many elements. An infinite group is said to have infinite
order.

EXERCISES

1. For the group of Example 4-1, Section 4-2, find a) the solution of the equation 8x = 2;
b) the solution of the equation y-4 = 2; c) 8%; d) 4%, e) 273.

2. For the group of Example 4-2, Section 4-2, find a) X*, X 3, and X% b)(R;)°, and (R;)%
¢) (R, D,)"*;d) (R,)3(D,)™3; e) the solution for w of the equation D,w = Rj; f) the solution
for w of the equation Yw = X.

3. For the group of Example 4-4, Section 4-2, find a) 43,473, and 4% b) 22 *37 %, ¢)3* 57}
d) the solution of the equation 3% x = 5; €) the solution of the equation 5% x = — 2.

4. Show why the existence of solutions of equations mentioned in Theorem 4-2(b) requires
that the group table for a finite group must contain each element of the group once and
only once in any row or column of the table.

5. Let G be the set {a, b, c}. Define a binary operation on the set G so that G becomes
a group with respect to this operation. Define the operation by filling in the group
table for the set (similar to Tables 4-1, 4-2, and 4-3 of Section 4-2).

6. Does the set of all integers form a group with respect to the operation of subtraction?
If so, prove it. If not, show which postulates for a group are not satisfied.

7. Rewrite each theorem and definition in this section for a group with operation written
as addition (+), with identity 0, and with inverses written as negatives.

8. Rewrite the proof given in Theorem 4-3(b), using the additive notation described in
Exercise 7.

9. The set S of all integers forms a group with respect to the operation * defined by a* b =
a + b — 5 for integers a and b. Find the identity element of this group and find a for-
mula for the inverse of an arbitrary element of the group.

10. Complete the proofs of Theorems 4-2 and 4-3.
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4-4 PERMUTATION GROUPS

Permutations were introduced in Section 4-1. The student is urged to review
carefully the definitions, notation, and properties of permutations presented in this
example before reading further.

We will continue the study of sets of permutations in this section. It is not
necessary to limit our discussion to permutations of finite sets, as we did in the
example of Section 4-1. More generally, a permutation is a one-to-one mapping
ofaset ontoitself. When this is a finite set, we speak of a permutation of n symbols.
The definition of equality of permutations of infinite sets is the same as for finite
sets. That is, two permutations, « and f, of an arbitrary set A are equal if and
only if a(a) = B(a) for every element a in the set A.

There are several notations for permutations in common use. Since a permu-
tation is a mapping, the functional notation is always appropriate and will be used
in the proof of Theorem 4-5. The bracket notation is often used when the set
involved is finite. A third notation for a special purpose will be introduced later.

The product of two permutations of n symbols was defined previously. The
same definition is suitable for the infinite case as well; namely, if « and f are per-
mutations of a set A4, then af is that permutation of 4 defined by af(a) = «(B(a))
for every element a in A. Since each of « and f are one-to-one mappings of A
onto itself, so is the mapping aff. That is, the set of all permutations of a set 4
is closed with respect to multiplication of permutations.

We are now ready for our theorem that refers to permutations of a set 4 that
may be either finite or infinite.

Theorem 4-5. The set S of all permutations of an arbitrary nonempty set A
forms a group with respect to the operation of multiplication of permutations.

By the remarks of the preceding paragraph, we first note that S is closed with

respect to multiplication.
The associative law in S follows directly from the definition of multiplication.

That is, for any permutations a, 8, y in S,

a(By)(a) = a(By(a)) = o B(y(a))
for each element a in 4. Similarly,

(@B)y(a) = aB(y(a)) = a(B(r(a))

for each a in A. From the definition of equality, this implies that a(By) = («f)y,
as was to be proved.

Let ¢ be the permutation of A defined by &(a) = a for each a in A. For any
permutation « in S, we consider the products ex and ae. Let a be any element
of A. Then,

ea(a) = e(a(a)) = a(a) and  og(a) = a(e(a)) = a(a).

The justification for these steps is merely the definition of the product of two
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permutations. Since ex, ag, and o each maps the arbitrary element a of A onto
a(a), the three permutations are equal. That is, ex = ag = o, which shows that ¢
is the identity element of S.

Finally, for any permutation o in the set S, we define = by a” (@) = b if
and only if a(b) = a, where a and b are elements of 4. Thus, if « maps b onto a,
then «~ ! maps a onto b. Since « is one-to-one, so is !, The permutation a™!
is the inverse of « in S, as was shown in Section 4-1. Even though we considered
only finite sets 4 at that time, the proof is also valid for the infinite case and will
not be repeated here.

This completes the proof that S is a group. If A4 is a set with n elements, the
group of all permutations of A4 is called the symmetric group on n symbols and
is denoted by S,. We will ordinarily designate the elements of 4 by the integers
1,2, ..., n, as we did in Section 4-1. For the remainder of this section, we will
limit our attention to permutations of finite sets.

A permutation « of a finite set A4 is a cycle of length k if and only if there exist
distinct elements a,, a,, ..., a, such that

a(a,) = a, a(a,) = as, ..., al@,_,) = a, a(a) = a,

and for every a in A other than aq,a,, ..., a, a(a) = a. Such a permutation
may be represented by the notation (a,a,a; " a).

The permutation
123456
142653

isa cycle and can be denoted by the symbol (24 6 3). This permutation maps 2 onto
4,4 onto 6, 6 onto 3, and 3 onto 2. We refer to this permutation by saying that it
permutes 2, 4, 6, and 3 cyclically. The permutation could also be written (4 6 3 2),
or (3246), or (6324).

In cyclic notation the identity permutation ¢ is usually denoted by (1). In
all cases, an integer not appearing in the cycle is presumed to be mapped onto
itself by the permutation.

Two cycles a and f in S, are said to be disjoint if no integer appears in both
oaand B. Thus(1 3 5) and (2 4 6) are disjoint, but (1 3 5) and (2 3 4) are not disjoint.
We will be interested in the fact that every permutation in S, may be written
as a product of disjoint cycles. Let us consider an example before we discuss
the proof of this result.

Example 4-5. For the permutation
11234567
“Tls137624)
we begin with any integer, say 1:a(1) = 5, so we next determine a(5), which is 6.

Continuing, we see that «(6) = 2 and «(2) = 1. Since 1 is the integer we started
with, we write down the cycle a; = (1 56 2), a factor of «. Next, select any integer
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not affected by a,, say 3. Since a(3) = 3, we ignore 3 and continue. - The integer
4 has not yet been considered. We find that «(4) = 7 and «(7) = 4, indicating
that « has as a second factor the cycle a, = (4 7). Since there are no further
integers mapped by a, we conclude that « = a,0,. A direct check will verify this
equality.

Theorem 4-6. Every permutation of a finite set is a cycle or it can be expressed
as a product of two or more disjoint cycles.

The method of proof was indicated in the above example. Let o be any per-
mutation of the finite set A. First, we select any element a, in 4 and determine
a(a,), which we call a,. If a; = a,, then (a,) is the first cycle in the factorization
of a. If not, we determine a(a,) = a;, etc. Having found g; as the image of the
preceding element at any given step, we then determine a(a;). Since a is one-to-one,
a(a;) cannot equal a,, as, ..., a;,_,. Ifa(a;) = a,, we close the cycle and (a,a,- - a)
is the first factor of a.  If a(a;) # a,, we designate it by g, ; and continue. Since 4
is a finite set, this process must terminate. After the first factor is found, we select
any remaining element of A and proceed as before to determine a second factor.
Continuing in this way, we eventually exhaust the set 4 and determine the factor-
ization of . A more formal proof might be given by mathematical induction.

A cycle of length two is called a transposition. We will show that every permu-
tation can be expressed as a product of transpositions. In fact, this can always
be done in more than one way. For instance,

(2468) = (68)(48)(28) = (28)(26)(24) = (48)(2 4)(6 8)4.8)(2 6).

Even though this factorization is not unique, a given permutation can never be
expressed as both a product of an odd number of transpositions and as a product
of an even number of transpositions. The following theorem states these facts.

Theorem 4-7. Every permutation of a finite set S containing two or more
elements is a transposition or it can be expressed as a product of transpositions.
Further, if a permutation can be expressed as a product of u transpositions
and again as a product of v transpositions, then u = v (mod 2).

The identity element ¢ in the set of all permutations of S can be factored into
e = (12)(12). Note that this requires that S must possess at least two elements.
Here these elements are written as 1 and 2, in keeping with the convention of
considering the elements of the set S as if they were positive integers.

We now need to show only that every cycle (a,a, - - a;) for k > 1 can be
expressed as a product of transpositions, since we have already proved that every
permutation equals a product of cycles. A direct check shows that

(ayay *+ a) = (a,a)(a 0, 1) *** (aya;3)(a,a,).

Recall, when checking this factorization, that in a product of two permutations,
the right-hand factor is applied first. Thus if « is used to denote the cycle above,
a(a,) = a,, since the right-hand factor maps a, onto a, and the remaining factors
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do not affect a,. Similarly, a(a,) = a3, since the right factor maps a, onto a,
and the next factor maps a, onto a5, while the remaining factors do not affect a;.

The second part of the proof concerns an arbitrary permutation in S,. We
first form a special product of integers that will help in constructing a proof. Let
P, denote the product of all integers of the form i — jsatisfying0 < i < n,0 < j < n,
andj < i. For example, ifnis 4,

P,=(2— 13— 1)@ —1)(3 — 2)(4—2)4 — 3).

For any permutation 8, define B8P, to be the product obtained from P, by per-
forming the permutation § on the integers i, j appearing in the factors of P,. Thus,
if B is the cycle (132),

PP, =(1-3)2—-3)4—-3)(2-1)4 - 14 - 2.

The effect on P, of the mapping f is to rearrange the factors of P, and to change
the sign of certain factors. In every case, P, = + P,.

If 6 is a transposition, then 6P, = — P,. To see this, suppose that § = (r s)
for integers r and s. We may as well assume that r < s. Exactly one factor of
P, involves both r and s, the factor s — r. The transposition é changes this
factor to r — s, the negative of s — r. All other factors involving r or s can be
grouped in pairs of the form + (¢t — s)(t — r) for some integer t. But the trans-
position ¢ merely interchanges these factors and does not change the sign of the
product. Any factors not involving r or s are unchanged by 6. Hence, the effect
of 6 on P, is that one factor is changed in sign and 6P, = — P,.

Now let y-be any permutation in §,. Suppose that it can be expressed as the
product of u transpositions. Then yP, = (— 1)*P,, by the discussion in the preced-
ing paragraph. If y can also be written as the product of v transpositions, yP, =
(= 1)’P,. Hence (— 1)* = (— 1), and both u and v are either odd or even integers.
Thus u = v (mod 2) and the proof is complete.

Definition 1. A permutation in S, is even if it can be expressed as the product of
an even number of transpositions and odd if it can be expressed as the product
of an odd number of transpositions.

Note that the identity permutation of S, is even for n > 1, since we have shown
in the proof of Theorem 4-7 that & = (12)(12).

The definition of even and odd permutations would be meaningless if we had
not proved Theorem 4-7. This definition is used in many places in other mathe-
matics courses. One use of interest to the high school teacher is in the definition
of a determinant. In order to understand why the usual definition gives a unique
value to every determinant, it is necessary to understand the content of Theorem
4-7. We will state the definition of a third-order determinant here to indicate
this connection. The notation employed makes use of our knowledge of permu-
tations, and agrees, except perhaps for notation, with definitions given in high
school or college texts. The definition of higher-order determinants is analogous
to the one given here for third-order determinants.
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Definition 2. The symbeol

a,; a, a,
€y €3 C3

where a;, b;, and c; are real numbers for i = 1, 2, 3, is called a determinant
and represents a real number D. This number D is given by the formula,

D = X (sign a)a,1)bu2)Caca)y
aeS3

The symbol Zacs, means that the sum is to be taken over all permutations
o belonging to S5. The symbol (sign o) is defined to be 1 if « is an even per-
mutation and — 1 if « is an odd permutation.

Example 4-6. We will write out the terms of the determinant
a, a, das
D=|b, b, by
c; ¢, C3

to make sure that the above definition is understood. The definition calls for a
sum of terms each containing the product of an element from each row. The
subscripts are determined by the permutations of the set {1, 2,3}, and a term
is used for each of the permutations in ;. The permutations in S5 can be written
in cyclic notation as ¢ = (1), « = (12), f = (13), y = (23), 6 = (123) and = (132).
The term corresponding to « is

(sign a)ay1)bac2)Cay = — dzb1C3.

The value of D can found as follows (the terms are written in the same order as
the corresponding permutations given above):

D = a;b,c3 — ayb ey — azb,c; — absc, + aybscqy + asbc,.

With determinants of higher order it is easier to use double subscripts to
represent the elements than to employ a separate letter for each row. But the
use of permutations, and particularly the necessity for distinguishing between
odd and even permutations is the same.

EXERCISES
1. Given that
Lo[12345 and B—12345
21435 “164251f

find each of the following products and leave your answer in the bracket notation.

a) o? b) B2 c) af d) fa
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10.

11.
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. Given that « = (13524) and that § = (1 3)(245), find each of the following products

and leave the answer as a product of disjoint cycles.

a) o? b) o? o) B d) g e) aff ) Ba

. Show that every transposition (r s) is its own inverse. That is, (rs)™! = (rs).

. Find the inverse of each of the following. Leave the answer in the notation of the given

permutation.

12345 12345
a)[32154] b)[21534] 9 (133246

d) (1 2)3 4)5 6)

. Express each of the following permutations as a cycle or as a product of disjoint cycles.
a)123456_ b)123456
214365] 546312
5 123456] d) 123456
45136 2] 125346
) 123456]
654231

. Express each of the following permutations as a product of transpositions in two ways,

one of which contains more factors than the other.

a) (1 35) b) 25467 3) c) (12345 d) (1)
. Determine whether each of the following permutations is odd or even.
12345 12345
b
a) [3 541 5:] ) [5 342 1] c) (123)(45)(678)

d) (135)(246)

. Write out a group table for S;. To simplify the notation, let ¢ = (1), « = (123), 8 = (132),

y = (12),6 = (13), and 1 = (23).

. Show that the set of permutations {(1), (123), (132)} forms a group with respect to multipli-

cation of permutations.

a) Show that the set of all even permutations in S, is a group with respect to multipli-
cation of permutations. This group is referred to as the alternating group and is
denoted by A4,.

b) Show that the order of A, is n!/2.

Evaluate each of the determinants below, making use of the definition given in this section.

Xy Xy X3 2 51 4 2 1 200
a |y, Y2 V3 b) |7 3 4 c |3 1 2 d (0 3 0
Zy 2z, 23 0 5 6 1 1 -1 0 0 4
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4-5 SUBGROUPS

It often happens that a set which forms an algebraic system of a certain kind,
group, ring, or field contains a subset which forms the same type of system with
respect to the operations of the larger set. We refer to such systems as subsystems.
In particular, we refer to subgroups, subrings, and subfields.

Definition. A subgroup of a group G is a subset of G which forms a group
with respect to the operation in G.

Recall that a group must contain an identity element, and hence a subgroup
cannot be an empty set. We should emphasize, also, that a subgroup must be a
group with respect to the operation in the larger group. Thus the additive group
of Z, is not a subgroup of the additive group of the integers. The operation in the
set Z, is addition modulo 7, while that in Z, the set of integers, is ordinary addition.
However, the set of all even integers under addition forms a subgroup of the ad-
ditive group of the integers. Exercises 9 and 10 in the preceding section give
other examples of subgroups.

The subset {4, 6} of the set S in Example 4-1, Section 4-2, forms a subgroup
of S. The set {Ry, R, R,, R3} from Example 4-3 forms a subgroup of the group
of symmetries of the square. Can you find two other subgroups of this group?

Every group has a unique identity element, and since a subgroup is a group,
it must have an identity. One might ask whether it is possible that a subgroup
has for its identity an element which is different from the identity of the group.
The following theorem guarantees that this cannot happen.

Theorem 4-8. If H is any subgroup of a group G, then the identity element
of G is in H and is the identity element of H.

For this proof, let e be the identity element of G, ¢’ the identity of H. There
exists in G an element x such that xe¢’ = e by Theorem 4-2(b), Section 4-3. Mul-
tiplying this equation on the right by ¢’, we obtain xe'e’ = ee’. But ¢’ is the identity
of H so that ¢'¢’ = ¢. Further, e is the identity of G so that ee’ = ¢’. Hence
xe' = €. Since xe’ = eand xe’' = ¢, we see that e = ¢’ and hence e is the identity
element of H.

We have proved that the identity element of a group belongs to every sub-
group. It is possible that this is the only element in the subgroup. The subset
consisting of the identity element alone is always a subgroup of a given group.
Similarly, the entire group is a subgroup of itself, since it satisfies all requirements
of the definition. Thus every group G has at least two subgroups—G itself and
the subgroup consisting of the identity element alone. These two subgroups
are referred to as the trivial subgroups of G. All other subgroups, if any exist,
are called proper subgroups of G.

Theorem 4-9. A subset H of a group G is a subgroup if and only if:

a) H is not the empty set.

b) For every pair of elements a and b in H, the product ab™! is an element
of H.
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If we assume that H is a subgroup of G, H contains the identity element of G
and so is not empty. Further, if a and b are elements of H, b~ ! is also in H by the
fourth postulate for groups. Then ab~! is in H since H is closed under multipli-
cation. We have shown that every subgroup H satisfies properties (a) and (b)
of Theorem 4-9.

Next, assume that H is a subset of the group G which satisfies (a) and (b). We
will show that H isa group. Since H is not empty, H contains at least one element x.
Then x and x are a pair of elements in H, and by property (b), xx ! is an element
of H. But xx~! = e, the identity of G, so H contains the identity element.

To show that every element in H has an inverse which is also in H, we let y be
an arbitrary element of H. Since e is also in H, we apply assumption (b) to the
pair e, y of elements of H. Thatis,ey™! = y~!is an element of H.

Now, consider any two elements a and b of H. By the preceding paragraph,
b~te H. Applying assumption(b) to the pair a, b~!, we find that a(b~!)"! =
ab is an element of H. That is, H is closed with respect to multiplication.

Finally, the associative law holds for all elements of G and therefore must hold
for those elements of G which are in H. This completes the proof that H is a
group and establishes the theorem.

The preceding theorem can often be used to shorten the proof that a particular
subset of a group is a subgroup. At other times it is easier to verify each of the
four group postulates directly.

Example 4-7. Suppose we consider the problem of finding a proper subgroup of
the group of symmetries of the square which has three or more elements. Let us
call this subgroup we wish to construct H. To begin with, R, must be in H by
Theorem 4-8 if H is to be a subgroup. Suppose now that we agree to put X in H.
For the set H to be closed with respect to the operation of multiplication, we
need to be sure that X-X = X2 is in H. But X? = R,, which is in H, so this
is no restriction. Similarly, RyX, R3 X3, etc., must be in H. But all such prod-
ucts are either R, or X and are already in H. This means that no further elements
need to be included in H to obtain closure. Then, Rj! = R, and X! = X,
showing that each element of H has an inverse in H. The group properties are
all satisfied, but we have only two elements in H. Let us select Y to include in H.
Then to preserve closure, XY must be in H. Since XY = R,, we must include
R, in H if we hope to make it into a subgroup.

A check of the possible products of Ry, X, Y, and R, shows that this set is
now closed. Further, Y™! = Y and R;! = R, so that each element of H has
an inverse in H. Since the associative law holds in the entire group of symmetries,
it also holds in H. This completes the proof that the set

H={Ry, R, X, Y},

with the operation of multiplication of elements, is a subgroup. We will prove
in Section 4-6 that subgroups of the group of symmetries of the square must have
1,2, 4, or 8 elements. There are no subgroups with 3, 5, 6, or 7 elements.
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A special class of subgroups is of particular interest in the study of group
theory. Such subgroups are sets of group elements such that each member of
the set can be expressed as an integral power of a single element of the set. We
first prove that the set of all integral powers of a group element always forms a
subgroup.

Theorem 4-10. If a is an element of a group G, the set
H = {d*| k is any integer}
is a subgroup of G.

First, H is not empty since a = a! is an element of H. Suppose that a™ and
a" are any two elements of H. Then a™a")™! = a™a™" = a™". Since H contains
all integral powers of a, a™ " is an element of H. Thus we have proved that the
product of any element of H times the inverse of any other element of H is also

an element of H. By Theorem 4-9, H is a subgroup of G.

Definition 1. A group H (or a subgroup H of a group G) is cyclic if and only if
there exists an element a in H such that H = {a*|k is an integer}. The
element a is called the generator of the group H.

A cyclic group may be either finite or infinite. While there are infinitely many
integers k, it frequently happens that only a finite number of the elements a* are
distinct. For instance, the group {1, — 1, i, — i} of Example 4-2 is a finite cyclic
group with operation multiplication and either i or — i as generators of the group;
i =i i>= —1,i® = —i and i* = 1, the identity of the group. All other integral
powers of i are equal to one or the other of these four elements. Similarly, —i
can be shown to be a generator of the group. Every finite cyclic group has prop-
erties similar to this. The next theorem generalizes these facts.

Theorem 4-11. If a cyclic group G with generator a has order n, then a" = e
and the distinct elements of G are the set

{a,a?, ..., a" " ', a" = e}.

Suppose that a™ = e for m < n. Then if k is any integer, there exist integers
q and r with 0 < r < m such that k = gm + r, by the division algorithm. Then
a* = a™*" = (a™%" = e%a" = a". Henceda*is one of the elements a®,a,a?, .. .,a™ L.
That is, G contains at most m elements, a contradiction. Therefore, our assumption
that a™ = e for m < n is false.

Next, suppose that a' = @/ for 0 < i <j <n Then, multiplying by a™
we have that e = a/~". Since i < jandj < n, the integer j — i satisfies0 < j — i < n.
This is a contradiction of the results of the preceding paragraph. Hence, the
elements a, a?, ..., a" are distinct. But G contains exactly n elements, so this
set must include all elements of G. Further, e € G, so that e is one of the elements
a' for 1 <i<n We have already proved that a™ # e for m < n. Therefore
a" = e, and the proof is complete.
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Definition 2. If a is an element of a group G, the order of a is defined to be the
order of the cyclic subgroup of G which has generator a.

Because of the preceding theorem, we may also say that the order of an element
a in a group is the smallest positive integer n such that a" = e. If no such n exists,
the order of a is infinite.

As an example, consider the additive group of Z; that is, the set

{0,1,2,3,4,5}

with operation of addition modulo 6. The group is cyclic with generator 1, or 5.
In this group, 1 has order 6, 2 has order 3, 3 has order 2, 4 has order 3, 5 has order
6, and 0 has order 1.

In the group of symmetries of the square, R, has order 1, R, has order 4, R, has
order 2, R; has order 4, and X, Y, D,, and D, all have order 2.

EXERCISES
1. Prove that the set of even integers (including 0) is a subgroup of the additive group of the
integers.
2. Find all subgroups of the symmetric group S;.

3. Find all subgroups of the group of symmetries of the square.

4, Find all subgroups of a cyclic group of order 12 with generator a. The elements of
this group are {a,a? a°,...,a'? = e}.

5. Find the order of each element of the group in Exercise 4.

6. Find the order of each element in the additive group of Z, the integers modulo 7.

7. Find the order of each element in the symmetric group S;.

8. Show that the order of any nonzero integer is infinite in the additive group of the integers.

9. Show that the additive group of Z, is cyclic. What are the possible generators of this

group?

10. Rewrite the definition of cyclic group and the statement and proof of Theorem 4-11,
using + as the notation for the group operation. As usual, where the operation is ad-
dition, denote the identity by 0, denote the inverse of a by —a, and use integral multiples
instead of integral powers of elements.

11. If H and K are subgroups of a group G, prove that H n K (the set of elements common
to the sets H and K) also is a subgroup of G.

12. Suppose that n is the smallest positive integer such that a" = e for an element x in a
group G. Show that @' = &’ if and only if i = j (mod n).

4-6 COSETS AND THE THEOREM OF LAGRANGE

The definitions of equivalence relation and equivalence sets were introduced in
Section 1-8. Since then we have considered several special cases of equivalence
relations, such as the equivalence relation on the set of ordered pairs of integers
which we used to introduce rational numbers. The notion of an equivalence
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relation is one of the most important concepts of mathematics. The equivalence
relation most often encountered in the study of groups is associated with the
partition of a group into cosets of a subgroup, defined below.

Definition 1. If H is a subgroup of G and a is an arbitrary element of G, then
the set of all elements of the form ha, for he H, is called a right coset of H
in G. We denote this coset by Ha and refer to a as a representative of the
coset.

Similarly, the set of elements of the form ah for he H is a left coset of H in G
with representative a, and is denoted by aH.

Example 4-8. Consider the group of permutations S;, the set
{(1), (123), (132), (12), (13), (23)}.

Let H = {(1), (23)}. Each element of S5 can be used as representative of a coset
but these sets are not all distinct. There are three distinct right cosets of H in S;.
Each can be expressed in terms of two representatives. The following is a com-
plete list.

H = H(1) = H23) = {(1), 23)},
H(123) = H(13) = {(123),(13)},
H(132) = H(12) = {(132), (12)}.

The left cosets of H in S; are formed in a similar way. The list of left cosets
follows.

H = ()H = (23)H = {(1),(23)},
(123)H = (12)H = {(123),(12)},
(132)H = (13) H = {(132),(13)}.

Note that the right cosets form a partition of S5 into subsets, each having
two elements. Similarly, the left cosets partition S;. Note also that except for
the coset H itself, no left coset is the same as the right coset having the same rep-
resentative. For instance, (123)H # H(123).

The following theorem gives necessary and sufficient conditions for two right
cosets to be equal. These conditions will be useful in checking whether or not
two elements belong to the same coset. This theorem and the remaining ones in
this section are stated for right cosets only. Similar results are valid for left cosets
as well.

Theorem 4-12. If H is a subgroup of the group G and if a and b are elements
of G, the following conditions are equivalent.

a) ae Hb b) Ha = Hb c)ab 'eH

We begin the proof by assuming that condition (a) holds. That is, ae Hb,
which means that a = hb for some he H. For any element x in Ha,x = h'a
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for some A e H. Substituting, we have that x = k'(hb) = (Wh)b. Since H is
a subgroup, W'he H and hence x € Hb. But x was an arbitrary element in Ha,
so Ha < Hb. Since a=hb, b = h™'a. Again, from the properties of sub-
groups, h"'e H, so we may say that be Ha. Repeating the above argument,
with a and b interchanged, we can show that Hb < Ha. Since we also proved
Ha = Hb, the two sets must be equal. That is, Ha = Hb. We have shown that
if condition (a) holds, then condition (b) must also hold.

Next, assume that condition (b) holds. The element a is in Ha since ee H
and a = ea. Since by (b) Ha = Hb, the element a is in Hb. That is, a = hb
for some he H. Then ab™! = he H. We have shown that if condition (b)
holds, then condition (c) holds.

Finally, assume that condition (c) is satisfied, and ab~! = h for some he H.
Then multiplying both sides on the right by b, we have that a = hb. By definition
of Hb, this shows that a e Hb, which is condition (a). Hence if condition (c) is
satisfied, then condition (a) must also be satisfied. This completes the proof of
the theorem.

Theorem 4-13. If H is a subgroup of G, the right cosets of H in G form a
partition of G.

Every element g in G is in at least one right coset of H, namely Hg. Suppose
that xe Ha n Hb. Then by Theorem 4-12, Ha = Hx = Hb. Thus no element
is in two distinct right cosets of H. These are the conditions required for the
right cosets to form a partition of G.

Definition 2. If H is a subgroup of G, and if a and b are elements of G, a is

congruent to b modulo H (written a = b (mod H)) if and only if a and b belong

to the same right coset of H in G.

Theorem 4-13 provides the proof that this relation is an equivalence relation
if we recall from Chapter 1 that each partition of a set is associated with an equiv-
alence relation. For the example at the beginning of this section, we see that
(123) = (12) (mod H) and that (13) # (12) (mod H).

Theorem 4-12 provides three conditions, any one of which is necessary and
sufficient in order that a = b (mod H). That is, a = b (mod H) if and only if
one of the conditions be Ha, Ha = Hb, or ub™' € H is satisfied.

Theorem 4-14 (Lagrange). If H is a subgroup of a finite group G, then the
order of H is a divisor of the order of .

The proof of this theorem follows from Theorem 4-13 if we can show that every
coset of the subgroup H in G contains the same number of elements. Let g be
an element of G which is not in H, so that Hg # H. Consider the mapping 5 of
H into Hg defined by n(h) = hg for each element h in H. Since every element
of Hg is the product of an element & in H with g, the mapping is onto. Suppose,
next, that n(h,) = n(h,) for h, and h, in H. That is, h;g = h,g. By the can-
cellation law, h; = h,. This shows that the mapping # is one-to-one. Hence
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the coset Hg contains the same number of elements as H. This is true for any
coset of H and, consequently, the order of the group G equals the product of the
order of H times the number of distinct cosets of H in G. The order of H must
therefore be a divisor of the order of G.

Corollary 1. If the order of a group G is a prime number p, then G is cyclic
and every element of G other than the identity is a generator of G.

If a # e and a€ G, then a generates a cyclic subgroup H = {a*|keI}. The
order of H divides p, a prime, and hence must equal p. Thatis, G = H and a is
a generator of G.

Corollary 2. If the order of a group G is the integer n, then for every element
a in G, a" = e, where e is the identity of G.

Let a be an element of G. Then the set H = {a*| ke I} is a subgroup of G.
Since G is finite, the order of H is also finite. Denote the order of H by m. By
Theorem 4-11, a™ = e. By Lagrange’s theorem, m is a divisor of n. That is,
n = md for an integer d. Hence

A"=a" =@ =¢=e
This completes the proof of Corollary 2.

Corrollary 3. The order of every element of a finite group is a divisor of the
group order.

In cases where the operation of a group is written as addition, we denote a
right coset by H + a instead of Ha. The definition of coset is modified only
by changing the notation for the operation. Thus, if H is a subgroup of a group
G, the coset H + g is the set of all elements of the form h + g for he H.

EXERCISES

1. Let G be the group of symmetries of the square (Example 4-3, Section 4-2) and let H be
the subgroup consisting of the elements Ry, R;, R,, and R;. Find all right cosets of H
in G. Show that the left cosets of H in G are identical to the right cosets. That is,
aH = Ha for every aeG. ’

2. Let G be the group of symmetries of the square, and let H be the subgroup consisting
of the elements R, and X. Show that the left cosets of H in G are not the same sets
as the right cosets.

3. Let G and H be as in Exercise 2. Find a left coset g, H and a right coset Hg, such that
g,H # Hg, and yet such that g,H and Hg, have an element in common.

4. Let H be a subgroup of a group G. Show that each element in a given coset of H in G
may be used as a representative of that coset.

5. Given the additive group T of integers, show that the set of all multiples of 7 (including
zero) forms a subgroup H of T.
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6. Find all right cosets of H in T for H and T of Exercise 5. Show that the left cosets of
H in T are the same as the right cosets by verifying that for any integer n,n + H = H + n.

7. Let G be the cyclic group of order 24 with elements {a® = e, a,d?,...,a?3}. Let H be
the subgroup H = {a° a® a'?a'®}. Determine whether each of the following state-
ments is true or false.

a) a’ = a'' (mod H) b) a'° = a® (mod H)
¢) a'® = a'?(mod H) d) a® = a?3(mod H)
e) a'® =e (mod H) ) a® =a'’(mod H)

8. Let G and H be the groups of Exercise 7. For each of the following congruences, find
three distinct values of x for which the congruence is true.

a) a’ = x(mod H) b) x = a*” (mod H)
¢) x = a'? (mod H) d) a'° = x (mod H)
9. Find the order of each of the following elements of the group G of Exercise 7.
a) e b) at® c) a'? d) a°
C) a16 f) a20 g) a18 h) a12

10. Find all subgroups of the group G of Exercise 7, using Lagrange’s theorem. Note that
each of these subgroups is a cyclic group.

11. Prove that if a group is not cyclic, it must have a proper subgroup.

12. Prove that every subgroup of a cyclic group is cyclic.

4-7 Z, AND CONGRUENCE MODULO n

Congruence modulo a subgroup was defined in the preceding section. An im-
portant special case of this definition leads to a definition which is important
in number theory. This section deals with that special case. It is important in
its own right, but also illustrates the way in which the cosets of a subgroup can
be made the elements of a new group called a quotient group. We will find that
our discussion also leads to a new description of the rings Z, which have been
used repeatedly in this text.
Consider a fixed integer n and let N denote the set of all multiples of n,

N = {kn|keZ}.

It is easy to show that the set N with the operation of addition forms a subgroup
of the additive group of the integers. The right cosets of N in Z are the sets N + a
for acZ. The change in notation from Na to N + a is necessary because the
group operation is addition rather than multiplication as indicated in Section 4-6.
However, let us adopt a more familiar notation. Each coset is an equivalence
set modulo N so let us denote H + a by [a]. Now from Theorem 4-12 we know
that two integers a and b are in the same coset, or equivalently that [a] = [b],
if and only a — be N. Since N is the set of multiples of n, we are lea to a new
definition of congruence modulo N, which is the definition customarily used
in number theory.
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Definition 1. If nis a fixed integer, then for any integers a and b, a = b(mod n),

read “a is congruent to b modulo »,” if and only if a — b is divisible by n.

For example, 7 = 2(mod 5) since 7 — 2 = 1-5, and —4 = 30(mod 17) since
—4 — 30 = (—2)(17). Remember, this definition is merely a reformulation of

congruence modulo a subgroup, and hence all previous results carry over im-
mediately. In particular, we have the following theorem.

Theorem 4-15. For any fixed ne Z, congruence modulo #n is an equivalence
relation in Z and the equivalence sets are exactly the right cosets of N =
{kn|keZ} in the additive group of Z.

Example 4-9. Suppose we consider congruence modulo 5. The equivalence
sets are:

[0 ={0,+5 + 10, + 15,...},
[11=1{1,-4,6,-9,11,...}
[2]1 = {2, -3,7, -8,12,...},
[31={3,-2,8,-7,13,...},
[41={4,-1,9,—6,14,...}

s

Of course, although there are only five equivalence sets, each may be expressed
in many ways by changing the representative. For instance,

Bl=[-21=081=[-71=[138]1=....

The sets involved here may be written in other ways as well. A useful and more
precise way of representing the members of this partition is the following:

[0] = {5n|nis an integer},

[11 = {5n + 1|nis an integer},

[2]1 = {5n + 2|nis an integer},

[3]1 = {5n + 3| nis an integer},

[4] = {5n + 4|nis an integer}.
Remember that in this form of set notation we include all integers for which the
sentence defining the set is a true sentence. Thus {5n + 2|n is an integer} is
the set of all integers obtained by replacing n by any integer whatsoever in the

expression 5n + 2. Replacing n by 0, we get 2; replacing n by —1 we get —3;
replacing n by 10 we get 52; etc.

Definition 2. Let C, be the set of all equivalence sets in Z with respect to
congruence modulo n. Let the operations of addition and multiplication in
C, be defined by

[al+[b] = [a + b],
[a]lb] = [ab].
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This definition states that to add (or multiply) two equivalence sets, we merely
add (or multiply) the representatives, using ordinary addition (or multiplication)
of integers. The answer is the equivalence set containing this sum (or product).

Example 4-10. Consider, as in Example 4-9, equivalence modulo 5. The fol-
lowing are examples of sums and products in the class Cs:

[21 + [4] = [e],

[—-31+ [171 = 141,

[21[4] = [3],
[-31[17] = [-51].

We could, of course, write these answers as [1], [4], [3], and [4], respectively.
since these sets are equal to the given ones.

Before considering properties of these operations, we need to establish the
fact that they are well defined. Let us consider another example which illus-
trates, but does not prove, the property involved.

Example 4-11. Again considering congruence modulo 5 as in Example 4-9,
note that [3] = [—2]and [4] = [14] in C5. We can form the sum of these sets
using either representation: [3] + [4] = [7], by definition, and [—2] + [14] =
[12]. Note now that [7] = [12] = [2], so that the same sum is given in either
case, although the representation is not the same. We can also form the product
of these two sets using either representation: [3]1[4] = [2] and [-2][14] =
L —28]. Now we note that [2] = [—28] because 2 = —28 (mod 5). This is true
because 2 — (—28) = 30 and 30 is a multiple of 5.

Theorem 4-16. The operations of addition and multiplication in C, are well
defined.

Proof. Suppose that [a] = [a'] and that [b] = [b']. Then a — a’ = pn and
b — b’ = gn for some integers p and q. Then (a — @) + (b — b') = pn + gn, or
(a+b)—(@ +b)=(p+ gnsothata+ b =a + b'(mod n). This means that
[a + b] = [a@ + b'] and hence addition is well defined.

Further, from the above equations a = a’ + pnand b = b’ + gn so that ab =
(@ + pn)(b' + gn) = a'b’ + (a'q + pb' + pgn)n. Hence ab — a'b’ is a multiple of
n and ab = a’b’'(mod n). This means that [ab] = [a’b'] and multiplication is
also well defined.

When we consider the set C, with the operation of addition only, the set forms
a group. Its elements are cosets of N in Z and it is referred to as the quotient group
of NinZ. However, it is even more interesting to consider C, with both opera-
tions. It can be proven, directly from the definitions we have given, that this
system is a commutative ring with unity element. Instead, we will show that
C, is isomorphic to Z,, and since isomorphic systems have the same algebraic
properties, this will establish the fact that C, is a ring.
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Theorem 4-17. The sets Z, and C,, with their respective operations, are
isomorphic for every natural number n.

Consider then the set Z, = {0,1,...,n — 1} of integers modulo n with op-
erations of addition and multiplication modulo n and the set

C, =101 14d,...,[n - 11}

of equivalence sets of integers congruent modulo n with the operations defined
above. To show that Z, is isomorphic to C,, we need to find a one-to-one mapping
of Z, onto C, which preserves operations. Let the mapping ¢: Z, — C, be defined
by @(m) = [m] for m =0,1,...,n — 1. This is, quite obviously, a one-to-one
mapping of Z, onto C,.

Recall that in Z,, addition is defined modulo n. Since we will need to con-
sider ordinary addition as well, it will be necessary to distinguish between these
operations. For the purpose of this proof only, let us designate addition modulo n
by +, and ordinary addition by +. Similarly, we will use -, for multiplication
modulo n and the usual notation for ordinary multiplication. Now we are ready
to prove that the mapping ¢ preserves operations.

Let p and g be any two elements of Z,. Then ¢(p+,q) = [p+ .4] by definition
of ¢. We need to show that this set is the same as ¢(p) + ¢(g). Since ¢(p) = [p]
and ¢(q) = [¢] and [p] +[49] =[p + 4], our problem reduces to showing that
[p + .g]1 =[p + q]- Recall that the operation +, is performed by discarding
multiples of n from p + q. Hence p + q¢ = p+,g9 + kn for some integer k. But
this means that (p + ¢q) — (p+,9) = kn, or that p + g = p+,9 (mod n). Hence
[p+.9]1=1[p + 4], as was to be proved. This shows that ¢ preserves the oper-
ation of addition.

We prove in a similar way that ¢ preserves the operation of multiplication.
Again let p and q be arbitrary elements of Z,. Then ¢(p-,9) =[p ', q] by defini-
tion of ¢. Further, ¢(p)p(q) = [P]1[9] = [P q] by definition of ¢ and of multi-
plication in C,. To show that [p-, q] = [p ' q], we recall that p -, ¢ is found by
discarding multiples of n from the product p-q. Hence p-q=p-,q+ k'n for
someinteger k. Thatis,p-q —p-, 4 = k'n,orp-q = p-,q(modn). Hence[p-,q]
= [p * q], showing that multiplication is preserved. This completes the proof
that the two systems are isomorphic.

Whenever two algebraic systems are isomorphic, they are identical except
for notational differences. All algebraic properties, such as existence of inverses
or zero divisors, are the same for both systems. Thus all theorems proved for
the various systems Z, hold in the sets C, described in this section. The properties
depend on the integer n, particularly on whether or not n is a prime, as was the
case for Z,. This discussion reveals the fact that we could have described C,
rather than Z, in the beginning, and used the rings C, for our principal examples
of finite rings. At the time, however, the concepts which led to the definition
of C, had not been developed and we adopted the more expedient procedure.

The concept of congruence modulo n is an important one in number theory.
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The reader is referred to Appendix B for a further discussion of the topic which
indicates the way congruences are treated in this subject. The properties of
congruence developed there have no direct relation to this text but are included
in the appendix as a matter of interest.

Example 4-12. Let us illustrate the properties of equivalence sets in Cs by
performing some computations involving subtraction and division; [0] is the
zero and [1] the unity of the ring C,. The operations of subtraction and division
are defined in the standard way.

(11 - [41= 01+ (- [4) = [11 + [11 = [2].
Note that —14] = [1], since [4] + [1] = [5] and [5] = [0].

[4]1 = 31 = [41[3]1° ! = [4]1[2] = [8] = [3].
Note that [3]~! = [2], since [31[2] = [6] and [6] = [1].

Example 4-13. Consider the solving of simple equations in the set C5. This is
carried out as in any ring. The reader should check the answers obtained by
substitution into the given equations.

The equation [3] + X = [2] has solution X = [2] — [3] = [4].
The equation [3]X = [2] has solution X = [3][2] = [4].

Example 4-14. The operation of subtraction is defined in C, as usual, but divi-
sion is not defined, since not all elements have inverses. (Compare Section 2-4.)
Thus

[21 - [51=12]1 + (- [5D) = [3],

but [5] + [2] is not defined, since [2] ! does not exist. Similarly, the equation
[2]1X = [5] has no solution in Cg, although the equation [2]X = [4] has the
solution X = [2], as can be readily verified.

EXERCISES

1. List all equivalence sets for the equivalence relation on the integers of congruence mod-
ulo 7. Express each of these sets in both of the notations used in Example 4-9.

2. Express each equivalence set in Exercise 1 in terms of three different representatives,
including as a representative at least one negative and at least one positive integer. (For
example, [3] = [10] = [—-4])

3. Consider the set C, of equivalence sets modulo 7. Perform the following operations,
expressing each answer in terms of a representative less than 7.

a) [4] + [6] b) [3] + [4]
o) [21- [4] d) 31 - [5]
e) [31[6] f [51[4]

g 31+ [5] h) [5]1 = [3]

i) [11-[2] j) [4]1-= T6]
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4. Tllustrate that addition and multiplication of equivalence sets of integers congruent
modulo 7 are well defined by giving several examples similar to those in Example 4-11.

5. Use the definitions of the set C, of equivalence sets modulo n, and of operations of ad-
dition and multiplication, to prove that C, is a ring. If you have difficulty doing this
for an arbitrary integer n, consider Cs first and then return to the general proof.

6. In the proof of Theorem 4-11, it was necessary to prove that [p +¢] =[p + 9] I+
lustrate this equality with several examples for the case n = 5.

7. In the proof of Theorem 4-17, it was necessary to prove that [p-q] = [p,-q] Ilus
trate this equality with several examples for the case n = 5.

8. Solve each of the following equations in C,.

a) [51+ X =1[3] b) X + [6]1=[1]

o [51x = 2] d) [2]1X = [5]

e) [61X = 3] f) [41X = [5]
9. Determine which of the following equations can be solved in C4. Find all solutions
that exist.

a) [51+Xx =011 b) X + [4]1 = [3]

¢) [21x = [0] d) B1x = [5]

e) [41x =I[1] f) [51x = 1]



CHAPTER 5

THE GROUP OF RIGID MOTIONS
OF THE PLANE

5-1 THE GROUP OF RIGID MOTIONS

Until the nineteenth century there was a great deal of confusion among mathe-
maticians concerning the nature of geometry and concerning the subject matter
which should be included under this label. By that time geometries other than
Euclidean geometry had been introduced, although not all mathematicians rec-
ognized the value of these. In 1872, Felix Klein gave a definition of geometry
which is referred to as the Erlanger program. This definition served to dispel
the confusion and led to a new understanding of the subject. Klein described
geometry as the study of those properties of sets of points and lines which are
unchanged by prescribed sets of transformations (mappings).

In Euclidean geometry, the set involved is the set of rigid motions. In all
cases, the sets of mappings have properties which classify them as groups. The
purpose of this chapter is to examine the meaning of this definition of geometry,
now accepted as one of the most important aspects of the subject.

“Let us designate the set of all points in the plane by the symbol P. Each
point Q in P will be identified by a pair (x, y) of real numbers, called the cartesian
(or rectangular) coordinates of the point. The treatment of points and lines will
be the standard one used in high school algebra or analytic geometry courses.

Mappings of geometric spaces (for example, of P) are usually referred to in
geometry as transformations. We visualize a transformation of P as causing a
displacement or motion of the points from an initial to a terminal position. For
this reason the set of transformations discussed here is often referred to as the
set of rigid motions of the plane. The adjective “rigid” refers to the fact that, among
other things, the distance between two points is not affected by the motion. That
is, if a is a rigid motion and Q and R are points of P, then the distance QR equals
the distance a(Q)x(R). The functional notation «(Q) refers as usual to the image
of Q under the mapping o.

A transformation may be written in more than one way. We may express
it in terms of a set of pairs or by writing equations for the coordinates of the image
point in terms of the coordinates of the pre-image. We will use the second method
here, partly because the points of P are already written as pairs of real numbers,
which makes the set notation cumbersome. If the transformation o:P—P

135
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maps Q into Q' so that a(Q) = Q', we will designate Q by (x, y) and Q' by (x, y').
The equations of « will be equations which express x’ and y’ in terms of x and y.

Definition. The set E of rigid motions (also called Euclidean transformations)
is the set of all transformations of P into P whose equations can be expressed
in the form

X' =xcosA—ysinAd+c
Yy =exsin A + eycos 4 + d,

where A represents an arbitrary angle, where ¢ and d represent arbitrary real
numbers, and where the symbol e is either 1 or — 1.

Example 5-1. Consider the rigid motion ¢ given by the equations

= — — =42
2 a2t
x yJ/3
= =1
=37
This corresponds to the angle 4 = 150°, ¢ = 2, d = —1, and e = 1 in the form

prescribed by the definition. Let R = (0,0), S =(0,1), and T =(—1,2). Then
by substituting into the equations for o, we obtain

3 3
o(R) = (2 —1), 0(S)=<5,——2—\/_— )

and
a(T)=<§+ 1,—%—\&).

The operation of multiplication of rigid motions is defined for E just as the
product of any two mappings has been defined. Thus, if « and f are rigid mo-
tions and Q € P, then fau(Q) = B(a(Q)). Note that this definition means that the
transformation S is the result of first performing the transformation o and then
applying f to the result.

When we are considering the product of two transformations, it is convenient
to alter the notation slightly. If « maps Q into Q’, then we denote the image of
Q' under B as Q”. That is, «(Q) = Q' and B(Q’) = Q”. This is reflected in the
equations of the transformation # by using x”, y”, x/, and y' in place of x, ¥/, x,
and y, respectively. This notation helps to keep things straight in the process
of applying the successive transformations.

The following theorem justifies the inclusion of the set of rigid motions in a
chapter on group theory.

Theorem 5-1. The set E of rigid motions, together with the operation of
multiplication of transformations, forms a group.
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The first step in the proof is to establish the fact that E is closed with respect
to multiplication. That is, we need to prove that the product of any two rigid
motions is another rigid motion. For this purpose, suppose that « and f are any
two rigid motions. Then their equations can be written in the form required by
the definition, as follows.

’

1) Equations for o: X' =xcosA—ysinAd + c,
qua * y =exsin A + eycos A + d.

. x" = x'cos B— y'sinB + g,
t f :
2) Equa 1018 or B {yu — fxl Sin B + fy' cos B + h

Here A and B are arbitrary angles; c, d, g, and h are real numbers; e and f are
each either 1 or —1. To determine the equations for the transformation o, we
may substitute the values of x’ and y’ from (1) directly into equations (2). We
obtain equations (3) after suitable collecting of terms.

x" =x(cos A cos B — e sin A sin B)

— ¥ (sin A cos B + e cos A sin B) + s,
y' = fx(e sin A cos B + cos A sin B)

+ fy(e cos A cos B — sin A4 sin B) + t,

(3) Equations of fa:

where s is the real number ¢ cos B — d sin B + g and t is the real number fc sin B
+ fd cos B + h. Now if e = 1, equations (3) reduce to

x" =xcos(A + B) — ysin(4 + B) + s,
y' = fxsin(A + B) + fycos(4 + B) + t.

These equations clearly represent a rigid motion. If e = —1, equations (3)
reduce to

x" =xcos(A — B)— ysin(4 — B) + s,
{y”=(—f)ysin(A—B)+(—f)ycos(A—B)+t.

Since f is 1 or — 1, — f also satisfies the condition of being either 1 or — 1. Hence
in the case e = —1, equations (3) again represent a rigid motion. This completes
the proof that E is closed with respect to multiplication.

The associative law of multiplication is implied by the definition of the
operation. The proof has already been given in Section 4-4 in the proof of
Theorem 4-5 for permutations. The proof here is identical and will not be
repeated. In fact, one could show that the set E of rigid motions is a subset of
the set of all permutations of P and that therefore the former proof includes this
as a special case.

The identity in the set E is the mapping ¢ given by equations (4).

4) Equations for &: {x, =%
y =)
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These equations are of the form required by the definition. The angle A4 is 0°.
eis 1,and both c and d are zero. We can see that this is the identity of E by noting
that for every point Q in P.&(Q) = Q. Hence if « is any element of E, ea(Q) =
&(«(Q)) = a(Q), by the definition of product and by the above remark. Similarly,
«e(Q) = «(e(Q)) = «(Q). By the definition of equality of mappings, ex = ae =
o. Hence ¢ is the identity element in E.

The inverse of o, designated o~ !, is given by equations (5).

5) Equations for o~ 1:

. d .
x' = xcos (—A) — Xsm(—A) + (—c cos A — —sin A>,
e e

. . d
Yy =xsin(—A4) + Xcos(—A) + (c sin A — —cos A).
e e

These equations are derived by first solving equations (1) for x and y in terms
of x'and y. Then the replacement of x by x’, y by ), x’ by x, and y’ by y is made
to conform to our usage of the prime with the coordinate of the image point.
Direct computation of the product according to the method given earlier in this
proof shows that aa™! = o~ 'a = ¢, the identity transformation. The compu-
tation is not particularly interesting and will be left for the reader. To show
that o~ ! is in the set E, we recall that e is either 1 or —1. If eis 1, then equations
(5) are in the form required by the definition. If e = —1, then 1/e = —1, and
we rewrite equations (5) in the form

x' =xcosA— ysin A + (dsin A — ¢ cos A),
¥y =(=1xsin A+ (—1)ycos A + (csin A + d cos A),

which also satisfies the requirements of the definition of E. This completes the
proof of the theorem.

Example 5-2. We let the rigid motion « be given by

X =—-y+3
y = x-2

This is a transformation of the general form, with 4 =905 ¢ =1,¢ = 3, and
d = —2. Then let § be given by the equations,

,,ff

x' = x+———y,

\/_ \/_y+5
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For the transformation B, we used 4 = 225°, e = —1, ¢ =0, and d = 5. Then
Po is given by the equations

,, { NN}

fff

2
The angle in fa is 135° and the value of eis —1.

X

y+5+

Example 5-3. The inverse of the rigid motion o of Example 5-2 is given by

X'= y+2
y = -x+ 3.

These equations can be found by using equations (5) from the proof of the theo-
rem or, more easily, by solving the equations of « for x and y and then changing
notation. This method was also indicated in the proof of the theorem. As a
special case to illustrate the fact that every point is mapped onto itself by the
product of a rigid motion and its inverse, consider the image of the point (2, 1)
under o~ ! and « " 'a.  Using the given equations, we have oo™ (2, 1) = «(3, 1) =
(2,1). Similarly, a™a(2, 1) = «7*(2,0) = (2, 1). The equations for ao™! or o™ !a
are, of course, equations (4) of the identity.

Example 5-4. In order to illustrate a special case of the associative law, con-
sider the rigid motion y with equations

v N3 Y
2

=Ny 1,
X 3 X +
s _ x_” _ ﬁ 1 _ 2
y - 2 2 y il
corresponding to the angle 30°, with e = —1, ¢ =1, and d = —2. To com-

pute y(Ba), we find the product of y with B« (given in Example 5-2). Substitution
shows the equations of y(f«) to be

x,,,:\/——\/ix+\f6+ﬁy_5\/8+\/§+6

4 4 4 ’
6) ,,,=_\/§+\ﬂsx+\/'—ﬁy+s 2-10/3- /638
4 4 4 :

y

To compute (yB)a, we first find the equations for the product yB. These are

V-2, V-2, 3

x’/’= _ -
4 X+ y-3

11 \/—_\/E/ \/§+\/6/ 5 3+4
= 4 X — 4 y - .
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Next we find the product of yf with &, which gives exactly equations (6), showing
that in this special case, y(fo) = (yB)o.

Example 5-5. Although the rigid motions are mappings of P, the set of points in
the plane, we can also consider the effect of the mappings on lines. Let m be the
line x — 2y + 1 = 0, and consider the rigid motion o of Example 5-2. The
easiest way to obtain «(m) is to substitute for the values of x and y in the equa-
tion of m. Solving the equations of « for x and y, we obtain x =y + 2 and y =
—x' + 3. Upon substitution into the equation of m, we find that a(m) has
the equation 2x’ + y — 3 = 0. Now consider the points Q = (1,1) and R =
(=5, —2), which are on line m. Then Q' = «(Q) = (2, — 1) and R’ = «(R) =
(5, —7). Now we note that the points Q' and R’ lie on the line a(m), as one would
expect. That is, if a point lies on a given line, then its image must lie on the image
of the given line.

We need to introduce another term in order to point out the significance of
the group of rigid motions to the study of geometry.

Definition. a) A property which applies to a set of points is invariant under a
transformation if and only if the points of every set for which the property
is true are mapped by the transformation onto a set of points for which the
property is also true.

b) A property of a set of points is invariant under a group of transformations
if and only if it is invariant under each transformation in the group.

For example, the property that a set of points is collinear (lie on one line) is
invariant under the group of rigid motions. We illustrated this fact in a special
case in Example 5-5.

The importance of the group of rigid motions to the study of Euclidean
geometry is that the properties of points and figures which we study in this
geometry are exactly those properties which are invariant under the group E of
rigid motions. The following theorem states that the distance between two
points (a property that applies to sets of two points) is invariant under the group
of rigid motions. Other properties, such as the angle between lines and the
area of geometric figures, are also invariant under the group E. Some of these
are mentioned in the exercises.

Theorem 5-2. If « is any rigid motion and if S and T are any two points in
P, then the distance between S and T is equal to the distance between o(S)
and o(T).

We will not give the proof of this theorem, since the proof involves a rather
messy computation. However, we will illustrate the meaning of the theorem by
proving it for a single specific rigid motion in the following example.
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Example 5-6. Let 7 be the rigid motion with equations

5

x f+
_2 2ya
L 3y
y = 2X+—2‘+1.

Now if S = (x,y) and T = (u,v) are any two points of P, the distance between
them is

Vi =+ (- 0P
by a familiar formula from analytic geometry. Applying 7 to S and T, we obtain
the images
X w3 xJ/3 vy
[ - IV N T 7 1
S <2 S >
and

T'=<g+v\2/3, “\/3 +1>

Again applying the distance formula, we find that the square of the distance from
S to T is

(2 nf3_s 023>2+<_XT\/§+§+”\/§ v>2

it 3
_x L 3w 3 a3 _L 1&[ L
s 4Tty 2
uv\/§ 32 y?2 3u? v? xyJ/3 3ux
4 TaT s s T 2

xo /3 up/3 oy w3
+T + )

=x?—2ux +u* + y* = 2yv + v?* = (x —u)?* + (y — v)~
Thus the distance from S’ to T’ is
V& —w? +(y - v)?,

as was to be proved.

EXERCISES

1. Find the rigid motion corresponding to 4 = 240°,e = —1,c = 2, and d = —5, where
A, e, c, and d are the constants in the general equations of a rigid motion given in the
definition.
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2. For each of the rigid motions below, find the values of A4, e, ¢, and d as given in the gen-
eral equations of a rigid motion.

_X - 2 Ny - 2
2) {x' =-x45 b)
V=y+2
Y = x\z/i + I {2
3. Find the image of (2, —4) and of (—1, 7) under each of the rigid motions given in Ex-

ercise 2.

4. Find the image of each of the following lines under the rigid motion given in Exercise 2(a).
a) 3x—2y+5=0 b) Sx +y—-6=0

5. a) Given the rigid motion é with equations

xl=52@_x+3,

2

yo X W3 g
2 2

find 6(R) and &(S) if R = (2, —3) and S = (-2, 0). Also compute the distance RS
and the distance 6(R) 4(S).

b) Repeat part (a) if R = (13, —2) and S = (1, 3)

6. a) Let R=(2,1),S=(51), and T = (5,5). Find §(R), &(S), and §(T) for the transfor-

mation § of Exercise 5.

b) Compute the cosine of the angle TRS.

¢) Compute the cosine of the angle 6(T) 5(R) &(S) and compare with the answer in (b).
[Note: This is a special case of the general theorem that the angle between two lines
is invariant under the group of rigid motions.]

7. For the points R, S, T, and 8(R), &(S), and &(T) in Exercise 6, compute the area of tri-
angles RSTand 8(R) &(S) &(T) and show that they are the same. [Note: This is a special
case of the general theorem that the area of a triangle is invariant under the group of
rigid motions.]

8. a) List three properties, other than those mentioned in the text, of figures which you

would expect to be invariant under the group of rigid motions.
b) Test one of the invariants in (a) in a special case.

5-2 SUBGROUPS OF THE GROUP OF RIGID MOTIONS

The purpose of this section is to investigate the nature of rigid motions by
considering three important subgroups of the group E. We will determine what
happens to points and sets of points when they are mapped by a rigid motion.
So far, we have had formulas which allow us to compute the images of points
under specific rigid motions, but we have given no clear picture of what happens
to points and figures under an arbitrary rigid motion. In answering questions
about the general effect of such transformations, we will be studying elementary
geometry. For instance, we will learn that the effect of a rigid motion is to move
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a figure in the plane in exactly the way plane geometry books describe for testing
whether or not two figures are congruent. In this discussion, the properties of
groups will play a central role.

The rigid motion p with equations (1), below, is of special interest. It is ob-
tained from the general form by setting 4 =0°, e= —1,and c=d = 0.

’

= X,

y=-y

This rigid motion is called the reflection in the x-axis. The effect of the reflection
p is to map each point in the plane into the point symmetrical to it with respect
to the x-axis. Every point on the x-axis is mapped into itself. The effect of this
mapping could be visualized as a rotation of the plane through 180° with the
x-axis as the axis of the rotation. Figure 5-1 illustrates this mapping for several
points.

. . . X
1) Equations of the reflection in the x-axis: {

!
—+

U'(—4,5)

T(5,3)
R(-1,2) T
T 8@

Fig. 5-1. The reflection in the x-axis.

Theorem 5-3. The set H = {g, p}, where ¢ is the identity transformation
and p is the reflection in the x-axis, forms a subgroup of the group of rigid
motions.

To prove this theorem, we need only note that p? = ¢ to show that the set
{e, p} is the cyclic subgroup of E generated by the element p. This implies that
p~! = p. Throughout the remainder of this section, the symbol H will be used
only to designate this subgroup.

The equations for the two elements of H can be combined as in (2) to give a
general form,

2) {x’ jx,
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where e is either 1 or — 1. [Equations (2) represent ¢ if e = 1 and represent p if
e=—1.

It is interesting to note the effect of the reflection p on the vertices of a triangle.
We will illustrate this with a single example, but the result noted is true for an ar-
bitrary triangle. Consider the triangle with vertices X = (1,1), Y = (3,2), and
Z = (2,5). The images of the vertices are X' = (1, —1), Y' = (3, —2), and
Z' = (2,—-15). The important fact to note about the image triangle can best
be described by imagining that one “walks” around the triangles, proceeding
from X to Y to Z in the first case and from X’ to Y’ to Z’' in the second. (See
Fig. 5-2). In the first case, the interior of the triangle is on the left of the path,
and in the second case it is on the right. We refer to this by saying that the triangle
XYZ is changed from positive orientation to negative orientation by the transfor-
mation p.

Y-axis

X-axis
XI

YI

ZI
Fig. 5-2. The effect of reflection on the orientation of a triangle.

The concept of orientation is of special importance in topology, but it is also
of interest in analytic geometry. It appears in the formula for determining the
area of a triangle in terms of the coordinates of its vertices. If (x,, y,), (x5, ¥,),
and (x5, y;) are the coordinates of three points in the plane, the area of the triangle
formed is one-half the absolute value of the determinant

’x1 V1 1|
|x2 y2 1
X3 Y3

This determinant will be positive if the points are listed with positive orientation
and negative if the points are listed with negative orientation.

The student of plane geometry has worked with the problem of proving two
triangles congruent in cases where they have the same orientation and in other
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cases where their orientation is opposite. It is always easier to visually recognize
congruent triangles (or similar triangles) when the orientation is the same for
both.

We next consider the set of rigid motions whose equations can be expresed in
the form of equations (3). These transformations are called translations.

X'=x+ a,

3) Equations of a translation: ,
y=y+b

In equations (3), a and b represent arbitrary real numbers. These equations are
in the form prescribed by the definition of a rigid motion with angle 0 and e = 1.
The effect of a translation on points of the plane is to map each point onto an
image point which is located a units to the right and b units above the original
point if a and b are positive. If a is a negative number, then the image point is |d|
units to the left of the original point. Similarly, if b is negative, the image point
is |b| units below the original point. Figure 5-3 shows the effect on four points
of the mapping given by the equations xX’ = x — 3 and y = y + 1.

Y T'(4,3)
R(-22) 7 *
U'(=5,1) .‘\:\R;(l,l) ‘\T(;?)
et t———F—+—F—+—X
U(-2,0)
T 8(2,-4)
T S(5,—5)

Fig. 5-3. The translation {x: =x-3

y=y+ 1L

Theorem 5-4. The set J of all translations forms a subgroup of the group of
rigid motions.

Let « and B be any two translations in J, and suppose that they are given by
the equations

’ yll = yl + h'

x =x+c, x"'=x+g,
o B:
{y=y+d. {

Then the transformation fa has the equations

[ =x+(c+g)
P {y"=y+(d+h).

Clearly fo is an element of J, showing that J is closed with respect to multiplication
of transformations.
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Associativity holds in all of E, hence in J. Further, the identity ¢ is in J since
setting both a and b equal to zero in the general equation of a translation gives
the equations of e&.

Finally, the inverse of any element in J isin J. Consider the arbitrary element
v of J, with equations given above. Then o~ ! has the equations

yl {x’ =x-c

y =y—d.
Since — ¢ and — d are real numbers, o~ ! is in J. This completes the proof that
J is a subgroup of E.

The final subgroup of E to be discussed is the group of rotations about the
origin. We define a rotation about the origin to be a rigid motion whose equations
can be written in the form (4).

’

X' =ccos A — ysin A,

’

4 Equations of a rotation: .
) q {y=x5mA+ycosA.

Rotations are rigid motions which correspond to the general form given in Sec-
tion 5-1, with e = 1 and with ¢ = d = 0. The effect of a rotation on points in
the plane is to shift each point along an arc of a circle with center at the origin,
where the distance from a point to its image depends upon the radius of this circle.
For each point Q and its image Q’, the angle QOQ' is equal to the angle A used
to specify the rotation. Here O is used to represent the origin. The proof of the
preceding statement on the effect of a rotation is commonly given in analytic
geometry and will not be repeated here. Figure 5-4 illustrates the situation for
the general point R = (x, y).

R'(@"y)
A R(zy)

X

X' =xcosA — ysinA,

q

Fig. . Th i .
ig. 54. The rotatlon%y — xsin A + ycos A

Theorem 5-5. The set K of all rotations forms a subgroup of the group of
rigid motions.

To establish the closure of K, we consider the arbitrary rotations « and § with
the equations below.

” X' = xcos A — ysin A, 8: x" = x' cos B — y' sin B,
"1y =xsinA + ycos A. ' " = x' sin B + y' cos B.
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Then the tranformation fa has the following equations.

Bu: x" =xcos (A + B) — ysin(A4 + B),
) {y” = x sin (A + B) + y cos (4 + B).

The form of the equations for fo shows clearly that Ba is in K, and hence K is
closed with respect to the multiplication of transformations.

Associativity in K follows from associativity in E. The identity element ¢ is
in K, as we see by specializing the angle 4. If A4 is taken to be 0°, the resulting
equations are those of &.

Finally, the inverse of an arbitrary element, say a, of K is given by the follow-
ing equations.

4 x' = x cos(— A) — ysin(— A),
ol
{y’ = x sin (— A) + y cos (— A).

That these equations represent o ™! can be checked by direct computation of the

products aa™! and a~'a, or can be seen intuitively by considering the effect of
these products on points in the plane. This completes the proof that K is a sub-
group of E.

One indication of the importance of the subgroups H, J, and K is contained in
Theorem 5-6. The set J of translations is also of interest in analytic geometry
in connection with curve sketching. For instance, the standard method of sketch-
ing a conic section whose equation contains no xy-terms is to first reduce the
equation to type form by completing the square. Suppose that the equation
of a conic section reduces to

(=2 (G+37_

1.
5 T3
This equation is compared to the standard equation
x12 y/2
AR A |
o T a T

an ellipse with center at the origin (in terms of x’ and y’). The original curve is
located by noting that x, y, x’, and y’ are related by the equations

’

x =x—-2,
Yy =y+3.

That is, under a translation, one curve can be considered as the image of the other.
This information and a knowledge of translations allow the curve to be readily
sketched.

Theorem 5-6. If § is an arbitrary rigid motion, then § = yfa where « is an
element of K, § is an element of H, and y is an element of J.

The proof of this theorem consists of exhibiting the required factors of an
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arbitrary rigid motion. Suppose, then, that § is any rigid motion. By definition,
the equations for  can be written as equations (5).

5) {x’=xcosA—ysinA+c,

’

y =exsin A+ eycos A+ d.

Consider the rigid motions «, 8, and y given below and note that « is in K, § is
in H, and y is in J.
x' = xcos A — ysin A4,
o .
Yy =xsin A+ ycos A.

xu — x/
R
y =ey.
) xm — xlI + c,
y' y/// — yu + d.

In these equations for o, 8, and y, the constants A, e, ¢, and d are taken as those
in the equations of . Now, direct computation of the equations for yfo verifies
that yBa = §. Since this computation is straightforward, it is omitted. This
completes the proof of the theorem.

Theorem 5-6 gives us a means for determining the effect on the points in P
of a general rigid motion. Every such motion can be considered as a succession
of a rotation about the origin, followed by either a reflection or the identity trans-
formation, followed in turn by a translation. This provides the simplest intuitive
description of rigid motions, and is one which is completely general.

We have used the subgroups of the group of rigid motions primarily to analyze
the effect of a rigid motion upon the points of the plane. It has been suggested
that the subgroup of translations has practical uses in the study of analytical
geometry. The same can be said of the subgroup of rotations. We include
a brief discussion of this application for the benefit of future teachers. More
details can be found in books such as Thomas [53] or Wexler [54].

It is proved in texts on analytic geometry that equations of the form

6) Ax* + Bxy + Cy* + Dx + Ey+ F=0

represent conic sections. It is frequently necessary to identify and sketch the
graph of such an equation. Direct inspection of the equation does not usually
suffice, but the application of a suitable rotation to points in the plane simplifies
the problem so that the graph can be readily drawn. The main difficulty in
identifying the curve (6) is the presence of the term Bxy. A rotation can always
be chosen so that the new equation of the curve contains no xy-term.

Consider, then, the effect of a rotation o of the plane upon equation (6). The
easiest approach is to substitute into equation (6) the values of x and y given by
the equations of the rotation. Suppose that the equations for « are

x' =xcosM — ysin M,

o .
y =xsin M + ycos M.
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From the proof of the preceding theorem, we know that solving for x and y in
these equations leads to the equations

x = x'cos N — y'sin N,
y=x'sin N + y' cos N,

where the angle N is the negative of the angle M. If these values for x and y are
substituted into equation (6), we obtain the new equation

7 Ax? 4+ Bxy+Cy>?+Dx+ Ey+ F =0,

where 4, B', C', D', E, and F’ are constants involving functions of the angle N.
The formulas for these new coefficients are given by (8) below. The reader may
verify these by direct computation.

A = Acos? N + Bcos Nsin N + Csin? N
B = B(cos* N — sin? N) + 2(C — A)sin N cos N
C' = Asin? N — Bsin N cos N + C cos® N

%) D' =DcosN + EsinN
E = —DsinN + Ecos N
F =F

These equations are valid for an arbitrary angle N. Now we wish to choose
angle N so that B' = 0. This will enable us to determine by inspection the nature
of the graph. Therefore, we set B’ equal to zero and attempt to solve for the
angle N. If we note that

cos? N — sin? N = cos 2N

and that
2sin N cos N = sin 2N,
we obtain
A—-C
9 2N = .
) cos B

Since we are only interested in this rotation for cases where B # 0, equation(9)
allows us to compute cos 2N, and from it N in all cases of interest. When N is
chosen in this manner, the resulting equation, (7), will contain no xy-term, and
its graph can be readily drawn.

Let us now consider equations (6) and (7) and the relations between the respec-
tive coefficients given by equations (8). We will show that the sum of the coef-
ficients of the two squared terms in the general quadratic equation (6) is an invariant
of the group of rotations. To see this, consider the sum A’ + C’. From (8) we
have that

A + C' = A(cos* N + sin? N) 4+ B(cos N sin N — cos N sin N)
+ C(sin>? N + cos’N) = 4 + C.

That is, the sum of coefficients of x? and y? is unchanged by a rotation. Hence,
this sum is an invariant of the group of rotations.
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Finally, we define the quantity B> — 4AC to be the discriminant of equation (6)
That is, the discriminant of such a quadratic equation is the square of the coef-
ficient of the xy-term minus four times the product of the coefficients of the x2
and the y? terms. A lengthy but straightforward computation, using equations (8),
shows that B'> — 44'C’ = B> — 4AC. Thus, the discriminant of a quadratic
equation in x and y is an invariant of the group of rotations of the plane.

The fact that the discriminant is an invariant of the group of rotations can
be put to practical use. Suppose that an equation of the form (6) is given in which
B # 0. Weknow a rotation can be performed to yield a new equation in which B,
the coefficient of the new xy-term, is zero. In this case B> — 44C = —44'C.
Now, if either A’ or C' is zero, the curve is clearly a parabola. If A’ and C’ have
the same sign, so that —4A4'C’' < 0, the curve is an ellipse. If 4" and C’ have
opposite signs, so that —4A4'C’ > 0, the curve is an hyperbola. Now, since
—4A4'C’' = B? — 4AC, this quantity can be computed from the original equation
without actually performing the rotation. That is, the following test can be used
to identify a conic as an ellipse, parabola, or hyperbola.

an hyperbola if B2 — 44C > 0,
Equation (6) represents a parabolaif B2 — 44C =0,
anellipse if  B?> — 44C < 0.

For example, the discriminant of 3x? — 4xy + 2y? = 6 is — 8, and hence
the curve is an ellipse. The discriminant of x2 — 4xy + 2y? = 6 is 8, and hence
the curve is an hyperbola. The discriminant of 2x? — 4xy + 2y + 1 = 0 is 0,
and hence the curve is a parabola. .

The test given above appears to fail in three special cases that should be
mentioned. The equation x2 — y?> = 0 can be written as (x + y)(x — y) = 0.
In this and all other cases where the left member of equation (6) can be factored,
the equation has two lines as its graph. The discriminant test will indicate either
an hyperbola (if the lines intersect) or a parabola (if the lines are parallel). These
are considered as degenerate, or limiting cases of the conic section in question.
The equation x + y + 1 = 0, or any other linear equation, obviously repre-
sents a single straight line. However, if considered as an example of equation (6),
with 4 = B = C = 0, the discriminant is zero, indicating a parabola. Again,
the graph is referred to as a degenerate parabola. Finally, the equation x? +
y? 4+ 1 = 0, or any equation of the form (6) whose left member can be expressed
as a sum of squares, one of which is a positive real number, has no real locus. The
graph consists of two imaginary lines which cannot be plotted on the real cartesian
plane. This is referred to as a degenerate case of the ellipse, and the discriminant
test in such a case will indicate an ellipse.

We have seen in the last two sections that the theory of groups is not a sterile
subject ‘but is highly significant to the study of geometry. The illustrations given
have been restricted to geometry because of the familiarity of the reader with
the subject. Group theory plays an equally important role in many other areas
of mathematics. Much of the research done in topology during the past few
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years depends so heavily upon group theory that it is difficult to decide whether
the work should be classified as algebra or as topology.

Because of the significance of group theory in all branches of mathematics, it
is quite common to find material on groups included in texts designed as enrich-
ment material for high school students. No high school teacher can consider
himself well trained if he lacks understanding of at least the definition and simple
properties of groups.

EXERCISES

1. Prove directly, without using Theorem 5-2, that the distance between two points is an
invariant of the group of translations.

2. Prove that the area of a triangle is invariant under the group of translations. (Use the
definition of area in terms of a determinant that was given in this section.)

3. Express each of the following rigid motions as a product yfa with « in K, § in H, and
y in J. [Note: The identity transformation is an element of all three subgroups and
may be used as a factor whenever this is appropriate.]

a){xlz—x+3 b){x,z_y
y=-y=-2 y=-x
NVENES NEJRNG
/: _ = 5 [ N & _3
x 7 X 2y+ x 2x+2y
¢ /i d)
1 3 2 2
= ——x — 2 = -5
A R yoEtyxtyy
o 3.1,
xX=x+3 2 2
e){,__ s f)
yo=-y 1\
y 5 5y

4. Describe, in words, the effect on the points in the plane of each of the rigid motions in
Exercise 3.

5. Use the discriminant to classify the graph of each of the following equations as an ellipse,
parabola, or hyperbola. [Note: In the expression B> — 4AC, A is the coefficient of
x2, B is the coefficient of xy, and C is the coefficient of y2. Some or all of these con-
stants can be zero.]

a) x24+2xy+3y2—-6=0 b) x2+2xy—6=0
o) x24+2xy 4+ —6=0 d)3xy —y? +5x—2y=0
e) x2—xy+52-3=0 f)y x2 4+ xy —2y2 + x4+ 2y =0

g Ix2+ 12xy +4y2 —1=0 h) 4x?2 +9y2 + 1 =0
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6. In each of the following cases, determine the rotation necessary to remove the xy-term.
In each case find the transformed equation.

a) x? = 2xy+y*—=5=0 b)2x2—\/3—xy+y2—1=0
)22+ Bxy+y2—1=0 d) 16x2 + 24xy — 9y + 1 =0

7. Prove that the discriminant of a quadratic equation in x and y is an invariant of the
group of rotations. [Hint: Use equations (8) to evaluate B'> — 44'C’ in terms of A4,
B, and C, and reduce this to B> — 44C.]



CHAPTER 6

RINGS AND FIELDS

6-1 FURTHER EXAMPLES OF RINGS

Rings were introduced briefly in Chapter 2 in connection with the study of certain
properties of the ring of integers. This was done to avoid the necessity of proving
theorems for integers and then repeating the proofs for general rings. In this
section, we intend to continue the investigation of rings as abstract mathematical
systems.

We will not give an extensive treatment of rings, but some additional material
will be of value to a prospective teacher or to a beginning mathematician. (The
reader may consult McCoy [39] or Birkhoff and Maclane [25] for further details.)
Since all of the number systems that we have studied are rings, with the exception
of the set of natural numbers, any results obtained for general rings will apply
to these number systems as well. Perhaps the most important benefit from
this short section on rings will be what is learned by contrast with the familiar
number systems. One begins to appreciate the significance of the properties
of numbers only when he studies other systems in which these properties do not
hold. A student is apt to take the formulas of the elementary algebra of numbers
for granted and to believe that they are universally valid. As a matter of fact,
many of these formulas are more the exception than the rule, and hold only in
very special cases, such as our number systems.

The reader should begin by reviewing carefully the definition of a ring (Sec-
tion 2—4) and the elementary theorems concerning rings proved in Sections 2-6
and 2-7. A comparison of the definition of a ring with that of a group suggests
that we might rephrase the definition of a ring as follows.

A ring is a set R of elements which is closed under two binary operations,
addition and multiplication, such that

a) R is an abelian group with respect to the operation of addition,

b) multiplication is associative in R,

c) the right- and left-distributive laws of multiplication over addition hold in R.
Several examples of rings were given in Section 2—4, but it might be of value

to consider two additional examples.
153
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Example 6-1. Let R be the set {m, n, p, q}, with addition and multiplication
defined by the following tables.

+|mnpq .|mnpq
m|lm n p q mim m m m
nln m q p ni{m n m n
pyp g m n p|m p m p
q9{9 p n m q |m q m ¢

This set is a ring, but we will not attempt to give a complete proof, since checking
associative and distributive laws involves trying all combinations of elements,
and this would be quite tedious. The reader is encouraged to check several
instances of each law. For example, n(p + n) = ng = n, while np + nn =
m + n = n. This does not prove the distributive law, but illustrates one case
in which it holds.

The ring has m as its zero, and has no umity element. (Why?) The ring is
not commutative since, for instance, np = m while pn = p. The ring has zero
divisors, since np = m, where m is the zero of the ring.

Example 6-2. Let U be an arbitrary, nonempty set and denote by S the set of
all subsets of U. Note that both the set U and the empty set ¢ are elements of
the set S, since each is a subset of U. Let multiplication of sets in S be set inter-
section, so that XY = X n Y for any X and Y in S. We define the sum of two
sets X and Y in S as the set of all elements of U which are in X or in Y, but not
in both X and Y. In set notation

X+Y={x|xeXorxeY,butx¢ X nY}

Note that the sum of two sets in S is not the same as the union of these sets unless
it happens that they are disjoint sets. In terms of set operations defined earlier,
X+Y=XnY)u(X'nY) The Venn diagrams in Fig. 6-1 illustrate the
operations of sum and product in S.

U U

(a) XY is shaded (b) X + Y is shaded

Fig. 6-1. Operations in the ring of subsets of the set U.

The set S, whose elements are subsets of U, with the operations defined above,
is a commutative ring with unity. The zero of the ring is ¢, the empty set. The
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associative law of addition holds and is illustrated by the Venn diagrams in Fig. 6-2.
A proof could be constructed by appealing directly to the definition of addition.

For any set X in S, the negative of X is X, since X + X = &, and ¢ is the zero
of the ring. Addition is clearly commutative so that S is an abelian group for
addition. The associative law of multiplication and the distributive laws are
left to the reader to verify. The unity of S is U, and the operation of multiplication
is clearly commutative.

TR SO
), OO
SIRR:

(a) X + Y is shaded (b) (X 4 Y)+Z is shaded

AR,

(c) Y + Z is shaded ()X + (Y + Z) is shaded
Fig. 6-2. Associative law of addition in the set of subsets of U.

The ring S of Example 6-2 is an illustration of a Boolean ring. In general, a
Boolean ring is a ring in which x2 = x for every element x of the ring. A Boolean
ring is always commutative. These rings are important in the study of symbolic
logic.

We defined coefficients and exponents for arbitrary rings in Section 2-7.
Many of the computations involved in addition, multiplication, factoring, expand-
ing, solving equations, and other familiar exercises can be carried out in the same
way for arbitrary rings as for rings of numbers. However, there are some striking
exceptions, and the reader should be careful to perform only those computations
which have been shown valid for the ring under consideration.

For example, the factoring of integers is unique (see Section 2-10), but fac-
toring in many rings is not unique. In the ring of Example 6-1, p = pn, but also
p = pq. The property of unique factorization is closely related to the cancellation
law, as we may see by carrying the above example a little farther. In the ring R,
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pn = pq, since each product equals p; p is not the zero of the ring, and yet it is not
true that n = q.

There are other ways in which some rings differ from rings of numbers that a
student familiar only with properties of numbers might consider strange. The
well-known formula, (a + b)? = a? + 2ab + b2, for example, is not valid in every
ring. For the ring R of Examples 6-1, consider (p + g)2, which may be evaluated
directly from the tables as n. Note that p + ¢ = n and n> = n. On the other
hand,

P+2pg+qg*=m+2p+m=2p=p+p=m

using the definition of exponent and the right-distributive law. Continuing,
(@ + b)?> = a® + ab + ba + b2, by use of the left-distributive law to simplify
the result previously obtained. Since ab does not always equal ba in a ring, we
cannot justify writing the sum as 2ab, and this explains the difficulty with the
formula given originally. In the ring of Example 6-2, a still simpler formula
holds that is true in all Boolean rings but is not true in general. For such rings
(a + b)®> = a + b, since a + b is an element of the ring and by definition of Boolean
ring, the square of an element equals the element itself.

As a final example, consider the solution of the equation (x — n)(x — m) = m,
where m and n are elements of the ring R in Example 6-1. As one might expect,
x = n and x = m are solutions of this equation, since m is the zero of R. How-
ever, p is also a solution. We can check this by direct computation. We have
already shown that each element of R is its own negative,sothatp — n = p + n = g,
and p — m =p + m = p. Thus on substitution of p for x in the equation, the
left member reduces to gp, which equals m. This verifies that x = p is a solution
of the equation. As this example illustrates, solving equations with coefficients
chosen from arbitrary rings is quite a different problem from that where the coef-
ficients are numbers. The difficulty here arose because p and q are zero divisors.
This situation cannot occur with real numbers, since no real number is a zero
divisor.

The rings of Examples 6-1 and 6-2 have a property in common which deserves
special attention. For any element x in either ring, the sum x + x = 2x is equal
to the zero of the ring.

Definition. The smallest positive integer m, if one exists, such that ma = 0
for every element a in a ring is called the characteristic of the ring. If no such
integer exists, the characteristic is defined to be zero.

The rings of Examples 6-1 and 6-2 have characteristic two. The ring of
integers has characteristic zero, since if n is any nonzero integer, mn # 0 for any
integer m. The ring of integers modulo 6 has characteristic six, since 6x =0
for every x in the ring. The reader should check that no integer smaller than 6
satisfies this property. For instance, 5 cannot be the characteristic, since 5(2) = 4
in Zg and 4 # 0.

The characteristic of a ring is important because it reflects a property of the



6-1 Further examples of rings 157

additive group of the ring which affects many calculations with ring elements.
For instance, in a commutative ring with characteristic two, (a + b)? = a? + b?
for all a and b in the ring. Many students would appear to believe from answers
submitted on test questions that the ring of integers has characteristic two.

It has been pointed out that the cancellation law for multiplication does not
hold in all rings. However, if the ring is an integral domain, that is, a commuta-
tive ring with unity and with no zero divisors, then the cancellation law holds.

Theorem 6-1 (cancellation law) If a, x, and y are elements of an integral
domain such that ax = ay and a # 0, then x = y.

To prove this, suppose that a # 0 and ax = ay for elements a, x, and y of
an integral domain D. Then ax — ay = 0, and by the left-distributive law of
multiplication over subtraction (see Exercise 6 of Section 3-6) we have that
a(x — y) = 0. Now D has no zero divisors and a # 0, so that x — y = 0. From
this we obtain x = y, as was to be proved.

EXERCISES
1. Referto Example 6-2and take U tobetheset{1,2,3,4,5}. LetX = {1,3,5},Y = {1,2,3},
and Z = {3,4,5}. Find
a) XY b) X+Y o) X+Y+Z
d) X* +2Y €) 2XY + 3X?Y f) X(Y + 2)
2. For the ring of the preceding exercise, show that the set {4} is a value of W which satisfies
the equation XW + YW = (¥, but that the set {2,3,4} is not such a value.

3. Let F be the function given in set notation by
F={xy|y=x*-3x+p}

considered as a function from R into R, where R is the ring of Example 6-1. Evaluate
as a single element of R each of the following. [Note: The symbol 3 is an integral co-
efficient, as defined in Section 2-7.]

a) F(m) b) F(n) o) F(p) d) F(q)

e) F(pg) f) F(pn) g F(p* + q) h) F(pg + n?)

4. By trial and error, find all solutions in the ring R of Example 6-1 for x in each of the
following equations.

a) X2+ px+q=m b)3x+n+gx=m
) x> —2x*=gq d)y 2x* +3x —2g=m

5. Find two examples, other than the one in the text, to show that factorization is not
unique in the ring R of Example 6-1.

6. Find two examples to show that factorization is not unique in the ring of subsets of the
set U = {a, b, c,d}, using the definitions of addition and multiplication given in Exam-
ple 6-2. For your answer specify each set mentioned by listing its elements in set no-
tation.

7. For the ring of Exercise 6, find two examples of sets which are zero divisors.



158 Rings and fields 6-2

8. For the ring of Example 6-2, using U as an arbitrary set, draw Venn diagrams to illus-
trate that the following laws hold in S.
a) The associative law of multiplication.
b) The left-distributive law for multiplication over addition.
¢) The right-distributive law for multiplication over addition.

9. Show that the set S of Example 6-2 is not a ring if multiplication is defined as set intersec-
tion (Nn) and addition is defined as set union (V).

10. Find the characteristic of each of the following rings.
a) The ring of integers modulo 7, with addition and multiplication modulo 7.
b) The ring of all real numbers, with ordinary addition and multiplication of numbers.

c) The ring of even integers, with ordinary addition and multiplication of numbers.
d) The ring of all 2 x 2 matrices with addition and multiplication of matrices.

6-2 IDEALS IN A RING

In the last chapter, we gave considerable attention to subgroups of a group. We
turn our attention now to subsets of rings that are equally interesting. A subset
of a ring R is called a subring of R provided that the subset is a ring with respect
to the operations of R. Not all subrings are of equal importance. Before exam-
ining special types of subrings, we include the following theorem, which gives
a simple test to determine whether or not a subset of a ring is a subring.

Theorem 6-2. A nonempty subset S of a ring R is a subring of R if and only
if the following two conditions hold.

a) S is closed under the operations of addition and multiplication defined
on R.

b) If ae S, then —aeS.

To prove this theorem, we first assume that a set S is a subring of R. Since §
is a subring, it must contain the zero of the ring and hence is not an empty set.
Further, conditions (a) and (b) are required of all rings and hence must be satisfied
by S.

Next, assume that S is a nonempty subset of the ring R satisfying (a) and (b).
We will show that S is a subring. Referring to the definition in Section 2-4,
properties (1) and (6) are guaranteed by condition (a). Since S is a subset of
the ring R, properties (2), (5), (7), and (8), which hold in R, must also hold in S.
Condition (b) is identical to property (4), and we need only prove that property
(3) holds. Since S is not empty, S contains at least one element, say x. By
condition (b), —x is also in S. Since by (a), S is closed under addition, x + (—x)
is an element of S. But x + (—x) = 0, so that S contains the zero of the ring R.
This completes the proof that S is a ring with respect to the operations of R, and
is therefore a subring of R.

The most important subrings of a ring are known as ideals. Three kinds of
ideals are described in the following definition.
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Definition. (a) A subset N of a ring R is a left ideal in R if and only if it is a
subring of R such that rxe N for every re R and every xe N.

b) A subset M of a ring R is a right ideal in R if and only if it is a subring of
R such that xr € M for every r€ R and every xe M.

c) A subset P of a ring R is an ideal (also a two-sided ideal) in R if and only
if it is both a left ideal and a right ideal.

Note that the condition for a subset to be a left ideal (similarly, a right ideal,
or an ideal) differs from the condition for it to be a subring only by a stronger
closure property. To be a subring, a subset S must satisfy the condition that
xye S for every xe S and ye S. For S to be a left ideal it is required that rxe S
for every r € R and every xe S. This replaces the closure property with a stronger
one which includes the other as a special case. A proof that a subset S is a
left ideal in a ring R would contain the proof that (a) S # ¢J (b) S is closed under
addition; (c) for each xe€ S, —x€ S; and (d) rxe S for every reR, x€S.

Example 6-3. The subset S = {m, p} of the ring R = {m, n, p, q} given in Ex-
ample 6-1 of Section 6-1 is an ideal in R.

To prove this, we note that S # ¢&. Then to show closure for addition,
we examine the four possible sums, m + m =m,p + p =m,m + p = p, and
p + m = p. We note that each sum is an element of S. Next, since —m =m
and —p = p, the negative of each element of S is in S. Finally, we check that
each of the products rx, for r€ R and x € S, is an element of S. These products
are mm, nm, pm, qm, mp, nq, pp, and gqp. Each product equals m, an element of
S. This proves that S is a left ideal. To show that S is also a right ideal,
we check the products xr for xe S and re R. Since mm = m, mn = m, mp = m,
mq =m, pm =m, pn = p, pp = m, and pq = p, each such product is either m
or p, both of which are elements of S. This shows that S is also a right ideal and
hence S is an ideal.

Of course, if a ring is commutative, then every left ideal is also a right ideal.
Why?

Example 6-4. The set N of all 2 x 2 matrices of the form

a 0
G o)
for a, b integers is a left ideal but not a right ideal in the ring R of all 2 x 2
matrices with integers as elements. That is, N is the subset of R consisting of

those elements whose second column contains only zeros.
To show that N is a left ideal, we note that

(i 9
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is a matrix in N, so that N is not empty. Then if
a 0 c 0
A= (b 0> and B = < i 0)

are matrices in N, the sum,
a+c O
A+ B= ,
- <b +d o)

is also a matrix in N so that the set is closed under addition. The negative of
an arbitrary element A4, as written above, is the matrix

(55 o)

another element of N. Finally, if

v=(; )
(3 9

is any element of N, then the product U A is

w X aO_wa+xb0
y zJ\b 0/ \ya+:zb 0)

which is an element in N. This proves that N is a left ideal. It is not a right

ideal, since
1 0)\. . 1 2\. .
(1 0> isin N, <O 1> i1s in R,

2\ . .
(i 2>1snotmN.

Example 6-5. If n is a fixed integer, the set P of integers given by

is any element of R, and

and yet the product

P = {mn|mis an integer}

is an ideal in the ring of all integers.

We note that P contains the elements 0 =0-n,n=1-n, —n = (—1)n, and,
in fact, is the set {0, +n, +2n, +3n, ...}. We speak of P as the set of all integral
multiples of n. The set P is clearly not empty. It is closed for addition, since
if s and t are integers, so that sne P and tn e P, then

sn+tn=(s+ t)neP.
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The negative of each element of P is in P, since —(mn) = (—m)n for each integer
m. The set P is a left ideal, since for any mne P and integer s, s(mn) = (sm)n.
But sm is an integer so that (sm)ne P. By the commutative law, P is also a right
ideal and hence is an ideal in the ring of integers.

The theory of left ideals (or equally, the theory of right ideals) is of con-
siderable interest in advanced mathematics and a wealth of material appears in
the literature on the subject. However, most of the ideals which are of interest
in elementary mathematics and which are related to topics covered in high school
subjects are two-sided ideals. Consequently, we will confine our attention in
sections that follow to two-sided ideals, which we will refer to simply as ideals.

In three-dimensional analytic geometry, a line, or any other curve in space,
is specified by two equations. Each such equation represents a surface in space,
and the points which lie on both surfaces have coordinates satisfying both equa-
tions simultaneously. The curve represented by the equations is the curve of
intersection of the two surfaces. Where the curve is a straight line, one cus-
tomarily uses two planes to determine the line. There is, of course, nothing
unique about the surfaces used to represent a given curve. There are, in general,
an infinite number of surfaces which pass through a given curve, and many different
pairs of these surfaces could be selected to represent the curve. If one desires
uniqueness in the expression for curves in space, one is naturally led to consider-
ation of ideal theory.

We will prove in Chapter 7 that the set of all polynomials whose coefficients
are real numbers forms a ring. Now consider a specific curve C in space. We
say that C lies on a surface provided that every point of C is a point on the surface.
It can be shown that the set S = {f(x)| f(x) is a polynomial and that C lies on
the surface f(x) = 0} is an ideal in the ring of all polynomials. One could therefore
use the ideal S to represent the curve, rather than use two particular elements
of S, as is customarily done. The advantage would lie in the fact that S is uniquely
determined By the curve C, and conversely. These comments will not be verified,
but are included to illustrate a relatively simple situation in geometry where
ideal theory is of interest.

EXERCISES

1. Prove that the set S of all 2 x 2 matrices of the form

(]

with a and b integers, forms a subring of the ring R of all 2 x 2 matrices having integers
as elements.

2. Prove that the set S of the preceding problem is neither a right ideal nor a left ideal in R.

3. Prove that the set P of all integers which are multiples of 7, including 0, is an ideal in
the ring of all integers.
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4. Find two right ideals, neither of which is a left ideal, in the ring R of Example 6-1.

5. Prove that the zero element of any ring R, considered as a set with one element, is an
ideal in R.

6. Prove that the subset of all matrices of the form

G o)

is a right ideal, but not a left ideal, in the ring R of all 2 x 2 matrices with integers as
elements.

6-3 PRINCIPAL IDEALS IN COMMUTATIVE RINGS WITH UNITY

In discussing subgroups of a group, we discovered that the simplest, or smallest,
subgroup containing a given element of the group was the subgroup of all powers
of this element. Each power of the element had to belong to the subgroup
in order that it be closed, and the set of all powers formed a subgroup, which
was therefore the smallest subgroup containing the given element. We called
this the subgroup generated by the element.

We can make a similar study for rings. That is, we can inquire as to the
nature of the smallest ideal which contains a given element of the ring. This
question might be asked about arbitrary rings, but we will restrict the discussion
to commutative rings with unity. In these rings the ideals have a particularly
simple form, and they are the rings which occur most frequently in elementary
mathematics.

Theorem 6-3. If a is an element in a commutative ring R with unity, then the
set N = {ra|re R} is anideal in R. Further, if M is an ideal in R and ae M,
Then N = M.

To prove this theorem, we first show that N is nonempty. Since R is a ring
with unity, R contains at least one element, the unity of the ring. Then 1la = a
is an element in N and N # .

Next we show that N is closed under addition. Suppose that ra and sa are
any two elements of N. Then ra + sa = (r + s)a by the right-distributive law
in R. But r + s is an element of R so that (r + s)ae N by the definition of N.
Hence ra + sae N and N is closed under addition.

To show that the negative of each element of N is in N, consider an arbitrary
element ra in N. The negative of ra is —ra, and by theorems in Section 3-6,
—ra = (—r)a. Since —r€eR, (—r)a is an element in N, as we wished to prove.

We show next that N is a left ideal in R. Let ra be any element of N and let s
be any element of R. Then s(ra) = (sr)a by the associative law in R. Thus
sre R, since R is closed under multiplication, so that (sr)a is an element in N.
This shows that N is a left ideal in R. From the fact that R is commutative, N
is also a right ideal in R. This completes the proof that N is an ideal.

Now suppose that M is any ideal such that ae M. By the definition of a
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right ideal, rae M for every re R. But N = {ralreR}, so that N = M. This
means that N is the smallest ideal in R which contains the element a.

Definition. The ideal N of Theorem 6-3 is called the principal ideal generated
by the element a. A ring in which every ideal is a principal ideal is called a
principal ideal ring.

Example 6-5 involved the principal right ideal in the ring of integers consist-
ing of all multiples of a fixed integer m. It has not yet been shown that every
ideal in the ring of integers is of this form. That is, the ring of integers is a principal
ideal ring, as shown in the following theorem.

Theorem 6-4. The ring of integers is a principal ideal ring.

Let M be any ideal in the ring of integers. We will show that M is a principal
ideal. If M contains only the zero element, then M = {m-0|m is an integer}
and is therefore a principal ideal consisting of all multiples of zero. Hence the
theorem is true in this case.

In any other case, M contains at least one nonzero integer, say a. Since
a # 0, by the law of trichotomy (see Section 2-2), either a < 0 or 0 < a. If
0 < a, then M contains a positive integer, namely a. If a < 0, then —a > 0.
Since M is an ideal, —ae M, and M contains the positive integer —a. In either
case the set of positive integers in M is not empty. Denote this set by M’. By
the well-ordering principle (Section 2-1), M’ contains a smallest positive integer,
which we will call s. We intend to show that M is the principal ideal generated
by s. Denote this principal ideal by N.

Suppose that n is any integer in M. Then by the division algorithm (see
Section 2-8) there exist integers q and r such that n = gs + r with 0 < r < s.
Assume, in order to lead to a contradiction, that » # 0. Then r =n — gs.
But ne M and se M. By the closure property of multiplication for ideals,
gs € M, and by the property (b) of Theorem 6-2, —gse M. Since r is the sum
of n and —gs, the closure property for addition requires that r€e M. Now
r < s and r is positive, and yet s was the smallest positive element of M, an
absurdity. Hence our assumption that r # 0 leads to a contradiction, which
means that » = 0. But r = 0 implies that n = ¢gs. That is, n is an element of
the principal ideal N generated by s. Since n was an arbitrary integer in M,
M = N. By the second part of Theorem 6-3, N = M, and these two statements
imply that N = M. That it, M is a principal ideal, as we were to prove.

Since M was an arbitrary ideal in the ring of integers, we have shown that the
ring of integers is a principal ideal ring.

Note that the proof of this theorem was based on the application of the well-
ordering principle and the division algorithm. This proof illustrates the value of
such properties of the integers in proving further theorems. It is unfortunate
that not all rings share these two properties with the ring of integers. It is not
reasonable, then, to expect that every ring is a principal ideal ring. Although
we will not prove it, the ring of 2 x 2 matrices is not a principal ideal ring.
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EXERCISES

1. Find a principal ideal in the ring of all integers.

2. Find a principal ideal in the ring R of subsets of the set U = {1,2, 3,4, 5} (with opera-
tions of multiplication and addition as in Example 6-2, Section 6-1) which contains
more than one element and is not the entire ring R.

3. Find a principal ideal in the ring Z,, of integers modulo 12 (with addition and multi-
plication modulo 12) which contains more than one element and is not all of Z ,.

4. Show that the only ideals in Z are the ideals consisting of the zero element alone and the
entire ring Zs.

5. Find a principal ideal in the ring of all 2 x 2 matrices with integers as elements which
contains more than one element and is not the entire ring of matrices.

6. If a is an element of a ring R which is not commutative, then the set {ra|reR} is not
necessarily an ideal. Explain what requirement for an ideal may not be satisfied.

7. Find an example, in the ring R of all 2 x 2 matrices having integers as elements, of a ma-
trix A such that {XA|X e R} is a left ideal but not a right ideal. [Hint: Review Ex-
ample 6-4]. Give proof that your example satisfies the required conditions.

8. Prove that the set S of 2 x 2 matrices of the form

(G

where r may be any real number, forms a subring of the ring R of all 2 x 2 matrices with
real numbers as elements.

9. Prove that the subring S of Exercise 8 is neither a left ideal nor a right ideal in R.

6-4 FIELDS

A field has been previously defined as a commutative ring with unity in which
every nonzero element has an inverse. The fields of most interest in elementary
mathematics are fields of numbers. However, there are many other fields, some
of which contain only a finite number of elements. The following theorem de-
scribes some of these finite fields.

Theorem 6-5. If p is a positive prime integer, then Z, the ring of integers
modulo p, is a field.

We have already shown that Z, is a ring for any ne Z*. We will assume,
then, that Z, is a ring. Multiplication is clearly commutative in Z, and 1 is the
unity of the ring. We will prove next that any element, m # 0in Z, has an inverse.
Since p is a prime, m and p have 1 as their greatest common divisor. By The-
orem 2-15, there exist integers s and ¢t such that 1 = sm + tp. Now s is not
necessarily an integer in Z,. In fact, s might even be negative. However, s =
qp + r for integers q and r, where 0 < r < p. That is, re Z,. Replacing s in
the equation 1 = sm + tp by s = gp + r, we have that 1 = (pq + r)m + tp, or
that rm = 1 — (gm + t)p. Consider the product rm in Z,, where this represents
multiplication modulo p. By the preceding equation, we see that as a product
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in Z,, rm = 1, since we disregard multiples of p in performing this operation.
Hence r is the inverse of m. This shows that every nonzero element of Z,, has an
inverse and hence that Z, is a field.

It can be noted also that if n is not a prime, then Z, is not a field. We will
not prove this result, but recall that in Z4 the elements 2, 3, and 4 had no inverses.
It can be shown that in Z, an integer has an inverse if and only if it is relatively
prime to n. If n = st for integers s and t, then at least s and ¢ will fail to have
inverses in Z,.

The definition of a field prescribes properties of two binary operations, addi-
tion and multiplication. The familiar operations of subtraction and division may
be introduced in either of two ways. We mention them both, but hereafter will
use the second definition only. First, one might say that for elements a and b
in a field F,a — b = c if and only if b + ¢ = a. Wahile this is correct, it has the
disadvantage of being a nonconstructive definition. That is, it does not give
a method for computation, but depends upon a thorough knowledge of the
addition tables in a field. Suppose, for instance, that F is a field with infinitely
many elements. In attempting to compute a — b, it is necessary to check each
sum of the form b + x for x € F until an element x is found for which b + x = a.
Similarly, one could say that a — b = d, where b # 0, if and only if bd = a. The
same comment applies. Consequently, we adopt an alternative definition which
provides a formula for computation.

Definition. The binary operations of subtraction (—) and division (=) are
defined in a field F by

a—b=a+ (=D for every aand b in F.
a+-b=ab! for every ain F and every b # Oin F.

Since every element b in F has a unique negative, —b, and every nonzero
element b has a unique inverse, » ~ !, these operations are uniquely defined. The
symbol a/b will be used interchangeably with a = b.

Integral multiples of field elements and of integral powers of field elements
have already been defined, since a field is a ring. (See Section 2-7.) Negative

exponents have meaning for nonzero field elements, since inverses of such
elements exist.

Example 6-6. Consider the field Z,, with addition and multiplication modulo 5.
We will evaluate 2 — 4, 3, and 372,

2-4=24(—-4H=2+1=3,
3-3:4=3-4"1=3-4=2,
3—2=(3—1)2=22=4'

The reader should carefully check these numerical calculations to be sure that
he understands the reason for each step.
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Example 6-7. The set F of real numbers of the form a + b\/i where a and b
are rational numbers, is a field.

Since the set F is a subset of the ring of real numbers, it can be shown to be a
ring by using Theorem 6-2. Thus S # (J, since 1 + 1\/5 is an element of S.
Ifx=a+b\/§ andy=c+d\/5are any two elements of S, x + y = (a + ¢
+ (b + d)\/2. Thisis an element of F since a + cand b + d are rational numbers.
Why? Further,

xy = (ac + 2bd) + (bc + ad)\/i

is in F, since ac + 2bd and bc + ad are rational numbers. Hence F is closed for
addition and multiplication. For any element a + bﬁ of F, the negative is
—a+ (—b)\/z and this is an element of F. Hence S is a ring.

Multiplication is commutative in F and 1 is the unity element of F, since 1
can be written as 1 + Oﬁ The inverse of an element a + b\/i is 1/(a + b\ﬁ)
if a + b\/i # 0. We need to show that this is an element of F. Multiplying
numerator and denominator of the fraction by a — b\/i, we have that

a— bﬁ a -
b/2)"! = = 2.
@t by/)7 = o= et V2
This is the correct form for elements of F provided that

a d —b
2 -2 N o
are rational numbers. The fractions are clearly rational numbers unless a*> — 2b?
is zero. But we have shown in Section 3—4 that \/5 is not a rational number,
hence it is impossible that a*> — 2b> = 0. Otherwise, 2 = a?/b* and \/5 = a/b,
a contradiction. This completes the proof that every nonzero element of F has
an inverse in F and hence F is a field.

Example 6-8. In the field F of Example 6-7, let x = 3 + 2\/5 and y =4 —

3\/5. Find x = y and y~3.

First,

. 1 4+3ﬁ—_2_3ﬁ

T4-3/2 16-18 2
Thenx ~y=xy ' = —12 — ‘—27\/5 Further,
y 3= =-35-22/2

Example 6-9. Solve the equation 3x + 4 = 3, considered as an equation with
coefficients in Z,, with all operations modulo 5.

First, we subtract 4 from both members of the equation. Since —4 = 1, we
do this by adding 1 to each member, giving 3x = 4. Next, we divide both sides
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by 3. Since division is defined as multiplication by the inverse and 37! =2 in
Z 5, we multiply both members by 2. This leaves the solution x = 3. Of course,
in this simple case the solution could be found by trial and error, since there are
only five elements in Z as possible solutions. The method shown here is more
instructive, since the same steps would work in any field.

EXERCISES
1. Compute the following in the field Z,,.
a) 3—10 b)2-7 c)3=5
@ 3 o 3 D -3
g 3077 h) 67° HG6-706B-9
Di+i-s k) 1
1+ 1
L
1+3

2. Consider the field F of Example 6-7. Reduce each of the following to the form a + b\/f
for a and b rational numbers and thus show that each is an element of F.

a) 2 -7/2) -G +2/2) b) 2 + 5,23 - 2/2)
9 (1- 3J§>“ d) 8 + 5,272
&) B — 72 = (6 + 32 D R+3/2D = (5-4/27"

3. Solve the following equations in Z;,. Interpret all operations as operations modulo 11.
Carry out solutions, using properties of fields. Do not solve merely by trial and error.

a) 8+ x=2 b) 7x=15
c) 3x—4=9x+3 d3x—-Q2-7x)=5
4. Solve the following equations in the field F of Example 6-7.
a) (13— 5/2) + x = 6,/2 b) (=2 +/2x=17-5/2
Q) (11— /2x =9 +3/Dx — 5+ 42
5. List all integers in Z,5 which are relatively prime to 15. Find the inverse (relative to
multiplication modulo 15) of each of these elements.

6. List all elements in Z, s which do not have inverses relative to multiplication modulo 15.
Compare this set with the list in Exercise 5.

7. Prove that the set, S = {a 4+ bY2|a and b are rational numbers}, is not a field under
addition and multiplication of numbers.

8. Prove that the set, T = {a + by/5|a and b are rational numbers}, is a field under ad-
dition and multiplication of numbers.

9. Let R be the set of all real numbers, and define the operations @ (addition) and ® (mul-
tiplication) on R by a ®b=a+b — 1, and a® b =a + b — ab for real numbers a
and b. Prove that the set R is a field with respect to these operations.
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6-5 SUBFIELDS AND EXTENSIONS

After the discussion of subgroups and subrings in earlier sections, it should not
come as a surprise to the reader that we mention subfields. As would be expected,
a subset of a field K is a subfield of K if and only if the subset forms a field with
respect to the operations of multiplication and addition defined in K. In Ex-
ample 6-7 we proved that the set F of all real numbers of the form a + b\/f,
for a and b rational numbers, is a field, and F is a subfield of the field of real
numbers. The field of all rational numbers is, in turn, a subfield of F. It is not
true, however, that the field Z 5 of integers modulo 5 is a subfield of the real num-
bers. It is not a subfield because the operations in it are different from those
in the set of real numbers. For example, the sum of 3 and 2 is 0 in Z5, while in
the field of real numbers, the sum of 3 and 2 is 5.

When two fields F and K are related so that F is a subfield of K, we say that K
is an extension field of F. Thus the field,

F = {a + b\/2| a and b are rational numbers},

is an extension field of the field of rational numbers. The field of all real numbers
is an extension field of F and also an extension field of the rational numbers.

An interesting problem in the study of fields is that of determining the struc-
ture of certain types of extensions of a given field. We do not propose to con-
sider the general case, which is beyond the scope of this course. However, we
will consider a special case that will give some insight into the problem.

Definition. Let F be a subfield of a field K, and let ¢ be an element of K. The
smallest subfield of K which contains ¢ and contains F as a subfield is called
the extension of F formed by adjunction of c. We write this field F(c).

Example 6-10. The field F of Example 6-7 is the extension of the field of rational
numbers formed by the adjunction of ﬁ If the rational field is designated b,
Q, then F = Q(,/2). To prove that F is the smallest field containing both /2
and the set Q, suppose that H is any field which contains Q and \/5 Every
number of the form a + b\/f, for a and b rational numbers, must be an element
of H. To see this, we note first that if b is any rational number, then b and \/5
are in H, by definition of H. The fact that H is closed under multiplication
implies that b\/E must be an element of H. For any ae Q, we have required
that ae H, since Q is a subset of H. Then a +’b\/§ must be an element of H,
since H is closed under addition. Thus every element of F is an element of H,
which means that F = H. Since H was an arbitrary field satisfying the given
conditions, this shows that F is the smallest such field. That is, F = Q(\/E),
as we wished to prove.

The element \/5 in Example 6-10 is a root of the equation x> — 2 = 0, an
equation whose coefficients are all elements of Q. It is not a coincidence that
all elements of Q(\/E) can be expressed in the form a + bﬂ, with a and b in Q.
It can be shown that if we adjoin to Q a root of any quadratic equation having
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coefficients in Q, then the elements of Q(r), where r is the root adjoined, may be
expressed as a + br for a and b in Q.

Now consider the next example in which we adjoin the root of a cubic equation
whose coefficients are in Q. The equation is x3 — 2 = 0, and the root adjoined
is \3/5
Example 6-11. The field Q(ﬁ) consists of all elements of the form a + b\3/§ +
cf/Z, where a, b, and ¢ are numbers in Q.

Let us designate by J the set of all elements of the form a + b\3/§ + cﬁ for
a, b, and ¢ in Q. The set J is not empty since 1 + Z\ﬁ + 3\3/71 is an element
in J. The sum of two elements in J is easily seen to be an element of J. Let

a+b\3/§+c\3/z and x+y\3/§+z\3/71

be any two elements of J, which means that a, b, ¢, x, y, and z are any rational
numbers. Then the product of these elements is

(ax + 2cy + 2bz) + (bx + ay + 2¢2)Y2 + (xc + by + az).7/4,

which is another element of J. This shows that J is closed under multiplication.
The negative of an element in J is clearly in J, so that J is a subring of the real
numbers. Further, J is a commutative ring, since multiplication is commutative
for all real numbers. The unity 1 is in J, since 1 may be written as

1=1+40-Y2+0-74
Further, if
w=a+b\3/2+c\3/4

is a nonzero number in J, then

o1 = (a? —D2bc) N (2c2; ab) \3/5_'_ (b? ; ac) \3/1

where D = a® + 2b3 + 4¢3 — 6abc. Note that w™! is an element of J, although
proving that D # 0 to show that the fractions are defined is nontrivial. The
reader is encouraged to show that the product ww™?! equals 1, to verify that w™!
is the inverse of w. We will omit the steps of this computation. It would also be
a good idea to compute D in several numerical examples to show that at least
in these cases, D # 0. The element w™! would not exist for any number for
which the quantity D is zero, since one cannot divide by zero. The general proof
that D is never zero is too difficult for inclusion here.

This discussion has shown that J is a field (except for the step in the proof we
omitted). If we accept this fact, then it is easy to see that J must be the smallest
field containing Q as a subfield and containing ﬁ By closure properties of a
field any field must at least contain all elements of J. Hence J = R(\V 2).
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Note that when we adjoined to Q the root \3/5 of the cubic equation x3 — 2 = 0,
the elements of the new field were of theforma + b2 + ¢(7/2)?, since /4 = (¥/2)%
This expression involves both first and second powers of the root adjoined. It
can be shown that if r is a root of an equation of nth degree whose coefficients
are in Q, then

Q) = {ag + a;r + ar* + - + a,_;r" " ‘|ag,ay, ... a,_,€Q}.

We will not prove this theorem, although the preceding examples make the
statement seem plausible.

Before concluding this chapter, we should consider still one further type of
extension. In Section 3-1 we extended the set of integers to the field of rational
numbers. This same extension can be made for a wide class of structures, as
indicated in the following theorem.

Theorem 6-6. If D is an integral domain, then there exists a field F which
contains a subset D' isomorphic to D.

We call the smallest field which contains a subset isomorphic to D the field of
quotients of D.

The proof of this theorem is identical to the proof for the case of integers given
in Section 3-1. The only properties of the integers which were used in the proof
were those that hold in every integral domain. Hence a proof here could be
written by copying the former proof and simply replacing the word “integer”
by the phrase “element of the integral domain D” whenever the word appeared.
Thus we would begin by forming pairs (g, b) of elements of D, with b # 0. Next
we would define an equivalence relation ~ for pairs by (a, b) ~ (c, d) if and only
if ad = bc. The equivalence sets [a, b] would be the elements of the field F,
as before. Addition and multiplication would be defined in F by

[a,b] + [¢c,d] = [ad + bc,bd]  and  [a,b][c,d] = [ac, bd].

The proof that F is a field and contains a subset D’ isomorphic to D would proceed
exactly as in the case of the integers. We omit here the details of the proof, but
the reader is encouraged to study the former proof to justify the statements above.

EXERCISES

1. Find an extension field of the field of rational numbers (other than the examples in the
text) which is a subfield of the field of real numbers.

2. Let i be the imaginary unit, that is, i> = —1, as defined in Section 3-7. Prove that the
set, S = {a + bi|a and b are rational numbers}, is a subfield of the field of complex
numbers and is an extension field of the field of rational numbers.

7. Prove that the field S of Exercise 2 is neither a subfield nor an extension field of the field
of all real numbers.

9. Is the field Z, a subfield of the field Z,? Justify your answer.
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. a) In Example 6-11, a formula for the inverse of an element in the field J was given.
Use this formula to find the inverse of the number x =2 — \3/5 + 3\3/:1. Check
your answer by computing xx~!. The product should be 1, of course.

b) Compute the quantity D, which appears in the formula, for several numbers in J and
note that in each case D # 0.

. In Example 6-11, the statement is made that any field containing all rational numbers

and also containing \3/5 must contain every number of the form a + b\3/§ + 0\3/:1, where

a, b, and c are rational numbers. Prove this statement.

. Let D be an integral domain, and let S be the set,
S = {(a, b)| a and b are elements of D and b # 0}.

In the construction of the field of quotients for D, the relation ~ is defined on S by
(a,b) ~ (c,d) if and only if ad = bc. Prove that this is an equivalence relation. [Hint:
Refer to the proof in Section 3-1 for the case where D is the set of integers.]

. Referring to Exercise 7, denote the equivalence set containing (a,b) by [a,b]. Let
0 = {[a,b]|(a b)eS}. Prove that Q is a field with respect to the operations of ad-
dition and multiplication defined by

[a,b] + [c,d] = [ad + bc,bd] and [a, b][c,d] = [ac, bd].






CHAPTER 7

POLYNOMIALS

7-1 DEFINITIONS RELATING TO POLYNOMIALS

Probably no subject regularly taught in high schools is less well understood by
the average teacher and student alike than the subject of polynomials. High
school texts are not always a help and often serve to perpetuate the misunder-
standings and inconsistencies that abound in this area. Students are given
equations involving a letter x where in one case the letter is a variable, in another
an indeterminate, and in still a third an unknown. No attempt is made, in most
cases, to explain the differences, and the student can learn only by trial and error
what is expected of him in solving a problem. Again, the student may be told
that x2 — 2 cannot be factored, and yet in the next assignment, he solves the
equation x? = 2, which depends on the fact that x> — 2 factors as

X2 —2=(x +/2(x - /2.

It is little wonder that students find mathematics difficult, when even the language
used is kept a mystery, to be understood only by professional mathematicians.

The purpose of this chapter is to present polynomials in a manner which will
bring to light the nature of systems of polynomials and clarify the terminology
and usages which relate to elementary problems involving polynomials. Not all
the material presented here is suitable, as written, for presentation to high school
students, but it is the belief of the author that mastery of the material in this chapter
is an essential part of the training of every prospective teacher of mathematics.
Intelligent judgments about what material and what approaches should be used
with students cannot be made without a clear understanding of the subject involved.

There are many ways in which the subject of polynomials may be introduced.
One approach often used is to introduce the standard symbols, such as 1 + 2x? + x3,
and then attempt to describe the precise meaning of the notation. However;
this approach causes the same difficulty that is encountered when a/b is used at
the outset to designate a rational number. The symbol is so familiar that it is
difficult to convince the reader that he has anything to learn. It is easy to com-
pletely miss the essential points of the discussion. The approach we will adopt
is one which presents the main features of polynomials, without suggesting other
properties which are not intended, and many of which are incorrect.

173
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The polynomials which appear in elementary texts always involve numbers
from some suitable set. The set may be the set of integers, the set of real numbers,
or some other set. Each of the sets mentioned here is at least an integeral domain,
and in some cases a field. We will begin, then, by assuming that an integral domain
D has been specified, and from it we will construct a set of polynomials. The
set of polynomials will represent an extension of D to a new integral domain called
the domain of polynomials over D. (This is also referred to as the domain of poly-
nomials with coefficients in D.) This extension is similar to the extension of
integers to rational numbers, in that the larger domain contains a subset isomorphic
to D. Definition 2 below specifies this extension precisely

In order to give this definition, we need to first define an infinite sequence.

Definition 1. An infinite sequence of elements of a set S is a function whose
domain is the set of nonnegative integers and whose range is a subset of S.
Such a sequence is represented by the symbol (a, a4, g5, ...), where each
a;€ S for every nonnegative integer i.

This definition requires that an infinite sequence assign to each nonnegative
integer a unique element of S, called a term of the sequence. There must be a
zeroth term, a first term, a second term, etc., each of which is an element of S. The
notation (aq, d,, d,, ...) is one way in which such a function may be specified.
For example, (0,%,%,3,...) is a sequence of rational numbers. The notation
merely lists, in order, the images of 0, 1, 2, ... under the function which is the
sequence. In functional notation, it easy to verify that this sequence is the function
f(m) =n/(n+ 1), since f(0) =0, f(1) =14, f2) =%, f(3) =2, etc. The language
in common usage for sequences would say that 0 is the zeroth term, { the first
term, and n/(n + 1) the nth (or general) term of the sequence. It may’seem strange
that we count the initial term as the zeroth term, rather than the first term, but
the reason is that we will use the sequences in describing polynomials, and with
our method of counting terms, it will turn out that the nth term is the term of nth
degree in the polynomial. Had we counted in another manner, this would not
be the case, and the resulting confusion would make the discussion seem more
difficult than is necessary.

Definition 2. If D is an integral domain, a polynomial over D is an infinite
sequence of elements in D such that only a finite number of terms are different
from zero. The set of all polynomials over D is referred to as the domain of
polynomials over D and is denoted by D[x].

In the foregoing definition, the symbol D[x] has no apparent motivation. We
will show later how the symbol x is related to a polynomial. In the meantime,
the notation D[x] should be thought of merely as a symbol for this set of poly-
nomials. Any other symbol would do as well, but this is the standard notation.
Another comment about this definition is that it should be clear that whatever
else a polynomial may be, it is not an element of the integral domain D.
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We are going to show in Section 7-3 that the set of all polynomials over an
integral domain is itself an integral domain. Before we can do this, we need to
define equality and the operations of addition and multiplication for the set.

Definition 3. If D is an integral domain and if x = (ag, a,, a,, ...y and
y = (bo, by, by, ...) are any two elements of D[x], then

a) x = y if and only if a; = b, for every nonnegative integer i.

b) x + y = (cg, €1, €3, ...) Where ¢; = a; + b; for every nonnegative in-
teger i.

c) xy = (dy, dy, d,, ...) where d; = agh; + a;b;_; + ... + a;b, for every
nonnegative integer i.

To explain this definition, it should be pointed out that the operations of
multiplication and addition for x and y are new operations defined for elements
of D[x]. In defining these, we use sums and products of elements in D. These
sums and products are formed in terms of operations in D, since elements of D
are being combined. For instance, a; + b; appears in the definition as the formula
for the ith term of x + y. This sum a; + b; is the operation of addition already
known to exist in D.

The above definition of equality merely states that to be equal, two sequences
must be identical, term by term. Addition and multiplication are illustrated in
the following examples.

Example 7-1. Let x =(0,2,3,0,0,...)and y = (1,0,3, —2,0,0, ...), where all
terms not shown are zero. These are polynomials in Z[x]. The sum x + y
is found by adding corresponding terms and is given by

x+y=(,26-200,...).
The product xy is computed as follows:

xy=(0,2,3,0,0, ...)(1,0,3, —2,0,0, ...)
=01, 0:0+2-1, 3-1+2:0+0-3, 0-1+3-0+2-3+(=2)0, 0
+0°04+3:3+2:(—2)+0:0, 0:1+0:0+0-3+3-(—=2)+2:0+0-0,
0°1+00+0:3+0(—2)+30+2-0+0:0,0,0,...)=(0,?2, 3,

6,5 —6,0,0, ...) ‘

After the fifth, all terms in the product are zero. Note that the terms are referred
to as zeroth, first, second, etc., so that — 6 is the fifth term.

Since a polynomial is a sequence, it is proper to speak of one of the elements
which appears as a term. However, it is more common to refer to them as co-
efficients.

Definition 4. If w = (a,, a4, a,,0,0, ...) is a polynomial over an integral
domain, q; is referred to as the ith coefficient of w for each positive integer i.
The element a, is cailed either the constant term of w or the zeroth coefficient
of w.
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An important definition in connection with polynomials is that of degree,
given next. Note that since a polynomial may have only a finite number of nonzero
coefficients, the definition of degree can always be applied to give a unique positive
integer or zero.

Definition 5. If w = (a,, a4, a,, . ..) is a polynomial over an integral domain,
the degree of w is n if and only if a, # 0, but a,, = 0 for all m > n. If all the
coefficients of w are zero, then w has no degree.

In using Definition 5, we note, for example, that (0, 0, O, .. .) has no degree.
The degree of (2,0, 0, ...) is zero, the degree of (0,2, 0, 3,0, 0, ...) is three, and
the degree of (1, 2, 3,4, 5,0,0, ...) is four.

Theorem 7-1. If f and g are two nonzero polynomials over an integral domain
D, then the degree of the product fg is the sum of the degrees of f and g.

Let f = (aq, a4, ..., a, 0, ...) be a polynomial of degree n, and let g = (b,,
by, ..., b,, 0, ...)be a polynomial of degree m, both over an integral domain D.
By definition of degree, a, # 0 and b,, # 0, but all terms beyond the nth in f and
beyond the mth in g are zero. Now let the product fg be the polynomial (c,, c,,
€y --.). By definition of product, the (n + m)-coefficient in fg, namely c,, .,
contains the product a,b,. Since D is an integral domain, a,b,, # 0. All other
terms in the sum which gives c,,,, are zero. These terms are of the form a;b;,
with i + j = n + m, and with the exception of the term a,b,,, either i > norj > m,
and hence either a; = 0 or b; = 0. Further, if k > n + m, then ¢, = 0, since
each term in the sum which gives ¢, is of the form a;b;, with i + j = k. Since
k > n + m;either i > n or j > m, and hence these terms are all zero. The degree
of fg is n + m, since ¢,,,, # 0 and ¢, = 0 for all k > n + m. This completes
the proof of the theorem.

EXERCISES

In the following problems, all nonzero coefficients are given for each polynomial mentioned.
Answers should be written in the same way.
1. Let u=(—1,0,2,0,...) and v =(0,2, —3,0,...) be polynomials over the integers.
Find@u+v ®u (c) u*> () o3
2. Let u=(1,2,0,...) and v = (3,4,0, ...) be polynomials over the field Z,. Find (a)
u+v OMuw (©u* d)o® () u*® @Ho°
3. Let u=(0,0,1,0,...) and v = (—%,0,%,0,...) be polynomials over the rational num-
bers. Find @ u+v ) u () u> () u® (e)u* (O 0?
4. Let u=(2,40,...) and v = (-2,0,0, \/3, 0,...) be polynomials over the real num-
bers. Find @ u+0v (b)uw (c) u® (d) v?
5. Letu=(1+42i,40,...)and v= (0,2 — i, \/Ei, 0, ...) be polynomials over the complex
numbers. Find @ u+v () uv (c) u*> (d) *
6. Prove that the polynomial having all coefficients equal to zero is the zero element of
the domain of polynomials over any given integral domain D.
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7. Prove that if w = (ag,ay,4d,, ...) is any polynomial in D[x] for an integral domain D,
then (—ag, —ay, —a,, ...) is the negative of w.

8. Prove that the set S of all polynomials of D[x] which have zero constant term is closed
under the operations of addition and multiplication, for any integral domain D. That is,

S ={(0, ay,a,, ...)|a,e D and only finitely many a; # 0}.
9. Prove that the set T of all polynomials in Z[x] which have zero for all coefficients other
than the constant term forms a ring. Note that the constant term may be zero or non-

zero. That is,
T ={(,0,0,...)|a is an integer}.

10. Prove the following theorems on factoring, where each polynomial is an element of D[x]
for an arbitrary integral domain D.
a) (ab,ac,ad,0,...) =(a,0,0,...)(b,c,d,0,...)
b) (—a2,0,b%0,...) = (a,b,0,0,...X—a,b,0,0,...)
¢) (a?,2ab, b0, ...) = (a,b,0, ...)?
d) (—a? 3a%b, —3ab?,b%,0,...) = (—a,b,0,...)}

7-2 THE SUMMATION NOTATION

The formula for multiplication of polynomials given in Section 7-1 is somewhat
awkward to use, and it is particularly cumbersome for use in proving theorems,
such as the associative law for multiplication of polynomials, where a product
of three polynomials is involved. In order to shorten the work of writing such
proofs, it is advisable to introduce the summation notation. There are many
other subjects, such as statistics and integral calculus, where this notation is used
heavily. We believe it is of sufficient general interest to be included as a regular
section in this text. Since no specific background is required for this text, we
include this material for those who may not be familiar with the notation. If
the reader has already learned to use the notation with facility, he may safely
skip this section.

Definition 1. If m and n are integers with m < n, the symbol X}_,, f(i) is defined
to be

fm+ fm+ 1)+ fm+2)+ - + f(n).
We read the symbol as the sum from i = mto i = n of f(i); m and n are referred
to as the lower and upper limits of summation, respectively.

Although the definition above is really self-explanatory, a few examples may
be helpful.

Example 7-2. X)_,i=1+2+ 3+ 4+ 5. That is, we replace i successively
by the integers from 1 through 5, and add the results.

Example 7-3. Z!% x' = x% + x7 + x® + x° + x'°. Here, the function f(i) is x".
In summing, we begin with i = 6 and write x’ for each integer i from 6 through 10,
and add the results.
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Example 7-4. X]_,a; = a, + a3 + a, + as + ag + a,. In this summation, the i
appears as a subscript, but the rule is the same. As before, we merely copy the
expression, replacing i first by 2, then by 3, etc., and add the results.

In this notation, there is nothing sacred about the symbol i. We could use
any other letter as well.

Example 7-5. Z3__, (n)"*' = (= )71 + (0 + (DM + (2P + (3! =
1+0+1+8+81 =091

A special case of interest is that in which the function referred to in the defini-
tion as f(i) is a constant function. For instance, if f(i) = 2, the notation is

4
>2=2+2+2+2:=8

i=1

This may seem strange, but a direct application of the definition yields the follow-
ing result: f(1) =2, f(2) =2, f(3) =2, and f(4) = 2. Then,

if(i)=f(1)+f(2)+f(3)+f(4)=2+2+2+2=8.

i=1

The reader may wonder why one would use this notation in a case such as this.
The reason is that in stating general theorems using the summation notation,
there are often special cases of this type. They must either be excluded from the
cases to which the theorem applies or be treated as we have indicated above.
The latter is preferred. The discussion above should point out why the following
theorem is an immediate consequence of the definition.

Theorem 7-2. X!_, ¢ = (n — m + 1)c, where c is an element of any system
in which addition is defined.

The only proof needed, in addition to the remarks preceding the theorem, is to
point out that n — m + 1 is the number of terms indicated by the limits of sum-
mation. Thus, 12, f(i) represents the sum of 10 terms and Z7_, f(i) represents
the sum of 6 terms.

Another elementary theorem on summation (Theorem 7-3 below) is merely
a statement of the generalized distributive law. This holds in any system in
which the distributive laws for multiplication over addition are valid. No further
proof is needed, since we have already proved these laws, but the reader should

be sure that he understands why this is the case.

Theorem 7-3. If S is any system in which multiplication is left- and right-
distributive over addition, and ifae Sand f(i)e Sforeachi =m, m + 1, ..., n,
then

Saf0-a3so ad  3f0a=($r0)e
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Example 7-6. In the field of real numbers,

§6;2\/_=2\/37+2\/Z+2\/§+2\/€
N IR NG N

These steps are self-explanatory.

Theorem 7-4. ; (fG) + g()) = AZ fO + X g0).

i=m i=m

This theorem is merely a statement in summation notation of the fact that a
sum of terms may be rearranged before adding. It follows from the general
commutative law of addition, and needs no further proof. The following example
illustrates the theorem.

Example 7-7

i(zf +i)=Q* 4+ +2°+5H)+25+6H)+ 2"+ 77
i=4

=2*+2°+2642)+ (4*+ 52+ 62+ 7

7 . 7
= Y2+ Yi%
i=4 i=4

Theorem 7-5. If u = (ay, ay, a,, . ..) and v = (b, by, b,, .. .) are polynomials
in D[x] for an integral domain D, then in the product uv = (cq, ¢y, €5, .. .),
¢, =2 1_oab,_; for each nonnegative integer n.

The only proof needed is to apply the definition of the summation notation to
the expression Y.7_, a;b,_; and to verify that this is exactly the same formula as
given in Section 7-1. Thus

n
Z aib,,_i = aobn + alb,,_l + a2bn_2 + e + a"bo,
i=0

and this is the formula given for the product of polynomials.

It often happens that the function f (i), which appears in the summation notation,
is itself a summation. Suppose, for example, that f(i) = Z3_, a;b;. Then f(i) =
a;b; + a,b; + azb,, Now consider the summation

a 3
> ( ) akbi>'
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Replacing £}_, a;b; by the formula above, we have

4 /3 4
> (Z akbi> = (aib; + a,b; + asby)
=3

i=3 \k=1 i=

= (a1b3 + a2b3 + a3b3) + (alb4 + azb4 + a3b4).

Now, if each a, and each b; is in an integral domain where we have associative
and commutative laws, we may rewrite the sum above as follows:

4 3
> <Z akbi> = (a;b; + a;by) + (ayb; + a,b,) + (ash; + asby)
i=3 \k

=1

3 3 /4
2 (abs + aby) = X < akbi>'
k=1 k=1 \i=3
That is, in the special case we have been able to reverse the order of summation
symbols without changing the sum. Note, however, that the limits of summation
are all specific numbers. The next theorem gives a general statement of this
type. First, however, a definition is given to explain the standard custom of
omitting parentheses in such expressions. We refer to such sums as double sums.

Definition 2. > Xieof o) = Xhem (Zj=sf (1)

In this definition, f(i,j) refers to an expression involving both i and j. A
formal definition could be made of the symbol as follows. A function of two
variables u and v, where u is an element in a set U and v is an element in a set V,
is a function (in the usual sense) whose range is some set B and whose domain
is a subset of U x V. Thus for each pair (u, v) in the domain of f(u, v), a unique
element in B is determined.

Theorem 7-6. If all functional values f(i, j) are elements of an integral domain
D, then Xi_,, Zj_ f(i,)) = Zj=s Zi=p f (0, ).

To prove this theorem, we need only to consider the sums indicated in each
case. Each represents the sum of all f(i,j) which can be written with m <i <n
and s <j <t. The order of the terms is not important because of the associative
and commutative laws of addition in the integral domain. Thus the expressions
are equal.

Theorem 7-6 is somewhat involved, but the manipulation of summation
needed for the proofs in the next section is even more so. A special notation is
useful for such theorems. The difficulty that arises can be seen by considering
the sum which results in connection with the product of three polynomials. Let
u=(ag, Ay, a3, ...), v = (bg, by, by, ...), and w = (cq, ¢y, C;, - ..) be three poly-
nomials in D[x], where D is an integral. Further, let product vw = (dg,dy, d,, . . .)
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and the product u(vw) = (e, €4, €5, ...). The mth coefficient in vw is given
by d,, = !¢ bic,,—;, and the nth coefficient of u(vw) is given by e, = X_, ad,_ ;.
To evaluate e, in terms of a’s, b’s, and c’s, we need to use the formula for d,_;,
which is d,_; = Z{Z{ bic,_;_;, obtained by replacing m in the formula for d,, by
n—j. Thus e, is given by e, = Z7_q a;Z/2¢ bic,_;_;. It is necessary to inter-
change the order of summation in proving the associative law of multiplication.
This process is similar to Theorem 7-6, but now the inner sum has as its upper
limit n — j, which depends on the value of j, rather than on a constant, as in The-
orem 7-6. We can avoid this difficulty by noting, first, that in the formula for d,,,
the subscript i in b; and the subscript m — i in c,,_; have m as their sum. In fact,
the subscripts that occur in the sum can be identified as all combinations of non-
negative integers which have m as their sum. This leads to the definition of a new
type of summation symbol.

Definition 3. The notation X, ;_,f(i,j) means the sum of all terms f(i, )
which be formed with i and j nonnegative integers whose sum is m.

This definition specifies the terms of the summation but does not specify the
order in which they are to be added. This is of no consequence in an integral
domain, since addition is commutative. The following example illustrates the
meaning of this definition.

Example 7-8. The terms of the summation X,,;_, a;b; can be written out as
follows:
> ab; = aghy + a;bs + a,b, + azb; + ayb,,.

i+j=4

This follows from the definition, since the pairs of nonnegative integers whose
sum is 4 are (0, 4), (1, 3), (2, 2), (3, 1), and (4,0). We could, of course, write this
equally well as a,;b; + a,b, + agb, + asby + asb,, since addition is commutative.
It can be seen, then, that the formula for d,, in the preceding paragraph may be
written as d,, = Z;, ;-, a;b;, And in a similar way, we may write the formula
fore,ase, = ;. ;,y=, abjc,. This notation does not mention the order in which
terms are summed and hence avoids the necessity for interchanging the order
in which summation symbols are written.

Example 7-9. We will write out the terms of the sum X, ;,,_3 abic,. The
triples (i, j, k), which sum to 3, are (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3,0),(1, 0, 2), (1, 1, 1),
1,2,0), (2,0,1), (2,1,0) and (3,0,0). Hence

Z aibjck = aob0C3 + a0b102 + aob261 + aob3CO + albocz + alblcl
i+j+k=3

+ a;byco + azbgey + aybicy + azbgc,.

Any other order of terms would do equally well.



182 Polynomials 7-2

EXERCISES
1. Write out, term by term, each of the following sums of integers.
5 7 5 5 n—1
a) X i b) X2/ ) 24 d X——
i=1 j=2 k=3 n=1hn + 1)
7 5 3
e X(m—2)(m—m ) Xp* g Xm
m=4 p=1 i=0

2. Assume that each a;, bj, and ¢, in the following is an element in an integral domain. Write
out, term by term, each of the indicated sums.

7 7 5 3 3 i
a) Za b) X ab, 0 X Xapb; d X X ap;
i=3 i=3 i=3 j=1 i=0 j=0
3 3 3-j
e) Zaib3—j f) 2 Zajbic3—j—i g 2 aibjck
j=0 j=0i=0 i+jtk=2

3. Letay=2,a,=-3,a,=1,a3=0,by=1,b; = —1, b, =3, and b; = —2. Com-
pute the numerical value of each of the following sums of integers.

3 3 3 \2
a) 2 aq b) X a? c) <Za,-\ d) X ap;
i=0 i=0 i=0 / i+j=3
3 3 3 3 2
e) ¥ abs-; f) £ Xap; g X Zapb; h X3
i=0 i=0 j=0 i=0 j=0 i=-1
5 3 3 3
) 210 ) Z@+b) k) Za+ b
i=3 i=0 i=0 i=0
4. Write each of the following in summation notation.
a) 12422 4+ 32 4--- 4102 b) 25 4+ 26 4+ 27 4 28 4 29 4 210
C)a_y+ay+ a; +a, + a, d) b2 + b? + b2 + b3
e) agh, + a;b, + ab, + asb, f) aghs + a b, + a,by + asb, + asb, + asb,

5. Prove by mathematical induction that

iéi - %’(1 +n)

6. Prove by mathematical induction that

M=

4i = 2n(n + 1)

i=1
7. Prove by mathematical induction that

Zn: 4i—-3)=n2n—-1)
i=1
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8. Evaluate the following sums of integers.

a) X (i—2(+1) b X (-2
i+j=3 i+j=5
i—1 .
9 T @G-
° ivj=a) + 1 ) .'+j=3(lj)

7-3 THE STRUCTURE OF D[x]

Operations of addition and multiplication have been defined in D[x] where D
is an integral domain. It is natural to ask what the structure of D[x] is. Is it
a ring? an integral domain? or maybe even a field? Does the answer depend on
whether or not D is a field? The answers to these questions are given in The-
orems 7-7 and 7-8, which follow. The proofs are long, but not difficult, and are
included in their entirety.

Many of the steps in the proofs of Theorems 7-7 and 7-8 will require us to
show that two elements are equal. Recall that to be equal, two polynomials
must have identical coefficients. After reading the section on mathematical
induction, the student should be wary of proving that a theorem holds in a few
cases and then assuming it is always true. In order that our proofs concerning
the equality of two polynomials may be complete, it is necessary to be sure that
every coefficient of one equals the corresponding coefficient of the other. Hence
it will not be sufficient to list only the first two or three coefficients. For this
reason, we will modify our notation slightly and write each polynomial by giving
the zeroth coefficient and the nth coefficient. Our proofs will show that equality
holds for the nth coefficient for every natural number n. The notation for a poly-
nomial will read (aq, ..., a,, ...).

Theorem 7-7. If D is an integral domain, then D[x] is an integral domain
with respect to the operations of addition and multiplication of polynomials
given in Section 7-1.

First, we will show D[x] to be an additive abelian group. Addition is commu-
tative, since if u = (a,, ..., a,, ...)and v = (by, ..., b,, ...) are any two elements
of D[x],

u+U=(ao+b0,...,an+bn,...)
=(bg+ ag,....,b,+a,...)=v+u

The reason for the middle step is the commutative law of addition in D.

The set D[x] is closed with respect to addition by the fact that the sum of two
polynomials has been defined to be another polynomial in every case. The sum
of two sequences is certainly a sequence, and if only finitely many terms of each
sequence are nonzero, then the sum can have only finitely many terms that are
nonzero.
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The associative law of addition holds in D[x]. We consider any three ele-

ments of D[x], say, u = (dg, . .-Gy, --.)s 0 =1(bgs ..., by, ...),and w = (cq, . . .,
Cp - --). Then,
u+@+w=(@@p--.r,...)+Fbo+co.vsby+Cpp...)

by definition of + in D[x],
=(ao + [bo + cols---»a, + [by + ], .- .)

by definition of + in D[x],
= ([ao + bo] + cgs - - -5 [an + b,] + Cps - - )

associative law in D,

=(ag+bg---sa,+by...)+(CopevvsCpprns)
by definition of + in D[x],

=@u+v)+w by definition of + in D[x].

The zero element of D[x] is 0 = (0, ...,0,...), since for any

u=(ag, .-.,0, ...)in D[x],
u+0=(a,+0,...,a,+0,...)=(ag, -..,0a,...)=u

By commutativity of addition, 0 + u = u, as well.
The negative of any element u = (aq, ..., 4, ...) in D[x] is given by
—u=(—4ag ..., —a, ...), since

(@gs--.s ... )+ (—0ag, ..., —ay...)=1(0,...,0,...),

the zero of D[x]. Clearly — u is an element of D[x]. This completes the proof
that D[x] is an additive abelian group.

The set D[x] is closed with respect to multiplication. To see this, let u =
(@gs --+»> Ay ...) and v =(by, ..., b, ...) be two elements of D[x]. By the
definition of product, the product of two polynomials is a sequence. To prove
that this sequence is a polynomial, we need only to show that it has at most a
finite number of nonzero terms. If either u or v is the zero polynomial, then from
the definition of product, it is clear that uv is also zero and hence is an element of
D[x]. Suppose that neither u nor v is zero, then each has a degree. (By definition,
every nonzero polynomial has finite degree.) By Theorem 7-1 the product uv has
degree equal to the sum of the degrees of u and v, a finite integer. But this
statement is equivalent to saying that the sequence for uv has only a finite number
of nonzero terms. Hence the sequence for uv represents a polynomial, and
uve D[x]. This means that D[x] is closed with respect to multiplication.

Next, in order to show that D[x] is a ring, we will prove the associative law
of multiplication and the distributive laws. Let u = (ag, ..., 4a, ...), v =
(bgs ---» by ...), and w=(cg, ..., Cp -..) by any three elements of D[x]. In
each of the following proofs, remember that the coefficients which are written
are the zeroth and the nth terms. Thus the general formula for the nth term in
each product or sum appears in the notation representing that product or sum.
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u(ow) = (Ao, + -5 Gy - )[(Bos -« by oo ) (Cos v e s Cpy -+ )]

=(@gs s Gy - ) (boCos -5 X bici .. ) by definition of - in D[x],
j+k=n
= (agbocos ..., 2 abic, ... by definition of - in D[],
i+j+k=n
Similarly,
(uo)w = [(agy -+ Ay - - ) Bos - s By - - )] (Cop + o s Cpp + - -)
= (aobg, - s X abj..) (Cor-vnsCpp--) by definition of - in D[x],
i+j=n
= (aoboco, ces X abi, .. ) by definition of - in D[x].
i+j+k=n

Now, since both u(vw) and (uv)w equal the same thing, they are equal. This
follows from the symmetric and transitive properties of equality. Hence the
associative law of multiplication holds in D[x].

In order to prove the left-distributive law, we consider u, v, and w as in the
preceding paragraph. Then,
u + w)y = (ags - sy - VB -+ s by o) + (Cos -+ s Cpp -+ -)]

=(Ags «++» Ay ... )bg + Cos o .. by + Cpy .. .)
by definition of + in D[x],

= <ao[b0 +cgseoen Xoaibj+cy, .. ) by definition of - in D[x],

it+j=n.

agby + agco, ..., X (ab; + acc),.. ) by distributive law in D,

i+j=n

= <a0bo + agCo, ..., X abj+ X ac .. ) by Theorem 7-4,

i+j=n i+j=n

= aobo, ceey Z a,-bj, “ee + aOCO’ ce ey Z aiCj, . e
i+j=n i+j=n

by definition of + in D[x],
=(Ags -++» A - )bgy -+ s by .. .) .
F(Ags sy o )(Cos vy Cpy - t) by definition of - in D[x],
= uv + uw.
This establishes the left-distributive law of multiplication over addition in D[x],

and the right-distributive law follows from the fact that multiplication is com-
mutative, as we will show next.
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Let u and v be arbitrary elements of D[x], as in the preceding paragraphs.
Then,

uv = (aOa -~'san9 . )(bO’ .. 7bm
<a0b0, , a:b;, ) by definition of multiplication in D[x],
x+1 n
= (boao, o X b, > by the commutative law in D,
i+j=n
(bo» , by, .. )(ao, , Ay, - by definition of multiplication in D[ x],

This shows that multiplication is commutative in D[x]. With this, we have
completed the proof that D[x] is a commutative ring.

The unity in D[x] is 1 = (1,0, ..,0,...), since for any t = (dg, .. .,d,, ...)
in D[x],1t =(1,0,...,0,...)dg, ...,dy ...) =(dg ...,d, ...) by definition of
multiplication in D[x]. Note that for any coefficient in the product of these
polynomials, the formula for multiplication gives a sum of products a;b;, but in
this case, each such product is zero except the first. That is, Z,, ;_, a;b; reduces
to 1 b, for the nth coefficient in 1t.

Finally, we need to show that D[x] has no zero divisors. To show this, we
will use the notion of the degree of a polynomial. In Theorem 7-1, we proved
that the degree of the product of two polynomials is the sum of their respective
degrees. Recall, also, that a polynomial is zero if and only if it has no degree.
Consider any two nonzero polynomials in D[x] having degrees s and ¢, respec-
tively. The product of these polynomials has degree s + t, and hence cannot be
zero. This means that D[x] has no zero divisors. With this, the proof that
D[x] is an integral domain is complete.

The next theorem answers the question as to whether or not D[x] may be a
field. Note that the proof does not depend on whether or not D is also a field.

Theorem 7-8 The polynomial domain D[x] is not a field for any integral
domain D.

To prove that D[x] is not a field, we need only to exhibit a single nonzero
element of D[x] which has no multiplicative inverse. We will prove an even
stronger statement which will be useful later. No element of D[x] which has
degree greater than zero has an inverse. Clearly, there are elements in D [x]
such as (0, 1,0,...,0,...). Let v be any element in D[x] of degree greater than
zero. If v has an inverse, it is not the zero polynomial, since the product of v with
the zero polynomial gives zero and not the identity of D[x]. Suppose, then,
that v’ is any nonzero element of D[x]. The product vv’ has degree greater than
zero, since the degree of the product is the sum of the degrees of the factors. The
unity element, (1,0, ..., 0, ...), of D[x] has degree zero, and hence vv’ is not the
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unity of D[x]. That is, v’ is not the inverse of v. Now since v’ was an arbitrary
element of D[x] other than zero, v has no inverse in D[x]. This proves that
D[x] is not a field, no matter what the integral domain D may be.

Corollary. No element of the polynomial domain D[x], for an integral domain
D, has an inverse if the degree of the element is greater than zero.

It is true, of course, that the integral domain D[x] may be extended to a field
of quotients, by the method described in Section 6-5. We have no particular
need to make this extension. We will consider division of polynomials in a way
which does not involve this field directly. This treatment will be delayed until
later, when the division algorithm for polynomials is discussed.

EXERCISES

For the polynomials in the exercises of this set, as previously, all coefficients not specifically
given are to be considered as zero.

1. Given the polynomial u = (3,1,2,4,0, ...), find —u and check the sum u + (—u) to
show that it is the zero polynomial in each of the following cases:
a) assuming u € Z[x], where Z is the set of integers;

b) assuming u € Z;[x], where Z; is the set of integers modulo 5;
c) assuming u € Z,,[x], where Z, is the set of integers modulo 11.

2. Given that u = (3,4,0,2,0,...)and v = (0,2,3,0,1,0, ...), show that uv = vu by direct
computation:

a) assuming that u and v are polynomials in Z[x];
b) assuming that u and v are polynomials in Zs[x].

3. Let u=(3,4,0,2,0,...) and e =(1,0,...,0,...). Check by direct computation that
eu =ue=1u
a) assuming that u and e are polynomials in Z[x];

b) assuming that u and e are polynomials in Z[x].

4. Let u=(2,0,—4,1,0,...), v=(0,—3,0,...),and w = (—1,0,0,2,0, ...) be considered
as polynomials in Z[x]. Check by direct computation that these polynomials satisfy
each of the following identities.

Au+@+w=u+v)+w b) u(vw) = (uv)w
c) u( + w) = uv + uw d) (u + o)w =uw + ow

5. Let u=(3,0,0,2,0,...), v=1(0,1,2,0,...), and w=(0,0,4,0,...) be considered as
polynomials in Zs[x]. Check by direct computation that these polynomials satisfy
each of the following identities.

Au+@+w=u+v)+w b) u(ow) = (uv)w
c) ulv +w)=uv + uw d) (u+ v)w = uw + vw

6. Let u=(,0,2,0,...), v=(0,2 — 3i,0,...), and w=(§, 1 + 5i,0,...) be considered

as polynomials in S[x], where S is the field given in Exercise 2 of Section 6-5. That is,

the coefficients of u, v, and w are complex numbers, where i2 = —1. Check by direct
computation that these polynomials satisfy each of the following identities.
A u+@+w=@wu+0v)+w b) u(vw) = (uv)w

c) u(v + w) =uv + uw d) (u+ v)w = uw + ow
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7. Find a nonzero element in D[x] for an arbitrary integral domain D which has no inverse.
Do not use the example in the text, namely. (0, 1,0, ...,0,...). Prove that your answer
is correct.

8. Let D be a field and let S be the subset of D[x] consisting of all polynomials which have
degree zero or no degree. Thatis, S = {(a,0, ...,0,...) | ae D}. Prove that each non-
zero polynomial in S has an inverse in S. Note that these are the only polynomials in
D[x] which have inverses, according to the corollary to Theorem 7-8.

7-4 D AS A SUBSET OF D|[x]

In this section, we will justify the contention made earlier that D[x] is an extension
of the integral domain D. While D is not actually a subset of D[x], there is a set
D’ isomorphic to D which is a subset of D[x]. It is in this sense that we use the
word “extension.” Recall a similar circumstance in the extension of the integers
to the set of rational numbers.

Let D be an arbitrary integral domain, and denote by D’ the set of all poly-
nomials in D[ x] whose coefficients are all zero except for the constant term, which
may be either zero or nonzero. That is,

D' = {(a,,0,...,0,...)|ao€eD}.
We refer to D’ as the set of constant polynomials in D[x].

Theorem 7-9. If D is an integral domain and D’ is the set of constant poly-
nomials in D[x], then D’ is isomorphic to D.

To prove this theorem, we need to find a one-to-one mapping from D’ onto D
which preserves the operations of addition and multiplication. For this purpose,
define the mapping 7 from D’ into D by t(ag, 0, ..., 0, ...) = a,, for each constant
polynomial (a,, 0, ...,0,...)in D'. The mapping 7 is one-to-one from D’ onto D,
since, for each element x € D, there is one and only one constant polynomial having
x as its zeroth coefficient, and for each constant polynomial (y,0,...,0,...),
y is a unique element of D.

Now, in order to prove that operations are preserved by 7, we consider any
two elements in D', say u = (4,0,...,0,...) and v = (b,0,...,0,...). Then,

U+ v) = 1[(a,0,...,0,...) + (b,0,...,0,...)]

=1(a + b,0,...,0,...) by definition of + in
D[x],

=a+b by definition of z,

= 1(a,0,...,0,...) + 7(b,0,...,0,...) by definition of 1,

= t(u) + t(v).

Similarly, we consider the image of the product uv, noting that the product of
two constant polynomials is also a constant polynomial whose zeroth term is the
product of the zeroth terms of the two factors.
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‘c(uu):'r[(a,o,...,o, ...)(b,0, ...,0,...)]

= 1(ab,0,...,0,...) by definition of product in
D[x],

=ab by definition of t,

=1(a,0,...,0,...)1(0,0,...,0,...) by definition of ,

= t(u)t(v).

Thus we have shown that t preserves the operations of addition and multiplica-
tion. This completes the proof that t is an isomorphism and hence that D’ is
isomorphic to D.

As we have said before, when two mathematical systems are isomorphic, they
differ only in notation. Hence it would make sense to denote each symbol
(x,0,...,0,...) for an element of D’ by the symbol x. In the next section we
will make this replacement and also reduce the symbol for a general element of
D[x] to a new symbol more easily recognizable as related to elementary algebra.

EXERCISES

1. List all polynomials of degree two or less in Z,[x].
2. Prove that if D is a field, then the subset D’ of D[x] given by
D' = {(a,0,...,0,...)|aeD}

is a field. (That is, D' is the set of constant polynomials in D[x].)

3. Let D be an integral domain, and define the subset S of D[x] by
S ={0,4,0,...,0,...)|aeD}.
Let the mapping p of S onto D be defined by
0(0,a,0,...,0,...) =aforeach (0,4,0,...,0,...)in S.
Prove that p is not an isomorphism of S onto D. (This suggests the fact the set D" in The-

orem 7-9 is the only subset of D[x] isomorphic to D.)

4. Let D' be the subset of D[x] defined in Theorem 7-9 for an integral domamn D. Sup-
pose that ¢ is an isomorphism of D onto D. (Note that although the domain and the
range of ¢ are the same set, ¢ need not be the identity mapping.) If 7 is the mapping
of Theorem 7-9, prove ot is an isomorphism of D’ onto D, where the mapping o7 is
defined by at(x) = o(z(x)) for each xe D'. (This problem correctly suggests that there
may be more than one mapping of D' onto D which is an isomorphism.)

7-5 THE INDETERMINATE x

We have discussed the polynomial domain D[x] for an integral domain D in a
way which shows clearly what a polynomial is. The set D[x] is an extension of
D to a larger integral domain with elements that are quite different from those
of D. Operations in D[x] are defined in terms of operations in D, but they are
new operations. The notation used up to now has helped in keeping the systems
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D and D[ x] separate as we investigated properties of D[x]. However, this notation
is not used (and probably should never be used) in high school or college freshman
* courses dealing with polynomials. If our work is to help in the reader’s understand-
ing of elementary algebra, it is necessary to show how our polynomials are related
to those he has met in earlier courses.

As a first step in this direction, we have pointed out in Section 7-4 that the
constant polynomials may be written more simply as elements of D, since D is
isomorphic to the set. We will agree, then, that for each ae D, we will write
a=1(a0,...,0,...).

As the next step, we define the symbol x to be the polynomial

(0,1,0,...,0,...).

That is, x is to be the name for the specific polynomial in D[x] which has 1 as
its first coefficient and 0 for all other coefficients, including the zeroth coefficient.
We write

x=1(0,1,0,...,0,...).

Theorem 7-10. If x = (0,1,0,...,0,...) in the polynomial domain D[x],
then x> =(0,0,1 0,...) and, in general, for each positive integer n, x" =
(Cor---»Cp--.), Wwhere ¢, = 1 and ¢; = 0 for all integers i # n.

The proof of the theorem is by induction on n. If n =1, then x! = x =
0,1,0,...,0,...), by definition, and the-theorem clearly holds in this case.
Assume next that the theorem holds when n = k (the induction hypothesis). That
is, x* = (cgy...,Cp...), where ¢, = 1 and ¢; = O for all i # k. Then,

Xt = xfx = (cy. . or Cpp- - )(0,1,0,...,0,...) =(dgy ... dp...),

where d,, d,, ... are yet to be determined. If we denote x by (xq,...,X,,...),
then we can say that x, = 1 and x; = O for all i # 1. The formula for multi-
plication gives d, = X;,;-, ¢;x;. Since ¢, = 1, while all ¢; = 0 for i # k, and
x; = 1, while all x; = 0 for j # 1, the only product ¢;x; which is nonzero is the
product ¢, x,, and this product is 1. But ¢, X, appears only in the summation
for dy,,. Thus, d,,, =1, while d, =0 for all n # k + 1. That is, x**! is
that polynomial whose (k + 1)-coefficient is 1 and all others are zero. This
establishes the theorem for the case n = k + 1, and by the principle of mathe-
matical induction, the theorem is valid for all positive integers n.

We are now ready to formulate the theorem which allows us to write a poly-
nomial in the form usually encountered in elementary courses in algebra.

Theorem 7-11. If (aq,. .., a,,...) is a polynomial of degree k in D[x] for an
integral domain D, then

(Ags -+ v s Apy -+ .) = g + a1X + ayx* +- -+ axk,

where x = (0,1,0,...,0,...)andu = 4,0,...,0,...)for eachueD.
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To prove this theorem, we will show first that the product a,x™ for 0 <m <k
is a polynomial whose mth coefficient is a,,, with all other coefficients zero. This
follows directly from the definition of multiplication of polynomials, since the
only nonzero coefficient in a, = (a,, 0,...,0,...) is the zeroth coefficient a,,
and the only nonzero coefficient in x™ is the mth coefficient, which is 1. Hence
the only nonzero coefficient in the product will be the one involving a,, - 1. This
is the mth coefficient of the product. That is, a,x™ = (by,...,b,,...), where
b, = a, and b, = 0 for all i # m. Now, since (agp,...,a,,...) is of degree k,
all coefficients a; for i > k are zero. The sum a, + a,x + - + a,x* is now
clearly equal to (aq, - . ., a,, - . .), since to add two or more polynomials, we merely
add corresponding coefficients. With this, the proof is complete.

Example 7-10. Consider the polynomial (2, 3,0, 4,0,...) in Z[x]. By Theorem
7-10, x> = (0,0, 1, 0,...,0,...)and x> =(0,0,0, 1,0,...,0,...). Then

24 3x +0x2 +4x3 =(2,0,...) + (3,0,...)0,1,0,...)
+(0,...)(0,0,1,0,...)
+(4,0,...)(0,0,0,1,0,...)

=(2,0,...)+(0,3,0,...) + (0,...)
+(0,0,0,4,0,...)
=(2,3,0,4,0,...).

Each step above resulted from direct computation by definitions of operations
in Z[x]. In each polynomial all nonzero coefficients are written explicitly. This
illustrates the content of Theorem 7-11 in a specific numerical case. The general
proof given for the theorem depends only upon the same computational pro-
cedures.

Since we have introduced the familiar notation for polynomials, which we
will use from now on, it is well to point out some of the common errors that are
made in the use of the notation. First, since the expression ay, + a;x + **-
+ a,x" involves letters a;, which represent elements of D, and the letter x, which
looks much like a symbol for an element of D, it is easy to believe that the
operations of addition and multiplication appearing in the expression are the
operations of D. This is not the case. The reader should remember that ad-
dition and multiplication in this expression are operations in D[x], not in D.
Further, the symbol x does not represent an element of D, but is a special poly-
nomial in D[x]. The symbols in ao + a;x + - + a,x" represent elements of
a new and larger mathematical system which extends D. For proofs of theo-
rems about polynomials, we must rely on known properties of D[x] rather than
those of D. If these facts are kept clearly in mind, many of the common errors
in treating polynomials would be avoided.

A final comment is in order. If we should write the equation 2 + 3x = 0,
the only interpretation possible at the present stage is that this equation implies
that 2 =0 and 3 =0. The term 2 + 3x is an abbreviation for the polynomial
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(2,3,0,...), and 0 is an abbreviation for the zero polynomial (0,0,...). Hence
we have stated that (2,3,0,...) =(0,0,...). From the definition of equality of
polynomials, this means that 2 = 0 and 3 = 0. If 2 and 3 are integers, as they
appear to be, this is absurd.

On the other hand, we often write equations such as

x2—1=(x+ (x—-1),

where the meaning is exactly what our treatment gives. This equation can be
rewritten as

(-1,0,1,0,...)=(1,1,0,...)3(—1,1,0,...).
A careful check reveals that this