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Preface

As technology advances, so does our need to understand and characterize it.

This is one of the traditional roles of mathematics, and in the latter half of

the twentieth century no area of mathematics has been more successful in this

endeavor than that of linear algebra. The elements of linear algebra are the

essential underpinnings of a wide range of modern applications, from mathemat-

ical modeling in economics to optimization procedures in airline scheduling and

inventory control. Linear algebra furnishes today’s analysts in business, engin-

eering, and the social sciences with the tools they need to describe and define the

theories that drive their disciplines. It also provides mathematicians with com-

pact constructs for presenting central ideas in probability, differential equations,

and operations research.

The second edition of this book presents the fundamental structures of linear

algebra and develops the foundation for using those structures. Many of the

concepts in linear algebra are abstract; indeed, linear algebra introduces students

to formal deductive analysis. Formulating proofs and logical reasoning are skills

that require nurturing, and it has been our aim to provide this.

Much care has been taken in presenting the concepts of linear algebra in an

orderly and logical progression. Similar care has been taken in proving results

with mathematical rigor. In the early sections, the proofs are relatively simple,

not more than a few lines in length, and deal with concrete structures, such as

matrices. Complexity builds as the book progresses. For example, we introduce

mathematical induction in Appendix A.

A number of learning aides are included to assist readers. New concepts are

carefully introduced and tied to the reader’s experience. In the beginning, the

basic concepts of matrix algebra are made concrete by relating them to a store’s

inventory. Linear transformations are tied to more familiar functions, and vector

spaces are introduced in the context of column matrices. Illustrations give

geometrical insight on the number of solutions to simultaneous linear equations,

vector arithmetic, determinants, and projections to list just a few.

Highlighted material emphasizes important ideas throughout the text. Compu-

tational methods—for calculating the inverse of a matrix, performing a Gram-

Schmidt orthonormalization process, or the like—are presented as a sequence of

operational steps. Theorems are clearly marked, and there is a summary of

important terms and concepts at the end of each chapter. Each section ends

with numerous exercises of progressive difficulty, allowing readers to gain

proficiency in the techniques presented and expand their understanding of the

underlying theory.
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Chapter 1 begins with matrices and simultaneous linear equations. The matrix is

perhaps the most concrete and readily accessible structure in linear algebra, and

it provides a nonthreatening introduction to the subject. Theorems dealing with

matrices are generally intuitive, and their proofs are straightforward. The

progression from matrices to column matrices and on to general vector spaces

is natural and seamless.

Separate chapters on vector spaces and linear transformations follow the mater-

ial on matrices and lay the foundation of linear algebra. Our fourth chapter deals

with eigenvalues, eigenvectors, and differential equations. We end this chapter

with a modeling problem, which applies previously covered material. With the

exception of mentioning partial derivatives in Section 5.2, Chapter 4 is the only

chapter for which a knowledge of calculus is required. The last chapter deals with

the Euclidean inner product; here the concept of least-squares fit is developed in

the context of inner products.

We have streamlined this edition in that we have redistributed such topics as the

Jordan Canonical Form and Markov Chains, placing them in appendices. Our

goal has been to provide both the instructor and the student with opportunities

for further study and reference, considering these topics as additional modules.

We have also provided an appendix dedicated to the exposition of determinants,

a topic which many, but certainly not all, students have studied.

We have two new inclusions: an appendix dealing with the simplex method and

an appendix touching upon numerical techniques and the use of technology.

Regarding numerical methods, calculations and computations are essential to

linear algebra. Advances in numerical techniques have profoundly altered the

way mathematicians approach this subject. This book pays heed to these

advances. Partial pivoting, elementary row operations, and an entire section on

LU decomposition are part of Chapter 1. The QR algorithm is covered in

Chapter 5.

With the exception of Chapter 4, the only prerequisite for understanding this

material is a facility with high-school algebra. These topics can be covered in any

course of 10 weeks or more in duration. Depending on the background of the

readers, selected applications and numerical methods may also be considered in a

quarter system.

We would like to thank the many people who helped shape the focus and content

of this book; in particular, Dean John Snyder and Dr. Alfredo Tan, both of

Fairleigh Dickinson University.

We are also grateful for the continued support of the Most Reverend John

J. Myers, J.C.D., D.D., Archbishop of Newark, N.J. At Seton Hall University

we acknowledge the Priest Community, ministered to by Monsignor James M.

Cafone, Monsignor Robert Sheeran, President of Seton Hall University,

Dr. Fredrick Travis, Acting Provost, Dr. Joseph Marbach, Acting Dean of the

College of Arts and Sciences, Dr. Parviz Ansari, Acting Associate Dean of

the College of Arts and Sciences, and Dr. Joan Guetti, Acting Chair of the
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Department of Mathematics and Computer Science and all members of that

department. We also thank the faculty of the Department of Mathematical

Sciences at the United States Military Academy, headed by Colonel Michael

Phillips, Ph.D., with a special thank you to Dr. Brian Winkel.

Lastly, our heartfelt gratitude is given to Anne McGee, Alan Palmer, and Tom

Singer at Academic Press. They provided valuable suggestions and technical

expertise throughout this endeavor.
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Chapter 1

Matrices

1.1 BASIC CONCEPTS

We live in a complex world of finite resources, competing demands, and infor-

mation streams that must be analyzed before resources can be allocated fairly to

the demands for those resources. Any mechanism that makes the processing of

information more manageable is a mechanism to be valued.

Consider an inventory of T-shirts for one department of a large store. The

T-shirt comes in three different sizes and five colors, and each evening, the

department’s supervisor prepares an inventory report for management. A para-

graph from such a report dealing with the T-shirts is reproduced in Figure 1.1.

Figure 1.1

T-shirts

Nine teal small and five teal medium; eight
plum small and six plum medium; large sizes
are nearly depleted with only three sand, one
rose, and two peach still available; we also
have three medium rose, five medium sand,
one peach medium, and seven peach small.

Figure 1.2

S ¼

Rose Teal Plum Sand Peach

0 9 8 0 7 small

3 5 6 5 1 medium

1 0 0 3 2 large

2
4

3
5

1



This report is not easy to analyze. In particular, one must read the entire

paragraph to determine the number of sand-colored, small T-shirts in current

stock. In contrast, the rectangular array of data presented in Figure 1.2 sum-

marizes the same information better. Using Figure 1.2, we see at a glance that no

small, sand-colored T-shirts are in stock.

A matrix is a rectangular array of elements arranged in horizontal rows and

vertical columns. The array in Figure 1.1 is a matrix, as are

L ¼
1 3

5 2

0 �1

2
4

3
5, (1:1)

M ¼
4 1 1

3 2 1

0 4 2

2
4

3
5; (1:2)

and

N ¼
19:5

�pffiffiffi
2
p

2
64

3
75: (1:3)

The rows and columns of a matrix may be labeled, as in Figure 1.1, or not

labeled, as in matrices (1.1) through (1.3).

The matrix in (1.1) has three rows and two columns; it is said to have order (or

size) 3� 2 (read three by two). By convention, the row index is always given

before the column index. The matrix in (1.2) has order 3� 3, whereas that in

(1.3) has order 3� 1. The order of the stock matrix in Figure 1.2 is 3� 5.

The entries of a matrix are called elements. We use uppercase boldface letters to

denote matrices and lowercase letters for elements. The letter identifier for an

element is generally the same letter as its host matrix. Two subscripts are

attached to element labels to identify their location in a matrix; the first subscript

specifies the row position and the second subscript the column position. Thus, l12

denotes the element in the first row and second column of a matrix L; for the

matrix L in (1.2), l12 ¼ 3. Similarly, m32 denotes the element in the third row and

second column of a matrix M; for the matrix M in (1.3), m32 ¼ 4. In general,

a matrix A of order p� n has the form

A ¼

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

..

. ..
. ..

. . .
. ..

.

ap1 ap2 ap3 . . . apn

2
666664

3
777775 (1:4)

A matrix is a

rectangular array of

elements arranged

in horizontal rows

and vertical

columns.
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which is often abbreviated to [aij ]p�n or just [aij ], where aij denotes an element in

the ith row and jth column.

Any element having its row index equal to its column index is a diagonal element.

Diagonal elements of a matrix are the elements in the 1-1 position, 2-2 position,

3-3 position, and so on, for as many elements of this type that exist in a particular

matrix. Matrix (1.1) has 1 and 2 as its diagonal elements, whereas matrix (1.2)

has 4, 2, and 2 as its diagonal elements. Matrix (1.3) has only 19.5 as a diagonal

element.

A matrix is square if it has the same number of rows as columns. In general,

a square matrix has the form

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

..

. ..
. ..

. . .
. ..

.

an1 an2 an3 . . . ann

2
66666664

3
77777775

with the elements a11, a22, a33, . . . , ann forming the main (or principal)

diagonal.

The elements of a matrix need not be numbers; they can be functions or, as we

shall see later, matrices themselves. Hence

R1
0

(t2 þ 1)dt t3
ffiffiffiffiffi
3t
p

2

" #
,

sin u cos u

� cos u sin u

" #
,

and

x2 x

ex d
dx

ln x

5 xþ 2

2
64

3
75

are all good examples of matrices.

A row matrix is a matrix having a single row; a column matrix is a matrix having

a single column. The elements of such a matrix are commonly called its compon-

ents, and the number of components its dimension. We use lowercase boldface

1.1 Basic Concepts . 3



letters to distinguish row matrices and column matrices from more general

matrices. Thus,

x ¼
1

2

3

2
4
3
5

is a 3-dimensional column vector, whereas

u ¼ [ t 2t �t 0 ]

is a 4-dimensional row vector. The term n-tuple refers to either a row matrix or

a column matrix having dimension n. In particular, x is a 3-tuple because it has

three components while u is a 4-tuple because it has four components.

Two matrices A ¼ [aij] and B ¼ [bij] are equal if they have the same order and if

their corresponding elements are equal; that is, both A and B have order p� n

and aij ¼ bij (i ¼ 1, 2, 3, . . . , p; j ¼ 1, 2, . . . , n). Thus, the equality

5xþ 2y

x� y

" #
¼

7

1

" #

implies that 5xþ 2y ¼ 7 and x� 3y ¼ 1.

Figure 1.2 lists a stock matrix for T-shirts as

S ¼

Rose Teal Plum Sand Peach

0 9 8 0 7 small

3 5 6 5 1 medium

1 0 0 3 2 large

2
64

3
75

If the overnight arrival of new T-shirts is given by the delivery matrix

D ¼

Rose Teal Plum Sand Peach

9 0 0 9 0 small

3 3 3 3 3 medium

6 8 8 6 6 large

2
64

3
75

An n-tuple is a row

matrix or a column

matrix having

n-components.

Two matrices are

equal if they have

the same order and

if their corres-

ponding elements

are equal.
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then the new inventory matrix is

SþD ¼

Rose Teal Plum Sand Peach

9 9 8 9 7 small

6 8 9 8 4 medium

7 8 8 9 8 large

2
64

3
75

The sum of two matrices of the same order is a matrix obtained by

adding together corresponding elements of the original two matrices; that

is, if both A ¼ [aij] and B ¼ [bij] have order p� n, then

Aþ B ¼ [aij þ bij ] (i ¼ 1, 2, 3, . . . , p; j ¼ 1, 2, . . . , n). Addition is not defined for

matrices of different orders.

Example 1

5 1

7 3

�2 �1

2
4

3
5þ �6 3

2 �1

4 1

2
4

3
5 ¼ 5þ (� 6) 1þ 3

7þ 2 3þ (� 1)

�2þ 4 �1þ 1

2
4

3
5 ¼ �1 4

9 2

2 0

2
4

3
5,

and

t2 5

3t 0

� �
þ 1 �6

t �t

� �
¼ t2 þ 1 �1

4t �t

� �
:

The matrices

5 0

�1 0

2 1

2
4

3
5 and

�6 2

1 1

� �

cannot be added because they are not of the same order. &

" Theorem 1. If matrices A, B, and C all have the same order, then

(a) the commutative law of addition holds; that is,

Aþ B ¼ Bþ A,

(b) the associative law of addition holds; that is,

Aþ (Bþ C) ¼ (Aþ B)þ C: 3

The sum of two

matrices of the same

order is the matrix

obtained by adding

together

corresponding

elements of the

original two

matrices.
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Proof: We leave the proof of part (a) as an exercise (see Problem 38). To prove

part (b), we set A ¼ [aij ], B ¼ [bij ], and C ¼ [cij]. Then

Aþ (Bþ C) ¼ [aij ]þ [bij ]þ [cij]
� �

¼ [aij ]þ [bij þ cij] definition of matrix addition

¼ [aij þ (bij þ cij)] definition of matrix addition

¼ [(aij þ bij)þ cij] associative property of regular addition

¼ [(aij þ bij)]þ [cij ] definition of matrix addition

¼ [aij ]þ [bij ]
� �

þ [cij] definition of matrix addition

¼ (Aþ B)þ C &

We define the zero matrix 0 to be a matrix consisting of only zero elements.

When a zero matrix has the same order as another matrix A, we have the

additional property

Aþ 0 ¼ A (1:5)

Subtraction of matrices is defined analogously to addition; the orders of the

matrices must be identical and the operation is performed elementwise on all

entries in corresponding locations.

Example 2

5 1

7 3

�2 �1

2
4

3
5� �6 3

2 �1

4 1

2
4

3
5 ¼ 5� (� 6) 1� 3

7� 2 3� (� 1)

�2� 4 �1� 1

2
4

3
5 ¼ 11 �2

5 4

�6 �2

2
4

3
5 &

Example 3 The inventory of T-shirts at the beginning of a business day is given

by the stock matrix

S ¼

Rose Teal Plum Sand Peach

9 9 8 9 7 small

6 8 9 8 4 medium

7 8 8 9 8 large

2
4

3
5

The difference

A � B of two

matrices of the same

order is the matrix

obtained by

subtracting from the

elements of A the

corresponding

elements of B.
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What will the stock matrix be at the end of the day if sales for the day are five

small rose, three medium rose, two large rose, five large teal, five large plum, four

medium plum, and one each of large sand and large peach?

Solution: Purchases for the day can be tabulated as

P ¼

Rose Teal Plum Sand Peach

5 0 0 0 0 small

3 0 4 0 0 medium

2 5 5 1 1 large

2
4

3
5

The stock matrix at the end of the day is

S� P ¼

Rose Teal Plum Sand Peach

4 9 8 9 7 small

3 8 5 8 4 medium &

5 3 3 8 7 large

2
4

3
5

A matrix A can always be added to itself, forming the sum Aþ A. If A tabulates

inventory, Aþ A represents a doubling of that inventory, and we would like

to write

Aþ A ¼ 2A (1:6)

The right side of equation (1.6) is a number times a matrix, a product known as

scalar multiplication. If the equality in equation (1.6) is to be true, we must define

2A as the matrix having each of its elements equal to twice the corresponding

elements in A. This leads naturally to the following definition: If A ¼ [aij] is

a p� n matrix, and if l is a real number, then

lA ¼ [laij] (i ¼ 1, 2, . . . , p; j ¼ 1, 2, . . . , n) (1:7)

Equation (1.7) can also be extended to complex numbers l, so we use the term

scalar to stand for an arbitrary real number or an arbitrary complex number

when we need to work in the complex plane. Because equation (1.7) is true for all

real numbers, it is also true when l denotes a real-valued function.

Example 4

7

5 1

7 3

�2 �1

2
4

3
5 ¼ 35 7

49 21

�14 �7

2
4

3
5 and t

1 0

3 2

� �
¼ t 0

3t 2t

� �
&

Example 5 Find 5A� 1
2
B if

A ¼ 4 1

0 3

� �
and B ¼ 6 �20

18 8

� �

The product of a

scalar l by a matrix

A is the matrix

obtained by

multiplying every

element of A by l.
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Solution:

5A� 1

2
B ¼ 5

4 1

0 3

" #
� 1

2

6 �20

18 8

" #

¼
20 5

0 15

" #
�

3 �10

9 4

" #
¼

17 15

�9 11

" #
&

" Theorem 2. If A and B are matrices of the same order and if l1 and l2

denote scalars, then the following distributive laws hold:

(a) l1(Aþ B) ¼ l1Aþ l2B

(b) (l1 þ l2)A ¼ l1Aþ l2A

(c) (l1l2)A ¼ l1(l2A) 3

Proof: We leave the proofs of (b) and (c) as exercises (see Problems 40 and 41).

To prove (a), we set A ¼ [aij] and B ¼ [bij ]. Then

l1(Aþ B) ¼ l1([aij ]þ [bij])

¼ l1[(aij þ bij)] definition of matrix addition

¼ [l1(aij þ bij)] definition of scalar multiplication

¼ [(l1aij þ l1bij)] distributive property of scalars

¼ [l1aij ]þ [l1bij] definition of matrix addition

¼ l1[aij ]þ l1[bij] definition of scalar multiplication

¼ l1Aþ l1B &

8 . Matrices



Problems 1.1

(1) Determine the orders of the following matrices:

A ¼
1 2

3 4

� �
, B ¼

5 6

7 8

� �
, C ¼

�1 0

3 �3

� �
,

D ¼

3 1

�1 2

3 �2

2 6

2
6664

3
7775, E ¼

�2 2

0 �2

5 �3

5 1

2
6664

3
7775, F ¼

0 1

�1 0

0 0

2 2

2
6664

3
7775,

G ¼
1=2 1=3 1=4

2=3 3=5 �5=6

� �
, H ¼

ffiffiffi
2
p ffiffiffi

3
p ffiffiffi

5
pffiffiffi

2
p ffiffiffi

5
p ffiffiffi

2
pffiffiffi

5
p ffiffiffi

2
p ffiffiffi

3
p

2
64

3
75,

J ¼ 0 0 0 0 0½ �:

(2) Find, if they exist, the elements in the 1-2 and 3-1 positions for each of the matrices

defined in Problem 1.

(3) Find, if they exist, a11, a21, b32, d32, d23, e22, g23, h33, and j21 for the matrices

defined in Problem 1.

(4) Determine which, if any, of the matrices defined in Problem 1 are square.

(5) Determine which, if any, of the matrices defined in Problem 1 are row matrices and

which are column matrices.

(6) Construct a 4-dimensional column matrix having the value j as its jth component.

(7) Construct a 5-dimensional row matrix having the value i2 as its ith component.

(8) Construct the 2� 2 matrix A having aij ¼ (� 1)iþj .

(9) Construct the 3� 3 matrix A having aij ¼ i=j.

(10) Construct the n� n matrix B having bij ¼ n� i � j. What will this matrix be when

specialized to the 3� 3 case?

(11) Construct the 2� 4 matrix C having

dij ¼
i when i ¼ 1

j when i ¼ 2

(

(12) Construct the 3� 4 matrix D having

dij ¼
i þ j when i > j

0 when i ¼ j

i � j when i < j

8><
>:

1.1 Basic Concepts . 9



In Problems 13 through 30, perform the indicated operations on the matrices defined in

Problem 1.

(13) 2A. (14) �5A. (15) 3D. (16) 10E.

(17) �F. (18) Aþ B. (19) Cþ A. (20) Dþ E.

(21) Dþ F. (22) AþD. (23) A� B. (24) C� A.

(25) D� E. (26) D� F. (27) 2Aþ 3B. (28) 3A� 2C.

(29) 0:1Aþ 0:2C. (30) �2Eþ F.

The matrices A through F in Problems 31 through 36 are defined in Problem 1.

(31) Find X if Aþ X ¼ B.

(32) Find Y if 2Bþ Y ¼ C.

(33) Find X if 3D� X ¼ E.

(34) Find Y if E� 2Y ¼ F.

(35) Find R if 4Aþ 5R ¼ 10C.

(36) Find S if 3F� 2S ¼ D.

(37) Find 6A� uB if

A ¼
u2 2u� 1

4 1=u

" #
and B ¼

u2 � 1 6

3=u u2 þ 2uþ 1

" #
:

(38) Prove part (a) of Theorem 1.

(39) Prove that if 0 is a zero matrix having the same order as A, then Aþ 0 ¼ A.

(40) Prove part (b) of Theorem 2.

(41) Prove part (c) of Theorem 2.

(42) Store 1 of a three-store chain has 3 refrigerators, 5 stoves, 3 washing machines, and

4 dryers in stock. Store 2 has in stock no refrigerators, 2 stoves, 9 washing machines,

and 5 dryers; while store 3 has in stock 4 refrigerators, 2 stoves, and no washing

machines or dryers. Present the inventory of the entire chain as a matrix.

(43) The number of damaged items delivered by the SleepTight Mattress Company from

its various plants during the past year is given by the damage matrix

80 12 16

50 40 16

90 10 50

2
4

3
5

The rows pertain to its three plants inMichigan, Texas, and Utah; the columns pertain

to its regular model, its firm model, and its extra-firm model, respectively. The

company’s goal for next year is to reduce by 10% the number of damaged regular

mattresses shipped by each plant, to reduce by 20% the number of damaged firm

10 . Matrices



mattresses shipped by its Texas plant, to reduce by 30% the number of damaged

extra-firm mattresses shipped by its Utah plant, and to keep all other entries the

same as last year. What will next year’s damage matrix be if all goals are realized?

(44) On January 1, Ms. Smith buys three certificates of deposit from different institu-

tions, all maturing in one year. The first is for $1000 at 7%, the second is for $2000

at 7.5%, and the third is for $3000 at 7.25%. All interest rates are effective on

an annual basis. Represent in a matrix all the relevant information regarding

Ms. Smith’s investments.

(45) (a) Mr. Jones owns 200 shares of IBM and 150 shares of AT&T. Construct

a 1� 2 portfolio matrix that reflects Mr. Jones’ holdings.

(b) Over the next year, Mr. Jones triples his holdings in each company. What is his

new portfolio matrix?

(c) The following year, Mr. Jones sells shares of each company in his portfolio.

The number of shares sold is given by the matrix [ 50 100 ], where the first

component refers to shares of IBM stock. What is his new portfolio matrix?

(46) The inventory of an appliance store can be given by a 1� 4 matrix in which the first

entry represents the number of television sets, the second entry the number of air

conditioners, the third entry the number of refrigerators, and the fourth entry the

number of dishwashers.

(a) Determine the inventory given on January 1 by [ 15 2 8 6 ].

(b) January sales are given by [ 4 0 2 3 ]. What is the inventory matrix on

February 1?

(c) February sales are given by [ 5 0 3 3 ], and new stock added in February

is given by [ 3 2 7 8 ]. What is the inventory matrix on March 1?

(47) The daily gasoline supply of a local service station is given by a 1� 3 matrix in

which the first entry represents gallons of regular, the second entry gallons of

premium, and the third entry gallons of super.

(a) Determine the supply of gasoline at the close of business on Monday given by

[ 14, 000 8, 000 6, 000 ].

(b) Tuesday’s sales are given by [ 3,500 2,000 1,500 ]. What is the inventory

matrix at day’s end?

(c) Wednesday’s sales are given by [ 5,000 1,500 1,200 ]. In addition, the station

received a delivery of 30,000 gallons of regular, 10,000 gallons of premium, but

no super. What is the inventory at day’s end?

1.2 MATRIX MULTIPLICATION

Matrix multiplication is the first operation where our intuition fails. First, two

matrices are not multiplied together elementwise. Second, it is not always

possible to multiply matrices of the same order while often it is possible to

multiply matrices of different orders. Our purpose in introducing a new con-

struct, such as the matrix, is to use it to enhance our understanding of real-world

phenomena and to solve problems that were previously difficult to solve.

A matrix is just a table of values, and not really new. Operations on tables,

such as matrix addition, are new, but all operations considered in Section 1.1 are

natural extensions of the analogous operations on real numbers. If we expect to

1.2 Matrix Multiplication . 11



use matrices to analyze problems differently, we must change something, and

that something is the way we multiply matrices.

The motivation for matrix multiplication comes from the desire to solve systems

of linear equations with the same ease and in the same way as one linear equation

in one variable. A linear equation in one variable has the general form

[ constant ] � [ variable ] ¼ constant

We solve for the variable by dividing the entire equation by the multiplicative

constant on the left. We want to mimic this process for many equations in many

variables. Ideally, we want a single master equation of the form

package

of

constants

2
64

3
75 �

package

of

variables

2
64

3
75 ¼

package

of

constants

2
64

3
75

which we can divide by the package of constants on the left to solve for all the

variables at one time. To do this, we need an arithmetic of ‘‘packages,’’ first to

define the multiplication of such ‘‘packages’’ and then to divide ‘‘packages’’ to

solve for the unknowns. The ‘‘packages’’ are, of course, matrices.

A simple system of two linear equations in two unknowns is

2xþ 3y ¼ 10

4xþ 5y ¼ 20
(1:8)

Combining all the coefficients of the variables on the left of each equation into

a coefficient matrix, all the variables into column matrix of variables, and the

constants on the right of each equation into another column matrix, we generate

the matrix system

2 3

4 5

" #
�

x

y

" #
¼

10

20

" #
(1:9)

We want to define matrix multiplication so that system (1.9) is equivalent to

system (1.8); that is, we want multiplication defined so that

2 3

4 5

" #
�

x

y

" #
¼

(2xþ 3y)

(4xþ 5y)

" #
(1:10)
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Then system (1.9) becomes

(2xþ 3y)

(4xþ 5y)

� �
¼ 10

20

� �

which, from our definition of matrix equality, is equivalent to system (1.8).

We shall define the product AB of two matrices A and B when the number of

columns of A is equal to the number of rows of B, and the result will be a matrix

having the same number of rows as A and the same number of columns as B.

Thus, if A and B are

A ¼ 6 1 0

�1 2 1

� �
and B ¼

�1 0 1 0

3 2 �2 1

4 1 1 0

2
4

3
5

then the product AB is defined, because A has three columns and B has three

rows. Furthermore, the product AB will be 2� 4 matrix, because A has two rows

and B has four columns. In contrast, the product BA is not defined, because the

number of columns in B is a different number from the number of rows in A.

A simple schematic for matrix multiplication is to write the orders of the matrices

to be multiplied next to each other in the sequence the multiplication is to be

done and then check whether the abutting numbers match. If the numbers

match, then the multiplication is defined and the order of the product matrix is

found by deleting the matching numbers and collapsing the two ‘‘�’’ symbols

into one. If the abutting numbers do not match, then the product is not defined.

In particular, if AB is to be found for A having order 2� 3 and B having order

3� 4, we write

(2� 3) (3� 4) (1:11)

where the abutting numbers are distinguished by the curved arrow. These

abutting numbers are equal, both are 3, hence the multiplication is defined.

Furthermore, by deleting the abutting threes in equation (1.11), we are left

with 2� 2, which is the order of the product AB. In contrast, the product BA

yields the schematic

(3� 4) (2� 3)

where we write the order of B before the order of A because that is the order of

the proposed multiplication. The abutting numbers are again distinguished by

the curved arrow, but here the abutting numbers are not equal, one is 4 and the

other is 2, so the product BA is not defined. In general, if A is an n� r matrix and

The product of two

matrices AB is

defined if the

number of columns

of A equals the

number of rows

of B.
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B is an r� p matrix, then the product AB is defined as an n� p matrix. The

schematic is

(n� r) (r� p) ¼ (n� p) (1:12)

When the product AB is considered, A is said to premultiply B while B is said to

postmultiply A.

Knowing the order of a product is helpful in calculating the product. If A and B

have the orders indicated in equation (1.12), so that the multiplication is defined,

we take as our motivation the multiplication in equation (1.10) and calculate the

i-j element (i ¼ 1, 2, . . . , n; j ¼ 1, 2, . . . , p) of the product AB ¼ C ¼ [cij] by multi-

plying the elements in the ith row of A by the corresponding elements in the jth

row column of B and summing the results. That is,

a11 a12 . . . a1k

a21 a22 . . . a2k

..

. ..
. ..

. ..
.

an1 an2 . . . ank

2
6664

3
7775

b11 b12 . . . b1p

b21 b22 . . . b2p

..

. ..
. ..

. ..
.

bk1 bk2 . . . bkp

2
6664

3
7775 ¼

c11 c12 . . . a1p

c21 c22 . . . c2p

..

. ..
. ..

. ..
.

cn1 cn2 . . . cnp

2
6664

3
7775

where

cij ¼ ai1b1j þ ai2b2j þ ai3b3j þ � � � þ airbrj ¼
Xr

k¼1

aikbkj

In particular, c11 is obtained by multiplying the elements in the first row of A by

the corresponding elements in the first column of B and adding; hence

c11 ¼ a11b11 þ a12b21 þ a13b31 þ � � � þ a1rbr1

The element c12 is obtained by multiplying the elements in the first row of A by

the corresponding elements in the second column of B and adding; hence

c12 ¼ a11b12 þ a12b22 þ a13b32 þ � � � þ a1rbr2

The element c35, if it exists, is obtained by multiplying the elements in the third

row of A by the corresponding elements in the fifth column of B and adding;

hence

c35 ¼ a31b15 þ a32b25 þ a33b35 þ � � � þ a3rbr5

Example 1 Find AB and BA for

A ¼ 1 2 3

4 5 6

� �
and B ¼

�7 �8

9 10

0 �11

2
4

3
5

To calculate the i-j

element of AB, when

the multiplication is

defined, multiply the

elements in the ith

row of A by the

corresponding

elements in the jth

column of B and

sum the results.
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Solution: A has order 2� 3 and B has order 3� 2, so our schematic for the

product AB is

(2� 3) (3� 2)

The abutting numbers are both 3; hence the product AB is defined. Deleting both

abutting numbers, we have 2� 2 as the order of the product.

AB ¼
1 2 3

4 5 6

� � �7 �8

9 10

0 �11

2
64

3
75

¼
1(�7)þ 2(9)þ 3(0) 1(�8)þ 2(10)þ 3(�11)

4(�7)þ 5(9)þ 6(0) 4(�8)þ 5(10)þ 6(�11)

� �

¼
11 �21

17 �48

� �

Our schematic for the product BA is

(3� 2) (2� 3)

The abutting numbers are now both 2; hence the product BA is defined. Deleting

both abutting numbers, we have 3� 3 as the order of the product BA.

BA ¼
�7 �8

9 10

0 �11

2
64

3
75 1 2 3

4 5 6

� �

¼
(�7)1þ (�8)4 (�7)2þ (�8)5 (�7)3þ (�8)6

9(1)þ 10(4) 9(2)þ 10(5) 9(3)þ 10(6)

0(1)þ (�11)4 0(2)þ (�11)5 0(3)þ (�11)6

2
64

3
75

¼
�39 �54 �69

49 68 87

�44 �55 �66

2
64

3
75 &

Example 2 Find AB and BA for

A ¼
2 1

�1 0

3 1

2
4

3
5 and B ¼ 3 1 5 �1

4 �2 1 0

� �
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Solution: A has two columns and B has two rows, so the product AB is defined.

AB ¼
2 1

�1 0

3 1

2
64

3
75 3 1 5 �1

4 �2 1 0

� �

¼
2(3)þ 1(4) 2(1)þ 1(�2) 2(5)þ 1(1) 2(�1)þ 1(0)

�1(3)þ 0(4) �1(1)þ 0(�2) �1(5)þ 0(1) �1(�1)þ 0(0)

3(3)þ 1(4) 3(1)þ 1(�2) 3(5)þ 1(1) 3(�1)þ 1(0)

2
64

3
75

¼
10 0 11 �2

�3 �1 �5 1

13 1 16 �3

2
64

3
75

In contrast, B has four columns and A has three rows, so the product BA is not

defined. &

Observe from Examples 1 and 2 that AB 6¼ BA! In Example 1, AB is a 2� 2

matrix, whereas BA is a 3� 3 matrix. In Example 2, AB is a 3� 4 matrix, whereas

BA is not defined. In general, the product of two matrices is not commutative.

Example 3 Find AB and BA for

A ¼ 3 1

0 4

� �
and B ¼ 1 1

0 2

� �

Solution:

AB ¼
3 1

0 4

" #
1 1

0 2

" #

¼
3(1)þ 1(0) 3(1)þ 1(2)

0(1)þ 4(0) 0(1)þ 4(2)

" #

¼
3 5

0 8

" #

BA ¼
1 1

0 2

" #
3 1

0 4

" #

¼
1(3)þ 1(0) 1(1)þ 1(4)

0(3)þ 2(0) 0(1)þ 2(4)

" #

¼
3 5

0 8

" #
&

In general,

AB 6¼ BA.
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In Example 3, the products AB and BA are defined and equal. Although matrix

multiplication is not commutative, as a general rule, some matrix products are

commutative. Matrix multiplication also lacks other familiar properties besides

commutivity. We know from our experiences with real numbers that if the

product ab ¼ 0, then either a ¼ 0 or b ¼ 0 or both are zero. This is not true, in

general, for matrices. Matrices exist for which AB ¼ 0 without either A or B

being zero (see Problems 20 and 21). The cancellation law also does not hold for

matrix multiplication. In general, the equation AB ¼ AC does not imply that

B ¼ C (see Problems 22 and 23). Matrix multiplication, however, does retain

some important properties.

" Theorem 1. If A, B, and C have appropriate orders so that the following

additions and multiplications are defined, then

(a) A(BC) ¼ (AB)C (associate law of multiplication)

(b) A(Bþ C) ¼ ABþ AC (left distributive law)

(c) (Bþ C)A ¼ BAþ CA (right distributive law) 3

Proof: We leave the proofs of parts (a) and (c) as exercises (see Problems 37

and 38). To prove part (b), we assume that A ¼ [aij ] is an m� n matrix and both

B ¼ [bij ] and C ¼ [cij ] are n� p matrices. Then

A(Bþ C) ¼ [aij] [bij]þ [cij ]
� �

¼ [aij] (bij þ cij)
� �

definition of matrix addition

¼
Xn

k¼1

aik bkj þ ckj

�
)

" #
definition of matrix multiplication

¼
Xn

k¼1

aikbkj þ aikckj

�
)

" #

¼
Xn

k¼1

aikbkj þ
Xn

k¼1

aikckj

" #

¼
Xn

k¼1

aikbkj

" #
þ

Xn

k¼1

aikckj

" #
definition of matrix addition

¼ [aij][bij]þ [aij ][cij ] definition of matrix multiplication &
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With multiplication defined as it is, we can decouple a system of linear equations

so that all of the variables in the system are packaged together. In particular, the

set of simultaneous linear equations

5x� 3yþ 2z ¼ 14

xþ y� 4z ¼ �7

7x�3z ¼ 1

(1:13)

can be written as the matrix equation Ax ¼ b where

A ¼
5 �3 2

1 1 �4

7 0 �3

2
4

3
5, x ¼

x

y

z

2
4
3
5, and b ¼

14

�7

1

2
4

3
5:

The column matrix x lists all the variables in equations (1.13), the column matrix

b enumerates the constants on the right sides of the equations in (1.13), and the

matrix A holds the coefficients of the variables. A is known as a coefficient matrix

and care must taken in constructing A to place all the x coefficients in the first

column, all the y coefficients in the second column, and all the z coefficients in

the third column. The zero in 3-2 location in A appears because the coefficient

of y in the third equation of (1.13) is zero. By redefining the matrices A, x, and

b appropriately, we can represent any system of simultaneous linear equations by

the matrix equation

Ax ¼ b (1:14)

Example 4 The system of linear equations

2xþ y� z ¼ 4

3xþ 2yþ 2w ¼ 0

x� 2yþ 3zþ 4w ¼ �1

has the matrix form Ax ¼ b with

A ¼
2 1 �1 0

3 2 0 2

1 �2 3 4

2
4

3
5, x ¼

x

y

z

w

2
664

3
775, and b ¼

4

0

�1

2
4

3
5: &

We have accomplished part of the goal we set in the beginning of this section: to

write a system of simultaneous linear equations in the matrix form Ax ¼ b,

Any system of

simultaneous linear

equations can be

written as the matrix

equation Ax ¼ b.
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where all the variables are segregated into the column matrix x. All that remains

is to develop a matrix operation to solve the matrix equation Ax ¼ b for x. To do

so, at least for a large class of square coefficient matrices, we first introduce some

additional matrix notation and review the traditional techniques for solving

systems of equations, because those techniques form the basis for the missing

matrix operation.

Problems 1.2

(1) Determine the orders of the following products if the order of A is 2� 4, the

order of B is 4� 2, the order of C is 4� 1, the order of D is 1� 2, and the order

of E is 4� 4.

(a) AB, (b) BA, (c) AC, (d) CA, (e) CD, (f ) AE,

(g) EB, (h) EA, (i) ABC, ( j) DAE, (k) EBA, (l) EECD.

In Problems 2 through 9, find the indicated products for

A ¼
1 2

3 4

� �
, B ¼

5 6

7 8

� �
, C ¼

�1 0 1

3 �2 1

� �
, D ¼

1 1

�1 2

2 �2

2
64

3
75,

E ¼
�2 2 1

0 �2 �1

1 0 1

2
64

3
75, F ¼

0 1 2

�1 �1 0

1 2 3

2
64

3
75,

x ¼ [ 1 �2 ], y ¼ [ 1 2 1 ]:

(2) AB. (3) BA. (4) AC. (5) BC. (6) CB. (7) xA.

(8) xB. (9) xC. (10) Ax. (11) CD. (12) DC. (13) yD.

(14) yC. (15) Dx. (16) xD. (17) EF. (18) FE. (19) yF.

(20) Find AB for A ¼ 2 6

3 9

� �
and B ¼ 3 �6

�1 2

� �
. Note that AB ¼ 0 but neither A

nor B equals the zero matrix.

(21) Find AB for A ¼ 4 2

2 1

� �
and B ¼ 3 �4

�6 8

� �
.

(22) Find AB and AC for A ¼ 4 2

2 1

� �
, B ¼ 1 1

2 1

� �
, and C ¼ 2 2

0 �1

� �
. What does

this result imply about the cancellation law for matrices?

(23) Find AB and CB for A ¼ 3 2

1 0

� �
, B ¼ 2 4

1 2

� �
, and C ¼ 1 6

3 �4

� �
. Show that

AB ¼ CB but A 6¼ C.

(24) Calculate the product
1 2

3 4

� �
x

y

� �
.

(25) Calculate the product

1 0 �1

3 1 1

1 3 0

2
4

3
5 x

y

z

2
4
3
5.
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(26) Calculate the product
a11 a12

a21 a22

� �
x

y

� �
.

(27) Calculate the product
b11 b12 b13

b21 b22 b23

� � x

y

z

2
4
3
5.

(28) Evaluate the expression A2 � 4A� 5I for the matrix A ¼ 1 2

4 3

� �
.

(29) Evaluate the expression (A� I)(Aþ 2I) for the matrix A ¼ 3 5

�2 4

� �
.

(30) Evaluate the expression (I� A)(A2 � I) for the matrix A ¼
2 �1 1

3 �2 1

0 0 1

2
4

3
5.

(31) Use the definition of matrix multiplication to show that

jth column of (AB) ¼ A� ( jth column of B):

(32) Use the definition of matrix multiplication to show that

ith row of (AB) ¼ (ith row of A)� B:

(33) Prove that if A has a row of zeros and B is any matrix for which the product AB is

defined, then AB also has a row of zeros.

(34) Show by example that if B has a row of zeros and A is any matrix for which the

product AB is defined, then AB need not have a row of zeros.

(35) Prove that if B has a column of zeros and A is any matrix for which the product AB

is defined, then AB also has a column of zeros.

(36) Show by example that if A has a column of zeros and B is any matrix for which the

product AB is defined, then AB need not have a column of zeros.

(37) Prove part (a) of Theorem 1.

(38) Prove part (c) of Theorem 1.

In Problems 39 through 50, write each system in matrix form Ax ¼ b.

(39) 2xþ 3y ¼ 10 (40) 5xþ 20y ¼ 80

4x� 5y ¼ 11 �xþ 4y ¼ �64

(41) 3xþ 3y ¼ 100 (42) xþ 3y ¼ 4

6x� 8y ¼ 300 2x� y ¼ 1

�xþ 2y ¼ 500 �2x� 6y ¼ �8

4x� 9y ¼ �5

�6xþ 3y ¼ �3

(43) xþ y� z ¼ 0 (44) 2x� y ¼ 12

3xþ 2yþ 4z ¼ 0 �4y� z ¼ 15
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(45) xþ 2y� 2z ¼ �1 (46) 2xþ y� z ¼ 0

2xþ yþ z ¼ 5 xþ 2yþ z ¼ 0

�xþ y� z ¼ �2 3x� yþ 2z ¼ 0

(47) xþ zþ y ¼ 2 (48) xþ 2y� z ¼ 5

3zþ 2xþ y ¼ 4 2x� yþ 2z ¼ 1

3yþ x ¼ 1 2xþ 2y� z ¼ 7

xþ 2yþ z ¼ 3

(49) 5xþ 3yþ 2zþ 4w ¼ 5 (50) 2x� yþ z� w ¼ 1

xþ yþ w ¼ 0 xþ 2y� zþ 2w ¼ �1

3xþ 2yþ 2z ¼ �3 x� 3yþ 2z� 3w ¼ 2

xþ yþ 2zþ 3w ¼ 4

(51) The price schedule for a Chicago to Los Angeles flight is given by

p ¼ [ 200 350 500 ]

where row matrix elements pertain, respectively, to coach tickets, business-class

tickets and first-class tickets. The number of tickets purchased in each class for

a particular flight is given by the column matrix

n ¼
130

20

10

2
4

3
5

Calculate the products (a) pn and (b) np, and determine the significance of each.

(52) The closing prices of a person’s portfolio during the past week are tabulated as

P ¼

40 40 1
2

40 7
8

41 41

3 1
4

3 5
8

3 1
2

4 3 7
8

10 9 3
4

10 1
8

10 9 5
8

2
664

3
775

where the columns pertain to the days of the week, Monday through Friday, and

the rows pertain to the prices of Orchard Fruits, Lion Airways, and Arrow Oil. The

person’s holdings in each of these companies are given by the row matrix

h ¼ [ 100 500 400 ]

Calculate the products (a) hP and (b) Ph, and determine the significance of each.

(53) The time requirements for a company to produce three products is tabulated in

T ¼
0:2 0:5 0:4

1:2 2:3 1:7

0:8 3:1 1:2

2
64

3
75
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where the rows pertain to lamp bases, cabinets, and tables, respectively. The

columns pertain to the hours of labor required for cutting the wood, assembling,

and painting, respectively. The hourly wages of a carpenter to cut wood, of

a craftsperson to assemble a product, and of a decorator to paint are given,

respectively, by the columns of the matrix

w ¼
10:50

14:00

12:25

2
4

3
5

Calculate the product Tw and determine its significance.

(54) Continuing with the information provided in the previous problem, assume further

that the number of items on order for lamp bases, cabinets, and tables, respectively,

are given in the rows of

q ¼ [ 1000 100 200 ]

Calculate the product qTw and determine its significance.

(55) The results of a flue epidemic at a college campus are collected in the matrix

F ¼
0:20 0:20 0:15 0:15

0:10 0:30 0:30 0:40

0:70 0:50 0:55 0:45

2
4

3
5

where each element is a percent converted to a decimal. The columns pertain to

freshmen, sophomores, juniors, and seniors, respectively; whereas the rows repre-

sent bedridden students, students who are infected but ambulatory, and well

students, respectively. The male-female composition of each class is given by the

matrix

C ¼

1050 950

1100 1050

360 500

860 1000

2
664

3
775:

Calculate the product FC and determine its significance.

1.3 SPECIAL MATRICES

Certain types of matrices appear so frequently that it is advisable to discuss

them separately. The transpose of a matrix A, denoted by AT, is obtained by

converting all the rows of A into the columns of AT while preserving the ordering

of the rows/columns. The first row of A becomes the first column of AT, the

second row of A becomes the second column of AT, and the last row of A

becomes the last column of AT. More formally, if A ¼ [aij ] is an n� p matrix,

then the transpose of A, denoted by AT ¼ aT
ij

h i
, is a p� n matrix where aT

ij ¼ aji.

The transpose A is

obtained by

converting all the

rows of A into

columns while

preserving the

ordering of the

rows/columns.

22 . Matrices



Example 1 If A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5, then AT ¼

1 4 7

2 5 8

3 6 9

2
4

3
5, while the transpose of

B ¼ 1 2 3 4

5 6 7 8

� �
is BT ¼

1 5

2 6

3 7

4 8

2
664

3
775: &

" Theorem 1. The following properties are true for any scalar l and

any matrices for which the indicated additions and multiplications

are defined:

(a) (AT)
T ¼ A

(b) (lA)T ¼ lAT

(c) (Aþ B)T ¼ AT þ BT

(d) (AB)T ¼ BTAT
3

Proof: We prove part (d) and leave the others as exercises (see Problems 21

through 23). Let A ¼ [aij ] and B ¼ [bij] have orders n�m and m� p, so that the

product AB is defined. Then

(AB)T ¼ aij

� �
bij

� �� �T

¼
Xm
k¼1

aikbkj

" #T

definition of matrix multiplication

¼
Xm
k¼1

ajkbki

" #
definition of the transpose

¼
Xm
k¼1

aT
kjb

T
ik

" #
definition of the transpose

¼
Xm
k¼1

bT
ika

T
kj

" #

¼ bT
ij

h i
aT

ij

h i
definition of matrix multiplication

¼ BTAT
&
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Observation: The transpose of a product of matrices is not the product of the

transposes but rather the commuted product of the transposes.

A matrix A is symmetric if it equals its own transpose; that is, if A ¼ AT. A matrix

A is skew-symmetric if it equals the negative of its transpose; that is, if A ¼ �AT.

Example 2 A ¼
1 2 3

2 4 5

3 5 6

2
4

3
5is symmetric while B ¼

0 2 �3

�2 0 1

3 �1 0

2
4

3
5 is

skew-symmetric. &

A submatrix of a matrix A is a matrix obtained from A by removing any number

of rows or columns from A. In particular, if

A ¼

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2
664

3
775 (1:16)

then both B ¼ 10 12

14 16

� �
and C ¼ [ 2 3 4 ] are submatrices of A. Here B is

obtained by removing the first and second rows together with the first and third

columns from A, while C is obtained by removing from A the second, third, and

fourth rows together with the first column. By removing no rows and no columns

from A, it follows that A is a submatrix of itself.

A matrix is partitioned if it is divided into submatrices by horizontal and vertical

lines between rows and columns. By varying the choices of where to place

the horizontal and vertical lines, one can partition a matrix in different ways.

Thus,

AB ¼ CGþDJ CH þDK

EGþ FJ EH þ FK

� ����
�

provided the partitioning was such that the indicated multiplications are

defined.

Example 3 Find AB if

A ¼

3 1 0

2 0 1

0 0 3

0 0 1

0 0 0

2
6666664

3
7777775 and B ¼

2 1 0 0 0

�1 1 0 0 0

0 1 0 0 1

2
64

3
75

�������

������������

A submatrix of a

matrix A is a matrix

obtained from A by

removing any

number of rows or

columns from A.

A matrix is

partitioned if it is

divided into

submatrices by

horizontal and

vertical lines

between rows and

columns.
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Solution: From the indicated partitions, we find that

AB ¼

3 1

2 0

� �
2 1

�1 1

� �
þ

0

0

� �
0 1½ �

3 1

2 0

� �
0 0 0

0 0 0

� �
þ

0

0

� �
0 0 1½ �

0 0

0 0

� �
2 1

�1 1

� �
þ

3

1

� �
0 1½ �

0 0

0 0

� �
0 0 0

0 0 0

� �
þ

3

1

� �
0 0 1½ �

0 0½ �
2 1

�1 1

� �
þ 0½ � 0 1½ � 0 0½ �

0 0 0

0 0 0

� �
þ 0½ � 0 0 1½ �

2
6666666664

3
7777777775

���������������

¼

5 4

4 2

� �
þ

0 0

0 0

� �
0 0 0

0 0 0

� �
þ

0 0 0

0 0 0

� �
5 4

4 2

� �
þ

0 0

0 0

� �
0 0 0

0 0 0

� �
þ

0 0 0

0 0 0

� �

0 0½ � þ 0 0½ � 0 0 0½ � þ 0 0 0½ �

2
66666664

3
77777775

�������������

¼

5 4 0 0 0

4 2 0 0 0

0 3 0 0 3

0 1 0 0 1

0 0 0 0 0

2
6666664

3
7777775 ¼

5 4 0 0 0

4 2 0 0 0

0 3 0 0 3

0 1 0 0 1

0 0 0 0 0

2
66664

3
77775

������������
Note that we partitioned to make maximum use of the zero submatrices of both

A and B. &

A zero row in a matrix is a row containing only zero elements, whereas a nonzero

row is a row that contains at least one nonzero element.

" Definition 1. A matrix is in row-reduced form if it satisfies the fol-

lowing four conditions:

(i) All zero rows appear below nonzero rows when both

types are present in the matrix.

(ii) The first nonzero element in any nonzero row is 1.

(iii) All elements directly below (that is, in the same column

but in succeeding rows from) the first nonzero element

of a nonzero row are zero.

(iv) The first nonzero element of any nonzero row appears

in a later column (further to the right) than the first

nonzero element in any preceding row.

"

Row-reducedmatricesare invaluable forsolvingsetsof simultaneous linearequations.

We shall use these matrices extensively in succeeding sections, but at present we are

interested only in determiningwhether a givenmatrix is or is not in row-reduced form.
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Example 4

A ¼

1 1 �2 4 7

0 0 �6 5 7

0 0 0 0 0

0 0 0 0 0

2
664

3
775

is not in row-reduced form because the first nonzero element in the second row is

not 1. If a23 was 1 instead of �6, then the matrix would be in row-reduced form.

B ¼
1 2 3

0 0 0

0 0 1

2
4

3
5

is not in row-reduced form because the second row is a zero row and it appears

before the third row, which is a nonzero row. If the second and third rows had

been interchanged, then the matrix would be in row-reduced form.

C ¼
1 2 3 4

0 0 1 2

0 1 0 5

2
4

3
5

is not in row-reduced form because the first nonzero element in row two appears

in a later column, column 3, than the first nonzero element in row three. If the

second and third rows had been interchanged, then the matrix would be in row-

reduced form.

D ¼
1 �2 3 3

0 0 1 �3

0 0 1 0

2
4

3
5

is not in row-reduced form because the first nonzero element in row two appears

in the third column and everything below this element is not zero. Had d33 been

zero instead of 1, then the matrix would be in row-reduced form. &

For the remainder of this section, we restrict ourselves to square matrices,

matrices having the same number of rows as columns. Recall that the main

diagonal of an n� n matrix A ¼ [aij ] consists of all the diagonal elements

a11, a22, . . . , ann. A diagonal matrix is a square matrix having only zeros as

non-diagonal elements. Thus,

5 0

0 �1

� �
and

3 0 0

0 3 0

0 0 3

2
4

3
5

are both diagonal matrices or orders 2� 2 and 3� 3, respectively. A square zero

matrix is a special diagonal matrix having all its elements equal to zero.
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An identity matrix, denoted as I, is a diagonal matrix having all its diagonal

elements equal to 1. The 2� 2 and 4� 4 identity matrices are, respectively,

1 0

0 1

� �
and

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

If A and I are square matrices of the same order, then

AI ¼ IA ¼ A: (1:17)

A block diagonal matrix A is one that can be partitioned into the form

A ¼

A1

A2 0
A3

. .
.

0 Ak

2
666666664

3
777777775

where A1, A2, . . . , Ak are square submatrices. Block diagonal matrices are par-

ticularly easy to multiply because in partitioned form they act as diagonal

matrices.

A matrix A ¼ [aij] is upper triangular if aij ¼ 0 for i > j; that is, if all elements

below the main diagonal are zero. If aij ¼ 0 for i < j, that is, if all elements above

the main diagonal are zero, then A is lower triangular. Examples of upper and

lower triangular matrices are, respectively,

�1 2 4 1

0 1 3 �1

0 0 2 5

0 0 0 5

2
664

3
775 and

5 0 0 0

�1 2 0 0

0 1 3 0

2 1 4 1

2
664

3
775

" Theorem 2. The product of two lower (upper) triangular matrices of

the same order is also lower (upper) triangular.

"

Proof: We prove this proposition for lower triangular matrices and leave the

upper triangular case as an exercise (see Problem 35). Let A ¼ [aij ] and B ¼ [bij]

both be n� n lower triangular matrices, and set AB ¼ C ¼ [cij]. We need to show

that C is lower triangular, or equivalently, that cij ¼ 0 when i < j. Now

cij ¼
Xn

k¼1

aikbkj ¼
Xj�1

k¼1

aikbkj þ
Xn

k¼j

aikbkj

An identity matrix I

is a diagonal matrix

having all its

diagonal elements

equal to 1.
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We are given that both A and B are lower triangular, hence aik ¼ 0 when i < k

and bkj ¼ 0 when k < j. Thus,

Xj�1

k¼1

aikbkj ¼
Xj�1

k¼1

aik(0) ¼ 0

because in this summation k is always less than j. Furthermore, if we restrict

i < j, then

Xn

k¼j

aikbkj ¼
Xn

k¼j

(0)bkj ¼ 0

because i < j � k. Thus, cij ¼ 0 when i < j. &

Finally, we define positive integral powers of matrix in the obvious manner:

A2 ¼ AA, A3 ¼ AAA ¼ AA2 and, in general, for any positive integer n

An ¼ AA . . . A|fflfflfflfflffl{zfflfflfflfflffl}
n-times

(1:18)

For n ¼ 0, we define A0 ¼ I.

Example 5 If A ¼ 1 �2

1 3

� �
, then A2 ¼ 1 �2

1 3

� �
1 �2

1 3

� �
¼ �1 �8

4 7

� �
It follows directly from part (d) of Theorem 1 that

(A2)T ¼ (AA)T ¼ ATAT ¼ (AT)2,

which may be generalized to

(An)T ¼ (AT)n (1:19)

for any positive integer n. &

Problems 1.3

(1) For each of the following pairs of matrices A and B, find the products (AB)T,ATBT,

and BTAT and verify that (AB)T ¼ BTAT.

(a) A ¼ 3 0

4 1

� �
, B ¼ �1 2 1

3 �1 0

� �
.

(b) A ¼ 2 2 2

3 4 5

� �
, B ¼

1 2

3 4

5 6

2
4

3
5.

(c) A ¼
1 5 �1

2 1 3

0 7 �8

2
4

3
5, B ¼

6 1 3

2 0 �1

�1 �7 2

2
4

3
5.
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(2) Verify that (Aþ B)T ¼ AT þ BT for the matrices given in part (c) of Problem 1.

(3) Find xTx and xxT for x ¼
2

3

4

2
4
3
5.

(4) Simplify the following expressions:

(a) (ABT)T

(b) (Aþ BT)
T þ AT

(c) [AT(Bþ CT)]
T

(d) [(AB)T þ C]T

(e) [(Aþ AT)(A� AT)]
T
:

(5) Which of the following matrices are submatrices of A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5?

(a)
1 3

7 9

� �
, (b) [1], (c)

1 2

8 9

� �
, (d)

4 6

7 9

� �
:

(6) Identify all of the nonempty submatrices of A ¼ a b

c d

� �
.

(7) Partition A ¼

4 1 0 0

2 2 0 0

0 0 1 0

0 0 1 2

2
664

3
775 into block diagonal form and then calculate A2.

(8) Partition B ¼

3 2 0 0

�1 1 0 0

0 0 2 1

0 0 1 �1

2
664

3
775 into block diagonal form and then calculate B2.

(9) Use the matrices defined in Problems (7) and (8), partitioned into block diagonal

form, to calculate AB.

(10) Use partitioning to calculate A2 and A3 for

A ¼

1 0 0 0 0 0

0 2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

2
6666664

3
7777775:

What is An for any positive integer n > 3?

(11) Determine which, if any, of the following matrices are in row-reduced form:

A ¼

0 1 0 4 �7

0 0 0 1 2

0 0 0 0 1

0 0 0 0 0

2
6664

3
7775, B ¼

1 1 0 4 �7

0 1 0 1 2

0 0 1 0 1

0 0 0 1 5

2
6664

3
7775,
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C ¼

1 1 0 4 �7

0 1 0 1 2

0 0 0 0 1

0 0 0 1 5

2
664

3
775, D ¼

0 1 0 4 �7

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

2
664

3
775,

E ¼
2 2 2

0 2 2

0 0 2

2
4

3
5, F ¼

0 0 0

0 0 0

0 0 0

2
4

3
5,

G ¼
1 2 3

0 0 1

1 0 0

2
4

3
5, H ¼

0 0 0

0 1 0

0 0 0

2
4

3
5,

J ¼
0 1 1

1 0 2

0 0 0

2
4

3
5, K ¼

1 0 2

0 �1 1

0 0 0

2
4

3
5,

L ¼
2 0 0

0 2 0

0 0 0

2
4

3
5, M ¼

1 1=2 1=3

0 1 1=4

0 0 1

2
4

3
5,

N ¼
1 0 0

0 0 1

0 0 0

2
4

3
5, Q ¼ 0 1

1 0

� �
,

R ¼ 1 1

0 0

� �
, S ¼ 1 0

1 0

� �
,

T ¼ 1 12

0 1

� �
:

(12) Determine which, if any, of the matrices in Problem 11 are upper triangular.

(13) Must a square matrix in row-reduced form necessarily be upper triangular?

(14) Must an upper triangular matrix be in row-reduced form?

(15) Can a matrix be both upper triangular and lower triangular simultaneously?

(16) Show that AB ¼ BA for

A ¼
�1 0 0

0 3 0

0 0 1

2
4

3
5 and B ¼

5 0 0

0 3 0

0 0 2

2
4

3
5:

(17) Prove that if A and B are diagonal matrices of the same order, then AB ¼ BA.

(18) Does a 2� 2 diagonal matrix commute with every other 2� 2 matrix?

(19) Calculate the products AD and BD for

A ¼
1 1 1

1 1 1

1 1 1

2
4

3
5, B ¼

0 1 2

3 4 5

6 7 8

2
4

3
5, and D ¼

2 0 0

0 3 0

0 0 �5

2
4

3
5:

What conclusions can you make about postmultiplying a square matrix by

a diagonal matrix?
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(20) Calculate the products DA and DB for the matrices defined in Problem 19. What

conclusions can you make about premultiplying a square matrix by a diagonal

matrix?

(21) Prove that (AT)T ¼ A for any matrix A.

(22) Prove that (lA)T ¼ lAT for any matrix A and any scalar l.

(23) Prove that if A and B are matrices of the same order then (Aþ B)T ¼ AT þ BT.

(24) Let A, B, and C be matrices of orders m� p, p� r, and r� s, respectively. Prove

that (ABC)T ¼ CTBTAT.

(25) Prove that if A is a square matrix, then B ¼ (Aþ AT)=2 is a symmetric matrix.

(26) Prove that if A is a square matrix, then C ¼ (A� AT)=2 is a skew-symmetric matrix.

(27) Use the results of the last two problems to prove that any square matrix can be

written as the sum of a symmetric matrix and a skew-symmetric matrix.

(28) Write the matrix A in part (c) of Problem 1 as the sum of a symmetric matrix and

a skew-symmetric matrix.

(29) Write the matrix B in part (c) of Problem 1 as the sum of a symmetric matrix and

a skew-symmetric matrix.

(30) Prove that AAT is symmetric for any matrix A.

(31) Prove that the diagonal elements of a skew-symmetric matrix must be zero.

(32) Prove that if a 2� 2 matrix A commutes with every 2� 2 diagonal matrix, the A must

be diagonal. Hint: Consider, in particular, the diagonal matrix D ¼ 1 0

0 0

� �
.

(33) Prove that if a n� n matrix A commutes with every n� n diagonal matrix, the

A must be diagonal.

(34) Prove that if D ¼ [dij ] is a diagonal matrix, then D ¼ d2
ij

h i
:

(35) Prove that the product of two upper triangular matrices is upper triangular.

1.4 LINEAR SYSTEMS OF EQUATIONS

Systems of simultaneous linear equations appear frequently in engineering and

scientific problems. The need for efficient methods that solve such systems was

one of the historical forces behind the introduction of matrices, and that need

continues today, especially for solution techniques that are applicable to large

systems containing hundreds of equations and hundreds of variables.

A system of m-linear equations in n-variables x1, x2, . . . , xn has the general form

a11x1 þ a12x2 þ . . .þ a1nxn ¼ b1

a21x1 þ a22x2 þ . . .þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ . . .þ amnxn ¼ bm

(1:20)
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where the coefficients aij (i ¼ 1, 2, . . . , m; j ¼ 1, 2, . . . , n) and the quantities bi

are all known scalars. The variables in a linear equation appear only to the first

power and are multiplied only by known scalars. Linear equations do not involve

products of variables, variables raised to powers other than one, or variables

appearing as arguments of transcendental functions.

For systems containing a few variables, it is common to denote the variables by

distinct letters such as x, y, and z. Such labeling is impractical for systems

involving hundreds of variables; instead a single letter identifies all variables

with different numerical subscripts used to distinguished different variables, such

as x1, x2, . . . , xn.

Example 1 The system

2xþ 3y� z ¼ 12,000

4x� 5yþ 6z ¼ 35,600

of two equations in the variables x, y, and z is linear, as is the system

20x1 þ 80x2 þ 35x3 þ 40x4 þ 55x5 ¼ �0:005

90x1 � 15x2 � 70x3 þ 25x4 þ 55x5 ¼ 0:015

30x1 þ 35x2 � 35x3 þ 10x4 � 65x5 ¼ �0:015

of three equations with five variables x1, x2, . . . , x5. In contrast, the system

2xþ 3xy ¼ 25

4
ffiffiffi
x
p
þ sin y ¼ 50

is not linear for many reasons: it contains a product xy of variables; it contains

the variable x raised to the one-half power; and it contains the variable y as the

argument of the transcendental sine function. &

As shown in Section 1.2, any linear system of form (1.20) can be rewritten in the

matrix form

Ax ¼ b (1:14 repeated)

with

A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

am1 am2 . . . amn

2
66664

3
77775, x ¼

x1

x2

..

.

xn

2
66664

3
77775, and b ¼

b1

b2

..

.

bm

2
66664

3
77775:
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If m 6¼ n, then A is not square and the dimensions of x and b will be different.

A solution to linear system (1.20) is a set of scalar values for the variables

x1, x2, . . . , xn that when substituted into each equation of the system makes

each equation true.

Example 2 The scalar values x ¼ 2 and y ¼ 3 are a solution to the system

3xþ 2y ¼ 12

6xþ 4y ¼ 24

A second solution is x ¼ �4 and y ¼ 12. In contrast, the scalar values

x ¼ 1, y ¼ 2, and z ¼ 3 are not a solution to the system

2xþ 3yþ 4z ¼ 20

4xþ 5yþ 6z ¼ 32

7xþ 8yþ 9z ¼ 40

because these values do not make the third equation true, even though they do

satisfy the first two equations of the system. &

" Theorem 1. If x1 and x2 are two different solutions of Ax ¼ b,

then z ¼ ax1 þ bx2 is also a solution for any real numbers a and b

with aþ b ¼ 1.

"

Proof: x1 and x2 are given as solutions of Ax ¼ b, hence Ax1 ¼ b, and

Ax2 ¼ b. Then

Az ¼ A(ax1 þ bx2) ¼ a(Ax1)þ b(Ax2) ¼ abþ bb ¼ (aþ b)b ¼ b,

so z is also a solution. &

Because there are infinitely many ways to form aþ b ¼ 1 (let a be any real

number and set b ¼ 1� a), it follows from Theorem 1 that once we identify two

solutions we can combine them into infinitely many other solutions. Conse-

quently, the number of possible solutions to a system of linear equations is either

none, one, or infinitely many.

The graph of a linear equation in two variables is a line in the plane; hence

a system of linear equations in two variables is depicted graphically by a set of

lines. A solution to such a system is a set of coordinates for a point in the plane

that lies on all the lines defined by the equations. In particular, the graphs of the

equations in the system

A solution to linear

system of equations

is a set of scalar

values for the

variables that when

substituted into

each equation of the

system makes each

equation true.
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xþ y ¼ 1

x� y ¼ 0
(1:21)

are shown in Figure 1.3. There is only one point of intersection, and the

coordinates of this point x ¼ y ¼ 1
2

is the unique solution to System (1.21). In

contrast, the graphs of the equations in the system

xþ y ¼ 1

xþ y ¼ 2
(1:22)

are shown in Figure 1.4. The lines are parallel and have no points of intersection,

so System (1.22) has no solution. Finally, the graphs of the equations in the

system

xþ y ¼ 0

2xþ 2y ¼ 0
(1:23)

Figure 1.3

4

3

3

x + y = 1

x − y = 0

2

2

1

1
x

y

(1/2, 1/2)

−3 −2

−2

−1
−1

Figure 1.4

4

3

3

x + y = 1

x + y = 2

2

2

1

1
x

y

−3 −2

−2

−1
−1
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are shown in Figure 1.5. The lines overlap, hence every point on either line is

a point of intersection and System (1.23) has infinitely many solutions.

A system of simultaneous linear equations is consistent if it possesses at least one

solution. If no solution exists, the system is inconsistent. Systems (1.21) and (1.23)

are consistent; System (1.22) in inconsistent.

The graph of a linear equation in three variables is a plane in space; hence

a system of linear equations in three variables is depicted graphically by a set

of planes. A solution to such a system is the set of coordinates for a point in

space that lies on all the planes defined by the equations. Such a system can have

no solutions, one solution, or infinitely many solutions.

Figure 1.6 shows three planes that intersect at a single point, and it represents

a system of three linear equations in three variables with a unique solution.

Figures 1.7 and 1.8 show systems of planes that have no points that lie on all

three planes; each figure depicts a different system of three linear equations in

three unknowns with no solutions. Figure 1.9 shows three planes intersecting at

a line, and it represents a system of three equations in three variables with

infinitely many solutions, one solution corresponding to each point on the line.

A different example of infinitely many solutions is obtained by collapsing the

Figure 1.5

4

3

3

x + y = 0

2x + 2y = 0

2

2

1

1
x

y

−3 −2

−2

−1
−1

Figure 1.6
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three planes in Figure 1.7 onto each other so that each plane is an exact copy of

the others. Then every point on one plane is also on the other two.

System (1.20) is homogeneous if the right side of each equation is 0; that is, if

b1 ¼ b2 ¼ . . . ¼ bm ¼ 0. In matrix form, we say that the system Ax ¼ b is homo-

geneous if b ¼ 0, a zero column matrix. If b 6¼ 0, which implies that at least one

component of b differs from 0, then the system of equations is nonhomogeneous.

System (1.23) is homogeneous; Systems (1.21) and (1.22) are nonhomogeneous.

One solution to a homogeneous system of equations is obtained by setting all

variables equal to 0. This solution is called the trivial solution. Thus, we have the

following theorem.

Figure 1.7

Figure 1.8

Figure 1.9

A homogeneous

system of linear

equations has the

matrix form Ax ¼ 0;

one solution is the

trivial solution

x ¼ 0.
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" Theorem 2. A homogeneous system of linear equations is

consistent.

"

All the scalars contained in the system of equations Ax ¼ b appear in the

coefficient matrix A and the column matrix b. These scalars can be combined

into the single partitioned matrix [Ajb], known as the augmented matrix for the

system of equations.

Example 3 The system

x1 þ x2 � 2x3 ¼ �3

2x1 þ 5x2 þ 3x3 ¼ 11

�x1 þ 3x2 þ x3 ¼ 5

can be written as the matrix equation

1 1 �2

2 5 3

�1 3 1

2
4

3
5 x1

x2

x3

2
4

3
5 ¼ �3

11

5

2
4

3
5

which has as its augmented matrix

[Ajb] ¼
1 1 �2

2 5 3

�1 3 1

�3

11

5

������
2
4

3
5: &

Example 4 Write the set of equation in x, y, and z associated with the

augmented matrix

[Ajb] ¼ �2 1 3

0 4 5

8

�3

����
� �

Solution:

�2xþ yþ 3z ¼ 8

4yþ 5z ¼ �3
&

The traditional approach to solving a system of linear equations is to manipulate

the equations so that the resulting equations are easy to solve and have the

The augmented

matrix for Ax ¼ b

is the partitioned

matrix [Ajb].
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same solutions as the original equations. Three operations that alter equations

but do not change their solutions are:

(i) Interchange the positions of any two equations.

(ii) Multiply an equation by a nonzero scalar.

(iii) Add to one equation a scalar times another equation.

If we restate these operations in words appropriate to an augmented matrix, we

obtain the three elementary row operations:

(R1) Interchange any two rows in a matrix.

(R2) Multiply any row of a matrix by a nonzero scalar.

(R3) Add to one row of a matrix a scalar times another row of that same

matrix.

Gaussian elimination is a four-step matrix method, centered on the three

elementary row operations, for solving simultaneous linear equations.

The new set of equations resulting from Step 3 is called the derived set, and it is

solved easily by back-substitution. Each equation in the derived set is solved for

the first unknown that appears in that equation with a nonzero coefficient,

beginning with the last equation and sequentially moving through the system

until we reach the first equation. By limiting Gaussian elimination to elementary

row operations, we are assured that the derived set of equations has the same

solutions as the original set.

Most of the work in Gaussian elimination occurs in the second step: the trans-

formation of an augmented matrix to row-reduced form. In transforming

a matrix to row-reduced form, it is advisable to adhere to three basic principles:

(i) Completely transform one column to the required form before consid-

ering another column.

(ii) Work on columns in order, from left to right.

(iii) Never use an operation that changes a zero in a previously transformed

column.

Gaussian Elimination

Step 1. Construct an augmented matrix for the given system of equa-

tions.

Step 2. Use elementary row operations to transform the augmented

matrix into an augmented matrix in row-reduced form.

Step 3. Write the equations associated with the resulting augmented

matrix.

Step 4. Solve the new set of equations by back substitution.
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Example 5 Use Gaussian elimination to solve the system

xþ 3y ¼ 4,

2x� y ¼ 1,

3xþ 2y ¼ 5,

5xþ 15y ¼ 20:

Solution: The augmented matrix for this system is

1 3

2 �1

3 2

5 15

4

1

5

20

��������
2
664

3
775

We transform this augmented matrix into row-reduced form using only the three

elementary row operations. The first nonzero element in the first row appears in

the 1-1 position, so use elementary row operation R3 to transform all other

elements in the first column to zero.

1 3

2 �1

3 2

5 15

4

1

5

20

��������
2
664

3
775!

1 3

0 �7

3 2

5 15

4

�7

5

20

��������
2
664

3
775

by adding to the

second row �2

times the first row

!

1 3

0 �7

0 �7

5 15

4

�7

�7

20

��������
2
664

3
775

by adding to the

third row �3

times the first row

!

1 3

0 �7

0 �7

0 0

4

�7

�7

0

��������
2
664

3
775

by adding to the

fourth row �5

times the first row

The first row and the first column are correctly formatted, so we turn our

attention to the second row and second column. We use elementary row oper-

ations on the current augmented matrix to transform the first nonzero element in

the second row to one and then all elements under it, in the second column, to

zero. Thus,
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!

1 3

0 1

0 �7

0 0

4

1

�7

0

����������

2
66664

3
77775

by multiplying the
second row by� 1=7

!

1 3

0 1

0 0

0 0

4

1

0

0

����������

2
66664

3
77775

by adding to the
third row 7 times
the second row

This augmented matrix is in row-reduced form, and the system of equations

associated with it is the derived set

xþ 3y ¼ 4

y ¼ 1

0 ¼ 0

0 ¼ 0:

Solving the second equation for y and then the first equation for x, we obtain

x ¼ 1 and y ¼ 1 as the solution to both this last set of equations and also the

original set of equations. &

When one element in a matrix is used to convert another element to zero by

elementary row operation R3, the first element is called a pivot. In Example 5,

we used the element in the 1-1 position first to cancel the element in the 2-1

position and then to cancel the elements in the 3-1 and 4-1 positions. In each

case, the unity element in the 1-1 position was the pivot. Later, we used the

unity element in the 2-2 position to cancel the element �7 in the 3-2 position;

here, the 2-2 element served as the pivot. We shall always use elementary row

operation R2 to transform a pivot to unity before using the pivot to transform

other elements to zero.

Example 6 Use Gaussian elimination to solve the system

xþ 2yþ z ¼ 3,

2xþ 3y� z ¼ �6,

3x� 2y� 4z ¼ �2:

A pivot is

transformed to

unity prior to using

it to cancel other

elements to zero.
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Solution: Transforming the augmented matrix for this system into row-reduced

form using only elementary row operations, we obtain

1 2 1

2 3 �1

3 �2 �4

3

�6

�2

�������
2
64

3
75!

1 2 1

0 �1 �3

3 �2 �4

3

�12

�2

�������
2
64

3
75

by adding to
the second row �2
times the first row

!
1 2 1

0 �1 �3

0 �8 �7

3

�12

�11

�������
2
64

3
75

by adding to
the third row �3
times the first row

!
1 2 1

0 1 3

0 �8 �7

3

12

�11

�������
2
64

3
75

by multiplying the
second row by� 1

!
1 2 1

0 1 3

0 0 17

3

12

85

�������
2
64

3
75

by adding to the
third row 8 times
the second row

!
1 2 1

0 1 3

0 0 1

3

12

5

�������
2
64

3
75

by multiplying the
third row by 1=17

This augmented matrix is in row-reduced form; the derived set is

xþ 2yþ z ¼ 3

yþ 3z ¼ 12

z ¼ 5

Solving the third equation for z, then the second equation for y, and lastly, the

first equation for x, we obtain x ¼ 4, y ¼ �3, and z ¼ 5 as the solution to both

this last system and the original system of equations. &

Elementary row operation R1 is used to move potential pivots into more useful

locations by rearranging the positions of rows.

Example 7

Use Gaussian elimination to solve the system

2x3 þ 3x4 ¼ 0

x1 þ 3x3 þ x4 ¼ 0

x1 þ x2 þ 2x3 ¼ 0
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Solution: The augmented matrix for this system is

0 0 2 3

1 0 3 1

1 1 2 0

0

0

0

������
2
4

3
5

Normally, we would use the element in the 1-1 position to transform to zero the

two elements directly below it, but we cannot because the 1-1 element is itself

zero. To move a nonzero element into the ideal pivot position, we interchange

the first row with either of the other two rows. The choice is arbitrary.

0 0 2 3

1 0 3 1

1 1 2 0

0

0

0

��������
2
664

3
775!

1 0 3 1

0 0 2 3

1 1 2 0

0

0

0

��������
2
664

3
775

by interchanging the

first and second rows

!
1 0 3 1

0 0 2 3

0 1 �1 �1

0

0

0

�������
2
64

3
75

by adding to the
third row� 1 times
the first row

!
1 0 3 1

0 1 �1 �1

0 0 2 3

0

0

0

�������
2
64

3
75

by interchanging the
second and third rows

!
1 0 3 1

0 1 �1 �1

0 0 1 3=2

0

0

0

�������
2
64

3
75

by multiplying the
third row by 1=2

This augmented matrix is in row-reduced form; the derived set is

x1 þ 3x3 þ x4 ¼ 0

x2 � x3 � x4 ¼ 0

x3 þ 3
2
x4 ¼ 0

We use the third equation to solve for x3, then the second equation to solve for

x2, and lastly, the first equation to solve for x1, because in each case those are the

variables that appear first in the respective equations. There is no defining

equation for x4, so this variable remains arbitrary, and we solve for the other

variables in terms of it. The solution to both this last set of equations and the

original set of equations is x1 ¼ (7=2)x4, x2 ¼ (� 1=2)x4 and x3 ¼ (� 3=2)x4

with x4 arbitrary. The solution can be written as the column matrix

x ¼

x1

x2

x3

x4

2
66664

3
77775 ¼

(7=2)x4

(� 1=2)x4

(� 3=2)x4

x4

2
66664

3
77775 ¼ x4

2

7

�1

�3

2

2
66664

3
77775 &

If the solution to a

derived set involves

at least one

arbitrary unknown,

then the original

system has infinitely

many solutions.
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Example 7 is a system of equations with infinitely many solutions, one for each

real number assigned to the arbitrary variable x4. Infinitely many solutions

occur when the derived set of equations is consistent and has more unknowns

than equations. If a derived set contains n variables and r equations, n > r, then

each equation in the derived set is solved for the first variable in that equation

with a nonzero coefficient; this defines r variables and leaves the remaining n� r

variables as arbitrary. These arbitrary variables may be chosen in infinitely many

ways to produce solutions.

A homogeneous set of linear equations is always consistent. If such a system

has more variables than equations, then its derived set will also have more

variables than equations, resulting in infinitely many solutions. Thus, we have

the following important result:

" Theorem 3. A homogeneous system of linear equations containing

more variables than equations has infinitely many solutions.

"

In contrast to homogeneous systems, a nonhomogeneous system may have no

solutions. If a derived set of equations contains a false equation, such as 0 ¼ 1,

that set is inconsistent because no values for the variables can make the false

equation true. Because the derived set has the same solutions as the original set,

it follows that the original set is also inconsistent.

Example 8 Use Gaussian elimination to solve the system

xþ 2y ¼ 2,

3xþ 6y ¼ 7:

Solution: Transforming the augmented matrix for this system into row-reduced

form, we obtain

1 2

3 6

2

7

����
� �

! 1 2

0 0

2

1

����
� �

by adding the second row

�3 times the first row

This augmented matrix is in row-reduced form; the derived set is

xþ 2y ¼ 2

0 ¼ 1

No values of x and y can make this last equation true, so the derived set, as well

as the original set of equations, has no solution. &

If a derived set

contains a false

equation, then the

original set of

equations has no

solution.
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Finally, we note that most augmented matrices can be transformed into a variety

of row-reduced forms. If a row-reduced augmented matrix has two nonzero

rows, then a different row-reduced augmented matrix is easily constructed by

adding to the first row any nonzero constant times the second row. The equa-

tions associated with both augmented matrices, different as they may be, will

have identical solutions.

Problems 1.4

(1) Determine whether the proposed values of x, y, and z are solutions to:

xþ yþ 2z ¼ 2,

x� y� 2z ¼ 0,

xþ 2yþ 2z ¼ 1:

(a) x ¼ 1, y ¼ �3, z ¼ 2. (b) x ¼ 1, y ¼ �1, z ¼ 1.

(2) Determine whether the proposed values of x1, x2, and x3 are solutions to:

x1 þ 2x2 þ 3x3 ¼ 6,

x1 � 3x2 þ 2x3 ¼ 0,

3x1 � 4x2 þ 7x3 ¼ 6:

(a) x1 ¼ 1, x2 ¼ 1, x3 ¼ 1:

(b) x1 ¼ 2, x2 ¼ 2, x3 ¼ 0:

(c) x1 ¼ 14, x2 ¼ 2, x3 ¼ �4:

(3) Find a value for k such that x ¼ 2 and y ¼ k is a solution of the system

3xþ 5y ¼ 11,

2x� 7y ¼ �3:

(4) Find a value for k such that x ¼ 2k, y ¼ �k, and z ¼ 0 is a solution of the system

xþ 2yþ z ¼ 0,

�2x� 4yþ 2z ¼ 0,

3x� 6y� 4z ¼ 1:
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(5) Find a value for k such that x ¼ 2k, y ¼ �k, and z ¼ 0 is a solution of the system

xþ 2yþ 2z ¼ 0,

2xþ 4yþ 2z ¼ 0,

�3x� 6y� 4z ¼ 0:

In Problems 6 through 11, write the set of equations associated with the given augmented

matrix and the specified variables and then solve.

(6)
1 2

0 1

5

8

����
� �

for x and y.

(7)

1 �2 3

0 1 �5

0 0 1

10

�3

4

������
2
4

3
5 for x, y, and z.

(8)

1 �3 12

0 1 �6

0 0 1

40

�200

25

������
2
4

3
5 for x1, x2, and x3.

(9)

1 3 0

0 1 4

0 0 0

�8

2

0

������
2
4

3
5 for x, y, and z.

(10)

1 �7 2

0 1 �1

0 0 0

0

0

0

������
2
4

3
5 for x1, x2, and x3.

(11)

1 �1 0

0 1 �2

0 0 1

0 0 0

1

2

�3

1

��������
2
664

3
775 for x1, x2, and x3.

In Problems 12 through 29, use Gaussian elimination to solve the given system of

equations.

(12) x� 2y ¼ 5, (13) 4xþ 24y ¼ 20,

�3xþ 7y ¼ 8: 2xþ 11y ¼ �8:

(14) �y ¼ 6, (15) �xþ 3y ¼ 0,

2xþ 7y ¼ �5: 3xþ 5y ¼ 0:

(16) �xþ 3y ¼ 0, (17) xþ 2yþ 3z ¼ 4,

3x� 9y ¼ 0: �x� yþ 2z ¼ 3,

�2xþ 3y ¼ 0:

(18) y� 2z ¼ 4, (19) xþ 3yþ 2z ¼ 0,

xþ 3yþ 2z ¼ 1, �x� 4yþ 3z ¼ �1,

�2xþ 3yþ z ¼ 2: 2x� z ¼ 3,

2x� yþ 4z ¼ 2:

(20) 2xþ 4y� z ¼ 0, (21) �3xþ 6y� 3z ¼ 0,

�4x� 8yþ 2z ¼ 0, x� 2yþ z ¼ 0,

�2x� 4yþ z ¼ �1: x� 2yþ z ¼ 0:
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(22) �3xþ 3y� 3z ¼ 0, (23) �3x1 þ 6x2 � 3x3 ¼ 0,

x� yþ 2z ¼ 0, x1 � x2 þ x3 ¼ 0:
2x� 2yþ z ¼ 0,

xþ yþ z ¼ 0:

(24) x1 � x2 þ 2x3 ¼ 0, (25) x1 þ 2x2 ¼ �3,

2x1 � 2x2 þ 4x3 ¼ 0: 3x1 þ x2 ¼ 1:

(26) x1 þ 2x2 � x3 ¼ �1, (27) x1 þ 2x2 ¼ 5,

2x1 � 3x2 þ 2x3 ¼ 4: �3x1 þ x2 ¼ 13,

4x1 þ 3x2 ¼ 0:

(28) 2x1 þ 4x2 ¼ 2, (29) 2x1 þ 3x2 � 4x3 ¼ 2,

3x1 þ 2x2 þ x3 ¼ 8, 3x1 � 2x2 ¼ �1,

5x1 � 3x2 þ 7x3 ¼ 15: 8x1 � x2 � 4x3 ¼ 10:

(30) Show graphically that the number of solutions to a linear system of two equations

in three variables is either none or infinitely many.

(31) Let y be a solution to Ax ¼ b and let z be a solution to the associated homogeneous

system Ax ¼ 0. Prove that u ¼ yþ z is also a solution to Ax ¼ b.

(32) Let y and z be as defined in Problem 31.

(a) For what scalars a is u ¼ yþ az also a solution to Ax ¼ b?

(b) For what scalars a is u ¼ ayþ z also a solution to Ax ¼ b?

In Problems 33 through 40, establish a set of equations that models each process

and then solve.

(33) A manufacturer receives daily shipments of 70,000 springs and 45,000 pounds of

stuffing for producing regular and support mattresses. Regular mattresses r require

50 springs and 30 pounds of stuffing; support mattresses s require 60 springs and 40

pounds of stuffing. How many mattresses of each type should be produced daily to

utilize all available inventory?

(34) A manufacturer produces desks and bookcases. Desks d require 5 hours of cutting

time and 10 hours of assembling time. Bookcases b require 15 minutes of cutting

time and 1 hour of assembling time. Each day the manufacturer has available

200 hours for cutting and 500 hours for assembling. How many desks and

bookcases should be scheduled for completion each day to utilize all available

workpower?

(35) A mining company has a contract to supply 70,000 tons of low-grade ore, 181,000

tons of medium-grade ore, and 41,000 tons of high-grade ore to a supplier. The

company has three mines that it can work. Mine A produces 8,000 tons of

low-grade ore, 5,000 tons of medium-grade ore, and 1,000 tons of high-grade ore

during each day of operation. Mine B produces 3,000 tons of low-grade ore, 12,000

tons of medium-grade ore, and 3,000 tons of high-grade ore for each day it is in

operation. The figures for mine C are 1,000, 10,000, and 2,000, respectively. How

many days must each mine operate to meet contractual demands without producing

a surplus?

(36) A small company computes its end-of-the- year bonus b as 5% of the net profit after

city and state taxes have been paid. The city tax c is 2% of taxable income, while the

state tax s is 3% of taxable income with credit allowed for the city tax as a pretax

deduction. This year, taxable income was $400,000. What is the bonus?

46 . Matrices



(37) A gasoline producer has $800,000 in fixed annual costs and incurs an additional

variable cost of $30 per barrel B of gasoline. The total cost C is the sum of the fixed

and variable costs. The net sales S is computed on a wholesale price of $40 per

barrel.

(a) Show that C, B, and S are related by two simultaneous equations.

(b) How many barrels must be produced to break even, that is, for net sales to

equal cost?

(38) (Leontief Closed Models) A closed economic model involves a society in which all

the goods and services produced by members of the society are consumed by those

members. No goods and services are imported from without and none are exported.

Such a system involves N members, each of whom produces goods or services

and charges for their use. The problem is to determine the prices each member

should charge for his or her labor so that everyone breaks even after one year. For

simplicity, it is assumed that each member produces one unit per year.

Consider a simple closed system limited to a farmer, a carpenter, and a weaver.

The farmer produces one unit of food each year, the carpenter produces one unit of

finished wood products each year, and the weaver produces one unit of clothing

each year. Let p1 denote the farmer’s annual income (that is, the price she charges

for her unit of food), let p2 denote the carpenter’s annual income (that is, the price

he charges for his unit of finished wood products), and let p3 denote the weaver’s

annual income. Assume on an annual basis that the farmer and the carpenter

consume 40% each of the available food, while the weaver eats the remaining

20%. Assume that the carpenter uses 25% of the wood products he makes, while

the farmer uses 30% and the weaver uses 45%. Assume further that the farmer uses

50% of the weaver’s clothing while the carpenter uses 35% and the weaver consumes

the remaining 15%. Show that a break-even equation for the farmer is

0:40p1 þ 0:30p2 þ 0:50p3 ¼ p1

while the break-even equation for the carpenter is

0:40p1 þ 0:25p2 þ 0:35p3 ¼ p2

What is the break-even equation for the weaver? Rewrite all three equations as

a homogeneous system and then find the annual incomes of each sector.

(39) Paul, Jim, and Mary decide to help each other build houses. Paul will spend half his

timeonhis ownhouse andaquarter of his timeon eachof the houses of JimandMary.

Jim will spend one third of his time on each of the three houses under construction.

Mary will spend one sixth of her time on Paul’s house, one third on Jim’s house, and

onehalf of her timeonher ownhouse. For tax purposes, eachmust place a price on his

or her labor, but they want to do so in a way that each will break-even. Show that the

process of determining break-even wages is a Leontief closed model containing three

homogeneous equations and then find the wages of each person.

(40) Four third-world countries each grow a different fruit for export and each uses the

income from that fruit to pay for imports of the fruits from the other countries.

Country A exports 20% of its fruit to country B, 30% to country C, 35% to country

D, and uses the rest of its fruit for internal consumption. Country B exports 10% of

its fruit to country A, 15% to country C, 35% to country D, and retains the rest for

its own citizens. Country C does not export to country A; it divides its crop equally
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between countries B and D and its own people. Country D does not consume its

own fruit; all is for export with 15% going to country A, 40% to country C, and 45%

to country D. Show that the problem of determining prices on the annual harvests

of fruit so that each country breaks even is equivalent to solving four homogeneous

equations in four unknowns and then find the prices.

Gaussian elimination is often programmed for computer implementation, but

because all computers store numbers as a finite string of digits, round-off error

can be significant. A popular strategy for minimizing round-off errors is partial

pivoting, which requires that a pivot always be larger than or equal in absolute value

than any element below the pivot in the same column. This is accomplished by using

elementary row operation R1 to interchange rows whenever necessary. In Problems

41 through 46, determine the first pivot under a partial pivoting strategy for the

given augmented matrix.

(41)
1 3

4 8

35

15

����
� �

(42)
1 �2

5 3

�5

85

����
� �

(43)

�2 8 �3

4 5 4

�3 �1 2

100

75

250

������
2
4

3
5 (44)

1 2 3

5 6 7

9 10 11

4

8

12

������
2
4

3
5

(45)

1 8 8

0 1 7

0 3 9

400

800

600

������
2
4

3
5 (46)

0 2 3 4

1 0:4 0:8 0:1
4 10 1 8

0

90

40

������
2
4

3
5

1.5 THE INVERSE

In Section 1.2, we defined matrix multiplication so that any system of linear

equations can be written in the matrix form

Ax ¼ b (1:14 repeated)

with the intent of solving this equation for x and obtaining all the variables in the

original system at the same time. Unfortunately, we cannot divide (1.14) by the

coefficient matrix A because matrix division is an undefined operation. An

equally good operation is, however, available to us.

Division of real numbers is equivalent to multiplication by reciprocals. We can

solve the linear equation 5x ¼ 20 for the variable x either by dividing the

equation by 5 or by multiplying the equation by 0.2, the reciprocal of 5. A real

number b is the reciprocal of a if and only if ab ¼ 1, in which case we write

b ¼ a�1. The concept of reciprocals can be extended to matrices. The matrix

counterpart of the number 1 is an identity matrix I, and the word inverse is used

for a matrix A instead of reciprocal even though the notation A�1 is retained.

Thus, a matrix B is an inverse of a matrix A if

AB ¼ BA ¼ I (1:24)

in which case we write B ¼ A�1.

An n� n matrix

A�1 is the inverse of

an n� n matrix A if

AA�1 ¼ A�1A ¼ I.
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The requirement that a matrix commute with its inverse implies that both

matrices are square and of the same order. Thus, inverses are only defined

for square matrices. If a square matrix A has an inverse, then A is said to

be invertible or nonsingular; if A does not have an inverse, then A is said to be

singular.

Example 1 The matrix B ¼ �2 1

1:5 �0:5

� �
is an inverse of A ¼ 1 2

3 4

� �
because

AB ¼ 1 2

3 4

� �
�2 1

1:5 �0:5

� �
¼ 1 0

0 1

� �
¼ �2 1

1:5 �0:5

� �
1 2

3 4

� �
¼ BA

and we write

A�1 ¼ 1 2

3 4

� ��1

¼ �2 1

1:5 �0:5

� �

In contrast, C ¼ 1 1=2
1=3 1=4

� �
is not an inverse of A because

AC ¼ 1 2

3 4

� �
1 1=2

1=3 1=4

� �
¼ 5=3 1

13=3 5=2

� �
6¼ I &

Equation (1.24) is a test for checking whether one matrix is an inverse of another

matrix. In Section 2.6, we prove that if AB ¼ I for two square matrices of the

same order, then A and B commute under multiplication and BA ¼ I. If we

borrow this result, we reduce the checking procedure by half. A square matrix

B is an inverse of a square matrix A if either AB ¼ I or BA ¼ I; each equality

guarantees the other. We also show later in this section that an inverse is unique;

that is, if a square matrix has an inverse, it has only one.

We can write the inverses of some simple matrices by inspections. The inverse of

a diagonal matrix D having all nonzero elements on its main diagonal is

a diagonal matrix whose diagonal elements are the reciprocals of the correspond-

ing diagonal elements of D. The inverse of

D ¼

l1 0 0 . . . 0

0 l2 0 . . . 0

0 0 l3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . lk

2
666664

3
777775 is D�1 ¼

1=l1 0 0 . . . 0

0 1=l2 0 . . . 0

0 0 1=l3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1=lk

2
666664

3
777775
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if none of the diagonal elements is zero. It is easy to show that if any diagonal

element in a diagonal matrix is zero, then that matrix is singular (see Problem

56).

An elementary matrix E is a square matrix that generates an elementary row

operation on a matrix A (which need not be square) under the multiplication EA.

Elementary matrices are constructed by applying the desired elementary row

operation to an identity matrix of appropriate order. That order is a square

matrix having as many columns as there are rows in A so that the multiplication

EA is defined. Identity matrices contain many zeros, and because nothing is

accomplished by interchanging the positions of zeros, or multiplying zeros by

constants, or adding zeros together, the construction of an elementary matrix

can be simplified.

Example 2 Find elementary matrices that when multiplied on the right by any

3� 5 matrix A will (a) interchange the first and second rows of A, (b) multiply

the third row of A by �0:5, and (c) add to the third row of A 4 times its second

row.

Solution:

(a)

0 1 0

1 0 0

0 1 0

2
4

3
5, (b)

1 0 0

0 1 0

0 0 �0:5

2
4

3
5, (c)

1 0 0

0 1 0

0 4 1

2
4

3
5: &

Example 3 Find elementary matrices that when multiplied on the right by any

4� 3 matrix A will (a) interchange the second and fourth rows of A, (b) multiply

the third row of A by 3, and (c) add to the fourth row of A �5 times its second

row.

Creating elementary matrices:

(i) To construct an elementary matrix that interchanges the ith row with

the j th row, begin with an identity matrix I. First interchange the 1 in

the i-i position with the 0 in the j-i position and then interchange the

1 in the j-j position with the 0 in the i-j position.

(ii) To construct an elementary matrix that multiplies the ith row of

a matrix by the nonzero scalar k, begin with an identity matrix I

and replace the 1 in the i-i position with k.

(iii) To construct an elementary matrix that adds to the jth row of

a matrix the scalar k times the ith row of that matrix, begin with an

identity matrix and replace the 0 in the j-i position with k.

An elementary

matrix E is a square

matrix that

generates an

elementary row

operation on a

matrix A under the

multiplication EA.
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Solution:

(a)

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
664

3
775, (b)

1 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1

2
664

3
775, (c)

1 0 0 0

0 1 0 0

0 0 1 0

0 �5 0 1

2
664

3
775:

" Theorem 1. (a) The inverse of an elementary matrix that inter-

changes two rows is the elementary matrix itself.

(b) The inverse of an elementary matrix that multiplies

one row by a nonzero scalar k is a matrix obtained

by replacing the scalar k in the elementary matrix

by 1/k.

(c) The inverse of an elementary matrix that adds to one

row a constant k times another row is a matrix

obtained by replacing the scalar k in the elementary

matrix by �k.

"

Proof: (a) Let E be an elementary matrix that has the effect interchanging the

i th and j th rows of a matrix. E comes from interchanging the i th and j th rows of

the identity matrix having the same order as E. Then EE ¼ I, because interchang-

ing the positions of the ith row of an identity matrix with jth row twice in

succession does not alter the original matrix. With EE ¼ I, it follows that

E�1 ¼ E.

(b) Let E be an elementary matrix that has the effect of multiplying the ith row of

a matrix by a nonzero scalar k, and let F be an elementary matrix that has the

effect of multiplying the ith row of a matrix by a nonzero scalar 1/k. E comes

from multiplying the ith of the identity matrix having the same order as E by k.

Then FE ¼ I, because multiplying the ith row of an identity matrix first by k and

then by 1/k does not alter the original matrix. With FE ¼ I, it follows that

F ¼ E�1.

(c) The proof is similar to the part (b) and is left as an exercise for the reader (see

Problem 63). &

Example 4 The inverses of the elementary matrices found in Example 2 are,

respectively,

(a)

0 1 0

1 0 0

0 1 0

2
4

3
5, (b)

1 0 0

0 1 0

0 0 �2

2
4

3
5, (c)

1 0 0

0 1 0

0 �4 1

2
4

3
5:
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The inverses of the elementary matrices found in Example 3 are, respectively,

(a)

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2
664

3
775, (b)

1 0 0 0

0 1 0 0

0 0 1=3 0

0 0 0 1

2
664

3
775, (c)

1 0 0 0

0 1 0 0

0 0 1 0

0 5 0 1

2
664

3
775: &

Elementary row operations are the backbone of a popular method for calculat-

ing inverses. We shall show in Section 2.6 that a square matrix is invertible if and

only if it can be transformed into a row-reduced matrix having all ones on the

main diagonal. If such a transformation is possible, then the original matrix can

be reduced still further, all the way to an identity matrix. This is done by

applying elementary row operation R3—adding to one row of a matrix a scalar

times another row of the same matrix—to each column, beginning with the last

column and moving sequentially towards the first column, placing zeros in all

positions above the diagonal elements.

Example 5 Use elementary row operations to transform the row-reduced matrix

A ¼
1 2 1

0 1 3

0 0 1

2
4

3
5

to the identity matrix.

Solution:

1 2 1

0 1 3

0 0 1

2
4

3
5! 1 2 1

0 1 0

0 0 1

2
4

3
5 by adding to

the second row

�3 times the third row

!
1 2 0

0 1 0

0 0 1

2
4

3
5 by adding to

the first row

�1 times the third row

!
1 0 0

0 1 0

0 0 1

2
4

3
5 by adding to the

first row �2 times &

the second row

Thus, a square A has an inverse if and only if A can be transformed into an

identity matrix with elementary row operations. Because each elementary row

operation can be represented by an elementary matrix, we conclude that a matrix

A has an inverse if and only if there exists a sequence of elementary matrices

E1, E2, . . . , Ek such that

EkEk�1 . . . E2E1A ¼ I
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Denoting the product of these elementary matrices by B, we have BA ¼ I, which

implies that B ¼ A�1. To calculate the inverse of a matrix A, we need only record

the product of the elementary row operations used to transform A to I. This is

accomplished by applying the same elementary row operations to both A and

I simultaneously.

Example 6 Find the inverse of A ¼ 1 2

3 4

� �
.

Solution:

1 2

3 4

1 0

0 1

����
� �

!
1 2

0 �2

1 0

�3 1

����
� � by adding to

the second row �3

times the first row

!
0 2

0 1

1 0

3=2 �1=2

����
�

by multiplying the

second row by �1=2

�

A has been transformed into row-reduced form with a main diagonal of only

ones; A has an inverse. Continuing with the transformation process, we get

! 1 0

0 1

�2 1

3=2 �1=2

����
� � by adding to the

first row �2 times

the second row

Thus,

A�1 ¼ �2 1

3=2 �1=2

� �
&

Calculating inverses:

Step 1. Create an augmented matrix [A j I], where A is the n� n matrix to

be inverted and I is the n� n identity matrix.

Step 2. Use elementary row operations on [A j I] to transform the left

partition A to row-reduced form, applying each operation to the

full augmented matrix.

Step 3. If the left partition of the row-reduced matrix has zero elements

on its main diagonal, stop: A does not have inverse. Otherwise,

continue.

Step 4. Use elementary row operations on the row-reduced augmented

matrix to transform the left partition to the n� n identity matrix,

applying each operation to the full augmented matrix.

Step 5. The right partition of the final augmented matrix is the inverse

of A.
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Example 7 Find the inverse of A ¼
5 8 1

0 2 1

4 3 �1

2
4

3
5

Solution:

5 8 1

0 2 1

4 3 �1

1 0 0

0 1 0

0 0 1

�������
2
64

3
75

!
1 1:6 0:2
0 2 1

4 3 �1

0:2 0 0

0 1 0

0 0 1

������
2
4

3
5 by multiplying the

first row by 0:2

!
1 1:6 0:2
0 2 1

0 �3:4 �1:8

0:2 0 0

0 1 0

�0:8 0 1

������
2
4

3
5 by adding to the

third row �4 times

the first row

!
1 1:6 0:2
0 1 0:5
0 �3:4 �1:8

0:2 0 0

0 0:5 0

�0:8 0 1

������
2
4

3
5 by multiplying the

second row by 1=2

!
1 1:6 0:2
0 1 0:5
0 0 �0:1

0:2 0 0

0 0:5 0

�0:8 1:7 1

������
2
4

3
5 by adding to the

third row 3:4 times

the second row

!
1 1:6 0:2
0 1 0:5
0 0 1

0:2 0 0

0 0:5 0

8 �17 �10

������
2
4

3
5 by multiplying the

third row by �10

A has been transformed into row-reduced form with a main diagonal of only

ones; A has an inverse. Continuing with the transformation process, we get

!
1 1:6 0:2
0 1 0

0 0 1

0:2 0 0

�4 9 5

8 �17 �10

������
2
4

3
5 by adding to the

second row �0:5
times the third row

!
1 1:6 0

0 1 0

0 0 1

�1:4 3:4 2

�4 9 5

8 �17 �10

������
2
4

3
5 by adding to the

first row �0:2
times the third row

!
1 0 0

0 1 0

0 0 1

5 �11 6

�4 9 5

8 �17 �10

������
2
4

3
5 by adding to the

first row �1:6 times
the second row
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Thus,

A�1 ¼
5 �11 �6

�4 9 5

8 �17 �10

2
4

3
5 &

Example 8 Find the inverse of A ¼
0 1 1

1 1 1

1 1 3

2
4

3
5:

Solution:

0 1 1

1 1 1

1 1 3

1 0 0

0 1 0

0 0 1

�������
2
64

3
75

!
1 1 1

0 1 1

1 1 3

0 1 0

1 0 0

0 0 1

������
2
4

3
5 by interchanging the

first and second rows

!
1 1 1

0 1 1

0 0 2

0 1 0

1 0 0

0 �1 1

������
2
4

3
5 by adding to the

third row �1 times
the first row

!
1 1 1

0 1 1

0 0 1

0 1 0

1 0 0

0 �1=2 1=2

������
2
4

3
5 by multiplying the

third row by 1=2

!
1 1 1

0 1 0

0 0 1

0 1 0

1 1=2 �1=2
0 �1=2 1=2

������
2
4

3
5 by adding to the

second row �1
times the third row

!
1 1 0

0 1 0

0 0 1

0 3=2 �1=2
1 1=2 �1=2
0 �1=2 1=2

������
2
4

3
5 by adding to the

first row �1 times
the third row

!
1 0 0

0 1 0

0 0 1

�1 1 0

1 1=2 �1=2
0 �1=2 1=2

������
2
4

3
5 by adding to the

first row �1 times the
second row

Thus,

A�1 ¼
�1 1 0

1 1=2 �1=2
0 �1=2 1=2

2
4

3
5 &
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Example 9 Find the inverse of A ¼ 1 2

2 4

� �
:

Solution:

1 2

2 4

1 0

0 1

����
� �

! 1 2

0 0

1 0

�2 1

����
� � by adding to the

second row �2
times the first row

A has been transformed into row-reduced form. Because the main diagonal

contains a zero entry, A does not have an inverse; A is singular. &

" Theorem 2. The inverse of a matrix is unique.

"

Proof: If B and C are both inverses of the matrix A, then

AB ¼ I, BA ¼ I, AC ¼ I, and CA ¼ I:

It now follows that

C ¼ CI ¼ C(AB) ¼ (CA)B ¼ IB ¼ B:

Thus, if B and C are both inverses of A, they must be equal; hence, the inverse

is unique. &

Using Theorem 2, we can prove some useful properties of inverses.

" Theorem 3. If A and B are n� n nonsingular matrices, then

(a) (A�1)
�1 ¼ A,

(b) (AB)�1 ¼ B�1A�1,

(c) (AT)
�1 ¼ (A�1)

T
,

(d) (lA)�1 ¼ (1=l)A�1, if l is a nonzero scalar.

"

Proof: We prove parts (b) and (c) and leave parts (a) and (d) as exercises (see

Problems 59 and 60). To prove (b), we note that

(B�1A�1) (AB) ¼ B�1(A�1A) B ¼ B�1 IB ¼ B�1 B ¼ I:

Thus, B�1A�1 is an inverse of AB. Because the inverse is unique, it follows that

(AB)�1 ¼ B�1A�1.
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To prove (c), we note that

(AT) (A�1)
T ¼ (A�1A)

T ¼ IT ¼ I:

Thus, (A�1)T is an inverse of AT. Because the inverse is unique, it follows that

(AT)�1 ¼ (A�1)T. &

The process of finding an inverse is known as inversion, and, interestingly, some

matrix forms are preserved under this process.

" Theorem 4. (a) The inverse of a nonsingular symmetric matrix is

symmetric.

(b) The inverse of a nonsingular upper or lower trian-

gular matrix is again an upper or lower triangular

matrix, respectively.

"

Proof: If A is symmetric, then AT ¼ A. Combining this observation with part

(c) of Theorem 2, we find that

(A�1)
T ¼ (AT)

�1 ¼ (A)�1

so A�1 also equals its transpose and is symmetric. This proves part (a). Part (b) is

immediate from Theorem 2 and the constructive procedure used for calculating

inverses. The details are left as an exercise (see Problem 62).

A system of simultaneously linear equations has the matrix form

Ax ¼ b (1:14 repeated)

If the coefficient matrix A is invertible, we can premultiply both sides of equation

(1.14) by A�1 to obtain

A�1(Ax) ¼ A�1b

(A�1A)x ¼ A�1b

Ix ¼ A�1b

or

x ¼ A�1b & (1:25)

This is precisely the form we sought in Section 1.2. With this formula, we can

solve for all the variables in a system of linear equations at the same time.

The matrix equation

Ax ¼ b has

x ¼ A�1b as its

solution if the

coefficient matrix

A is invertible.
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Example 10 The system of equations

xþ 2y ¼ 150

3xþ 4y ¼ 250

can be written as Ax ¼ b with

A ¼ 1 2

3 4

� �
, x ¼ x

y

� �
, and b ¼ 150

250

� �

Using the results of Example 6, we have that the coefficient matrix A is

invertible and

x

y

� �
¼ x ¼ A�1b ¼ �2 1

3=2 �1=2

� �
150

250

� �
¼ �50

100

� �
:

Hence, x ¼ �50 and y ¼ 100. &

Example 11 The system of equations

5xþ 8yþ z ¼ 2

2yþ z ¼ �1

4xþ 3y� z ¼ 3

can be written as Ax ¼ b with

A ¼
5 8 1

0 2 1

4 3 �1

2
4

3
5, x ¼

x

y

z

2
4
3
5, and b ¼

2

�1

3

2
4

3
5:

Using the results of Example 7, we have that the coefficient matrix A is

invertible and

x

y

� �
¼ x ¼ A�1b ¼

5 �11 �6

�4 9 5

8 �17 �10

2
4

3
5 2

�1

3

2
4

3
5 ¼ 3

�2

3

2
4

3
5

Hence, x ¼ 3, y ¼ �2, and z ¼ 3: &
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Not only does the invertibility of the coefficient matrix A provide us with

a solution to the system Ax ¼ b, it also provides us with a means to show that

this solution is the only solution to the system.

" Theorem 5. If A is invertible, then the system of simultaneous

linear equations defined by Ax ¼ b has a unique (one and only one)

solution.

"

Proof: Define w ¼ A�1b. Then

Aw ¼ AA�1b ¼ Ib ¼ b (1:26)

and w is one solution to the system Ax ¼ b. Let y be another solution to this

system. Then necessarily

Ay ¼ b (1:27)

Equations (1.26) and (1.27) imply that

Aw ¼ Ay

Premultiplying both sides of this last equation by A�1, we find

A�1(Aw) ¼ A�1(Ay)

(A�1A)w ¼ (A�1A)y

Iw ¼ Iy

or

w ¼ y

Thus, if y is a solution of Ax ¼ b, then it must equal w. Therefore, w ¼ A�1b is

the only solution to this system. &

If A is singular, so that A�1 does not exist, then equation (1.25) is not valid and

other methods, such as Gaussian elimination, must be used to solve the given

system of simultaneous equations.
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Problems 1.5

(1) Determine if any of the following matrices are inverses for A ¼ 1 3

2 9

� �
:

(a)
1 1=3

1=2 1=9

� �
, (b)

�1 �3

�2 �9

� �
,

(c)
3 �1

�2=3 1=3

� �
, (d)

9 �3

�2 1

� �
.

(2) Determine if any of the following matrices are inverses for A ¼ 1 1

1 1

� �
:

(a)
1 1

1 1

� �
, (b)

�1 1

1 �1

� �
,

(c)
1 1

�1 �1

� �
, (d)

2 �1

�1 2

� �
.

In Problems 3 through 12, find elementary matrices that when multiplied on the right by

the given matrix A will generate the specified result.

(3) Interchange the order of the first and second rows of a 2� 2 matrix A.

(4) Multiply the first row of a 2� 2 matrix A by 3.

(5) Multiply the second row of a 2� 2 matrix A by �5.

(6) Multiply the second row of a 3� 3 matrix A by �5.

(7) Add to the second row of a 2� 2 matrix A three times its first row.

(8) Add to the first row of a 2� 2 matrix A three times its second row.

(9) Add to the second row of a 3� 3 matrix A three times its third row.

(10) Add to the third row of a 3� 4 matrix A five times its first row.

(11) Interchange the order of the second and fourth rows of a 6� 6 matrix A.

(12) Multiply the second row of a 2� 5 matrix A by 7.

In Problems 13 through 22, find the inverses of the given elementary matrices.

(13)
2 0

0 1

� �
(14)

1 2

0 1

� �
(15)

1 0

�3 1

� �

(16)
1 0

1 1

� �
(17)

1 0 0

0 2 0

0 0 1

2
4

3
5 (18)

0 1 0

1 0 0

0 0 1

2
4

3
5

(19)

1 0 3

0 1 0

0 0 1

2
4

3
5 (20)

1 0 0

0 1 �2

0 0 1

2
4

3
5 (21)

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
664

3
775

(22)

1 0 0 0

0 1 0 0

�3 0 1 0

0 0 0 1

2
664

3
775A�1 ¼ A
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In Problems 23 through 39, find the inverses of the given matrices, if they exist.

(23)
1 1

3 4

� �
(24)

2 1

1 2

� �
(25)

4 4

4 4

� �

(26)

1 1 0

1 0 1

0 1 1

2
4

3
5 (27)

0 0 1

1 0 0

0 1 0

2
4

3
5 (28)

2 0 �1

0 1 2

3 1 1

2
4

3
5

(29)

1 2 3

4 5 6

7 8 9

2
4

3
5 (30)

2 0 0

5 1 0

4 1 1

2
4

3
5 (31)

2 1 5

0 3 �1

0 0 2

2
4

3
5

(32)

3 2 1

4 0 1

3 9 2

2
4

3
5 (33)

1 2 �1

2 0 1

�1 1 3

2
4

3
5

(34)

1 2 1

3 �2 �4

2 3 �1

2
4

3
5 (35)

2 4 3

3 �4 �4

5 0 �1

2
4

3
5

(36)

5 0 �1

2 �1 2

2 3 �1

2
4

3
5 (37)

3 1 1

1 3 �1

2 3 �1

2
4

3
5

(38)

1 1 1 2

0 1 �1 1

0 0 2 3

0 0 0 �2

2
664

3
775 (39)

1 0 0 0

2 �1 0 0

4 6 2 0

3 2 4 �1

2
664

3
775

(40) Show directly that the inverse of A ¼ a b

c d

� �
, when ad � bc 6¼ 0 is

A�1 ¼ 1

ad � bc

d �b

�c a

� �

(41) Use the result of Problem (40) to calculate the inverses of

(a)
1 1

3 4

� �
and (b)

1 1=2
%1=2 1=3

� �

In Problems 42 through 51, use matrix inversion, if possible, to solve the given systems of

equations:

(42) xþ 2y ¼ �3 (43) aþ 2b ¼ 5

3xþ y ¼ 1 �3aþ b ¼ 13

(44) 4xþ 2y ¼ 6 (45) 4l � p ¼ 1

2x� 3y ¼ 1 5l � 2p ¼ �1

(46) 2xþ 3y ¼ 8 (47) xþ 2y� z ¼ �1

6xþ 9y ¼ 24 2xþ 3yþ 2z ¼ 5

y� z ¼ 2
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(48) 2xþ 3y� z ¼ 4 (49) 60l þ 30mþ 20n ¼ 0

�x� 2yþ z ¼ �2 30l þ 20mþ 15n ¼ �10

3x� y ¼ 2 20l þ 15mþ 12n ¼ �10

(50) 2rþ 3s� 4t ¼ 12 (51) xþ 2y� 2z ¼ �1

3r� 2s ¼ �1 2xþ yþ z ¼ 5

8r� s� 4t ¼ 10 �xþ y� z ¼ �2

(52) Solve each of the following systems using the same inverse:

(a) 3xþ 5y ¼ 10 (b) 3xþ 5y ¼ �8

2xþ 3y ¼ 20 2xþ 3y ¼ 22

(c) 3xþ 5y ¼ 0:2 (d) 3xþ 5y ¼ 0

2xþ 3y ¼ 0:5 2xþ 3y ¼ 5

(53) Solve each of the following systems using the same inverse:

(a) 2xþ 4y ¼ 2 (b) 2xþ 4y ¼ 3

3xþ 2yþ z ¼ 8 3xþ 2yþ z ¼ 8

5x� 3yþ 7z ¼ 15 5x� 3yþ 7z ¼ 15

(c) 2xþ 4y ¼ 2 (d) 2xþ 4y ¼ 1

3xþ 2yþ z ¼ 9 3xþ 2yþ z ¼ 7

5x� 3yþ 7z ¼ 15 5x� 3yþ 7z ¼ 14

(54) If A is nonsingular matrix, we may define A�n ¼ (A�1)n, for any positive integer n.

Use this definition to find A�2 and A�3 for the following matrices:

(a)
1 1

2 3

� �
, (b)

2 5

1 2

� �
, (c)

1 1

3 4

� �
,

(d)

1 1 1

0 1 1

0 0 1

2
4

3
5, (e)

1 2 �1

0 1 �1

0 0 1

2
4

3
5:

(55) Prove that a square zero matrix does not have an inverse.

(56) Prove that if a diagonal matrix has at least one zero on its main diagonal, then that

matrix does not have an inverse.

(57) Prove that if A2 ¼ I, the A�1 ¼ A.

(58) If A is symmetric, prove the identity (BA�1)
T
(A�1BT)

�1 ¼ I.

(59) Prove that if A is invertible, then (A�1)
�1 ¼ A.

(60) Prove that if A is invertible and if l is a nonzero scalar, then (lA)�1 ¼ (1=l)A�1.

(61) Prove that if A, B, and C are n� n nonsingular matrices, then (ABC)�1 ¼
C�1B�1A�1.

(62) Prove that the inverse of a nonsingular upper (lower) triangular matrix is itself

upper (lower) triangular.

(63) Prove part (c) of Theorem 1.
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(64) Show that if A can be partitioned into the block diagonal form

A ¼

A1

A2 0
A3

. .
.

0 Ak

2
666666664

3
777777775

with A1, A2, . . . , An all invertible, then

A�1 ¼

A�1
1

A�1
2 0

A�1
3

. .
.

0 A�1
k

2
6666666664

3
7777777775

1.6 LU DECOMPOSITION

Matrix inversion of elementary matrices is at the core of still another popular

method, known as LU decomposition, for solving simultaneous equations in

the matrix form Ax ¼ b. The method rests on factoring a nonsingular coefficient

matrix A into the product of a lower triangular matrix L with an upper triangular

matrix U. Generally, there are many such factorizations. If L is required to have all

diagonal elements equal to 1, then the decomposition, when it exists, is unique and

we may write

A ¼ LU (1:28)

with

L ¼

1 0 0 . . . 0

l21 1 0 . . . 0

l31 l32 1 . . . 0

..

. ..
. ..

. . .
. ..

.

ln1 ln2 ln3 . . . 1

2
666664

3
777775

U ¼

u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u23 . . . u3n

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . unn

2
666664

3
777775
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To decompose A into form (1.28), we first transform A to upper triangular form

using just the third elementary row operation R3. This is similar to transforming

a matrix to row-reduced form, except we no longer use the first two elementary

row operations. We do not interchange rows, and we do not multiply rows by

nonzero constants. Consequently, we no longer require that the first nonzero

element of each nonzero row be 1, and if any of the pivots are 0—which would

indicate a row interchange in the transformation to row-reduced form—then the

decomposition scheme we seek cannot be done.

Example 1 Use the third elementary row operation to transform the matrix

A ¼
2 �1 3

4 2 1

�6 �1 2

2
4

3
5

into upper triangular form.

Solution:

A ¼
2 �1 3

4 2 1

�6 �1 2

2
64

3
75! 2 �1 3

0 4 �5

�6 �1 2

2
64

3
75 by adding to the

second row � 2 times
the first row

!
2 �1 3

0 4 �5

0 �4 11

2
4

3
5 by adding to the

third row 3 times
the first row

!
2 �1 3

0 4 �5

0 0 6

2
4

3
5 by adding to the

third row 1 times
the second row &

If a square matrix A can be reduced to upper triangular form U by a sequence

of elementary row operations of the third type, then there exists a sequence of

elementary matrices E21, E31, E41, . . . , En, n�1 such that

En, n�1 . . . E41E31E21

� �
A ¼ U (1:29)

where E21 denotes the elementary matrix that places a 0 in the 2-1 position, E31

denotes the elementary matrix that places a 0 in the 3-1 position, E41 denotes the

elementary matrix that places a 0 in the 4-1 position, and so on. Since elementary

matrices have inverses, we can write (1.29) as
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A ¼ (E�1
21 E�1

31 E�1
41 . . . E�1

n, n�1)U (1:30)

Each elementary matrix in (1.29) is lower triangular. It follows from Theorem 4

of Section 1.5 that each of the inverses in (1.30) are lower triangular and then

from Theorem 2 of Section 1.3 that the product of these lower triangular inverses

is itself lower triangular. If we set

L ¼ (E�1
21 E�1

31 E�1
41 . . . E�1

n, n�1)

then L is lower triangular and (1.30) may be rewritten as A ¼ LU, which is the

decomposition we seek.

Example 2 Construct an LU decomposition for the matrix given in Example 1.

Solution: The elementary matrices associated with the elementary row oper-

ations described in Example 1 are

E21 ¼
1 0 0

�2 1 0

0 0 1

2
4

3
5, E31 ¼

1 0 0

0 1 0

�3 0 1

2
4

3
5, and E32 ¼

1 0 0

0 1 0

0 �1 1

2
4

3
5

with inverses given respectively by

E�1
21 ¼

1 0 0

2 1 0

0 0 1

2
4

3
5, E�1

31 ¼
1 0 0

0 1 0

�3 0 1

2
4

3
5, and E�1

32 ¼
1 0 0

0 1 0

0 �1 1

2
4

3
5:

Then,

2 �1 3

4 2 1

�6 �1 2

2
4

3
5 ¼ 1 0 0

2 1 0

0 0 1

2
4

3
5 1 0 0

0 1 0

�3 0 1

2
4

3
5 1 0 0

0 1 0

0 �1 1

2
4

3
5 2 �1 3

0 4 �5

0 0 6

2
4

3
5

or, upon multiplying together the inverses of the elementary matrices,

2 �1 3

4 2 1

�6 �1 2

2
4

3
5 ¼ 1 0 0

2 1 0

�3 �1 1

2
4

3
5 2 �1 3

0 4 �5

0 0 6

2
4

3
5: &

Example 2 suggests an important simplification of the decomposition process.

Note that the elements in L located below the main diagonal are the negatives of

the scalars used in the elementary row operations in Example 1 to reduce A to

upper triangular form! This is no coincidence.

A square matrix A

has an LU

decomposition if A

can be transformed

to upper triangular

form using only the

third elementary

row operation.
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" Observation 1. If, in transforming a square matrix A to upper triangular

form, a zero is placed in the i-j position by adding to row i a scalar k times

row j, then the i-j element of L in the LU decomposition of A is�k: 3

We summarize the decomposition process as follows: Use only the third ele-

mentary row operation to transform a square matrix A to upper triangular form.

If this is not possible, because of a zero pivot, then stop. Otherwise, the LU

decomposition is found by defining the resulting upper triangular matrix as U

and constructing the lower triangular matrix L according to Observation 1.

Example 3 Construct an LU decomposition for the matrix

A ¼

2 1 2 3

6 2 4 8

1 �1 0 4

0 1 �3 �4

2
664

3
775

Solution: Transforming A to upper triangular form, we get

2 1 2 3

6 2 4 8

1 �1 0 4

0 1 �3 �4

2
6664

3
7775!

2 1 2 3

0 �1 �2 �1

1 �1 0 4

0 1 �3 �4

2
6664

3
7775

by adding to the

second row � 3 times

the first row

!

2 1 2 3

0 �1 �2 �1

0 � 3
2
�1 5

2

0 1 �3 �4

2
6664

3
7775

by adding to the

third row � 1
2

times

the first row

!

2 1 2 3

0 �1 �2 �1

0 0 2 4

0 1 �3 �4

2
664

3
775 by adding to the

third row� 3
2

times
the second row

!

2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 �5 �5

2
664

3
775

by adding to the

fourth row 1 times

the second row

!

2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 0 5

2
664

3
775 by adding to the

fourth row 5
2

times
the third row
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We now have an upper triangular matrix U. To get the lower triangular matrix L

in the decomposition, we note that we used the scalar �3 to place a 0 in the 2-1

position, so its negative �(� 3) ¼ 3 goes into the 2-1 position of L. We used the

scalar �1
2

to place a 0 in the 3-1 position in the second step of the preceding

triangularization process, so its negative, 1
2
, becomes the 3-1 element in L; we

used the scalar 5
2

to place a 0 in the 4-3 position during the last step of the

triangularization process, so its negative, � 5
2
, becomes the 4-3 element in L.

Continuing in this manner, we generate the decomposition

2 1 2 3

6 2 4 8

1 �1 0 4

0 1 �3 �4

2
664

3
775 ¼

1 0 0 0

3 1 0 0
1
2

3
2

1 0

0 �1 � 5
2

1

2
664

3
775

2 1 2 3

0 �1 �2 �1

0 0 2 4

0 0 0 5

2
664

3
775 &

LU decompositions, when they exist, are used to solve systems of simultaneous

linear equations. If a square matrix A can be factored into A ¼ LU, then the

system of equations Ax ¼ b can be written as L(Ux) ¼ b. To find x, we first solve

the system

Ly ¼ b (1:31)

for y, and then once y is determined, we solve the system

Ux ¼ y (1:32)

for x. Both systems (1.31) and (1.32) are easy to solve, the first by forward

substitution and the second by backward substitution.

Example 4 Solve the system of equations:

2x� yþ 3z ¼ 9

4xþ 2yþ z ¼ 9

�6x� yþ 2z ¼ 12

Solution: This system has the matrix form

2 �1 3

4 2 1

�6 �1 2

2
64

3
75

x

y

z

2
64
3
75 ¼

9

9

12

2
64

3
75

If A ¼ LU for a

square matrix A,

then the equation

Ax ¼ b is solved by

first solving the

equation Ly ¼ b for

y and then solving

the equation Ux ¼ y

for x.
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The LU decomposition for the coefficient matrix A is given in Example 2. If

we define the components of y by a, b, and g, respectively, the matrix system

Ly ¼ b is

1 0 0

2 1 0

�3 �1 1

2
64

3
75

a

b

g

2
64

3
75 ¼

9

9

12

2
64

3
75

which is equivalent to the system of equations

a ¼ 9

2aþ b ¼ 9

�3a� bþ g ¼ 12

Solving this system from top to bottom, we get a ¼ 9, b ¼ �9, and g ¼ 30.

Consequently, the matrix system Ux ¼ y is

2 �1 3

0 4 �5

0 0 6

2
4

3
5 x

y

z

2
4
3
5 ¼ 9

�9

30

2
4

3
5

which is equivalent to the system of equations

2x� yþ 3z ¼ 9

4y� 5z ¼ �9

6z ¼ 30

Solving this system from bottom to top, we obtain the final solution

x ¼ �1, y ¼ 4, and z ¼ 5. &

Example 5 Solve the system

2aþ bþ 2cþ 3d ¼ 5

6aþ 2bþ 4cþ 8d ¼ 8

a� bþ 4d ¼ �4

b� 3c� 4d ¼ �3
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Solution: The matrix representation for this system has as its coefficient matrix

the matrix A of Example 3. Define

y ¼ [a, b, g, d]T

Then, using the decomposition determined in Example 3, we can write the matrix

system Ly ¼ b as the system of equations

a ¼ 5

3aþ b ¼ 8

1

2
aþ 3

2
bþ g ¼ �4

�b� 5

2
g þ d ¼ �3

which has as its solution a ¼ 5, b ¼ �7, g ¼ 4, and � ¼ 0. Thus, the matrix

system Ux ¼ y is equivalent to the system of equations

2aþ bþ 2cþ 3d ¼ 5

�b� 2c� d ¼ �7

2cþ 4d ¼ 4

5d ¼ 0

Solving this set from bottom to top, we calculate the final solution as

a ¼ �1, b ¼ 3, c ¼ 2, and d ¼ 0. &

Problems 1.6

In Problems 1 through 14, A and b are given. Construct an LU decomposition for the

matrix A and then use it to solve the system Ax ¼ b for x.

(1) A ¼ 1 1

3 4

� �
, b ¼ 1

�6

� �
. (2) A ¼ 2 1

1 2

� �
, b ¼ 11

�2

� �
.

(3) A ¼ 8 3

5 2

� �
, b ¼ 625

550

� �
. (4) A ¼

1 1 0

1 0 1

0 1 1

2
4

3
5, b ¼

4

1

�1

2
4

3
5.

(5) A ¼
�1 2 0

1 �3 1

2 �2 3

2
4

3
5, b ¼

�1

�2

3

2
4

3
5.

(6) A ¼
2 1 3

4 1 0

�2 �1 �2

2
4

3
5, b ¼

10

�40

0

2
4

3
5.
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(7) A ¼
3 2 1

4 0 1

3 9 2

2
4

3
5, b ¼

50

80

20

2
4

3
5.

(8) A ¼
1 2 �1

2 0 1

�1 1 3

2
4

3
5, b ¼

80

159

�75

2
4

3
5.

(9) A ¼
1 2 �1

0 2 1

0 0 1

2
4

3
5, b ¼

8

�1

5

2
4

3
5.

(10) A ¼
1 0 0

3 2 0

1 1 2

2
4

3
5, b ¼

2

4

2

2
4
3
5.

(11) A ¼

1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

2
664

3
775, b ¼

4

�3

�2

�2

2
664

3
775.

(12) A ¼

2 1 �1 3

1 4 2 1

0 0 �1 1

0 1 0 1

2
664

3
775, b ¼

1000

200

100

100

2
664

3
775.

(13) A ¼

1 2 1 1

1 1 2 1

1 1 1 2

0 1 1 1

2
664

3
775, b ¼

30

30

10

10

2
664

3
775.

(14) A ¼

2 0 2 0

2 2 0 6

�4 3 1 1

1 0 3 1

2
664

3
775, b ¼

�2

4

9

4

2
664

3
775.

(15) (a) Use LU decomposition to solve the system

�xþ 2y ¼ �9

2xþ 3y ¼ 4

(b) Use the decomposition to solve the preceding system when the right sides of

the equations are replaced by 1 and �1, respectively.

(16) (a) Use LU decomposition to solve the system

xþ 3y� z ¼� 1

2xþ 5yþ z ¼ 4

2xþ 7y� 4z ¼� 6

(b) Use the decomposition to solve the preceding system when the right side of

each equation is replaced by 10, 10, and 10, respectively.
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(17) Solve the system Ax ¼ b for the following vectors b when A is given as in

Problem 4:

(a)

5

7

�4

2
4

3
5, (b)

2

2

0

2
4
3
5, (c)

40

50

20

2
4

3
5, (d)

1

1

3

2
4
3
5:

(18) Solve the system Ax ¼ b for the following vectors b when A is given as in

Problem 13:

(a)

�1

1

1

1

2
664

3
775, (b)

0

0

0

0

2
664
3
775, (c)

190

130

160

60

2
664

3
775, (d)

1

1

1

1

2
664
3
775.

(19) Show that LU decomposition cannot be used to solve the system

2yþ z ¼ �1

xþ yþ 3z ¼ 8

2x� y� z ¼ 1

but that the decomposition can be used if the first two equations are interchanged.

(20) Show that LU decomposition cannot be used to solve the system

xþ 2yþ z ¼ 2

2xþ 4y� z ¼ 7

xþ yþ 2z ¼ 2

but that the decomposition can be used if the first and third equations are inter-

changed.

(21) (a) Show that the LU decomposition procedure given in this section cannot be

applied to

A ¼ 0 2

0 9

� �

(b) Verify that A ¼ LU, when

L ¼ 1 0

1 1

� �
and U ¼ 0 2

0 7

� �

(c) Verify that A ¼ LU, when

L ¼ 1 0

3 1

� �
and U ¼ 0 2

0 3

� �
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(d) Why do you think the LU decomposition procedure fails for this A? What might

explain the fact that A has more than one LU decomposition?

1.7 PROPERTIES OF Rn

Points on the plane in an x-y coordinate system are identified by an ordered pair

of real numbers; points in space are located by an ordered triplet of real numbers.

These are just two examples of the more general concept of an ordered array of

n-real numbers known as an n-tuple. We write an n-tuple as a 1� n row matrix.

The elements in the row matrix are real numbers and the number of elements

(columns) n is the dimension of the row matrix. The set of all n-tuples is often

referred to as n-space and denoted by Rn. In particular, the ordered pair [ 1 2 ] is

a member of R2; it is a 2-tuple of dimension two. The ordered triplet

[ 10 20 30 ] is a member of R3; it is a 3-tuple of dimension three. The p-tuple

a ¼ [ a1 a2 a3 . . . ap ], where aj (j ¼ 1, 2, . . . , p) is a real number, is a

member of Rp, and has dimension p.

An ordered array of real numbers also can be written as a column matrix, and

often is. Here we work exclusively with row matrix representations, but only as

a matter of convenience. We could work equally well with column matrices.

Row matrices are special types of matrices, those matrices having only one row,

so the basic matrix operations defined in Section 1.1 remain valid for n-tuples

represented as row matrices. This means we know how to add and subtract

n-tuples of the same dimension and how to multiple a real number times an

n-tuple (scalar multiplication). If we restrict ourselves to R2 and R3, we can

describe these operations geometrically.

A two-dimensional row matrix v ¼ [ a b ] is identified with the point (a, b) on

x-y plane, measured a units along the horizontal x-axis from the origin and then

b units parallel to the vertical y-axis. If we draw a directed line segment, or

arrow, beginning at the origin and ending at the point (a, b), then this arrow, as

shown in Figure 1.10, is a geometrical representation of the row matrix [ a b ]. It

follows immediately from Pythagoras’s theorem that the length or magnitude of

v, denoted by kvk, is

vk k ¼ a b½ �k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

and from elementary trigonometry that the angle u satisfies the equation

tan u ¼ b

a

Rn is the set of

ordered arrays of n

real numbers. This

set is represented

either by the set of

all n-dimensional

row matrices or by

the set of all n-

dimensional column

matrices.
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Example 1 Represent the row matrices v ¼ [ 2 4 ] and u ¼ [�1 1 ]

geometrically and then determine the magnitude of each and the angle each

makes with the horizontal x-axis.

Solution: The row matrices are graphed in Figure 1.11. For v, we have

vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (4)2

q
� 4:47, tan u ¼ 4

2
¼ 2, and u � 63:4�

For u, similar computations yield

uk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(� 1)2 þ (1)2

q
� 1:14, tan u ¼ 1

�1
¼ �1, and u ¼ 135� &

Figure 1.10

(a, b)

a

b

y

vector v

xθ

Figure 1.11

1

−1

−1−2 2 31

2

3

4

(−1, 1)

(2, 4)

ve
ct

or
 v

vector u

y

x
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To geometrically construct the sum of two row matrices u and v in R2, graph u

and v on the same coordinate system, translate v so its initial point coincides with

the terminal point of u, being careful to preserve both the magnitude and direction

of v, and then draw an arrow from the origin to the terminal point of v after

translation. This arrow geometrically represents the sum uþ v. The process is

illustrated in Figure 1.12 for the row matrices u ¼ [�1 1 ] and v ¼ [ 2 4 ].

To construct the difference of two row matrices u� v geometrically, graph both

u and v normally and construct an arrow from the terminal point of v to the

terminal point of u. This arrow geometrically represents the difference u� v. The

process is depicted in Figure 1.13 for u ¼ [�1 1 ] and v ¼ [ 2 4 ].

Figure 1.12

5

4

3

3

2

2

1

1
x

y

−2

−1

−1

u

v
u 

+ 
v

v 
tra

ns
la

te
d

Figure 1.13

u 
− v

1

−1

−1−2 2 31

2

3

4

y

x

v

u

To graph uþ v in

R2, graph u and v on

the same coordinate

system, translate v

so its initial point

coincides with the

terminal point of u,

and then draw an

arrow from the

origin to the

terminal point of v

after translation.

To graph u� v in

R2, graph u and v on

the same coordinate

system and then

draw an arrow from

the terminal point of

v to the terminal

point of u.
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Translating an arrow (directed line segment) that represents a two-dimensional

row matrix from one location in the plane to another does not affect the

representation, providing both the magnitude and direction as defined by the

angle the arrow makes with the positive x-axis are preserved. Many physical

phenomena such as velocity and force are completely described by their magni-

tudes and directions. A wind velocity of 60 miles per hour in the northwest

direction is a complete description of that velocity, and it is independent of where

that wind occurs, be it Lawrence, Kansas, or Portland, Oregon. This independ-

ence is the rationale behind translating row matrices geometrically. Geometric-

ally, two-dimensional row matrices having the same magnitude and direction are

call equivalent, and they are regarded as being equal even though they may be

located at different positions in the plane. The four arrows drawn in Figure 1.14

are all geometrical representations of the same row matrix [ 1 �3 ].

To recapture a row matrix from the directed line segment that represents it, we

translate the directed line segment so that its tail lies on the origin and then read

the coordinates of its tip. Alternatively, we note that if a directed line segment w

does not originate at the origin, then it can be expressed as the difference between

a directed line segment u that begins at the origin and ends at the tip of w and

a directed line segment v that originates at the origin and ends at the tail of w as

Figure 1.14 y

x

Figure 1.15 y

x

w

v

u
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shown in Figure 1.15. Therefore, if the tip of w is at the point (x2, y2) and the tail

at the point (x1, y1), then u represents the row matrix [ x2 y2 ], v represents the

row matrix [ x1 y1 ], and w is the difference w ¼ u� v ¼ [ x2 � x1 y2 � y1 ].

Example 2 Determine the two-dimensional row matrix associated with the

directed line segments w and z shown in Figure 1.16.

Solution: The tip of the directed line segment w is at the point (40, 30) while its

tail lies on the point (10, � 20), so

w ¼ [ 40� 10 30� (� 20) ] ¼ [ 30 50 ]

The tip of the directed line segment z is at the point (� 10, 30) while its tail lies on

the point (� 50, 50), so

z ¼ [�10� (� 50) 30� 50 ] ¼ [ 40 �20 ] &

A scalar multiplication ku is defined geometrically in R2 to be a directed line

segment having length jkj times the length of u, in the same direction as u when

k is positive and in the opposite direction to u when k is negative. Effectively, ku

is an elongation of the directed line segment representing u when jkj is greater

than 1, or a contraction of u by a factor of jkj when jkj is less than 1, followed by

no rotation when k is positive or a rotation of 180 degrees when k is negative.

Example 3 Find �2u and 1⁄2 v geometrically for the row matrices u ¼ [�1 1 ]

and v ¼ [ 2 4 ].

Solution: To construct �2u, we double the length of u and then rotate the

resulting arrow by 180�. To construct 1⁄2 v, we halve the length of v and effect

no rotation. These constructions are illustrated in Figure 1.17. &

Figure 1.16
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length of u with the

same direction as u

when the scalar k is
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opposite direction

to u when k is

negative.
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To graphically depict a three-dimensional row matrix, we first construct

a rectangular coordinate system defined by three mutually perpendicular lines,

representing the axes, that intersect at their respective origins. For convenience,

we denote these axes as the x-axis, the y-axis, and the z-axis, and their point of

intersection as the origin.

Rectangular coordinate systems are of two types: right-handed systems and left-

handed systems. An xyz system is right-handed if the thumb of the right hand

points in the direction of the positive z-axis when the fingers of the right hand are

curled naturally—in a way that does not break the finger bones—from the

positive x-axis towards the positive y-axis. In a left-handed system, the thumb

of the left hand points in the positive z-axis when the fingers of the left hand are

curled naturally from the positive x-axis towards the positive y-axis. Both types

of systems are illustrated in Figure 1.18. In this book, we shall only use right-

handed coordinate systems when graphing in space.

A three-dimensional row matrix v ¼ [ a b c ] is identified with the point (a, b,

c) in an xyz-coordinate system, measured a units along the x-axis from the

origin, then b units parallel to the y-axis, and then finally c units parallel to the

Figure 1.17
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z-axis. An arrow or directed line segment having its tail at the origin and its tip at

the point (a, b, c) represents the row matrix v geometrically. The geometrical

representations of the row matrices u ¼ [ 2 4 6 ] and v ¼ [ 5 2 �3 ] are

illustrated in Figures 1.19 and 1.20, respectively.

All of the geometrical processes developed for the addition, subtraction, and

scalar multiplication of 2-tuples extend directly to 3-tuples. In particular,

to graph u� v, first graph both directed line segments normally and then

construct an arrow from the tip of v to the tip of u. Multiplication of a directed

line segment u by the scalar k is again an elongation of u by jkj when jkj is

greater than unity and a contraction of u by jkj when jkj is less than unity,

followed by no rotation when k is positive or a rotation of 180 degrees when

Figure 1.19
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k is negative. If a directed line segment has its tip at the point (x2, y2, z2)

and its tail at the point (x1, y1, z1), then the row matrix associated with it is

[(x2 � x1) (y2 � y1) (z2 � z1)].

Although geometrical representations for Rn are limited to n � 3, the concept

of magnitude can be extended to all n-tuples. We define the magnitude of the

n-dimensional row matrix a ¼ [ a1 a2 a3 . . . an ] as

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ a2
2 þ a2

3 þ . . .þ a2
n

q
(1:33)

Example 4 The magnitude of the 4-tuple a ¼ [ 1 2 3 4 ] is

ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (2)2 þ (3)2 þ (4)2

q
¼

ffiffiffiffiffi
30
p

while the magnitude of the 5-tuple u ¼ [�4 �5 0 5 4 ] is

uk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(� 4)2 þ (� 5)2 þ (0)2 þ (5)2 þ (4)2

q
¼

ffiffiffiffiffi
82
p

&

An n-tuple is normalized if it has a magnitude equal to one. Any n-tuple

(row matrix) is normalized by multiplying the n-tuple by the reciprocal of its

magnitude.

Example 5 As shown in Example 4, a ¼ [ 1 2 3 4 ] has magnitude

ak k ¼
ffiffiffiffiffi
30
p

, so

1ffiffiffiffiffi
30
p 1 2 3 4½ � ¼ 1ffiffiffiffiffi

30
p 2ffiffiffiffiffi

30
p 3ffiffiffiffiffi

30
p 4ffiffiffiffiffi

30
p

� �

is normalized. Similarly, u ¼ [�4 �5 0 5 4 ] has magnitude uk k ¼
ffiffiffiffiffi
82
p

, so

1ffiffiffiffiffi
82
p �4 �5 0 5 4½ � ¼ �4ffiffiffiffiffi

82
p �5ffiffiffiffiffi

82
p 0

5ffiffiffiffiffi
82
p 4ffiffiffiffiffi

82
p

� �

is normalized. &

Two row matrices of the same dimension can be added and subtracted but they

cannot be multiplied. Multiplication of a 1� n matrix by another 1� n matrix is

undefined. Scalar multiplication of row matrices is defined but inversion is not

An n-tuple is

normalized if it has

a magnitude equal

to one.
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defined for row matrices of dimension greater than 1, because such row matrices

are not square. Thus, row matrices, and therefore n-tuples, do not possess all the

properties of real numbers. Listing the properties that n-tuples do share with real

numbers and then developing an algebra around those properties is the focus of

the next chapter.

In preparation for our work in Chapter 2, we list some of the important

properties shared by all n-tuples. If a, b, and c denote row matrices of the same

dimension n, then it follows from Theorem 1 of Section 1.1 that

aþ b ¼ bþ c (1:34)

and

aþ (bþ c) ¼ (aþ b)þ c (1:35)

If we define the zero row matrix of dimension n as 0 ¼ [ 0 0 0 . . . 0 ], the

row matrix having entries of zero in each of its n-columns, then it follows from

equation (1.5) that

aþ 0 ¼ a (1:36)

Setting a ¼ [ a1 a2 a3 . . . an ] and �a ¼ (� 1)a ¼ [�a1 �a2 �a3 . . .
�an], we also have

aþ (� a) ¼ 0 (1:37)

It follows from Theorem 2 of Section 1.1 that if l1 and l2 denote arbitrary real

numbers, then

l1(aþ b) ¼ l1aþ l1b (1:38)

(l1 þ l2)a ¼ l1aþ l2a (1:39)

and

(l1l2)a ¼ l1(l2a) (1:40)

In addition,

1(a) ¼ a (1:41)
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Problems 1.7

In Problems 1 through 16, geometrically construct the indicated 2-tuple operations for

u ¼ [ 3 �1 ], v ¼ [�2 5 ], w ¼ [�4 �4 ], x ¼ [ 3 5 ], and

y ¼ [ 0 �2 ]:

(1) uþ v. (2) uþ w. (3) vþ w. (4) xþ y.

(5) x� y. (6) y� x. (7) u� v. (8) w� u.

(9) u� w. (10) 2x. (11) 3x. (12) �2x.

(13) 1
2
u. (14) � 1

2
u. (15) 1

3
v. (16) � 1

4
w.

(17) Determine the angle that each directed line segment representation for the following

row matrices makes with the positive horizontal x-axis:

(a) u ¼ [ 3 �1 ], (b) v ¼ [�2 5 ], (c) w ¼ [�4 �4 ],

(d) x ¼ [ 3 5 ], (e) y ¼ [ 0 �2 ].

(18) For arbitrary two-dimensional row matrices u and v, construct on the same graph

the sums uþ v and vþ u. Show that uþ v ¼ vþ u, and show for each that the sum

is the diagonal of a parallelogram having as two of its sides the directed line

segments that represent u and v.

In Problems 19 through 29, determine the magnitudes of the given 3-tuples.

(19) [ 1 �1 ]. (20) [ 3 4 ]. (21) [ 1 2 ].

(22) [�1 �1 1 ]. (23) [ 1=2 1=2 1=2 ]. (24) [ 1 1 1 ].

(25) [ 2 1 �1 3 ]. (26) [ 1 �1 1 �1 ]. (27) [ 1 0 1 0 ].

(28) [ 0 �1 5 3 2 ]. (29) [ 1 1 1 1 1 ].

In Problems 30 through 39, graph the indicated n-tuples.

(30) [ 3 1 2 ]. (31) [ 1 2 3 ]. (32) [�1 2 3 ].

(33) [�1 2 �3 ]. (34) [ 20 �50 10 ]. (35) [ 100 0 100 ].

(36) [ 2 2 2 ]. (37) [�2 �1 2 ]. (38) [ 1000 �500 200 ].

(39) [�400 �50 �300 ].

In Problems 40 through 48, determine which, if any, of the given row matrices are

normalized.

(40) [ 1 1 ]. (41) [ 1=2 1=2 ]. (42) 1ffiffi
2
p �1ffiffi

2
p

h i
.

(43) [ 0 1 0 ]. (44) [ 1=2 1=3 1=6 ].

(45) 1ffiffi
3
p 1ffiffi

3
p 1ffiffi

3
p

h i
. (46) [ 1=2 1=2 1=2 1=2 ].

(47) [ 1=6 5=6 3=6 1=6 ]. (48) �1ffiffi
3
p 0 1ffiffi

3
p �1ffiffi

3
p

h i
.
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Chapter 1 Review

Important Terms

Important Concepts

Section 1.1 " Two matrices are equal if they have the same order and if their corresponding

elements are equal.

" The sum of two matrices of the same order is a matrix obtained by adding

together corresponding elements of the original two matrices. Matrix addition

is commutative and associative.

" The difference of two matrices of the same order is a matrix obtained by

subtracting corresponding elements of the original two matrices.

augmented matrix (p. 37)

block diagonal matrix (p. 27)

coefficient matrix (p. 12)

column matrix (p. 3)

component (p. 3)

consistent equations (p. 35)

derived set (p. 38)

diagonal element (p. 3)

diagonal matrix (p. 26)

dimension (p. 3)

directed line segment (p. 75)

element (p. 2)

elementary matrix (p. 50)

elementary row operations

(p. 38)

equivalent directed line

segments (p. 75)

Gaussian elimination (p. 38)

homogeneous equations (p. 36)

identity matrix (p. 27)

inconsistent equations (p. 35)

inverse (p. 48)

invertible matrix (p. 49)

linear equation (p. 31)

lower triangular matrix (p. 27)

LU decomposition (p. 63)

magnitude (p. 27)

main diagonal (p. 3)

matrix (p. 2)

nonhomogeneous

equations (p. 36)

nonsingular matrix (p. 49)

normalized n-tuple (p. 79)

n-tuple (p. 4)

order (p. 2)

partitioned matrix (p. 24)

pivot (p. 40)

power of a matrix (p. 28)

Rn (p. 72)

right-handed coordinate

system (p. 77)

row matrix (p. 3)

row-reduced form (p. 25)

scalar (p. 7)

singular matrix (p. 49)

skew-symmetric matrix (p. 24)

square (p. 3)

submatrix (p. 24)

symmetric matrix (p. 24)

transpose (p. 22)

trivial solution (p. 36)

upper triangular matrix (p. 27)

zero matrix (p. 6)
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" The product of a scalar by a matrix is the matrix obtained by multiplying every

element of the matrix by the scalar.

Section 1.2 " The product AB of two matrices is defined only if the number of columns of A

equals the number of rows of B. Then the i-j element of the product is obtained

by multiplying the elements in the ith row of A by the corresponding elements in

the j th column of B and summing the results.

" Matrix multiplication is not commutative. The associative law of multiplication

as well as the left and right distributive laws for multiplication are valid.

" A system of linear equations may be written as the single matrix equation

Ax ¼ b.

Section 1.3 " The transpose of a matrix A is obtained by converting all the rows of A into

columns while preserving the ordering of the rows/columns.

" The product of two lower (upper) triangular matrices of the same order is also

a lower (upper) triangular matrix.

Section 1.4 " A system of simultaneous linear equations has either no solutions, one solution,

or infinitely many solutions.

" A homogeneous system of linear equations is always consistent and admits the

trivial solution as one solution.

" A linear equation in two variables graphs as a straight line. The coordinates of

a point in the plane is a solution to a system of equations in two variables if and

only if the point lies simultaneously on the straight line graph of every equation

in the system.

" A linear equation in three variables graphs as a plane. The coordinates of a point

in space is a solution to a system of equations in three variables if and only if the

point lies simultaneously on the planes that represent every equation in the

system.

" The heart of Gaussian elimination is the transformation of an augmented matrix

to row-reduced form using only elementary row operations.

" If the solution to a derived set involves at least one arbitrary unknown, then the

original set of equations has infinitely many solutions.

" A homogeneous system of linear equations having more variables than equations

has infinitely many solutions.

" If a derived set contains a false equation, then the original set of equations has no

solution.
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Section 1.5 " An inverse, if it exists, is unique.

" The inverse of a diagonal matrix D with no zero elements on its main diagonal is

another diagonal matrix having diagonal elements that are the reciprocals of the

diagonal elements of D.

" The inverse of an elementary matrix is again an elementary matrix.

" The inverse of a nonsingular upper (lower) triangular matrix is again an upper

(lower) triangular matrix.

" A square matrix has an inverse if it can be transformed by elementary row

operations to an upper triangular matrix with no zero elements on the main

diagonal.

" The matrix equation Ax ¼ b has as its solution x ¼ A�1b if the A is invertible.

Section 1.6 " A square matrix A has an LU decomposition if A can be transformed to upper

triangular form using only the third elementary row operation.

" If A ¼ LU for a square matrix A, then the equation Ax ¼ b is solved by first

solving the equation Ly ¼ b for y and then solving the equation Ux ¼ y for x.

Section 1.7 " Addition, subtraction, and scalar multiplication of 2-tuples can be done

graphically in the plane.
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Chapter 2

Vector Spaces

2.1 VECTORS

At the core of mathematical analysis is the process of identifying fundamental

structures that appear with some regularity in different situations, developing

them in the abstract, and then applying the resulting knowledge base back to the

individual situations. In this way, one can understand simultaneously many

different situations by investigating the properties that govern all of them.

Matrices would seem to have little in common with polynomials, which in

turn appear to have little in common with directed line segments, yet they

share fundamental characteristics that, when fully developed, provide a richer

understanding of them all.

What are some of the fundamental properties of matrices, directed line segments,

n-tuples, and even polynomials? First, they can be added. A matrix can be added

to a matrix of the same order and the result is another matrix of that order.

A directed line segment in the plane can be added to another directed line segment

in the plane and the result is again a directed line segment of the same type. Thus,

we have the concept of closure under addition: objects in a particular set are

defined and an operation of addition is established on those objects so that the

operation is doable and the result is again another object in the same set. Second,

we also have the concept of closure under scalar multiplication. We know how to

multiply a matrix or a directed line segment or a polynomial by a scalar, and the

result is always another object of the same type. Also, we know that the commu-

tative and associate laws hold for addition (see, for example, Theorem 1 in Section

1.1). Other properties are so obvious we take them for granted. If we multiply

a matrix, directed line segment, or polynomial by the number 1 we always get back

the original object. If we add to any matrix, polynomial, or directed line segment,

respectively, the zero matrix of appropriate order, the zero polynomial, or the

zero directed line segment, we always get back the original object.

Thus, we have very quickly identified a series of common characteristics. Are

there others? More interesting, what is the smallest number of characteristics

that we need to identify so that all the other characteristics immediately follow?

To begin, we create a new label to apply to any set of objects that have these
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characteristics, vector space, and we refer to the objects in this set as vectors. We

then show that matrices, directed line segments, n-tuples, polynomials, and even

continuous functions are just individual examples of vector spaces. Just as cake,

ice cream, pie, and JELL-O are all examples of the more general term dessert, so

too will matrices, directed line segments, and polynomials be examples of the

more general term vectors.

" Definition 1. A set of objects V ¼ fu, v, w, . . .g and scalars

fa, b, g, . . .g along with a binary operation of vector addition � on

the objects and a scalar multiplication� is a vector space if it possesses

the following 10 properties:

Addition
(A1) Closure under addition: If u and v belong to V; then so too does u� v.

(A2) Commutative law for addition: If u and v belong to V, then

u� v ¼ v� u.

(A3) Associative law for addition: If u, v, and w belong to V, then

u� (v� w) ¼ (u� v)� w.

(A4) There exists a zero vector in V denoted by 0 such that for every vector

u in V, u� 0 ¼ u.

(A5) For every vector u in V there exists a vector �u, called the additive

inverse of u, such that u��u ¼ 0.

Scalar Multiplication
(S1) Closure under scalar multiplication: If u belongs to V; then so too does

a� u for any scalar a.

(S2) For any two scalars a and b and any vector u in

V, a� (b� u) ¼ (ab)� u.

(S3) For any vector u in V, 1� u ¼ u.

(S4) For any two scalars a and b and any vector u in

V, (aþ b)� u ¼ a� u� b� u.

(S5) For any scalar a and any two vectors u and v in

V, a� (u� v) ¼ a� u� a� v: 3

If the scalars are restricted to be real numbers, then V is called a real vector space;

if the scalars are allowed to be complex numbers, then V is called a complex

vector space. Throughout this book we shall assume that all scalars are real and

that we are dealing with real vector spaces, unless an exception is noted. When

we need to deal with complex scalars, we shall say so explicitly.

Since vector spaces are sets, it is convenient to use set notation. We denote sets

by upper case letters in an outline font, such as V and R. The format for a subset

S of a set W is S ¼ fw 2W j propertyAg. The 2 is read ‘‘belongs to’’ or ‘‘is

a member of’’ and the vertical line segment j is read ‘‘such that.’’ An element

In set notation, 2 is

read ‘‘belongs to’’

and the vertical line

segment j is read

‘‘such that.’’
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w belongs to S only if w is a member of W and if w satisfies property A.

In particular, the set

S ¼ f[ x y z ] 2 R3 j y ¼ 0g

is the set of all real 3-tuples, represented as row matrices, with a second com-

ponent of zero.

Example 1 Determine whether S ¼ f[ x y z ] 2 R3 j y ¼ 0g is a vector space

under regular addition and scalar multiplication.

Solution: Following our convention, it is assumed that the scalars are real.

Arbitrary vectors u and v in S have the form u ¼ [ a 0 b ] and v ¼ [ c 0 d ]

with a, b, c, and d all real. Now,

u� v ¼ [ a 0 b ]þ [ c 0 d ] ¼ [ aþ c 0 bþ d ]

and, for any real scalar a,

a� u ¼ a[ a 0 b ] ¼ [ aa 0 ab ]

which are again 3-dimensional row matrices having real components, of which

the second one is 0. Thus, S is closed under vector addition and scalar multipli-

cation and both properties A1 and S1 are satisfied.

To prove property A2, we observe that

u� v ¼ [ a 0 b ]þ [ c 0 d ] ¼ [ aþ c 0 bþ d ]

¼ [ cþ a 0 d þ b ] ¼ [ c 0 d ]þ [ a 0 b ]

¼ v� u

To prove property A3, we set w ¼ [ e 0 f ], with e and f representing real

numbers, and note that

(u� v)� w ¼ [ a 0 b ]þ [ c 0 d ]ð Þ þ [ e 0 f ]

¼ aþ c 0 bþ d½ � þ e 0 f½ �
¼ (aþ c)þ e 0 (bþ d)þ f½ �
¼ aþ (cþ e) 0 bþ (d þ f )½ �
¼ a 0 b½ � þ cþ d 0 d þ f½ �
¼ a 0 b½ � þ c 0 d½ � þ e 0 f½ �ð Þ
¼ u� (v� w)

The row matrix [ 0 0 0 ] is an element of S. If we denote it as the zero vector 0,

then

u� 0 ¼ [ a 0 b ]þ [ 0 0 0 ] ¼ [ aþ 0 0þ 0 bþ 0 ]

¼ [ a 0 b ] ¼ u
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so property A4 is satisfied. Furthermore, if we define, �u ¼ [�a 0 �b ], then

u��u ¼ [ a 0 b ]þ [�a 0 �b ] ¼ [ aþ�a 0þ 0 bþ�b ]

¼ [ 0 0 0 ] ¼ 0

and property A5 is valid.

For any two real numbers a and b, we have that

a� (b� u) ¼ a� b[ a 0 b ]ð Þ ¼ a� [ ba 0 bb ] ¼ a[ ba 0 bb ]

¼ (ab)[ a 0 b ] ¼ (ab)� u

so property S2 holds. In addition,

1� u ¼ 1[ a 0 b ] ¼ [ 1a 0 1b ] ¼ [ a 0 b ] ¼ u

so property S3 is valid. To verify properties S4 and S5, we note that

(aþ b)� u ¼ (aþ b)[ a 0 b ]

¼ [ (aþ b)a (aþ b)0 (aþ b)b ]

¼ [ aaþ ba 0 abþ bb ]

¼ [ aa 0 ab ]þ [ ba 0 bb ]

¼ a[ a 0 b ]þ b[ a 0 b ]

¼ a� [ a 0 b ]þ b� [ a 0 b ]

¼ a� u� bu

and

a� (u� v) ¼ a� a 0 b½ � þ c 0 d½ �ð )

¼ a� aþ c 0 bþ d½ �
¼ a(aþ c) a(0) a(bþ d)½ �
¼ aaþ ac 0 abþ ad½ �
¼ aa 0 ab½ � þ ac 0 ad½ �
¼ a a 0 b½ � þ a c 0 d½ �
¼ a� u� a� v

Therefore, all 10 properties are valid, and S is a vector space. &

Example 2 Determine whether the set Mp�n of all p� n real matrices under

matrix addition and scalar multiplication is a vector space.

Solution: This is a vector space for any fixed values of p and n because all

10 properties follow immediately from our work in Chapter 1. The sum of two
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real p� n matrices is again a matrix of the same order, as is the product of a

real number with a real matrix of this order. Thus, properties A1 and S1 are

satisfied. Properties A2 through A4 are precisely Theorem 1 in Section 1.1 and

Equation (1.5). If A ¼ [aij], then �A ¼ [� aij ] is another element in the set and

A��A ¼ [aij]þ [� aij ] ¼ (aij þ�aij)
� �

¼ 0

which verifies property A5. Properties S2, S4, and S5 are Theorem 2 in Section

1.1. Property S3 is immediate from the definition of scalar multiplication. &

It follows from Example 2 that the set of all real 3� 3 matrices ( p ¼ n ¼ 3) is

a vector space, as is M2�6, the set of all real 2� 6 matrices ( p ¼ 2 and n ¼ 6).

Also, Rn is a vector space, for any positive integer n, because Rn is M1�n when we

take Rn to be the set of all n-dimensional real row matrices, and Rn is Mn�1 when

we take Rn to be the set of all n-dimensional real column matrices.

Example 3 Determine whether the set of all 2� 2 real matrices is a vector space

under regular scalar multiplication but with vector addition defined to be matrix

multiplication. That is,

u� v ¼ uv

Solution: This is not a vector space because it does not satisfy property A2.

In particular,

1 2

3 4

� �
�

5 6

7 8

� �
¼

1 2

3 4

� �
5 6

7 8

� �
¼

19 22

43 50

� �

6¼
23 34

31 46

� �
¼

5 6

7 8

� �
1 2

3 4

� �
¼

5 6

7 8

� �
�

1 2

3 4

� �
&

We use the � symbol to emphasize that vector addition may be nonstandard, as

it is in Example 3. The notation denotes a well-defined process for combining

two vectors together, regardless of how unconventional that process may be.

Generally, vector addition is standard, and many writers discard the � notation

in favor of the more conventional þ symbol whenever a standard addition is in

effect. We shall, too, in later sections. For now, however, we want to stress that

a vector space does not require a standard vector addition, only a well-defined

operation for combining two vectors that satisfies the properties listed in Defin-

ition 1, so we shall retain the � notation a while longer.

Example 4 Redo Example 3 with the matrices restricted to being diagonal.

Solution: Diagonal matrices do commute under matrix multiplication, hence

property A2 is now satisfied. The set is closed under vector addition, because the

product of 2� 2 diagonal matrices is again a diagonal matrix. Property A3 also

holds, because matrix multiplication is associative. With vector addition defined

The set Mp�n of all

p� n real matrices

under matrix

addition and scalar

multiplication is a

vector space.

The set Rn of

n-tuples under

standard addition

and scalar

multiplication for

n-tuples is a vector

space.

The symbol �
emphasizes that

vector addition may

be nonstandard.
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to be matrix multiplication, the zero vector becomes the 2� 2 identity matrix; for

any matrix A in the set, A� 0 ¼ AI ¼ A. To verify property A5, we must show

that every real diagonal matrix A has an additive inverse �A with the property

A��A ¼ 0. Given that we have just identified the zero vector to be the identity

matrix and vector addition to be matrix multiplication, the statement

A��A ¼ 0 is equivalent to the statement A(� A) ¼ I. Property A5 is valid if

and only if every matrix in the set has an inverse, in which case we take

�A ¼ A�1. But, a diagonal matrix with at least one 0 on its main diagonal

does not have an inverse. In particular the matrix,

A ¼ 1 0

0 0

� �

has no inverse. Thus, property A5 does not hold in general, and the given set is

not a vector space. &

Example 5 Redo Example 3 with the matrices restricted to being diagonal and

all elements on the main diagonal restricted to being nonzero.

Solution: Repeating the reasoning used in Example 4, we find that properties

A1–A5 are satisfied for this set. This set, however, is not closed under scalar

multiplication. Whenever we multiply a matrix in the set by the zero scalar,

we get

0� A ¼ 0A ¼ 0 0

0 0

� �

which is no longer a diagonal matrix with nonzero elements on the main

diagonal and, therefore, not an element of the original set. Thus, the given set

is not a vector space. &

Example 6 Determine whether the set of nth degree polynomials in the

variable t with real coefficients is a vector space under standard addition and

scalar multiplication for polynomials if the scalars are restricted also to being

real.

Solution: Arbitrary vectors u and v in this set are polynomials of the form

u ¼ ant
n þ an�1t

n�1 þ � � � þ a1tþ a0

v ¼ bnt
n þ bn�1t

n�1 þ � � � þ b1tþ b0

with aj and bj ( j ¼ 0, 1, . . . , n) all real, and both an and bn nonzero. Here,

u� v ¼ (ant
n þ an�1t

n�1 þ � � � þ a1tþ a0)

þ (bnt
n þ bn� 1tn�1 þ � � � þ b1tþ b0)

¼ (an þ bn)t
n þ (an�1 þ bn�1)t

n�1 þ � � � þ (a1 þ b1)tþ (a0 þ b0)
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Note that when an ¼ �bn, u� v is no longer an nth degree polynomial, but rather

a polynomial of degree less than n, which is not an element of the given set. Thus,

the set is not closed under vector addition and is not a vector space. &

Example 7 Determine whether the set Pn containing the identically zero

polynomial and all polynomials of degree n or less in the variable t with real

coefficients is a vector space under standard addition and scalar multiplication

for polynomials, if the scalars also are restricted to being real.

Solution: If u 2 Pn and v 2 Pn, then u and v have the form

u ¼ ant
n þ an�1t

n�1 þ � � � þ a1tþ a0

v ¼ bnt
n þ bn�1t

n�1 þ � � � þ b1tþ b0

with aj and bj ( j ¼ 0, 1, . . . , n) real and possibly 0. Using the results of Example

6, we see that the sum of two polynomials of degree n or less is either another

polynomial of the same type or the zero polynomial when u and v have their

corresponding coefficients equal in absolute value but opposite in sign. Thus,

property A1 is satisfied. If we define the zero vector to be the zero polynomial,

then

u� 0 ¼ (ant
n þ an�1t

n�1 þ � � � þ a1tþ a0)

þ (0tn þ 0tn�1 þ � � � þ 0tþ 0)

¼ (an þ 0)tn þ (an�1 þ 0)tn�1 þ � � � þ (a1 þ 0)tþ (a0 þ 0)

¼ u

Thus, property A4 is satisfied. Setting

u ¼ �ant
n � an�1t

n�1 � � � � � a1t� a0

we note that property A5 is also satisfied. Now,

u� v ¼ (ant
n þ an�1t

n�1 þ � � � þ a1tþ a0)

þ (bnt
n þ bn�1t

n�1 þ � � � þ b1tþ b0)

¼ (an þ bn)t
n þ (an�1 þ bn�1)t

n�1 þ � � � þ (a1 þ b1)tþ (a0 þ b0)

¼ (bn þ an)t
n þ (bn�1 þ an�1)t

n�1 þ � � � þ (b1 þ a1)tþ (b0 þ a0)

¼ (bnt
n þ bn�1t

n�1 þ � � � þ b1tþ b0)

þ (ant
n þ an�1t

n�1 þ � � � þ a1tþ a0)

¼ v� u

so property A2 is satisfied. Property A3 is verified in a similar manner. For any

real number a, we have

2.1 Vectors . 91



a� u ¼ a(antþ an�1t
n�1 þ � � � þ a1tþ a0)

¼ (aan)tþ (aan�1)t
n�1 þ � � � þ (aa1)tþ (aa0)

which is again an element in the original set, so the set is closed under scalar

multiplication. Setting a ¼ 1 in the preceding equation also verifies property S3.

The remaining three properties follow in a straightforward manner, so Pn is a

vector space. &

Example 8 Determine whether the set of two-dimensional column matrices with

all components real and equal is a vector space under regular addition but with

scalar multiplication defined as

a� a

b

� �
¼ �aa

�ab

� �

Solution: Following convention, the scalars are assumed to be real numbers.

Since column matrices are matrices, it follows from our work in Chapter 1 that

properties A1 through A5 hold. It is clear from the definition of scalar multipli-

cation that the set is closed under this operation; the result of multiplying

a real two-dimensional column matrix by a real number is again a real two-

dimensional column matrix. To check property S2, we note that for any two real

numbers a and b and for any vector

u ¼ a

b

� �

we have

(ab)� u ¼ (ab)� a

b

� �
¼ �(ab)a

�(ab)b

� �
¼ �aba

�abb

� �

while

a� (b� u) ¼ a� b� a

b

� �� �
¼ a� �ba

�bb

� �
¼ (� a)(� ba)

(� a)(� bb)

� �
¼ aba

abb

� �

These two expressions are not equal whenever a and b are nonzero, so property

S2 does not hold and the given set is not a vector space.

Property S3 is also violated with this scalar multiplication. For any vector

u ¼ a

b

� �

we have

The set Pn of all

polynomials of

degree less than or

equal to n, including

the identically zero

polynomial, under

normal addition and

scalar multiplication

for polynomials is a

vector space.
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1� u ¼ 1� a

b

� �
¼ �a

�b

� �
6¼ u

Thus, we conclude again that the given set is not a vector space. &

We use the � symbol to emphasize that scalar multiplication may be nonstan-

dard, as it was in Example 8. The � symbol denotes a well-defined process for

combining a scalar with a vector, regardless of how unconventional the process

may be. In truth, scalar multiplication is generally quite standard, and many

writers discard the � notation whenever it is in effect. We shall, too, in later

sections. For now, however, we want to retain this notation to stress that a vector

space does not require a standard scalar multiplication, only a well-defined

process for combining scalars and vectors that satisfies properties S1 through S5.

Example 9 Determine whether the set of three-dimensional row matrices with

all components real and equal is a vector space under regular addition and scalar

multiplication if the scalars are complex numbers.

Solution: An arbitrary vector in this set has the form u ¼ [ a a a ], where a is

real. This is not a vector space, because the set violates property S1. In particular,

if a is any complex number with a nonzero imaginary part, then a� u does not

have real components. For instance, with a ¼ 3i and u ¼ [ 1 1 1 ], we have

a� u ¼ (3i) [ 1 1 1 ] ¼ [ 3i 3i 3i ]

which is not a real-valued vector; the components of the row matrix are complex,

not real. Thus, the original set is not closed under scalar multiplication. The

reader can verify that all the other properties given in Definition 1 are applicable.

However, as soon as we find one property that is not satisfied, we can immedi-

ately conclude the given set is not a vector space. &

The purpose of defining a vector space in the abstract is to create a single

mathematical structure that embodies the characteristics of many different

well-known sets, and then to develop facts about each of those sets simultane-

ously by studying the abstract structure. If a fact is true for vector spaces in

general, then that fact is true for Mp�n, the set of all p� n real matrices under

regular matrix addition and scalar multiplication, as well as Rn and Pn, the set of

all polynomials of degree less than or equal to n including the zero polynomial,

and any other set we may subsequently show is a vector set.

We first inquire about the zero vector. Does it have properties normally associ-

ated with the word zero? If we multiply the zero vector by a nonzero scalar, must

the result be the zero vector again? If we multiply any vector by the number 0, is

the result the zero vector? The answer in both cases is affirmative, but both

results must be proven. We cannot just take them for granted! The zero vector is

not the number 0, and there is no reason to expect (although one might hope)

that facts about the number 0 are transferable to other structures that just

happen to have the word zero as part of their name.

The symbol �
emphasizes that

scalar multiplication

may be

nonstandard.
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" Theorem 1. For any vector u in a vector space V, 0� u ¼ 0: 3

Proof: Because a vector space is closed under scalar multiplication, we know

that 0� u is a vector in V (whether it is the zero vector is still to be determined).

As a consequence of property A5, 0� u must possess an additive inverse,

denoted by �0� u, such that

(0� u)� (� 0� u) ¼ 0 (2:1)

Furthermore,

0� u ¼ (0þ 0)� u A property of the number 0

¼ 0� u� 0� u Property S4 of vector spaces

If we add the vector �0� u to each side of this last equation, we get

0� u��0� u ¼ (0� u� 0� u)��0� u

0 ¼ (0� u� 0� u)��0� u From Eq: (2:1)

0 ¼ 0� u� (0� u��0� u) Property A3

0 ¼ (0� u)� 0 From Eq: (2:1)

0 ¼ 0� u Property A4

which proves Theorem 1 using just the properties of a vector space. &

" Theorem 2. In any vector space V, a� 0 ¼ 0, for every scalar a: 3

Proof: 0 2 V, hence a� 0 2 V, because a vector space is closed under scalar

multiplication. It follows from property A5 that a� 0 has an additive inverse,

denoted by �a� 0, such that

(a� 0)� (� a� 0) ¼ 0 (2:2)

Furthermore,

a� 0 ¼ a� (0� 0) Property A4

¼ a� 0� a� 0 Property S5

Adding �a� 0 to both sides of this last equation, we get
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a� 0��a� 0 ¼ (a� 0� a� 0)��a� 0

0 ¼ (a� 0� a� 0)��a� 0 From Eq: (2:2)

0 ¼ a� 0� (a� 0��a� 0) Property A3

0 ¼ (a� 0)� 0 From Eq: (2:2)

0 ¼ a� 0 Property A4

Thus, Theorem 2 follows directly from the properties of a vector space. &

Property A4 asserts that every vector space has a zero vector, and property

A5 assures us that every vector in a vector space V has an additive inverse.

Neither property indicates whether there is only one zero element or many

or whether a vector can have more than one additive inverse. The next two

theorems do.

" Theorem 3. The additive inverse of any vector v in a vector space V is

unique. 3

Proof: Let v1 and v2 denote additive inverses of the same vector v. Then,

v� v1 ¼ 0 (2:3)

v� v2 ¼ 0 (2:4)

It now follows that

v1 ¼ v1 � 0 Property A4

¼ v1 � (v� v2) From Eq:(2:4)

¼ (v1 � v)� v2 Property A3

¼ (v� v1)� v2 Property A2

¼ 0� v2 From Eq:(2:3)

¼ v2 � 0 Property A2

¼ v2 Property A4

" Theorem 4. The zero vector in a vector space V is unique. 3

Proof: This proof is similar to the previous one and is left as an exercise for the

reader. (See Problem 34.)

2.1 Vectors . 95



" Theorem 5. For any vector w in a vector space V, � 1� w ¼ �w. 3

Proof: We need to show that �1� w is the additive inverse of w. First,

(� 1� w)� w ¼ (� 1� w)� (1� w) Property S3

¼ (� 1þ 1)� w Property S5

¼ 0� w Property of real numbers

¼ 0 Theorem 1

Therefore, �1� w is an additive inverse of w. By definition, �w is an additive

inverse of w, and because additive inverses are unique (Theorem 3), it follows

that �1� w ¼ �w.

" Theorem 6. For any vector w in a vector space V, � (� w) ¼ w. 3

Proof: By definition, �w is the additive inverse of w. It then follows that w is

the additive inverse of �w (see Problem 33). Furthermore,

�w��(� w) ¼ �1� w��(� w) Theorem 5

¼ �1� w��1� (� w) Theorem 5

¼ �1� (w��w) Property S5

¼ �1� 0 Property A5

¼ 0 Theorem 2

Therefore, �(� w) is an additive inverse of �w. Since w is also an additive

inverse of �w, it follows from Theorem 3 that the two are equal. &

" Theorem 7. Let a be a scalar and u a vector in a vector space V.

If a� u ¼ 0, then either a ¼ 0 or u ¼ 0. 3

Proof: We are given

a� u ¼ 0 (2:5)

Now either a is 0 or it is not. If a is 0, the theorem is proven. If a is not 0, we

form the scalar 1=a and then multiply Eq. (2.5) by 1=a, obtaining
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(1=a)� (a� u) ¼ (1=a)� 0

(1=a)� (a� u) ¼ 0 Theorem 2

1

a
a

� �
� u ¼ 0 Property S2

1� u ¼ 0 Property of numbers

u ¼ 0 & Property S3

Problems 2.1

In Problems 1 through 32 a set of objects is given together with a definition for vector

addition and scalar multiplication. Determine which are vector spaces, and for those that

are not, identify at least one property that fails to hold.

(1)
a b

c d

� �� �
2M2�2jb ¼ 0:g under standard matrix addition and scalar multiplication.

(2)
a b

c d

� �� �
2M2�2jc ¼ 1:g under standard matrix addition and scalar multiplication.

(3) The set of all 2� 2 real matrices A ¼ [aij ] with a11 ¼ �a22 under standard matrix

addition and scalar multiplication.

(4) The set of all 3� 3 real upper triangular matrices under standard matrix addition

and scalar multiplication.

(5) The set of all 3� 3 real lower triangular matrices of the form

1 0 0

a 1 0

b c 1

2
4

3
5

under standard matrix addition and scalar multiplication.

(6) f[ a b � 2 R2jaþ b ¼ 2g under standard matrix addition and scalar multiplication.

(7) f[ a b � 2 R2ja ¼ bg under standard matrix addition and scalar multiplication.

(8) All 2-tuples representing points in the first quadrant of the plane, including the

origin, under standard addition and scalar multiplication for 2-tuples.

(9) All 2-tuples representing points in the first and third quadrants of the plane,

including the origin, under standard addition and scalar multiplication for 2-tuples.

(10) All 2-tuples representing points in the plane that are on the straight line y ¼ �2x

under standard addition and scalar multiplication for 2-tuples.

(11) All 2-tuples representing points in the plane that are on the straight line

y ¼ �2xþ 1, under standard addition and scalar multiplication for 2-tuples.
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(12) All 2-tuples representing points in the plane that are on the parabola y ¼ x2, under

standard addition and scalar multiplication for 2-tuples.

(13) The set consisting of the single element 0 with vector addition and scalar multipli-

cation defined as 0� 0 ¼ 0 and a� 0 ¼ 0 for any real number a.

(14) The set of all real two-dimensional row matrices f[ a b ]g with standard matrix

addition but scalar multiplication defined as a� [ a b ] ¼ [ 0 0 ].

(15) The set of all real two-dimensional row matrices f[ a b ]g with standard matrix

addition but scalar multiplication defined as a� [ a b ] ¼ [ 0 ab ].

(16) The set of all real two-dimensional row matrices f[ a b ]g with standard matrix

addition but scalar multiplication defined as a� [ a b ] ¼ [ 2aa 2ab ].

(17) The set of all real two-dimensional row matrices f[ a b ]g with standard matrix

addition but scalar multiplication defined as a� [ a b ] ¼ [ 5a 5b ].

(18) The set of all real three-dimensional row matrices f[ a b c ]g with standard scalar

multiplication but vector addition defined as

[ a b c ]� [ x y z ] ¼ [ aþ x bþ yþ 1 cþ z ]

(19) The set of all real three-dimensional row matrices f[ a b c ]g with standard scalar

multiplication but vector addition defined as

[ a b c ]� [ x y z ] ¼ [ a bþ y c ]

(20) The set of all real three-dimensional row matrices f[ a b c ]g with standard

matrix addition but scalar multiplication defined as a� [ a b c ] ¼ [ aa ab 1 ].

(21) The set of all real three-dimensional row matrices f[ a b c ]g with positive com-

ponents under standard matrix addition but scalar multiplication defined as

a� [ a b c ] ¼ [ aa ba ca ]

(22) The set of all real numbers (by convention, the scalars are also real numbers) with

a� b ¼ a� b ¼ ab, the standard multiplication of numbers.

(23) The set of all positive real numbers with a� b ¼ ab, the standard multiplication of

numbers, and a� b ¼ ab.

(24) The set of all solutions of the homogeneous set of linear equations Ax ¼ 0, under

standard matrix addition and scalar multiplication.

(25) The set of all solutions of the set of linear equations Ax ¼ b, b 6¼ 0, under standard

matrix addition and scalar multiplication.

(26) fp(t) 2 P3j p(0) ¼ 0g under standard addition and scalar multiplication of polyno-

mials.

(27) All polynomials in P3, under standard addition and scalar multiplication, satisfying

the constraint that the graph of each polynomial is above the t-axis on the interval

1 < t < 3.

(28) The set of all real-valued continuous functions on the interval [�1, 1 ] under

standard function addition and scalar multiplication, usually denoted as C[� 1, 1].
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(29) The set of all real-valued continuous functions on the interval [ 0, 1 ] under

standard function addition and scalar multiplication, usually denoted as C[0, 1].

(30) The set of all real-valued continuous functions, ff (t)g, on the interval [ 0, 1 ]

under standard scalar multiplication but with vector addition defined as

f1(t)� f2(t) ¼ f1(t)f2(t), the standard product of functions.

(31) The set of all real-valued continuous functions, ff (t)g, on the interval [ 0, 1 ]

under standard scalar multiplication but with vector addition defined as

f1(t)� f2(t) ¼ f1(f2(t)), the standard composition of functions.

(32) The set of all solutions of the differential equation y00 þ y ¼ 0 under standard

function addition and the multiplication of a function by a scalar.

(33) Let w be a vector in a vector space V. Prove that if �w is the additive inverse of w

then the reverse is also true: w is the additive inverse of �w.

(34) Prove Theorem 4.

(35) Prove that v� (u� v) ¼ u if u� v is shorthand for u��v.

(36) Prove that if u� v ¼ u� w, then v ¼ w.

(37) Prove that u� u ¼ 2u if 2u is shorthand for 2� u.

(38) Prove that the only solution to the equation u� u ¼ 2v is u ¼ v.

(39) Prove that if u 6¼ 0 and a� u ¼ b� u, then a ¼ b.

(40) Prove that the additive inverse of the zero vector is the zero vector.

2.2 SUBSPACES

To show that a set of objects S is a vector space, we must verify that all

10 properties of a vector space are satisfied, the 5 properties involving vector

addition and the 5 properties involving scalar multiplication. This process,

however, can be shortened considerably if the set of objects is a subset of

a known vector space V. Then, instead of 10 properties, we need only verify the

2 closure properties, because the other 8 properties follow immediately from

these 2 and the fact that S is a subset of a known vector space.

We define a nonempty subset S of a vector space V as a subspace of V if S is itself

a vector space under the same operations of vector addition and scalar multipli-

cation defined on V.

" Theorem 1. Let S be a nonempty subset of a vector space V with

operations � and �. S is a subspace of V if and only if the following

two closure conditions hold:

(i) Closure under addition: If u 2 S and v 2 S, then u� v 2 S.

(ii) Closure under scalar multiplication: If u 2 S and a is any

scalar, then a� u 2 S. 3

A subspace of a

vector space V is a

subset of V that is a

vector space in its

own right.
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Proof: If S is a vector space, then it must satisfy all 10 properties of a vector

space, in particular the closure properties defined by conditions (i) and (ii). Thus,

if S is a vector space, then (i) and (ii) are satisfied.

We now show the converse: If conditions (i) and (ii) are satisfied, then S is

a vector space; that is, all 10 properties of a vector space specified in Definition 1

of section 2.1 follow from the closure properties and the fact that S is a subset of

a known vector space V. Conditions (i) and (ii) are precisely Properties A1 and

S1. Properties A2, A3, and S2 through S5 follow for elements in S because these

elements are also in V and V is known to be a vector space whose elements satisfy

all the properties of a vector space. In particular, to verify Property A2, we let

u and v denote arbitrary elements in S. Because S is a subset of V, it follows that

u and v are in V. Because V is a vector space, we have u� v ¼ v� u. To verify S3,

we let u again denote an arbitrary element in S. Because S is a subset of V, it

follows that u is an element of V. Because V is a vector space, we have 1� u ¼ u.

All that remains is to verify that the zero vector and additive inverses of elements

in S are themselves members of S. Because S is nonempty, it must contain at

least one element, which we denote as u. Then, for the zero scalar, 0, we know

that 0� u is in S, as a result of condition (ii), and this vector is the zero vector as

a result of Theorem 1 of the previous section. Thus, Property A4 is satisfied. If u

is an element of S; then the product �1� u is also an element of S, as a result of

condition (ii); it follows from Theorem 5 of the previous section that �1� u is

the additive inverse of u, so Property A5 is also satisfied.

" Convention: For the remainder of this book, we drop the � and �
symbols in favor of the traditional sum symbol (þ ) and scalar multipli-

cation denoted by juxtaposition. All vector spaces will involve standard

vector addition and scalar multiplication, unless noted otherwise. 3

We use Theorem 1 to significantly shorten the work required to show that some

sets are vector spaces!

Example 1 Determine whether
a b

c d

� �
2M2�2jb ¼ c ¼ 0

� �
is a vector space

under standard matrix addition and scalar multiplication.

Solution: The set S of 2� 2 real matrices with zeros in the 1-2 and 2-1 positions

is a subset of M2�2, and M2�2 is a vector space (see Example 4 in Section 2.1 with

p ¼ n ¼ 2). Thus, Theorem 1 is applicable, and instead of verifying all 10 prop-

erties of a vector space, we need only verify closure in S under matrix addition

and scalar multiplication.

Arbitrary elements u and v in S have the form

u ¼ a 0

0 b

� �
and v ¼ c 0

0 d

� �
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for any real numbers a, b, c, and d. Here

uþ v ¼ aþ c 0

0 bþ d

� �

and for any real scalar a,

au ¼ aa 0

0 ab

� �

Because these matrices are again elements in S, each having zeros in their 1-2 and

2-1 positions, it follows from Theorem 1 that S is a subspace of M2�2. The set

S is therefore a vector space. &

Example 2 Determine whether the set S ¼ f[ x y z ] 2 R3jy ¼ 0g is a vector

space under standard matrix addition and scalar multiplication.

Solution: We first observe that S is a subset of R3, considered as row matrices,

which we know is a vector space from our work in Section 2.1. Thus, Theorem 1

is applicable. Arbitrary elements u and v in S have the form

u ¼ [ a 0 b ] and v ¼ [ c 0 d ]

It follows that

uþ v ¼ [ aþ c 0 bþ d ] 2 S

and for any real scalar a,

au ¼ [ aa 0 ab ] 2 S

Thus, S is closed under addition and scalar multiplication, and it follows from

Theorem 1 that S is a subspace of R3. The set S is therefore a vector space. &

Compare Example 2 to Example 1 of Section 2.1. In both, we were asked

to prove that the same set is a vector space. In Section 2.1, we did this by

verifying all 10 properties of a vector space; in Example 2, we verified the

2 properties of a subspace. Clearly it is simpler to verify 2 properties than 10;

thus, it is simpler to show that a set is vector space by showing it is a subspace

rather than demonstrating directly that the set is a vector space. To do so,

however, we must recognize that the given set is a subset of known vector

space, in this case R3.

The subspace in Example 2 has an interesting graphical representation. R3, the

set of all 3-tuples, is represented geometrically by all points in three-space. The

set S in Example 2 is the set of all points in R3 having a second component of 0.

If a set is a subset of

a known vector

space, then the

simplest way to

show the set is a

vector space is to

show the set is a

subspace.
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In an x, y, z coordinate system, these points fill the entire x-z plane, which is

illustrated graphically by the shaded plane in Figure 2.1.

Example 3 Determine whether the set S, illustrated graphically by the shaded

plane in Figure 2.2, is a subspace of R3.

Solution: The shaded plane is parallel to the y-z plane, intersecting the x-axis at

x ¼ 3. The x-coordinate of any point on this plane is fixed at x ¼ 3, and the

plane is defined as

S ¼ f[ x y z ] 2 R3jx ¼ 3g

Elements u and v in S have the form

u ¼ [ 3 a b ] and v ¼ [ 3 c d ]

for some choice of the scalars a, b, c, and d. Here

uþ v ¼ [ 6 aþ c bþ d ]

Figure 2.1

x

y

z

Figure 2.2 z

y0
1

1

2
3

x
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which is not an element of S because its first component is not 3. Condition (i) of

Theorem 1 is violated. The set S is not closed under addition and, therefore, is

not a subspace. &

As an alternative solution to Example 3, we note that the set S does not contain the

zero vector, and therefore cannot be a vector space. The zero vector in R3 is

0 ¼ [ 0 0 0 ], and this vector is clearly not in S because all elements in S have

a first component of 3. Often we can determine by inspection whether the zero

vector of a vector space is included in a given subset. If the zero vector is not

included, we may conclude immediately that the subset is not a vector space and,

therefore, not a subspace. If the zero vector is part of the set, then the two closure

properties must be verified before one can determine whether the given set is a

subspace.

One simple subspace associated with any vector space is the following:

" Theorem 2. For any vector space V, the subset containing only the zero

vector is a subspace. 3

Proof: It follows from the definition of a zero vector that 0þ 0 ¼ 0. It also

follows from Theorem 2 of Section 2.1 that a0 ¼ 0 for any scalar a. Both closure

conditions of Theorem 1 are satisfied, and the set S containing just the single

element 0 is a subspace. &

Example 4 Determine whether the set S ¼ f[ a 2a 4a ]ja is a real numberg
is a subspace of R3.

Solution: Setting a ¼ 0, we see that the zero vector, 0 ¼ [ 0 0 0 ], of R3 is an

element of S, so we can make no conclusion a priori about S as a subspace. We

must apply Theorem 1 directly. Elements u and v in S have the form

u ¼ [ t 2t 4t ] and v ¼ [ s 2s 4s ]

for some choice of the scalars s and t. Therefore,

uþ v ¼ [ tþ s 2tþ 2s 4tþ 4s ]

¼ [ (tþ s) 2(tþ s) 4(tþ s) ] 2 S

and for any real scalar a,

au ¼ [ at a(2t) a(4t) ]

¼ [ (at) 2(at) 4(at) ] 2 S

Because S is closed under vector addition and scalar multiplication, it follows

from Theorem 1 that S is a subspace of R3. &

If a subset of a

vector space does

not include the zero

vector, that subset

cannot be a

subspace.
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The subspace in Example 4 also has an interesting graphical representation.

If we rewrite an arbitrary vector u as

u ¼ [ t 2t 4t ] ¼ t[ 1 2 4 ]

we see that every vector is a scalar multiple of the directed line segment having its

tail at the origin and its tip at the point (1, 2, 4). Because t can be any real

number, zero, positive or negative, we can reach any point on the line that

contains this directed line segment. Thus, the subspace S is represented graph-

ically by the straight line in R3 illustrated in Figure 2.3.

As a result of Examples 2 through 4 and Theorem 2, one might suspect that a

proper subset S of R3 is a subspace if and only if S is the zero vector or else the

graph of S is either a straight line through the origin or a plane that contains the

origin. This is indeed the case as we shall prove in Section 2.4.

The two conditions specified in Theorem 1 can be collapsed into a single

condition.

" Theorem 3. A nonempty subset S of a vector space V is a subspace of V

if and only if whenever u and v are any two elements in S and a and b are

any two scalars, then

auþ bv (2:6)

is also in S. 3

Proof: If S is a subspace, then it must satisfy the two conditions of Theorem 1.

In particular, if u is an element of S and a a scalar, then au is in S as

Figure 2.3

(1, 2, 0)

(1, 2, 4)

5

z

x

y

4

3

3

2

2

1

1

1 2 3 4

u

line that contains u

Lines through the

origin and planes

that contain the

origin are subspaces

of R3.
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a consequence of condition (ii). Similarly, bv must be an element of S whenever v

is an element and b is a scalar. Knowing that au and bv are two elements in S, we

may conclude that their sum, given by equation (2.6), is also in S as a conse-

quence of condition (i).

Conversely, if equation (2.6) is an element in S for all values of the scalars a and

b, then condition (i) of Theorem 1 follows by setting a ¼ b ¼ 1. Condition (ii)

follows by setting b ¼ 0 and leaving a arbitrary. &

Example 5 Determine whether S ¼ fp(t) 2 P2j p(2) ¼ 1g is a subspace of P2.

Solution: P2 is a vector space (see Example 7 of Section 2.1 with n ¼ 2). The

zero vector 0 in P2 has the property 0(t) ¼ 0 for all real values of t. Thus,

0(2) ¼ 0 6¼ 1, the zero vector is not in S, and S is not a subspace. &

Example 6 Determine whether S ¼ fp(t) 2 P2j p(2) ¼ 0g is a subspace of P2.

Solution: Let u ¼ p and v ¼ q be any two polynomials in S. Then p(2) ¼ 0 and

q(2) ¼ 0. Set w ¼ auþ bv, for arbitrary values of the scalars a and b. Then w is

also a polynomial of degree two or less or the zero polynomial. Furthermore,

w(2) ¼ (apþ bq)(2) ¼ ap(2)þ bq(2) ¼ a0þ b0 ¼ 0,

so w is also an element of S. It follows from Theorem 3 that S is a subspace

of P n. &

Expression (2.6) in Theorem 3 is a special case of a linear combination. We say

that a vector u in a vector space V is a linear combination of the vectors

v1, v2, . . . , vn in V if there exists scalars d1, d2, . . . , dn such that

u ¼ d1v1 þ d2v2 þ . . .þ dnvn (2:7)

Example 7 Determine whether u ¼ [ 1 2 3 ] is a linear combination of

v1 ¼ [ 1 1 1 ], v2 ¼ [ 2 4 0 ], and v3 ¼ [ 0 0 1 ]

Solution: These vectors are all in the vector space R3, considered as row

matrices. We seek scalars d1, d2, and d3 that satisfy the equation

[ 1 2 3 ] ¼ d1[ 1 1 1 ]þ d2[ 2 4 0 ]þ d3[ 0 0 1 ]

or

[ 1 2 3 ] ¼ [ d1 þ 2d2 d1 þ 4d2 d1 þ d3 ]

This last matrix equation is equivalent to the system of equations

A vector u is a linear

combination of

a finite number of

other vectors if u

can be written as

a sum of scalar

multiples of those

vectors.
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1 ¼ d1 þ 2d2

2 ¼ d1 þ 4d2

3 ¼ d1 þ d3

Using Gaussian elimination, we find that the only solution to this system is

d1 ¼ 0, d2 ¼ 1=2, and d3 ¼ 3. Thus,

[ 1 2 3 ] ¼ 0[ 1 1 1 ]þ 1
2
[ 2 4 0 ]þ 3[ 0 0 1 ]

and the vector u ¼ [ 1 2 3 ] is a linear combination of the other three. &

Example 8 Determine whether u ¼ �1 0

2 4

� �
is a linear combination of

v1 ¼
1 1

2 2

� �
and v2 ¼

3 2

3 5

� �

Solution: These vectors are in the vector space M2�2. We seek scalars d1 and d2

that satisfy the equation

�1 0

2 4

� �
¼ d1

1 1

2 2

� �
þ d2

3 2

3 5

� �
(2:8)

or

�1 0

2 4

� �
¼ d1 þ 3d2 d1 þ 2d2

2d1 þ 3d2 2d1 þ 5d2

� �

which is equivalent to the system of equations

�1 ¼ d1 þ 3d2

0 ¼ d1 þ 2d2

2 ¼ 2d1 þ 3d2

4 ¼ 2d1 þ 5d2

Using Gaussian elimination, we find that this system has no solution. There are

no values of d1 and d2 that satisfy (2.8), and, therefore, u is not a linear

combination of v1 and v2.

The set of all linear combinations of a finite set of vectors, S ¼ fv1, v2, . . . , vng, is

called the span of S, denoted as span fv1, v2, . . . , vng or simply span(S). Thus, the

span of the polynomial set ft2, t, 1g is P2 because every polynomial p(t) in P2 can

be written as

p(t) ¼ d1t
2 þ d2tþ d3(1)

The span of a finite

number of vectors is

the set of all linear

combinations of

those vectors.

106 . Vector Spaces



for some choice of the scalars d1, d2, and d3. The span of the set f[ 1 0 0 0 ],

[ 0 1 0 0 ]g are all row-vectors of the form [ d1 d2 0 0 ] for any choice of

the real numbers d2 and d3.

The span of a finite set of vectors is useful because it is a subspace! Thus, we

create subspaces conveniently by forming all linear combinations of just a few

vectors.

" Theorem 4. The span of a set of vectors S ¼ fv1, v2, . . . , vng in a vector

space V is a subspace of V. 3

Proof: Let u and w be elements of span(S). Then

u ¼ d1v1 þ d2v2 þ . . .þ dnvn and w ¼ c1v1 þ c2v2 þ . . .þ cnvn

for some choice of the scalars d1 through dn and c1 through cn. It follows that

auþ bw ¼ a(d1v1 þ d2v2 þ . . .þ dnvn)þ b(c1v1 þ c2v2 þ . . .þ cnvn)

¼ (ad1)v1 þ (ad2)v2 þ . . .þ (adn)vn þ (bc1)v1 þ (bc2)v2 þ . . .þ (bcn)vn

¼ (ad1 þ bc1)v1 þ (ad2 þ bc2)v2 þ . . .þ (adn þ bcn)vn

Each quantity in parentheses on the right side of this last equation is

a combination of scalars of the form adj þ bcj (for j ¼ 1, 2, . . . , n) and is,

therefore, itself a scalar. Thus, auþ bw is a linear combination of the vectors

in S and a member of span(S). It follows from Theorem 3 that span(S) is a

subspace of V. &

Not only is the span(S) a subspace that includes the vectors in S, but it is the

smallest such subspace. We formalize this statement in the following theorem,

the proof of which is left as an exercise for the reader (see Problem 50).

" Theorem 5. If S ¼ fv1, v2, . . . , vng is a set of vectors in a vector space V

and if W is a subspace of V that contains all the vectors in S, then W

contains all the vectors in span(S). 3

Problems 2.2

In Problems 1 through 27, determine whether each set is a vector space.

(1) S ¼ f[ a b ] 2 R2ja ¼ 0g.

(2) S ¼ f[ a b ] 2 R2ja ¼ �bg.

(3) S ¼ f[ a b ] 2 R2jb ¼ �5ag.

(4) S ¼ f[ a b ] 2 R2jb ¼ aþ 3g.
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(5) S ¼ f[ a b ] 2 R2jb � ag.

(6) S ¼ f[ a b ] 2 R2ja ¼ b ¼ 0g.

(7) S ¼ f[ a b c ] 2 R3ja ¼ bg.

(8) S ¼ f[ a b c ] 2 R3jb ¼ 0g.

(9) S ¼ f[ a b c ] 2 R3ja ¼ bþ 1g.

(10) S ¼ f[ a b c ] 2 R3jc ¼ a� bg.

(11) S ¼ f[ a b c ] 2 R3jc ¼ abg.

(12) S ¼ f[ a b c ] 2 R3ja ¼ b and c ¼ 0g.

(13) S ¼ f[ a b c ] 2 R3jb ¼ 3a and c ¼ aþ 3g.

(14) S ¼ a 2a 0

0 a 2a

� �					a is real

( )
as a subset of M2�3.

(15)
a b c

d e f

� �
: 2M2�3

� 				c ¼ e ¼ f ¼ 0

�
.

(16)
a b c

d e f

� �
: 2M2�3

� 				c ¼ e ¼ f ¼ 1

�
.

(17) S ¼ 0 0 0

0 0 0

� �� �
as a subset of M2�3.

(18) S ¼ fA 2M3�3jA is lower triangularg.

(19) S ¼ fA 2M3�3jA is a diagonal matrixg.

(20) S ¼
a a2 a3

a2 a a2

a3 a2 a

2
4

3
5

8<
:

						a is real

9=
; as a subset of M3�3.

(21) S ¼ fA 2M2�2jA is invertibleg.

(22) S ¼ fA 2M2�2jA is singularg.

(23) S ¼ fat2 þ btþ c 2 P2jb ¼ 0g.

(24) S ¼ fp(t) 2 P2jp(3)� 2p(1) ¼ 4g.

(25) S ¼ ff (t) 2 C[0, 1]þ f (t) > 0g. (C[0, 1] is defined in Problem 29 of Section 2.1.)

(26) S ¼ ff (t) 2 C[� 1, 1]jf (� t) ¼ f (t)g. (C[� 1, 1] is defined in Problem 28 of

Section 2.2.)

(27) S ¼ ff (t) 2 C[� 1, 1]jf (� t) ¼ �f (t)g:

(28) Determine whether u is a linear combination of v1 ¼ [ 1 2 ] and v2 ¼ [ 3 6 ].

(a) u ¼ [ 2 4 ], (b) u ¼ [ 2 �4 ],

(c) u ¼ [�3 �6 ], (d) u ¼ [ 2 2 ].

(29) Determine which, if any, of the vectors u defined in the previous problem are in

spanfv1, v2g.

(30) Determine whether u is a linear combination of v1 ¼ [ 1 0 1 ] and

v2 ¼ [ 1 1 1 ].
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(a) u ¼ [ 3 2 3 ], (b) u ¼ [ 3 3 2 ],

(c) u ¼ [ 0 0 0 ], (d) u ¼ [ 0 1 1 ].

(31) Determine which, if any, of the vectors u defined in the previous problem

are in spanfv1, v2g.
(32) Determine whether the following vectors are linear combinations of

v1 ¼
1

0

0

2
4
3
5, v2 ¼

1

1

0

2
4
3
5, v3 ¼

1

1

1

2
4
3
5:

(a)

1

0

1

2
4
3
5, (b)

1

0

�1

2
4

3
5, (c)

2

2

0

2
4
3
5,

(d)

2

2

4

2
4
3
5, (e)

1

2

3

2
4
3
5, (f)

2

�5

� �
.

(33) Determine whether the following matrices are linear combinations of

A1 ¼
1 0

0 0

� �
, A2 ¼

0 1

0 0

� �
, A3 ¼

1 1

1 0

� �
:

(a)
0 1

1 1

� �
, (b)

1 2

3 0

� �
, (c)

1 1

0 0

� �
,

(d)
0 0

0 0

� �
, (e)

2 0

�2 0

� �
, (f)

0 0

1 �1

� �
.

(34) Determine which, if any, of the matrices given in parts (a) through (f) of the

previous problem are in spanfA1,A2, A3g.

(35) Determine whether the following polynomials are linear combinations of

ft3 þ t2, t3 þ t, t2 þ tg:

(a) t3 þ t2 þ t, (b) 2t3 � t, (c) 5t, (d) 2t2 þ 1.

(36) Find spanfv1, v2g for the vectors given in Problem 28.

(37) Find spanfA1,A2,A3g for the matrices given in Problem 33.

(38) Find spanfp1(t), p2(t), p3(t)g for the polynomial given in Problem 35.

(39) Describe the graph of all points in the set S described in Problem 3.

(40) Show that the set of points in the plane on a straight line passing through the origin

is a subspace of R2.

(41) Show that S as given in Problem 4 is the set of points in the plane on the graph of

the straight line y ¼ xþ 3. Describe a characteristic of this line that precludes S

from being a subspace.
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(42) Show that P2 is a subspace of P3. Generalize to Pm and Pn when m < n.

(43) Show that if u is a linear combination of the vectors v1, v2, . . . , vn and if each vi

(i ¼ 1, 2, . . . , n) is a linear combination of the vectors w1,w2, . . . , wm, then u can

also be expressed as a linear combination of w1,w2, . . . ,wm.

(44) Let A be an n� n matrix and both x and y n� 1 column matrices. Prove that if

y ¼ Ax, then y is a linear combination of the columns of A.

(45) Show that the set of solutions of the matrix equation Ax ¼ 0, where A is a p� n

matrix, is a subspace of Rn.

(46) Show that the set of solutions of the matrix equation Ax ¼ b, where A is a p� n

matrix, is not a subspace of Rn when b 6¼ 0.

(47) Prove that spanfu, vg ¼ spanfuþ v, u� vg.

(48) Prove that spanfu, v,wg ¼ spanfuþ v, vþ w, uþ wg.

(49) Prove that spanfu, v, 0g ¼ spanfu, vg.

(50) Prove Theorem 5.

2.3 LINEAR INDEPENDENCE

Most vector spaces contain infinitely many vectors. In particular, if u is a nonzero

vector of a vector space V and if the scalars are real numbers, then it follows

from the closure property of scalar multiplication that au 2 V for every real

number a. It is useful, therefore, to determine whether a vector space can be

completely characterized by just a few representatives. If so, we can describe

a vector space by its representatives. Instead of listing all the vectors in a vector

space, which are often infinitely many in number, we simplify the identification

of a vector space by listing only its representatives. We then use those represen-

tatives to study the entire vector space.

Efficiently characterizing a vector space by its representatives is one of the major

goals in linear algebra, where by efficiently we mean listing as few representatives

as possible. We devote this section and the next to determining properties that

such a set of representatives must possess.

A set of vectors fv1, v2, . . . , vng in a vector space V is linearly dependent if there

exist scalars, c1, c2, . . . , cn, not all zero, such that

c1v1 þ c2v2 þ . . .þ cnvn ¼ 0 (2:9)

The vectors are linearly independent if the only set of scalars that satisfies

equation (2.9) is the set c1 ¼ c2 ¼ . . . ¼ cn ¼ 0.

To test whether a given set of vectors is linearly independent, we first form vector

equation (2.9) and ask, ‘‘What values for the c’s satisfy this equation?’’ Clearly,

c1 ¼ c2 ¼ . . . ¼ cn ¼ 0 is a suitable set. If this is the only set of values that

The set of vectors

fv1, v2, . . . , vng
is linearly

independent if the

only set of scalars

that satisfy

c1v1 þ c2v2

þ . . .þ cnvn ¼ 0

is c1 ¼ c2 ¼ . . .
¼ cn ¼ 0.
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satisfies (2.9), then the vectors are linearly independent. If there exists a set of

values that is not all zero, then the vectors are linearly dependent.

It is not necessary for all the c’s to be different from zero for a set of vectors to be

linearly dependent. Consider the vectors v1 ¼ [ 1 2 ], v2 ¼ [ 1 4 ]; and

v3 ¼ [ 2 4 ]. The constants c1 ¼ 2, c2 ¼ 0; and c3 ¼ �1 is a set of scalars, not

all zero, such that c1v1 þ c2v2 þ c3v3 ¼ 0. Thus, this set is linearly dependent.

Example 1 Is the set f[ 1 2 ], [ 3 4 ]g in R2 linearly independent?

Solution: Here v1 ¼ [ 1 2 ], v2 ¼ [ 3 4 ]; and equation (2.9) becomes

c1[ 1 2 ]þ c2[ 3 4 ] ¼ [ 0 0 ]

This vector equation can be rewritten as

[ c1 2c1 ]þ [ 3c2 4c2 ] ¼ [ 0 0 ]

or as

[ c1 þ 3c2 2c1 þ 4c2 ] ¼ [ 0 0 ]

Equating components, we generate the system

c1 þ 3c2 ¼ 0

2c1 þ 4c2 ¼ 0

which has as its only c1 ¼ c2 ¼ 0. Consequently, the original set of vectors is

linearly independent. &

Example 2 Determine whether the set of column matrices in R3

2

6

�2

2
4

3
5,

3

1

2

2
4
3
5,

8

16

�3

2
4

3
5

8<
:

9=
;

is linearly independent.

Solution: Equation (2.9) becomes

c1

2

6

�2

2
4

3
5þ c2

3

1

2

2
4
3
5þ c3

8

16

�3

2
4

3
5 ¼

0

0

0

2
4
3
5 (2:10)

which can be rewritten as
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2c1

6c1

�2c1

2
4

3
5þ 3c2

c2

2c2

2
4

3
5þ 8c3

16c3

�3c3

2
4

3
5 ¼ 0

0

0

2
4
3
5

or

2c1 þ 3c2 þ 8c3

6c1 þ c2 þ 16c3

�2c1 þ 2c2 � 3c3

2
4

3
5 ¼ 0

0

0

2
4
3
5

This matrix equation is equivalent to the homogeneous system of equations

2c1 þ 3c2 þ 8c3 ¼ 0

6c1 þ c2 þ 16c3 ¼ 0

�2c1 þ 2c2 � 3c3 ¼ 0

Using Gaussian elimination, we find the solution to this system is c1 ¼ �2:5c3,

c2 ¼ �c3, c3 arbitrary. Setting c3 ¼ 2, we obtain c1 ¼ �5, c2 ¼ �2, c3 ¼ 2 as a

particular nonzero set of constants that satisfies equation (2.10). The original set

of vectors is linearly dependent. &

Example 3 Determine whether the set of matrices

1 1

0 0

� �
,

0 1

0 1

� �
,

0 0

1 1

� �
,

1 0

1 1

� �
,

1 1

0 1

� �� �

in M2�2 is linearly independent.

Solution: Equation (2.9) becomes

c1
1 1

0 0

� �
þ c2

0 1

0 1

� �
þ c3

0 0

1 1

� �
þ c4

1 0

1 1

� �
þ c5

1 1

0 1

� �
¼ 0 0

0 0

� �

or

c1 þ c4 þ c5 c1 þ c2 þ c5

c3 þ c4 c2 þ c3 þ c4 þ c5

� �
¼ 0 0

0 0

� �

which is equivalent to the homogeneous system of equations

c1 þ c4 þ c5 ¼ 0

c1c2 þ c5 ¼ 0

c3 þ c4 ¼ 0

c2 þ c3 þ c4 þ c5 ¼ 0
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This system has more unknowns than equations, so it follows from Theorem 3 of

Section 1.4 that there are infinitely many solutions, all but one of which are

nontrivial. Because nontrivial solutions exist to equation (2.9), the set of vectors

is linearly dependent. &

Example 4 Determine whether the set ft2 þ 2t� 3, t2 þ 5t, 2t2 � 4g of vectors in

P2 is linearly independent.

Solution: Equation (2.9) becomes

c1(t
2 þ 2t� 3)þ c2(t

2 þ 5t)þ c3(2t2 � 4) ¼ 0

or

(c1 þ c2 þ 2c3)t
2 þ (2c1 þ 5c2)tþ (� 3c1 � 4c3) ¼ 0t2 þ 0tþ 0

Equating coefficients of like powers of t, we generate the system of equations

c1 þ c2 þ 2c3 ¼ 0

2c1 þ 5c2 ¼ 0

�3c1 � 4c3 ¼ 0

Using Gaussian elimination, we find that this system admits only the trivial

solution c1 ¼ c2 ¼ c3 ¼ 0. The given set of vectors is linearly independent. &

The defining equations for linear combinations and linear dependence, (2.7) and

(2.9), are similar, so we should not be surprised to find that the concepts are

related.

" Theorem 1. A finite set of vectors is linearly dependent if and only if one

of the vectors is a linear combination of the vectors that precede it, in the

ordering established by the listing of vectors in the set. 3

Proof: First, we must prove that if a set of vectors is linearly dependent, then

one of the vectors is a linear combination of other vectors that are listed before it

in the set. Second, we must show the converse: if one of the vectors of a given set

is a linear combination of the vectors that precede it, then the set is linearly

dependent.

Let fv1, v2, . . . , vng be a linearly dependent set. Then there exists scalars

c1, c2, . . . , cn, not all zero, such that equation (2.9) is satisfied. Let ci be the last

nonzero scalar. At the very worst i ¼ n when cn 6¼ 0, but if cn ¼ 0; then i < n.

Equation (2.9) becomes

c1v1 þ c2v2 þ . . .þ ci�1vi�1 þ civi þ 0viþ1 þ 0viþ2 þ . . .þ 0vn ¼ 0
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which can be rewritten as

vi ¼ �
c1

ci

v1 �
c2

ci

v2 � . . .� ci�1

ci

vi�1 (2:11)

Consequently, vi is a linear combination of v1, v2, . . . , vi�1, with coefficients

d1 ¼ �c1=ci, d2 ¼ �c2=ci, . . . , di�1 ¼ �ci�1=ci.

Now let one vector of the set fv1, v2, . . . , vng, say vi, be a linear combination of

the vectors in the set that precede it, namely, v1, v2, . . . , vi�1. Then there exist

scalars d1, d2, . . . , di�1 such that

vi ¼ d1v1 þ d2v2 þ . . .þ di�1vi�1

which can be rewritten as

d1v1 þ d2v2 þ . . .þ di�1vi�1 þ (� 1)vi þ 0viþ1 þ 0viþ2 þ . . .þ 0vn ¼ 0

This is equation (2.9) with cj ¼ dj ( j ¼ 1, 2, . . . , i � 1), ci ¼ �1, and

cj ¼ 0 ( j ¼ iþ 1, i þ 2, . . . , n). Because this is a set of scalars not all zero, in

particular ci ¼ �1, it follows that the original set of vectors is linearly

dependent. &

It is not necessary for every vector in a given set to be a linear combination of

preceding vectors if that set is linearly dependent, but only that at least one vector

in the set have this property. For example, the set f[ 1 0 ], [ 2 0 ], [ 0 1 ]g is

linearly dependent because

�2[ 1 0 ]þ 1[ 2 0 ]þ 0[ 0 1 ] ¼ [ 0 0 ]

Here [ 0 1 ] cannot be written as a linear combination of the preceding two

vectors; however, [ 2 0 ] can be written as a linear combination of the vector

that precedes it, namely, [ 2 0 ] ¼ 2[ 1 0 ].

" Theorem 2. A subset of a vector space V consisting of the single vector

u is linearly dependent if and only if u ¼ 0. 3

Proof: If the set fug is linearly dependent, then there exists a nonzero scalar c

that satisfies the vector equation

cu ¼ 0 (2:12)

It then follows from Theorem 7 of Section 2.1 that u ¼ 0. Conversely, if u ¼ 0,

then it follows from Theorem 1 of Section 2.1 that equation (2.12) is valid for any

scalar c. Thus nonzero scalars exist that satisfy (2.12) and the set fug is linearly

dependent. &
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" Theorem 3. A subset of a vector space V consisting of two distinct

vectors is linearly dependent if and only if one vector is a scalar multiple

of the other. 3

Proof: If the set fv1, v2g is linearly dependent, then it follows from Theorem 1

that v2 can be written as a linear combination of v1. That is, v2 ¼ d1v1, which

means that v2 is a scalar multiple of v1.

Conversely, if one of the two vectors can be written as a scalar multiple of the

other, then either v2 ¼ av1 or v1 ¼ av2 for some scalar a. This implies, respect-

ively, that either

av1 þ (� 1)v2 ¼ 0 or (1)v1 � av2 ¼ 0

Both equations are in the form of equation (2.9), the first with c1 ¼ a, c2 ¼ �1

and the second with c1 ¼ 1, c2 ¼ �a. Either way, we have a set of scalars, not all

zero, that satisfy equation (2.9), whereupon the set fv1, v2g is linearly dependent.

Figure 2.4

v1
x

(a)

y

−2v1

v1

v1
x

(b)

y

1
−2
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Theorem 3 has an interesting geometrical representation in both R2 and R3.

We know from our work in Section 1.7 that a scalar multiple of a nonzero vector

in R2 or R3 is an elongation of the nonzero vector (when the scalar in absolute

value is greater than unity) or a contraction of that nonzero vector (when the

scalar in absolute value is less than unity), followed by a rotation of 1808 if the

scalar is negative. Figure 2.4 illustrates two possibilities in R2 for a particular

nonzero vector v2. If v2 ¼ 2v1, we have the situation depicted in Figure 2.4(a); if,

however, v2 ¼ �1=2v1, we have the situation depicted in Figure 2.4(b). Either

way, both vectors lie on the same straight line. The same situation prevails in R3.

We conclude that two vectors are linearly dependent in either R2 or R3 if and

only if both vectors lie on the same line. Alternatively, two vectors are linearly

independent in either R2 or R3 if and only if they do not lie on the same line.

A set of three vectors in R3, fv1, v2, v3g, is linearly dependent if any two of the

vectors lie on the same straight line (see Problem 31). If no two vectors lie on the

same straight line but the set is linearly dependent, then it follows from Theorem

1 that v3 must be a linear combination of v1 and v2 (see Problem 32). In such a

case, there exist scalars d1 and d2 such that v3 ¼ d1v1 þ d2v2. This situation is

illustrated graphically in Figure 2.5 for the particular case where both vectors v1

and v2 are in the x-y plane, d1 is a positive real number that is less than unity, and

d2 is a positive real number that is slightly greater than unity. It follows from our

work in Section 1.7 that v3 ¼ d1v1 þ d2v2 is another vector in the x-y plane. The

situation is analogous for any two vectors in R3 that do not lie on the same line:

any linear combination of the two vectors will lie in the plane formed by those

two vectors. We see, therefore, that if a set of three vectors in R3 is linearly

dependent, then either all three vectors lie on the same line or all three lie in the

same plane.

Figure 2.5

v1

v 2

d 2v 2

d 2v 2

d1
v1

x

y

+d1v1 d2v2

Two vectors are

linearly dependent

in R2 or R3 if and

only if they lie on

the same line.

A set of three

vectors in R3 is

linearly dependent if

and only if all three

vectors lie on the

same line or all lie in

the same plane.
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" Theorem 4. A set of vectors in a vector space V that contains the zero

vector is linearly dependent. 3

Proof: Consider the set fv1, v2, . . . , vn, 0g. Pick c1 ¼ c2 ¼ . . . ¼ cn ¼ 0 and

cnþ1 ¼ 5 (any other nonzero number will do equally well). This is a set of scalars,

not all zero, such that

c1v1 þ c2v2 þ . . .þ cnvn þ cnþ10 ¼ 0

Hence, the set of vectors is linearly dependent. &

" Theorem 5. If a set of vectors S in a vector space V is linearly inde-

pendent, then any subset of S is also linearly independent. 3

Proof: See Problem 42.

" Theorem 6. If a set of vectors S in a vector space V is linearly depen-

dent, then any larger set containing S is also linearly dependent. 3

Proof: See Problem 43.

Problems 2.3

In Problems 1 through 30, determine whether each set is linearly independent.

(1) f[ 1 0 ], [ 0 1 ]g.

(2) f[ 1 1 ], [ 1 �1 ]g.

(3) f[ 2 �4 ], [�3 6 ]g.

(4) f[ 1 3 ], [ 2 �1 ], [ 1 1 ]g.

(5)
1

2

� �
,

3

4

� �� �
.

(6)
1

�1

� �
,

1

1

� �
,

1

2

� �� �
.

(7)

1

0

1

2
4
3
5,

1

1

0

2
4
3
5,

0

1

1

2
4
3
5

8<
:

9=
;.

(8)

1

0

1

2
4
3
5,

1

0

2

2
4
3
5,

2

0

1

2
4
3
5

8<
:

9=
;.

(9)

1

0

1

2
4
3
5,

1

1

1

2
4
3
5,

1

�1

1

2
4

3
5

8<
:

9=
;.

(10)

0

0

0

2
4
3
5,

3

2

1

2
4
3
5,

2

1

3

2
4
3
5

8<
:

9=
;.
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(11)

1

2

3

2
4
3
5,

3

2

1

2
4
3
5,

2

1

3

2
4
3
5

8<
:

9=
;.

(12)

1

2

3

2
4
3
5,

3

2

1

2
4
3
5,

2

1

3

2
4
3
5,

�1

2

�3

2
4

3
5

8<
:

9=
;.

(13)

4

5

1

2
4
3
5,

3

0

2

2
4
3
5,

1

1

1

2
4
3
5

8<
:

9=
;.

(14) f[ 1 1 0 ], [ 1 �1 0 ]g.

(15) f[ 1 2 3 ], [�3 �6 �9 ]g.

(16) f[ 10 20 20 ], [ 10 �10 10 ], [ 10 20 10 ]g.

(17) f[ 10 20 20 ], [ 10 �10 10 ], [ 10 20 10 ], [ 20 10 20 ]g.

(18) f[ 2 1 1 ], [ 3 �1 4 ], [ 1 3 �2 ]g.

(19)

2

1

1

3

2
664
3
775,

4

�1

2

�1

2
664

3
775,

8

1

4

5

2
664
3
775

8>><
>>:

9>>=
>>;.

(20)
1 0

0 0

� �
,

0 1

0 0

� �
,

�
0 0

1 0

� �
,

0 0

0 1

� ��
.

(21)
1 1

0 0

� �
,

1 1

1 1

� �
,

0 0

1 1

� �� �
.

(22)
1 1

0 0

� �
,

1 0

1 1

� �
,

0 0

1 1

� �� �
.

(23)
1 0

1 1

� �
,

1 1

1 0

� �
,

�
1 1

0 1

� �
,

0 1

1 1

� ��
.

(24)
1 0

1 1

� �
,

1 1

1 0

� ��
2 2

0 2

� �
,

1 0

2 0

� ��
.

(25) ft, 2g.

(26) ft3 þ t2, t3 þ t, t2 þ tg.

(27) ft3 þ t2, t3 � t2, t3 � 3t2g.

(28) ft3 þ t2, t3 � t2, t3 � t, t3 þ 1g.

(29) ft2 þ t, t2 þ t� 1, t2 þ 1, tg.

(30) ft2 þ t, t2 þ t� 2, 1g.

(31) Consider a set of three vectors in R3. Prove that if two of the vectors lie on the same

straight line, then the set must be linearly dependent.

(32) Consider a linearly dependent set of three vectors fv1, v2, v3g in R3. Prove that if

no two vectors lie on the same straight line, v3 must be a linear combination of v1

and v2.
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(33) Prove that a set of vectors is linearly dependent if and only if one of the vectors is a

linear combination of the vectors that follow it.

(34) Prove that if fu, vg is linearly independent, then so too is fuþ v, u� vg.

(35) Prove that if fv1, v2, v3g is linearly independent, then so too is the set fu1, u2, u3g
where u1 ¼ v1 � v2, u2 ¼ v1 þ v3, and u3 ¼ v2 � v3.

(36) Prove that if fv1, v2, v3g is linearly independent, then so too is the set fu1, u2, u3g
where u1 ¼ v1 þ v2 þ v3, u2 ¼ v2 þ v3, and u3 ¼ v3.

(37) Prove that if fv1, v2, v3g is linearly independent, then so too is the set

fa1v1, a2v2, a3v3g for any choice of the nonzero scalars a1, a2; and a3.

(38) Prove that the nonzero rows, considered as row matrices, of a row-reduced matrix is

a linearly independent set.

(39) Let A be an n� n matrix and let fx1, x2, . . . , xkg and fy1, y2, . . . , ykg be two sets of

n-dimensional column vectors having the property that Axi ¼ yi (i ¼ 1, 2, . . . , k).

Show that the set fx1, x2, . . . , xkg is linearly independent if the set fy1, y2, . . . , ykg is.

(40) What can be said about a set of vectors that contains as a proper subset a set of

linearly independent vectors?

(41) What can be said about a subset of a linearly dependent set of vectors?

(42) Prove Theorem 5.

(43) Prove Theorem 6.

2.4 BASIS AND DIMENSION

We began the previous section with a quest for completely characterizing vector

spaces by just a few of its representatives and determining the properties repre-

sentatives must have if the characterization is to be an efficient one. One property

we want is the ability to recreate every vector in a given vector space from its

representatives; that is, we want the ability to combine representatives to gener-

ate all other vectors in a vector space. The only means we have for combining

vectors is vector addition and scalar multiplication, so the only combinations

available to us are linear combinations (see Section 2.2). We define a set of

vectors S in a vector space V as a spanning set for V if every vector in V can be

written as a linear combination of the vectors in S; that is, if V ¼ spanfSg.

Example 1 Determine whether any of the following sets are spanning sets for R2,

considered as column matrices:

(a) S1 ¼ e1 ¼
1

0

� �
, e2 ¼

0

1

� �� �

(b) S2 ¼ e1 ¼
1

0

� �
, e2 ¼

0

1

� �
, f1 ¼

1

1

� �� �

(c) S3 ¼ f 1 ¼
1

1

� �
, f 2 ¼

2

2

� �� �

The set of vectors S

is a spanning set for

a vector space V if

every vector in V

can be written as a

linear combination

of vectors in S.
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Solution: An arbitrary column matrix u 2 R2 has the form

u ¼ a

b

� �

for some choice of the scalars a and b.

(a) Since

a

b

� �
¼ a

1

0

� �
þ b

0

1

� �

it follows that every vector in R2 is a linear combination of e1 and e2. Thus, S1 is

a spanning set for R2.

(b) Since

a

b

� �
¼ a

1

0

� �
þ b

0

1

� �
þ 0

1

1

� �

it follows that S2 is also a spanning set for R2.

(c) S3 is not a spanning set for R2. Every linear combination of vectors in S3

has identical first and second components. The vector [ 1 2 ]T does not have

identical components and, therefore, cannot be written as a linear combination

of f1 and f2. &

If S is a spanning set for a vector space V, then S is said to span V. As a spanning

set, S represents V completely because every vector in V can be gotten from the

vectors in S. If we also require that S be a linearly independent set, then we are

guaranteed that no vector in S can be written as a linear combination of other

vectors in S (Theorem 1 of Section 2.3). Linear independence ensures that the set

S does not contain any superfluous vectors. A spanning set of vectors that is also

a linearly independent set meets all our criteria for efficiently representing a given

vector space. We call such a set a basis.

Example 2 Determine whether the set C ¼ ft2 þ 2t� 3, t2 þ 5t, 2t2 � 4g is a

basis for P3.

Solution: C is not a spanning set for P3, because t3 is a third-degree polynomial

in P3 and no linear combination of the vectors in C can equal it. Because C does

not span P3, C cannot be a basis. We could show that C is linearly independent

(see Example 4 of Section 2.3), but that is now irrelevant. &

Example 3 Determine whether the set

D ¼ 1 1

0 0

� �
,

0 1

0 1

� �
,

0 0

1 1

� �
,

1 0

1 1

� �
,

1 1

0 1

� �� �

is a basis for M2�2.

A basis for a vector

space V is a set of

vectors that is

linearly independent

and also spans V.
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Solution: It follows from Example 3 of Section 2.3 that D is linearly dependent,

not independent, so D cannot be a basis. We could show that D does indeed span

M2�2, but that no longer matters. &

Example 4 Determine whether the set S ¼ e1 ¼
1

0

� �
, e2 ¼

0

1

� �� �
is a basis for

R2, considered as column matrices.

Solution: We need to show that span (S) ¼ R2 and also that S is linearly

independent. We showed in part (a) of Example 1 that S is a spanning set for

R2. To demonstrate linear independence, we form the vector equation

c1
1

0

� �
þ c2

0

1

� �
¼ 0

0

� �

or

c1

c2

� �
¼ 0

0

� �

The only solution to this vector equation is c1 ¼ c2 ¼ 0, so the two vectors are

linearly independent. It follows that S is a basis for R2. &

A straightforward extension of Example 4 shows that a basis for Rn, considered

as column vectors, is the set of the n-tuples

e1 ¼

1

0

0

..

.

0

0

2
66666664

3
77777775
, e2 ¼

0

1

0

..

.

0

0

2
66666664

3
77777775
, e3 ¼

0

0

1

..

.

0

0

2
66666664

3
77777775
, . . . , en�1 ¼

0

0

0

..

.

1

0

2
66666664

3
77777775
, en ¼

0

0

0

..

.

0

1

2
66666664

3
77777775

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(2:13)

where ej ( j ¼ 1, 2, 3, . . . , n) has its jth component equal to unity and all other

components equal to zero. This set is known as the standard basis for Rn.

Example 5 Determine whether the set B ¼ f1 ¼
1

1

� �
, f2 ¼

1

�1

� �� �
is a basis

for R2, considered as column matrices.

Solution: An arbitrary vector u in R2 has the form

u ¼ a

b

� �

for some choice of the scalars a and b. B is a spanning set for R2 if there exist

scalars d1 and d2 such that
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d1
1

1

� �
þ d2

1

�1

� �
¼ a

b

� �
(2:14)

Note that we do not actually have to find the scalars d1 and d2, we only need to

show that they exist. System (2.14) is equivalent to the set of simultaneous

equations

d1 þ d2 ¼ a

d1 � d2 ¼ b

which we solve by Gaussian elimination for the variables d1 and d2. The aug-

mented matrix for this system is

1 1

1 �1

a

b

				
� �

! 1 1

0 �2

a

b� a

				
�� by adding to the

second row� 1
times the first row

! 1 1

0 1

a
1
2
a� 1

2
b

				
� � by multiplying

the second row

by � 1=2

The system of equations associated with this row-reduced augmented matrix is

d1 þ d2 ¼ a

d2 ¼
1

2
a� 1

2
b

(2:15)

System (2.15) has a solution for d1 and d2 for every choice of the scalars a and b.

Therefore, there exist scalars d1 and d2 that satisfy (2.14) and B is a spanning set

for R2.

We next show that B is linearly independent, which is tantamount to showing

that the only solution to the vector equation d1f1 þ d2f2 ¼ 0 is the trivial solution

d1 ¼ d2 ¼ 0. This vector equation is precisely (2.14) with a ¼ b ¼ 0, and it

reduces to (2.15) with a ¼ b ¼ 0. Under these special conditions, the second

equation of (2.15) is d2 ¼ 0, and when it is substituted into the first equation

we find d1 ¼ 0. Thus, B is also a linearly independent set, and a basis for R2. &

" Observation: To show that a set of vectors is a basis for a vector space

V, first verify that the set spans V. Much of the work can be reused to

determine whether the set is also linearly independent. 3

A vector space V is finite-dimensional if it has a basis containing a finite number

of vectors. In particular, R2 is finite-dimensional because, as shown in Example

4, it has a basis with two (a finite number) of the vectors. A vector space that is

not finite-dimensional is called infinite dimensional, but we shall not consider

A vector space is

finite-dimensional if

it has a basis

containing a finite

number of vectors.
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such vector spaces in this book. It follows from Examples 4 and 5 that a finite-

dimensional vector space can have different bases. The fact that different bases

of a vector space must contain the same number of vectors is a consequence of

the next two theorems.

" Theorem 1. If S ¼ fv1, v2, . . . , vng is a basis for a vector space V, then

any set containing more than n vectors is linearly dependent. 3

Proof: Let T ¼ fu1, u2, . . . , upg be a set of p vectors in V with p > n. We need to

show that there exist scalars c1, c2, . . . , cp, not all zero, that satisfy the vector

equation

c1u1 þ c2u2 þ . . .þ cpup ¼ 0 (2:16)

Because S is a spanning set for V, it follows that every vector in V, in particular

those vectors in T, can be written as a linear combination of the vectors in S.

Therefore,

u1 ¼ a11v1 þ a21v2 þ . . .þ an1vn

u2 ¼ a12v1 þ a22v2 þ . . .þ an2vn

..

.

up ¼ a1pv1 þ a2pv2 þ . . .þ anpvn

(2:17)

for some values of the scalars aij (i ¼ 1, 2, . . . , n; j ¼ 1, 2, . . . , p). Substituting

the equations of system (2.17) into the left side of (2.18) and rearranging, we

obtain

(c1a11 þ c2a12 þ . . .þ cpa1p)v1

þ (c1a21 þ c2a22 þ . . .þ cpa2p)v2

þ . . .þ (c1an1 þ c2an2 þ . . .þ cpanp)vn ¼ 0

Because S is a basis, it is a linearly independent set, and the only way the above

equation can be satisfied is for each coefficient of vj ( j ¼ 1, 2, . . . , n) to be zero.

Thus,

a11c1 þ a12c2 þ . . .þ a1pcp ¼ 0

a21c1 þ a22c2 þ . . .þ a2pcp ¼ 0

..

.

an1c1 þ an2c2 þ . . .þ anpcp ¼ 0

But this is a set of n-equations in p-unknowns, c1, c2, . . . , cp, with p > n, so it

follows from Theorem 3 of Section 1.4 that this set has infinitely many solutions.
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Most of these solutions will be nontrivial, so there exist scalars, not all zero, that

satisfy (2.18). &

As an immediate consequence of Theorem 1, we have

" Corollary 1. If S ¼ fv1, v2, . . . , vng is a basis for a vector space V, then

every linearly independent set of vectors in V must contain n or fewer

vectors. 3

We are now in the position to state and prove one of the fundamental principles

of linear algebra.

" Theorem 2. Every basis for a finite-dimensional vector space must

contain the same number of vectors. 3

Proof: Let S ¼ fv1, v2, . . . , vng and T ¼ fu1, u2, . . . , upg be two bases for

a finite-dimensional vector space V. Because S is a basis and T is a linearly

independent set, it follows from Corollary 1 that p 	 n. Reversing roles, T is

a basis and S is a linearly independent set, so it follows from Corollary 1 that

n 	 p. Together, both inequalities imply that p ¼ n. &

Because the number of vectors in a basis for a finite-dimensional vector space V

is always the same, we can give that number a name. We call it the dimension of

the V and denote it as dim(V).

The vector space containing just the zero vector is an anomaly. The only non-

empty subset of this vector space is the vector space itself. But the subset f0g is

linearly dependent, as a consequence of Theorem 2 of Section 3.3 and, therefore,

cannot be a basis. We define the dimension of the vector space containing just

the zero vector to be zero, which is equivalent to saying that the empty set is the

basis for this vector space.

Example 6 Determine the dimension of P n.

Solution: A basis for this vector space is S ¼ ft n, t n�1, . . . , t, 1g. First, S is a

spanning set, because if p(t) is a vector in P n, then

p(t) ¼ ant
n þ an�1t

n�1 þ . . .þ a1tþ a0(1)

for some choice of the scalars aj ( j ¼ 0, 1, . . . , n). Second, S is a linearly inde-

pendent set, because the only solution to

cnt
n þ cn�1t

n�1 þ . . .þ c1tþ c0(1) ¼ 0 ¼ 0t n þ 0t n�1 þ . . .þ 0tþ 0

is c0 ¼ ci ¼ . . . ¼ cn ¼ 0. The basis S contains nþ 1 elements, and it follows that

dim(P n) ¼ nþ 1. S is often called the standard basis for P n. &

The dimension of a

vector space is the

number of vectors in

a basis for that

vector space.
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Example 7 The standard basis for M2�2 is

S ¼ 1 0

0 0

� �
,

0 1

0 0

� �
,

0 0

1 0

� �
,

0 0

0 1

� �� �

(See Problem 5.) Thus, dim(M2�2) ¼ 4. More generally, the standard basis for

Mp�n is the set of pn matrices, each having a single 1 in a different position with

all other entries equal to zero. Consequently, dim(Mp�n) ¼ pn. &

Example 8 The dimension of Rn is n. Rn ¼M1�n when we represent n-tuples as

row matrices, whereas Rn ¼Mn�1 when we represent n-tuples as column

matrices. Either way, it follows from Example 7 that dim(Rn) ¼ dim(M1�n) ¼
dim(Mn�1) ¼ n. The standard basis for Rn, considered as column matrices, is

depicted in (2.13). &

As an immediate consequence of Theorem 1, we obtain one of the more import-

ant results in linear algebra.

" Theorem 3. In an n-dimensional vector space, every set of nþ 1 or

more vectors is linearly dependent. 3

Example 9 The set A ¼ f[ 1 5 ], [ 2 �4 ], [�3 �4 ]g is a set of three vectors

in the two-dimensional vector space R2, considered as row matrices. Therefore,

A is linearly dependent. The set R ¼ ft2 þ t, t2 � t, tþ 1, t� 1g is a set of four

vectors in the three-dimensional vector space P2. Therefore, R is linearly

dependent. &

In Section 2.2, we surmised that lines through the origin and planes that include

the origin are subspaces of R3. The following theorem formalizes this conjecture

and provides a complete geometric interpretation of subspaces in R3.

" Theorem 4. Let U be a subspace of R3.

(i) If dim(U) ¼ 0, then U contains just the origin.

(ii) If dim(U) ¼ 1, then the graph of U is a straight line

through the origin.

(iii) If dim(U) ¼ 2, then the graph of U is a plane that

includes the origin. 3

Proof: By definition, a vector space has dimension zero if and only if the vector

space contains just the zero vector, which for R3 is the origin [ 0 0 0 ]. This

proves part (i).

If U is a one-dimensional subspace, then it has a basis consisting of a single

nonzero vector, which we denote as u. Every vector in U can be written as a linear

combination of vectors in a basis for U, which here implies that every vector v in

dim(Rn) ¼ n

dim(Pn) ¼ nþ 1

dim(Mp�n) ¼ pn
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U is a scalar multiple of u; that is, v ¼ au for some scalar a. The set of all such

vectors graph as a line through the origin that contains u. (See Figure 2.3 for the

special case u ¼ [ 1 2 4 ]. In Figure 2.3, a > 1 generates a point on the line that

is further from the origin than u but in the same direction as u; a < 1 but still

positive generates a point on the line that is closer to the origin than u but still in

the same direction as u; a < 0 generates a point in the opposite direction of u.

Finally, if U is a two-dimensional subspace, then it has a basis consisting of two

nonzero vectors, which we denote as v1 and v2. The vectors in such a basis must

be linearly independent, so v2 cannot be a scalar multiple of v1. Therefore, v2

does not lie on the line through the origin containing v1. Any vector v in U can be

written as a linear combination of v1 and v2, so

v ¼ av1 þ bv2

for particular values of the scalars a and b. Consider the plane that contains the

two basis vectors. From the geometric representation of vector addition and

scalar multiplication in R3 developed in Section 1.5, it follows that every point in

the plane containing the two basis vectors can be reached as a linear combination

of v1 and v2 and that every linear combination of these two vectors is in the plane

defined by those two vectors. (See Figure 2.6 where v denotes a point in the plane

defined by v1 and v2; here 0 < a < 1 and b is negative.) &

The standard basis in R2, considered as column vectors, consists of the two

vectors

e1 ¼
1

0

� �
and e2 ¼

0

1

� �

which in many engineering texts are denoted by i and j, respectively. Both are

graphed in Figure 2.7. For an arbitrary vector v in R2, we have

v ¼ a

b

� �
¼ ae1 þ be2 ¼ aiþ bj

The standard basis in R3, considered as column vectors, consists of the three

vectors

Figure 2.6
plane containing v1 and v2

v1

v2

bv2

αv 1
v
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e1 ¼
1

0

0

2
4
3
5, e2 ¼

0

1

0

2
4
3
5, and e3 ¼

0

0

1

2
4
3
5

which in many engineering texts are denoted by i, j, and k, respectively. These are

graphed in Figure 2.8. For an arbitrary vector v in R3, we have

v ¼
a

b

c

2
4
3
5 ¼ ae1 þ be2 þ ce3 ¼ aiþ bjþ ck

More generally, if S ¼ fv1, v2, . . . , vng is a basis for a vector space V, then S is

a spanning set V. Consequently, if v 2 V, then there exist scalars d1, d2, . . . , dn

such that

v ¼ d1v1 þ d2v2 þ . . .þ dnvn (2:18)

Figure 2.7

1−1−2 2 3
x

y

j
i

1

−1

−2

2

3

Figure 2.8 z

y
k

i
j

x

3

2

1

1

1

2

3

2 3
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We shall prove shortly that this set of scalars is unique for each v; that is, for each

v there is one and only one set of scalars d1, d2, . . . , dn that satisfies equation

(2.18). These scalars are called the coordinates of v with respect to S and are

represented by the n-tuple

v$

d1

d2

..

.

dn

2
6664

3
7775

S

Example 10 Find the coordinate representations of the vector v ¼ [ 7 2 ]T, first

with respect to the standard basis C ¼ f[ 1 0 ]T, [ 0 1 ]Tg and then with respect

to the basis D1 ¼ f[ 1 1 ]T, [ 1 �1 ]Tg.

Solution: With respect to the standard basis, we have

7

2

� �
¼ 7

1

0

� �
þ 2

0

1

� �

so the coordinates are 7 and 2 and the 2-tuple representation is

7

2

� �
$ 7

2

� �
C

To determine the representation with respect to S1, we need to first write the

given vector as a linear combination of the vectors in S1. We need values of the

scalars d1 and d2 that satisfy the equation

7

2

� �
¼ d1

1

1

� �
þ d2

1

�1

� �

This is equivalent to the system of equations

d1 þ d2 ¼ 7

d1 � d2 ¼ 2

which admits the solution d1 ¼ 9=2 and d2 ¼ 5=2. These are the coordinates of v

with respect to S1, and we may write

7

2

� �
¼ 9

2

1

1

� �
þ 5

2

1

�1

� �
$ 9=2

5=2

� �
D

&
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It was no accident in the previous example that the n-tuple representation of the

vector v with respect to the standard basis was the vector itself. This is always the

case for vectors in Rn with respect to the standard basis. Consequently, we drop

the subscript notation on the n-tuple representation of the coordinates of a vector

whenever we deal with the standard basis.

Example 11 Determine the coordinate representation of the matrix
4 3

6 2

� �
with

respect to the basis

S ¼ 0 1

1 1

� �
,

1 0

1 1

� �
,

1 1

0 1

� �
,

1 1

1 0

� �� �

Solution: We first determine scalars d1, d2, d3, and d4 that satisfy the matrix

equation

4 3

6 2

� �
¼ d1

0 1

1 1

� �
þ d2

1 0

1 1

� �
þ d3

1 1

0 1

� �
þ d4

1 1

1 0

� �

This is equivalent to the system of equations

d2 þ d3 þ d4 ¼ 4

d1 þ d3 þ d4 ¼ 3

d1 þ d2 þ d4 ¼ 6

d1 þ d2 þ d3 ¼ 2

which admits the solution d1 ¼ 1, d2 ¼ 2, d3 ¼ �1; and d4 ¼ 3. These are the

coordinates of the given matrix with respect to S, and we may write

4 3

6 2

� �
$

1

2

�1

3

2
664

3
775

S

&

The notation$ signifies that the n-tuple on the right side equals the sum of the

products of each coordinate times its corresponding vector in the basis. The

subscript on the n-tuple denotes the basis under consideration. In Example 10,

the notation

9=2
5=2

� �
D

denotes the sum
9

2

1

1

� �
þ 5

2

1

�1

� �

while in Example 11, the notation
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1

2

�1

3

2
6664

3
7775

S

denotes the sum

(1)
0 1

1 1

� �
þ (2)

1 0

1 1

� �
þ (� 1)

1 1

0 1

� �
þ (3)

1 1

1 0

� �

Although a vector generally has different coordinate representations for different

bases, a vector’s coordinate representation with respect to any one basis is

unique! In Example 10, we produced two coordinate representations for the

vector [ 7 2 ]T, one for each of two bases. Within each basis, however, there is

one and only one coordinate representation for a vector. We formalize this fact

in the following theorem.

" Theorem 5. Let fv1, v2, . . . , vng be a basis for a vector space V and let

v 2 V. If

v ¼ c1v1 þ c2v2 þ . . .þ cnvn and v ¼ d1v1 þ d2v2 þ . . .þ dnvn

are two ways of expressing v as linear combinations of the basis vectors,

then ci ¼ di for each i (i ¼ 1, 2, . . . , n). 3

Proof:

0 ¼ v� v

¼ (c1v1 þ c2v2 þ . . .þ cnvn)� (d1v1 þ d2v2 þ . . .þ dnvn)

¼ (c1 � d1)v1 þ (c2 � d2v2)þ . . .þ (cn � dn)vn

Vectors in a basis are linearly independent, so the only solution to the last

equation is for each of the coefficients within the parentheses to be 0. Therefore,

(ci � di) ¼ 0 for each value of i, (i ¼ 1, 2, . . . , n), which implies that ci ¼ di.

We conclude this section with a two-part theorem, the proofs of which we leave

as exercises for the reader (see Problems 18 and 22).

" Theorem 6. Let V be an n-dimensional vector space.

(i) If S is a spanning set for V, then some subset of S forms a

basis for V; that is, S can be reduced to a basis by deleting

from S a suitable number (perhaps 0) of vectors.

(ii) If S is a linearly independent set of vectors in V, then

there exists a basis for V that includes in it all the vectors

of S; that is, S can be extended to a basis by augmenting

onto it a suitable number (perhaps 0) of vectors. 3
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Problems 2.4

(1) Determine which of the following sets are bases for R2, considered as row matrices.

(a) f[ 1 0 ], [ 1 1 ]g. (b) f[ 0 1 ], [ 1 1 ]g.

(c) f[ 1 1 ], [ 1 2 ]g. (d) f[ 1 2 ], [ 1 3 ]g.

(e) f[ 1 2 ], [ 2 4 ]g. (f) f[ 10 20 ], [ 10 �20 ]g.

(g) f[ 10 20 ], [�10 �20 ]g. (h) f[ 1 1 ], [ 1 2 ], [ 2 1 ]g.

(2) Determine which of the following sets are bases for R2, considered as column vectors.

(a)
2

3

� �
,

2

�3

� �� �
. (b)

1

2

� �
,

0

0

� �� �
.

(c)
1

2

� �
,

1

�2

� �� �
. (d)

1

2

� �
,
�1

�2

� �� �
.

(e)
10

20

� �
,

20

30

� �� �
. (f)

50

100

� �
,

100

150

� �� �
.

(g)
1

2

� �� �
. (h)

1

2

� �
,

1

3

� �
,

1

4

� �� �
.

(3) Determine which of the following sets are bases for R3, considered as row vectors.

(a) f[ 1 0 0 ], [ 0 1 0 ], [ 0 0 1 ]g.

(b) f[ 1 1 0 ], [ 0 1 1 ], [ 1 0 1 ]g.

(c) f[ 1 0 0 ], [ 1 1 0 ], [ 1 1 1 ]g.

(d) f[ 1 1 0 ], [ 0 1 1 ], [ 1 2 1 ]g.

(e) f[ 1 1 0 ], [ 0 1 1 ], [ 1 3 1 ]g.

(f) f[ 1 1 0 ], [ 0 1 1 ], [ 1 4 1 ]g.

(g) f[ 1 2 3 ], [ 4 5 6 ], [ 0 0 0 ]g.

(h) f[ 1 2 3 ], [ 4 5 6 ], [ 7 8 9 ]g.

(4) Determine which of the following sets are bases for R3, considered as column

vectors.

(a) f[ 1 2 1 ]T, [ 1 2 0 ]Tg.

(b) f[ 1 2 0 ]T, [ 1 2 1 ]T, [ 1 2 2 ]Tg.

(c) f[ 1 2 0 ]T, [ 1 2 1 ]T, [ 2 4 1 ]Tg.

(d) f[ 1 2 0 ]T, [ 2 4 0 ]T, [ 2 4 1 ]Tg.

(e) f[ 1 2 �3 ]T, [ 1 2 0 ]T, [ 1 0 �3 ]Tg.

(f) f[ 1 1 1 ]T, [ 2 1 1 ]T, [ 2 2 1 ]Tg.

(g) f[ 2 1 1 ]T, [ 2 2 1 ]T, [ 2 2 �1 ]Tg.

(h) f[ 1 2 1 ]T, [ 1 3 1 ]T, [ 1 4 1 ]T, [ 1 5 1 ]Tg.
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(5) Determine which of the following sets are bases for M2�2.

(a)
1 0

0 0

� �
,

0 1

0 0

� �
,

0 0

1 0

� �
,

0 0

0 1

� �� �
:

(b)
1 1

0 0

� �
,
�1 1

0 0

� �
,

0 0

1 1

� �
,

0 0

1 �1

� �� �
.

(c)
1 0

0 0

� �
,

1 1

0 0

� �
,

1 1

1 0

� �
,

1 1

1 1

� �� �
.

(d)
1 1

1 0

� �
,

1 1

0 1

� �
,

1 0

1 1

� �
,

0 1

1 1

� �� �
.

(6) Determine which of the following sets are bases for P1.

(a) ftþ 1, tg. (b) ftþ 1, 1g.

(c) ftþ 1, t, 1g. (d) ftþ 1, t� 1g.

(7) Determine which of the following sets are bases for P2.

(a) ft2 þ tþ 1, tg. (b) ft2 þ t, tþ 1, t2 þ 1, 1g.

(c) ft2 þ tþ 1, tþ 1, 1g. (d) ft2 þ tþ 1, tþ 1, t� 1g.

(e) ft2 þ t, tþ 1, t2 þ 1g. (f) ft2 þ tþ 1, tþ 1, t2g.

(8) Determine which of the following sets are bases for P3.

(a) ft3 þ t2 þ t, t2 þ tþ 1, tþ 1g.

(b) ft3, t2, t, 1g.

(c) ft3 þ t2 þ t, t2 þ tþ 1, tþ 1, 1g.

(d) ft3 þ t2, t2 þ t, tþ 1, 1g.

(e) ft3 þ t2 þ t, t3 þ t2, t2 þ t, t, tþ 1, 1g.

(f) ft3 þ t2, t3 � t2, tþ 1, t� 1g.

(g) ft3 þ t2 þ 1, t3 þ t2, tþ 1, t� 1g.

(h) ft3 þ t2 þ t, t3 þ t2, t2 þ t, t3 þ tg.

(9) Find an n-tuple representation for the coordinates of [ 1 3 ] with respect to the sets

given in (a) Problem 1(a) and (b) Problem 1(d).

(10) Find an n-tuple representation for the coordinates of [ 2 2 ] with respect to the sets

given in (a) Problem 1(a) and (b) Problem 1(d).

(11) Find an n-tuple representation for the coordinates of [ 1 �1 ] with respect to the

sets given in (a) Problem 1(a) and (b) Problem 1(b).

(12) Find an n-tuple representation for the coordinates of [ 1 �2 ]T with respect to the

sets given in (a) Problem 2(c) and (b) Problem 2(e).

(13) Find an n-tuple representation for the coordinates of [ 100 �100 ]T with respect to

the sets given in (a) Problem 2(e) and (b) Problem 2(f).
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(14) Find an n-tuple representation for the coordinates of [ 1 1 0 ] with respect to the

sets given in (a) Problem 3(a), (b) Problem 3(b), and (c) Problem 3(c).

(15) Find an n-tuple representation for the coordinates of tþ 2 with respect to the sets

given in (a) Problem 6(a) and (b) Problem 6(b).

(16) Find an n-tuple representation for the coordinates of t2 with respect to the sets given

in (a) Problem 8(c) and (b) Problem 8(d).

(17) Let S be a spanning set for a vector space V, and let v 2 S. Prove that if v is a linear

combination of other vectors in the set, then the set that remains by deleting v from

S is also a spanning set for V.

(18) Show that any spanning set for a vector space V can be reduced to a basis by

deleting from S a suitable number of vectors.

(19) Reduce the set displayed in Example 3 to a basis for M2�2.

(20) Show that the set displayed in Problem 1(h) is a spanning set for R2 and reduce it to

a basis.

(21) Show that the set displayed in Problem 7(b) is a spanning set for P2 and reduce it to

a basis.

(22) Prove that any linearly independent set of vectors in a vector space V can be

extended to a basis for V. Hint: Append to the set a known basis and then use

Problem 18.

(23) Extend the set displayed in Example 2 into a basis for P3.

(24) Show that the set displayed in Problem 4(a) is linearly independent and extend it

into a basis for R3.

(25) Show that the set displayed in Problem 8(a) is linearly independent and extend it

into a basis for P3.

(26) Prove that a spanning set for a vector space V cannot contain less elements then the

dimension of V.

(27) Prove that any set of two vectors in R2 is a basis if one vector is not a scalar multiple

of the other.

(28) Let W be a subspace of a vector space V and let S be a basis for W. Prove that S can

be extended to a basis for V.

(29) Let W be a subspace of a vector space V. Prove that dim(W) 	 dim(V).

(30) Let W be a subspace of a vector space V. Prove that if dim(W) ¼ dim(V), then

W ¼ V.

(31) Prove that in an n-dimensional vector space V no set of n� 1 vectors can span V.

(32) Prove that if fv1, v2g is a basis for a vector space, then so too is fu1, u2g, where

u1 ¼ v1 þ v2 and u2 ¼ v1 � v2.

(33) Prove that if fv1, v2, v3g is a basis for a vector space, then so too is fu1, u2, u3g, where

u1 ¼ v1 þ v2 þ v3, u2 ¼ v2 � v3, and u3 ¼ v3.

(34) Prove that if fv1, v2, . . . , vng is a basis for a vector space, then so too is

fk1v1, k2v2, . . . , knvngfu1, u2, u3g; where k1, k2, . . . , kn is any set of nonzero scalars.
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2.5 ROW SPACE OF A MATRIX

An m� n matrix A contains m-rows and n-columns. Each row, considered as

a row matrix in its own right, is an element of Rn, so it follows from Theorem 4 of

Section 2.3 that the span of the rows, considered as row matrices, is a subspace.

We call this subspace the row space of the matrix A. The dimension of the row

space is known as the row rank of A.

Example 1 The matrix A ¼ 1 2 3

4 5 6

� �
1 has two rows, [ 1 2 3 ] and

[ 4 5 6 ], both of which are elements of R3. The row space of A consists of

all linear combinations of these two vectors; that is, if we set S ¼ f[ 1 2 3 ],

[ 4 5 6 ]g, then the row space of A is span(S). The dimension of span(S) is the

row rank of A. &

To determine the row rank of a matrix, we must identify a basis for its row space

and then count the number of vectors in that bases. This sounds formidable, but

as we shall see that it is really quite simple. For a row-reduced matrix, the

procedure is trivial.

" Theorem 1. The nonzero rows of a row-reduced matrix form a basis

for the row space of that matrix, and the row rank is the number of

nonzero rows. 3

Proof: Let v1 designate the first nonzero row, v2 the second nonzero row, and

so on through vr, which designates the last nonzero row of the row-reduced

matrix. This matrix may still have additional rows, but if so they are all zero. The

row space of this matrix is spanfv1, v2, . . . , vrg. The zero rows, if any, will add

nothing to the span.

We want to show the nonzero rows form a basis for the row space. Thus, we

must show that these rows, considered as row matrices, span the subspace and

are linearly independent. They clearly span the subspace, because that is precisely

how the row space is formed. To determine linear independence, we consider the

vector equation

c1v1 þ c2v2 þ . . .þ crvr ¼ 0 (2:19)

The first nonzero element in the first nonzero row of a row-reduced matrix must

be one. Assume it appears in column j. Then, no other row has a nonzero element

in column j. Consequently, when the left side of equation (2.19) is computed, it

will have c1 as its jth component. Because the right side of (2.19) is the zero

vector, it follows that c1 ¼ 0. With c1 ¼ 0, equation (2.19) reduces to

c2v2 þ c3v3 þ . . .þ crvr ¼ 0

The row space of a

matrix is the

subspace spanned

by the rows of the

matrix; the

dimension of the

row space is the row

rank.
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A similar argument then shows that c2 ¼ 0. With both c1 ¼ c2 ¼ 0, equation

(2.19) becomes

c3v3 þ c4v4 þ . . .þ crvr ¼ 0

A repetition of the same argument shows iteratively that c1, c2, . . . , cr are all

zero. Thus, the nonzero rows are linearly independent. &

Example 2 Determine the row rank of the matrix

A ¼

1 0 �2 5 3

0 0 1 �4 1

0 0 0 1 0

0 0 0 0 0

2
664

3
775

Solution: A is in row-reduced form. Because A contains three nonzero rows, the

row rank of A is 3. &

Most matrices are not in row-reduced form. All matrices, however, can be

transformed to row-reduced form by elementary row operations, and such

transformations do not alter the underlying row space.

" Theorem 2. If B is obtained from A by an elementary row operation,

then the row space of A is the same as the row space of B. 3

Proof: We shall consider only the third elementary row operation and leave

the proofs of the other two as exercises (see Problems 46 and 47). Let B be

obtained from A by adding l times the jth row of A to the kth row of

A. Consequently, if we denote the rows of A by the set of row matrices A ¼
A1, A2, . . . , Aj , . . . , Ak, . . . , An


 �
and the rows of B by B ¼ B1, B2, . . . , Bj, . . . ,



Bk, . . . , Bng, then Bi ¼ Ai for all i ¼ 1, 2, . . . , n except i ¼ k, and Bk ¼ Ak þ lAj.

We need to show that if v is any vector in the span of A, then it is also in the span

of B and vice versa.

If v is in the span of A, then there exists constants c1, c2, . . . , cn such that

v ¼ c1A1 þ c2A2 þ . . .þ cjAj þ . . .þ ckAk þ . . .þ cnAn:

We may rearrange the right side of this equation to show that

v ¼ c1A1 þ c2A2 þ . . .þ (cj þ lck � lck)Aj þ . . .þ ckAk þ . . .þ cnAn

¼ c1A1 þ c2A2 þ . . .þ (cj � lck)Aj þ . . .þ ck(Ak þ lAj)þ . . .þ cnAn

¼ c1B1 þ c2B2 þ . . .þ (cj � lck)Bj þ . . .þ ckBk þ . . .þ cnBn

Thus, v is also in the span of B.
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Conversely, if v is in the span of B; then there exists constants d1, d2, . . . , dn such

that

v ¼ d1B1 þ d2B2 þ . . .þ djBj þ . . .þ dkBk þ . . .þ dnBn

We may rearrange the right side of this equation to show that

v ¼ d1A1 þ d2A2 þ . . .þ djAj þ . . .þ dk(Ak þ lAj)þ . . .þ dnAn

¼ d1A1 þ d2A2 þ . . .þ (dj þ dkl)Aj þ . . .þ dkAk þ . . .þ dnAn

Thus, v is also in the span of A. &

As an immediate extension of Theorem 2, it follows that if B is obtained from A

by a series of elementary row operations, then both A and B have the same row

space. Together Theorems 1 and 2 suggest a powerful method for determining

the row rank of any matrix. Simply use elementary row operations to transform

a given matrix to row-reduced form and then count the number of nonzero rows.

Example 3 Determine the row rank of

A ¼

1 3 4

2 �1 1

3 2 5

5 15 20

2
664

3
775

Solution: In Example 5 of Section 1.4, we transformed this matrix into the row-

reduced form

B ¼

1 3 4

0 1 1

0 0 0

0 0 0

2
664

3
775

Because B is obtained from A by elementary row operations, both matrices have

the same row space and row rank. B has two nonzero rows, so its row rank, as

well as the row rank of A, is 2. &

Example 4 Determine the row rank of

A ¼
1 2 1 3

2 3 �1 �6

3 �2 �4 �2

2
4

3
5

Solution: In Example 6 of Section 1.4, we transformed this matrix into the row-

reduced form

To find the row

rank of a matrix, use

elementary row

operations to

transform the

matrix to row-

reduced form and

then count the

number of nonzero

rows.
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B ¼
1 2 1 3

0 1 3 12

0 0 1 5

2
4

3
5

B has three nonzero rows, so its row rank, as well as the row rank of A, is 3. &

A basis for the row space of a matrix is equally obvious: namely, the set of

nonzero rows in the row-reduced matrix. These vectors are linearly independent

and, because they are linear combinations of the original rows, they span the

same space.

Example 5 Find a basis for the row space of the matrix A given in Example 3.

Solution: The associated row-reduced matrix B (see Example 3) has as nonzero

rows the row matrices [ 1 3 4 ] and [ 0 1 1 ]. Together these two vectors are

a basis for the row space of A. &

Example 6 Find a basis for the row space of the matrix A given in Example 4.

Solution: The associated row-reduced matrix B (see Example 4) has as nonzero

rows the row matrices [ 1 2 1 3 ], [ 0 1 3 12 ], and [ 0 0 1 5 ]. These

three vectors form a basis for the row space of A. &

A basis of the row space of a matrix A is a basis for the span of the rows of A.

Thus, we can determine a basis for any set of n-tuples simply by creating a matrix

A having as its rows those n-tuples and then finding a basis for the row space of

A. This is an elegant procedure for describing the span of any finite set of vectors

S in Rn.

Example 7 Find a basis for the span of S ¼
2

6

�2

2
4

3
5,

3

1

2

2
4
3
5,

8

16

�3

2
4

3
5

8<
:

9=
;:

Solution: We create a matrix A having as its rows the vectors in S. Note that

the elements of S are column matrices, so we use their transposes as the rows of

A. Thus,

A ¼
2 6 �2

3 1 2

8 16 �3

2
4

3
5

Reducing this matrix to row-reduced form, we obtain

1 3 �1

0 1 �5=8
0 0 0

2
4

3
5

The nonzero rows of this matrix, [ 1 3 �1 ] and [ 0 1 �5=8 ], form a basis

for the row space of A. The set of transposes of these vectors

A basis for the row

space of a matrix is

the set of nonzero

rows of that matrix,

after it has been

transformed to row-

reduced form by

elementary row

operations.

To find a basis for a

set of n-tuples,

create a matrix

having as its rows

those n-tuples and

then find a basis for

the row space of

that matrix.
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B ¼
1

3

�1

2
4

3
5,

0

1

�5=8

2
4

3
5

8<
:

9=
;

is a basis for the span of S, therefore, span(S) is the set of all linear combinations

of the vectors in B. &

We can extend this procedure to all finite-dimensional vector spaces, not just

n-tuples. We know from Section 2.4 that every vector in a finite-dimensional

vector space can be represented by an n-tuple. Therefore, to find a basis for the

span of a set of vectors S that are not n-tuples, we first write coordinate

representations for each vector in S, generally with respect to a standard basis

when one exists. We then create a matrix A having as its rows the coordinate

representations of the vectors in S. We use elementary row operations to identify

a basis for the row space of A. This basis will consist of n-tuples. Transforming

each n-tuple in this basis vector back to the original vector space provides a basis

for the span of S.

Example 8 Find a basis for the span of the vectors in

C ¼ ft3 þ 3t2, 2t3 þ 2t� 2, t3 � 6t2 þ 3t� 3, 3t2 � tþ 1g

Solution: The vectors in C are elements of the vector space P3, which has as its

standard basis ft3, t2, t, 1g. With respect to this basis, the coordinate representa-

tions of the polynomials in C are

t3 þ 3t2 $

1

3

0

0

2
6664
3
7775, 2t3 þ 2t� 2$

2

0

2

�2

2
6664

3
7775,

t3 � 6t2 þ 3t� 3$

1

�6

3

�3

2
6664

3
7775, and 3t2 � tþ 1$

0

3

�1

1

2
6664

3
7775

We create a matrix A having as its rows these 4-tuples. Thus,

A ¼

1 3 0 0

2 0 2 �2

1 �6 3 �3

0 3 �1 1

2
664

3
775

Reducing this matrix to row-reduced form, we obtain
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B ¼

1 3 0 0

0 1 �1=3 1=3
0 0 0 0

0 0 0 0

2
664

3
775

The nonzero rows of B, namely, [ 1 3 0 0 ] and [ 0 1 �1=3 1=3 ], form a

basis for the row space of A. The set of transposes of these vectors are coordinate

representatives for the polynomials

1

3

0

0

2
664
3
775$ t3 þ 3t2, and

0

1

�1=3
1=3

2
664

3
775$ t2 � 1

3
tþ 1

3
:

These two polynomials are a basis for span(C). &

Example 9 Describe the span of the vectors in set

R ¼ 1 1

0 0

� �
,

0 1

0 1

� �
,

1 0

0 �1

� �
,

0 0

1 �1

� �
,

0 1

1 0

� �� �

Solution: The vectors in R are elements of the vector space M2�2, which has as

its standard basis

1 0

0 0

� �
,

0 1

0 0

� �
,

0 0

1 0

� �
,

0 0

0 1

� �� �

Coordinate representations of the matrices in R with respect to the standard

basis are

1 1

0 0

� �
¼ (1)

1 0

0 0

� �
þ (1)

0 1

0 0

� �
þ (0)

0 0

1 0

� �
þ (0)

0 0

0 1

� �
$

1

1

0

0

2
6664
3
7775

0 1

0 1

� �
¼ (0)

1 0

0 0

� �
þ (1)

0 1

0 0

� �
þ (0)

0 0

1 0

� �
þ (1)

0 0

0 1

� �
$

0

1

0

1

2
664
3
775

1 0

0 �1

� �
¼ (1)

1 0

0 0

� �
þ (0)

0 1

0 0

� �
þ (0)

0 0

1 0

� �
þ (� 1)

0 0

0 1

� �
$

1

0

0

�1

2
664

3
775
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0 0

1 �1

� �
¼ (0)

1 0

0 0

� �
þ (0)

0 1

0 0

� �
þ (1)

0 0

1 0

� �
þ (� 1)

0 0

0 1

� �
$

0

0

1

�1

2
664

3
775

0 1

1 0

� �
¼ (0)

1 0

0 0

� �
þ (1)

0 1

0 0

� �
þ (1)

0 0

1 0

� �
þ (0)

0 0

0 1

� �
$

0

1

1

0

2
664
3
775

We create a matrix A having as its rows these 4-tuples. Thus,

A ¼

1 1 0 0

0 1 0 1

1 0 0 �1

0 0 1 �1

0 1 1 0

2
66664

3
77775

Reducing this matrix to row-reduced form, we obtain

B ¼

1 1 0 0

0 1 0 1

0 0 1 �1

0 0 0 0

0 0 0 0

2
66664

3
77775

The nonzero rows of B, [ 1 1 0 0 ], [ 0 1 0 1 ]; and [ 0 0 1 �1 ], form

a basis for the row space of B. The set of transposes of these vectors are

coordinate representatives for the matrices

1

1

0

0

2
6664
3
7775$ (1)

1 0

0 0

� �
þ (1)

0 1

0 0

� �
þ (0)

0 0

1 0

� �
þ (0)

0 0

0 1

� �
¼

1 1

0 0

� �

0

1

0

1

2
6664
3
7775$ (0)

1 0

0 0

� �
þ (1)

0 1

0 0

� �
þ (0)

0 0

1 0

� �
þ (1)

0 0

0 1

� �
¼

0 1

0 1

� �

0

0

1

�1

2
6664

3
7775$ (0)

1 0

0 0

� �
þ (0)

0 1

0 0

� �
þ (1)

0 0

1 0

� �
þ (� 1)

0 0

0 1

� �
¼

0 0

1 �1

� �

140 . Vector Spaces



These three matrices form a basis for span(R). Consequently, every matrix in the

span of R must be a linear combination of these three matrices; that is, every

matrix in span(S) must have the form

a
1 1

0 0

� �
þ b

0 1

0 1

� �
þ g

0 0

1 �1

� �
¼ a aþ b

g bþ g

� �

for any choice of the scalars a, b, and g. &

Row rank is also useful for determining if a set of n-tuples is linearly independent.

" Theorem 3. Let S be a set of k n-tuples and let A be the k� n matrix

having as its rows the n-tuples in S. S is linearly independent if and only

if the row rank of A is k, the number of elements in S. 3

Proof: Assume that the k n-tuples of S are linearly independent. Then these k

n-tuples are a basis for span(S), which means that the dimension of span(S) is k.

But the row rank of A is the dimension of the row space of A, and the row space

of A is also span(S). Because every basis for the same vector space must contain

the same number of elements (Theorem 2 of Section 2.4), it follows that the row

rank of A equals k.

Conversely, if the row rank of A equals k, then a basis for span(S) must contain k

n-tuples. The vectors in S are a spanning set for span(S), by definition. Now, either

S is linearly independent or linearly dependent. If it is linearly dependent, then one

vector must be a linear combination of vectors that precede it. Delete this vector

from S. The resulting set still spans S. Keep deleting vectors until no vector is a

linear combination of preceding vectors. At that point we have a linearly inde-

pendent set that spans S that is a basis for span(S), which contains fewer than k

vectors. This contradicts the fact that the dimension of span(S) equals k. Thus, S

cannot be linearly dependent, which implies it must linearly independent. &

Example 10 Determine whether the set

D ¼f[ 0 1 2 3 0 ], [ 1 3 �1 2 1 ],

[ 2 6 �1 �3 1 ], [ 4 0 1 0 2 ]g

is linearly independent.

Solution: We consider the matrix

A ¼

0 1 2 3 0

1 3 �1 2 1

2 6 �1 �3 1

4 0 1 0 2

2
664

3
775
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which can be transformed (after the first two rows are interchanged) to the row-

reduced form

B ¼

1 3 �1 2 1

0 1 2 3 0

0 0 1 �7 �1

0 0 0 1 27=231

2
664

3
775

Matrix B has four nonzero rows, hence the row rank of B, as well as the row rank

of A, is four. There are four 5-tuples in D, so it follows from Theorem 3 that S is

linearly independent. &

We can extend Theorem 3 to all finite-dimensional vector spaces, not just

n-tuples. We represent every vector in a given set S by an n-tuple with respect

to a basis and then apply Theorem 3 directly to the coordinate representations.

Example 11 Determine whether the set of four polynomials in Example 8 is

linearly independent.

Solution: Coordinate representations for each of the given polynomials with

respect to the standard basis in P3 were determined in Example 8. The matrix A

in Example 8 has as its rows each coordinate representation. A can be trans-

formed into the row-reduced form of the matrix B in Example 8. It follows that

the row rank of B is two, which is also the row rank of A. This number is less

than the number of elements in S, hence S is linearly dependent. &

Problems 2.5

In Problems 1 through 21, find a basis for span(S).

(1) S ¼
1

1

2

2
4
3
5,

2

�1

0

2
4

3
5,

4

1

4

2
4
3
5

8<
:

9=
;.

(2) S ¼
1

1

2

2
4
3
5,

2

1

0

2
4
3
5,

4

1

4

2
4
3
5

8<
:

9=
;.

(3) S ¼
2

1

2

2
4
3
5,

�2

�1

�2

2
4

3
5,

4

2

4

2
4
3
5,

�4

�2

�4

2
4

3
5

8<
:

9=
;.

(4) S ¼
1

0

2

2
4
3
5,

�1

1

�1

2
4

3
5,

0

1

1

2
4
3
5,

�1

2

0

2
4

3
5

8<
:

9=
;.

(5) S ¼ f[ 1 2 �1 1 ], [ 0 1 2 1 ], [ 2 3 �4 1 ], [ 2 4 �2 2 ]g.

(6) S ¼ f[ 0 1 1 1 ], [ 1 0 0 1 ], [�1 1 1 0 ], [ 1 1 0 1 ]g.

(7) S ¼ f[ 1 0 �1 1 ], [ 3 1 0 1 ], [ 1 1 2 �1 ], [ 3 2 3 �1 ],

[ 2 1 0 0 ]g.
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(8) S ¼ f[ 2 2 1 1 ], [ 1 �1 0 1 ], [ 0 �4 �1 1 ], [ 1 0 2 1 ],

[ 0 �1 2 2 ]g.

(9) S ¼ f[ 1 2 4 0 ], [ 2 4 8 0 ], [ 1 �1 0 1 ], [ 4 2 8 2 ],

[ 4 �1 4 3 ]g.

(10) S ¼ ft2 þ t, tþ 1, t2 þ 1, 1g.

(11) S ¼ ft2 þ tþ 1, 2t2 � 2tþ 1, t2 � 3tg.

(12) S ¼ ft, tþ 1, t� 1, 1g.

(13) S ¼ ft2 þ t, t� 1, t2 þ 1g.

(14) S ¼ ft2 þ tþ 1, tþ 1, t2g.

(15) S ¼ ft3 þ t2 � t, t3 þ 2t2 þ 1, 2t3 þ 3t2 � tþ 1, 3t3 þ 5t2 � tþ 2g.

(16) S ¼ f2t3 þ t2 þ 1, t2 þ t, 2t3 � tþ 1, tþ 1, 2t3 þ 2g.

(17) S ¼ ft3 þ 3t2, t2 þ 1, tþ 1, t3 þ 4t2 þ tþ 2, t2 þ tþ 2g.

(18) S ¼ 1 0

0 0

� �
,

0 1

0 0

� �
,

�
1 2

0 0

� �
,

1 3

0 0

� ��
.

(19) S ¼ 1 1

1 0

� �
,
�1 1

1 0

� �
,

�
1 �1

1 0

� �
,

1 1

�1 0

� ��
.

(20) S ¼ 1 0

0 1

� �
,

0 1

1 0

� �
,

�
1 1

1 1

� �
,

1 �1

�1 1

� ��
.

(21) S ¼ 1 3

1 2

� �
,

1 2

1 1

� �
,

�
0 1

0 1

� �
,

2 7

2 5

� ��
.

In Problems 22 through 43, use row rank to determine whether the given sets are linearly

independent.

(22) f[ 1 0 ], [ 0 1 ]g.

(23) f[ 1 1 ], [ 1 �1 ]g.

(24) f[ 2 �4 ], [�3 6 ]g.

(25)

1

0

1

2
4
3
5,

1

1

0

2
4
3
5,

0

1

1

2
4
3
5

8<
:

9=
;.

(26)

1

0

1

2
4
3
5,

1

0

2

2
4
3
5,

2

0

1

2
4
3
5

8<
:

9=
;.

(27)

1

0

1

2
4
3
5,

1

1

1

2
4
3
5,

1

�1

1

2
4

3
5

8<
:

9=
;.

(28)

0

0

0

2
4
3
5,

3

2

1

2
4
3
5,

2

1

3

2
4
3
5

8<
:

9=
;.
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(29)

1

2

3

2
4
3
5,

3

2

1

2
4
3
5,

2

1

3

2
4
3
5

8<
:

9=
;.

(30) f[ 1 1 0 ], [ 1 �1 0 ]g.
(31) f[ 1 2 3 ], [�3 �6 �9 ]g.
(32) f[ 10 20 20 ], [ 10 �10 10 ], [ 10 20 10 ]g.

(33) f[ 2 1 1 ], [ 3 �1 4 ], [ 1 3 �2 ]g.

(34)
1 1

0 0

� �
,

1 1

1 1

� �
,

0 0

1 1

� �� �
.

(35)
1 1

0 0

� �
,

1 0

1 1

� �
,

0 0

1 1

� �� �
.

(36)
1 0

1 1

� �
,

1 1

1 0

� �
,

�
1 1

0 1

� �
,

0 1

1 1

� ��
.

(37)
1 0

1 1

� �
,

1 1

1 0

� ��
2 2

0 2

� �
,

1 0

2 0

� ��
.

(38) ft, 2g.

(39) ft3 þ t2, t3 þ t, t2 þ tg.

(40) ft3 þ t2, t3 � t2, t3 � 3t2g.

(41) ft3 þ t2, t3 � t2, t3 � t, t3 þ 1g.

(42) ft2 þ t, t2 þ t� 1, t2 þ 1, tg.

(43) ft2 þ t, t2 þ t� 2, 1g.

(44) Can a 4� 3 matrix have linearly independent rows?

(45) Prove that if the row rank of an m� n matrix is k, then k 	 minimum fm, ng.

(46) Prove that if a matrix B is obtained from a matrix A by interchanging the positions of

any two rows of A, then both A and B have the same row space.

(47) Prove that if a matrix B is obtained from a matrix A by multiplying one row of A by

a nonzero scalar, then both A and B have the same row space.

2.6 RANK OF A MATRIX

We began this chapter noting that much of mathematical analysis is identifying

fundamental structures that appear with regularity in different situations, devel-

oping those structures in the abstract, and then applying the resulting knowledge

base back to the individual situations to further our understanding of those

situations. The fundamental structure we developed was that of a vector space.

We now use our knowledge of this structure to further our understanding of sets

of simultaneous linear equations and matrix inversion.
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In the last section we defined the row space of a matrix A to be the subspace

spanned by the rows of A, considered as row matrices. We now define the column

space of a matrix A to be the subspace spanned by the columns of A, considered

as column matrices. The dimension of the column space is called the column

rank of A.

Example 1 The matrix A ¼ 1 2 3

4 5 6

� �
has three columns, all belonging to R2.

The column space of A consists of all linear combinations of the columns of A;

that is, if we set

T ¼ 1

4

� �
,

2

5

� �
,

3

6

� �� �

then the column space of A is span(T). The dimension of span(T) is the column

rank of A. &

The row space of a p� n matrix A is a subspace of Rn while its column space is a

subspace of Rp, and these are very different vector spaces when p and n are

unequal. Surprisingly, both have the same dimension. The proof of this state-

ment is a bit lengthy, so we separate it into two parts.

" Lemma 1. The column rank of a matrix is less than or equal to its row

rank. 3

Proof: Let A1, A2, . . . , Ap be the rows, considered as row matrices, of a p� n

matrix A ¼ [aij ]. Then

Ai ¼ [ ai1 ai2 . . . ain ]; (i ¼ 1, 2, . . . , p)

Let k denote the row rank of A. Thus, k is the dimension of the subspace spanned

by the rows of A, and this subspace has a basis containing exactly k vectors.

Designate one such basis as the set B ¼ fu1, u2, . . . , ukg. Each vector in the basis

is an n-tuple of the form

ui ¼ [ ui1 ui2 � � � uin ]; (i ¼ 1, 2, . . . , k)

Since B is a basis, every vector in the subspace spanned by the rows of A can be

written as a linear combination of the vectors in B, including the rows of A

themselves. Thus,

A1 ¼ d11u1 þ d12u2 þ � � � þ d1kuk

A2 ¼ d21u1 þ d22u2 þ � � � þ d2kuk

..

.

Ap ¼ dp1u1 þ dp2u2 þ � � � þ dpkuk

The column space of

a matrix is the

subspace spanned

by the columns of

the matrix; the

dimension of the

column space is the

column rank.
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for some set of uniquely determined scalars dij (i ¼ 1, 2, . . . ; j ¼ 1, 2, . . . , k).

In each of the preceding individual equalities, both the left and right sides are

n-tuples. If we consider just the jth component of each n-tuple ( j ¼ 1, 2, . . . , n),

first the jth component of A1, then the jth component of A2, sequentially through

the jth component of Ap, we obtain the equalities

a1j ¼ d11u1j þ d12u2j þ � � � þ d1kukj

a2j ¼ d21u1j þ d22u2j þ � � � þ d2kukj

..

.

apj ¼ dp1u1j þ dp2u2j þ � � � þ dpkukj

which can be rewritten as the vector equation

a1j

a2j

..

.

apj

2
6664

3
7775 ¼ u1j

d11

d21

..

.

dp1

2
6664

3
7775þ u2j

d12

d22

..

.

dp2

2
6664

3
7775þ � � � þ ukj

d1k

d2k

..

.

dpk

2
6664

3
7775

Thus, the jth column of A can be expressed as a linear combination of k vectors.

Since this is true for each j, it follows that each column of A can be expressed as a

linear combination of the same k vectors, which implies that the dimension of the

column space of A is at most k. That is, the column rank of A 	 k ¼ the row

rank of A.

" Theorem 1. The row rank of a matrix equals its column rank. 3

Proof: For any matrix A, we may apply Lemma 1 to its transpose and conclude

that the column rank of AT is less than or equal to its row rank. But since the

columns of AT are the rows of A and vice versa, it follows that the row rank of A

is less than or equal to its column rank. Combining this result with Lemma 1, we

have Theorem 1. &

Since the row rank and column rank of a matrix A are equal, we refer to them

both simply as the rank of A, denoted as r(A).

With the concepts of vector space, basis, and rank in hand, we can give explicit

criteria for determining when solutions to sets of simultaneous linear equations

exist. In other words, we can develop a theory of solutions to complement our

work in Chapter 1.

The rank of a

matrix A, denoted

as r(A), is the row

rank of A, which is

also the column

rank of A.

146 . Vector Spaces



A system of m simultaneous linear equations in n unknowns has the form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

(2:20)

or the matrix form

Ax ¼ b (2:21)

If we denote the columns of A by the m-dimensional column matrices

A1 ¼

a11

a21

..

.

am1

2
6664

3
7775, A2 ¼

a12

a22

..

.

am2

2
6664

3
7775, � � � , An ¼

a1n

a2n

..

.

amn

2
6664

3
7775

then we can rewrite (2.20) in the vector form

x1A1 þ x2A2 þ � � � þ xnAn ¼ b (2:22)

Example 2 The system of equations

x� 2yþ 3z ¼ 7

4xþ 5y� 6z ¼ 8

has the vector form

x
1

4

� �
þ y

�2

5

� �
þ z

3

�6

� �
¼ 7

8

� �
&

Solving (2.20) or (2.21) is equivalent to finding scalars x12, . . . , xn that satisfy

(2.22). If such scalars exist, then the vector b is a linear combination of the

vectors A1, A2, . . . , An. That is, b is in the span of fA1, A2, . . . , Ang or, equiva-

lently, in the column space of A. Consequently, adjoining b to the set of vectors

defined by the columns of A will not change the column rank of A. Therefore, the

column rank of A must equal the column rank of [Ajb]. On the other hand, if no

scalars x1, x2, . . . , xn satisfy (2.22), then b is not a linear combination of

A1, A2, . . . , An. That is, b is not in the span of fA1, A2, . . . , Ang, in which case,

the column rank of [Ajb] must be greater by 1 than the column rank of A. Since

column rank equals row rank equals rank, we have proven Theorem 2.
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" Theorem 2. The system Ax ¼ b is consistent if and only if

r(A) ¼ r[Ajb]. 3

Example 3 Determine whether the following system of equations is consistent:

xþ y� z ¼ 1

xþ y� z ¼ 0

Solution:

A ¼ 1 1 �1

1 1 �1

� �
, b ¼ 1

0

� �
, [Ajb] ¼ 1 1 �1

1 1 �1

				 10
� �

[Ajb] is transformed to row-reduced form

1 1 �1

1 1 �1

				 10
� �

!
1 1 �1

0 0 0

				 1

�1

� � by adding to the

second row

� 1 times the first row

!
1 1 �1

0 0 0

				 11
� � by multiplying

the second row

by � 1

(2:23)

This matrix has two nonzero rows, hence r[Ajb] ¼ 2. If we delete the last column

from the matrix in (2.23), we have A in the row-reduced form

1 1 �1

0 0 0

� �

This matrix has one nonzero row, so r(A) ¼ 1. Since r(A) 6¼ r[Ajb], it follows

from Theorem 2 that the given set of equations has no solution and is not

consistent. &

Example 4 Determine whether the following system of equations is consistent:

xþ yþ w ¼ 3

2xþ 2yþ 2w ¼ 6

�x� y� w ¼ �3

Solution:

A ¼
1 1 1

2 2 2

�1 �1 �1

2
4

3
5, b ¼

3

6

�3

2
4

3
5, [Ajb] ¼

1 1 1

2 2 2

�1 �1 �1

						
3

6

�3

2
4

3
5
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By transforming both A and [Ajb] to row-reduced form, we can show that

r(A) ¼ r[Ajb] ¼ 1. Therefore, the original system is consistent. &

Once a system is determined to be consistent, the following theorem specifies the

number of solutions.

" Theorem 3. If the system Ax ¼ b is consistent and if r(A) ¼ k, then

solutions to the system are expressible in terms of n� k arbitrary

unknowns, where n denotes the total number of unknowns in the

system. 3

Proof: To determine the rank of the augmented matrix [Ajb], reduce the

augmented matrix to row-reduced form and count the number of nonzero

rows. With Gaussian elimination, we can solve the resulting row-reduced matrix

for the variables associated with the first nonzero entry in each nonzero row.

Thus, each nonzero row defines one variable and all other variables remain

arbitrary. &

Example 5 Determine the number of solutions to the system described in

Example 4.

Solution: The system has three unknowns, x, y, and w, hence n ¼ 3. Here

r(A) ¼ r[Ajb] ¼ 1, so k ¼ 1. The solutions are expressible in terms of 3� 1 ¼ 2

arbitrary unknowns. Using Gaussian elimination, we find the solution as

x ¼ 3� y� w with both y and w arbitrary. &

Example 6 Determine the number of solutions to the system

2x� 3yþ z ¼ �1

x� yþ 2z ¼ 2

2xþ y� 3z ¼ 3

Solution:

A ¼
2 �3 1

1 �1 2

2 1 �3

2
4

3
5, b ¼

�1

2

3

2
4

3
5, [Ajb] ¼

2 �3 1

1 �1 2

2 1 �3

						
�1

2

3

2
4

3
5

By transforming both A and [Ajb] to row-reduced form, we can show that

r(A) ¼ r[Ajb] ¼ 3; hence, the given system is consistent. In this case, n ¼ 3

(three variables) and (rank) k ¼ 3; the solutions are expressible in terms of

3� 3 ¼ 0 arbitrary unknowns. Thus, the solution is unique (none of the un-

knowns is arbitrary). Using Gaussian elimination, we find the solution as

x ¼ y ¼ 2, z ¼ 1. &
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A homogeneous system of simultaneous linear equations has the form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ 0

a21x1 þ a22x2 þ � � � þ a2nxn ¼ 0

..

.

am1x1 þ am2x2 þ � � � þ amnxn ¼ 0

(2:24)

or the matrix form

Ax ¼ 0 (2:25)

Since (2.25) is a special case of (2.21) with b ¼ 0, Theorems 2 and 3 remain valid.

Because of the simplified structure of a homogeneous system, however, we can

draw conclusions about it that are not valid for nonhomogeneous systems. In

particular, a homogeneous system is consistent, because the trivial solution x ¼ 0

is always a solution to Ax ¼ 0. Furthermore, if the rank of A equals the number

of unknowns, then the solution is unique and the trivial solution is the only

solution. On the other hand, it follows from Theorem 3 that if the rank of A is

less than the number of unknowns, then the solution will be in terms of arbitrary

unknowns. Since these arbitrary unknowns can be assigned nonzero values,

nontrivial solutions exist. Thus, we have Theorem 4.

" Theorem 4. A homogeneous system of equations Ax ¼ 0 in n unknowns

will admit nontrivial solutions if and only if r(A) 6¼ n. 3

The concept of rank also provides the tools to prove two results we simply stated

in the previous chapter. We can now determine a criterion for the existence of an

inverse and also show that, for square matrices, the equality AB ¼ I implies the

equality BA ¼ I. For convenience, we separate the analysis into segments.

" Lemma 2. Let A and B be n� n matrices. If AB ¼ I, then the system of

equations Ax ¼ y has a solution for every choice of the vector y. 3

Proof: Once y is specified, set x ¼ By. Then

Ax ¼ A(By) ¼ (AB)y ¼ Iy ¼ y

hence x ¼ By is a solution of Ax ¼ y. &

" Lemma 3. If A and B are n� n matrices with AB ¼ I, then the rows

of A, considered as n-dimensional row matrices, are linearly

independent. 3

A homogeneous

system of equations

is always consistent,

and one solution is

always the trivial

solution.
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Proof: Designate the rows of A by A1, A2, . . . , An, respectively, and the columns

of I as the vectors e1, e2, . . . , en, respectively. It follows from Lemma 2 that the

set of equations Ax ¼ ej ( j ¼ 1, 2, . . . , n) has a solution for each j. Denote these

solutions by x1, x2, . . . , xn, respectively. Therefore,

Axj ¼ ej (2:26)

Since ej is an n-dimensional column matrix having a unity element in row j and

zeros elsewhere, it follows from (2.26) that, for i ¼ 1, 2, . . . , n,

ith component of Axj ¼
1 when i ¼ j

0 when i 6¼ j

�

This equation can be simplified if we make use of the Kronecker delta dij

defined as

dij ¼
1 when i ¼ j

0 when i 6¼ j

�
(2:27)

Thus, (2.26) may be written as

ith component of Axj ¼ dij

or, more simply, as

Aixj ¼ dij (2:28)

Now consider the vector equation

Xn

i¼1

ciAi ¼ 0 (2:29)

We want to show that each constant ci (i ¼ 1, 2, . . . , n) must be 0. Multiplying

both sides of (2.29) on the right by the vector xj , and using Eqs. (2.27) and (2.28),

we have

0 ¼ 0xj ¼
Xn

i¼1

ciAi

 !
xj ¼

Xn

i¼1

(ciAi)xj ¼
Xn

i¼1

ci(Aixj) ¼
Xn

i¼1

cidij ¼ cj

Thus, for each xj ( j ¼ 1, 2, . . . , n) we have cj ¼ 0, which implies that

c1 ¼ c2 ¼ � � � ¼ cn ¼ 0 and that the rows of A, namely, A1, A2, . . . , An, are lin-

early independent. &

It follows directly from Lemma 3 and the definition of an inverse that if an n� n

matrix A has an inverse, then A must have rank n. This in turn implies that if A
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does not have rank n, then A does not have an inverse. We also want the

converse: that is, if A has rank n, then A has an inverse.

" Lemma 4. If an n� n matrix A has rank n, then there exists a square

matrix C such that CA ¼ I. 3

Proof: If an n� n matrix A has rank n, then its row-reduced form is an upper

triangular matrix with all elements on the main diagonal equal to 1. Using these

diagonal elements as pivots, we can use elementary row operations to further

transform A to an identity matrix. Corresponding to each elementary row

operation is an elementary matrix. Therefore, if A has rank n, then there is

a sequence of elementary matrices E1, E2, . . . , Ek�1, Ek such that

EkEk�1 . . . E2E1A ¼ I

Setting

C ¼ EkEk�1 . . . E2E1 (2:30)

we have

CA ¼ I & (2:31)

" Lemma 5. If A and B are n� n matrices such that AB ¼ I, then

BA ¼ I. 3

Proof: If AB ¼ I, then it follows from Lemma 3 that A has rank n. It then

follows from Lemma 4 that there exists a matrix C such that CA ¼ I. Conse-

quently,

C ¼ CI ¼ C(AB) ¼ (CA)B ¼ IB ¼ B

so the equality CA ¼ I implies that BA ¼ I. &

If we replace A by C and B by A in Lemma 5, we have that, if C and A are n� n

matrices such that CA ¼ I, then it is also true that

AC ¼ I (2:32)

Therefore, if A is an n� n matrix with rank n, then (2.31) holds, whereupon

(2.32) also holds. Together (2.31) and (2.32) imply that C is the inverse of A.

Thus, we have proven Theorem 5.
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" Theorem 5. An n� n matrix A has an inverse if and only if A has

rank n. 3

In addition, we also have Theorem 6.

" Theorem 6. A square matrix has an inverse if and only if it can be

transformed by elementary row operations to an upper triangular matrix

with all elements on the main diagonal equal to 1. 3

Proof: An n� n matrix A has an inverse if and only if it has rank n (Theorem 5).

It has rank n if and only if it can be transformed by elementary row operations

into a row-reduced matrix B having rank n (Theorem 2 of Section 2.5). B has

rank n if and only if it contains n nonzero rows (Theorem 1 of Section 2.5).

A row-reduced, n� n matrix B has n nonzero rows if and only if it is upper

triangular with just ones on its main diagonal.

Problems 2.6

In Problems 1 through 7, find the ranks of the given matrices.

(1)
1 2 0

3 1 �5

� �
. (2)

2 8 �6

�1 �4 3

� �
.

(3)

4 1

2 3

2 2

2
4

3
5. (4)

4 8

6 12

9 18

2
4

3
5.

(5)

1 4 �2

2 8 �4

�1 �4 2

2
4

3
5. (6)

1 2 4 2

1 1 3 2

1 4 6 2

2
4

3
5.

(7)

1 7 0

0 1 1

1 1 0

2
4

3
5.

(8) What is the largest possible value for the rank of a 2� 5 matrix?

(9) What is the largest possible value for the rank of a 4� 3 matrix?

(10) What is the largest possible value for the rank of a 4� 6 matrix?

(11) Show that the rows of a 5� 3 matrix are linearly dependent.

(12) Show that the columns of a 2� 4 matrix are linearly dependent.

(13) What is the rank of a zero matrix?

(14) Use the concept of rank to determine whether [ 3 7 � can be written as a linear

combination of the following sets of vectors.

(a) f[ 1 2 �, [ 4 8 �g, (b) f[ 1 2 �, [ 3 2 �g.
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(15) Use the concept of rank to determine whether [ 2 3 � can be written as a linear

combination of the following sets of vectors.

(a) f[ 10 15 �, [ 4 6 �g, (b) f[ 1 1 �, [ 1 �1 �g,

(c) f[ 2 �4 �, [�3 6 �g.

(16) Use the concept of rank to determine whether [ 1 1 1 �T can be written as a linear

combination of the following sets of vectors.

(a)

1

0

1

2
4
3
5,

1

1

0

2
4
3
5,

0

1

1

2
4
3
5

8<
:

9=
;, (b)

1

0

1

2
4
3
5,

1

0

2

2
4
3
5,

2

0

1

2
4
3
5

8<
:

9=
;,

(c)

1

0

1

2
4
3
5,

1

1

1

2
4
3
5,

1

�1

1

2
4

3
5

8<
:

9=
;.

In Problems 17 through 25, discuss the solutions of the given systems of equations in

terms of consistency and number of solutions. Check your answers by solving the systems

wherever possible.

(17) x� 2y ¼ 0

xþ y ¼ 1

2x� y ¼ 1

(18) xþ y ¼ 0

2x� 2y ¼ 1

x� y ¼ 0

(19) xþ yþ z ¼ 1

x� yþ z ¼ 2

3xþ yþ 3z ¼ 4

(20) xþ 3yþ 2z� w ¼ 2

2x� yþ zþ w ¼ 3

(21) 2x� yþ z ¼ 0

xþ 2y� z ¼ 4

xþ yþ z ¼ 1

(22) 2xþ 3y ¼ 0

x� 4y ¼ 0

(23) x� yþ 2z ¼ 0

2xþ 3y� z ¼ 0

�2xþ 7y� 7z ¼ 0

(24) x� yþ 2z ¼ 0

2x� 3yþ 5z ¼ 0

�2xþ 7y� 9z ¼ 0

(25) x� 2yþ 3zþ 3w ¼ 0

y� 2zþ 2w ¼ 0

xþ y� 3zþ 9w ¼ 0
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Chapter 2 Review

Important Terms

Important Concepts

Section 2.1 " The zero vector in a vector space is unique.

" The additive inverse of any vector v in a vector space is unique and is equal to�1 � v.

Section 2.2 " A nonempty subset S of a vector space V is a subspace of V if and only if S is

closed under addition and scalar multiplication.

" If a subset of a vector space does not include the zero vector, then that subset

cannot be a subspace.

" Lines through the origin and planes that contain the origin are subspaces of R3.

" The span of a set of vectors S in a vector space V is the smallest subspace of V

that contains S.

Section 2.3 " A set of vectors is linearly dependent if and only if one of the vectors is a linear

combination of the vectors that precede it.

" Twovectors are linearly dependent in R2 or R3 if and only if they lie on the same line.

" A set of three vectors in R3 is linearly dependent if and only if all three vectors lie

on the same line or all lie on the same plane.

Section 2.4 " dim(Rn) ¼ n; dim(Pn) ¼ nþ 1; dim(Mp�n) ¼ pn:

" Every basis for a finite-dimensional vector space contains the same number of

vectors.

" In an n-dimensional vector space, every set of nþ 1 or more vectors is linearly

dependent.

additive inverse (p. 86)

basis (p. 120)

column rank (p. 145)

column space(p. 145)

coordinates (p. 128)

dimension (p. 124)

finite-dimensional vector space

(p. 122)

linear combinations (p. 106)

linearly dependent vectors (p. 110)

linearly independent vectors

(p. 110)

Mp�n (p. 89)

Pn (p. 92)

Rn (p. 89)

rank (p. 144)

row rank (p. 134)

row space (p. 134)

span of vectors (p. 106)

spanning set (p. 119)

subspace (p. 99)

vector (p. 86)

vector space (p. 86)

zero vector (p. 93)
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" A spanning set of vectors for a finite-dimensional vector space V can be reduced

to a basis for V; a linearly independent set of vectors in V can be expanded into

a basis.

Section 2.5 " If matrix B is obtained from matrix A by an elementary row operation, then the

row space of A is the same as the row space of B.

" To find the row rank of a matrix, use elementary row operations to transform the

matrix to row-reduced form and then count the number of nonzero rows. The

nonzero rows are a basis for the row space of the original matrix.

Section 2.6 " The row rank of a matrix equals its column rank.

" The system of equation Ax ¼ b is consistent if and only if the rank of A equals

the rank of the augmented matrix [Ajb�.

" If the system Ax ¼ b is consistent and if r(A) ¼ k, then the solutions to the system

are expressible in terms of n� k arbitrary unknowns, where n denotes the total

number of unknowns in the system.

" A homogeneous system of equations is always consistent, and one solution is

always the trivial solution.

" An n� n matrix A has an inverse if and only if A has rank n.

" A square matrix has an inverse if and only if it can be transformed by elementary

row operations to an upper triangular matrix with all unity elements on its main

diagonal.
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Chapter 3

Linear Transformations

3.1 FUNCTIONS

Relationships between items are at the heart of everyday interactions, and if

mathematics is to successfully model or explain such interactions, then math-

ematics must account for relationships. In commerce, there are relationships

between labor and production, between production and profit, and between

profit and investment. In physics, there are relationships between force and

acceleration, and between mass and energy. In sociology, there is a relationship

between control and evasions. We need, therefore, mathematical structures to

represent relationships. One such structure is a function.

A function is a rule of correspondence between two sets, generally called the

domain and range, that assigns to each element in the domain exactly one element

(but not necessarily a different one) in the range.

Example 1 The rules of correspondence described by the arrows in Figures 3.1

and 3.2 between the domain {A,B,C} and the range {1,2,3,4,5} are functions.

In both cases, each element in the domain is assigned exactly one element in the

range. In Figure 3.1, A is assigned 1, B is assigned 3, and C is assigned 5.

Although some elements in the range are not paired with elements in the

domain, this is of no consequence. A function must pair every element in

A function is a rule

of correspondence

between two sets,

a domain and range,

that assigns to each

element in the

domain exactly one

element (but not

necessarily a

different one) in

the range.

Figure 3.1

A 2

1

3

4

5

B

C

157



the domain with an element in the range, but not vice versa. In Figure 3.2, each

element in the domain is assigned the same element in the range, namely, 2. This

too is of no consequence. A function must pair every element in the domain with

an element in the range, but not necessarily with a different element. &

Example 2 The rule of correspondence described by the arrows in Figure 3.3

between the domain and range, which are both the set of words {dog, cat, bird}, is

not a function. The word cat, in the domain, is not matched with any element in

the range. A function must match every element in the domain with an element

in the range. &

The image of a function consists of those elements in the range that are matched

with elements in the domain. An element y in the range is in the image only if

there is an element x in the domain such that x is assigned the value y by the rule

of correspondence. In Figure 3.1, the image is the set {1, 3, 5} because 1, 3, and 5

are the only elements in the range actually assigned to elements in the domain.

In Figure 3.2, the image is the set {2} because the number 2 is the only number in

the range matched with elements in the domain.

The domain and range of a function can be any type of set, ranging from sets of

letters to sets of colors to sets of animals, while the rule of correspondence can be

specified by arrows, tables, graphs, formulas, or words. If we restrict ourselves to

sets of real numbers and rules of correspondence given by equations, then we

have the functions studied most often in algebra and calculus.

Figure 3.2

A 2

1

3

4

5

B

C

Figure 3.3
dog dog

bird bird

cat cat

The image of a

function is the set of

all elements in the

range that are

matched with

elements in the

domain by the rule

of correspondence.
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Whenever we have two sets of numbers and a function f relating the arbitrary

element x in the domain to the element y in the range through an equation, we

say that y is a function of x and write y ¼ f (x). Letters other than x and y may be

equally appropriate. The equation R ¼ f (N) is shorthand notation for the state-

ment that we have a function consisting of two sets of numbers and an equation,

where N and R denote elements in the domain and range, respectively. If the

domain is not specified, it is assumed to be all real numbers for which the rule of

correspondence makes sense; if the range is not specified, it is taken to be the set

of all real numbers.

If we have a rule of correspondence defined by the formula f (x), then we find the

element in the range associated with a particular value of x by replacing x with

that particular value in the formula. Thus, f (2) is the effect of applying the rule of

correspondence to the domain element 2, while f (5) is the effect of applying the

rule of correspondence to the domain element 5.

Example 3 Find f (2), f (5), and f (� 5) for f (x) ¼ 1=x2.

Solution: The domain and range are not specified, so they assume their default

values. The formula 1=x2 is computable for all real numbers except 0, so this

becomes the domain. The range is the set of all real numbers. The image is all

positive real numbers because those are the only numbers actually matched to

elements in the domain by the formula. Now

f (2) ¼ 1=(2)2 ¼ 1=4 ¼ 0:25

f (5) ¼ 1=(5)2 ¼ 1=25 ¼ 0:04

f (� 5) ¼ 1=(� 5)2 ¼ 1=25 ¼ 0:04 &

Problems 3.1

In Problems 1 through 16, the rules of correspondence are described by arrows. Determine

whether the given relationships are functions and, for those that are, identify their images.

(1)
A

1 2 3 4 5

B C D E
(2)

A B C D E

A B C D E
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(3)
A

1 2 3 4 5

B C D E
(4)

1

1 2 3 4 5

2 3 4 5

(5)
a

10 20 30 40 50 60

b c d
(6)

10

10 20 30 40 50 60

20 30 40

(7)
5

8 7 6 5 4 3

6 7 8
(8)

2

4 5 6 7 8 9

3 4 5

(9)
yxwvu

a b c d e f

(10)
yxwvu

a b c d e f

(11)

108642

1 2 3 4 5 6
(12)

108642

1 2 3 4 5 6
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(13)
1

red blue green yellow

2 3 4 5

(14)
1

blue green yellow

2 3 4 5

(15)
−1

10.3 18.6 22.7

−2 −3 −4 −5

In Problems 16 through 18, determine whether the given tables represent functions where

the rule of correspondence is to assign to each element in the top row the element directly

below it in the bottom row.

In Problems 19 through 22, determine whether the specified correspondences constitute

functions.

(19) The correspondence between people and their weights.

(20) The correspondence between people and their social security numbers.

(21) The correspondence between cars and the colors they are painted.

(22) The correspondence between stocks listed on the New York Stock Exchange and

their closing prices on a given day.

(16) x 1 2 3 4 5

y 10 18 23 18 10

(17) x 1 2 3 4 5

y 10 10 20 20 20

(18) x 1 2 3 4 5

y 10 18 23 29 34
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In Problems 23 through 29, determine whether a domain exists on the horizontal axis so

that the given graphs represent functions. The rule of correspondence assigns to each

x value in the domain all y values on the vertical axis (the range) for which the points (x, y)

lie on the graph.

(23)

2

1

1 2 3 4
x

y

0
−1

(24) 5

3

4 5
x

y

3

2
1

1−1
−2
−3
−4

−4

−5

(25)

5

5
x

y

−5

−5

(26)

4

x

y

5−5

−4

(27)

4

x

y

5−5

−4

(28)

(0,3)

0
x

y

(4,0)(−4,0)

(0,−4)

(29)

(0,3)

0
x

y

(4,0)(−4,0)

(0,−4)

(30) Determine whether the following equations represent functions on the specified

domains:

(a) y ¼ þ
ffiffiffi
x
p

for �1 < x <1.

(b) y ¼ þ
ffiffiffi
x
p

for 0 < x <1.

(c) y ¼ �
ffiffiffi
x
p

for 0 < x <1.

(d) y ¼
ffiffiffi
x3p for�1 < x <1.
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(31) Given the function y ¼ f (x) ¼ x2 � 3xþ 2 defined on all real numbers, find

(a) f (0), (b) f (1), (c) f (� 1), (d) f (2x).

(32) Given the function y ¼ f (x) ¼ 2x2 � x defined on all real numbers, find

(a) f (1), (b) f (� 1), (c) f (2x), (d) f (aþ b).

(33) Given the function y ¼ f (x) ¼ x3 � 1 defined on all real numbers, find

(a) f (� 2), (b) f (0), (c) f (2z), (d) f (aþ b).

(34) A function is onto if its image equals its range. Determine whether either of the

functions defined in Example 1 are onto.

(35) Determine which of the functions defined in Problems 1 through 15 are onto.

(36) A function is one to one if the equality f (x) ¼ f (z) implies that x ¼ z; that is, if each

element in the image is matched with one and only one element in the domain.

Determine whether either of the functions defined in Example 1 are one to one.

(37) Determine which of the functions defined in Problems 1 through 15 are one to one.

3.2 LINEAR TRANSFORMATIONS

Two frequently used synonyms for the word function are mapping and trans-

formation. In high-school algebra and calculus, the domain and range are

restricted to subsets of the real numbers and the word function is used almost

exclusively. In linear algebra, the domain and range are vector spaces and the

word transformation is preferred.

A transformation T is a rule of correspondence between two vector spaces,

a domain V and a range W, that assigns to each element in V exactly one element

(but not necessarily a different one) in W. Such a transformation is denoted by

the shorthand notation T: V!W. We write w ¼ T(v) whenever the vector w in

W is matched with the vector v in V by the rule of correspondence associated

with T. We will, on occasion, discard the parentheses and write w ¼ Tv when

there is no confusion as to what this notation signifies.

The image of T is the set of all vectors in W that are matched with vectors in V

under the rule of correspondence. Thus, w is in the image of T if and only if there

exists a vector v in V such that w ¼ T(v).

A transformation T: V!W is linear if for any two scalars, a and b, and any two

vectors, u and v, in V the following equality holds:

T(auþ bv) ¼ aT(u)þ bT(v) (3:1)

For the special case a ¼ b ¼ 1, (3.1) reduces to

T(uþ v) ¼ T(u)þ T(v) (3:2)

A transformation is

a function with

vector spaces for its

domain and range.
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while for the special case b ¼ 0, (3.1) becomes

T(au) ¼ aT(u) (3:3)

Verifying (3.1) is equivalent to verifying (3.2) and (3.3) separately (see

Problem 47).

The left side of (3.1) is the mapping of the linear combination auþ bv from the

vector space V into the vector space W. If T is linear, then the result of mapping

auþ bv into W is the same as separately mapping u and v into W, designated as

T(u) and T(v), and then forming the identical linear combination with T(u) and

T(v) in W as was formed in V with u and v; namely, a times the first vector plus

b times the second vector. Linear combinations are fundamental to vector spaces

because they involve the only operations, addition and scalar multiplication,

guaranteed to exist in a vector space. Of all possible transformations, linear

transformations are those special ones that preserve linear combinations.

Example 1 Determine whether the transformation T: V! V defined by

T(v) ¼ kv for all vectors v in V and any scalar k is linear.

Solution: In this example, V ¼W; that is, both the domain and the range are

the same vector space. For any two vectors u and v in V, we have

T(auþ bv) ¼ k(auþ bv) ¼ a(ku)þ b(kv) ¼ aT(u)þ bT(v)

Thus, (3.1) is valid, and the transformation is linear. &

The linear transformation in Example 1 is called a dilation. In R2, a dilation

reduces to a scalar multiple of a 2-tuple, having the geometrical effect of elong-

ating v by a factor of jkj when jkj > 1 or contracting v by a factor of jkj when

jkj < 1 followed by a rotation of 1808 when k is negative and no rotation when k

is positive. These dilations are illustrated in Figure 3.4. When V ¼ R2 and

k ¼ �1, the transformation T is sometimes called a rotation through the origin.

It is illustrated in Figure 3.5.

Figure 3.4
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A transformation is

linear if it preserves

linear combinations.
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Example 2 Determine whether the transformation T: V!W defined by

T(v) ¼ 0 for all vectors v in V is linear.

Solution: For any two scalars a and b and for any two vectors u and v in V, we

have

T(auþ bv) ¼ 0 ¼ 0þ 0 ¼ a0þ b0 ¼ aT(u)þ bT(v)

Thus, (3.1) is valid, and T is linear. Transformations of this type are called zero

transformations because they map all vectors in the domain into the zero vector

in W. &

Example 3 Determine whether the transformation L is linear if L: P3 ! P2 is

defined by

L(a3t
3 þ a2t

2 þ a1tþ a0) ¼ 3a3t
2 þ 2a2tþ a1

where ai (i ¼ 0, 1, 2, 3) denotes a real number.

Solution: A transformation is linear if it satisfies (3.1) or, equivalently, both

(3.2) and (3.3). For practice, we try to validate (3.2) and (3.3). Setting

u ¼ a3t
3 þ a2t

2 þ a1tþ a0 and v ¼ b3t
3 þ b2t

2 þ b1tþ b0

we have L(u) ¼ 3a3t
2 þ 2a2tþ a1, L(v) ¼ 3b3t

2 þ 2b2tþ b1, and

Figure 3.5
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L(uþ v) ¼ L a3t
3 þ a2t

2 þ a1tþ a0

� �
þ b3t

3 þ b2t
2 þ b1tþ b0

� �� �
¼ L a3 þ b3ð Þt3 þ a2 þ b2ð Þt2 þ a1 þ b1ð Þtþ a0 þ b0ð Þ

� �
¼ 3(a3 þ b3)t

2 þ 2(a2 þ b2)tþ (a1 þ b1)

¼ (3a3t
2 þ 2a2tþ a1)þ (3b3t

2 þ 2b2tþ b1)

¼ L(u)þ L(v)

For any scalar a, we have

L(au) ¼ L a a3t
3 þ a2t

2 þ a1tþ a0

� �� �
¼ L aa3ð Þt3 þ aa2ð Þt2 þ aa1ð Þtþ aa0ð Þ

� �
¼ 3(aa3)t

2 þ 2(aa2)tþ (aa1)

¼ a(3a3t
2 þ 2a2tþ a1)

¼ aL(u)

Therefore, both (3.2) and (3.3) are satisfied, and L is linear. Readers familiar

with elementary calculus will recognize this transformation as the

derivative. &

Example 4 Determine whether the transformation T is linear if T: R2 ! R1 is

defined by T [ a b ] ¼ ab for all real numbers a and b.

Solution: This transformation maps 2-tuples into the product of its components.

In particular, T [ 2 �3 ] ¼ 2(� 3) ¼ �6 and T [ 1 0 ] ¼ 1(0) ¼ 0. In general,

setting u ¼ [ a b ] and v ¼ [ c d ], we have T(u) ¼ ab, T(v) ¼ cd, and

T(u)þ T(v) ¼ abþ cd (3:4)

while

T(uþ v) ¼ T [ a b ]þ [ c d ]ð Þ

¼ T [ aþ c bþ d ]

¼ (aþ c)(bþ d) ¼ abþ cbþ cd þ ad

(3:5)

Equations (3.4) and (3.5) are generally not equal, hence (3.2) is not satisfied, and

the transformation is not linear. In particular, for u ¼ [ 2 �3 ] and v ¼ [ 1 0 ],

T(uþ v) ¼ T [ 2 �3 ]þ [ 1 0 ]ð Þ ¼ T [ 3 �3 ] ¼ 3(� 3) ¼ �9

6¼ �6þ 0 ¼ T [ 2 �3 ]þ T [ 1 0 ] ¼ Tuþ Tv
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We can also show that (3.3) does not hold, but this is redundant. If either (3.2) or

(3.3) is violated, the transformation is not linear. &

Example 5 Determine whether the transformation T is linear if T: R2 ! R2 is

defined by T [ a b ] ¼ [ a �b ] for all real numbers a and b.

Solution: This transformation maps 2-tuples into 2-tuples by changing the sign

of the second component. Here, T [ 2 3 ] ¼ [ 2 �3 ], T [ 0 �5 ] ¼ [ 0 5 ], and

T [�1 0 ] ¼ [�1 0 ]. In general, setting u ¼ [ a b ] and v ¼ [ c d ], we have

T(u) ¼ [ a �b ], T(v) ¼ [ c �d ], and

T(uþ v) ¼ T [ a b ]þ [ c d ]ð Þ

¼ T [ aþ c bþ d ]

¼ [ aþ c �(bþ d) ]

¼ [ aþ c �b� d ]

¼ [ a �b ]þ [ c �d ]

¼ T(u)þ T(v)

For any scalar a, we have

T(au) ¼ T a[ a b ]ð Þ ¼ T [ aa ab ] ¼ [ aa �ab ] ¼ a[ a �b ] ¼ aT(u)

Thus, (3.2) and (3.3) are satisfied, and the transformation is linear. &

The linear transformation T defined in Example 5 is called a reflection across

the x-axis. For vectors graphed on an x-y coordinate system, the transformation

Figure 3.6
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maps each vector into its mirror image across the horizontal axis. Some illustra-

tions are given in Figure 3.6. The counterpart to T is the linear transformation

S: R2 ! R2 defined by S [ a b ] ¼ [�a b ], which is called a reflection across the

y-axis. For vectors graphed on an x-y coordinate system, the transformation S

maps each vector into its mirror image across the vertical axis. Some illustrations

are given in Figure 3.7.

Example 6 Determine whether the transformation L is linear if L: R2 ! R2 is

defined by L [ a b ] ¼ [ a 0 ] for all real numbers a and b.

Solution: Here L [�2 5 ]¼ [�2 0 ],L [ 0 4 ]¼ [ 0 0 ], and L [ 4 0 ]¼ [ 4 0 ].

In general, setting u¼ [a b ] and v¼ [ c d ], we have L (u)¼ [a 0 ],

L (v)¼ [ c 0 ], and for any scalars a and b,

L(auþ bv) ¼ L a[ a b ]þ b[ c d ]ð Þ

¼ L [ aaþ bc abþ bd ]

¼ [ aaþ bc 0 ]

¼ a[ a 0 ]þ b[ c 0 ]

¼ aL(u)þ bL(v)

Equation (3.1) is satisfied, hence L is linear. &

The linear transformation defined in Example 6 is called a projection onto the

x-axis. Its counterpart, the transformation M : R2 ! R2 defined by

M [ a b ] ¼ [ 0 b ] for all real numbers a and b, is also linear and is called

Figure 3.7
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a projection onto the y-axis. Some illustrations are given in Figure 3.8. Note that

for any vector v in R2, v ¼ L(v)þM(v).

Example 7 Determine whether the transformation R is linear, if R is defined by

R
a

b

� �
¼ cos u � sin u

sin u cos u

� �
a

b

� �
¼ a cos u� b sin u

a sin uþ b cos u

� �

where a and b denote arbitrary real numbers and u is a constant.

Solution: R is a transformation from R2 to R2 defined by a matrix multiplica-

tion. Setting

u ¼ a

b

� �
, v ¼ c

d

� �
, and A ¼ cos u � sin u

sin u cos u

� �

it follows directly from the properties of matrix multiplication that

R(auþ bv) ¼ A(auþ bv) ¼ aAuþ bAv ¼ aR(u)þ bR(v)

for any choice of the scalars a and b. Equation (3.1) is valid, hence R is

linear. &

The linear transformation defined in Example 7 is called a rotation, because it

has the geometric effect of rotating around the origin each vector v by the angle u

in the counterclockwise direction. This is illustrated in Figure 3.9.

The solution to Example 7 is extended easily to any linear transformation defined

by matrix multiplication on n-tuples. Consequently, every matrix defines a linear

transformation.

Figure 3.8
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" Theorem 1. If L: Rn ! Rm is defined as L(u) ¼ Au for an m� n matrix

A, then L is linear. 3

Proof: It follows from the properties of matrices that for any two vectors u and

v in Rn, and any two scalars a and b, that

L(auþ bv) ¼ A(auþ bv) ¼ A(au)þ A(bv)

¼ a(Au)þ b(Av) ¼ aL(u)þ bL(v) &

Problems 3.2

(1) Define T: R2 ! R2 by T [ a b ] ¼ [ 2a 3b ]. Find

(a) T [ 2 3 ], (b) T [�1 5 ],

(c) T [�8 200 ], (d) T [ 0 �7 ].

(2) Redo Problem 1 with T [ a b ] ¼ [ aþ 2 b� 2 ].

(3) Define S: R3 ! R2 by S [ a b c ] ¼ [ aþ b c ]. Find

(a) S [ 1 2 3 ], (b) S [�2 3 �3 ],

(c) S [ 2 �2 0 ], (d) S [ 1 4 3 ].

(4) Redo Problem 3 with S [ a b c ] ¼ [ a� c c� b ].

(5) Redo Problem 3 with S [ a b c ] ¼ [ aþ 2b� 3c 0 ].

(6) Define N : R2 ! R3 by N [ a b ] ¼ [ aþ b 2aþ b bþ 2 ]. Find

(a) N [ 1 1 ], (b) N [ 2 �3 ],

(c) N [ 3 0 ], (d) N [ 0 0 ].

(7) Redo Problem 6 with N [ a b ] ¼ [ aþ b ab a� b ].

(8) Define P: M2�2 !M2�2 as P
a b

c d

� �
¼ c a

d b

� �
. Find

Figure 3.9 y
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(a) P
1 2

3 4

� �
, (b) P

1 �1

3 3

� �
,

(c) P
10 20

�5 0

� �
, (d) P

28 �32

13 44

� �
.

(9) Redo Problem 8 with P
a b

c d

� �
¼ aþ b 0

0 c� d

� �
.

(10) Define T: P2 ! P2 by T(a2t
2 þ a1tþ a0) ¼ (a2 � a1)t

2 þ (a1 � a0)t. Find

(a) T(2t2 � 3tþ 4), (b) T(t2 þ 2t),

(c) T(3t), (d) T(� t2 þ 2t� 1).

In Problems 11 through 40, determine whether the given transformations are linear.

(11) T: R2 ! R2,T [ a b ] ¼ [ 2a 3b ].

(12) T: R2 ! R2,T [ a b ] ¼ [ aþ 2 b� 2 ].

(13) T: R2 ! R2,T [ a b ] ¼ [ a 1 ].

(14) S: R2 ! R2,S [ a b ] ¼ [ a2 b2 ].

(15) S: R3 ! R2,S [ a b c ] ¼ [ aþ b c ].

(16) S: R3 ! R2,S [ a b c ] ¼ [ a� c c� b ].

(17) S: R3 ! R2,S [ a b c ] ¼ [ aþ 2b� 3c 0 ].

(18) S: R2 ! R3,S [ a b ] ¼ [ aþ b 2aþ b bþ 2 ].

(19) S: R2 ! R3,S [ a b ] ¼ [ a 0 b ].

(20) N : R2 ! R3,N [ a b ] ¼ [ 0 0 0 ].

(21) N : R2 ! R3,N [ a b ] ¼ [ aþ b ab a� b ].

(22) N : R2 ! R3,N [ a b ] ¼ [ 0 0 2a� 5b ].

(23) T: R2 ! R3,T [ a b ] ¼ [ a �a �8a ].

(24) T: R3 ! R1,T [ a b c ] ¼ a� c.

(25) S: R3 ! R1,S [ a b c ] ¼ abc.

(26) L: R3 ! R1,L [ a b c ] ¼ 0.

(27) P: R3 ! R1,P [ a b c ] ¼ 1.

(28) P: M2�2 !M2�2,P
a b

c d

� �
¼ c a

d b

� �
.

(29) P: M2�2 !M2�2,P
a b

c d

� �
¼ aþ b 0

0 c� d

� �
.

(30) T: M2�2 !M2�2,T
a b

c d

� �
¼ 2d 0

0 0

� �
.
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(31) T: M2�2 !M2�2,T
a b

c d

� �
¼ ab 0

cd 0

� �
.

(32) T: M2�2 ! R1,T
a b

c d

� �
¼ ad � bc.

(33) R: M2�2 ! R1,R
a b

c d

� �
¼ bþ 2c� 3d.

(34) S: Mp�n !Mn�p,S(A) ¼ AT.

(35) S: Mp�n !Mp�n,S(A) ¼ �A.

(36) L: Mn�n !Mn�n,L(A) ¼ A� AT.

(37) L: P2 ! P2,L(a2t
2 þ a1tþ a0) ¼ a0t.

(38) T: P2 ! P2, T(a2t
2 þ a1tþ a0) ¼ a2(t� 1)2 þ a1(t� 1)þ a0.

(39) T: P2 ! P2, T(a2t
2 þ a1tþ a0) ¼ (a2 � a1)t

2 þ (a1 � a0)t.

(40) S: P2 ! P2,S(a2t
2 þ a1tþ a0) ¼ (a2 � 1)t2.

(41) Let S: Mn�n ! R1 map an n� n matrix into the sum of its diagonal elements. Such

a transformation is known as the trace. Is it linear?

(42) Let T: Mn�n !Mn�n be defined as T(A) ¼ A�1 if A is nonsingular

0 if A is singular

�
. Is T

linear?

(43) Let I : V! V denote the identity transformation defined by I(v) ¼ v for all vectors

v in V. Show that I is linear.

(44) Let L: V! V denote a linear transformation and let fv1, v2, . . . , vng be a basis for

V. Prove that if L(vi) ¼ vi for all i (i ¼ 1, 2, . . . , n), then L must be the identity

transformation.

(45) Let 0: V!W denote the zero transformation defined by 0(v) ¼ 0 for all vectors v in

V. Show that 0 is linear.

(46) Let L: V!W denote a linear transformation and let fv1, v2, . . . , vng be a basis for

V. Prove that if L(vi) ¼ 0 for all i (i ¼ 1, 2, . . . , n), then L must be the zero trans-

formation.

(47) Prove that Equations (3.2) and (3.3) imply (3.1).

(48) Determine whether T: Mn�n !Mn�n defined by T(A) ¼ AAT is linear.

(49) Find T(uþ 3v) for a linear transformation T if it is known that T(u) ¼ 22 and

T(v) ¼ �8.

(50) Find T(u) for a linear transformation T if it is known that T(uþ v) ¼ 2uþ 3v and

T(u� v) ¼ 4uþ 5v.

(51) Find T(v) for a linear transformation T if it is known that T(uþ v) ¼ u and

T(u) ¼ u� 2v.

(52) Let L: V!W denote a linear transformation. Prove that L(v1 þ v2 þ v3) ¼
L(v1)þ L(v2)þ L(v3) for any three vectors v1, v2, and v3 in V. Generalize this result

to the sum of more than three vectors.
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(53) Let S: V!W and T: V!W be two linear transformations. Their sum is another

transformation from V into W defined by (S þ T)v ¼ S(v)þ T(v) for all v in V.

Prove that the transformation S þ T is linear.

(54) Let T: V!W be a linear transformation and k a given scalar. Define a new

transformation kT: V!W by (kT)v ¼ k(Tv) for all v in V. Prove that the trans-

formation kT is linear.

(55) Let S: V!W and T: V! V be two linear transformations and define their prod-

uct as another transformation from V into V defined by (ST)v ¼ S(Tv) for all v in

V. This product first applies T to a vector and then S to that result. Prove that the

transformation ST is linear.

(56) Let S: R2 ! R2 be defined by S [ a b ] ¼ [ 2aþ b 3a ] and T: R2 ! R2 be defined

by T [ a b ] ¼ [ b �a ]. Find ST(v) for the following vectors v:

(a) [ 1 2 ], (b) [ 2 0 ], (c) [�1 3 ],

(d) [�1 1 ], (e) [�2 �2 ], (f) [ 2 �3 ].

(57) Find TS(v) for the vectors and transformations given in the previous problem.

(58) Let S: R2 ! R2 be defined by S [ a b ] ¼ [ aþ b a� b ] and T: R2 ! R2 be

defined by T [ a b ] ¼ [ 2b 3b ]. Find ST(v) for the following vectors v:

(a) [ 1 2 ], (b) [ 2 0 ], (c) [�1 3 ],

(d) [�1 1 ], (e) [�2 �2 ], (f) [ 2 �3 ].

(59) Find TS(v) for the vectors and transformations given in the previous problem.

(60) Let S: R2 ! R2 be defined by S [ a b ] ¼ [ a aþ 2b ] and T: R2 ! R2 be defined

by T [ a b ] ¼ [ aþ 2b a� 2b ]. Find ST(v) for the following vectors v:

(a) [ 1 2 ], (b) [ 2 0 ], (c) [�1 3 ],

(d) [�1 1 ], (e) [�2 �2 ], (f) [ 2 �3 ].

(61) Let L be defined as in Example 6. Show that L2 ¼ L.

(62) Let L and M be transformations from R2 into R2, the first a projection onto the x-

axis and the second a projection onto the y-axis (see Example 6). Show that their

product is the zero transformation.

3.3 MATRIX REPRESENTATIONS

We showed in Chapter 2 that any vector in a finite-dimensional vector space can

be represented as an n-tuple with respect to a given basis. Consequently, we can

study finite-dimensional vector spaces by analyzing n-tuples. We now show that

every linear transformation from an n-dimensional vector space into an m-

dimensional vector space can be represented by an m� n matrix. Thus, we can

reduce the study of linear transformations on finite-dimensional vector space to

the study of matrices!
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Recall from Section 2.4 that there is only one way to express v as a linear

combination of a given set of basis vectors. If v is any vector in a finite-dimensional

vector space V, and if B ¼ fv1, v2, . . . , vng is a basis for V, then there exists

a unique set of scalars c1, c2, . . . , cn such that

v ¼ c1v1 þ c2v2 þ � � � þ cnvn (3:6)

We write

v$

c1

c2

..

.

cn

2
6664

3
7775

B

(3:7)

to indicate that the n-tuple is a coordinate representation for the sum on the right

side of (3.6). The subscript on the n-tuple denotes the underlying basis and

emphasizes that the coordinate representation is basis dependent.

Example 1 Find a coordinate representation for the vector v ¼ 4t2 þ 3tþ 2 in

P2 with respect to the basis C ¼ ft2 þ t, tþ 1, t� 1g.

Solution: To write v as a linear combination of the basis vectors, we must

determine scalars c1, c2, and c3 that satisfy the equation

4t2 þ 3tþ 2 ¼ c1(t
2 þ t)þ c2(tþ 1)þ c3(t� 1)

¼ c1t
2 þ (c1 þ c2 þ c3)tþ (c2 � c3)

Equating coefficients of like powers of t, we generate the system of equations

c1 ¼ 4

c1 þ c2 þ c3 ¼ 3

c2 � c3 ¼ 2

which has as its solution c1 ¼ 4, c2 ¼ 1=2, and c3 ¼ �3=2. Accordingly (3.6)

becomes

4t2 þ 3tþ 2 ¼ 4(t2 þ t)þ (1=2)(tþ 1)þ (� 3=2)(t� 1)

and (3.7) takes the form

4t2 þ 3tþ 2$
4

1=2
�3=2

2
4

3
5

D

&
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If T: V!W is a linear transformation and v is any vector in V expressed in form

(3.6), then

T(v) ¼ T(c1v1 þ c2v2 þ � � � þ cnvn)

¼ c1T(v1)þ c2T(v2)þ � � � þ cnT(vn) (3:8)

Consequently, T is described completely by its actions on a basis. Once we know

how T transforms the basis vectors, we can substitute those results into the right

side of (3.8) and determine how T affects any vector v in V.

Example 2 A linear transformation T: R2 ! R3 has the property that

T
1

0

� �
¼

1

2

0

2
4
3
5 and T

0

1

� �
¼

0

3

4

2
4
3
5

Determine T(v) for any vector v 2 R2.

Solution: If v 2 R2, then v ¼ [ a b ]T for some choice of the real numbers a and

b. The set f[ 1 0 ]T, [ 0 1 ]Tg is the standard basis for R2, and with respect to

this basis

a

b

� �
¼ a

1

0

� �
þ b

0

1

� �

Consequently,

T
a

b

� �
¼ aT

1

0

� �
þ bT

0

1

� �
¼ a

1

2

0

2
4
3
5þ b

0

3

4

2
4
3
5 ¼ a

2aþ 3b

4b

2
4

3
5 &

Example 2 has an interesting geometrical interpretation. We see from the

solution that

T a
1

0

� �
þ b

0

1

� �� �
¼ a

1

2

0

2
4
3
5þ b

0

3

4

2
4
3
5

Thus, linear combinations of the vectors in the standard basis for R2 are mapped

into linear combinations of the vectors w1 ¼ [ 1 2 0 ]T and w2 ¼ [ 0 3 4 ]T.

All linear combinations of the vectors in the standard basis for R2 generate the

x-y plane. All linear combinations of w1 and w2 is the span of fw1, w2g, a plane in

R3, which is partially illustrated by the shaded region in Figure 3.10. Thus, the

linear transformation defined in Example 2 maps the x-y plane onto the plane

spanned by fw1, w2g.

A linear

transformation is

described

completely by its

actions on a basis

for the domain.
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Example 3 A linear transformation T: R2 ! R2 has the property that

T
1

1

� �
¼ 5

6

� �
and T

1

�1

� �
¼ 7

8

� �

Determine Tv for any vector v 2 R2.

Solution: The set of vectors f[ 1 1 ]T, [ 1 �1 ]Tg is a basis for R2. If v ¼ [ a b ]T

for some choice of the real numbers a and b, then

a

b

� �
¼ aþ b

2

1

1

� �
þ a� b

2

1

�1

� �

and

T
a

b

� �
¼ aþ b

2
T

1

1

� �
þ a� b

2
T

1

�1

� �

¼ aþ b

2

5

6

� �
þ a� b

2

7

8

� �
¼

6a� b

7a� b

� �
&

With these two concepts—first, that any finite-dimensional vector can be repre-

sented as a basis dependent n-tuple, and second, that a linear transformation is

completely described by its actions on a basis—we have the necessary tools to

show that every linear transformation from one finite-dimensional vector space

into another can be represented by a matrix. Let T designate a linear transform-

ation from an n-dimensional vector space V into an m-dimensional vector space

W, and let B ¼ fv1, v2, . . . , vng be a basis for V and C ¼ fw1, w2, . . . , wmg be

a basis for W. Then T(v1), T(v2), . . . , T(vn) are all vectors in W and each can

be expressed as a linear combination of the basis vectors in C.

Every linear

transformation

from one finite-

dimensional vector

space into another

can be represented

by a matrix.

Figure 3.10

5

w 2

w 1

4

4

z

y

x

3

3

2

2
1

1
2

3
4

1
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In particular,

T(v1) ¼ a11w1 þ a21w2 þ � � � þ am1wm

for some choice of the scalars a11, a21, . . . , am1,

T(v2) ¼ a12w1 þ a22w2 þ � � � þ am2wm

for some choice of the scalars a12, a22, . . . , am2, and, in general,

T(vj) ¼ a1jw1 þ a2jw2 þ � � � þ amjwm (3:9)

for some choice of the scalars a1j , a2j, . . . , amj ( j ¼ 1, 2, . . . , m). The coordinate

representations of these vectors are

T(v1)$

a11

a21

..

.

am1

2
66664

3
77775

C

, T(v2)$

a12

a22

..

.

am2

2
66664

3
77775

C

, . . . ,

T(vj)$

a1j

a2j

..

.

amj

2
66664

3
77775

C

, . . . , T(vn)$

a1n

a2n

..

.

amn

2
66664

3
77775

C

If we use these n-tuples as the columns of a matrix A, then, as we shall show

shortly, A is the matrix representation of the linear transformation T. Because

this matrix is basis dependent, in fact dependent on both the basis B in V and the

basis C in W, we write AC
B to emphasize these dependencies. The notation AC

B

denotes the matrix representation of T with respect to the B basis in V and the C

basis in W. Often, the subscript B or the superscript C is deleted when either is

the standard basis in Rn and Rm, respectively.

Example 4 Find the matrix representation with respect to the standard basis in

R2 and the standard basis C ¼ ft2, t, 1g in P2 for the linear transformation

T: R2 ! P2 defined by

T
a

b

� �
¼ 2at2 þ (aþ b)tþ 3b

Solution:

T
1

0

� �
¼ (2)t2 þ (1)tþ (0)1$

2

1

0

2
4
3
5

C

AC
B denotes a matrix

representation of a

linear trans-

formation with

respect to the B

basis in the domain

and the C basis in

the range.
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and

T
0

1

� �
¼ (0)t2 þ (1)tþ (3)1$

0

1

3

2
4
3
5

C

so

AC ¼
2 0

1 1

0 3

2
4

3
5C

We suppressed the subscript notation for the basis in the domain because it is the

standard basis in R2. &

Example 5 Redo Example 4 with the basis for the domain changed to

B ¼ f 1 1 ]T, [ 1 �1 ]Tg.

Solution:

T
1

1

� �
¼ (2)t2 þ (2)tþ (3)1$

2

2

3

2
4
3
5

C

and

T
1

�1

� �
¼ (2)t2 þ (0)tþ (� 3)1$

2

0

�3

2
4

3
5

C

hence,

AC
B ¼

2 2

2 0

3 �3

2
4

3
5C

B

&

Example 6 Find the matrix representation with respect to the standard basis in

R2 and the basis D ¼ ft2 þ t, tþ 1, t� 1g in P2 for the linear transformation

T: R2 ! P2 defined by

T
a

b

� �
¼ (4aþ b)t2 þ (3a)tþ (2a� b)

Solution: Using the results of Example 1, we have

T
1

0

� �
¼ 4t2 þ 3tþ 2$

4

1=2
�3=2

2
4

3
5

D

178 . Linear Transformations



Similar reasoning yields

T
0

1

� �
¼ t2 � 1 ¼ (1)(t2 þ t)þ (� 1)(tþ 1)þ (0)(t� 1)$

1

�1

0

2
4

3
5

D

Thus,

AD ¼
4 1

1=2 �1

�3=2 0

2
4

3
5D

&

Example 7 Find the matrix representation for the linear transformation

T: M2�2 !M2�2 defined by

T
a b

c d

� �
¼ aþ 2bþ 3c 2b� 3cþ 4d

3a� 4b� 5d 0

� �

with respect to the standard basis

B ¼ 1 0

0 0

� �
,

0 1

0 0

� �
,

0 0

1 0

� �
,

0 0

0 1

� �� 	

Solution:

T
1 0

0 0

� �
¼

1 0

3 0

� �
¼ (1)

1 0

0 0

� �
þ (0)

0 1

0 0

� �
þ (3)

0 0

1 0

� �

þ (0)
0 0

0 1

� �
$

1

0

3

0

2
6664
3
7775

B

T
0 1

0 0

� �
¼

2 2

�4 0

� �
¼ (2)

1 0

0 0

� �
þ (2)

0 1

0 0

� �
þ (� 4)

0 0

1 0

� �

þ (0)
0 0

0 1

� �
$

2

2

�4

0

2
6664

3
7775

B

3.3 Matrix Representations . 179



T
0 0

1 0

� �
¼

3 �3

0 0

� �
¼ (3)

1 0

0 0

� �
þ (� 3)

0 1

0 0

� �
þ (0)

0 0

1 0

� �

þ (0)
0 0

0 1

� �
$

3

�3

0

0

2
6664

3
7775

B

T
0 0

0 1

� �
¼

0 4

�5 0

� �
¼ (0)

1 0

0 0

� �
þ (4)

0 1

0 0

� �
þ (� 5)

0 0

1 0

� �

þ (0)
0 0

0 1

� �
$

0

4

�5

0

2
6664

3
7775

B

Therefore,

AB
B ¼

1 2 3 0

0 2 �3 4

3 �4 0 �5

0 0 0 0

2
664

3
775

B

B

&

To prove that AC
B, as we defined it, is a matrix representation for a linear trans-

formation T, we begin with a vector v in the domain V. If B ¼ fv1, v2, . . . , vng is a

basis for V, then there exists a unique set of scalars c1, c2, . . . , cn such that

v ¼ c1v1 þ c2v2 þ . . .þ cnvn ¼
Xn

j¼1

cjvj

The coordinate representation of v with respect to the B basis is

v$

c1

c2

..

.

cn

2
6664

3
7775

B

Setting w ¼ T(v), it follows from (3.8) and (3.9) that

w ¼ T(v) ¼ T
Xn

j¼1

cjvj

 !

¼
Xn

j¼1

cjT(vj)
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¼
Xn

j¼1

cj(a1jw1 þ a2jw2 þ . . .þ amjwm)

¼
Xn

j¼1

cj

Xm
i¼1

aijwi

 !

¼
Xm
i¼1

Xn

j¼1

aijcj

 !
wi

We now have w in terms of the basis vectors in C ¼ fw1, w2, . . . , wmg. Since the

summation in the last parentheses is the coefficient of each basis vector, we see

that the coordinate representation for w with respect to the C basis ist

T(v) ¼ w$

Pn
j¼1

a1jcj

Pn
j¼1

a2jcj

..

.Pn
j¼1

amjcj

2
666666666664

3
777777777775

C

This vector is the matrix product

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. . .

. ..
.

am1 am2 � � � amn

2
6664

3
7775

c1

c2

..

.

cn

2
6664

3
7775

Thus,

T(v) ¼ w$ AC
BvB (3:10)

We can calculate T(v) in two ways: first, the direct approach using the left side

of (3.10), by evaluating directly how T affects v; or second, the indirect

approach using the right side of (3.10), by multiplying the matrix representa-

tion of T by the coordinate representation of v to obtain AC
BvB, the m-tuple

representation of w, from which w itself is easily calculated. These two

processes are shown schematically in Figure 3.11, the direct approach by the

single solid arrow and the indirect approach by the path of three dashed

arrows.

Example 8 Calculate T
1

3

� �
using both the direct and indirect approaches

illustrated in Figure 3.11 for the linear transformation T: R2 ! P2 defined
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by T
a

b

� �
¼ 2at2 þ (aþ b)tþ 3b. With the indirect approach, use B ¼

f[ 1 1 ]T, [ 1 �1 ]Tg as the basis for R2 and C ¼ ft2, t, 1g as the basis for P2.

Solution: Using the direct approach, we have

T
1

3

� �
¼ 2(1)t2 þ (1þ 3)tþ 3(3) ¼ 2t2 þ 4tþ 9

Using the indirect approach, we first determine the coordinate representation for

[ 1 3 ]T with the respect to the B basis. It is

1

3

� �
¼ 2

1

1

� �
þ (� 1)

1

�1

� �
$ 2

�1

� �
B

¼ vB

Then, using the results of Example 5, we have

AC
BvB ¼

2 2

2 0

3 �3

2
4

3
5C

B

2

�1

� �
B

¼
2

4

9

2
4
3
5

C

$ 2t2 þ 4tþ 9

which is the same result obtained by the direct approach. &

Example 9 Calculate T
2

�3

� �
using both the direct and indirect approaches

illustrated in Figure 3.11 for the linear transformation and bases described in

Example 6.

Solution: Using the direct approach, we have

T
2

�3

� �
¼ [4(2)þ (� 3)]t2 þ 3(2)tþ [2(2)� (� 3)] ¼ 5t2 þ 6tþ 7

Figure 3.11

v w = T (v)

vB wC = A
�
�v�
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Using the indirect approach, we note that

2

�3

� �
¼ 2

1

0

� �
þ (� 3)

0

1

� �
$ 2

�3

� �
B

¼ vB

Then, using the results of Example 6, we have

AC
BvB ¼

4 1

1=2 �1

�3=2 0

2
64

3
75

C

B

2

�3

� �
B

¼
5

4

�3

2
64

3
75

C

$ 5(t2 þ t)þ 4(tþ 1)þ (� 3)(t� 1) ¼ 5t2 þ 6tþ 7

which is the same result obtained by the direct approach. &

The direct approach illustrated in Figure 3.11 is clearly quicker. The indirect

approach, however, is almost entirely in terms of matrices and matrix operations,

which are conceptually easier to understand and more tangible. Theorem 1 of

Section 2.2 states that every matrix represents a linear transformation. We just

showed that every linear transformation can be represented by a matrix. Thus,

matrices and linear transformations are equivalent concepts dressed somewhat

differently. We can analyze one by studying the other.

The subscript-superscript notation we introduced on matrices and coordinate

representations is actually helpful in tracking a linear transformation T: V!W,

where V and W are vector spaces of dimensions n and m, respectively. Suppose

w ¼ T(v). We let vB denote the coordinate representation of v with respect to a B

basis and wC denote the coordinate representation of w with respect to a C basis.

The indirect approach yields the matrix equation

wC ¼ AC
BvB

The matrix A maps an n-tuple with respect to the B basis into an m-tuple with

respect to the C basis. The subscript on A must match the subscript on v. The

superscript on A matches the subscript on w. Figure 3.12 demonstrates the

directional flow with arrows.

Figure 3.12

w� = A�
�v�
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Problems 3.3

In Problems 1 through 25, find the matrix representation for T: V!W with respect to the

given bases, B for a vector space V and C for a vector space W.

(1) T: R2 ! R3 defined by T
a

b

� �
¼

aþ b

a� b

2b

2
4

3
5, B ¼ 1

0

� �
,

1

1

� �� 	
, and

C ¼
1

0

0

2
4
3
5,

0

1

0

2
4
3
5,

0

0

1

2
4
3
5

8<
:

9=
;.

(2) Problem 1 with B ¼ 1

1

� �
,

1

2

� �� 	
.

(3) Problem 1 with C ¼
1

1

0

2
4
3
5,

1

0

1

2
4
3
5,

0

1

0

2
4
3
5

8<
:

9=
;.

(4) Problem 1 with B ¼ 1

1

� �
,

1

2

� �� 	
and C ¼

1

1

0

2
4
3
5,

1

0

1

2
4
3
5,

0

1

0

2
4
3
5

8<
:

9=
;.

(5) T: R3 ! R2 defined by T

a

b

c

2
4
3
5 ¼ 2aþ 3b� c

4bþ 5c

� �
, B ¼

1

0

0

2
4
3
5,

1

1

0

2
4
3
5,

1

1

1

2
4
3
5

8<
:

9=
;, and

C ¼ 1

1

� �
,

0

1

� �� 	
.

(6) Problem 5 with B ¼
1

�1

0

2
4

3
5,

1

0

�1

2
4

3
5,

�1

1

1

2
4

3
5

8<
:

9=
;.

(7) Problem 5 with C ¼ 1

1

� �
,

1

�1

� �� 	
.

(8) Problem 5 with B ¼
1

�1

0

2
4

3
5,

1

0

�1

2
4

3
5,

�1

1

1

2
4

3
5

8<
:

9=
; and C ¼ 1

1

� �
,

1

�1

� �� 	
.

(9) Problem 5 with T

a

b

c

2
4
3
5 ¼ aþ 2b� 3c

9a� 8b� 7c

� �
.

(10) T: R2 ! R2 defined by T
a

b

� �
¼ 25aþ 30b

�45aþ 50b

� �
, B ¼ C ¼ the standard basis in R2.

(11) Problem 10 with B ¼ 10

10

� �
,

0

5

� �� 	
and C again the standard basis.

(12) Problem 10 with C ¼ 10

10

� �
,

0

5

� �� 	
and B again the standard basis.

(13) Problem 10 with B ¼ C ¼ 10

10

� �
,

0

5

� �� 	
.
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(14) Problem 10 with B ¼ 1

�1

� �
,

1

2

� �� 	
and C ¼ 1

2

� �
,

2

1

� �� 	
.

(15) Problem 10 with T
a

b

� �
¼ 2a

3b� a

� �
.

(16) The transformation in Problem 15 with the bases of Problem 14.

(17) T: P2 ! P3 defined by T(at2 þ btþ c) ¼ t(at2 þ btþ c), B ¼ ft2, t, 1g, and

C ¼ ft3, t2, t, 1g.

(18) Problem 17 with B ¼ ft2 þ t, t2 þ 1, tþ 1g with C ¼ ft3, t2 þ 1, t2 � 1, tg.

(19) T:P3!P2 defined by T(at3þbt2þ ctþd)¼ 3at2þ2btþ c,B¼ft3, t2þ 1, t2�1,tg,
and C¼ft2þ t,t2þ1, tþ1g.

(20) T: P2 ! R2 defined by T(at2 þ btþ c) ¼ 2aþ b

3a� 4bþ c

� �
, B ¼ ft2, t2 � 1, tg, and

C ¼ 1

1

� �
,

1

�1

� �� 	
.

(21) T: P2 ! R3 defined by T(at2 þ btþ c) ¼
2aþ 3b

4a� 5c

6bþ 7c

2
4

3
5, B ¼ ft2, t2 � 1, tg, and

C ¼
1

0

0

2
4
3
5,

1

1

0

2
4
3
5,

1

1

1

2
4
3
5

8<
:

9=
;.

(22) T: P2 !M2�2 defined by T(at2 þ btþ c) ¼ 2aþ b c� 3a

4a� 5c 6bþ 7c

� �
,

B ¼ ft2, t2 � 1, tg, and C ¼ 1 0

0 0

� �
,

1 1

0 0

� �
,

0 0

1 1

� �
,

0 0

1 �1

� �� 	
.

(23) Problem 22 with C ¼ 1 0

0 0

� �
,

1 1

0 0

� �
,

1 1

0 1

� �
,

1 1

1 1

� �� 	
.

(24) T: M2�2 ! P3 defined by T
a b

c d

� �
¼ (aþ b)t3 þ (a� 2b)t2 þ (2a� 3bþ 4c)t

þ(a� d),

B ¼ 1 0

0 0

� �
,

1 1

0 0

� �
,

0 0

1 1

� �
,

0 0

1 �1

� �� 	
, and C ¼ ft3, t2 � 1, t� 1, 1g.

(25) T: M2�2 ! R2 defined by T
a b

c d

� �
¼ aþ bþ 3c

bþ c� 5d

� �
,

B ¼ 1 0

0 0

� �
,

1 1

0 0

� �
,

0 0

1 1

� �
,

0 0

1 �1

� �� 	
, and C ¼ 1

2

� �
,

2

1

� �� 	
.

In Problems 26 through 37, find the indicated mapping directly and by the indirect

approach illustrated in Figure 3.11.

(26) T
1

3

� �
with the information provided in Problem 1.

(27) T
2

�1

� �
with the information provided in Problem 1.
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(28) T
�5

3

� �
with the information provided in Problem 2.

(29) T

1

2

3

2
4
3
5 with the information provided in Problem 5.

(30) T

2

2

2

2
4
3
5 with the information provided in Problem 5.

(31) T

2

�1

�1

2
4

3
5 with the information provided in Problem 5.

(32) T
2

�3

� �
with the information provided in Problem 10.

(33) T(3t2 � 2t) with the information provided in Problem 19.

(34) T(3t2 � 2tþ 5) with the information provided in Problem 19.

(35) T(t2 � 2t� 1) with the information provided in Problem 20.

(36) T(t2 � 2t� 1) with the information provided in Problem 21.

(37) T(4) with the information provided in Problem 21.

(38) A matrix representation for T: P1 ! P1 is
1 2

3 4

� �B

B

with respect to B ¼

ftþ 1, t� 1g. Find T(atþ b) for scalars a and b.

(39) A matrix representation for T: P1 ! P1 is
1 2

3 4

� �C

C

with respect to C ¼

ftþ 1, tþ 2g. Find T(atþ b) for scalars a and b.

(40) A matrix representation for T: P2 ! P2 is

1 2 3

1 1 2

2 0 1

2
4

3
5B

B

with respect to B ¼

ft2, t2 þ t, t2 þ tþ 1g. Find T(at2 þ btþ c) for scalars a, b, and c.

(41) A matrix representation for T: M2�2 !M2�2 is

1 1 0 2

0 1 1 0

1 0 2 1

1 1 1 1

2
664

3
775

B

B

with respect to the

basis B ¼ 1 0

0 0

� �
,

1 1

0 0

� �
,

1 1

1 0

� �
,

1 1

1 1

� �� 	
. Find T

a b

c d

� �
for scalars

a, b, c, and d.

186 . Linear Transformations



3.4 CHANGE OF BASIS

Coordinate representations for vectors in an n-dimensional vector space are basis

dependent, and different bases generally result in different n-tuple representa-

tions for the same vector. In particular, we saw from Example 10 of Section 2.4

that the 2-tuple representation for v ¼ [ 7 2 ]T is

vS ¼
7

2

� �
C

(3:11)

with respect to the standard basis ¼ f[ 1 0 ]T, [ 0 1 ]Tg for R2, but

vD ¼
9=2
5=2

� �
D

(3:12)

with respect to the basis D ¼ f[ 1 1 ]T, [ 1 �1 ]Tg. It is natural to ask, therefore,

whether different coordinate representations for same vector are related.

Let C ¼ fu1, u2, . . . , ung and D ¼ fv1, v2, . . . , vng be two bases for a vector space

V. If v 2 V, the v can be expressed as a unique linear combination of the basis

vectors in C; that is, there exists a unique set of scalars c1, c2, . . . , cn such that

v ¼ c1u1 þ c2u2 þ . . .þ cnun ¼
Xn

j¼1

cjuj (3:13)

Similarly, if we consider the D basis instead, there exists a unique set of scalars

d1, d2, . . . , dn such that

v ¼ d1v1 þ d2v2 þ . . .þ dnvn ¼
Xn

i¼1

divi (3:14)

The coordinate representations of v with respect to C and D, respectively, are

vC ¼

c1

c2

..

.

cn

2
6664

3
7775

C

and vD ¼

d1

d2

..

.

dn

2
6664

3
7775

D

Now since each basis vector in C is also a vector in V, it too can be expressed as a

unique linear combination of the basis vectors in D. In particular,

u1 ¼ p11v1 þ p21v2 þ . . .þ pn1vn

for some choice of the scalars p11, p21, . . . , pn1;

u2 ¼ p12v1 þ p22v2 þ . . .þ pn2vn

for some choice of the scalars p12, p22, . . . , pn2; and, in general,

In general, a vector

has many

coordinate

representations, a

different one for

each basis.
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uj ¼ p1jv1 þ p2jv2 þ . . .þ pnjvn ¼
Xn

i¼1

pijvi (3:15)

for some choice of the scalars p1j, p2j, . . . , pnj , ( j ¼ 1, 2, . . . , n). The n-tuple

representations of these vectors with respect to the D basis are

u1 $

p11

p21

..

.

pn1

2
6664

3
7775

D

, u2 $

p12

p22

..

.

pn2

2
6664

3
7775

D

, . . . , uj $

p1j

p2j

..

.

pnj

2
6664

3
7775

D

, . . . , un $

p1n

p2n

..

.

pnn

2
6664

3
7775

D

If we use these n-tuples as the columns of a matrix P, then

PD
C ¼

p11 p12 . . . p1j . . . p1n

p21 p22 . . . p2j . . . p2n

..

. ..
. ..

. ..
.

pn1 pn2 . . . pnj . . . pnn

2
6664

3
7775

where the subscript-superscript notation on P indicates that we are mapping

from the C basis to the D basis. The matrix PD
C is called the transition matrix

from the C basis to the D basis. It follows from (3.13) and (3.15) that

v ¼
Xn

j¼1

cjuj ¼
Xn

j¼1

cj

Xn

i¼1

pijvi

 !
¼
Xn

i¼1

Xn

j¼1

pijcj

 !
vi

But we also have from (3.14) that

v ¼
Xn

i¼1

divi

and because this representation is unique (see Theorem 5 of Section 2.4), we may

infer that

di ¼
Xn

j¼1

pijcj

Therefore,

d1

d2

..

.

dn

2
6664

3
7775

D

¼

Pn
j¼1

p1jcj

Pn
j¼1

p2jcj

..

.

Pn
j¼1

pnjcj

2
66666666666664

3
77777777777775
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which can be written as the matrix product

d1

d2

..

.

dn

2
6664

3
7775

D

¼

p11 p12 . . . p1j . . . p1n

p21 p22 . . . p2j . . . p2n

..

. ..
. ..

. ..
.

pn1 pn2 . . . pnj . . . pnn

2
6664

3
7775

c1

c2

..

.

cn

2
6664

3
7775

C

or

vD ¼ PD
CvC (3:16)

We have proven:

" Theorem 1. If vC and vD are the n-tuple (coordinate) representations of

a vector v with respect to the bases C and D, respectively, and if Pj is

the n-tuple representation of the j-th basis vector in C ( j ¼ 1, 2, . . . , n)

with respect to the D basis, then vD ¼ PD
CvC where the j-th column of PD

C

is Pj. 3

Example 1 Find the transition matrix between the bases C ¼ f[ 1 0 ]T, [ 0 1 ]Tg
and for P1 and D ¼ f[ 1 1 ]T, [ 1 �1 ]Tg in R2, and verify Theorem 1 for

the coordinate representations of v ¼ [ 7 2 ]T with respect to each basis.

Solution: We have

1

0

� �
¼ 1

2

1

1

� �
þ 1

2

1

�1

� �
$

1=2

1=2

� �
D

and

0

1

� �
¼ 1

2

1

1

� �
� 1

2

1

�1

� �
$

1=2

�1=2

� �
D

and the transition matrix from C to D as

PD
C ¼

1=2 1=2
1=2 �1=2

� �

The coordinate representation of [ 7 2 ]T with respect to the C and D bases were

found in Example 10 of Section 2.4 to be, respectively,

vC ¼
7

2

� �
and vD ¼

9=2
5=2

� �

Here

PB
SvS ¼

1=2 1=2
1=2 �1=2

� �
7

2

� �
¼ 9=2

5=2

� �
¼ vB &
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Although Theorem 1 involves the transition matrix from C to D, it is equally

valid in the reverse direction for the transition matrix from D to C. If PC
D

represents this matrix, then

vC ¼ PC
DvD (3:17)

Example 2 Verify (3.17) for the bases and vector v described in Example 1.

Solution: As in Example 1, C ¼ f[ 1 0 ]T, [ 0 1 ]Tg and D ¼ f[ 1 1 ]T,

[ 1 �1 ]Tg. Now, however,

1

1

� �
¼ 1

1

0

� �
þ 1

0

1

� �
$

1

1

� �
C

and

1

�1

� �
¼ 1

1

0

� �
� 1

0

1

� �
$

1

�1

� �
C

and the transition matrix from D to C is

PC
D ¼

1 1

1 �1

� �

Here

PC
DvD ¼

1 1

1 �1

� �
9=2
5=2

� �
¼ 7

2

� �
¼ vC &

Note that the subscript-superscript notation is helpful in tracking which transi-

tion matrix can multiply which coordinate representation. The subscript on the

matrix must match the subscript on the vector being multiplied! The superscript

on the transition matrix must match the subscript on the vector that results from

the multiplication. Equation (3.16) is

while equation (3.17) is

The arrows show the matches that must occur if the multiplication is to be

meaningful and if the equality is to be valid.

An observant reader will note that the transition matrix PC
D found in Example 2

is the inverse of the transition matrix PD
C found in Example 1. This is not

a coincidence.
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" Theorem 2. The transition matrix from C to D, where both C and D are

bases for the same finite dimensional vector space, is invertible and its

inverse is the transition matrix from D to C. 3

Proof: Let PD
C denote the transition matrix from basis C to basis D and let PC

D

be the transition matrix from D to C. If the underlying vector space is

n-dimensional, then both of these transition matrices have order n� n, and

their product is well defined. Denote this product as A ¼ [aij]. Then

PD
CPC

D ¼ A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. ..

. ..
.

an1 an2 . . . ann

2
6664

3
7775 (3:18)

We claim that A is the n� n identity matrix.

We have from Theorem 1 that vD ¼ PD
CvC. Substituting into the right side of this

equation the expression for vC given by (3.17), we obtain

vD ¼ PD
CPC

D

� �
vD ¼ AvD (3:19)

Equation (3.18) is valid for any n-tuple representation with respect to the D

basis. For the special case, vD ¼ [ 1 0 0 . . . 0 ]T, equation (3.19) reduces to

1

0

0

0

..

.

0

2
6666666664

3
7777777775
¼

a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n

..

. ..
. ..

. ..
.

an1 an2 . . . ann

2
66666664

3
77777775

1

0

0

0

..

.

0

2
6666666664

3
7777777775

or

1

0

0

..

.

0

2
6666664

3
7777775 ¼

a11

a21

a31

..

.

an1

2
66666664

3
77777775

which defines the first column of the product matrix in (3.18). For the special

case, vD ¼ [ 0 1 0 . . . 0 ]T, equation (3.19) reduces to
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0

1

0

..

.

0

2
66664

3
77775 ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

a31 a32 . . . a3n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

2
666664

3
777775

0

1

0

..

.

0

2
66664

3
77775

or

0

1

0

..

.

0

2
66664

3
77775 ¼

a12

a22

a32

..

.

an2

2
666664

3
777775

which defines the second column of A. Successively, substituting for vD the

various vectors in the standard basis, we find that

PD
CPC

D ¼ I

from which we conclude that PD
C and PC

D are inverses of one another.

Example 3 Find transition matrices between the two bases G ¼ ftþ 1, t� 1g
and H ¼ f2tþ 1, 3tþ 1g for P1 and verify the results for the coordinate

representations of the polynomial 3tþ 5 with respect to each basis.

Solution: Setting v ¼ 3tþ 5, we may express v as a linear combination of vectors

in either basis. We have

3tþ 5 ¼ [4](tþ 1)þ [� 1](t� 1)

and

3tþ 5 ¼ [12](2tþ 1)þ [� 7](3tþ 1)

so the coordinate representations of v with respect to these bases are

vG ¼
4

�1

� �
G

and vH ¼
12

�7

� �
H

Now writing each vector in the H basis as a linear combination of the vectors in

the G basis, we obtain

2tþ 1 ¼ [1:5](tþ 1)þ [0:5](t� 1)$ 1:5
0:5

� �
G
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and

3tþ 1 ¼ [2](tþ 1)þ [1](t� 1)$ 2

1

� �
G

Consequently, the transition matrix from the H basis to the G basis is

PG
H ¼

1:5 2

0:5 1

� �

while the transition matrix from the G basis to the H basis is

PH
G ¼ PG

H

� ��1¼ 2 �4

�1 3

� �

Then

PG
HvH ¼

1:5 2

0:5 1

� �
12

�7

� �
¼ 4

�1

� �
¼ vG

and

PH
GvG ¼

2 �4

�1 3

� �
4

�1

� �
¼ 12

�7

� �
¼ vH &

If we graph the standard basis in R2 in the x-y plane, we have the directed line

segments e1 and e2 shown in Figure 3.13. Another basis for R2 is obtained by

rotating these two vectors counterclockwise about the origin by an angle u,

resulting in the directed line segments u1 and u2 graphed in Figure 3.13. The

magnitudes of all four directed line segments are one. It then follows from ele-

mentary trigonometry that the arrowhead for u1 falls on the point (cos u, sin u)

Figure 3.13 y

y'

xe1

θ
θ

(1, 0)

(0, 1)

(co
s θ,

 sin
 θ)

(−sin θ, cos θ) e2
u2

u1

x'
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while that for u2 falls on the point (� sin u, cos u). Setting S ¼ fe1, e2g and

R ¼ fu1, u2g, we have

cos u

sin u

� �
¼ cos u

1

0

� �
þ sin u

0

1

� �
$ cos u

sin u

� �
S

and

� sin u

cos u

� �
¼ � sin u

1

0

� �
þ cos u

0

1

� �
$ � sin u

cos u

� �
S

The transition matrix from the R basis to the S basis is

PS
R ¼

cos u � sin u

sin u cos u

� �

Hence, the transition matrix from the S basis to the R basis is

PR
S ¼ PS

R

� ��1¼ cos u sin u

� sin u cos u

� �

Consequently, if

vS ¼
x

y

� �
S

and vR ¼
x 0

y 0

� �
R

denote, respectively, the coordinate representation of the vector v with respect to

the standard basis S and the coordinate representation of v with respect to the R

basis, then

x 0

y 0

� �
¼ vR ¼ PR

SvS ¼
cos u sin u

� sin u cos u

� �
x

y

� �
¼ x cos uþ y sin u

�x sin uþ y cos u

� �

Equating components, we have the well-known transformations for a rotation of

the coordinate axis in the x-y plane by an angle of u in the counterclockwise

direction:

x 0 ¼ x cos uþ y sin u

y 0 ¼ �x sin uþ y cos u

We showed in Section 3.3 that a linear transformation from one finite-dimen-

sional vector space to another can be represented by a matrix. Such a matrix,

however, is basis dependent; as the basis for either the domain or range is

changed, the matrix changes accordingly.

In general, a linear

transformation has

many matrix

representations, a

different matrix for

each pair of bases in

the domain and

range.
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Example 4 Find matrix representations for the linear transformation T:

R2 ! R2 defined by

T
a

b

� �
¼ 11aþ 3b

�5a� 5b

� �

(a) with respect to the standard basis C ¼ f 1 0½ �T, 0 1½ �Tg, (b) with respect to

the basis D ¼ f 1 1½ �T, 1 �1½ �Tg, and (c) with respect to the basis

E ¼ f 3 �1½ �T, 1 �5½ �Tg.

Solution: (a) Using the standard basis, we have

T
1

0

� �
¼ 11

�5

� �
¼ 11

1

0

� �
� 5

0

1

� �
$ 11

�5

� �
C

T
0

1

� �
¼ 3

�5

� �
¼ 3

1

0

� �
� 5

0

1

� �
$ 3

�5

� �
C

and

T $ 11 3

�5 �5

� �C

C

¼ AC
C

(b) Using the B basis, we have

T
1

1

� �
¼

14

�10

� �
¼ 2

1

1

� �
þ 12

1

�1

� �
$

2

12

� �
D

T
1

�1

� �
¼

8

0

� �
¼ 4

1

1

� �
þ 4

1

�1

� �
$

4

4

� �
D

and

T $ 2 4

12 4

� �D

D

¼ AD
D

(c) Using the E basis, we obtain

T
3

�1

� �
¼

30

�10

� �
¼ 10

3

�1

� �
þ 0

1

�5

� �
$

10

0

� �
E

T
1

�5

� �
¼
�4

20

� �
¼ 0

3

�1

� �
� 4

1

�5

� �
$

0

�4

� �
E

and
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T $ 10 0

0 �4

� �E

E

¼ AE
E &

It is natural to ask whether different matrices representing the same linear

transformation are related. We limit ourselves to linear transformations from

a vector space into itself, that is, linear transformations of the form T: V! V,

because these are the transformations that will interest us the most. When the

domain and range are identical, both have the same dimension, and any matrix

representation of T must be square. The more general case of transformations

that map from one vector space V into a different vector space W is addressed in

Problem 40.

Let T: V! V be a linear transformation on an n-dimensional vector space V

with w ¼ T(v). If C is a basis for a vector space V, then the n-tuple representation

for w with respect to C, denoted by wC, can be obtained indirectly (see

Section 3.3), by first determining the n-tuple representation for v with respect

to C, denoted by vC, then determining the matrix representation for T with

respect to the C basis, denoted by AC
C, and finally calculating the product AC

CvC.

That is,

wC ¼ AC
CvC (3:20)

If we use a different basis, denoted by D, then we also have

wD ¼ AD
DvD (3:21)

Since vC and vD are n-tuple representations for the same vector v, but with respect

to different bases, it follows from Theorem 1 that there exists a transition matrix

PD
C for which

vD ¼ PD
CvC (3:22)

Because (3.22) is true for any vector in V, it is also true for w, hence

wD ¼ PD
CwC (3:23)

Now, (3.21) and (3.22) imply that

wD ¼ AD
DvD ¼ AD

DPD
CvC (3:24)

while (3.23) and (3.20) imply that

wD ¼ PD
CwC ¼ PD

CAC
CvC (3:25)

It follows from (3.24) and (3.25) that
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PD
CAC

CvC ¼ AD
DPD

CvC

This equality is valid for all n-tuples vC with respect to the C basis. If we

successively take vC to be the vector having 1 as its first component with all

other components equal to zero, then the vector having 1 in its second compon-

ent with all other components equal to zero, and so on through the entire

standard basis, we conclude that

PD
CAC

C ¼ AD
DPD

C

We know from Theorem 2 that the transition matrix is invertible, so we may

rewrite this last equation as

AC
C ¼ PD

C

� ��1
AD

DPD
C (3:26)

Conversely, the same reasoning shows that if (3.26) is valid, then AC
C and AD

D are

matrix representations for the same linear transformations with respect to the

C basis and D basis, respectively, where these two bases are related by the

transition matrix PD
C . If we simplify our notation by omitting the subscripts

and superscripts and using different letters to distinguish different matrices, we

have proven:

" Theorem 3. Two n� n matrices A and B represent the same linear

transformation if and only if there exists an invertible matrix P such that

A ¼ P�1BP (3:27) 3

Although equation (3.27) is notationally simpler, equation (3.26) is more reveal-

ing because it explicitly exhibits the dependencies on the different bases.

Example 5 Verify equation (3.26) for the matrix representations obtained in

parts (a) and (b) of Example 4.

Solution: From Example 4,

AS
S ¼

11 3

�5 �5

� �
, AB

B ¼
2 4

12 4

� �

and from Example 1,

PB
S ¼

1

2

1

2

1

2
� 1

2

2
6664

3
7775
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Therefore,

PB
S

� ��1
AB

BPB
S ¼

1 1

1 �1

� �
2 4

12 4

� � 1

2

1

2

1

2
� 1

2

2
66664

3
77775

¼
11 3

�5 �5

� �
¼ AS

S &

Example 6 Verify equation (3.26) for the matrix representations obtained in

parts (a) and (c) of Example 4.

Solution: Here the bases are S ¼ f[ 1 0 ]T, [ 0 1 ]Tg and E ¼ f[ 3 �1 ]T,

[ 1 �5 ]Tg, so equation (3.26) takes the notational form

AS
S ¼ PE

S

� ��1
AE

EP
E
S

From Example 4,

AC
C ¼

11 3

�5 �5

� �
, and AE

E ¼
10 0

0 �4

� �

Writing each vector in the S basis as a linear combination of vectors in the

E basis, we find that

1

0

� �
¼ 5

14

3

�1

� �
� 1

14

1

�5

� �
$

5=14

�1=14

� �
E

0

1

� �
¼ 1

14

3

�1

� �
� 3

14

1

�5

� �
$

1=14

�3=14

� �
E

whereupon

PE
S ¼

5=14 1=14

�1=14 �3=14

� �

Therefore,

PE
S

� ��1
AE

EP
E
S ¼

3 1

�1 �5

� �
10 0

0 �4

� �
5=14 1=14

�1=14 �3=14

� �

¼
11 3

�5 �5

� �
¼ AS

S &

Matrices A and B

are similar if they

represent the same

linear trans-

formation, in which

case there exists a

transition matrix P

such that

A ¼ P�1BP.
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We say that two matrices are similar if they represent the same linear transform-

ation. It follows from equation (3.27) that similar matrices satisfy the matrix

equation

A ¼ P�1BP (3:27 repeated)

If we premultiply equation (3.27) by P, it follows that A is similar to B if and only

if there exists a nonsingular matrix P such that

PA ¼ BP (3:28)

Of all the similar matrices that can represent a particular linear transformation,

some will be simpler in structure than others and one may be the simplest of all.

In Example 4, we identified three different matrix representations for the same

linear transformation. We now know all three of these matrices are similar. One, in

particular, is a diagonal matrix, which is in many respects the simplest possible

structure for a matrix. Could we have known this in advance? Could we have

known in advance what basis would result in the simplest matrix representation?

The answer is yes in both cases, and we will spend much of Chapters 4 and 6

developing methods for producing the appropriate bases and their related matrices.

Problems 3.4

In Problems 1 through 13, find the transition matrix from the first listed basis to the

second.

(1) B ¼ f[ 1 0 ]T, [ 1 1 ]Tg, C ¼ f[ 0 1 ]T, [ 1 1 ]Tg.

(2) B ¼ f[ 1 0 ]T, [ 1 1 ]Tg, D ¼ f[ 1 1 ]T, [ 1 2 ]Tg.

(3) C ¼ f[ 0 1 ]T, [ 1 1 ]Tg, D ¼ f[ 1 1 ]T, [ 1 2 ]Tg.

(4) Same as Problem 3 but with D listed first.

(5) E ¼ f[ 1 2 ]T, [ 1 3 ]Tg, F ¼ f[�1 1 ]T, [ 0 1 ]Tg.

(6) Same as Problem 5 but with F listed first.

(7) G ¼ f[ 10 20 ]T, [ 10 �20 ]Tg, F ¼ f[�1 1 ]T, [ 0 1 ]Tg.

(8) S ¼ f[ 1 0 0 ]T, [ 0 1 0 ]T, [ 0 0 1 ]Tg,
T ¼ f[ 1 1 0 ]T, [ 0 1 1 ]T, [ 1 0 1 ]Tg.

(9) S ¼ f[ 1 0 0 ]T, [ 0 1 0 ]T, [ 0 0 1 ]Tg,
U ¼ f[ 1 0 0 ]T, [ 1 1 0 ]T, [ 1 1 1 ]Tg.

(10) Same as Problem 9 but with U listed first.

(11) U ¼ f[ 1 0 0 ]T, [ 1 1 0 ]T, [ 1 1 1 ]Tg,
T ¼ f[ 1 1 0 ]T, [ 0 1 1 ]T, [ 1 0 1 ]Tg.

(12) V ¼ f[ 1 1 0 ]T, [ 0 1 1 ]T, [ 1 3 1 ]Tg,
T ¼ f[ 1 1 0 ]T, [ 0 1 1 ]T, [ 1 0 1 ]Tg.

(13) V ¼ f[ 1 1 0 ]T, [ 0 1 1 ]T, [ 1 3 1 ]Tg,
U ¼ f[ 1 0 0 ]T, [ 1 1 0 ]T, [ 1 1 1 ]Tg.
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In Problems 14 through 25, a linear transformation is defined and two bases are specified.

Find (a) the matrix representation for T: V! V with respect to the first listed bases, (b)

the matrix representation for the linear transformation with respect to the second listed

basis, and (c) verify equation (3.18) using the results of parts (a) and (b) with a suitable

transition matrix.

(14) T
a

b

� �
¼ 2aþ b

a� 3b

� �
; B and C as given in Problem 1.

(15) T
a

b

� �
¼ 2aþ b

a� 3b

� �
; E and F as given in Problem 5.

(16) T
a

b

� �
¼ 8a� 3b

6a� b

� �
; B and D as given in Problem 2.

(17) T
a

b

� �
¼ 2a

3a� b

� �
; B and C as given in Problem 1.

(18) T
a

b

� �
¼ 11a� 4b

24a� 9b

� �
; E and F as given in Problem 5.

(19) T
a

b

� �
¼ 11a� 4b

24a� 9b

� �
; B and D as given in Problem 2.

(20) T
a

b

� �
¼ a

b

� �
; E and F as given in Problem 5.

(21) T
a

b

� �
¼ 0

0

� �
; C and D as given in Problem 3.

(22) T

a

b

c

2
4
3
5 ¼ 3a� bþ c

2a� 2c

3a� 3bþ c

2
4

3
5; S and T as given in Problem 8.

(23) T

a

b

c

2
4
3
5 ¼ 3a� bþ c

2a� 2c

3a� 3bþ c

2
4

3
5; S and U as given in Problem 9.

(24) T

a

b

c

2
4
3
5 ¼ a� b

2b

aþ 3c

2
4

3
5; S and T as given in Problem 8.

(25) T

a

b

c

2
4
3
5 ¼ a

2b

�3c

2
4

3
5; S and U as given in Problem 9.

(26) Show directly that A ¼ 2 0

0 2

� �
and B ¼ 2 1

0 2

� �
are not similar.

Hint: Set P ¼ a b

c d

� �
and show that no elements of this matrix exist that make

equation (3.27) valid.

(27) Show directly that there does exist an invertible matrix P that satisfies equation

(3.27) for A ¼ 4 3

�2 �1

� �
and B ¼ 5 �4

3 �2

� �
:

(28) Prove that if A is similar to B then B is similar to A.
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(29) Prove that if A is similar to B and B is similar to C, then A is similar to C.

(30) Prove that if A is similar to B, then A2 is similar to B2.

(31) Prove that if A is similar to B, then A3 is similar to B3.

(32) Prove that if A is similar to B, then AT is similar to BT.

(33) Prove that every square matrix is similar to itself.

(34) Prove that if A is similar to B, then kA is similar to kB for any constant k.

(35) Prove that if A is similar to B and if A is invertible, then B is also invertible and

A�1 is similar to B�1.

(36) Show that there are many P matrices that make equation (3.26) valid for the two

matrix representations obtained in Problem 20.

(37) Show that there are many P matrices that make equation (3.26) valid for the two

matrix representations obtained in Problem 21.

(38) Let C ¼ fv1, v2, . . . , vng and let D ¼ fv2, v3, . . . , vn, v1g be a re-ordering of the

C basis by listing v1 last instead of first. Find the transition matrix from

the C basis to the D basis.

(39) Let S be the standard basis for Rn written as column vectors. Show that if

B ¼ fv1, v2, . . . , vng is any other basis of column vectors for Rn, then the columns

of the transition matrix from B to S are the vectors in B.

(40) Let C and E be two bases for a vector space V, D and F be two bases for a vector

space W, and T: V!W be a linear transformation. Verify the following:

(i) For any vector v in V there exists a transition matrix P such that vC ¼ PC
E vE.

(ii) For any vector w in W there exists a transition matrix Q such that

wD ¼ QD
F vF.

(iii) If A is a matrix representation of T with respect to the C and D bases, then

wD ¼ AD
CvC:

(iv) If A is a matrix representation of T with respect to the E and F bases, then

wF ¼ AF
EvE:

(v) wD ¼ AD
CPC

E vE.

(vi) wD ¼ QD
F AF

EvE.

(vii) AD
CPC

E ¼ QD
F AF

E.

(viii) AF
E ¼ QD

F

� ��1
AD

CPC
E .

3.5 PROPERTIES OF LINEAR TRANSFORMATIONS

Because a linear transformation from one finite-dimensional vector space to

another can be represented by a matrix, we can use our understanding of

matrices to gain a broader understanding of linear transformations. Alterna-

tively, because matrices are linear transformations, we can transport properties
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of linear transformations to properties of matrices. Sometimes it will be easier to

discover properties dealing with matrices, because the structure of a matrix is so

concrete. Other times, it will be easier to work directly with linear transform-

ations in the abstract, because their structures are so simple. In either case,

knowledge about one, either linear transformations or matrices, provides an

understanding about the other.

" Theorem 1. If T: V!W is a linear transformation, then T(0) ¼ 0. 3

Proof: We have from Theorem 1 of Section 2.1 that 00 ¼ 0. In addition, T(0) is

a vector in W, so 0T(0) ¼ 0. Combining these results with the properties of linear

transformations, we conclude that

T(0) ¼ T(00) ¼ 0T(0) ¼ 0 &

Note how simple Theorem 1 was to prove using the properties of vector spaces

and linear transformations. To understand Theorem 1 in the context of matrices,

we first note that regardless of the basis B ¼ fu1, u2, . . . , upg selected for a vector

space, the zero vector has the form

0 ¼ 0u1 þ 0u2 þ . . .þ 0up

The zero vector is unique (Theorem 4 of Section 2.1) and can be written only one

way as a linear combination of basis vectors (Theorem 5 of Section 2.4), hence

the coordinate representation of the zero vector is a zero column matrix. Thus, in

terms of matrices, Theorem 1 simply states that the product of a matrix with

a zero column matrix is again a zero column matrix. Theorem 1 is obvious in the

context of matrices, but only after we set it up. In contrast, the theorem was not

so obvious in the context of linear transformations, but much simpler to prove.

In a nutshell, that is the advantage (and disadvantage) of each approach.

Theorem 1 states that a linear transformation always maps the zero vector in the

domain into the zero vector in W. This may not, however, be the only vector

mapped into the zero vector; there may be many more. The projection

L: R2 ! R2 defined in Example 7 of Section 3.2 as

L[ a b ] ¼ [ a 0 ]

generates the mappings L[ 0 1 ] ¼ [ 0 0 ] ¼ 0, L[ 0 2 ] ¼ [ 0 0 ] ¼ 0, and, in

general, L[ 0 k ] ¼ 0 for any real number k. This projection maps infinitely

many different vectors in the domain into the zero vector. In contrast, the

identity mapping I(v) ¼ v maps only the zero vector into the zero vector. We

define the kernel (or null space) of a linear transformation T: V!W, denoted

by ker(T), as the set of all vectors v 2 V that are mapped by T into the zero vector

in W; that is, all v for which T(v) ¼ 0. It follows from Theorem 1 that ker(T)

always contains the zero vector from the domain, so the kernel is never an empty

set. We can say even more.

The kernel of a

linear trans-

formation T is the

set of all vectors v in

the domain for

which T(v) ¼ 0.
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" Theorem 2. The kernel of a linear transformation is a subspace of the

domain. 3

Proof: Let u and v be any two vectors in the kernel of a linear transformation T,

where T(u) ¼ 0 and T(v) ¼ 0. Then for any two scalars a and b, it follows from

the properties of a linear transformation that

T(auþ bv) ¼ aT(u)þ bT(v) ¼ a0þ b0 ¼ 0þ 0 ¼ 0

Thus, auþ bv is also in the kernel and the kernel is a subspace. &

In terms of a specific matrix A, the kernel is the set of column vectors x that

satisfy the matrix equation Ax ¼ 0. That is, ker(A) is the set of all solutions to the

system of homogeneous equations Ax ¼ 0. Theorem 2 implies that this set is

a subspace.

Example 1 Determine the kernel of the matrix A ¼ 1 1 5

2 �1 1

� �
.

Solution: The kernel of A is the set of all three-dimensional column matrices

x ¼ [ x y z ]T that satisfy the matrix equation

1 1 5

2 �1 1

� � x

y

z

2
4
3
5 ¼ 0

0

0

2
4
3
5

or, equivalently, the system of linear equations

xþ yþ 5z ¼ 0

2x� yþ z ¼ 0

The solution to this system is found by Gaussian elimination to be

x ¼ �2z, y ¼ �3z, with z arbitrary. Thus, x 2 ker(A) if and only if

x ¼
x

y

z

2
4
3
53 ¼ z

�2

�3

1

2
4

3
5

where z is an arbitrary real number. The kernel of A is a one-dimensional

subspace of the domain R3; a basis for ker(A) consists of the single vector

[�2 �3 1 ]T. &

The image of a transformation T: V!W is the set of vectors in W that are

matched with at least one vector in V; that is, w is in the image of T if and only if

The set of vectors

that satisfy the

homogeneousmatrix

equation Ax ¼ 0 is a

subspace called the

kernel of A.
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there exists at least one vector v in the domain for which T(v) ¼ w. We shall

denote the image of T by Im(T). If T is linear, it follows from Theorem 1 that

Im(T) always contains the zero vector in W, because the zero vector in V is

mapped into the zero vector in W. We can say even more.

" Theorem 3. The image of a linear transformation T: V!W is a

subspace of W. 3

Proof: Let w1 and w2 be any two vectors in the image of a linear transformation

T. Then there must exist vectors v1 and v2 in the domain having the property that

T(v1) ¼ w1 and T(v2) ¼ w2. For any two scalars a and b, it follows from the

properties of a linear transformation that

aw1 þ bw2 ¼ aT(v1)þ bT(v2) ¼ T(av1 þ bv2)

Because V is a vector space, av1 þ bv2 is in the domain, and because this linear

combination maps into aw1 þ bw2, it follows that aw1 þ bw2 is in the image of T.

Consequently, Im(T ) is a subspace. &

In terms of a specific matrix A, the image is the set of column matrices y that

satisfy the matrix equation Ax ¼ y. That is, Im(A) is the set of products Ax for

any vector x in the domain. Theorem 3 implies that this set is a subspace. Denote

the columns of A by A1, A2, . . . , An, respectively, and a column matrix x as

x ¼ [ x1 x2 . . . xn ]T. Then

Ax ¼ x1A1 þ x2A2 þ . . .þ xnAn

That is, the image of A is the span of the columns of A, which is the column space

of A.

Example 2 Determine the image of the matrix A ¼ 1 1 5

2 �1 1

� �
.

Solution: The column space of A is identical to the row space of AT. Using

elementary row operations to transform AT to row-reduced form, we obtain

1 2

0 1

0 0

2
4

3
5

This matrix has two nonzero rows; hence, its rank is 2. Thus the rank of AT, as

well as the rank of A, is 2. A is a 2� 3 matrix mapping R3 into R2. The range R2

has dimension 2, and since the image also has dimension 2, the image must be

the entire range. Thus, Im(A) ¼ R2. &

The image of a

linear trans-

formation T is the

set of all vectors w in

the range for which

there is a vector v in

the domain

satisfying T(v) ¼ w.

The image of a

matrix is its column

space.
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Example 3 Identify the kernel and the image of the linear transformation

T: P2 !M2�2 defined by

T(at2 þ btþ c) ¼ a 2b

0 a

� �

for all real numbers a, b, and c.

Solution: This transformation maps polynomials in t of degree 2 or less into

2� 2 matrices. In particular,

T(3t2 þ 4tþ 5) ¼ 3 8

0 3

� �

and

T(� t2 þ 5tþ 2) ¼ T(� t2 þ 5t� 8) ¼ �1 10

0 �1

� �

A polynomial in the domain is mapped into the zero matrix if and only if

a ¼ b ¼ 0, so the kernel is the set of all polynomials of the form 0t2 þ 0tþ c;

that is, the subspace of all zero-degree polynomials. A basis for ker(T) is f1g.
Thus, the kernel is a one-dimensional subspace of P2.

M2�2 is a four-dimensional vector space. The image of T is the subspace contain-

ing all matrices of the form

a 2b

0 a

� �
¼ a

1 0

0 1

� �
þ b

0 2

0 0

� �

which is spanned by the two matrices

1 0

0 1

� �
and

0 2

0 0

� �

It is a simple matter to prove that these two matrices are linearly independent, so

they form a basis for the image of T. Thus, Im(T) is a two-dimensional subspace

of M2�2. &

It is important to recognize that the kernel and image of a linear transformation

T: V!W are conceptually different subspaces: the kernel is a subspace of the

domain V while the image is a subspace of the range W. Figure 3.14 is a

schematic rendition of these concepts. The vector space V is depicted by the

palette on the left, the vector space W by the palette on the right, and because

these vector spaces can be different, the palettes are drawn differently. Each

point in the interior of a palette denotes a vector in its respective vector space.
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Needless to say, both palettes are just symbolic representations of vector spaces

and not true geometrical renditions of either the domain or range.

The palettes in Figure 3.14 are partitioned into two sections, one shaded and one

not. The shaded portion of the left palette represents ker(T), and, as such, every

point in it must be mapped into the zero vector in W. This is shown symbolically

by the vector v1. Vectors in the unshaded portion of the left palette, illustrated by

the vectors v2; v3 and v4, are mapped into other vectors in W. The zero vector in

V is mapped into the zero vector in W as a consequence of Theorem 1.

The shaded portion of the right palette represents the image of T. Any vector w

in this region has associated with it a vector v in the left palette for which

w ¼ T(v). The unshaded portion of the right palette is not in the image of T

and vectors in it are not matched with any vectors in domain represented by the

left palette.

Even though the kernel and image of a linear transformation are conceptually

different, their bases are related.

" Theorem 4. Let T be a linear transformation from an n-dimensional

vector space V into W and let fv1, v2, . . . , vkg be a basis for the kernel of

T. If this basis is extended to a basis fv1, v2, . . . , vk, vkþ1, . . . , vng for V,

then fT(vkþ1),T(vkþ2), . . . , T(vn)g is a basis for the image of T. 3

Proof: We must show that fT(vkþ1), T(vkþ2), . . . , T(vn)g is a linearly independ-

ent set that spans the image of T. To prove linear independence, we form the

equation

ckþ1T(vkþ1)þ ckþ2T(vkþ2)þ . . .þ cnT(vn) ¼ 0 (3:29)

and show that the only solution to this equation is ckþ1 ¼ ckþ2 ¼ . . . ¼ cn ¼ 0.

Because T is linear, equation (3.29) can be rewritten as

T(ckþ1vkþ1 þ ckþ2vkþ2 þ . . .þ cnvn) ¼ 0

which implies that the sum ckþ1vkþ1 þ ckþ2vkþ2 þ . . .þ cnvn in a vector in the

kernel of T. Every vector in the kernel can be expressed as a unique linear

Figure 3.14

v2

v1

v3
v4

Ker (T )

Im (T )

O O

w1w2
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combination of its basis vectors (Theorem 5 of Section 2.4), so there must exist a

unique set of scalars c1, c2, . . . , ck such that

ckþ1vkþ1 þ ckþ2vkþ2 þ . . .þ cnvn ¼ c1v1 þ c2v2 þ . . .þ ckvk

which can be rewritten as

�c1v1 � c2v2 � . . .� ckvk þ ckþ1vkþ1 þ ckþ2vkþ2 þ . . .þ cnvn ¼ 0 (3:30)

But fv1, v2, . . . , vng is basis for V; consequently, it is linearly independent and the

only solution to equation (3.30) is �c1 ¼ �c2 ¼ . . . ¼ �ck ¼ ckþ1 ¼ ckþ2 ¼ . . . ¼
cn ¼ 0. Thus, ckþ1 ¼ ckþ2 ¼ . . . ¼ cn ¼ 0 is the only solution to equation (3.29),

and fT(vkþ1),T(vkþ2), . . . , T(vn)g is linearly independent.

It remains to show that fT(vkþ1), T(vkþ2), . . . , T(vn)g spans the image of T. Let w

denote an arbitrary vector in the image. Then there must be at least one vector v

in the domain having the property that T(v) ¼ w. Writing v as a linear combin-

ation of basis vectors, we have v ¼ d1v1 þ d2v2 þ . . .þ dkvk þ dkþ1vkþ1þ
dkþ2vkþ2 þ . . .þ dnvn for a unique set of scalars d1, d2, . . . , dn. Then

w ¼ T(v) ¼T(d1v1 þ d2v2 þ . . .þ dkvk þ dkþ1vkþ1 þ dkþ2vkþ2 þ . . .þ dnvn)

¼ d1T(v1)þ d2T(v2)þ . . .þ dkT(vk)þ dkþ1T(vkþ1)þ dkþ2T(vkþ2)

þ . . .þ dnT(vn)

¼ d10þ d20þ . . .þ dk0þ dkþ1T(vkþ1)þ dkþ2T(vkþ2)þ . . .þ dnT(vn)

¼ dkþ1T(vkþ1)þ dkþ2T(vkþ2)þ . . .þ dnT(vn)

because v1, v2, . . . , vk are (basis) vectors in the kernel of T and all vectors in

ker(T) map into the zero vector. We conclude that every vector w in the image of

T can be written as a linear combination of fT(vkþ1),T(vkþ2), . . . , T(vn)g, so this

set spans the image.

We have shown that fT(vkþ1), T(vkþ2), . . . , T(vn)g is a linearly independent set

that spans the image of T; hence, it is a basis for that image. &

Example 4 Apply Theorem 4 to the linear transformation given in Example 3.

Solution: A basis for the kernel was found to be the set {1} while a basis for the

domain is f1, t, t2g. Theorem 4 states that

T(t2) ¼ T(1t2 þ 0tþ 0) ¼ 1 0

0 1

� �
and

T(t) ¼ T(0t2 þ 1tþ 0) ¼ 0 2

0 0

� �
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form a basis for the image of T, which is precisely the same result obtained in

Example 3. &

Example 5 Apply Theorem 4 to the linear transformation T: R4 ! R3 defined

by

T

a

b

c

d

2
664
3
775 ¼ aþ b

bþ cþ d

a� c� d

2
4

3
5

Solution: A vector in R4 is in the kernel of T if and only if its components a, b, c,

and d satisfy the system of equations

aþ b ¼ 0

bþ cþ d ¼ 0

a� c� d ¼ 0

Using Gaussian elimination on this system, we obtain as its solution a ¼ cþ d,

b ¼ �c� d with c and d arbitrary, which takes the vector form

a

b

c

d

2
664

3
775 ¼

cþ d

�c� d

c

d

2
664

3
775 ¼ c

1

�1

1

0

2
664

3
775þ d

1

�1

0

1

2
664

3
775

Every vector of this form is in the kernel of T. It is clear that the two vectors on

the right side of this last equation span the kernel of T. It is also easy to show that

these two vectors are linearly independent, so they form a basis for ker(T).

This basis for ker(T) can be extended to the set

1

�1

1

0

2
664

3
775,

1

�1

0

1

2
664

3
775,

1

0

0

0

2
664
3
775,

0

1

0

0

2
664
3
775

8>><
>>:

9>>=
>>;

which forms a basis for R4. It now follows that

T

1

0

0

0

2
664
3
775 ¼ 1

0

1

2
4
3
5 and T

0

1

0

0

2
664
3
775 ¼ 1

1

0

2
4
3
5

form a basis for the image of T. &
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Because the kernel and image of a linear transformation T: V!W are sub-

spaces, each has a dimension. The dimension of the kernel is its nullity, denoted

by y(T); the dimension of the image is its rank, denoted by r(T). Assume that

dim(V)I ¼ n. It follows from Theorem 4 that if there are k vectors in the basis

fv1, v2, . . . , vkg for the kernel of T, so that y(T) ¼ k, then a basis for the image of

T given by fT(vkþ1), T(vkþ2), . . . , T(vn)g contains n� k vectors and

r(T) ¼ n� k. Together, r(T)þ y(T) ¼ (n� k)þ k ¼ n, the dimension of V.

The proof of Theorem 4 assumes that 1 � k < n. If k ¼ 0, then ker(T) contains

just the zero vector, which has dimension 0. In this case, we let fv1, v2, . . . , vng be

any basis for V, and with minor modifications the proof of Theorem 4 can be

adapted to show that fT(v1), T(v2), . . . , T(vn)g is a basis for the image of T. Once

again, r(T)þ y(T) ¼ nþ 0 ¼ n. Finally, if y(T) ¼ n, then ker(T) must be all of

the domain, all vectors in V map into 0, the image of T is just the zero vector,

r(T) ¼ 0, and r(T)þ y(T) ¼ 0þ n ¼ n. We have, therefore, proven one of the

more fundamental results of linear algebra.

" Corollary 1. For any linear transformation T from an n-dimensional

vector space V to W, the rank of T plus the nullity of T equals n, the

dimension of the domain. That is,

r(T)þ y(T) ¼ n. 3

The startling aspect of Corollary 1 is that the dimension of W is of no conse-

quence. Although the image of T is a subspace of W, its dimension when

summed with the dimension of the null space of T is the dimension of the

domain.

Example 6 Verify Corollary 1 for the linear transformation T: P2 !M2�2

defined by

T(at2 þ btþ c) ¼ a 2b

0 a

� �

for all real numbers a, b, and c.

Solution: The domain P2 has dimension 3. We showed in Example 3 that a

basis for the kernel contains a single vector and a basis for the image of T

contains two elements. Thus, r(T) ¼ 2, y(T) ¼ 1, and r(T)þ y(T) ¼ 2þ 1 ¼ 3,

the dimension of the domain. &

Example 7 Verify Corollary 1 for the linear transformation T: R4 ! R3 defined

by

T

a

b

c

d

2
664
3
775 ¼ aþ b

bþ cþ d

a� c� d

2
4

3
5

The nullity and rank

of a linear

transformation are,

respectively, the

dimensions of its

kernel and image.
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Solution: The domain R4 has dimension four. We showed in Example 5 that

bases for both the kernel and the image contain two vectors, so

r(T)þ y(T) ¼ 2þ 2 ¼ 4, the dimension of the domain. &

If we restrict our attention to an n� p matrix A, then the kernel of A is the

subspace of all solutions to the homogeneous system of equation Ax ¼ 0 and the

dimension of this subspace is y(A), the nullity of A, The image of A is the column

space of A and its dimension is the column rank of A, which is the rank of the

matrix. Thus, Corollary 1 is simply an alternate formulation of Theorem 3 of

Section 2.5.

A linear transformation T: V!W is one-to-one if the equality T(u) ¼ T(v)

implies u ¼ v. A one-to-one linear transformation maps different vectors in V

into different vectors in W, as illustrated in Figure 3.15(a). If two different

vectors u and v in V map into the same vector in W, as illustrated in Figure

3.15(b), then T(u) ¼ T(v) with u 6¼ v, and the transformation is not one-to-one.

Example 8 Determine whether the linear transformation T: P2 !M2�2

defined by

T(at2 þ btþ c) ¼ a 2b

0 a

� �

is one-to-one.

Solution: Here

T(� t2 þ 5tþ 2) ¼ T(� t2 þ 5t� 8) ¼ �1 10

0 �1

� �

A linear

transformation is

one-to-one if it maps

different vectors in

the domain into

different vectors in

the range.

Figure 3.15

(a) T is one-to-one.

(b) T is not one-to-one.

T

T

T

T

v2

v2

v1

v1

w1

w1

w2
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Setting u ¼ �t2 þ 5tþ 2 and v ¼ �t2 þ 5t� 8, we have T(u) ¼ T(v) with u 6¼ v,

hence T is not one-to-one. &

Example 9 Determine whether the linear transformation T: R2 ! R3 defined by

T
a

b

� �
¼

aþ b

a� b

2aþ 3b

2
4

3
5

is one-to-one.

Solution: Setting u ¼ [ a b ]T, v ¼ [ c d ]T, and T(u) ¼ T(v), we obtain the

vector equation

aþ b

a� b

2aþ 3b

2
4

3
5 ¼ cþ d

c� d

2cþ 3c

2
4

3
5

which is equivalent to the system of equations

aþ b ¼ cþ d

a� b ¼ c� d

2aþ 3b ¼ 2cþ 3d

Solving this system by Gaussian elimination for the variables a and b, thinking of

c and d as fixed constants, we generate the single solution a ¼ c and b ¼ d.

Therefore, the equality T(u) ¼ T(v) implies that u ¼ v, and T is one-to-one. &

Often, the easiest way to show whether a linear transformation is one-to-one is to

use the following:

" Theorem 5. A linear transformation T: V!W is one-to-one if and only

if the kernel of T contains just the zero vector, i.e., y(T) ¼ 0. 3

Proof: Assume that T is one-to-one. If v 2 ker(T), then T(v) ¼ 0. We know

from Theorem 1 that T(0) ¼ 0. Consequently, T(v) ¼ T(0), which implies that

v ¼ 0, because T is one-to-one. Thus, if v 2 ker(T), then v ¼ 0, from which we

conclude that the kernel of T contains just the zero vector.

Conversely, assume that the kernel of T contains just the zero vector. If u and v

are vectors in the domain for which T(u) ¼ T(v), then T(u)� T(v) ¼ 0 and

T(u� v) ¼ 0, which implies that the vector u� v is in the kernel of T. Since

this kernel contains only the zero vector, it follows that u� v ¼ 0 and u ¼ v.

Thus, the equality T(u) ¼ T(v) implies u ¼ v, from which we conclude that T is

one-to-one.
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Example 10 Determine whether the linear transformation T: R4 ! R3 defined

by

T

a

b

c

d

2
664
3
775 ¼ aþ b

bþ cþ d

a� c� d

2
4

3
5

is one-to-one.

Solution: We showed in Example 5 that a basis for the kernel of T contained

two vectors. Thus, y(T) ¼ 2 6¼ 0, and the transformation is not one-to-one. &

A linear transformation T: V!W is onto if the image of T is all of W; that is, if

the image equals the range. The dimension of the image of T is the rank of T.

Thus, T is onto if and only if the rank of T equals the dimension of W. This

provides a straightforward algorithm for testing whether a linear transformation

is onto.

Example 11 Determine whether the linear transformation T: P2 !M2�2

defined by

T(at2 þ btþ c) ¼ a 2b

0 a

� �

is onto.

Solution: We showed in Example 3 that a basis for the kernel of the transform-

ation is the set {1}, hence y(T) ¼ 1. The dimension of the domain P2 is 3, so it

follows from Corollary 1 that r(T)þ 1 ¼ 3 and r(T) ¼ 2. Here W ¼M2�2 has

dimension 4. Since r(T) ¼ 2 6¼ 4 ¼ dim(W), the transformation is not onto. &

Example 12 Determine whether the linear transformation T: M2�2 ! R3

defined by

T
a b

c d

� �
¼

aþ b

bþ c

cþ d

2
4

3
5

is onto.

Solution: A matrix in M2�2 is in the kernel of T if and only if its components a,

b, c, and d satisfy the system of equations

aþ b ¼ 0

bþ c ¼ 0

cþ d ¼ 0

A linear trans-

formation is onto

if its image is its

range.
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The solution to this system is found immediately by back substitution to be

a ¼ �d, b ¼ d, c ¼ �d, with d arbitrary. Thus, a matrix in ker(T) must have

the form

�d d

�d d

� �
¼ d

�1 1

�1 1

� �

which implies that the kernel of T is spanned by the matrix

�1 1

�1 1

� �

This matrix is nonzero. It follows from Theorem 2 of Section 2.3 that, by itself,

this matrix is a linearly independent set. Consequently, this matrix forms a basis

for ker(T), and y(T) ¼ 1. The dimension of the domain V ¼M2�2 is 4, so it

follows from Corollary 1 that r(T)þ 1 ¼ 4 and r(T) ¼ 3. The dimension of the

range R3 is also 3, hence the transformation is onto.

Alternatively, we may show that the matrix representation of T with respect to

the standard bases in both M2�2 and R3 is

A ¼
1 1 0 0

0 1 1 0

0 0 1 1

2
4

3
5

A is in row-reduced form and has rank 3. Therefore, r(T) ¼ r(A) ¼ 3 ¼ dim(R3),

and we once again conclude that the transformation is onto. &

In general, the attributes of one-to-one and onto are quite distinct. A linear

transformation can be one-to-one and onto, or one-to-one and not onto, onto

but not one-to-one, or neither one-to-one nor onto. All four possibilities exist.

There is one situation, however, when one-to-one implies onto and vice versa.

" Theorem 6. Let a linear transformation T: V!W have the property

that the dimension of V equals the dimension of W. Then T is one-to-one

if and only if T is onto. 3

Proof: T is one-to-one if and only if (from Theorem 5) y(T) ¼ 0, which is true

if and only if (Corollary 1) r(T) ¼ dim(V). But dim(V) ¼ dim(W); hence, T is one-

to-one if and only if r(T) ¼ dim(W), which is valid if and only if T is onto. &

Problems 3.5

(1) Define T: R3 ! R2 by T[ a b c ] ¼ [ aþ b c ]. Determine whether any of the

following vectors are in the kernel of T.

(a) [ 1 �1 3 ], (b) [ 1 �1 0 ],

(c) [ 2 �2 0 ], (d) [ 1 25 1 0 ].
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(2) Define S: R3 ! R2 by S[ a b c ] ¼ [ a� c c� b ]. Determine whether any of the

following vectors are in the kernel of S.

(a) [ 1 �1 1 ], (b) [ 1 1 1 ],

(c) [�2 �2 �2 ], (d) [ 1 1 0 ].

(3) Define L: R3 ! R2, L[ a b c ] ¼ [ aþ 2b� 3c 0 ]. Determine whether any of the

following vectors are in the kernel of L.

(a) [ 1 1 1 ], (b) [ 5 �1 1 ],

(c) [�1 2 1 ], (d) [�1 5 3 ].

(4) Define P: M2�2 !M2�2, P
a b

c d

� �
¼ aþ b 0

0 c� d

� �
. Determine whether any of

the following matrices are in the kernel of P.

(a)
1 1

1 1

� �
, (b)

1 �1

1 1

� �
, (c)

1 1

1 �1

� �
, (d)

1 �1

�1 �1

� �
.

(5) Define T: P2 ! P2 by T(a2t
2 þ a1tþ a0) ¼ (a2 � a1)t

2 þ (a1 � a0)t. Determine

whether any of the following vectors are in the kernel of T.

(a) 2t2 � 3tþ 4, (b) t2 þ t, (c) 3tþ 3, (d) �t2 � t� 1.

(6) Determine whether any of the following vectors are in the image of the linear

transformation defined in Problem 1. For each one that is, produce an element in

the domain that maps into it.

(a) [ 1 1 ], (b) [ 1 �1 ], (c) [ 2 0 ], (d) [ 1 2 ].

(7) Determine whether any of the following vectors are in the image of the linear

transformation defined in Problem 3. For each one that is, produce an element in

the domain that maps into it.

(a) [ 1 1 ], (b) [ 1 0 ], (c) [ 2 0 ], (d) [ 1 2 ].

(8) Determine whether any of the following matrices are in the image of the linear

transformation defined in Problem 4. For each one that is, produce an element in

the domain that maps into it.

(a)
1 1

1 1

� �
, (b)

1 0

0 0

� �
, (c)

0 1

0 0

� �
, (d)

3 0

0 �5

� �
.

(9) Redo Problem 8 for P: M2�2 !M2�2 by P
a b

c d

� �
¼ c a

d b

� �
:

(10) Determine whether any of the following vectors are in the image of the linear

transformation defined in Problem 5. For each one that is, produce an element in

the domain that maps into it.

(a) 2t2 � 3tþ 4, (b) t2 þ 2t, (c) 3t, (d) 2t� 1.

In Problems 11 through 30, find the nullity and rank of the given linear transformations,

and determine which are one-to-one and which are onto.

(11) T: R2 ! R2, T[ a b ] ¼ [ 2a 3b ].

(12) T: R2 ! R2, T[ a b ] ¼ [ a aþ b ].
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(13) T: R2 ! R2, T [ a b ] ¼ [ a 0 ].

(14) S: R3 ! R2, S [ a b c ] ¼ [ aþ b c ].

(15) S: R3 ! R2, S [ a b c ] ¼ [ a� c c� b ].

(16) S: R3 ! R2, S [ a b c ] ¼ [ aþ 2b� 3c 0 ].

(17) S: R2 ! R3, S [ a b ] ¼ [ aþ b 2aþ b a ].

(18) S: R2 ! R3, S [ a b ] ¼ [ a 0 b ].

(19) N : R2 ! R3, N [ a b ] ¼ [ aþ b 2aþ b b ].

(20) N : R2 ! R3, N [ a b ] ¼ [ 0 0 2a� 5b ].

(21) T: R2 ! R3, T [ a b ] ¼ [ a �a �8a ].

(22) T: R3 ! R1, T [ a b c ] ¼ a� c.

(23) L: R3 ! R1, L [ a b c ] ¼ 0.

(24) P: M2�2 !M2�2, P
a b

c d

� �
¼ c a

d b

� �
:

(25) P: M2�2 !M2�2, P
a b

c d

� �
¼ aþ b 0

0 c� d

� �
:

(26) T: M2�2 !M2�2, T
a b

c d

� �
¼ 2d 0

0 0

� �
:

(27) R: M2�2 ! R1, R
a b

c d

� �
¼ bþ 2c� 3d:

(28) L: P2 ! P2, L(a2t
2 þ a1tþ a0) ¼ a0t.

(29) T: P2 ! P2, T(a2t
2 þ a1tþ a0) ¼ (a2 � a1)t

2 þ (a1 � a0)t.

(30) S: P2 ! P2, S(a2t
2 þ a1tþ a0) ¼ 0.

(31) Determine whether any of the following vectors are in the image of

A ¼ 1 3

0 0

� �
:

(a)
2

6

� �
, (b)

2

0

� �
, (c)

0

2

� �
, (d)

0

0

� �
.

(32) Redo the previous problem for the matrix A ¼ 1 0

3 0

� �
.

(33) Determine whether any of the following vectors are in the image of A ¼
1 0

1 1

1 1

2
4

3
5:

(a)

1

0

1

2
4
3
5, (b)

2

0

0

2
4
3
5, (c)

4

3

3

2
4
3
5, (d)

4

4

3

2
4
3
5.

In Problems 34 through 42, find a basis for the kernels and a basis for the image of the

given matrices.
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(34) A ¼ 1 2

2 4

� �
. (35) B ¼ 1 2

2 5

� �
.

(36) C ¼ 1 �1 0

�1 1 0

� �
. (37) D ¼ 1 0 2

3 0 4

� �
.

(38) E ¼
1 0 1

2 1 3

3 1 4

2
4

3
5. (39) F ¼

1 1 1

1 1 1

1 1 1

2
4

3
5.

(40) G ¼
1 1 0

1 0 1

0 1 1

2
4

3
5. (41) H ¼

1

2

3

2
4
3
5.

(42) K ¼ 1 1 2 2½ �.

(43) What can be said about the ranks of similar matrices?

(44) Prove that if a linear transformation T: V!W is onto, then the dimension of W

cannot be greater than the dimension of V.

(45) Use the results of the previous problem to show directly that the transformation

defined in Example 3 is not onto.

(46) Use the results of Problem 44 to show directly that the transformation defined in

Example 9 is not onto.

(47) Prove that if fw1,w2, . . . ,wkg are linearly independent vectors in the image of

a linear transformation L: V!W, and if wi ¼ T(vi) (i ¼ 1, 2, . . . , k), then

fv1, v2, . . . , vkg is also linearly independent.

(48) Prove that a linear transformation T: V!W cannot be one-to-one if the dimension

of W is less than the dimension of V.

(49) Use the result of the previous problem to show directly that the transformation

defined in Example 5 cannot be one-to-one.

(50) Use the result of Problem 48 to show directly that the transformation defined in

Example 12 cannot be one-to-one.

(51) Let fv1, v2, . . . , vpg be a spanning set for V and let T: V!W be a linear trans-

formation. Prove that fT(v1), T(v2), . . . ,T(vp)g is a spanning set for the image of T.

(52) Prove that a linear transformation T: V!W is one-to-one if and only if the image

of every linearly independent set of vectors in V is a linearly independent set of

vectors in W.

(53) Let T: V!W be a linear transformation having the property that the dimension of

V is the same as the dimension of W. Prove that T is one-to-one if the image of any

basis of V is a basis for W.

(54) Prove that a matrix representation of a linear transformation T: V! V has an

inverse if and only if T is one-to-one.

(55) Prove that a matrix representation of a linear transformation T: V! V has an

inverse if and only if T is onto.
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Chapter 3 Review

Important Terms

Important Concepts

Section 3.1 " A function is a rule of correspondence between two sets, a domain and range,

that assigns to each element in the domain exactly one element (but not

necessarily a different one) in the range.

Section 3.2 " A transformation T is a rule of correspondence between two vector spaces,

a domain V and a range W, that assigns to each element in V exactly one

element (but not necessarily a different one) in W.

" A transformation is linear if it preserves linear combinations.

" Every matrix defines a linear transformation.

Section 3.3 " A linear transformation is described completely by its actions on a basis for the

domain.

" Every linear transformation from one finite-dimensional vector space to another

can be represented by a matrix that is basis dependent.

Section 3.4 " In general, a vector has many coordinate representations, a different one for each

basis.

" The transition matrix from C to D, where both C and D are bases for the same

finite-dimensional vector space, is invertible and its inverse is the transition

matrix from D to C.

" If vC and vD are the coordinate representations of the same vector with respect to

the bases C and D, respectively, then vD ¼ PvC where P is the transition matrix

from C to D.

" In general, a linear transformation may be represented by many matrices,

a different one for each basis.

coordinate representation (p. 174)

dilation (p. 164)

domain (p. 157)

function (p. 157)

image (p. 158)

kernel (p. 202)

linear transformation (p. 163)

nullity (p. 209)

null space (p. 202)

one-to-one (p. 210)

onto (p. 212)

projection onto the x-axis (p. 168)

projection onto the y-axis (p. 169)

range (p. 157)

rank (p. 209)

reflection across the x-axis (p. 167)

reflection across the y-axis (p. 168)

rotations in the x-y plane (p. 194)

similar matrices (p. 199)

transformation (p. 163)

transition matrix (p. 188)

zero transformation (p. 165)
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" Two square matrices A and B represent the same linear transformation if and

only if there exists a transition matrix P such that A ¼ P�1BP.

Section 3.5 " A linear transformation always maps the zero vector in the domain to the zero

vector in the range.

" The kernel of a linear transformation is a nonempty subspace of the domain; the

image of a linear transformation is a nonempty subspace of the range.

" The kernel of the linear transformation defined by a matrix A is the set of all

solutions to the system of homogeneous equations Ax ¼ 0; the image of the

linear transformation is the column space of A.

" If fv1, v2, . . . , vkg is a basis for the kernel of a linear transformation T and if this

basis is extended to a basis fv1, v2, . . . , vk, vkþ1, . . . , vng for the domain, then

fT(vkþ1),T(vkþ2), . . . , T(vn)g is a basis for the image of T.

" The rank plus the nullity of a linear transformation from one finite-dimensional

vector space to another equals the dimension of the domain.

" A linear transformation is one-to-one if and only if its kernel contains just the

zero vector.

" A linear transformation is onto if and only if its rank equals the dimension of the

range.

" A linear transformation T: V!W, having the property that dim(V) ¼ dim(W),

is one-to-one if and only if the transformation is onto.
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Chapter 4

Eigenvalues, Eigenvectors,
and Differential Equations

4.1 EIGENVECTORS AND EIGENVALUES

Many of the uses and applications of linear algebra are especially evident by

considering diagonal matrices. In addition to the fact that they are easy to multiply,

a number of other properties readily emerge: their determinants (see Appendix A)

are trivial to compute, we can quickly determine whether such matrices have

inverses and, when they do, their inverses are easy to obtain. Thus, diagonal

matrices are simple matrix representations for linear transformations from a

finite-dimensional vector space V to itself (see Section 3.4). Unfortunately, not all

linear transformations from V to V can be represented by diagonal matrices. In this

section and Section 4.3, we determine which linear transformations have diagonal

matrix representations and which bases generate those representations.

To gain insight into the conditions needed to produce a diagonal matrix repre-

sentation, we consider a linear transformation T: R3 ! R3 having the diagonal

matrix representation

D ¼
l1 0 0

0 l2 0

0 0 l3

2
64

3
75

with respect to the basis B ¼ fx1, x2, x3g. The first column of D is the coordinate

representation of T(x1) with respect to B, the second column of D is the

coordinate representation of T(x2) with respect to B, and the third column of

D is the coordinate representation of T(x3) with respect to B. That is,

T(x1) ¼ l1x1 þ 0x2 þ 0x3 ¼ l1x1

T(x2) ¼ 0x1 þ l2x2 þ 0x3 ¼ l2x2

T(x3) ¼ 0x1 þ 0x2 þ l3x3 ¼ l3x3

Mapping the basis vectors x1, x2, or x3 from the domain of T to the range of T is

equivalent to simply multiplying each vector by the scalar l1, l2, or l3, respectively.
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We say that a nonzero vector x is an eigenvector of a linear transformation T if

there exists a scalar l such that

T(x) ¼ lx (4:1)

In terms of a matrix representation A for T, we define a nonzero vector x to be an

eigenvector of A if there exists a nonzero scalar l such that

Ax ¼ lx (4:2)

The scalar l in equation (4.1) is an eigenvalue of the linear transformation T; the

scalar l in equation (4.2) is an eigenvalue of the matrix A. Note that an eigen-

vector must be nonzero; eigenvalues, however, may be zero.

Eigenvalues and eigenvectors have an interesting geometric interpretation in R2

or R3 when the eigenvalues are real. As described in Section 1.7, multiplying

a vector in either vector space by a real number l results in an elongation of the

vector by a factor of jlj when jlj > 1, or a contraction of the vector by a factor of

jlj when jlj < 1, followed by no rotation when l is positive, or a rotation of 180�

when l is negative. These four possibilities are illustrated in Figure 4.1 for the

vector u in R2 with l ¼ 1=2 and l ¼ �1=2, and for the vector v in R2 with l ¼ 3

and l ¼ �2. Thus, an eigenvector x of a linear transformation T in R2 or R3 is

always mapped into a vector T(x) that is parallel to x.

Not every linear transformation has real eigenvalues. Under the rotation trans-

formation R described in Example 7 of Section 3.2, each vector is rotated around

the origin by an angle u in the counterclockwise direction (see Figure 4.2). As

long as u is not an integral multiple of 180�, no nonzero vector is mapped into

another vector parallel to itself.

A nonzero vector x

is an eigenvector of

a square matrix A if

there exists a scalar

l, called an

eigenvalue, such

that Ax ¼ lx.

Figure 4.1 y

3 v

− 2 v

− 2 − 1 1 2 3
x

−1

−2

−3

u

1

2

3

4

1
2

− u

1
2

−

u
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Example 1 The vector x ¼ �1

1

� �
is an eigenvector of A ¼ 1 2

4 3

� �
because

Ax ¼ 1 2

4 3

� �
�1

1

� �
¼ 1

�1

� �
¼ (� 1)

�1

1

� �
¼ (� 1)x

The corresponding eigenvalue is l ¼ �1. &

Example 2 The vector x ¼
4

1

�2

2
4

3
5 is an eigenvector of A ¼

1 2 3

2 4 6

3 6 9

2
4

3
5 because

Ax ¼
1 2 3

2 4 6

3 6 9

2
4

3
5 4

1

�2

2
4

3
5 ¼ 0

0

0

2
4
3
5 ¼ 0

4

1

�2

2
4

3
5 ¼ 0x

The corresponding eigenvalue is l ¼ 0. &

Eigenvectors and eigenvalues come in pairs. If x is an eigenvector of a matrix A,

then there must exist an eigenvalue l such that Ax ¼ lx, which is equivalent to

the equation Ax� lx ¼ 0 or

(A� lI)x ¼ 0 (4:3)

Note that we cannot write equation (4.3) as (A� l)x ¼ 0 because subtraction

between a scalar l and a matrix A is undefined. In contrast, A� lI is the

difference between two matrices, which is defined when A and I have the same

order.

Equation (4.3) is a linear homogeneous equation for the vector x. If (A� lI)�1

exists, we can solve equation (4.3) for x, obtaining x ¼ (A� lI)�10 ¼ 0, which

violates the condition that an eigenvector be nonzero. It follows that x is an

eigenvector for A corresponding to the eigenvalue l if and only if (A� lI) does

not have an inverse. Alternatively, because a square matrix has an inverse if and

only if its determinant is nonzero, we may conclude that x is an eigenvector for

A corresponding to the eigenvalue l if and only if

Figure 4.2 y

x

Ru

uθ
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det (A� lI) ¼ 0 (4:4)

Equation (4.4) is the characteristic equation of A. If A has order n� n, then

det (A� lI) is an nth degree polynomial in l and the characteristic equation of

A has exactly n roots, which are the eigenvalues of A. Once an eigenvalue is

located, corresponding eigenvectors are obtained by solving equation (4.3).

Example 3 Find the eigenvalues and eigenvectors of A ¼ 1 2

4 3

� �
.

Solution:

A� lI ¼ 1 2

4 3

� �
� l

1 0

0 1

� �
¼ 1� l 2

4 3� l

� �

with det (A� lI) ¼ (1� l)(3� l)� 8 ¼ l2 � 4l� 5. The characteristic equa-

tion of A is l2 � 4l� 5 ¼ 0, having as its roots l ¼ �1 and l ¼ 5. These two

roots are the eigenvalues of A.

Eigenvectors of A have the form x ¼ x y½ �T. With l ¼ �1, equation (4.3)

becomes

(A� lI)x ¼ 1 2

4 3

� ��
� (� 1)

1 0

0 1

� ��
x

y

� �
¼ 0

0

� �
or

2 2

4 4

� �
x

y

� �
¼ 0

0

� �

The solution to this homogeneous matrix equation is x ¼ �y, with y arbitrary.

The eigenvectors corresponding to l ¼ �1 are

x ¼ x

y

� �
¼ �y

y

� �
¼ y

�1

1

� �

for any nonzero scalar y. We restrict y to be nonzero to insure that the eigen-

vectors are nonzero.

With l ¼ 5, equation (4.3) becomes

(A� lI)x ¼ 1 2

4 3

� ��
� 5

1 0

0 1

� ��
x

y

� �
¼ 0

0

� �
or

�4 2

4 �2

� �
x

y

� �
¼ 0

0

� �

To find eigenvalues

and eigenvectors for

a matrix A, first

solve the

characteristic

equation, equation

(4.4), for the

eigenvalues and

then for each

eigenvalue solve

equation (4.3) for

the corresponding

eigenvectors.
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The solution to this homogeneous matrix equation is x ¼ y=2, with y arbitrary.

The eigenvectors corresponding to l ¼ 5 are

x ¼ x

y

� �
¼ y=2

y

� �
¼ y

2

1

2

� �

for any nonzero scalar y. &

Example 4 Find the eigenvalues and eigenvectors of A ¼
2 �1 0

3 �2 0

0 0 1

2
4

3
5.

Solution:

A� lI ¼
2 �1 0

3 �2 0

0 0 1

2
4

3
5� l

1 0 0

0 1 0

0 0 1

2
4

3
5 ¼ 2� l �1 0

3 �2� l 0

0 0 1� l

2
4

3
5

Using expansion by cofactors with the last row, we find that

det (A� lI) ¼ (1� l) [(2� l)(� 2� l)þ 3] ¼ (1� l)(l2 � 1)

The characteristic equation of A is (1� l)(l2 � 1) ¼ 0; hence, the eigenvalues of

A are l1 ¼ l2 ¼ 1 and l3 ¼ �1.

Eigenvectors of A have the form x ¼ x y z½ �T. With l ¼ 1, equation (4.3)

becomes

(A� lI)x ¼
2 �1 0

3 �2 0

0 0 1

2
4

3
5

8<
: � (1)

1 0 0

0 1 0

0 0 1

2
4

3
5
9=
;

x

y

z

2
4
3
5 ¼ 0

0

0

2
4
3
5

or

1 �1 0

3 �3 0

0 0 0

2
4

3
5 x

y

z

2
4
3
5 ¼ 0

0

0

2
4
3
5

The solution to this homogeneous matrix equation is x ¼ y, with both y and z

arbitrary. The eigenvectors corresponding to l ¼ 1 are

x ¼
x

y

z

2
4
3
5 ¼ y

y

z

2
4
3
5 ¼ y

1

1

0

2
4
3
5þ z

0

0

1

2
4
3
5

for y and z arbitrary, but not both zero to insure that the eigenvectors are

nonzero.
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With l ¼ �1, equation (4.3) becomes

(A� lI)x ¼
2 �1 0

3 �2 0

0 0 1

2
64

3
75

8><
>: � (� 1)

1 0 0

0 1 0

0 0 1

2
64

3
75
9>=
>;

x

y

z

2
64
3
75 ¼ 0

0

0

2
64
3
75

or

3 �1 0

3 �1 0

0 0 2

2
64

3
75 x

y

z

2
64
3
75 ¼ 0

0

0

2
64
3
75

The solution to this homogeneous matrix equation is x ¼ y=3 and z ¼ 0, with y

arbitrary. The eigenvectors corresponding to l ¼ �1 are

x ¼
x

y

z

2
64
3
75 ¼ y=3

y

0

2
64

3
75 ¼ y

3

1

3

0

2
64
3
75

for any nonzero scalar y. &

The roots of a characteristic equation can be repeated. If l1 ¼ l2 ¼ l3 ¼ . . . lk,

the eigenvalue is said to be of multiplicity k. Thus, in Example 4, l ¼ 1 is an

eigenvalue of multiplicity 2 while l ¼ �1 is an eigenvalue of multiplicity 1.

Locating eigenvalues is a matrix-based process. To find the eigenvalues of a more

general linear transformation, we could identify a matrix representation for the

linear transformation and then find the eigenvalues of that matrix. Because

a linear transformation has many matrix representations, in general a different

one for each basis, this approach would be useless if different matrix represen-

tations of the same linear transformation yielded different eigenvalues. Fortu-

nately, this cannot happen. We know from Theorem 3 of Section 3.4 that two

different matrix representations of the same linear transformation are similar.

To this we now add:

" Theorem 1. Similar matrices have the same characteristic equation

(and, therefore, the same eigenvalues). 3

Proof: Let A and B be similar matrices. Then there must exist a nonsingular

matrix P such that A ¼ P�1BP. Since

lI ¼ lP�1P ¼ P�1lP ¼ P�1lIP

it follows that
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jA� lIj ¼ jP�1BP� P�1lIPj ¼ jP�1(B� lI)Pj
¼ jP�1j jB� lIj jPj Theorem 1 of Appendix A

¼ 1

jPj jB� lI j jPj Theorem 8 of Appendix A

¼ jB� lIj

Thus the characteristic equation of A, namely jA� lIj ¼ 0, is identical to the

characteristic of B, namely jB� lIj ¼ 0. &

It follows from Theorem 1 that if two matrices do not have the same character-

istic equations then the matrices cannot be similar. It is important to note,

however, that Theorem 1 makes no conclusions about matrices with the same

characteristic equation. Such matrices may or may not be similar.

Example 5 Determine whether A ¼ 1 2

4 3

� �
is similar to B ¼ 1 2

4 3

� �
.

Solution: The characteristic equation of A is l2 � 4l� 5 ¼ 0 while that of B is

l2 � 3l� 10 ¼ 0. Because these equations are not identical, A cannot be similar

to B. &

The eigenvectors x corresponding to the eigenvalue l of a matrix A are all

nonzero solutions of the matrix equation (A� lI)x ¼ 0. This matrix equation

defines the kernel of (A� lI), a vector space known as the eigenspace of A for the

eigenvalue l. The nonzero vectors of an eigenspace are the eigenvectors. Because

basis vectors must be nonzero, the eigenvectors corresponding to a particular

eigenvalue are described most simply by just listing a basis for the corresponding

eigenspace.

Example 6 Find bases for the eigenspaces of A ¼
2 �1 0

3 �2 0

0 0 1

2
4

3
5.

Solution: We have from Example 4 that the eigenvalues of A are 1 and �1.

Vectors in the kernel of A� (1)I have the form

x ¼ y

1

1

0

2
4
3
5þ z

0

0

1

2
4
3
5

with y and z arbitrary, but not both zero. Clearly [ 1 1 0 ]T and [ 0 0 1 ]T

span the eigenspace of A for l ¼ 1, and because these two vectors are linearly

independent they form a basis for that eigenspace.

Vectors in the kernel of A� (� 1)I have the form

If two matrices do

not have the same

characteristic

equations, then they

are not similar.

An eigenspace of A

for the eigenvalue l

is the kernel of

A� lI. Nonzero

vectors of this

vector space are

eigenvectors of A.
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x ¼ y

3

1

3

0

2
4
3
5

Because every vector in the eigenspace of A for l ¼ �1 is a scalar multiple of

[ 1 3 0 ]T, this vector serves as a basis for that eigenspace. &

If AC
C is a matrix representation of a linear transformation with respect to a basis

C and if AD
D is a matrix representation of the same linear transformation but with

respect to a basis D, then it follows from equation (3.26) of Section 3.4 that

AC
C ¼ (PD

C)�1AD
D PD

C

where PD
C denotes a transition matrix from C to D. Let l be an eigenvalue of AC

C

with a corresponding eigenvalue x. Then

AC
Cx ¼ lx

PD
C

� ��1
AD

D PD
Cx ¼ lx

and

AD
D PD

Cx ¼ PD
C(lx) ¼ lPD

Cx

If we set

y ¼ PD
Cx (4:5)

we have

AD
Dy ¼ ly

which implies that y is an eigenvector of AD
D. But it follows from Theorem 1 of

Section 3.4 that y is the same vector as x, just expressed in a different basis. Thus,

once we identify an eigenvector for a matrix representation of a linear trans-

formation T, that eigenvector is a coordinate representation for an eigenvector of

T, in the same basis used to create the matrix.

We now have a procedure for finding the eigenvalues and eigenvectors of a linear

transformation T from one finite-dimensional vector space to itself. We first

identify a matrix representation A for T and then determine the eigenvalues and

eigenvectors of A. Any matrix representation will do, although a standard basis

is used normally when one is available. The eigenvalues of A are the eigenvalues

T (see Theorem 1). The eigenvectors of A are coordinate representations for the

eigenvectors of T, with respect to the basis used to generate A.

Example 7 Determine the eigenvalues and a basis for the eigenspaces of

T: P1 ! P1 defined by

T(atþ b) ¼ (aþ 2b)tþ (4aþ 3b)

To find the

eigenvalues and

eigenvectors for a

linear trans-

formation

T: V! V, find the

eigenvalues and

eigenvectors of any

matrix repre-

sentation for T.
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Solution: A standard basis for P1 is B ¼ ft, 1g. With respect to this basis

T(t) ¼ tþ 4 ¼ (1)tþ 4(1)$
1

4

" #

T(1) ¼ 2tþ 3 ¼ (2)tþ 3(1)$
2

3

" #

so the matrix representation of T with respect to B is

A ¼ 1 2

4 3

� �

We have from Example 3 that the eigenvalues of this matrix are �1 and 5, which

are also the eigenvalues of T. The eigenvectors of A are, respectively,

y
�1

1

� �
and

y

2

1

2

� �

with y arbitrary but nonzero.

The eigenspace of A for l ¼ �1 is spanned by �1 1½ �T, hence this vector serves

as a basis for that eigenspace. Similarly, the eigenspace of A for l ¼ 5 is spanned

by 1 2½ �T, so this vector serves as a basis for that eigenspace. These 2-tuples are

coordinate representations for

�1

1

� �
$ (� 1)tþ (1)1 ¼ �tþ 1

and

1

2

� �
$ (1)tþ (2)1 ¼ tþ 2

Therefore, the polynomial �tþ 1 is a basis for the eigenspace of T for the

eigenvalue �1 while the polynomial tþ 2 is a basis for the eigenspace of T for

the eigenvalue 5. As a check, we note that

T(� tþ 1) ¼ t� 1 ¼ �1(� tþ 1)

T(tþ 2) ¼ 5tþ 10 ¼ 5(tþ 2) &

The characteristic equation of a real matrix may have complex roots, and these

roots are not eigenvalues for linear transformations on real-valued vector spaces.

If a matrix is real, then eigenvectors corresponding to complex eigenvalues have

complex components and such vectors are not elements of real vector space.

Thus, there are no vectors in a real-valued vector space that satisfy Ax ¼ lx

when l is complex.
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Example 8 Determine the eigenvalues of T: R3 ! R3 defined by

T

a

b

c

2
4
3
5 ¼ 2a

2bþ 5c

�b� 2c

2
4

3
5

Solution: Using the standard basis for R3, we have

T

1

0

0

2
64
3
75 ¼ 2

0

0

2
64
3
75 ¼ 2

1

0

0

2
64
3
75þ 0

0

1

0

2
64
3
75þ 0

0

0

1

2
64
3
75$ 2

0

0

2
64
3
75

T

0

1

0

2
64
3
75 ¼ 0

2

�1

2
64

3
75 ¼ 0

1

0

0

2
64
3
75þ 2

0

1

0

2
64
3
75þ (� 1)

0

0

1

2
64
3
75$ 0

2

�1

2
64

3
75

T

0

0

1

2
64
3
75 ¼ 0

5

�2

2
64

3
75 ¼ 0

1

0

0

2
64
3
75þ 5

0

1

0

2
64
3
75þ (� 2)

0

0

1

2
64
3
75$ 0

5

�2

2
64

3
75

where (as always when using this basis) the coordinate representation for any

vector in R3 is the vector itself. The matrix representation for T with respect to

the standard basis is

A ¼
2 0 0

0 2 5

0 �1 �2

2
4

3
5

Here

A� lI ¼
2� l 0 0

0 2� l 5

0 �1 �2� l

2
4

3
5

Using expansion by cofactors with the first row, we find that

det (A� lI) ¼ (2� l) (2� l) (� 2� l)þ 5½ � ¼ (2� l) (l2 þ 1)

The characteristic equation of A is (2� l)(l2 þ 1) ¼ 0 with roots l1 ¼ 2, l2 ¼ i,

and l3 ¼ �i. The only real root is 2, which is the only eigenvalue for the given

linear transformation. &

Once an eigenvalue of a matrix is known, it is straightforward to identify the

corresponding eigenspace. Unfortunately, determining the eigenvalues of a
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matrix, especially a square matrix with more than 10 rows, is difficult. Even some

square matrices with just a few rows, such as

A ¼

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

2
664

3
775

can be problematic. In most applications, numerical techniques (see Sections 4.4,

5.4, and Appendix E) are used to approximate the eigenvalues.

Problems 4.1

(1) Determine by direct multiplication which of the following vectors are eigenvectors

for A ¼ 1 2

�4 7

� �
.

(a)
1

1

� �
, (b)

1

�1

� �
, (c)

2

1

� �
,

(d)
1

2

� �
, (e)

2

2

� �
, (f)

0

0

� �
,

(g)
�4

�4

� �
, (h)

4

�4

� �
, (i)

2

4

� �
.

(2) What are the eigenvalues that correspond to the eigenvectors found in Problem 1?

(3) Determine by direct multiplication which of the following vectors are eigenvectors

for A ¼
2 0 �1

1 2 1

�1 0 2

2
4

3
5.

(a)

1

0

0

2
4
3
5, (b)

0

1

0

2
4
3
5, (c)

1

�2

1

2
4

3
5,

(d)

�3

6

�3

2
4

3
5, (e)

�1

0

1

2
4

3
5, (f)

1

0

1

2
4
3
5,

(g)

2

0

�2

2
4

3
5, (h)

1

1

1

2
4
3
5, (i)

0

0

0

2
4
3
5.

(4) What are the eigenvalues that correspond to the eigenvectors found in Problem 3?

(5) Determine by direct evaluation which of the following matrices are eigenvectors

for the linear transformation T: M2�2 !M2�2 defined by T
a b

c d

� �
¼

aþ 3b a� b

cþ 2d 4cþ 3d

� �
:
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(a)
1 �1

0 0

� �
, (b)

0 0

1 �1

� �
, (c)

1 0

0 �1

� �
,

(d)
3 1

0 0

� �
, (e)

0 0

0 0

� �
, (f)

1 1

0 0

� �
.

(6) What are the eigenvalues that correspond to the eigenvectors found in Problem 5?

(7) Determine by direct evaluation which of the following polynomials are eigenvectors

for the linear transformation T: P1 ! P1 defined by T(atþ b) ¼ (3aþ 5b)t�
(2aþ 4b):

(a) t� 1, (b) t2 þ 1, (c) 5t� 5,

(d) 5t� 2, (e) 5t, (f) �10tþ 2.

(8) What are the eigenvalues that correspond to the eigenvectors found in Problem 7?

In Problems 9 through 32, find the eigenvalues and a basis for the eigenspace associated

with each eigenvalue for the given matrices.

(9)
1 2

�1 4

� �
. (10)

2 1

2 3

� �
. (11)

2 3

4 6

� �
.

(12)
3 6

9 6

� �
. (13)

1 2

4 �1

� �
. (14)

2 5

�1 �2

� �
.

(15)
3 1

0 3

� �
. (16)

3 0

0 3

� �
. (17)

0 t

2t �t

� �
.

(18)
4u 2u

�u u

� �
. (19)

1 0 3

1 2 1

3 0 1

2
4

3
5. (20)

2 0 �1

2 2 2

�1 0 2

2
4

3
5.

(21)

3 0 �1

2 3 2

�1 0 3

2
4

3
5. (22)

2 1 1

0 1 0

1 1 2

2
4

3
5. (23)

2 1 1

0 1 0

1 2 2

2
4

3
5.

(24)

1 2 3

2 4 6

3 6 9

2
4

3
5. (25)

0 1 0

0 0 1

27 �27 9

2
4

3
5. (26)

4 2 1

2 7 2

1 2 4

2
4

3
5.

(27)

5 �7 7

4 �3 4

4 �1 2

2
4

3
5. (28)

3 1 �1

1 3 �1

�1 �1 5

2
4

3
5. (29)

0 1 0 0

0 0 1 0

0 0 0 1

�1 4 �6 4

2
664

3
775.

(30)

1 0 0 0

0 0 1 0

0 0 0 1

0 1 �3 3

2
664

3
775. (31)

1 0 0 0

1 2 1 1

1 1 2 1

1 1 1 2

2
664

3
775. (32)

3 1 1 2

0 3 1 1

0 0 2 0

0 0 0 2

2
664

3
775.

In Problems 33 through 37, find a basis of unit eigenvectors for the eigenspaces associated

with each eigenvalue of the following matrices.

(33) The matrix in Problem 9.
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(34) The matrix in Problem 10.

(35) The matrix in Problem 11.

(36) The matrix in Problem 19.

(37) The matrix in Problem 20.

In Problems 38 through 53, find the eigenvalues and a basis for the eigenspace associated

with each eigenvalue for the given linear transformations.

(38) T: P1 ! P1 such that T(atþ b) ¼ (3aþ 5b)tþ (5a� 3b).

(39) T: P1 ! P1 such that T(atþ b) ¼ (3aþ 5b)t� (2aþ 4b).

(40) T: P2 ! P2 such that T(at2 þ btþ c) ¼ (2a� c)t2 þ (2aþ b� 2c)tþ (� aþ 2c).

(41) T: R2 ! R2 such that T
a

b

" #
¼

2a� b

aþ 4b

" #
.

(42) T: R2 ! R2 such that T
a

b

" #
¼

4aþ 10b

9a� 5b

" #
.

(43) T: R3 ! R3 such that T

a

b

c

2
64
3
75 ¼

aþ b� c

0

aþ 2bþ 3c

2
64

3
75.

(44) T: R3 ! R3 such that T

a

b

c

2
64
3
75 ¼

3a� bþ c

�aþ 3b� c

a� bþ 3c

2
64

3
75.

(45) T: V! V, where V is the set of all 2� 2 real upper triangular matrices, such that

T
a b

0 c

" #
¼

b c

0 a� 3bþ 3c

" #
:

(46) T: P1 ! P1 such that T ¼ d=dt; that is, T(atþ b) ¼ d

dt
(atþ b) ¼ a.

(47) T: P2 ! P2 such that T ¼ d=dt; that is, T(at2 þ btþ c) ¼ d

dt
(at2 þ btþ c) ¼

2atþ b:

(48) T: P2 ! P2 such that T ¼ d2=dt2; that is, T(at2 þ btþ c) ¼ d2

dt2
(at2 þ btþ c) ¼ 2a:

(49) T: V! V such that T ¼ d=dt and V ¼ spanfe3t, e�3tg.

(50) T: V! V such that T ¼ d2=dt2 and V ¼ spanfe3t, e�3tg.

(51) T: V! V such that T ¼ d=dt and V ¼ spanfsin t, cos tg.

(52) T: V! V such that T ¼ d2=dt2 and V ¼ spanfsin t, cos tg.

(53) T: V! V such that T ¼ d2=dt2 and V ¼ spanfsin 2t, cos 2tg.
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(54) Consider the matrix

C ¼

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 ..
.

1

�a0 �a1 �a2 . . . �an�1

2
666664

3
777775:

Use mathematical induction to prove that

det (C� lI) ¼ (� 1)n(ln þ an�1ln�1 þ . . .þ a2l2 þ a1lþ a0):

Deduce that the characteristic equation for this matrix is

ln þ an�1ln�1 þ . . .þ a2l2 þ a1lþ a0 ¼ 0:

The matrix C is called the companion matrix for this characteristic equation.

4.2 PROPERTIES OF EIGENVALUES AND EIGENVECTORS

The eigenvalues of a linear transformation T from a finite-dimensional vector

space to itself are identical to the eigenvalues of any matrix representation for T.

Consequently, we discover information about one by studying the other.

The kernel of A� lI is a vector space for any square matrix A, and all nonzero

vectors of this kernel are eigenvectors of A. A vector space is closed under scalar

multiplication, so kx is an eigenvector of A for any nonzero scalar k whenever x is

an eigenvector. Thus, in general, a matrix has a finite number of eigenvalues but

infinitely many eigenvectors. A vector space is also closed under vector addition,

so if x and y are two eigenvectors corresponding to the same eigenvalue l, then

so too is xþ y, providing this sum is not the zero vector.

The trace of a square matrix A, designated by tr(A), is the sum of the elements on

the main diagonal of A. In particular, the trace of

A ¼
�1 2 0

�3 6 8

5 4 �2

2
4

3
5

is tr(A) ¼ �1þ 6þ (� 2) ¼ 3.

" Theorem 1. The sum of the eigenvalues of a matrix equals the trace of

the matrix. 3

We leave the proof of Theorem 1 as an exercise (see Problem 21). This result

provides a useful check on the accuracy of computed eigenvalues. If the sum of

the computed eigenvalues of a matrix do not equal the trace of the matrix, there
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is an error! Beware, however, that Theorem 1 only provides a necessary condi-

tion on eigenvalues, not a sufficient condition. That is, no conclusions can be

drawn from Theorem 1 if the sum of a set of eigenvalues equals the trace.

Eigenvalues of a matrix can be computed incorrectly and still have their sum

equal the trace of the matrix.

Example 1 Determine whether l1 ¼ 12 and l2 ¼ �4 are eigenvalues for

A ¼ 11 3

�5 �5

� �

Solution: Here tr(A) ¼ 11þ (� 5) ¼ 6 6¼ 8 ¼ l1 þ l2, so these numbers are not

the eigenvalues of A. The eigenvalues for this matrix are 10 and �4, and their

sum is the trace of A. &

The determinant of an upper (or lower) triangular matrix is the product of

elements on the main diagonal, so it follows immediately that

" Theorem 2. The eigenvalues of an upper or lower triangular matrix are

the elements on the main diagonal. 3

Example 2 The matrix

1 0 0

2 1 0

3 4 �1

2
4

3
5 is lower triangular, so its eigenvalues are

l1 ¼ l2 ¼ 1 and l3 ¼ �1. &

Once the eigenvalues of a matrix are known, one can determine immediately

whether the matrix is singular.

" Theorem 3. A matrix is singular if and only if it has a zero

eigenvalue. 3

Proof: A matrix A has a zero eigenvalue if and only if det (A� 0I) ¼ 0, or

(since 0I ¼ 0) if and only if det (A) ¼ 0, which is true (see Theorem 11 of

Appendix A) if and only if A is singular. &

A nonsingular matrix and its inverse have reciprocal eigenvalues and identical

eigenvectors.

" Theorem 4. If x is an eigenvector of an invertible matrix A correspond-

ing to the eigenvalue l, then x is also an eigenvector of A�1 correspond-

ing to the eigenvalue 1=l. 3

4.2 Properties of Eigenvalues and Eigenvectors . 233



Proof: Since A is invertible, Theorem 3 implies that l 6¼ 0; hence 1=l exists. We

have that Ax ¼ lx. Premultiplying both sides of this equation by A�1, we obtain

x ¼ lA�1x or A�1x ¼ (1=l)x

Thus, x is an eigenvector of A�1 with corresponding eigenvalue 1=l. &

We may combine Theorem 3 with Theorem 10 of Appendix A and Theorems 5

and 6 of Section 2.6 to obtain the following result.

" Theorem 5. The following statements are equivalent for an n� n

matrix A:

(i) A has an inverse.

(ii) A has rank n.

(iii) A can be transformed by elementary row operations to an

upper triangular matrix with only unity elements on the

main diagonal.

(iv) A has a nonzero determinant.

(v) Every eigenvalue of A is nonzero. 3

Multiplying the equation Ax ¼ lx by a scalar k, we obtain (kA)x ¼ (kl)x. Thus

we have proven Theorem 6.

" Theorem 6. If x is an eigenvector of A corresponding to the eigenvalue

l, then kl and x are a corresponding pair of eigenvalues and eigenvec-

tors of kA, for any nonzero scalar k. 3

Theorem 1 provides a relationship between the sum of the eigenvalues of a matrix

and its trace. There is also a relationship between the product of those eigen-

values and the determinant of the matrix. The proof of the next theorem is left as

an exercise (see Problem 22).

" Theorem 7. The product of all the eigenvalues of a matrix (counting

multiplicity) equals the determinant of the matrix. 3

Example 3 The eigenvalues of A ¼ 11 3

�5 �5

� �
are l1 ¼ 10 and l2 ¼ �4. Here

det (A) ¼ �55þ 15 ¼ �40 ¼ l1l2. &

" Theorem 8. If x is an eigenvector of A corresponding to the eigenvalue

l, then ln and x are a corresponding pair of eigenvalues and eigenvectors

of An, for any positive integer n. 3
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Proof: We are given that Ax ¼ lx and we need to show that

Anx ¼ lnx (4:6)

We prove this last equality by mathematical induction on the power n. Equation

(4.6) is true for n ¼ 1 as a consequence of the hypothesis of the theorem. Now

assume that the proposition is true for n ¼ k� 1. Then

Ak�1x ¼ lk�1x

Premultiplying this equation by A, we have

A(Ak�1x) ¼ A (lk�1x)

or

Akx ¼ lk�1(Ax)

It now follows from the hypothesis of the theorem that

Akx ¼ lk�1(lx)

or

Akx ¼ lkx

which implies that the proposition is true for n ¼ k. Thus, Theorem 8 is proved

by mathematical induction. &

The proofs of the next two results are left as exercises for the reader (see

Problems 16 and 17).

" Theorem 9. If x is an eigenvector of A corresponding to the eigenvalue

l, then for any scalar c, l� c and x are a corresponding pair of eigen-

values and eigenvectors of A� cI. 3

" Theorem10. If l is an eigenvalue ofA, then l also an eigenvalue ofAT. &

Problems 4.2

(1) One eigenvalue of the matrix A ¼ 8 2

3 3

� �
is known to be 2.

Determine the second eigenvalue by inspection.

(2) One eigenvalue of the matrix A ¼ 8 3

3 2

� �
is known to be 0.7574 rounded to four

decimal places. Determine the second eigenvalue by inspection.
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(3) Two eigenvalues of a 3� 3 matrix are known to be 5 and 8. What can be said about

the third eigenvalue if the trace of the matrix is �4?

(4) Redo Problem 3 if �4 is the determinant of the matrix instead of its trace.

(5) The determinant of a 4� 4 matrix is 144 and two of its eigenvalues are known to be

�3 and 2. What can be said about the remaining eigenvalues?

(6) A 2� 2 matrix A is known to have the eigenvalues �3 and 4. What are the

eigenvalues of

(a) 2A, (b) 5A, (c) A� 3I, (d) Aþ 4I.

(7) A 3� 3 matrix A is known to have the eigenvalues �2, 2, and 4. What are the

eigenvalues of

(a) A2, (b) A3, (c) �3A, (d) Aþ 3I.

(8) A 2� 2 matrix A is known to have the eigenvalues �1 and 1. Find a matrix in

terms of A that has for its eigenvalues

(a) �2 and 2, (b) �5 and 5, (c) 1 and 1, (d) 2 and 4.

(9) A 3� 3 matrix A is known to have the eigenvalues 2, 3, and 4. Find a matrix in

terms of A that has for its eigenvalues

(a) 4, 6, and 8, (b) 4, 9, and 16, (c) 8, 27, and 64, (d) 0, 1, and 2.

(10) Verify Theorems 1 and 7 for A ¼ 8 3

3 2

� �
.

(11) Verify Theorems 1 and 7 for A ¼
1 3 6

�1 2 �1

2 1 7

2
4

3
5.

(12) What are the eigenvalues of A�1 for the matrices defined in Problems 10 and 11?

(13) Show by example that, in general, an eigenvalue of Aþ B is not the sum of an

eigenvalue of A with an eigenvalue of B.

(14) Show by example that, in general, an eigenvalue of AB is not the product of an

eigenvalue of A with an eigenvalue of B.

(15) Show by example that an eigenvector of A need not be an eigenvector of AT.

(16) Prove Theorem 9.

(17) Prove Theorem 10.

(18) The determinant of A� lI is known as the characteristic polynomial of A. For an

n� n matrix A it has the form

det (A� lI) ¼ (� 1)n ln þ an�1ln�1
�

þ an�2ln�2 þ . . .þ a2l2 þ a1lþ a0

�
,

where an�1, an�2, . . . , a2, a1, and a0 are constants that depend on the elements

of A. Show that (� 1)na0 ¼ det (A).

(19) (Problem 18 continued.) Convince yourself by considering arbitrary 2� 2, 3� 3,

and 4� 4 matrices that (� 1)an�1 ¼ tr(A).
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(20) Consider an n� n matrix A with eigenvalues l1, l2, . . . , ln, where some or all of the

eigenvalues may be equal. Each eigenvalue li(i ¼ 1, 2, . . . , n) is a root of the

characteristic polynomial; hence (l� li) must be a factor of that polynomial.

Deduce that det (A� lI) ¼ (� 1)n(l� l1)(l� l2) . . . (l� ln).

(21) Use the results of Problems 19 and 20 to prove Theorem 1.

(22) Use the results of Problems 18 and 20 to prove Theorem 7.

(23) The Cayley-Hamilton theorem states that every square matrix A satisfies its own

characteristic equation. That is, if the characteristic equation of A is

ln þ an�1ln�1 þ an�2ln�2 þ . . .þ a2l2 þ a1lþ a0 ¼ 0,

then

An þ an�1A
n�1 þ an�2A

n�2 þ . . .þ a2A
2 þ a1Aþ a0I ¼ 0:

Verify the Cayley-Hamilton theorem for

(a)
1 2

3 4

� �
, (b)

1 2

2 4

� �
, (c)

2 0 1

4 0 2

0 0 �1

2
4

3
5,

(d)

1 �1 2

0 3 2

2 1 2

2
4

3
5, (e)

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

2
664

3
775.

(24) Let the characteristic equation of a square matrix A be as given in Problem 23. Use

the results of Problem 18 to prove that A is invertible if and only if a0 6¼ 0.

(25) Let the characteristic equation of a square matrix A be given as in Problem 23. Use

the Cayley-Hamilton theorem to show that

A�1 ¼ �1

a0

An�1 þ an�1A
n�2

�
þ . . .þ a2Aþ a1IÞ

when a0 6¼ 0.

(26) Use the result of Problem 25 to find the inverses, when they exist, for the matrices

defined in Problem 23.

4.3 DIAGONALIZATION OF MATRICES

We are ready to answer the question that motivated this chapter: Which linear

transformations can be represented by diagonal matrices and what bases gener-

ate such representations? Recall that different matrices represent the same linear

transformation if and only if those matrices are similar (Theorem 3 of Section

3.4). Therefore, a linear transformation has a diagonal matrix representation

if and only if any matrix representation of the transformation is similar to

a diagonal matrix.
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To establish whether a linear transformation T has a diagonal matrix represen-

tation, we first create one matrix representation for the transformation and then

determine whether that matrix is similar to a diagonal matrix. If it is, we say the

matrix is diagonalizable, in which case T has a diagonal matrix representation.

If a matrix A is similar to a diagonal matrix D, then the form of D is determined.

Both A and D have identical eigenvalues, and the eigenvalues of a diagonal

matrix (which is both upper and lower triangular) are the elements on its main

diagonal. Consequently, the main diagonal of D must be the eigenvalues of A. If,

for example,

A ¼ 1 2

4 3

� �

with eigenvalues �1 and 5, is diagonalizable, then A must be similar to either

�1 0

0 5

� �
or

5 0

0 �1

� �

Now let A be an n� n matrix with n linearly independent eigenvectors x1, x2, . . . , xn

corresponding to the eigenvalues l1, l2, . . . , ln, respectively. Therefore,

Axj ¼ ljxj (4:7)

for j ¼ 1, 2, . . . , n. There are no restrictions on the multiplicity of the eigen-

values, so some or all of them may be equal. Set

M ¼ [ x1 x2 . . . xn ] and D ¼

l1 0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ln

2
6664

3
7775

Here M is called a modal matrix for A and D a spectral matrix for A. Now

AM ¼ A x1 x2 . . . xn½ �

¼ Ax1 Ax2 . . . Axn½ �

¼ l1x1 l2x2 . . . lnxn½ �

¼ x1 x2 . . . xn½ �D

¼MD (4:8)

Because the columns of M are linearly independent, the column rank of M is n,

the rank of M is n, and M�1 exists. Premultiplying equation (4.8) by M�1, we

obtain

D ¼M�1AM (4:9)

A matrix is

diagonalizable if it is

similar to a diagonal

matrix.
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Postmultiplying equation (4.8) by M�1, we have

A ¼MDM�1 (4:10)

Thus, A is similar to D. We can retrace our steps and show that if equation (4.10)

is satisfied, then M must be an invertible matrix having as its columns a set of

eigenvectors of A. We have proven the following result.

" Theorem 1. An n� n matrix is diagonalizable if and only if the matrix

possesses n linearly independent eigenvectors. 3

Example 1 Determine whether A ¼ 1 2

4 3

� �
is diagonalizable.

Solution: Using the results of Example 3 of Section 4.1, we have l1 ¼ �1 and

l2 ¼ 5 as the eigenvalues of A with corresponding eigenspaces spanned by the

vectors

x1 ¼
�1

1

� �
and x2 ¼

1

2

� �

respectively. These two vectors are linearly independent, so A is diagonalizable.

We can choose either

M ¼ �1 1

1 2

� �
or M ¼ 1 �1

2 1

� �

Making the first choice, we find

D ¼M�1AM ¼ 1

3

�2 1

1 1

� �
1 2

4 3

� � �1 1

1 2

� �
¼ �1 0

0 5

� �

Making the second choice, we find

D ¼M�1AM ¼ 1

3

1 1

�2 1

� �
1 2

4 3

� �
1 �1

2 1

� �
¼ 5 0

0 �1

� �
&

In general, neither the modal matrix M nor the spectral matrix D is unique.

However, once M is selected, then D is fully determined. The element of D

located in the jth row and jth column must be the eigenvalue corresponding to

the eigenvector in the jth column of M. In particular,

M ¼ [ x2 x1 x3 . . . xn ]
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is matched with

D ¼

l2 0 0 . . . 0

0 l1 0 . . . 0

0 0 l3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . ln

2
6666664

3
7777775

while

M ¼ [ xn xn�1 . . . x1 ]

is matched with

D ¼

ln 0 . . . 0

0 ln�1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . l1

2
66664

3
77775

Example 2 Determine whether A ¼
2 �1 0

3 �2 0

0 0 1

2
4

3
5 is diagonalizable.

Solution: Using the results of Example 6 of Section 4.1, we have

x1 ¼
1

1

0

2
4
3
5 and x2 ¼

0

0

1

2
4
3
5

as a basis for the eigenspace corresponding to eigenvalue l ¼ 1 of multiplicity 2

and

x3 ¼
1

3

0

2
4
3
5

as a basis corresponding to eigenvalue l ¼ �1 of multiplicity 1. These three

vectors are linearly independent, so A is diagonalizable. If we choose

M ¼
1 0 1

1 0 3

0 1 0

2
4

3
5, then M�1AM ¼

1 0 0

0 1 0

0 0 �1

2
4

3
5 &

240 . Eigenvalues, Eigenvectors, and Differential Equations



The process of determining whether a given set of eigenvectors is linearly

independent is simplified by the following two results.

" Theorem 2. Eigenvectors of a matrix corresponding to distinct eigen-

values are linearly independent. 3

Proof: Let l1, l2, . . . , lk denote the distinct eigenvalues of an n� n matrix A

with corresponding eigenvectors x1, x2, . . . , xk. If all the eigenvalues have multi-

plicity 1, then k ¼ n, otherwise k < n. We use mathematical induction to prove

that fx1, x2, . . . , xkg is a linearly independent set.

For k ¼ 1, the set fx1g is linearly independent because the eigenvector x1 cannot

be 0. We now assume that the set fx1, x2, . . . , xk�1g is linearly independent and

use this to show that the set fx1, x2, . . . , xk�1, xkg is linearly independent. This is

equivalent to showing that the only solution to the vector equation

c1x1 þ c2x2 þ . . .þ ck�1xk�1 þ ckxk ¼ 0 (4:11)

is c1 ¼ c2 ¼ . . . ¼ ck�1 ¼ ck ¼ 0.

Multiplying equation (4.11) on the left by A and using the fact that Axj ¼ ljxj

for j ¼ 1, 2, . . . , k, we obtain

c1l1x1 þ c2l2x2 þ . . .þ ck�1lk�1xk�1 þ cklkxk ¼ 0 (4:12)

Multiplying equation (4.11) by lk, we obtain

c1lkx1 þ c2lkx2 þ . . .þ ck�1lkxk�1 þ cklkxk ¼ 0 (4:13)

Subtracting equation (4.13) from (4.12), we have

c1(l1 � lk)x1 þ c2(l2 � lk)x2 þ . . .þ ck�1(lk�1 � lk)xk�1 ¼ 0

But the vectors x1, x2, . . . , xk�1f g are linearly independent by the induction

hypothesis, hence the coefficients in the last equation must all be 0; that is,

c1(l1 � lk) ¼ c2(l2 � lk) ¼ . . . ¼ ck�1(lk�1 � lk) ¼ 0

from which we imply that c1 ¼ c2 ¼ . . . ¼ ck�1 ¼ 0, because the eigenvalues are

distinct. Equation (4.11) reduces to ckxk ¼ 0 and because xk is an eigenvector, and

therefore nonzero, we also conclude that ck ¼ 0, and the proof is complete. &

It follows from Theorems 1 and 2 that any n� n real matrix having n distinct real

roots of its characteristic equation, that is a matrix having n eigenvalues all of

multiplicity 1, must be diagonalizable. (See, in particular, Example 1.)
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Example 3 Determine whether A ¼
2 0 0

�3 3 0

2 �1 4

2
4

3
5 is diagonalizable.

Solution: The matrix is lower triangular so its eigenvalues are the elements on

the main diagonal, namely 2, 3, and 4. Every eigenvalue has multiplicity 1, hence

A is diagonalizable. &

" Theorem 3. If l is an eigenvalue of multiplicity k of an n� n matrix A,

then the number of linearly independent eigenvectors of A associated

with l is n� r(A� lI), where r denotes rank. 3

Proof: The eigenvectors of A corresponding to the eigenvalue l are all nonzero

solutions of the vector equation (A� lI)x ¼ 0. This homogeneous system is

consistent, so by Theorem 3 of Section 2.6 the solutions will be in terms of

n� r(A� lI) arbitrary unknowns. Since these unknowns can be picked inde-

pendently of each other, they generate n� r(A� lI) linearly independent

eigenvectors. &

In Example 2, A is a 3� 3 matrix (n ¼ 3) and l ¼ 1 is an eigenvalue of multi-

plicity 2. In this case,

A� (1)I ¼ A� I ¼
1 �1 0

3 �3 0

0 0 0

2
4

3
5

can be transformed into row-reduced form (by adding to the second row �3

times the first row)

1 �1 0

0 0 0

0 0 0

2
4

3
5

having rank 1. Thus, n� r(A� I) ¼ 3� 1 ¼ 2 and A has two linearly inde-

pendent eigenvectors associated with l ¼ 1. Two such vectors are exhibited in

Example 2.

Example 4 Determine whether A ¼ 2 1

0 2

� �
is diagonalizable.

Solution: The matrix is upper triangular so its eigenvalues are the elements on

the main diagonal, namely, 2 and 2. Thus, A is 2� 2 matrix with one eigenvalue

of multiplicity 2. Here

A� 2I ¼ 0 1

0 0

� �

242 . Eigenvalues, Eigenvectors, and Differential Equations



has a rank of 1. Thus, n� r(A� 2I) ¼ 2� 1 ¼ 1 and A has only one linearly

independent eigenvector associated with its eigenvalues, not two as needed.

Matrix A is not diagonalizable. &

We saw in the beginning of Section 4.1 that if a linear transformation T: V! V

is represented by a diagonal matrix, then the basis that generates such a repre-

sentation is a basis of eigenvectors. To this we now add that a linear transform-

ation T: V! V, where V is n-dimensional, can be represented by a diagonal

matrix if and only if T possesses n-linearly independent eigenvectors. When such

a set exists, it is a basis for V.

Example 5 Determine whether the linear transformation T: P1 ! P1 defined by

T(atþ b) ¼ (aþ 2b)tþ (4aþ 3b)

can be represented by a diagonal matrix.

Solution: A standard basis for P1 is B ¼ t, 1f g, and we showed in Example 7

of Section 4.1 that a matrix representation for T with respect to this basis is

A ¼ 1 2

4 3

� �

It now follows from Example 1 that this matrix is diagonalizable; hence T can be

represented by a diagonal matrix D, in fact, either of the two diagonal matrices

produced in Example 1.

Furthermore, we have from Example 7 of Section 4.1 that �tþ 1 is an eigen-

vector of T corresponding to l1 ¼ �1 while 5tþ 10 is an eigenvector corre-

sponding l2 ¼ 5. Since both polynomials correspond to distinct eigenvalues,

the vectors are linearly independent and, therefore, constitute a basis. Setting

C ¼ f�tþ 1, 5tþ 10g, we have the matrix representation of T with respect to

C as

AC
C ¼ D ¼ �1 0

0 5

� �
&

Example 6 Let U be the set of all 2� 2 real upper triangular matrices.

Determine whether the linear transformation T: U! U defined by

T
a b

0 c

� �
¼ 3aþ 2bþ c 2b

0 aþ 2bþ 3c

� �

can be represented by a diagonal matrix and, if so, produce a basis that generates

such a representation.

If V is an n-

dimensional vector

space, then a linear

transformation

T: V! V may be

represented by a

diagonal matrix if

and only if T

possesses a basis of

eigenvectors.
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Solution: U is closed under addition and scalar multiplication, so it is a sub-

space of M2�2. A simple basis for U is given by

B ¼ 1 0

0 0

� ��
,

0 1

0 0

� �
,

0 0

0 1

� ��

With respect to these basis vectors,

T
1 0

0 0

" #
¼

3 0

0 1

" #
¼ 3

1 0

0 0

" #
þ 0

0 1

0 0

" #
þ 1

0 0

0 1

" #
$

3

0

1

2
664
3
775

T
0 1

0 0

" #
¼

2 2

0 2

" #
¼ 2

1 0

0 0

" #
þ 2

0 1

0 0

" #
þ 2

0 0

0 1

" #
$

2

2

2

2
664
3
775

T
0 0

0 1

" #
¼

1 0

0 3

" #
¼ 1

1 0

0 0

" #
þ 0

0 1

0 0

" #
þ 3

0 0

0 1

" #
$

1

0

3

2
664
3
775

and a matrix representation for T is

A ¼
3 2 1

0 2 0

1 2 3

2
4

3
5

The eigenvalues of this matrix are 2, 2, and 4. Even though the eigenvalues are

not all distinct, the matrix still has three linearly independent eigenvectors,

namely,

x1 ¼
�2

1

0

2
4

3
5, x2 ¼

�1

0

1

2
4

3
5, and x3 ¼

1

0

1

2
4
3
5

Thus, A is diagonalizable and, therefore, T has a diagonal matrix representation.

Setting

M ¼
�2 �1 1

1 0 0

0 1 1

2
4

3
5, we have D ¼M�1AM ¼

2 0 0

0 2 0

0 0 4

2
4

3
5

which is one diagonal representation for T.

The vectors x1, x2, and x3 are coordinate representations with respect to the B

basis for
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�2

1

0

2
64

3
75$ (� 2)

1 0

0 0

" #
þ 1

0 1

0 0

" #
þ 0

0 0

0 1

" #
¼
�2 1

0 0

" #

�1

0

1

2
64

3
75$ (� 1)

1 0

0 0

" #
þ 0

0 1

0 0

" #
þ 1

0 0

0 1

" #
¼
�1 0

0 1

" #

1

0

1

2
64
3
75$ 1

1 0

0 0

" #
þ 0

0 1

0 0

" #
þ 1

0 0

0 1

" #
¼

1 0

0 1

" #

The set

C ¼ �2 1

0 0

� ��
,
�1 0

0 1

� �
,

1 0

0 1

� ��

is a basis of eigenvectors of T for the vector space U. A matrix representation of

T with respect to the C basis is the diagonal matrix D. &

Problems 4.3

In Problems 1 through 11, determine whether the matrices are diagonalizable. If they are,

identify a modal matrix M and calculate M�1AM.

(1) A ¼ 2 �3

1 �2

� �
. (2) A ¼ 4 3

3 �4

� �
.

(3) A ¼ 3 1

�1 5

� �
. (4) A ¼

1 1 1

0 1 0

0 0 1

2
4

3
5.

(5) A ¼
1 0 0

2 �3 3

1 2 2

2
4

3
5. (6) A ¼

5 1 2

0 3 0

2 1 5

2
4

3
5.

(7) A ¼
1 2 3

2 4 6

3 6 9

2
4

3
5. (8) A ¼

3 �1 1

�1 3 �1

1 �1 3

2
4

3
5.

(9) A ¼
7 3 3

0 1 0

�3 �3 1

2
4

3
5. (10) A ¼

3 1 0

0 3 1

0 0 3

2
4

3
5.

(11) A ¼
3 0 0

0 3 1

0 0 3

2
4

3
5.

In Problems 12 through 21, determine whether the linear transformations can be represented

by diagonal matrices and, if so, produce bases that will generate such representations.
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(12) T: P1 ! P1 defined by T(atþ b) ¼ (2a� 3b)tþ (a� 2b).

(13) T: P1 ! P1 defined by T(atþ b) ¼ (4aþ 3b)tþ (3a� 4b).

(14) T: P2 ! P2 defined by

T(at2 þ btþ c) ¼ at2 þ (2a� 3bþ 3c)tþ (aþ 2bþ 2c):

(15) T: P2 ! P2 defined by

T(at2 þ btþ c) ¼ (5aþ bþ 2c)t2 þ 3btþ (2aþ bþ 5c):

(16) T: P2 ! P2 defined by

T(at2 þ btþ c) ¼ (3aþ b)t2 þ (3bþ c)tþ 3c:

(17) T: U! U where U is the set of all 2� 2 real upper triangular matrices and

T
a b

0 c

� �
¼

aþ 2bþ 3c 2aþ 4bþ 6c

0 3aþ 6bþ 9c

� �
:

(18) T: U! U where U is the set of all 2� 2 real upper triangular matrices and

T
a b

0 c

� �
¼

7aþ 3bþ 3c b

0 �3a� 3bþ c

� �
:

(19) T: W!W where W is the set of all 2� 2 real lower triangular matrices and

T
a 0

b c

� �
¼

3a� bþ c 0

�aþ 3b� c a� bþ 3c

� �
:

(20) T: R3 ! R3 defined by T

a

b

c

2
4
3
5 ¼ c

a

b

2
4
3
5.

(21) T: R3 ! R3 defined by T

a

b

c

2
64
3
75 ¼ 3aþ b

3bþ c

c

2
64

3
75.

4.4 THE EXPONENTIAL MATRIX

In this section and the next section (Power Methods), we will use eigenvalues and

eigenvectors extensively and conclude our chapter with sections dealing with

differential equations.

One of the most important functions in the calculus is the exponential function

ex. It should not be surprising, therefore, to find that the ‘‘exponentials of

matrices’’ are equally useful and important.
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To develop this idea, we extend the idea of Maclaurin series to include matrices.

As we further our discussion, we will make reference to the Jordan canonical

form (see Appendix B).

We recall that this function can be written as a Maclaurin series:

ex ¼
X1
k¼0

xk

k!
¼ 1þ xþ x2

2!
þ x3

3!
þ . . . (4:14)

Then we can use this expansion to define the exponential of a square matrix A as

eA ¼
X1
k¼0

Ak

k!
¼ IþA

1!
þA2

2!
þA3

3!
þ . . . (4:15)

Equation (4.14) converges for all values of the variable x; analogously, it can be

shown that equation (4.15) converges for all square matrices A, although the

actual proof is well beyond the scope of this book. Using equation (4.14), we can

easily sum the right side of equation (4.15) for any diagonal matrix.

Example 1 For A ¼ 2 0

0 �0:3

� �
, we have

eA ¼
1 0

0 1

" #
þ 1

1!

2 0

0 �0:3

" #
þ 1

2!

2 0

0 �0:3

" #2

þ 1

3!

2 0

0 �0:3

" #3

þ . . .

¼
1 0

0 1

" #
þ

2=1! 0

0 (� 0:3)=1!

" #
þ

(2)2=2! 0

0 (� 0:3)2=2!

" #

þ
(2)3=3! 0

0 (� 0:3)3=3!

" #
þ . . .

¼

X1
k¼0

2k

k!
0

0
X1
k¼0

(� 0:3)k

k!

2
66664

3
77775 ¼

e2 0

0 e�0:3

" #
&

In general, if D is the diagonal matrix

D ¼

l1 0 . . . 0

0 l2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ln

2
6664

3
7775

The exponential of a

square matrix A is

defined by the

infinite series

eA ¼
X1
k¼0

Ak

k!

¼ IþA

1!
þA2

2!

þA3

3!
þ . . . :
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then

eD ¼

el1 0 . . . 0

0 el2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . eln

2
664

3
775 (4:16)

Example 2 Find eD for D ¼
1 0 0

0 2 0

0 0 2

2
4

3
5.

Solution:

eD ¼
e1 0 0

0 e2 0

0 0 e2

2
4

3
5 &

If a square matrix A is not diagonal, but diagonalizable, then we know from our

work in Section 4.3 that there exists a modal matrix M such that

A ¼MDM�1 (4:17)

where D is a diagonal matrix. It follows that

A2 ¼ AA ¼ (MDM�1)(MDM�1) ¼MD(M�1M)DM�1

¼MD(I)DM�1 ¼MD2M�1

A3 ¼ A2A ¼ (MD2M�1)(MDM�1) ¼MD2(M�1M)DM�1 ¼MD2(I)DM�1

¼MD3M�1

and, in general,

An ¼MDnM�1 (4:18)

for any positive integer n. Consequently,

eA ¼
X1
k¼0

Ak

k!
¼
X1
k¼0

MDkM�1

k!
¼M

X1
k¼0

Dk

k!

 !
M�1 ¼MeDM�1 (4:19)

Example 3 Find eA for A ¼ 1 2

4 3

� �
:

Solution: The eigenvalues of A are �1 and 5 with corresponding eigenvectors

1

�1

� �
and

1

2

� �
. Here,

To calculate the

exponential of a

diagonal matrix,

replace each

diagonal element by

the exponential of

that diagonal

element.
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M ¼ 1 1

�1 2

� �
, M�1 ¼ 2=3 �1=3

1=3 1=3

� �
, and D ¼ �1 0

0 5

� �
:

It follows first from equation (4.19) and then from (4.16) that

eA ¼MeDM�1 ¼
1 1

�1 2

� �
e�1 0

0 e5

" #
2=3 �1=3

1=3 1=3

" #

¼ 1

3

2e�1 þ e5 �e�1 þ e5

�2e�1 þ 2e5 e�1 þ 2e5

" #
&

Even if a matrix A is not diagonalizable, it is still similar to a matrix J in Jordan

canonical form (see Appendix B). That is, there exists a generalized modal matrix

M such that

A ¼MJM�1 (4:20)

Repeating the derivation of (4.18) and (4.19), with J replacing D, we obtain

eA ¼MeJM�1 (4:21)

Thus, once we know how to calculate eJ for a matrix J in Jordan canonical form,

we can use equation (4.21) to find eA for any square matrix A.

A matrix J in Jordan canonical form has the block diagonal pattern

J ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
6664

3
7775 (4:22)

with each Ji(i ¼ 1, 2, . . . , r) being a Jordan block of the form

Ji ¼

li 1 0 . . . 0 0

0 li 1 . . . 0 0

..

. ..
. ..

. . .
. . .

. . .
.

0 0 0 . . . li 1

0 0 0 . . . 0 li

2
666664

3
777775 (4:23)

Powers of a matrix in Jordan canonical form are relatively easy to calculate.

J2 ¼ JJ ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
66664

3
77775

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
66664

3
77775 ¼

J2
1 0 . . . 0

0 J2
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . J2
r

2
666664

3
777775

If A is similar to a

matrix J in Jordan

canonical form, so

that A ¼MJM�1

for a generalized

modal matrix M,

then eA ¼MeJM�1.

(See Appendix B.)
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J3 ¼ JJ2 ¼

J1 0 . . . 0

0 J2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jr

2
6664

3
7775

J2
1 0 . . . 0

0 J2
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . J2
r

2
6664

3
7775 ¼

J3
1 0 . . . 0

0 J3
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . J3
r

2
6664

3
7775

and, in general,

Jk ¼

Jk
1 0 . . . 0

0 Jk
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jk
r

2
66664

3
77775

for any positive integer value of k. Consequently,

eJ ¼
X1
k¼0

Jk

k!
¼
X1
k¼0

1

k!

Jk
1 0 . . . 0

0 Jk
2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Jk
r

2
666664

3
777775 ¼

X1
k¼0

Jk
1

k!
0 . . . 0

0
X1
k¼0

Jk
2

k!
. . . 0

..

. ..
. . .

. ..
.

0 0 . . .
X1
k¼0

Jk
r

k!

2
6666666666664

3
7777777777775

¼

eJ1 0 . . . 0

0 eJ2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . eJr

2
66664

3
77775 (4:24)

Thus, once we know how to calculate the exponential of a Jordan block, we can

use equation (4.24) to find eJ for a matrix J in Jordan canonical form and then

equation (4.21) to obtain eA for a square matrix A.

A 1� 1 Jordan block has the form [l] for some scalar l. Such a matrix is

a diagonal matrix, indeed all 1� 1 matrices are, by default, diagonal matrices,

and it follows directly from equation (4.16) that e[l] ¼ [el]. All other Jordan

blocks have superdiagonal elements, which are all ones. For p� p Jordan block

in the form of (4.23), we can show by direct calculations that each successive

power has one additional diagonal of nonzero entries, until all elements above

the main diagonal become nonzero. On each diagonal, the entries are identical. If

we designate the nth power of a Jordan block as the matrix an
i j

h i
, then the entries

can be expressed compactly in terms of derivatives as

an
i, iþj ¼

1

j!

dj

dl
j
i

ln
i

� �
for j ¼ 0, 1, . . . , n

0 otherwise

8<
:
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Equation (4.15) then reduces to

eJi ¼ eli

1
1

1!

1

2!

1

3!
. . .

1

(p� 1)!

0 1
1

1!

1

2!
. . .

1

(p� 2)!

0 0 1
1

1!
. . .

1

(p� 3)!

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1

2
66666666666664

3
77777777777775

(4:25)

Example 4 Find eJ for J ¼
2t 1 0

0 2t 1

0 0 2t

2
4

3
5.

Solution: J is a single Jordan block with diagonal elements li ¼ 2t. For this

matrix, equation (4.25) becomes

eJ ¼ e2t

1 1 1=2

0 1 1

0 0 1

2
4

3
5 &

Example 5 Find eJ for J ¼

2 0 0 0 0 0

0 3 0 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 0 0 1

2
666666664

3
777777775

Solution: J is in the Jordan canonical form

J ¼
J1 0 0

0 J2 0

0 0 J3

2
64

3
75

with J1 ¼ [2] and J2 ¼ [3] both of order 1� 1, and

J3 ¼

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

2
6664

3
7775

The exponential of a

matrix in Jordan

canonical form

(4.22) has block

diagonal form

(4.24), with the

exponential of each

Jordan block given

by (4.25).
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Here,

eJ1 ¼ e2
� �

, eJ2 ¼ e3
� �

, and

eJ3 ¼ e1

1 1 1=2 1=6

0 1 1 1=2

0 0 1 1

0 0 0 1

2
6666664

3
7777775 ¼

e e e=2 e=6

0 e e e=2

0 0 e e

0 0 0 e

2
6666664

3
7777775

Then,

eJ ¼

e2 0 0 0 0 0

0 e3 0 0 0 0

0 0 e e e=2 e=6

0 0 0 e e e=2

0 0 0 0 e e

0 0 0 0 0 e

2
66666666664

3
77777777775

&

Example 6 Find eA for A ¼
0 4 2

�3 8 3

4 �8 �2

2
4

3
5.

Solution: A canonical basis for this matrix has one chain of length 2:

x2 ¼ 0 0 1½ �T and x1 ¼ 2 3 �4½ �T, and one chain of length 1:

y1 ¼ 2 1 0½ �T, each corresponding to the eigenvalue 2. Setting

M ¼
2 2 0

1 3 0

0 �4 1

2
4

3
5 and J ¼

2 0 0

0 2 1

0 0 2

2
4

3
5

we have A ¼MJM�1. Here J contains two Jordan blocks, the 1� 1 matrix

J1 ¼ [2] and the 2� 2 matrix J2 ¼
2 1

0 2

� �
. We have,

eJ1 ¼ e2
� �

, eJ2 ¼ e2
1 1

0 1

� �
¼ e2 e2

0 e2

" #

eJ ¼ 65 ¼
e2 0 0

0 e2 e2

0 0 e2

2
64

3
75
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eA ¼MeJM�1 ¼
2 2 0

1 3 0

0 �4 1

2
64

3
75 e2 0 0

0 e2 e2

0 0 e2

2
64

3
75 3=4 �1=2 0

�1=4 1=2 0

�1 2 1

2
64

3
75

¼e2

�1 4 2

�3 7 3

4 �8 �3

2
64

3
75 &

Two important properties of the exponential of a matrix are given in the next

theorems.

" Theorem 1. e0 ¼ I, where 0 is the n� n zero matrix and I is the n� n

identity matrix. 3

Proof: In general,

eA ¼
X1
k¼0

Ak

k!
¼ I þ

X1
k¼1

Ak

k!
(4:26)

With A ¼ 0, we have

e0 ¼ I þ
X1
k¼1

0k

k!
¼ I

" Theorem 2. eA
� ��1¼ e�A. 3

Proof:

eAe�A ¼
X1
k¼0

Ak

k!

" # X1
k¼0

(� A)k

k!

" #

¼ I þ Aþ A2

2!
þ A3

3!
þ . . .

� �
I þ Aþ A2

2!
þ A3

3!
þ . . .

� �

¼ IIþ A[1� 1]þ A2 1

2!
� 1þ 1

2!

� �
þ A3 � 1

3!
þ 1

2!
� 1

2!
þ 1

3!

� �
þ . . .

¼ I

Thus, e�A is the inverse of eA.

We conclude from Theorem 2 that eA is always invertible even when A is not. To

calculate e�A directly, set B ¼ �A, and then determine eB.

To calculate eAt,

where A is a square

constant matrix and

t is a variable, set

B ¼ At and

calculate eB.
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A particularly useful matrix function for solving differential equations is eAt,

where A is a square constant matrix (that is, all of its elements are constants) and

t is a variable, usually denoting time. This function may be obtained directly by

setting B ¼ At and then calculating eB.

Example 7 Find eAt for A ¼
3 0 4

1 2 1

�1 0 �2

2
4

3
5.

Solution: Set B ¼ At ¼
3t 0 4t

t 2t t

�t 0 �2t

2
4

3
5.

A canonical basis for B contains one chain of length 1, corresponding to the

eigenvalue �t of multiplicity 1, and one chain of length 2, corresponding to the

eigenvalue 2t of multiplicity 2. A generalized modal matrix for B is

M ¼
1 0 4

0 3t 0

�1 0 �1

2
4

3
5

Then,

J ¼M�1BM ¼
�t 0 0

0 2t 1

0 0 2t

2
64

3
75, eJ ¼

e�t 0 0

0 e2t e2t

0 0 e2t

2
64

3
75

eAt ¼ eB ¼MeJM�1 ¼
1 0 4

0 3t 0

�1 0 �1

2
64

3
75 e�t 0 0

0 e2t e2t

0 0 e2t

2
64

3
75 �1=3 0 �4=3

0 1=(3t) 0

1=3 0 1=3

2
64

3
75

¼ 1

3

�e�t þ 4e2t 0 �4e�t þ 4e2t

3te2t 3e2t 3te2t

e�t � e2t 0 4e�t � e2t

2
64

3
75

Observe that this derivation may not be valid for t ¼ 0 because M�1 is undefined

there. Considering the case t ¼ 0 separately, we find that eA0 ¼ e0 ¼ I. Our

answer also reduces to the identity matrix at t ¼ 0, so our answer is correct for

all t. &

The roots of the characteristic equation of B ¼ At may be complex. As noted in

Section 4.1, such a root is not an eigenvalue when the underlying vector space is

Rn, because there is no corresponding eigenvector with real-valued components.

Complex roots of a characteristic equation are eigenvalues when the underlying

vector space is the set of all n-tuples with complex-valued components. When

calculating matrix exponentials, it is convenient to take the underlying vector

space to be complex-valued n-tuples and to accept each root of a characteristic
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equation as an eigenvalue. Consequently, a generalized modal matrix M may

contain complex-valued elements.

If A is a real matrix and t a real-valued variable, then Bt is real-valued. Because

all integral powers of matrices with real elements must also be real, it follows

from equation (4.26) that eB must be real. Thus, even if J and M have complex-

valued elements, the product eB ¼MeJM�1 must be real. Complex roots of the

characteristic equation of a real matrix must appear in conjugate pairs, which

often can be combined into real-valued quantities by using Euler’s relations:

cos u ¼ eiu þ e�iu

2
and sin u ¼ eiu � e�iu

2i

Example 8 Find eAt for A ¼ 0 1

�1 0

� �
.

Solution: Set B ¼ At ¼ 0 t

�t 0

� �
:

The eigenvalues of B are l1 ¼ it and l2 ¼ �it, with corresponding eigenvectors

1 i½ �T and 1 �i½ �T, respectively. Thus,

M ¼ 1 1

i �i

� �
, J ¼ it 0

0 �it

� �

and

eAt ¼ eB ¼
1 1

i �i

� �
eit 0

0 e�it

� �
1=2 �i=2

1=2 i=2

� �

¼
eit þ e�it

2
eit � e�it

2i

� eit � e�it

2i

eit þ e�it

2

2
64

3
75 ¼ cos t sin t

� sin t cos t

� �
&

If the eigenvalues of B ¼ At are not pure imaginary but rather complex numbers

of the form bþ iu and b� iu, then the algebraic operations needed to simplify eB

are more tedious. Euler’s relations remain applicable, but as part of the following

identities:

e bþiu þ e b�iu

2
¼ e be iu þ e be�iu

2
¼ e b e iu þ e �iuð Þ

2
¼ e b cos u

and

e bþ iu � e b� iu

2i
¼ e be iu � e be �iu

2i
¼ e b e iu � e �iuð Þ

2i
¼ e b sin u
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The exponential of a matrix is useful in matrix calculus for the same reason the

exponential function is so valuable in the calculus: the derivative of eAt is closely

related to the function itself. The derivative of a matrix is obtained by differen-

tiating each element in the matrix. Thus, a matrix C ¼ [cij] has a derivative if and

only if each element cij has a derivative, in which case, we write

_CC(t) ¼ dC(t)

dt
¼ dci j(t)

dt

� �
(4:27)

Example 9 If C(t) ¼
t2 sin t

ln t et2

" #
, then

_CC(t) ¼ dC(t)

dt
¼

d(t2)

dt

d( sin t)

dt

d( ln t)

dt

d(et2 )

dt

2
6664

3
7775 ¼ 2t cos t

1=t 2tet2

" #
&

" Theorem 3. If A is a constant matrix, then
deAt

dt
¼ AeAt ¼ eAtA. 3

Proof:

deAt

dt
¼ d

dt

X1
k¼0

(At)k

k!

 !
¼ d

dt

X1
k¼0

Aktk

k!

 !
¼
X1
k¼0

d

dt

Aktk

k!

	 

¼
X1
k¼0

kAktk�1

k!

¼ 0þ
X1
k¼1

A Ak�1tk�1

(k� 1)!
¼ A

X1
k¼1

Ak�1tk�1

(k� 1)!

 !

¼A
X1
j¼0

Ajtj

j!

 !
¼ A

X1
j¼0

(A t)j

j!

 !
¼ AeAt

If we factor A on the right, instead of the left, we obtain the other identity.

By replacing A with �A in Theorem 3, we obtain:

" Corollary 1. If A is a constant matrix, then
de�At

dt
¼ �AeAt ¼ �eAtA. 3

The derivative of a

matrix is obtained

by differentiating

each element in the

matrix.
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Problems 4.4

In Problems 1 through 30, find the exponential of each matrix.

(1)
�1 0

0 4

� �
. (2)

2 0

0 3

� �
. (3)

�7 0

0 �7

� �
.

(4)
0 0

0 0

� �
. (5)

�7 1

0 �7

� �
. (6)

2 1

0 2

� �
.

(7)
3 1

0 3

� �
. (8)

0 1

0 0

� �
. (9)

2 0 0

0 3 0

0 0 4

2
4

3
5.

(10)

1 0 0

0 �5 0

0 0 �1

2
4

3
5. (11)

2 0 0

0 2 0

0 0 2

2
4

3
5. (12)

2 1 0

0 2 1

0 0 2

2
4

3
5.

(13)

�1 1 0

0 �1 1

0 0 �1

2
4

3
5. (14)

0 1 0

0 0 1

0 0 0

2
4

3
5. (15)

�1 0 0

0 �1 1

0 0 �1

2
4

3
5.

(16)

2 0 0

0 2 1

0 0 2

2
4

3
5. (17)

1 0 0 0

0 5 0 0

0 0 �5 0

0 0 0 3

2
664

3
775. (18)

�5 0 0 0

0 �5 0 0

0 0 �5 0

0 0 0 �5

2
664

3
775.

(19)

�5 0 0 0

0 �5 0 0

0 0 �5 1

0 0 0 �5

2
664

3
775. (20)

�5 0 0 0

0 �5 1 0

0 0 �5 1

0 0 0 �5

2
664

3
775.

(21)

�5 0 0 0

0 �5 1 0

0 0 �5 1

0 0 0 �5

2
664

3
775. (22)

�5 1 0 0

0 �5 1 0

0 0 �5 1

0 0 0 �5

2
664

3
775.

(23)

2 0 1

0 2 0

0 0 2

2
4

3
5. (24)

1 3

4 2

� �
. (25)

4 �1

1 2

� �
.

(26)

1 1 2

�1 3 4

0 0 2

2
4

3
5. (27)

p p=3 �p

0 p p=2
0 0 p

2
4

3
5. (28)

2 1 0

0 2 2

0 0 2

2
4

3
5.

(29)

1 0 0

2 3 �1

1 1 1

2
4

3
5. (30)

2 1 0 0

0 2 0 0

0 0 2 7

0 0 �1 1

2
664

3
775.

(31) Verify Theorem 2 for A ¼ 1 3

0 1

� �
.

(32) Verify Theorem 2 for A ¼ 0 1

�64 0

� �
.
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(33) Verify Theorem 2 for A ¼
0 1 0

0 0 1

0 0 0

2
4

3
5. What is the inverse of A?

(34) Find eAeB, eBeA, and eAþB when

A ¼ 1 1

0 0

� �
and B ¼ 0 1

0 1

� �
,

and show that eAþB 6¼ eAeB 6¼ eBeA.

(35) Find two matrices A and B such that eAeB ¼ eAþB.

(36) Using equation (4.15) directly, prove that eAeB ¼ eAþB when A and B commute.

In Problems 37 through 55, find eAt for the given matrix A.

(37)
4 4

3 5

� �
. (38)

2 1

�1 �2

� �
. (39)

4 1

�1 2

� �
.

(40)
0 1

�14 9

� �
. (41)

�3 2

2 �6

� �
. (42)

�10 6

6 �10

� �
.

(43)
2 1

0 2

� �
. (44)

0 1 0

0 0 1

0 0 0

2
4

3
5. (45)

1 0 0

4 1 2

�1 4 �1

2
4

3
5.

(46)

�1 1 0

0 �1 1

0 0 �1

2
4

3
5. (47)

4 1 0

0 4 0

0 0 4

2
4

3
5. (48)

2 1 0

0 2 0

0 0 �1

2
4

3
5.

(49)

2 3 0

�1 �2 0

1 1 1

2
4

3
5. (50)

3 1 0

�1 1 0

1 2 2

2
4

3
5. (51)

5 �2 2

2 0 1

�7 5 �2

2
4

3
5.

(52)
0 1

�64 0

� �
. (53)

2 5

�1 �2

� �
. (54)

0 1

�25 �8

� �
.

(55)
3 1

�2 5

� �
.

(56) Verify Theorem 3 for the matrix A given in Example 7.

(57) Verify Theorem 3 for the matrix A given in Example 8.

(58) Using the formula

d[A(t)B(t)]

dt
¼ dA(t)

dt

	 

B(t)þ A(t)

dB(t)

dt

	 

,

derive a formula for differentiating A2(t). Use this formula to find dA2(t)=dt

when
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A(t) ¼ t 2t2

4t3 et

� �
,

and show that dA2(t)=dt 6¼ 2A(t)dA(t)=dt. Therefore, the power rule of differentiation

does not hold for matrices unless a matrix commutes with its derivative.

4.5 POWER METHODS

The analytic methods described in Section 4.1 are impractical for calculating the

eigenvalues and eigenvectors of matrices of large order. Determining the char-

acteristic equations for such matrices involves enormous effort, and finding its

roots algebraically is usually impossible. Instead, iterative methods that lend

themselves to computer implementation are used. Ideally, each iteration yields a

new approximation, which converges to an eigenvalue and the corresponding

eigenvector.

The dominant eigenvalue of a matrix is the eigenvalue with the largest absolute

value. Thus, if the eigenvalues of a matrix are 2, 5, and �13, then �13 is

the dominant eigenvalue because it is the largest in absolute value. The power

method is an algorithm for locating the dominant eigenvalue and a correspond-

ing eigenvector for a matrix of real numbers when the following two conditions

exist:

Condition 1. The dominant eigenvalue of a matrix is real (not complex) and is

strictly greater in absolute value than all other eigenvalues.

Condition 2. If the matrix has order n� n, then it possesses n linearly inde-

pendent eigenvectors.

Denote the eigenvalues of a given square matrix A satisfying Conditions 1 and 2

by l1, l2, . . . , ln, and a set of corresponding eigenvectors by v1, v2, . . . , vn,

respectively. Assume the indexing is such that

jl1j > jl2j � jl3j � � � � � jlnj

Any vector x0 can be expressed as a linear combination of the eigenvectors of A,

so we may write

x0 ¼ c1v1 þ c2v2 þ � � � þ cnvn

Multiplying this equation by Ak, for some large, positive integer k, we get

Akx0 ¼ Ak(c1v1 þ c2v2 þ � � � þ cnvn)

¼ c1A
kv1 þ c2A

kv2 þ � � � þ cnA
kvn

It follows from Theorem 8 of Section 4.2 that

The dominant

eigenvalue of a

matrix is the one

having the largest

absolute value.
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Akx0 ¼ c1lk
1v1 þ c2lk

2v2 þ � � � þ cnlk
nvn

¼ lk
1 c1v1 þ c2

l2

l1

	 
k

v2 þ � � � þ cn

ln

l1

	 
k

vn

" #

� lk
1c1v1 for large k

This last pseudo-equality follows from noting that each quotient of eigenvalues is

less than unity in absolute value, as a result of indexing the first eigenvalue as the

dominant one, and therefore tends to 0 as that quotient is raised to successively

higher powers.

Thus, Akx0 approaches a scalar multiple of v1. But any nonzero scalar multiple

of an eigenvector is itself an eigenvector, so Akx0 approaches a scalar multiple of

v1, which is itself an eigenvector of A corresponding to the dominant eigenvalue,

providing c1 is not 0. The scalar c1 will be 0 only if x0 is a linear combination of

fv2, v3, . . . , vng.

The power method begins with an initial vector x0, usually the vector having all

ones for its components, and then iteratively calculates the vectors

x1 ¼ Ax0

x2 ¼ Ax1 ¼ A2x0

x3 ¼ Ax2 ¼ A3x0

..

.

xk ¼ Axk�1 ¼ Akx0

As k gets larger, xk approaches an eigenvector of A corresponding to its dom-

inant eigenvalue.

The Power Method

Step 1. Begin with an initial guess x0 for an eigenvector of a matrix A,

having the property that the largest component of x0 in absolute

value is one. Set a counter k equal to 1.

Step 2. Calculate xk ¼ Axk�1.

Step 3. Set l equal to the largest component of xk in absolute value and

use l as an estimate for the dominant eigenvalue.

Step 4. Rescale xk by dividing each of its components by l. Relabel the

resulting vector as xk.

Step 5. If l is an adequate estimate for the dominant eigenvalue, with xk

as a corresponding eigenvector, stop; otherwise increment k by

one and return to Step 2.
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We can even determine the dominant eigenvalue. If k is large enough so the xk is

a good approximation to the eigenvector to within acceptable roundoff error,

then it follows that Axk ¼ l1xk. If xk is scaled so that its largest component in

absolute value is 1, then the component of xkþ1 ¼ Axk ¼ l1xk that has the

largest absolute value must be l1. We can now formalize the power method.

Example 1 Find the dominant eigenvalue and a corresponding eigenvector for

A ¼ 1 2

4 3

� �

Solution: We initialize x0 ¼ 1 1½ �T. Then, for the first iteration,

x1 ¼ Ax0 ¼
1 2

4 3

� �
1

1

� �
¼

3

7

� �
l � 7

x1  
1

7
[ 3 7 ]T ¼ 0:428571 1½ �T

For the second iteration,

x2 ¼ Ax1 ¼
1 2

4 3

� �
0:428571

1

� �
¼

2:428571

4:714286

� �
l � 4:714286

x2  
1

4:714286
[ 2:428571 4:714286 ]T ¼ [ 0:515152 1 ]T

For the third iteration,

x3 ¼ Ax2 ¼
1 2

4 3

� �
0:515152

1

� �
¼

2:515152

5:060606

� �
l � 5:060606

x3  
1

5:060606
[ 2:515152 5:060606 ]T ¼ [ 0:497006 1 ]T

For the fourth iteration,

x4 ¼ Ax3 ¼
1 2

4 3

� �
0:497006

1

� �
¼

2:497006

4:988024

� �
l � 4:988024

x4  
1

4:988024
2:497006 4:988024½ �T¼ [ 0:500600 1 ]T

The method is converging to the eigenvalue 5 and its corresponding eigenvector

[ 0:5 1 ]T: &
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Example 2 Find the dominant eigenvalue and a corresponding eigenvector for

A ¼
0 1 0

0 0 1

18 �1 �7

2
4

3
5

Solution: We initialize x0 ¼ [ 1 1 1 ]T. Then, for the first iteration,

x1 ¼ Ax0 ¼
0 1 0

0 0 1

18 �1 �7

2
4

3
5 1

1

1

2
4
3
5 ¼ 1

1

10

2
4

3
5

For the second iteration,

x2 ¼ Ax1 ¼
0 1 0

0 0 1

18 �1 �7

2
64

3
75 0:1

0:1

1

2
64

3
75 ¼ 0:1

1

�5:3

2
64

3
75

l � �5:3

x2  
1

�5:3
[ 0:1 1 �5:3 ]T ¼ [�0:018868 �0:188679 1 ]T

For the third iteration,

x3 ¼ Ax2 ¼
0 1 0

0 0 1

18 �1 �7

2
64

3
75 �0:018868

�0:188679

1

2
64

3
75 ¼ �0:188679

1

�7:150943

2
64

3
75

l � �7:150943

x3 ¼
1

�7:150943
[�0:188679 1 �7:150943 ]T

¼ [ 0:026385 �0:139842 1 ]T

Continuing in this manner, we generate Table 4.1, where all entries are rounded

to four decimal places. The algorithm is converging through six decimal places to

the eigenvalue �6:405125 and its corresponding eigenvector

[ 0:024375 �0:156125 1 ]T &

Although effective when it converges, the power method has deficiencies. It does

not converge to the dominant eigenvalue when that eigenvalue is complex, and

it may not converge when there is more than one equally dominant eigenvalue

(see Problem 12). Furthermore, the method, in general, cannot be used to locate

all the eigenvalues.
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A more powerful numerical method is the inverse power method, which is the

power method applied to the inverse of a matrix. This, of course, adds another

assumption: The inverse must exist, or equivalently, the matrix must not have

any zero eigenvalues. Since a nonsingular matrix and its inverse share identical

eigenvectors and reciprocal eigenvalues (see Theorem 4 of Section 4.4), once we

know the eigenvalues and eigenvectors of the inverse of a matrix, we have the

analogous information about the matrix itself.

The power method applied to the inverse of a matrix A will generally converge to

the dominant eigenvalue of A�1. Its reciprocal will be the eigenvalue of A having

the smallest absolute value. The advantages of the inverse power method are that

it converges more rapidly than the power method, and it often can be used to

find all real eigenvalues of A; a disadvantage is that it deals with A�1, which is

laborious to calculate for matrices of large order. Such a calculation, however,

can be avoided using LU decomposition.

The power method generates the sequence of vectors

xk ¼ Axk�1

The inverse power method will generate the sequence

xk ¼ A�1xk�1

which may be written as

Axk ¼ xk�1

We solve for the unknown vector xk using LU decomposition (see Section 1.6).

Example 3 Use the inverse power method to find an eigenvalue for

A ¼ 2 1

2 3

� �

The inverse power

method is the power

method applied to

the inverse of a

matrix A; in general,

the inverse power

method converges

to the smallest

eigenvalue of A in

absolute value.

TABLE 4.1

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.1000 0.1000 1.0000 10.0000

2 �0.0189 �0.1887 1.0000 �5.3000

3 0.0264 �0.1398 1.0000 �7.1509

4 0.0219 �0.1566 1.0000 �6.3852

5 0.0243 �0.1551 1.0000 �6.4492

6 0.0242 �0.1561 1.0000 �6.4078

7 0.0244 �0.1560 1.0000 �6.4084

8 0.0244 �0.1561 1.0000 �6.4056
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Solution: We initialize x0 ¼ 1 1½ �T. The LU decomposition for A has A ¼ LU

with

L ¼ 1 0

1 1

� �
and U ¼ 2 1

0 2

� �

For the first iteration, we solve the system LUx1 ¼ x0 by first solving the system

Ly ¼ x0 for y, and then solving the system Ux1 ¼ y for x1. Set y ¼ y1 y2½ �T and

x1 ¼ a b½ �T. The first system is

y1 þ 0y2 ¼ 1

y1 þ y2 ¼ 1

which has as its solution y1 ¼ 1 and y2 ¼ 0. The system Ux1 ¼ y becomes

2aþ b ¼ 1

2b ¼ 0

which admits the solution a ¼ 0:5 and b ¼ 0. Thus,

x1 ¼ A�1x0 ¼ 0:5 0½ �T

l � 0:5 (an approximation to an eigenvalue for A�1)

x1  
1

0:5
0:5 0½ �T¼ 1 0½ �T

For the second iteration, we solve the system LUx2 ¼ x1 by first solving the

system Ly ¼ x1 for y, and then solving the system Ux2 ¼ y for x2. Set

y ¼ y1 y2½ �T and x2 ¼ a b½ �T. The first system is

y1 þ 0y2 ¼ 1

y1 þ y2 ¼ 0

which has as its solution y1 ¼ 1 and y2 ¼ �1. The system Ux2 ¼ y becomes

2aþ b ¼ 1

2b ¼ �1

which admits the solution a ¼ 0:75 and b ¼ �0:5. Thus,

x2 ¼ A�1x1 ¼ 0:75 �0:5½ �T

l � 0:75

x2  
1

0:75
0:75 �0:5½ �T¼ 1 �0:666667½ �T
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For the third iteration, we first solve Ly ¼ x2 to obtain y ¼ 1 �1:666667½ �T,

and then Ux3 ¼ y to obtain x3 ¼ 0:916667 �0:833333½ �T Then,

l � 0:916667

x3  
1

0:916667
0:916667 �0:833333½ �T¼ 1 �0:909091½ �T

Continuing, we converge to the eigenvalue 1 for A�1 and its reciprocal 1=1 ¼ 1

for A. The vector approximations are converging to 1 �1½ �T , which is an eigen-

vector for both A�1 and A. &

Example 4 Use the inverse power method to find an eigenvalue for

A ¼
7 2 0

2 1 6

0 6 7

2
4

3
5

Solution: We initialize x0 ¼ 1 1 1½ �T. The LU decomposition for A has

A ¼ LU with

L ¼

1 0 0

0:285714 1 0

0 14 1

2
664

3
775 and U ¼

7 2 0

0 0:428571 6

0 0 �77

2
664

3
775

For the first iteration, set y ¼ y1 y2 y3½ �T and x1 ¼ a b c½ �T. The first

system is

y1 þ 0y2 þ 0y3 ¼ 1

0:285714y1 þ y2 þ 0y3 ¼ 1

0y1 þ 14y2 þ y3 ¼ 1

which has as its solution y1 ¼ 1, y2 ¼ 0:714286, and y3 ¼ �9. The system

Ux1 ¼ y becomes

7aþ 2b ¼ 1

0:428571bþ 6c ¼ 0:714286

�77c ¼ �9

which admits the solution a ¼ 0:134199, b ¼ 0:030303, and c ¼ 0:116883. Thus,
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x1 ¼ A�1x0 ¼ 0:134199 0:030303 0:116833½ �T

l � 0:134199 (an approximation to an eigenvalue for A�1)

x1  
1

0:134199
0:134199 0:030303 0:116833½ �T

¼ 1 0:225806 0:870968½ �T

For the second iteration, solving the system Ly ¼ x1 for y, we obtain

y ¼ 1 �0:059908 1:709677½ �T

Then, solving the system Ux2 ¼ y for x2, we get

x2 ¼ 0:093981 0:171065 �0:022204½ �T

Therefore,

l � 0:171065

x2  
1

0:171065
0:093981 0:171065 �0:022204½ �T

¼ 0:549388 1 �0:129796½ �T

For the third iteration, solving the system Ly ¼ x2 for y, we obtain

y ¼ 0:549388 0:843032 �11:932245½ �T

Then, solving the system Ux3 ¼ y for x3, we get

x3 ¼ 0:136319 �0:202424 0:154964½ �T

Therefore,

l � �0:202424

x3  
1

�0:202424
0:136319 �0:202424 0:154964½ �T

¼ �0:673434 1 �0:765542½ �T

Continuing in this manner, we generate Table 4.2, where all entries are rounded

to four decimal places. The algorithm is converging to the eigenvalue �1=3 for

A�1 and its reciprocal �3 for A. The vector approximations are converging to

�0:2 1 �0:6½ �T, which is an eigenvector for both A�1 and A. &
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We can use Theorem 9 of Section 4.2 in conjunction with the inverse power

method to develop a procedure for finding all eigenvalues and a set of corre-

sponding eigenvectors for a matrix, providing that the eigenvalues are real and

distinct, and estimates of their locations are known. The algorithm is known as

the shifted inverse power method.

If c is an estimate for an eigenvalue of A, then A� cI will have an eigenvalue near

0 and its reciprocal will be the dominant eigenvalue of (A� cI)�1. We use the

inverse power method with an LU decomposition of A� cI to calculate the

dominant eigenvalue l and its corresponding eigenvector x for (A� cI)�1.

Then 1=l and x are an eigenvalue and eigenvector pair for A� cI while

cþ (1=l) and x are an eigenvalue and eigenvector pair for A.

TABLE 4.2

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 1.0000 0.2258 0.8710 0.1342

2 0.5494 1.0000 �0.1298 0.1711

3 �0.6734 1.0000 �0.7655 �0.2024

4 �0.0404 1.0000 �0.5782 �0.3921

5 �0.2677 1.0000 �0.5988 �0.3197

6 �0.1723 1.0000 �0.6035 �0.3372

7 �0.2116 1.0000 �0.5977 �0.3323

8 �0.1951 1.0000 �0.6012 �0.3336

9 �0.2021 1.0000 �0.5994 �0.3333

10 �0.1991 1.0000 �0.6003 �0.3334

11 �0.2004 1.0000 �0.5999 �0.3333

12 �0.1998 1.0000 �0.6001 �0.3333

The Shifted Inverse Power Method

Step 1. Begin with an initial guess x0 for an eigenvector of a matrix A,

having the property that the largest component of x0 in absolute

value is one. Set a counter k equal to 1 and choose a value for the

constant c (preferably an estimate for an eigenvalue if such an

estimate is available).

Step 2. Calculate xk ¼ (A� cI)�1xk�1.

Step 3. Set l equal to the largest component of xk in absolute value.

Step 4. Rescale xk by dividing each of its components by l. Relabel the

resulting vector as xk.

Step 5. If cþ (1=l) is an adequate estimate for an eigenvalue of A, with xk

as a corresponding eigenvector, stop; otherwise increment k by

one and return to Step 2.
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Example 5 Find a second eigenvalue for the matrix given in Example 4.

Solution: Since we do not have an estimate for any of the eigenvalues, we

arbitrarily choose c ¼ 15. Then

A� cI ¼

�8 2 0

2 �14 6

0 6 �8

2
6664

3
7775

which has an LU decomposition with

L ¼

1 0 0

�0:25 1 0

0 �0:444444 1

2
6664

3
7775 and U ¼

�8 2 0

0 �13:5 6

0 0 �5:333333

2
6664

3
7775

Applying the inverse power method to A� 15I, we generate Table 4.3, which is

converging to l ¼ �0:25 and x ¼ 1

3

2

3
1

� �T

. The corresponding eigenvalue of

A is (1=� 0:25)þ 15 ¼ 11, with the same eigenvector.

Using the results of Examples 4 and 5, we have two eigenvalues, l1 ¼ �3 and

l2 ¼ 11, of the 3� 3 matrix defined in Example 4. Since the trace of a matrix

equals the sum of the eigenvalues (Theorem 1 of Section 4.2), we know

7þ 1þ 7 ¼ �3þ 11þ l3, so the last eigenvalue is l3 ¼ 7. &

TABLE 4.3

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.6190 0.7619 1.0000 �0.2917

2 0.4687 0.7018 1.0000 �0.2639

3 0.3995 0.6816 1.0000 �0.2557

4 0.3661 0.6736 1.0000 �0.2526

5 0.3496 0.6700 1.0000 �0.2513

6 0.3415 0.6683 1.0000 �0.2506

7 0.3374 0.6675 1.0000 �0.2503

8 0.3354 0.6671 1.0000 �0.2502

9 0.3343 0.6669 1.0000 �0.2501

10 0.3338 0.6668 1.0000 �0.2500

11 0.3336 0.6667 1.0000 �0.2500
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Problems 4.5

In Problems 1 through 10, use the power method to locate the dominant eigenvalue and

a corresponding eigenvector for the given matrices. Stop after five iterations.

(1)
2 1

2 3

� �
. (2)

2 3

4 6

� �
. (3)

3 6

9 6

� �
.

(4)
0 1

�4 6

� �
. (5)

8 2

3 3

� �
. (6)

8 3

3 2

� �
.

(7)

3 0 0

2 6 4

2 3 5

2
4

3
5. (8)

7 2 0

2 1 6

0 6 7

2
4

3
5. (9)

3 2 3

2 6 6

3 6 11

2
4

3
5.

(10)

2 �17 7

�17 �4 1

7 1 �14

2
4

3
5.

(11) Use the power method on

A ¼
2 0 �1

2 2 2

�1 0 2

2
4

3
5

and explain why it does not converge to the dominant eigenvalue l ¼ 3.

(12) Use the power method on

A ¼ 3 5

5 �3

� �

and explain why it does not converge.

(13) Shifting can also be used with the power method to locate the next most dominant

eigenvalue, if it is real and distinct, once the dominant eigenvalue has been deter-

mined. Construct A� lI, where l is the dominant eigenvalue of A, and apply the

power method to the shifted matrix. If the algorithm converges to m and x, then

mþ l is an eigenvalue of A with the corresponding eigenvector x. Apply this shifted

power method algorithm to the matrix in Problem 1. Use the result of Problem 1 to

determine the appropriate shift.

(14) Use the shifted power method as described in Problem 13 on the matrix in Problem

9. Use the results of Problem 9 to determine the appropriate shift.

(15) Use the inverse power method on the matrix defined in Example 1. Stop after five

iterations.

(16) Use the inverse power method on the matrix defined in Problem 3. Take

x0 ¼ [ 1 �0:5 ]T and stop after five iterations.

(17) Use the inverse power method on the matrix defined in Problem 5. Stop after five

iterations.

(18) Use the inverse power method on the matrix defined in Problem 6. Stop after five

iterations.
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(19) Use the inverse power method on the matrix defined in Problem 9. Stop after five

iterations.

(20) Use the inverse power method on the matrix defined in Problem 10. Stop after five

iterations.

(21) Use the inverse power method on the matrix defined in Problem 11. Stop after five

iterations.

(22) Use the inverse power method on the matrix defined in Problem 4. Explain the

difficulty and suggest a way to avoid it.

(23) Use the inverse power method on the matrix defined in Problem 2. Explain the

difficulty and suggest a way to avoid it.

(24) Can the power method converge to a dominant eigenvalue if that eigenvalue is not

distinct?

(25) Apply the shifted inverse power method to the matrix defined in Problem 9, with a

shift constant of 10.

(26) Apply the shifted inverse power method to the matrix defined in Problem 10, with a

shift constant of �25.

4.6 DIFFERENTIAL EQUATIONS IN FUNDAMENTAL FORM

An important application of Jordan canonical forms (see Appendix B), in

general, and the exponential of a matrix, in particular, occurs in the solution of

differential equations with constant coefficients. A working knowledge of the

integral calculus and a familiarity with differential equations is required to

understand the scope of this application. In this section, we show how to

transform many systems of differential equations into a matrix differential

equation. In the next section, we show how to solve such systems using the

exponential of matrix.

A differential equation in the unknown functions x1(t), x2(t), . . . , xn(t) is an

equation that involves these functions and one or more of their derivatives. We

shall be interested in systems of first order differential equations of the form

dx1(t)

dt
¼ a11x1(t)þ a12x2(t)þ . . .þ a1nxn(t)þ f1(t)

dx2(t)

dt
¼ a21x1(t)þ a22x2(t)þ . . .þ a2nxn(t)þ f2(t) (4:28)

..

.

dxn(t)

dt
¼ a11x1(t)þ a12x2(t)þ . . .þ a1nxn(t)þ f1(t)

Here aij (i, j ¼ 1, 2, . . . , n) is restricted to be a constant and fi(t) is presumed to be

a known function of the variable t. If we define
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x(t) ¼

x1(t)

x2(t)

..

.

xn(t)

2
6664

3
7775, A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. . .

. ..
.

an1 an2 . . . ann

2
6664

3
7775, and f(t) ¼

f1(t)

f2(t)

..

.

fn(t)

2
6664

3
7775 (4:29)

then equation (4.28) is equivalent to the single matrix equation

dx(t)

dt
¼ Ax(t)þ f(t) (4:30)

Example 1 The system of equations

dx(t)

dt
¼ 2x(t)þ 3y(t)þ 4z(t)þ (t2 � 1)

dy(t)

dt
¼ 5y(t)þ 6z(t)þ et

dz(t)

dt
¼ 7x(t)� 8y(t)� 9z(t)

is equivalent to the matrix equation

dx(t)=dt

dy(t)=dt

dz(t)=dt

2
64

3
75 ¼ 2 3 4

0 5 6

7 �8 �9

2
4

3
5 x(t)

y(t)

z(t)

2
4

3
5þ t2 � 1

et

0

2
4

3
5

This matrix equation is in form (4.30) with

x(t) ¼
x(t)

y(t)

z(t)

2
4

3
5, A ¼

2 3 4

0 5 6

7 �8 �9

2
4

3
5, and f(t) ¼

t2 � 1

et

0

2
64

3
75

In this example, x1(t) ¼ x(t), x2(t) ¼ y(t), and x3(t) ¼ z(t). &

We solve equation (4.30) in the interval a � t � b by identifying a column matrix

x(t) that when substituted into (4.30) makes the equation true for all values of t in

the given interval. Often, however, we need to solve more than just a set of

differential equations. Often, we seek functions x1(t), x2(t), . . . , xn(t) that satisfy

all the differential equations in (4.28) or, equivalently, equation (4.30) and also

a set of initial conditions of the form

x1(t0) ¼ c1, x2(t0) ¼ c2, . . . , xn(t0) ¼ c0 (4:31)

where c1, c2, . . . , cn are all constants, and t0 is a specific value of the variable

t inside the interval of interest. Upon defining
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c ¼

c1

c2

..

.

cn

2
6664

3
7775

it follows that

x(t0) ¼

x1(t0)

x2(t0)

..

.

xn(t0)

2
6664

3
7775 ¼

c1

c2

..

.

cn

2
6664

3
7775 ¼ c

Thus, initial conditions (4.31) have the matrix form

x(t0) ¼ c (4:32)

We say that a system of differential equations is in fundamental form if it is given

by the matrix equations

dx(t)

dt
¼ Ax(t)þ f(t)

x(t0) ¼ c

(4:33)

Example 2 The system of equations

dr(t)

dt
¼ 2r(t)� 3s(t)

ds(t)

dt
¼ 4r(t)þ 5s(t)

r(p) ¼ 10, s(p) ¼ �20

is equivalent to the matrix equations

dr(t)=dt

ds(t)=dt

" #
¼

2 �3

4 5

� �
r(t)

s(t)

� �
þ

0

0

� �

r(p)

s(p)

� �
¼

10

�20

� �

This set of equations is in fundamental form (4.33) with

x(t) ¼ r(t)

s(t)

� �
, A ¼ 2 �3

4 5

� �
, f(t) ¼ 0

0

� �
, and c ¼ 10

�20

� �

In this example, x1(t) ¼ r(t) and x2(t) ¼ s(t). &

A system of

differential

equations is in

fundamental form if

it is given by the

matrix equations

dx(t)

dt
¼ Ax(t)þ f(t)

x(t0) ¼ c:
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A system of differential equations in fundamental form is homogeneous when

f(t) ¼ 0 and nonhomogeneous when f(t) 6¼ 0 (that is, when at least one element of

f(t) is not zero). The system in Example 2 is homogeneous; the system in Example

1 is nonhomogeneous.

Generally, systems of differential equations do not appear in fundamental form.

However, many such systems can be transformed into fundamental form by

appropriate reduction techniques. One such group are initial-value problems of

the form

an

dnx(t)

dtn
þan�1

dn�1x(t)

dtn�1
þ . . .þ a1

dx(t)

dt
þ a0x(t) ¼ f (t)

x(t0) ¼ c1,
dx(t0)

dt
¼ c2, . . . ,

dn�1x(t0)

dtn�1
¼ cn�1

(4:34)

This is a system containing a single nth-order, linear differential equation with

constant coefficients along with n� 1 initial conditions at t0. The coefficients

a0, a1, . . . , an are restricted to be constants and the function f(t) is presumed to be

known and continuous on some interval centered around t0.

A method of reduction for transforming system (4.34) into fundamental form is

given by the following six steps.

Step 1. Solve system (4.34) for the nth derivative of x(t).

dnx(t)

dtn
¼ � an�1

an

	 

dn�1x(t)

dtn�1
� . . .� a1

an

	 

dx(t)

dt
� a0

an

	 

x(t)þ f (t)

an

Step 2. Define n new variables (the same number as the order of the differential

equations) x1(t),x2(t), . . . , xn(t) by the equations

x1 ¼ x(t), x2 ¼
dx

dt
, x3 ¼

d2x

dt2
, . . . , xn�1 ¼

dn�2x

dtn�2
, xn ¼

dn�1x

dtn�1

(4:35)

Here we simplified xj(t) ( j ¼ 1, 2, . . . , n) to xj. By differentiating the

last equation in system (4.35), we obtain

dxn

dt
¼ dnx

dtn
(4:36)

Step 3. Substitute equations (4.35) and (4.36) into the equation obtained in

Step 1, thereby obtaining an equation for dxn=dt in terms of the new

variables. The result is

dxn

dt
¼ � an�1

an

	 

xn � . . .� a1

an

	 

x2 �

a0

an

	 

x1 þ

f (t)

an

(4:37)

A system of

differential

equations in

fundamental form is

homogeneous when

f(t) ¼ 0.
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Step 4. Using (4.35) and (4.37), construct a system of n first-order differential

equations for x1, x2, . . . , xn. The system is

dx1

dt
¼ x2

dx2

dt
¼ x3

..

.

dxn�1

dt
¼ xn

dxn

dt
¼ � a0

an

	 

x1 �

a1

an

	 

x2 � . . .� an�1

an

	 

xn þ

f (t)

an

(4:38)

In this last equation, the order of the terms in equation (4.37) was

rearranged so that x1 appears before x2, which appears before x3 and

so on. This was done to simplify the next step.

Step 5. Write system (4.38) as a single matrix differential equation. Define

x(t) ¼

x1

x2

..

.

xn�1

xn

2
6666666664

3
7777777775
, f(t) ¼

0

0

..

.

0

f (t)=an

2
6666666664

3
7777777775

A ¼

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 1

� a0

an

� a1

an

� a2

an

� a3

an

. . . � an�1

an

2
66666666666664

3
77777777777775

Then equation (4.38) is equivalent to the matrix equation
dx(t)

dt
¼

Ax(t)þ f(t).

Step 6. Write the initial conditions as a matrix equation. Define

c ¼ c1 c2 . . . cn½ �T. Then,
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x(t0) ¼

x1(t0)

x2(t0)

..

.

xn(t0)

2
6664

3
7775 ¼

x(t0)

dx(t0)=dt

..

.

dn�1x(t0)=dtn�1

2
66664

3
77775 ¼

c1

c2

..

.

cn

2
6664

3
7775 ¼ c

The results of Steps 5 and 6 are a matrix system in fundamental form. &

Example 3 Write the initial-value problem

d2x(t)

dt2
þ x(t) ¼ 2; x(p) ¼ 0,

dx(p)

dt
¼ �1

in fundamental form.

Solution: The differential equation may be rewritten as

d2x(t)

dt2
¼ �x(t)þ 2

This is a second-order differential equation, so we define two new variables

x1 ¼ x(t) and x2 ¼
dx

dt
. Thus,

dx2

dt
¼ d2x

dt2
and the original differential equation

becomes
dx2

dt
¼ �x1 þ 2. A first-order system for the new variables is

dx1

dt
¼ x2 ¼ 0x1 þ 1x2

dx2

dt
¼ �x1 þ 2 ¼ �1x1 þ 0x2 þ 2

Define x(t) ¼ x1

x2

� �
, A ¼ 0 1

�1 0

� �
, f(t) ¼ 0

2

� �
, and c ¼ 0

�1

� �
. Then, the

initial-value problem is equivalent to the fundamental form

dx(t)

dt
¼ Ax(t)þ f(t); x(p) ¼ c &

Example 4 Write the initial-value problem

2
d4x

dt4
� 4

d3x

dt3
þ 16

d2x

dt2
� dx

dt
þ 2x ¼ sin t

x(0) ¼ 1,
dx(0)

dt
¼ 2,

d2x(0)

dt2
¼ �1,

d3x(0)

dt3
¼ 0

in fundamental form.
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Solution: The differential equation may be rewritten as

d4x

dt4
¼ 2

d3x

dt3
� 8

d2x

dt2
þ 1

2

dx

dt
� xþ 1

2
sin t

This is a fourth-order differential equation, so we define four new variables

x1 ¼ x(t), x2 ¼
dx

dt
, x3 ¼

d2x

dt2
, and x4 ¼

d3x

dt3

Thus,
dx4

dt
¼ d4x

dt4
and the original differential equation becomes

dx4

dt
¼ 2x4 � 8x3 þ

1

2
x2 � x1 þ

1

2
sin t

A first-order system for the new variables is

dx1

dt
¼ x2

dx2

dt
¼ x3

dx3

dt
¼ x4

dx4

dt
¼ �x1 þ

1

2
x2 � 8x3 þ 2x4 þ

1

2
sin t:

Define x(t) ¼

x1

x2

x3

x4

2
6664

3
7775, A ¼

0 1 0 0

0 0 1 0

0 0 0 1

�1 1
2
�8 2

2
6664

3
7775, f(t) ¼

0

0

0
1
2

sin t

2
6664

3
7775, and

c ¼

1

2

�1

0

2
664

3
775.

Then, the initial-value problem is equivalent to the fundamental form

dx(t)

dt
¼ Ax(t)þ f(t); x(0) ¼ c &
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Problems 4.6

Put the following initial-value problems into fundamental form:

(1)
dx (t)

dt
¼ 2x (t)þ 3y (t)

dy (t)

dt
¼ 4x (t)þ 5y (t)

x (0) ¼ 6, y (0) ¼ 7

(2)
dy (t)

dt
¼ 3y (t)þ 2z (t)

dz (t)

dt
¼ 4y (t)þ z (t)

y (0) ¼ 1, z (0) ¼ 1

(3)
dx (t)

dt
¼ �3x (t)þ 3y (t)þ 1

dy (t)

dt
¼ 4x (t)� 4y (t)� 1

x (0) ¼ 0, y (0) ¼ 0

(4)
dx (t)

dt
¼ 3x (t)þ t

dy (t)

dt
¼ 2x (t)þ tþ 1

x (0) ¼ 1, y (0) ¼ �1

(5)
dx (t)

dt
¼ 3x (t)þ 7y (t)þ 2

dy (t)

dt
¼ x (t)þ y (t)þ 2t

x (1) ¼ 2, y (1) ¼ �3

(6)
du (t)

dt
¼ u (t)þ v (t)þ w (t)

dv (t)

dt
¼ u (t)� 3v (t)þ w (t)

dw (t)

dt
¼ v (t)þ w (t)

u (4) ¼ 0, v (4) ¼ 1,w (4) ¼ �1

(7)
dx (t)

dt
¼ 6y (t)þ z (t)

dy (t)

dt
¼ x (t)� 3z (t)

dz (t)

dt
¼ �2y (t)

x (0) ¼ 10, y (0) ¼ 10, z (0) ¼ 20

(8)
dr (t)

dt
¼ r (t)� 3s (t)� u (t)þ sin t

ds (t)

dt
¼ r (t)� s (t)þ t2 þ 1

dt (t)

dt
¼ 2r (t)þ s (t)� u (t)þ cos t

r (1) ¼ 4, s (1) ¼ �2, u (1) ¼ 5

(9)
d2x (t)

dt2
� 2

dx (t)

dt
� 3x (t) ¼ 0

x (0) ¼ 4,
dx (0)

dt
¼ 5

(10)
d2x (t)

dt2
þ dx (t)

dt
� x (t) ¼ 0

x (1) ¼ 2,
dx (1)

dt
¼ 0

(11)
d2x (t)

dt2
� x (t) ¼ t2

x (0) ¼ �3,
dx (0)

dt
¼ 3

(12)
d2x (t)

dt2
� 2

dx (t)

dt
� 3x (t) ¼ 2

x (0) ¼ 0,
dx (0)

dt
¼ 0

(13)
d2x (t)

dt2
� 3

dx (t)

dt
þ 2x (t) ¼ e�t

x (1) ¼ 2,
dx (1)

dt
¼ 2

(14)
d3x (t)

dt3
þ d2 (t)

dt2
� x (t) ¼ 0

x (� 1) ¼ 2,
dx (� 1)

dt
¼ 1,

d2x (t)

dt2
¼ �205
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(15)
d4x

dt4
þ d2x

dt2
¼ 1þ dx

dt

x(0) ¼ 1,
dx(0)

dt
¼ 2,

d2x(0)

dt2
¼ p,

d3x(0)

dt3
¼ e3

(16)
d6x

dt6
þ 4

d4x

dt4
¼ t2 � t

x(p) ¼ 2,
dx(p)

dt
¼ 1,

d2x(p)

dt2
¼ 0,

d3x(p)

dt3
¼ 2

d4x(p)

dt4
¼ 1,

d5x(p)

dt5
¼ 0

4.7 SOLVING DIFFERENTIAL EQUATIONS IN FUNDAMENTAL FORM

We demonstrated in Section 4.6 how various systems of differential equations

could be transformed into the fundamental matrix form

dx(t)

dt
¼ Ax(t)þ f(t)

x(t0) ¼ c

(4:39)

The matrix A is assumed to be a matrix of constants, as is the column matrix c. In

contrast, the column matrix f(t) may contain known functions of the variable t.

Such differential equations can be solved in terms of eAt.

The matrix differential equation in (4.39) can be rewritten as

dx(t)

dt
� Ax(t) ¼ f(t)

If we premultiply each side of this equation by e�At, we obtain

e�At dx(t)

dt
� Ax(t)

� �
¼ e�Atf (t)

which may be rewritten as (see Corollary 1 of Section 4.4)

d

dt
e�Atx(t)
� �

¼ e�Atf (t)

Integrating this last equation between the limits of t0 and t, we have

Z t

t0

d

dt
e�Atx(t)
� �

dt ¼
Z t

t0

e�Atf (t)dt
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or

e�Atx(t)

����
t

t0

¼
Z t

t0

e�Asf (s)ds (4:40)

Note that we have replaced the dummy variable t by the dummy variable s in the

right-side of equation (4.40), which has no effect on the definite integral (see

Problem 1). Evaluating the left side of equation (4.40), we obtain

e�Atx(t)� eAt0x(t0) ¼
Z t

t0

e�Asf (s)ds

or

e�Atx(t) ¼ eAt0cþ
Z t

t0

e�Asf (s)ds (4:41)

where we substituted for x(t0) the initial condition x(t0) ¼ c. We solve explicitly

for x(t) by premultiplying both sides of equation (4.41) by (e�At)�1, whence

x(t) ¼ e�At
� ��1

eAt0cþ e�At
� ��1

Z t

t0

e�Asf (s)ds (4:42)

But (e�At)�1 ¼ eAt (see Theorem 2 of Section 4.4). Also, At commutes with At0,

so eAteAt0 ¼ eA(t�t0) (see Problem 36 of Section 4.4). Equation (4.42) may be

simplified to

x(t) ¼ eA(t�t0)cþ eAt

Z t

t0

e�Asf (s)ds (4:43)

and we have proven

" Theorem 1. The solution to the system
dx(t)

dt
¼ Ax(t)þ f(t); x(t0) ¼ c

in fundamental form is

x(t) ¼ eA(t�t0)cþ eAt

Z t

t0

e�Asf (s)ds 3

A simple technique for calculating the matrices eA(t�t0) and e�As is to first find eAt

and then replace the variable t wherever it appears by the quantities (t� t0) and

(� s), respectively.
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Example 1 eAt ¼ e�t te�t

0 e�t

� �
for A ¼ �1 1

0 �1

� �
. Consequently,

eA(t�t0) ¼ e�(t�t0) (t� t0)e
�(t�t0)

0 e�(t�t0)

� �
and e�As ¼ es �ses

0 es

� �
. &

Note that when t is replaced by (t� t0) in e�t, the result is e�(t�t0) ¼ e�tþt0 and not

e�t�t0 . That is, we replace the quantity t by the quantity (t� t0); we do not simply

add �t0 to the variable t wherever t appeared.

Example 2 Use matrix methods to solve

du(t)

dt
¼ u(t)þ 2v(t)þ 1

dv(t)

dt
¼ 4u(t)þ 3v(t)� 1

u(0) ¼ 1, v(0) ¼ 2

Solution: This system can be transformed into fundamental form if we define

x(t) ¼ u(t)

v(t)

� �
, A ¼ 1 2

4 3

� �
, f(t) ¼ 1

�1

� �
, and c ¼ 1

2

� �

and take t0 ¼ 0. For this A, we calculate

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

� �

Hence,

e�As ¼ 1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

� �

and

eAðt�t0Þ ¼ eAt

since t0 ¼ 0. Thus,

eAðt�t0Þc ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
1

2

� �

¼ 1

6

1½2e5t þ 4e�t� þ 2½2e5t � 2e�t�
1½4e5t � 4e�t� þ 2½4e5t þ 2e�t�

" #

¼ e5t

2e5t

� �
ð4:44Þ
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e�AsfðsÞ ¼ 1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

" #
1

�1

� �

¼ 1

6

1½2e�5s þ 4es� � 1½2e�5s � 2es�
1½4e�5s � 4es� � 1½4e�5s þ 2es�

" #
¼ es

�es

� �

Hence,

Z t

t0

e�AsfðsÞds ¼
R t

0
es dsR t

0
�es ds

" #
¼

esjt0
�esjt0

" #
¼

et � 1

�et þ 1

" #

eAt

Z t

t0

e�AsfðsÞ ds ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
ðet � 1Þ
ð1� etÞ

" #

¼ 1

6

½2e5t þ 4e�t�½et � 1� þ ½2e5t � 2e�t�½1� et�

½4e5t � 4e�t�½et � 1� þ ½4e5t þ 2e�t�½1� et�

" #

¼
ð1� e�tÞ
ð�1þ e�tÞ

� �

ð4:45Þ

Substituting (4.44) and (4.45) into (4.43), we have

uðtÞ
vðtÞ

� �
¼ xðtÞ ¼

e5t

2e5t

" #
þ

1� e�t

�1þ e�t

� �
¼

e5t þ 1� e�t

2e5t � 1þ e�t

" #

or
uðtÞ ¼ e5t � e�t þ 1

vðtÞ ¼ 2e5t þ e�t � 1 &

Example 3 Use matrix methods to solve

d2y

dt2
� 3

dy

dt
þ 2y ¼ e�3t

y(1) ¼ 1,
dy(1)

dt
¼ 0

Solution: This system can be transformed into fundamental form if we define

x(t) ¼ x1(t)

x2(t)

� �
, A ¼ 0 1

�2 3

� �
, f(t) ¼

0

e�3t

� �
, and c ¼ 1

0

� �

and take t0 ¼ 0. For this A, we calculate
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eAt ¼
�e2t þ 2et e2t � et

�2e2t þ 2et 2e2t � et

" #

Thus,

eAðt�t0Þc ¼
�e2ðt�1Þ þ 2eðt�1Þ e2ðt�1Þ � eðt�1Þ

�2e2ðt�1Þ þ 2eðt�1Þ 2e2ðt�1Þ � eðt�1Þ

" #
1

0

� �

¼ �e2ðt�1Þ þ 2e
ðt�1Þ

�2e2ðt�1Þ þ 2eðt�1Þ

" #
ð4:46Þ

Now

fðtÞ ¼
0

e�3t

" #
; fðsÞ ¼

0

e�3s

" #

e�AsfðsÞ ¼
�e�2s þ 2e�s e�2s � e�s

�2e�2s þ 2e�s 2e�2s � e�s

" #
0

e�3s

" #

¼
e�5s � e�4s

2e�5s � e�4s

" #

Hence,

Z t

t0

e�AsfðsÞ ds ¼

R t

1
ðe�5s � e�4sÞ ds

R 1

1
ð2e�5s � e�4sÞ ds

2
64

3
75

¼
ð� 1

5
Þe�5t þ ð1

4
Þe�4t þ ð1

5
Þe�5 � ð1

4
Þe�4

ð� 2
5
Þe�5t þ ð1

4
Þe�4t þ ð2

5
Þe�5 � ð1

4
Þe�4

2
4

3
5

eAt

Z t

t0

e�AsfðsÞ ds ¼
ð�e2t þ 2etÞ ðe2t � etÞ

ð�2e2t þ 2etÞ ð2e2t � etÞ

" #

�
� 1

5
e�5t þ 1

4
e�4t þ 1

5
e�5 � 1

4
e�4

� �
� 2

5
e�5t þ 1

4
e�4t þ 2

5
e�5 � 1

4
e�4

� �
2
4

3
5

¼
1
20

e�3t þ 1
5
eð2t�5Þ � 1

4
et�4

� 3
20

e�3t þ 2
5
eð2t�5Þ � 1

4
et�4

2
4

3
5 ð4:47Þ
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Substituting (4.46) and (4.47) into (4.43), we have that

xðtÞ ¼
x1ðtÞ
x2ðtÞ

" #
¼

�e2ðt�1Þ þ 2et�1

�2e2ðt�1Þ þ 2et�1

" #
þ

1
20

e�3t þ 1
5
eð2t�5Þ � 1

4
et�4

� 3
20

e�3t þ 2
5
eð2t�5Þ � 1

4
et�4

" #

¼
�e2ðt�1Þ þ 2et�1 þ 1

20
e�3t þ 1

5
eð2t�5Þ � 1

4
et�4

�2e2ðt�1Þ þ 2et�1 � 3
20

e�3t þ 2
5
eð2t�5Þ � 1

4
et�4

" #

It follows that the solution to the original initial-value problem is

y(t) ¼ x1(t) ¼ �e2(t�1) þ 2et�1 þ 1

20

	 

e(2t�5) � 1

4
et�4

&

The most tedious step in Example 3 was multiplying the matrix eAt by the column

matrix
Rt
t0

e�Asf (s)ds. This step can be eliminated if we are willing to tolerate

a slightly more complicated integral. The integration in equation (4.43) is with

respect to the dummy variable s. If we bring the matrix eAt, appearing in front of

the integral, inside the integral, we may rewrite equation (4.43) as

x(t) ¼ eA(t�t0)cþ
Z t

t0

e�Ate�Asf (s) ds (4:48)

But At and �As commute, so eAte�As ¼ eA(t�s) and equation (4.48) becomes

x(t) ¼ eA(t�t0)cþ
Z t

t0

eA(t�s)f (s) ds (4:49)

The matrix eA(t�s) is obtained by replacing the variable t in eAt by the quantity

(t� s).

Example 4 Use matrix methods to solve

d2x

dt2
þ x ¼ 2

x(p) ¼ 0,
dx(p)

dt
¼ �1

Solution: This system can be transformed into fundamental form if we define

x(t) ¼
x1(t)

x2(t)

" #
, A ¼

0 1

�1 0

" #
, f(t) ¼

0

2

" #
, and c ¼

0

�1

" #

An alternate form of

the solution to a

matrix differential

equation in

fundamental form is

x(t) ¼ eA(t�t0)c

þ
Z t

t0

eA(t�s)f (s) ds:
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and take t0 ¼ p. The solution to this initial-value problem is given by either

equation (4.43) or (4.49). In this example, we shall evaluate equation (4.49),

thereby saving one matrix multiplication. For this A, eAt was determined in

Example 8 of Section 4.4 to be

eAt ¼ cos t sin t

� sin t cos t

� �
Thus,

eAðt�t0Þc ¼
cosðt� pÞ sinðt� pÞ
� sinðt� pÞ cosðt� pÞ

� �
0

�1

� �

¼
� sinðt� pÞ
� cosðt� pÞ

� �

eAðt�sÞfðsÞ ¼
cosðt� sÞ sinðt� sÞ
� sinðt� sÞ cosðt� sÞ

� �
0

2

� �

¼
2 sinðt� sÞ
2 cosðt� sÞ

� �

ð4:50Þ

Hence,

Z t

t0

eAðt�sÞfðsÞ ds ¼
R t

p
2 sinðt� sÞ dsR t

p
2 cosðt� sÞ ds

" #

¼
2� 2 cosðt� pÞ

2 sinðt� pÞ

� �
ð4:51Þ

Substituting (4.50) and (4.51) into (4.49) and using the trigonometric identities

sinðt� pÞ ¼ � sin t and cosðt� pÞ ¼ � cos t, we have

x1ðtÞ
x2ðtÞ

� �
¼ xðtÞ ¼

� sinðt� pÞ
� cosðt� pÞ

� �
þ

2� 2 cosðt� pÞ
2 sinðt� pÞ

� �

¼
sin tþ 2 cos tþ 2

cos t� 2 sin t

� �

Thus, since xðtÞ ¼ x1ðtÞ, it follows that the solution to the initial-value problem

is given by

xðtÞ ¼ sin tþ 2 cos tþ 2 &

A great simplification to both equation (4.43) and equation (4.49) is effected

when the differential equation is homogeneous, that is, when f(t) ¼ 0. In both

formulas, the integral becomes a zero-column matrix, and the solution reduces to
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x(t) ¼ eA(t�t0) c (4:52)

Occasionally, one needs to solve a differential equation by itself, and not an

entire initial-value problem. In such cases, the general solution is (see Problem 2)

x(t) ¼ eAtkþ eAt

Z
e�Atf (t) dt (4:53)

where k is an arbitrary column matrix of suitable dimension. The general

solution to a homogeneous differential equation by itself is

x(t) ¼ eAtk (4:54)

Example 5 Use matrix methods to solve

du(t)

dt
¼ u(t)þ 2v(t)

dv(t)

dt
¼ 4u(t)þ 3v(t)

Solution: This system can be transformed into fundamental form if we define

x(t) ¼
u(t)

v(t)

" #
, A ¼

1 2

4 3

" #
, and f(t) ¼

0

0

" #

This is a homogeneous system with no initial conditions specified; the general

solution is given in (4.54). For this A, we have

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #

Thus,

eAtk ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #
k1

k2

" #

¼ 1

6

k1½2e5t þ 4e�t� þ k2½2e5t � 2e�t�

k1½4e5t � 4e�t� þ k2½4e5t þ 2e�t�

" #

¼ 1

6

e5tð2k1 þ 2k2Þ þ e�tð4k1 � 2k2Þ

e5tð4k1 þ 4k2Þ þ e�tð�4k1 þ 2k2Þ

" #
ð4:55Þ

The solution to the

homogeneous

system
dx(t)

dt
¼ Ax(t);

x(t0) ¼ c is

x(t) ¼ eA(t�t0)c.
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Substituting (4.55) into (4.54), we have that

uðtÞ
vðtÞ

" #
¼ xðtÞ ¼ 1

6

e5tð2k1 þ 2k2Þ þ e�tð4k1 � 2k2Þ

e5tð4k1 þ 4k2Þ þ e�tð�4k1 þ 2k2Þ

" #

or

uðtÞ ¼ 2k1 þ 2k2

6

	 

e5t þ 4k1 � 2k2

6

	 

e�t

vðtÞ ¼ 2
2k1 þ 2k2

6

	 

e5t þ �4k1 þ 2k2

6

	 

e�t

ð4:56Þ

We can simplify the expressions for u(t) and v(t) if we introduce two new

arbitrary constants k3 and k4 defined by

k3 ¼
2k1 þ 2k2

6
; k4 ¼

4k1 � 2k2

6

Substituting these values into (4.56), we obtain

uðtÞ ¼ k3e
5t þ k4e

�t

vðtÞ ¼ 2k3e
5t � k4e

�t
&

Problems 4.7

(1) Show by direct integration that

Z t

t0

t2dt ¼
Z t

t0

s2ds ¼
Z t

t0

p2dp

In general, show that if f(t) is integrable on the interval [a, b], then

Zb

a

f (t)dt ¼
Zb

a

f (s)ds

Hint: Assume
R

f (t)dt ¼ F (t)þ c. Hence,
R

f (s)ds ¼ F (s)þ c. Then use the funda-

mental theorem of integral calculus.

(2) Derive equation (4.53). Hint: Follow the derivation of equation (4.43) using

indefinite integration, rather than definite integration, and note thatZ
d

dt
e�Atx(t)
� �

dt ¼ e�Atx(t)þ k

where k is an arbitrary column matrix of integration.
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(3) Find (a) e�At, (b) eAðt�2Þ, (c) eAðt�sÞ, (d) e�Aðt�2Þ, if

eAt ¼ e3t

1 t t2=2

0 1 t

0 0 1

2
64

3
75

(4) Find (a) e�At, (b) e�As, (c) eAðt�3Þ, if

eAt ¼ 1

6

2e5t þ 4e�t 2e5t � 2e�t

4e5t � 4e�t 4e5t þ 2e�t

" #

(5) Find (a) e�At, (b) e�As, (c) e�Aðt�sÞ, if

eAt ¼ 1

3

� sin 3tþ 3 cos 3t 5 sin 3t

�2 sin 3t sin 3tþ 3 cos 3t

" #

(6) Determine which of the following column vectors x are solutions to the system

d

dt

x1(t)

x2(t)

" #
¼

0 1

�1 0

" #
x1(t)

x2(t)

" #
;

x1(0)

x2(0)

" #
¼

1

0

" #

(a)
sin t

cos t

� �
, (b)

et

0

" #
, (c)

cos t

� sin t

" #
.

(7) Determine which of the following column vectors x are solutions to the system

d

dt

x1(t)

x2(t)

" #
¼ 1 2

4 3

� �
x1(t)

x2(t)

" #
;

x1(0)

x2(0)

" #
¼

1

2

" #

(a)
e�t

�e�t

" #
, (b)

e�t

2e�t

" #
, (c)

e5t

2e5t

" #
.

(8) Determine which of the following column vectors x are solutions to the system

d

dt

x1(t)

x2(t)

" #
¼ 0 1

�2 3

� �
x1(t)

x2(t)

" #
;

x1(1)

x2(1)

" #
¼

1

0

" #

(a)
�e2t þ 2et

�2e2t þ 2et

" #
, (b)

�e2(t�1) þ 2e(t�1)

�2e2(t�1) þ 2e(t�1)

" #
, (c)

e2(t�1)

0

" #
.

Solve the systems described in Problems 9 through 16 by matrix methods. Note that

Problems 9 through 12 have the same coefficient matrix.
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(9)
dx(t)

dt
¼ �2x(t)þ 3y(t)

dy(t)

dt
¼ �x(t)þ 2y(t)

x(2) ¼ 2, y(2) ¼ 4

(10)
dx(t)

dt
¼ �2x(t)þ 3y(t)þ 1

dy(t)

dt
¼ �x(t)þ 2y(t)þ 1

x(1) ¼ 1, y(1) ¼ 1

(11)
dx(t)

dt
¼ �2x(t)þ 3y(t)

dy(t)

dt
¼ �x(t)þ 2y(t)

(12)
dx(t)

dt
¼ �2x(t)þ 3y(t)þ 1

dy(t)

dt
¼ �x(t)þ 2y(t)þ 1

(13)
d2 x

dt2
þ 4x ¼ sin t; x(0) ¼ 1,

dx(0)

dt
¼ 0

(14)
d3 x

dt3
¼ t; x(1) ¼ 1,

dx(1)

dt
¼ 2,

d2 x(1)

dt2
¼ 3

(15)
d2 x

dt2
� dx

dt
� 2x ¼ e�t; x(0) ¼ 1,

dx(0)

dt
¼ 0

(16)
d2 x

dt2
¼ 2

dx

dt
þ 5yþ 3

dy

dt
¼ � dx

dt
� 2y

x(0) ¼ 0,
dx(0)

dt
¼ 0, y(0) ¼ 1:

4.8 A MODELING PROBLEM

Models are useful in everyday life. In this section, we will consider a mixing

problem. We will model the problem with a system of first order differential

equations. In our discussion, we will make various assumptions and observations

and then pose questions involving changes in various parameters.

Consider Figure 4.3. A saline solution, of concentration 2 pounds of salt per

gallon, is introduced into Tank 1 at a rate of 5 gallons per minute. As we can see

from the diagram, the tanks are connected by a system of pipes.

Assuming that the salt is distributed uniformly in the solution, we will model the

problem with the following variables:

t ¼ time (minutes)

S1(t) ¼ amount of salt in Tank 1 at time t (pounds)

S2(t) ¼ amount of salt in Tank 2 at time t (pounds)

S3(t) ¼ amount of salt in Tank 3 at time t (pounds)

dSk

dt
¼ rate of change of salt in Tank k (pounds=minute), k ¼ 1, 2, 3
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Let us now consider Tank 1. Because there are three pipes connected to the tank,

the rate of change of the salt in this tank will have three terms:

dS1

dt
¼ 5 gal

min
� 2 lbs

gal
� S1 lb

100 gal
� 2 gal

min
� S1 lb

100 gal
� 3 gal

min
(4:57)

We note in this equation the consistency of units (lbs/min) and the division by the

capacity of Tank 1 (100 gal).

The two other tanks are modeled as follows:

dS2

dt
¼ S1 lb

100 gal
� 2 gal

min
þ S3 lb

100 gal
� 4 gal

min
� S2 lb

50 gal
� 1 gal

min
� S2 lb

50 gal
� 5 gal

min
(4:58)

dS3

dt
¼ S2 lb

50 gal
� 1 gal

min
� S3 lb

100 gal
� 4 gal

min
� 0 lb

gal
� 3 gal

min
(4:59)

We note here that the last term of equation (4.59) is 0, because there is no salt in

the incoming solution from the right.

Finally, let us assume that initially there is no salt in any tank. That is,

S1(0) ¼ S2(0) ¼ S3(0) ¼ 0:

We now will rewrite our problem in matrix notation:

d

dt

S1

S2

S3

2
664

3
775 ¼

�5

100
0 0

2

100

�6

50

4

100

0
1

50

�4

100

2
6666664

3
7777775

S1

S2

S3

2
664

3
775þ

10

0

0

2
664

3
775 (4:60)

We can now expand on the techniques discussed in Sections 4.6 and 4.7 to solve

this problem. However, in this case, the use of technological methods is preferred

(see Appendix E). This is primarily due to the fact that we have a 3-by-3

coefficient matrix instead of a 2-by-2 matrix.

Figure 4.3 Tank 1 Tank 2 Tank 3
2 gal/min 4 gal/min

5 gal/min

1 gal/min

5 gal/min

3 gal/min

2 lb/gal
100
gal

100
gal

50
gal

3 gal/min
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We end our discussion with the following observations and ask the following

questions:

We note that the system was ‘‘closed’’; that is, the amount of solution coming

in (8 gal) is equal to the amount going out (8 gal). What if this was not the

case?

We assumed no salt was initially present. What if this was not the case?

If the salt in the solution was not uniformly distributed, the modeling of our

problem becomes much more difficult. The same is true if the solution is not

introduced continuously. In these cases, our approach must be radically

altered and a numerical approach might be more useful.

Problems 4.8

(1) Assume vat V1 is placed above vat V2 and that both vats have a capacity of 100 liters.

If 7 liters of a sucrose solution (5 kg sugar/liter) is poured into V1 every minute, how

much sugar is in each vat at time t, if V1 drains into V2 at the rate of 7 liters/minute,

while V2 drains off at the same rate and there is no sugar in either vat initially?

(2) Consider the previous problem. If vat V2 drains off at a rate of 8 liters/minute, how

much sugar will it contain in the long run, realizing that it will eventually be empty?

(3) Consider the previous problem. If vat V2 drains off at a rate of 6 liters/minute, how

much sugar will it contain in the long run, realizing that it will eventually overflow?

(4) Solve problem 1 if V1(0) ¼ 5 and V2(0) ¼ 12.

(5) Suppose two lakes (x and y) are connected by a series of canals in such a way that the

rate of change of the pollution in each lake can be modeled by the following matrix

equation:

d

dt

x

y

� �
¼ �2 3

4 �3

� �
x

y

� �
þ 1

0

� �

where x(t) and y(t) represent the amount of pollution (in tons) at time t (months). If

both lakes are initially clean, find the amount of pollution at time t, along with the

long range pollution in each lake.

(6) Do the previous problem if the model is given by

d

dt

x

y

� �
¼ �2 �3

�4 �3

� �
x

y

� �
þ 1

0

� �

(7) Suppose Problem 5 is modeled by

d

dt

x

y

� �
¼ �2 �3

�4 �3

� �
x

y

� �

with x(0) ¼ 100, and y(0) ¼ 300. Find the long-range pollution of each lake.
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Chapter 4 Review

Important Terms

Important Concepts

Section 4.1 " A nonzero vector x is an eigenvector of a square matrix A if there exists a scalar

l, called an eigenvalue, such that Ax ¼ lx.

" Similar matrices have the same characteristic equation (and, therefore, the same

eigenvalues).

" Nonzero vectors in the eigenspace of the matrix A for the eigenvalue l are

eigenvectors of A.

" Eigenvalues and eigenvectors for a linear transformation T: V! V are deter-

mined by locating the eigenvalues and eigenvectors of any matrix representation

for T; the eigenvectors of the matrix are coordinate representations of the

eigenvector of T.

Section 4.2 " Any nonzero scalar multiple of an eigenvector is again an eigenvector; the

nonzero sum of two eigenvectors corresponding to the same eigenvalue is again

an eigenvector

" The sum of the eigenvalues of a matrix equals the trace of the matrix.

" The eigenvalues of an upper (lower) triangular matrix are the elements on the

main diagonal of the matrix.

" The product of all the eigenvalues of a matrix (counting multiplicity) equals the

determinant of the matrix.

characteristic equation (p. 222)

determinant (p. 219)

derivative of a matrix (p. 256)

diagonalizable matrix (p. 238)

dominant eigenvalue (p. 259)

eAt (p. 253)

eigenspace (p. 225)

eigenvalue (p. 220)

eigenvector (p. 220)

Euler’s relations (p. 255)

exponential of a matrix (p. 251)

fundamental form of differential

equations (p. 272)

homogeneous differential

equation (p. 285)

initial conditions (p. 271)

inverse power method (p. 263)

modal matrix (p. 238)

model (p. 288)

nonhomogeneous differential

equation (p. 273)

power method (p. 259)

shifted inverse power

method (p. 267)

spectral matrix (p. 238)

trace (p. 232)
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" A matrix is singular if and only if it has a zero eigenvalue.

" If x is an eigenvector of A corresponding to the eigenvalue l, then

(i) for any nonzero scalar k, kl and x are a corresponding pair of eigenvalues

and eigenvectors of kA,

(ii) ln and x are a corresponding pair of eigenvalues and eigenvectors of An,

for any positive integer n,

(iii) for any scalar c, l� c and x are a corresponding pair of eigenvalues and

eigenvectors of A� cI,

(iv) 1=l and x are a corresponding pair of eigenvalues and eigenvectors of A�1,

providing the inverse exists,

(v) l is an eigenvalue of AT .

Section 4.3 " An n� n matrix is diagonalizable if and only if it has n linearly independent

eigenvectors.

" Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly inde-

pendent.

" If l is an eigenvalue of multiplicity k of an n� n matrix A, then the number of

linearly independent eigenvectors of A associated with l is n� r(A� lI), where r

denotes rank.

" If V is an n-dimensional vector space, then a linear transformation T: V! V

may be represented by a diagonal matrix if and only if T possesses a basis of

eigenvectors.

Section 4.4 " To calculate the exponential of a diagonal matrix, replace each diagonal element

by the exponential of that diagonal element.

" If A is similar to a matrix J in Jordan canonical form, so that A ¼MJM�1 for a

generalized modal matrix M, then eA ¼MeJM�1.

" e0 ¼ I, where 0 is the n� n zero matrix and I is the n� n identity matrix.

Section 4.5 " The power method is a numerical method for estimating the dominant eigenvalue

and a corresponding eigenvector for a matrix.

" The inverse power method is the power method applied to the inverse of a matrix

A. In general, the inverse power method converges to the smallest eigenvalue in

absolute value of A.

Section 4.6 " A differential equation in the unknown functions x1(t),x2(t), . . . , xn(t) is an

equation that involves these functions and one or more of their derivatives.
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Section 4.7 " The solution to the system
dx(t)

dt
¼ Ax(t)þ f(t); x(t0) ¼ c is

x(t) ¼ eA(t�t0)cþ eAt

Z t

t0

e�Asf(s)ds

¼ eA(t�t0)cþ
Z t

t0

e�A(t�s)f(s)ds

" The solution to the homogenous equation
dx(t)

dt
¼ Ax(t); x(t0) ¼ c is

x(t) ¼ eA(t�t0)c

Section 4.8 " Models are useful in everyday life.
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Chapter 5

Euclidean Inner Product

5.1 ORTHOGONALITY

Perpendicularity is such a useful concept in Euclidean geometry that we want to

extend the notion to all finite dimensional vector spaces. This is relatively easy

for vector spaces of two or three dimensions, because such vectors have graphical

representations. Each vector in a two-dimensional vector space can be written as

a 2-tuple and graphed as a directed line segment (arrow) in the plane. Similarly,

each vector in a three-dimensional vector space can be written as a 3-tuple and

graphed as a directed line segment in space. Using geometrical principles on such

graphs, we can determine whether directed line segments from the same vector

space meet at right angles. However, to extend the concept of perpendicularity to

Rn, n > 3, we need a different approach.

The Euclidean inner product of two column matrices x ¼ x1 x2 x3 . . . xn½ �T and

y ¼ y1 y2 y3 . . . yn½ �T in Rn, denoted by x, yh i, is

x, yh i ¼ x1y1 þ x2y2 þ x3y3 þ . . .þ xnyn (5:1)

To calculate the Euclidean inner product, we multiply corresponding compon-

ents of two column matrices in Rn and sum the resulting products. Although we

will work exclusively in this chapter with n-tuples written as column matrices, the

Euclidean inner product is equally applicable to row matrices. Either way, the

Euclidean inner product of two vectors in Rn is a real number and not another

vector in Rn. In terms of column matrices,

x, yh i ¼ xTy (5:2)

Example 1 The Euclidean inner product of x ¼
1

2

3

2
4
3
5 and y ¼

4

�5

6

2
4

3
5 in R3 is

x, yh i ¼ 1(4)þ 2(� 5)þ 3(6) ¼ 12

The inner product

of two vectors x and

y in Rn is a real

number determined

by multiplying

corresponding

components of x

and y and then

summing the

resulting products.
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while the Euclidean inner product of u ¼

20

�4

30

10

2
664

3
775 and v ¼

10

�5

�8

�6

2
664

3
775 in R4 is

u, vh i ¼ 20(10) þ (� 4)(� 5)þ 30(� 8)þ 10(� 6) ¼ �80 &

" Theorem 1. If x, y, and z are vectors in Rn, then

(a) x, xh i is positive if x 6¼ 0; x, xh i ¼ 0 if and only if x ¼ 0.

(b) x, yh i ¼ y, xh i.
(c) lx, yh i ¼ l x, yh i, for any real number l.

(d) xþ z, yh i ¼ x, yh i þ z, yh i.
(e) 0, yh i ¼ 0: 3

Proof: We prove parts (a) and (b) here and leave the proofs of the other parts

as exercises (see Problems 28 through 30). With x ¼ x1 x2 x3 . . . xn½ �T,

we have

x, xh i ¼ (x1)
2 þ (x2)

2 þ (x3)
2 þ . . .þ (xn)

2

This sum of squares is zero if and only if x1 ¼ x2 ¼ x3 ¼ . . . ¼ xn ¼ 0, which in

turn implies that x ¼ 0. If any component is not zero, that is, if x is not the zero

vector in Rn, then the sum of the squares must be positive.

For part (b), we set y ¼ y1 y2 y3 . . . yn½ �T. Then

x, yh i ¼ x1y1 þ x2y2 þ x3y3 þ . . .þ xnyn

¼ y1x1 þ y2x2 þ y3x3 þ . . .þ ynxn

¼ y, xh i &

The magnitude of an n-tuple x (see Section 1.7) is related to the Euclidean inner

product by the formula

kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hx, xi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3 þ . . .þ x2
n

q
: (5:3)

Example 2 The magnitude of x ¼ 2 �3 �4½ �T in R3 is

kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hx, xi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2)2 þ (� 3)2 þ (� 4)2

q
¼

ffiffiffiffiffi
29
p

while the magnitude of y ¼ 1 �1 1 �1½ �T in R4 is

kyk ¼
ffiffiffiffiffiffiffiffiffiffiffi
hy, yi

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1)2 þ (� 1)2 þ (1)2 þ (� 1)2

q
¼ 2 &

The magnitude of

a vector x in Rn is

the square root of

the inner product

of x with itself.
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A unit vector is a vector having a magnitude of 1. A nonzero vector x is

normalized if it is divided by its magnitude. It follows that

1

kxk x,
1

kxk x
� �

¼ 1

kxk x,
1

kxk x

� �
Part (c) of Theorem 1

¼ 1

kxk
1

kxk x, x

� �
Part (b) of Theorem 1

¼ 1

kxk

� �2

hx, xi Part (c) of Theorem 1

¼ 1

kxk

� �2

kxk2

(5.3)

¼ 1

Thus, a normalized vector is always a unit vector.

As with other vector operations, the Euclidean inner product has a geometrical

interpretation in two or three dimensions. For simplicity, we consider two-

dimensional vectors here; the extension to three dimensions is straightforward.

Let u and v be two nonzero vectors in R2 represented by directed line segments in

the plane, each emanating from the origin. The angle between u and v is the angle

u between the two line segments, with 0� � u � 180� as illustrated in Figure 5.1.

The vectors u and v, along with their difference u� v, form a triangle (see

Figure 5.2) having sides kuk, kvk, and ku� vk. It follows from the law of cosines

that

ku� vk2 ¼ kuk2 þ kvk2 � 2kukkvk cos u

Figure 5.1

θ

u

v
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where upon

kukkvk cos � ¼ 1
2
kuk2 þ kvk2 � ku� vk2
� �

¼ 1
2

u, uh i þ v, vh i � u� v, u� vh ið Þ

¼ 1
2

u, uh i þ v, vh i � [ u, uh i � 2 u, vh i þ v, vh i]ð Þ

¼ u, vh i (5:4)

and

cos u ¼ u, vh i
kukkvk (5:5)

Weuse equation (5.5) to calculate the angle between twodirected line segments in R2.

Example 3 Find the angle between the vectors u ¼ 2

5

� 	
and v ¼ �3

4

� 	
.

Solution:

u, vh i ¼ 2(� 3)þ 5(4) ¼ 14, kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 25
p

¼
ffiffiffiffiffi
29
p

, kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16
p

¼ 5;

so cos u ¼ 14

5
ffiffiffiffiffi
29
p � 0:5199; and u � 58:7�: &

If u is a nonzero vector in R2, we have from Theorem 1 that u, uh i is positive and

then, from equation (5.3), that kuk > 0. Similarly, if v is a nonzero vector in R2,

then kvk > 0. Because

u, vh i ¼ kukkvk cos u, (5:4 repeated)

we see that the inner product of two nonzero vectors in R2 is 0 if and only if

cos u ¼ 0. The angle u is the angle between the two directed line segments

representing u and v (see Figure 5.1) with 0� � u � 180�. Thus, cos u ¼ 0 if and

only if u ¼ 90�, from which we conclude that the inner product of two nonzero

Figure 5.2

θ

u

v

u − v

Two vectors in the

same vector space

are orthogonal if

their Euclidean

inner product is

zero.
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vectors in R2 is 0 if and only if their directed line segments form a right angle.

Here now is a characteristic of perpendicularity we can extend to n-tuples of

all dimensions! We use the word orthogonal instead of perpendicularity for

generalizations to higher dimensions, and say that two vectors in the same vector

space are orthogonal if their inner product is 0.

Example 4 For the vectors x ¼
1

2

3

2
4
3
5, y ¼

�3

�6

5

2
4

3
5, and z ¼

0

5

6

2
4
3
5 in R3, we have

that x is orthogonal to y and y is orthogonal to z, because

x, yh i ¼ 1(� 3)þ 2(� 6)þ 3(5) ¼ 0

and

y, zh i ¼ (� 3)(0)þ (� 6)(5)þ 5(6) ¼ 0

but x is not orthogonal to z, because

x, zh i ¼ 1(0)þ 2(5)þ 3(6) ¼ 28 6¼ 0 &

As a direct consequence of Theorem 1, part (e), we have that the zero vector in

Rn is orthogonal to every vector in Rn.

" Theorem 2. (Generalized Theorem of Pythagoras). If u and v

are orthogonal vectors in Rn, then ku� vk2 ¼ kuk2 þ kvk2. 3

Proof: In the special case of R2, this result reduces directly to Pythagoras’s

theorem when we consider the right triangle bounded by the directed line

segments representing u, v and u� v (see Figure 5.3). More generally, if u and

v are orthogonal, then u, vh i ¼ 0 and

Figure 5.3

u

v

y

x
u − v
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ku� vk2 ¼ u� v, u� vh i
¼ u, uh i � 2 u, vh i þ v, vh i
¼ u, uh i � 2(0)þ v, vh i
¼ kuk2 þ kvk2 &

" Theorem 3. (Cauchy-Schwarz Inequality). If u and v are vectors in Rn,

then j u, vh ij � kukkvk: 3

Proof: In the special case of R2, we have

u, vh i ¼ kukkvk cos u, (5:4 repeated)

hence

j u, vh ij ¼ kukkvk cos uj j
¼ jkukkvjj cos uj
� kukkvk

because j cos uj � 1 for any angle u. The proof for more general vector spaces is

left as an exercise (see Problems 35 and 36). &

The Euclidean inner product in Rn induces an inner product on pairs of vectors

in other n-dimensional vector spaces. A vector in an n-dimensional vector space

V has a coordinate representation with respect to a underlying basis (see Section

2.4). We define an inner product on two vectors x and y in V by forming the

Euclidean inner product on the coordinate representations of both vectors with

respect to the same underlying basis.

Example 5 Calculate A, Bh i for A ¼ 4 3

6 2

� 	
and B ¼ 1 2

1 2

� 	
in the vector

space M2�2 with respect to the standard basis

S ¼ 1 0

0 0

� 	
,

0 1

0 0

� 	
,

0 0

1 0

� 	
,

0 0

0 1

� 	
 �

Solution: The coordinate representations with respect to this basis are

4 3

6 2

� 	
$

4

3

6

2

2
664
3
775 and

1 2

1 2

� 	
$

1

2

1

2

2
664
3
775

The induced inner product is

A, Bh i ¼ 4(1)þ 3(2)þ 6(1)þ 2(2) ¼ 20

An induced inner

product on two

matrices of the same

order is obtained by

multiplying

corresponding

elements of both

matrices and

summing the results.
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With respect to the standard basis, the induced inner product of two matrices of

the same order is obtained by multiplying corresponding elements of both matri-

ces and summing the results. &

Example 6 Redo Example 5 with respect to the basis

B ¼ 0 1

1 1

� 	
,

1 0

1 1

� 	
,

1 1

0 1

� 	
,

1 1

1 0

� 	
 �

Solution: The coordinate representations with respect to this basis is (see

Example 13 of Section 2.4)

x ¼ 4 3

6 2

� 	
$

1

2

�1

3

2
664

3
775

B

and y ¼ 1 2

1 2

� 	
$

1

0

1

0

2
664
3
775

B

The induced inner product is now

A, Bh i ¼ 1(1)þ 2(0)þ (� 1)(1)þ 3(0) ¼ 0

which is different from the inner product calculated in Example 5. &

It follows from the previous two examples that an inner product depends on the

underlying basis; different bases can induce different inner products. Consequently,

two vectors can be orthogonal with respect to one basis, as in Example 6, and

notorthogonal with respect to another basis, as in Example 5. We can see this

distinction graphically, by considering the vectors

x ¼ 1

1

� 	
and y ¼ 1

�1

� 	

With respect to the standard basis

S ¼ e1 ¼
1

0

� 	
, e2 ¼

0

1

� 	
 �

x, yh i ¼ 0, and x is perpendicular to y, as illustrated in Figure 5.4.

If, instead, we take as the basis

D ¼ d1 ¼
2

1

� 	
, d2 ¼

5

2

� 	
 �

then we have as coordinate representations in the D basis,

An inner product is

basis dependent.

Two vectors can be

orthogonal with

respect to one basis

and not orthogonal

with respect to

another basis.
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x ¼
1

1

� 	
¼ (3)

2

1

� 	
þ (� 1)

5

2

� 	
$

3

�1

� 	
D

y ¼
1

�1

� 	
¼ (� 7)

2

1

� 	
þ (3)

5

2

� 	
$
�7

3

� 	
D

d1 ¼
2

1

� 	
¼ (1)

2

1

� 	
þ (0)

5

2

� 	
$

1

0

� 	
D

d2 ¼
5

2

� 	
¼ (0)

2

1

� 	
þ (1)

5

2

� 	
$

0

1

� 	
D

Graphing the coordinate representations in the D basis, we generate

Figure 5.5. Note that x and y are no longer perpendicular. Indeed,

Figure 5.4 y

x

y

2

1

1 2

−1

−1−2

−2

x
e2 e1

Figure 5.5

−1 1 2 3 4−2−3−4−5−6−7−8

4

3

2

1

−1

−2

−3

−4

y

x

x

y

θ

d2
d1
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x, yh i ¼ 3(� 7)þ (� 1)(3) ¼ 24 6¼ 0. Furthermore, x, xh i ¼ (3)2 þ (� 1)2 ¼ 10,

y, yh i ¼ (� 7)2 þ (3)2 ¼ 58, and it follows from equation (5.5) that the angle

between x and y is

u ¼ arccos
�24ffiffiffiffiffi
10
p ffiffiffiffiffi

58
p � 175�

Example 7 Calculate p(t); q(t)h i with respect to the standard basis in P2 for

p(t) ¼ 3t2 � tþ 5 and q(t) ¼ �2t2 þ 4tþ 2

Solution: Using the standard basis S ¼ ft2, t, 1g, we have the coordinate

representations

3t2 � tþ 5$
3

�1

5

2
4

3
5 and � 2t2 þ 4tþ 2$

�2

4

2

2
4

3
5

The induced inner product is

p(t); q(t)h i ¼ 3(� 2)þ (� 1)(4)þ 5(2) ¼ 0

and the polynomials are orthogonal. With respect to the standard basis, the

induced inner product of two polynomials is obtained by multiplying the coef-

ficients of like powers of the variable and summing the results. &

Problems 5.1

In Problems 1 through 17, (a) find x, yh i, (b) find jxj, and (c) determine whether x and y

are orthogonal.

(1) x ¼ 1 2½ �T, y ¼ 3 4½ �T.

(2) x ¼ 1 1½ �T, y ¼ �4 4½ �T.

(3) x ¼ �5 7½ �T, y ¼ 3 �5½ �T.

(4) x ¼ �2 �8½ �T, y ¼ 20 �5½ �T.

(5) x ¼ �3 4½ �T, y ¼ 0 0½ �T.

(6) x ¼ 2 0 1½ �T, y ¼ 1 2 4½ �T.

(7) x ¼ �2 2 �4½ �T, y ¼ �4 3 �3½ �T.

(8) x ¼ �3 �2 5½ �T, y ¼ 6 �4 �4½ �T.

(9) x ¼ 10 20 30½ �T, y ¼ 5 �7 3½ �T.

(10) x ¼ 1
4

1
2

1
8

� 
T
, y ¼ 1

3
1
3

1
3

� 
T
.

An induced inner

product of two

polynomials is

obtained by

multiplying the

coefficients of like

powers of the

variable and

summing the results.
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(11) x ¼ 1 0 1 1½ �T, y ¼ 1 1 0 1½ �T.

(12) x ¼ 1 0 1 �1½ �T, y ¼ 1 1 0 1½ �T.

(13) x ¼ 1 0 1 0½ �T, y ¼ 0 1 0 1½ �T.

(14) x ¼ 1
2

1
2

1
2

1
2

� 
T
, y ¼ 1 2 3 �4½ �T.

(15) x ¼ 1
2

1
2

0 1
2

� 
T
, y ¼ 1

3
1
2

1 �2
3

� 
T
.

(16) x ¼ 1 2 3 4 5½ �T, y ¼ 1 2 �3 4 �5½ �T.

(17) x ¼ 1 2 3 4 5 6½ �T, y ¼ 1 2 3 4 5½ �T.

(18) Normalize the following vectors:

(a) y as defined in Problem 1.

(b) y as defined in Problem 4.

(c) y as defined in Problem 6.

(d) y as defined in Problem 7.

(e) y as defined in Problem 10.

(f) y as defined in Problem 17.

In Problems 19 through 26, find the angle between the given vectors.

(19) x ¼ 1 2½ �T, y ¼ 2 1½ �T.

(20) x ¼ 1 1½ �T, y ¼ 3 5½ �T.

(21) x ¼ 3 �2½ �T, y ¼ 3 3½ �T.

(22) x ¼ 4 �1½ �T, y ¼ 2 8½ �T.

(23) x ¼ �7 �2½ �T, y ¼ 2 9½ �T.

(24) x ¼ 2 1 0½ �T, y ¼ 2 0 2½ �T.

(25) x ¼ 1 1 0½ �T, y ¼ 2 2 1½ �T.

(26) x ¼ 0 3 4½ �T, y ¼ 2 5 5½ �T.

(27) Find x if x, ah ib ¼ c when a ¼ 1 3 �1½ �T, b ¼ 2 1 1½ �T and

c ¼ 3 0 �1½ �T.

(28) Prove that if x and y are vectors in Rn, then lx, yh i ¼ l x, yh i for any real number l.

(29) Prove that if x, y and z are vectors in Rn, then xþ z, yh i ¼ x, yh i þ z, yh i.

(30) Prove for any vector y in Rn that 0, yh i ¼ 0.

(31) Prove that if x and y are orthogonal vectors in Rn, then kxþ yk2 ¼ kxk2 þ kyk2.

(32) Prove the parallelogram law for any two vectors x and y in Rn:

kxþ yk2 þ kx� yk2 ¼ 2kxk2 þ 2kyk2:
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(33) Prove that for any two vectors x and y in Rn:

kxþ yk2 � kx� yk2 ¼ 4 x, yh i:

(34) Let x, y and z be vectors in Rn. Show that if x is orthogonal to y and if x is orthogonal

to z then x is also orthogonal to all linear combinations of the vectors x and y.

(35) Prove that, for any scalar l,

0 � klx� yk2 ¼ l2kxk2 � 2l x, yh i þ kyk2:

(36) (Problem 35 continued) Take l ¼ x, yh i=kxk2 and show that

0 � �hx, yi2

kxk2
þ kyk2

From this deduce that

x, yh i2� kxk2kyk2

and then the Cauchy-Schwarz inequality.

(37) Prove that the Cauchy-Schwarz inequality is an equality in R2 if and only if one

vector is a scalar multiple of the other.

(38) Use the Cauchy-Schwarz inequality to show that

�1 � hu, vi
kukkvk � 1:

Thus, equation (5.5) can be used to define the cosine of the angle between

any two vectors in Rn. Use equation (5.5) to find the cosine of the angle

between the following x and y vectors

(a) x ¼ 0 1 1 1½ �T, y ¼ 1 1 1 0½ �T,

(b) x ¼ 1 2 3 4½ �T, y ¼ 1 �2 0 �1½ �T,

(c) x ¼ 1
2

1
2

1
2

1
2

� 
T
, y ¼ �1 �1 �1 �1½ �T,

(d) x ¼ 1 1 2 2 3½ �T, y ¼ 1 2 3 2 1½ �T,

(e) x ¼ 1 2 3 4 5 6½ �T, y ¼ 1 1 1 1 1 1½ �T.

(39) Verify the following relationships:

kxþ yk2 ¼ kxk2 þ 2 x, yh i þ kyk2

� kxk2 þ 2kxkkyk þ kyk2

¼ (kxk þ kyk)2

and then deduce the triangle inequality

kxþ yk � kxk þ kyk
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(40) Calculate induced inner products for the following pairs of matrices with respect to

standard bases:

(a) A ¼ 1 5

6 2

� 	
and B ¼ 5 5

1 4

� 	
in M2�2,

(b) A ¼ 1 �2

0 4

� 	
and B ¼ 3 �3

2 �8

� 	
in M2�2,

(c) A ¼ �2 7

1 1

� 	
and B ¼ 2 �3

2 6

� 	
in M2�2,

(d) A ¼
4 2

1 �3

3 �5

2
4

3
5 and B ¼

1 2

3 4

5 6

2
4

3
5 in M3�2,

(e) A ¼ 1 2 3

4 5 6

� 	
and B ¼ 1 1 2

�3 2 �3

� 	
in M2�3,

(f) A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5 and B ¼

�3 4 1

2 0 �4

5 1 2

2
4

3
5 in M3�3.

(41) Redo parts (a), (b), and (c) of Problem 40 with respect to the basis

C ¼ 1 1

0 0

� 	
,

1 �1

0 0

� 	
,

0 0

1 1

� 	
,

0 0

1 �1

� 	
 �
:

(42) A generalization of the inner product for n-dimensional column matrices with real

components is

x, yh iA¼ Ax, Ayh i

where the inner product on the right is the Euclidean inner product between Ax and

Ay for a given n� n real, nonsingular matrix A. Show that x, yh iA satisfies all the

properties of Theorem 1.

(43) Calculate x, yh iA for the vectors in Problem 1 when A ¼ 2 3

1 �1

� 	
:

(44) Calculate x, yh iA for the vectors in Problem 6 when A ¼
1 1 0

1 0 1

0 1 1

2
4

3
5.

(45) Redo Problem 44 with A ¼
1 �1 1

0 1 �1

1 1 1

2
4

3
5.

(46) Show that x, yh iA is the Euclidean inner product when x and y are coordinate

representations with respect to a basis B made up of the columns of A and A is the

transition matrix from the B basis to the standard basis.

(47) Calculate induced inner products for the following pairs of polynomials with

respect to standard bases:
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(a) p (t) ¼ t2 þ 2tþ 3 and q (t) ¼ t2 þ 3t� 5 in P2,

(b) p (t) ¼ 10t2 � 5tþ 1 and q (t) ¼ 2t2 � t� 30 in P2,

(c) p (t) ¼ t2 þ 5 and q (t) ¼ 2t2 � 2tþ 1 in P2,

(d) p (t) ¼ 2t2 þ 3t and q (t) ¼ tþ 8 in P2,

(e) p (t) ¼ 3t3 þ 2t2 � tþ 4 and q (t) ¼ t3 þ t in P3,

(f) p (t) ¼ t3 � t2 þ 2t and q (t) ¼ t2 þ tþ 1 in P3.

(48) Redo parts (a) through (d) of Problem 47 with respect to the basis

B ¼ f t2, tþ 1, t g:

(49) A different inner product on P n is defined by

p (t); q (t)h i ¼
Zb

a

p (t) q (t) dt

for polynomials p(t) and q(t) and real numbers a and b with b > a. Show

that this inner product satisfies all the properties of Theorem 1.

(50) Redo Problem 47 with the inner product defined in Problem 48, taking a ¼ 0

and b ¼ 1.

5.2 PROJECTIONS

An important problem in the applied sciences is to write a given nonzero vector x

in R2 or R3 as the sum of two vectors uþ v where u is parallel to a known

reference vector a and v is perpendicular to a (see Figure 5.6). In physics, u is

called the parallel component of x and v is called the perpendicular component of

x, where parallel and perpendicular are relative to the reference vector a.

If u is to be parallel to a, it must be a scalar multiple of a; that is, u ¼ la for some

value of the scalar l. If x ¼ uþ v, then necessarily v ¼ x� u ¼ x� la. If u and

v are to be perpendicular, then

0 ¼ u, vh i ¼ la, x� lah i
¼ l a, xh i � l2 a, ah i
¼ l½ a, xh i � l a, ah i�

Either l ¼ 0 or l ¼ a, xh i= a, ah i. If l ¼ 0, then u ¼ la ¼ 0a ¼ 0, and

x ¼ uþ v ¼ v, from which we conclude that x and a, the given vector and the

reference vector, are perpendicular and a, xh i ¼ 0. Thus, l ¼ a, xh i= a, ah i is

always true and
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u ¼ ha, xi
ha, ai a and v ¼ x� ha, xi

ha, ai a

In this context, u is the projection of x onto a and v is the orthogonal complement.

Example 1 Write the vector x ¼ 2

7

� 	
as the sum of two vectors, one parallel to

a ¼ �3

4

� 	
and one perpendicular to a.

Solution:

a, xh i ¼ �3(2)þ 4(7) ¼ 22

a, ah i ¼ (� 3)2 þ (4)2 ¼ 25,

¼ ha, xi
ha, ai a ¼ 22

25

�3

4

2
4

3
5 ¼ �2:64

3:52

2
4

3
5

v ¼ x� u ¼
2

7

2
4
3
5� �2:64

3:52

2
4

3
5 ¼ 4:64

3:48

2
4

3
5

Then, x ¼ uþ v, with u parallel to a and v perpendicular to a. &

Example 2 Find the point on the line xþ 4y ¼ 0 closest to (� 3, � 1).

Solution: One point on the line is (4, � 1), so a ¼ 4 �1½ �T is a reference vector

in the plane parallel to the line. The given point (� 3, � 1) is associated with the

vector x ¼ �3 �1½ �T, and we seek the coordinates of the point P (see Figure 5.7)

on the line xþ 4y ¼ 0. The vector u that begins at the origin and terminates at P is

the projection of x onto a. Therefore,

Figure 5.6

u

x
v a
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a, xh i ¼ 4(� 3)þ (� 1)(� 1) ¼ �11

a, ah i ¼ (4)2 þ (� 1)2 ¼ 17

u ¼ ha, xi
ha, ai a ¼

�11

17

4

�1

" #
¼
�44=17

11=17

" #

P ¼ (� 44=17, 11=17) &

The concepts of projections and orthogonal complements in R2 can be extended

to any finite dimensional vector space V with an inner product. Given a nonzero

vector x and a reference vector a, both in V, we define the projections of x onto

a as

projax ¼
ha, xi
ha, ai a (5:6)

It then follows (see Problem 34) that

x� ha, xi
ha, ai a is orthogonal to a (5:7)

Subtracting from a nonzero vector x the projection x onto another nonzero

vector a leaves a vector that is orthogonal to both a and the projection of x

onto a. &

Example 3 Write the polynomial x(t) ¼ 2t2 þ 3tþ 4 in P2 as the sum of two

polynomials, one that is the projection of x(t) onto a(t) ¼ 5t2 þ 6 and one that is

orthogonal to a(t) under the inner product induced by the Euclidean inner

product in R3.

Figure 5.7

−1 2 3 4−2
x

v

−3−4−5

4

3

2

1

−1

−2

−3

−4

y

x

a
1

P
u

Line: x + 4y = 0

(−3, −1) (4, −1)

Subtracting from a

nonzero vector x its

projection onto

another nonzero

vector a yields a

vector that is

orthogonal to both

a and the projection

of x onto a.
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Solution: The induced inner product between two polynomials is obtained by

multiplying the coefficients of like powers of t and summing the resulting

products (see Example 7 of Section 5.1). Thus,

a(t), x(t)h i ¼ 5(2)þ 0(3)þ 6(4) ¼ 34

a(t), a(t)h i ¼ (5)2 þ (0)2 þ (6)2 ¼ 61

u(t) ¼ ha(t), x(t)i
ha(t), a(t)i a(t) ¼ 34

61
(5t2 þ 6) ¼ 170

61
t2 þ 204

61

is the projection of x(t) onto a(t).

v(t) ¼ x(t)� u(t) ¼ � 48

61
t2 þ 3tþ 40

61

is orthogonal to a(t), and x(t) ¼ u(t)þ v(t). &

A set of vectors is called an orthogonal set if each vector in the set is orthogonal

to every other vector in the set.

Example 4 The vectors x, y, zf g in R3 defined by

x ¼
1

1

1

2
4
3
5, y ¼

1

1

�2

2
4

3
5, z ¼

1

�1

0

2
4

3
5

are an orthogonal set of vectors because x, yh i ¼ x, zh i ¼ y, zh i ¼ 0. In contrast,

the set of vectors fa, b, cg in R4 defined by

a ¼ 1 1 0 1½ �T, b ¼ �1 1 2 0½ �T, c ¼ 1 1 0 2½ �T

is not an orthogonal set because a, ch i 6¼ 0. If c is redefined as

c ¼ 1 1 0 �2½ �T

then fa, b, cg is orthogonal, because now a, bh i ¼ a, ch i ¼ b, ch i ¼ 0. &

An orthogonal set of unit vectors (vectors all having magnitude 1) is called an

orthonormal set. Using the Kronecker delta notation,

dij ¼
1 if i ¼ j

0 if i 6¼ j



(5:8)

We say that a set of vectors x1, x2, . . . , xnf g is orthonormal if and only if

xi, xj

� �
¼ dij (i, j ¼ 1, 2, . . . , m) (5:9)

An orthonormal set

of vectors is an

orthogonal set of

unit vectors.
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Example 5 The set of vectors fu, v, wg in R3 defined by

u ¼
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
664

3
775, v ¼

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

2
664

3
775, w ¼

0

0

1

2
664
3
775

is an orthonormal set of vectors because each vector is orthogonal to the other

two and each vector is a unit vector. &

Any orthogonal set of nonzero vectors can be transformed into an orthonormal

set by dividing each vector by its magnitude. It follows from Example 4 that the

vectors

x ¼
1

1

1

2
4
3
5, y ¼

1

1

�2

2
4

3
5, z ¼

1

�1

0

2
4

3
5

form an orthogonal set. Dividing each vector by its magnitude, we generate

x

kxk ,
y

kyk ,
z

kzk


 �
¼

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

2
4

3
5,

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

2
4

3
5

8<
:

9=
;

as an orthonormal set.

" Theorem 1. An orthonormal set of a finite number of vectors is linearly

independent. 3

Proof: Let fx1, x2, . . . , xng be an orthonormal set and consider the vector equation

c1x1 þ c2x2 þ . . .þ cnxn ¼ 0 (5:10)

where cj ( j ¼ 1, 2, . . . , n) is a scalar. This set of vectors is linearly independent if

and only if the only solution to equation (5.10) is c1 ¼ c2 ¼ . . . ¼ cn ¼ 0. Taking

the inner product of both sides of equation (5.10) with xj, we have

c1x1 þ c2x2 þ . . .þ cjxj þ . . .þ cnxn, xj

� �
¼ 0, xj

� �
Usingparts (c), (d), and (e)ofTheorem1ofSection5.1,we rewrite this last equationas

c1 x1, xj

� �
þ c2 x2, xj

� �
þ . . .þ cj xj , xj

� �
þ . . .þ cn xn, xj

� �
¼ 0

or

Xn

i¼1

cihxi, xji ¼ 0
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As a consequence of equation (5.9),

Xn

i¼1

cidij ¼ 0

or cj ¼ 0 ( j ¼ 1, 2, . . . , n): &

If B ¼ fx1, x2, . . . , xng is a basis for V, then any vector x in V can be written as a

linear combination of the basis vectors in one and only one way (see Theorem 5

of Section 2.4). That is,

x ¼ c1x1 þ c2x2 þ . . .þ cnxn ¼
Xn

i¼1

cixi

with each ci (i ¼ 1, 2, . . . , n) uniquely determined by the choice of the basis. If the

basis is orthonormal, we can use the additional structure of an inner product to

say more. In particular,

hx, xji ¼
Xn

i¼1

cixi, xj

* +

¼
Xn

i¼1

hcixi, xji

¼
Xn

i¼1

cihxi, xji

¼
Xn

i¼1

cidij ¼ cj:

We have proven Theorem 2.

" Theorem 2. If fx1, x2, . . . , xng is orthonormal basis for a vector space V,

then for any vector x in V,

x ¼ x, x1h ix1 þ x, x2h ix2 þ . . .þ x, xnh ixn: 3

Theorem 2 is one of those wonderful results that saves time and effort. In

general, to write a vector in an n-dimensional vector space in terms of a given

basis, we must solve a set n simultaneous linear equations (see Examples 12 and

13 of Section 2.4). If, however, the basis is orthonormal, the work is reduced to

taking n-inner products and solving no simultaneous equations.

Example 6 Write x ¼ 1 2 3½ �T as a linear combination of the vectors

q1 ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
64

3
75, q2 ¼

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

2
64

3
75, q3 ¼

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

2
64

3
75
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Proof: The set fq1, q2, q3g is an orthonormal basis for R3. Consequently,

hx, q1i ¼ 1
1ffiffiffi
3
p
� �

þ 2
1ffiffiffi
3
p
� �

þ 3
1ffiffiffi
3
p
� �

¼ 6ffiffiffi
3
p

hx, q2i ¼ 1
1ffiffiffi
6
p
� �

þ 2
1ffiffiffi
6
p
� �

þ 3 � 2ffiffiffi
6
p

� �
¼ �3ffiffiffi

6
p

hx, q3i ¼ 1
1ffiffiffi
2
p
� �

þ 2
�1ffiffiffi

2
p
� �

þ 3(0) ¼ �1ffiffiffi
2
p

1

2

3

2
664
3
775 ¼ 6ffiffiffi

3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
664

3
775þ �3ffiffiffi

6
p
� � 1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

2
664

3
775þ �1ffiffiffi

2
p
� � 1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

0

2
664

3
775 &

Example 7 Write A ¼ 1 2

3 4

� 	
as a linear combination of the four matrices

Q1 ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

2
4

3
5,

Q2 ¼
0 �1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,

Q3 ¼
1=

ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,

Q4 ¼
�1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

2
4

3
5

Solution: The set fQ1, Q2, Q3, Q4g is an orthonormal basis for M2�2 under the

induced inner product (see Example 5 of Section 5.1) defined by multiplying

corresponding elements and summing the resulting products. Consequently,

hA, Q1i ¼
1 2

3 4

� 	
,

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

" #* +

¼ 1
1ffiffiffi
3
p
� �

þ 2
1ffiffiffi
3
p
� �

þ 3
�1ffiffiffi

3
p
� �

þ 4(0) ¼ 0
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hA, Q2i ¼
*

1 2

3 4

" #
,

0 �1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #+

¼ 1(0)þ 2
�1ffiffiffi

3
p
� �

þ 3
�1ffiffiffi

3
p
� �

þ 4
1ffiffiffi
3
p
� �

¼ �1ffiffiffi
3
p

hA, Q3i ¼
*

1 2

3 4

" #
,

1=
ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #+

¼ 1
1ffiffiffi
3
p
� �

þ 2(0)þ 3
1ffiffiffi
3
p
� �

þ 4
1ffiffiffi
3
p
� �

¼ 8ffiffiffi
3
p

hA, Q4i ¼
*

1 2

3 4

" #
,
�1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #+

¼ 1
�1ffiffiffi

3
p
� �

þ 2
1ffiffiffi
3
p
� �

þ 3(0)þ 4
1ffiffiffi
3
p
� �

¼ 5ffiffiffi
3
p

and

1 2

3 4

" #
¼ (0)

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

" #
þ �1ffiffiffi

3
p
� � 0 �1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #

þ 8ffiffiffi
3
p
� � 1=

ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
þ 5ffiffiffi

3
p
� � �1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #
: &

An inner product space is a vector space with an inner product defined between

pairs of vectors. Using projections, we can transform any basis for a finite

dimensional inner product space V into an orthonormal basis for V. To see

how, let fx1, x2, x3g be a basis for R3. Taking x1 as our reference vector, it

follows from equation (5.7), with x2 replacing x, that

x4 ¼ x2 �
hx1, x2i
hx1, x1i

x1 is orthogonal to x1:

Similarly, it follows from equation (5.7), with x3 replacing x, that

x5 ¼ x3 �
hx1, x3i
hx1, x1i

x1 is orthogonal to x1

These formulas may be simplified when x1 is a unit vector, because

x1, x1h i ¼ kx1k2 ¼ 1. We can guarantee that the first vector in any basis be a

An inner product

space is a vector

space with an inner

product defined

between pairs of

vectors.
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unit vector by dividing that vector by its magnitude. Assuming this has been

done and noting that x1, x2h i ¼ x2, x1h i and x1, x3h i ¼ x3, x1h i, we have that

x4 ¼ x2 � hx2, x1ix1 is orthogonal to x1

and

x5 ¼ x3 � hx3, x1ix1 is orthogonal to x1

Furthermore, x4 6¼ 0 because it is a linear combination of x1 and x2, which are

linearly independent, with the coefficient of x2 equal to 1. The only way for

a linear combination of linearly independent vectors to be 0 is for all the

coefficients of the vectors to be 0. Similarly x5 6¼ 0 because it is a linear combin-

ation of x1 and x3 with the coefficient of x3 set to 1. Thus, the set fx1, x4, x5g has

the property that x1 is a unit vector orthogonal to both nonzero vectors x4 and

x5. The vectors x4 and x5 are not necessarily unit vectors and may not be

orthogonal, but we have made progress in our attempt to create an orthonormal

set. Now, taking x4 as our reference vector, it follows from equation (5.7), with

x5 replacing x, that

x6 ¼ x5 �
hx4, x5i
hx4, x4i

x4 is orthogonal to x4

This formula may be simplified if x4 is a unit vector, a condition we can force by

dividing x4 by its magnitude. Assuming this has been done and noting that

x4, x5h i ¼ x5, x4h i, we have that

x6 ¼ x5 � hx5, x4ix4 is orthogonal to x4

Also,

hx6, x1i ¼ hx5 � hx5, x4ix4, x1i

¼ hx5, x1i � hx5, x4ix4, x1h i

¼ hx5, x1i � hx5, x4ihx4, x1i

¼ 0

because x1 is orthogonal to both x4 and x5. Thus, x1 is orthogonal to both x4 and

x6 and these last two vectors are themselves orthogonal. Furthermore, x6 6¼ 0,

because it can be written as a linear combination of the linearly independent

vectors x1, x2, and x3 with the coefficient of x3 set to one. If x6 is not a unit

vector, we may force it to become a unit vector by dividing x6 by its magnitude.

Assuming this is done, we have that fx1, x4, x6g is an orthonormal set.

If we apply this construction to arbitrary n-dimensional inner product

spaces, and use qi to denote the ith vector in an orthonormal set, we have

Theorem 3.
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" Theorem 3. (The Gram-Schmidt Orthonormalization Process). Let

fx1, x2, . . . , xng be a basis for an inner product space V. For

k ¼ 1, 2, . . . , n, do iteratively:

Step 1. Calculate rkk ¼ jxkj.

Step 2. Set qk ¼ (1=rkk)xk.

Step 3. For j ¼ kþ 1, kþ 2, . . . , n, calculate rkj ¼ xj , qk

� �
.

Step 4. For j ¼ kþ 1, kþ 2, . . . , n, replace xj with yj ¼ xj � rkjqk;

that is, xj  xj � rkjqk.

After the kth iteration (k ¼ 1, 2, . . . , n), fq1, q2, . . . , qkg is an ortho-

normal set, the span of fq1, q2, . . . , qkg equals the span of

fx1, x2, . . . , xkg, and each new xj ( j ¼ kþ 1, kþ 2, . . . , n) is a nonzero

vector orthogonal to each qi (i ¼ 1, 2, . . . , k). 3

Proof: (by mathematical induction on the iterations). Setting q1 ¼ x1=kx1k,
we have spanfq1g ¼ spanfx1g and kq1k ¼ 1. Furthermore, it follows from

equation (5.7) that xj � r1jq1, ( j ¼ 2, 3, . . . , n) is orthogonal to q1. Thus, the

proposition is true for n ¼ 1.

Assume that the proposition is true for n ¼ k. Then xkþ1 is nonzero and orthog-

onal to q1, q2, . . . , qk, hence qkþ1 ¼ xkþ1=kxkþ1k is a unit vector and

fq1, q2, . . . , qk, qkþ1g is an orthonormal set. From the induction hypothesis,

spanfq1, q2, . . . , qkg ¼ spanfx1, x2, . . . , xkg, so

spanfq1, q2, . . . , qk, qkþ1g ¼ spanfx1, x2, . . . , xk, qkþ1g
¼ spanfx1, x2, . . . , xk, xkþ1=kxkþ1kg
¼ spanfx1, x2, . . . , xk, xkþ1g:

For j ¼ kþ 2, kþ 3, . . . , n, we construct yj ¼ xj � rkþ1, jqkþ1. It follows from

equation (5.7) that each yj vector is orthogonal to qkþ1. In addition, for

i ¼ 1, 2, . . . , k,

hyj , qii ¼ hxj � rkþ1, j qkþ1, qii
¼ hxj, qii � rkþ1, jhqkþ1, qii
¼ 0

Here xj, qi

� �
¼ 0 as a result of the induction hypothesis and qkþ1, qi

� �
¼ 0

because fq1, q2, . . . , qk, qkþ1g is an orthonormal set. Letting xj  yj,

j ¼ kþ 2, kþ 3, . . . , n, we have that each new xj is orthogonal to each

qi, i ¼ 1, 2, . . . , kþ 1. Thus, Theorem 3 is proved by mathematical induction

(see Appendix A). &

The first two steps in the orthonormalization process create unit vectors; the

third and fourth steps subtract projections from vectors, thereby generating
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orthogonality. These four steps are also known as the revised (or modified)

Gram-Schmidt algorithm.

Example 8 Use the Gram-Schmidt orthonormalization process to construct an

orthonormal set of vectors from the linearly independent set fx1, x2, x3g, where

x1 ¼
1

1

0

2
4
3
5, x2 ¼

0

1

1

2
4
3
5, x3 ¼

1

0

1

2
4
3
5

Solution: For the first iteration (k ¼ 1),

r11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx1, x1i

p
¼

ffiffiffi
2
p

q1 ¼
1

r11

x1 ¼
1ffiffiffi
2
p

1

1

0

2
64
3
75 ¼ 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
64

3
75

r12 ¼ hx2, q1i ¼
1ffiffiffi
2
p

r13 ¼ hx3, q1i ¼
1ffiffiffi
2
p

x2  x2 � r12q1 ¼
0

1

1

2
64
3
75� 1ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
64

3
75 ¼

�1=2

1=2

1

2
64

3
75

x3  x3 � r13q1 ¼
1

0

1

2
64
3
75� 1ffiffiffi

2
p � 1ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
64

3
75 ¼

1=2

�1=2

1

2
64

3
75

Note that both x2 and x3 are now orthogonal to q1.

For the second iteration (k ¼ 2), using vectors from the first iteration, we compute

r22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2, x2i

p
¼

ffiffiffiffiffiffiffiffi
3=2

p

q2 ¼
1

r22

x2 ¼
1ffiffiffiffiffiffiffiffi
3=2

p �1=2

1=2

1

2
64

3
75 ¼ �1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
64

3
75

r23 ¼ hx3, q2i ¼
1ffiffiffi
6
p

x3  x3 � r23q2 ¼
1=2

�1=2

1

2
64

3
75� 1ffiffiffi

6
p

�1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
64

3
75 ¼

2=3

�2=3

2=3

2
64

3
75
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For the third iteration (k ¼ 3), using vectors from the second iteration, we compute

r33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx3, x3i

p
¼ 2ffiffiffi

3
p

q3 ¼
1

r33

x3 ¼
1

2=
ffiffiffi
3
p

2=3
�2=3

2=3

2
4

3
5 ¼ 1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5

The orthonormal set is fq1, q2, q3g: &

Example 9 Use the Gram-Schmidt orthonormalization process to construct an

orthonormal set of vectors from the linearly independent set fx1, x2, x3, x4g, where

x1 ¼

1

1

0

1

2
66664

3
77775, x2 ¼

1

2

1

0

2
66664

3
77775, x3 ¼

0

1

2

1

2
66664

3
77775, x4 ¼

1

0

1

1

2
66664

3
77775

Solution: Carrying eight significant figures through all computations but

rounding to four decimals for presentation purposes, we get

For the first iteration ( k ¼ 1 )

r11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx1, x1i

p
¼

ffiffiffi
3
p
¼ 1:7321,

q1 ¼
1

r11

x1 ¼
1ffiffiffi
3
p

1

1

0

1

2
66664

3
77775 ¼

0:5774

0:5774

0:0000

0:5774

2
66664

3
77775,

r12 ¼ hx2, q1i ¼ 1:7321,

r13 ¼ hx3, q1i ¼ 1:1547,

r14 ¼ hx4, q1i ¼ 1:1547,

x2  x2 � r12q1 ¼

1

2

1

0

2
66664

3
77775� 1:7321

0:5774

0:5774

0:0000

0:5774

2
66664

3
77775 ¼

0:0000

1:0000

1:0000

�1:0000

2
66664

3
77775,

x3  x3 � r13q1 ¼

0

1

2

1

2
6664
3
7775� 1:1547

0:5774

0:5774

0:0000

0:5774

2
6664

3
7775 ¼

�0:6667

0:3333

2:0000

0:3333

2
6664

3
7775,
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x4  x4 � r14q1 ¼

1

0

1

1

2
664
3
775� 1:1547

0:5774

0:5774

0:0000

0:5774

2
664

3
775 ¼

0:3333

�0:6667

1:0000

0:3333

2
664

3
775:

For the second iteration (k ¼ 2), using vectors from the first iteration, we

compute

r22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2, x2i

p
¼ 1:7321,

q2 ¼
1

r22

x2 ¼
1

1:7321

0:0000

1:0000

1:0000

�1:0000

2
66664

3
77775 ¼

0:0000

0:5774

0:5774

�0:5774

2
66664

3
77775,

r23 ¼ hx3, q2i ¼ 1:1547,

r24 ¼ hx4, q2i ¼ 0:0000,

x3  x3 � r23q2 ¼

�0:6667

0:3333

2:0000

0:3333

2
666664

3
777775� 1:1547

0:0000

0:5774

0:5774

�0:5774

2
666664

3
777775 ¼

�0:6667

�0:3333

1:3333

1:0000

2
666664

3
777775,

x4  x4 � r24q2 ¼

0:3333

�0:6667

1:0000

0:3333

2
666664

3
777775� 0:0000

0:0000

0:5774

0:5774

�0:5774

2
666664

3
777775 ¼

0:3333

�0:6667

1:0000

0:3333

2
666664

3
777775:

For the third iteration (k ¼ 3), using vectors from the second iteration,

we compute

r33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx3, x3i

p
¼ 1:8257,

q3 ¼
1

r33

x3 ¼
1

1:8257

�0:6667

�0:3333

1:3333

1:0000

2
66664

3
77775 ¼

�0:3651

�0:1826

0:7303

0:5477

2
66664

3
77775,

r34 ¼ hx4, q3i ¼ 0:9129,
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x4  x4 � r34q3 ¼

0:3333

�0:6667

1:0000

0:3333

2
6664

3
7775� 0:9129

�0:3651

�0:1826

0:7303

0:5477

2
6664

3
7775 ¼

0:6667

�0:5000

0:3333

�0:1667

2
6664

3
7775:

For the fourth iteration (k ¼ 4), using vectors from the third iteration, we

compute

r44 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx4, x4i

p
¼ 0:9129,

q4 ¼
1

r44

x4 ¼
1

0:9129

0:6667

�0:5000

0:3333

�0:1667

2
66664

3
77775 ¼

0:7303

�0:5477

0:3651

�0:1826

2
66664

3
77775:

The orthonormal set is fq1, q2, q3, q4g. &

If B ¼ fx1, x2, . . . , xpg is a linearly independent set of vectors in an inner product

space U, and not necessarily a basis, then the Gram-Schmidt orthonormalization

process can be applied directly on B to transform it into an orthonormal set of

vectors with the same span as B. This follows immediately from Theorem 3

because B is a basis for the subspace V ¼ spanfx1, x2, . . . , xpg.

Problems 5.2

In Problems 1 through 10, determine (a) the projection of x1 onto x2, and (b) the

orthogonal component.

(1) x1 ¼
1

2

� 	
, x2 ¼

2

1

� 	
. (2) x1 ¼

1

1

� 	
, x2 ¼

3

5

� 	
.

(3) x1 ¼
3

�2

� 	
, x2 ¼

3

3

� 	
. (4) x1 ¼

4

�1

� 	
, x2 ¼

2

8

� 	
.

(5) x1 ¼
�7

�2

� 	
, x2 ¼

2

9

� 	
. (6) x1 ¼

2

1

0

2
64
3
75, x2 ¼

2

0

2

2
64
3
75.

(7) x1 ¼
1

1

0

2
64
3
75, x2 ¼

2

2

1

2
64
3
75. (8) x1 ¼

0

3

4

2
64
3
75, x2 ¼

2

5

5

2
64
3
75.

(9) x1 ¼

0

1

1

1

2
6664
3
7775, x2 ¼

1

1

1

0

2
6664
3
7775. (10) x1 ¼

1

2

3

4

2
6664
3
7775, x2 ¼

1

�2

0

�1

2
6664

3
7775.
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In Problems 11 through 23, show that the set B is an orthonormal basis (under the

Euclidean inner product or the inner product induced by the Euclidean inner product)

for the given vector space and then write x as a linear combination of those basis vectors.

(11) B ¼
3=5

4=5

" #
,

4=5

�3=5

" #( )
in R2; x ¼ 3

5

� 	
.

(12) B ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

" #
,

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

" #( )
in R2; x ¼ 3

5

� 	
.

(13) B ¼ 1=
ffiffiffi
5
p

2=
ffiffiffi
5
p

" #
,
�2=

ffiffiffi
5
p

1=
ffiffiffi
5
p

" #( )
in R2; x ¼ 2

�3

� 	
.

(14) B ¼
3=5

4=5

0

2
64

3
75,

4=5

�3=5

0

2
64

3
75,

0

0

1

2
64
3
75

8><
>:

9>=
>; in R3; x ¼

1

2

3

2
4
3
5.

(15) B ¼
3=5

4=5

0

2
64

3
75,

4=5

�3=5

0

2
64

3
75,

0

0

1

2
64
3
75

8><
>:

9>=
>; in R3; x ¼

10

0

�20

2
4

3
5.

(16) B ¼
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
64

3
75,

�1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
64

3
75,

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
64

3
75

8><
>:

9>=
>; in R3; x ¼

10

0

�20

2
4

3
5.

(17) B ¼
�1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
64

3
75,

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

2
64

3
75,

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

2
64

3
75

8><
>:

9>=
>; in R3; x ¼

10

0

�20

2
4

3
5.

(18) B ¼ f0:6t� 0:8, 0:8tþ 0:6g in P1; x ¼ 2tþ 1.

(19) B ¼ f0:6t2 � 0:8, 0:8t2 þ 0:6, tg in P2; x ¼ t2 þ 2tþ 3.

(20) B ¼ f0:6t2 � 0:8, 0:8t2 þ 0:6, tg in P2; x ¼ t2 � 1.

(21) B ¼ 1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

" #(
,

0 �1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
,

1=
ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
,

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #)
in M2�2; x ¼ 1 1

�1 2

� 	
.

(22) B ¼
3=5 4=5

0 0

� 	

,

4=5 �3=5

0 0

� 	
,

0 0

3=5 �4=5

� 	
,

0 0

�4=5 �3=5

� 	�
;

in M2�2; x ¼
1 2

3 4

� 	
.

(23) B ¼
1=2 1=2

1=
ffiffiffi
2
p

0

� 	

,
�1=2 �1=2

1=
ffiffiffi
2
p

0

� 	
,
�1=2 1=2

0 1=
ffiffiffi
2
p

� 	
,

1=2 �1=2

0 1=
ffiffiffi
2
p

� 	�

in M2�2; x ¼
4 5

�6 7

� 	
.
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In Problems 24 through 32, use the Gram-Schmidt orthonormalization process to

construct an orthonormal set from the given set of linearly independent vectors.

(24) The vectors in Problem 1.

(25) The vectors in Problem 2.

(26) The vectors in Problem 3.

(27) x1 ¼
1

2

1

2
64
3
75, x2 ¼

1

0

1

2
64
3
75, x3 ¼

1

0

2

2
64
3
75.

(28) x1 ¼
2

1

0

2
64
3
75, x2 ¼

0

1

1

2
64
3
75, x3 ¼

2

0

2

2
64
3
75.

(29) x1 ¼
1

1

0

2
64
3
75, x2 ¼

2

0

1

2
64
3
75, x3 ¼

2

2

1

2
64
3
75.

(30) x1 ¼
0

3

4

2
64
3
75, x2 ¼

3

5

0

2
64
3
75, x3 ¼

2

5

5

2
64
3
75.

(31) x1 ¼

0

1

1

1

2
6664
3
7775, x2 ¼

1

0

1

1

2
6664
3
7775, x3 ¼

1

1

0

1

2
6664
3
7775, x4 ¼

1

1

1

0

2
6664
3
7775.

(32) x1 ¼

1

1

0

0

2
6664
3
7775, x2 ¼

0

1

�1

0

2
6664

3
7775, x3 ¼

1

0

�1

0

2
6664

3
7775, x4 ¼

1

0

0

�1

2
6664

3
7775.

(33) The vectors x1 ¼
1

1

0

2
64
3
75, x2 ¼

0

1

1

2
64
3
75, x3 ¼

1

0

�1

2
64

3
75

are linearly dependent. Apply the Gram-Schmidt orthonormalization process to

them and use the results to deduce what occurs when the process is applied to

a linearly dependent set of vectors.

(34) Prove directly that x� ha, xi
ha, ai a is orthogonal to a.

(35) Prove that if x and y are orthonormal, then ksxþ tyk2 ¼ s2 þ t2 for any two scalars

s and t.

(36) Let Q be any n� n real matrix having columns that, when considered as n-dimen-

sional vectors, form an orthonormal set. What can one say about the product QTQ?
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(37) Prove that if y, xh i ¼ 0 for every n-dimensional vector y, then x ¼ 0.

(38) Let A be an n� n real matrix and p be a real n-dimensional column matrix. Show

that if p is orthogonal to the columns of A, then Ay, ph i ¼ 0 for every n-dimensional

real column matrix y.

(39) Prove that if B is an orthonormal set of vectors that span a vector space U, then B is

a basis for U.

5.3 THE QR ALGORITHM

The QR algorithm is a robust numerical method for computing eigenvalues of

real matrices. In contrast to the power methods described in Section 4.6, which

converge to a single dominant real eigenvalue, the QR algorithm generally locates

all eigenvalues of a matrix, both real and complex, regardless of multiplicity.

To use the algorithm, we must factor a given matrix A into the matrix product

A ¼ QR (5:11)

where R is an upper (or right) triangular matrix and the columns of Q, con-

sidered as individual column matrices, form an orthonormal set. Equation (5.11)

is a QR decomposition of A. Such a decomposition is always possible when the

columns of A are linearly independent.

Example 1 Two QR decompositions are

1 3

1 5

" #
¼

1=
ffiffiffi
2
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

" # ffiffiffi
2
p

4
ffiffiffi
2
p

0
ffiffiffi
2
p

" #
and

1 2

2 2

2 1

2
64

3
75 ¼

1=3 10=
ffiffiffiffiffiffiffiffi
153
p

2=3 2=
ffiffiffiffiffiffiffiffi
153
p

2=3 �7=
ffiffiffiffiffiffiffiffi
153
p

2
664

3
775 3 8=3

0
ffiffiffiffiffiffiffiffi
153
p

=9

" #
&

It is apparent from Example 1 that QR decompositions exist for square and

rectangular matrices. The orders of A and Q are the same and R is a square

matrix having the same number of columns as A. For the remainder of this

section, we restrict A to be square because we are interested in locating eigen-

values, and eigenvalues are defined only for square matrices. Then both Q and

R are square and have the same order as A.

A QR decomposition of a matrix A comes directly from the Gram-Schmidt ortho-

normalization process (see Theorem 3 of Section 5.2) applied to the linearly inde-

pendent columns ofA. The elements ofR ¼ [rij] are the scalars from Steps 1 and 3 of

the orthonormalization process, and the columns of Q are the orthonormal column

matrices constructed in Step 2 of that process. To see why, we let x
(i)
j denote xj after

the ith iteration of the Gram-Schmidt process ( j > i). Thus, x
(1)
j is the new value of

In a QR

decomposition of a

matrix A, the

elements of R ¼ [rij ]

are the scalars from

Steps 1 and 3 of the

Gram-Schmidt

orthonormalization

process applied to

the linearly

independent

columns of A, while

the columns of Q

are the orthonormal

column matrices

constructed in Step

2 of the Gram-

Schmidt process.
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xj after the first iteration of the orthonormalization process, x
(2)
j is value of xj after

the second iteration, and so on. In this context, x
(0)
j is the initial value of xj.

" Theorem 1. After the ith iteration of the Gram-Schmidt orthonor-

malization process, x
(i)
j ¼ x

(0)
j � r1, j q1 � r2, j q2 � . . .� ri, j qi 3

Proof: (by mathematical induction on the iterations): After the first iteration,

we have from Step 4 of the process that x
(1)
j ¼ x

(0)
j � r1, j q1, for j ¼ 2, 3, . . . , n,

so the proposition is true for n ¼ 1.

Assume the proposition is true for n ¼ i. Then after the i þ 1 iteration, it follows

from Step 4 that for j ¼ i þ 2, i þ 3, . . . , n.

x
(iþ1)
j ¼ x

(i)
j � riþ1, j qiþ1

and then from the induction hypothesis that

x
(iþ1)
j ¼ [x

(0)
j � r1, j q1 � r2, j q2 � . . .� ri, j qi]� riþ1, j qiþ1

which is of the required form. Therefore, Theorem 1 is proved by mathematical

induction. &

Designate the columns of an n� n matrix A as x1, x2, . . . , xn, respectively, so that

A ¼ [ x1 x2 . . . xn ]. Set

Q ¼ q1 q2 . . . qn½ � (5:12)

and

R ¼

r11 r12 r13 . . . r1n

0 r22 r23 . . . r2n

0 0 r33 . . . r3n

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . rnn

2
666664

3
777775 (5:13)

Then it follows from Theorem 1 that A ¼ QR.

Example 2 Construct a QR decomposition for A ¼
1 0 1

1 1 0

0 1 1

2
4

3
5.

Solution: The columns of A are

x1 ¼
1

1

0

2
4
3
5, x2 ¼

0

1

1

2
4
3
5, x3 ¼

1

0

1

2
4
3
5
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Using the results of Example 8 of Section 5.2, we have immediately that

Q ¼
1=

ffiffiffi
2
p

�1=
ffiffiffi
6
p

1=
ffiffiffi
3
p

1=
ffiffiffi
2
p

1=
ffiffiffi
6
p

�1=
ffiffiffi
3
p

0 2=
ffiffiffi
6
p

1=
ffiffiffi
3
p

2
4

3
5, R ¼

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0
ffiffiffiffiffiffiffiffi
3=2

p
1=

ffiffiffi
6
p

0 0 2=
ffiffiffi
3
p

2
4

3
5

from which A ¼ QR. &

Example 3 Construct a QR decomposition for A ¼

1 1 0 1

1 2 1 0

0 1 2 1

1 0 1 1

2
664

3
775.

Solution: The columns of A are

x1 ¼

1

1

0

1

2
664
3
775, x2 ¼

1

2

1

0

2
664
3
775, x3 ¼

0

1

2

1

2
664
3
775, x4 ¼

1

0

1

1

2
664
3
775

Using the results of Example 9 of Section 5.2, we have immediately that

Q ¼

0:5774 0:0000 �0:3651 0:7303

0:5774 0:5774 �0:1826 �0:5477

0:0000 0:5774 0:7303 0:3651

0:5774 �0:5774 0:5477 �0:1826

2
6664

3
7775,

R ¼

1:7321 1:7321 1:1547 1:1547

0 1:7321 1:1547 0:0000

0 0 1:8257 0:9129

0 0 0 0:9129

2
6664

3
7775

from which A ¼ QR to within round-off error. &

The QR algorithm uses QR decompositions to identify the eigenvalues of

a square matrix. The algorithm involves many arithmetic calculations, making

it unattractive for hand computations but ideal for implementation on a com-

puter. Although a proof of the QR algorithm is beyond the scope of this book,

the algorithm itself is deceptively simple.

We begin with a square real matrix A0 having linearly independent columns.

To determine its eigenvalues, we create a sequence of new matrices

A1, A2, . . . , Ak�1, Ak, . . ., having the property that each new matrix has the

same eigenvalues as A0, and that these eigenvalues become increasingly obvious

as the sequence progresses. To calculate Ak (k ¼ 1, 2, . . . ) once Ak�1 is known,

we construct a QR decomposition of Ak�1:
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Ak�1 ¼ Qk�1Rk�1

and then reverse the order of the product to define

Ak ¼ Rk�1Qk�1 (5:14)

Each matrix in the sequence fAkg has identical eigenvalues (see Problem 29), and

the sequence generally converges to one of the following two partitioned forms:

ð5:15Þ

or

ð5:16Þ

If matrix (5.15) occurs, then the element a is an eigenvalue, and the remaining

eigenvalues are found by applying the QR algorithm anew to the submatrix S. If,

on the other hand, matrix (5.16) occurs, then two eigenvalues are determined by

solving for the roots of the characteristic equation of the 2� 2 matrix in the

lower right partition, namely,

l2 � (bþ e)lþ (be� cd ) ¼ 0

The remaining eigenvalues are found by applying the QR algorithm anew to the

submatrix U.

Convergence of the algorithm is accelerated by performing a shift at each

iteration. If the orders of all matrices are n� n, we denote the element in the

(n, n) position of the matrix Ak�1 as wk�1, and construct a QR decomposition for

the shifted matrix Ak�1 � wk�1I. That is,

Ak�1 � wk�1I ¼ Qk�1Rk�1 (5:17)

We define

Ak ¼ Rk�1Qk�1 þ wk�1I (5:18)

Example 4 Find the eigenvalues of

A0 ¼
0 1 0

0 0 1

18 �1 �7

2
4

3
5

Solution: Using the QR algorithm with shifting, carrying all calculations to eight

significant figures but rounding to four decimals for presentation, we compute
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A0 � (� 7)I

¼
7 1 0

0 7 1

18 �1 0

2
64

3
75

¼
0:3624 0:1695 �0:9165

0:0000 0:9833 0:1818

0:9320 �0:0659 0:3564

2
64

3
75 19:3132 �0:5696 0:0000

0:0000 7:1187 0:9833

0:0000 0:0000 0:1818

2
64

3
75

¼ Q0R0

A1 ¼ R0Q0 þ (� 7)I

¼
19:3132 �0:5696 0:0000

0:0000 7:1187 0:9833

0:0000 0:0000 0:1818

2
64

3
75 0:3624 0:1695 �0:9165

0:0000 0:9833 0:1818

0:9320 �0:0659 0:3564

2
64

3
75

þ
�7 0 0

0 �7 0

0 0 �7

2
64

3
75

¼
0:0000 2:7130 �17:8035

0:9165 �0:0648 1:6449

0:1695 �0:0120 �6:9352

2
64

3
75

A1 � (� 6:9352)I

¼
6:9352 2:7130 �17:8035

0:9165 6:8704 1:6449

0:1695 �0:0120 0:0000

2
64

3
75

¼
0:9911 �0:1306 �0:0260

0:1310 0:9913 0:0120

0:0242 �0:0153 0:9996

2
64

3
75 6:9975 3:5884 �17:4294

0:0000 6:4565 3:9562

0:0000 0:0000 0:4829

2
64

3
75

¼ Q1R1

A2 ¼ R1Q1 þ (� 6:9352)I ¼
0:0478 2:9101 �17:5612

0:9414 �0:5954 4:0322

0:0117 �0:0074 �6:4525

2
4

3
5
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Continuing in this manner, we generate sequentially

A3 ¼
0:5511 2:7835 �16:8072

0:7826 �1:1455 6:5200

0:0001 �0:0001 �6:4056

2
64

3
75

A4 ¼
0:9259 2:5510 �15:9729

0:5497 �1:5207 8:3583

0:0000 �0:0000 �6:4051

2
64

3
75

A4 has form (5.15) with

S ¼ 0:9259 2:5510

0:5497 �1:5207

� 	
and a ¼ �6:4051

One eigenvalue is �6:4051, which is identical to the value obtained in

Example 2 of Section 4.6. In addition, the characteristic equation of R is

l2 þ 0:5948l� 2:8103 ¼ 0, which admits both �2 and 1.4052 as roots. These

are the other two eigenvalues of A0. &

Example 5 Find the eigenvalues of

A0 ¼

0 0 0 �25

1 0 0 30

0 1 0 �18

0 0 1 6

2
664

3
775

Solution: Using the QR algorithm with shifting, carrying all calculations to eight

significant figures but rounding to four decimals for presentation, we compute

A0 � (6)I ¼

�6 0 0 �25

1 �6 0 30

0 1 �6 �18

0 0 1 0

2
6664

3
7775

¼

�0:9864 �0:1621 �0:0270 �0:0046

0:1644 �0:9726 �0:1620 �0:0274

0:0000 0:1666 �0:9722 �0:1643

0:0000 0:0000 0:1667 �0:9860

2
6664

3
7775

�

6:0828 �0:9864 0:0000 29:5918

0:0000 6:0023 �0:9996 �28:1246

0:0000 0:0000 6:0001 13:3142

0:0000 0:0000 0:0000 2:2505

2
6664

3
7775

¼ Q0R0
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A1 ¼ R0Q0 þ (6)I ¼

�0:1622 �0:0266 4:9275 �29:1787

0:9868 �0:0044 �4:6881 27:7311

0:0000 0:9996 2:3858 �14:1140

0:0000 0:0000 0:3751 3:7810

2
66664

3
77775

A1 � (3:7810)I ¼

�3:9432 �0:0266 4:9275 �29:1787

0:9868 �3:7854 �4:6881 27:7311

0:0000 0:9996 �1:3954 �14:1140

0:0000 0:0000 0:3751 0:0000

2
66664

3
77775

¼

�0:9701 �0:2343 �0:0628 �0:0106

0:2428 �0:9361 �0:2509 �0:0423

0:0000 0:2622 �0:9516 �0:1604

0:0000 0:0000 0:1662 �0:9861

2
66664

3
77775

�

4:0647 �0:8931 �5:9182 35:0379

0:0000 3:8120 2:8684 �22:8257

0:0000 0:0000 2:2569 8:3060

0:0000 0:0000 0:0000 1:3998

2
66664

3
77775

¼ Q1R1

A2 ¼ R1Q1 þ (3:7810)I

¼

�0:3790 �1:6681 11:4235 �33:6068

0:9254 0:9646 �7:4792 21:8871

0:0000 0:5918 3:0137 �8:5524

0:0000 0:0000 0:2326 2:4006

2
66664

3
77775

Continuing in this manner, we generate, after 25 iterations,

A25 ¼

4:8641 �4:4404 18:1956 �28:7675

4:2635 �2:8641 13:3357 �21:3371

0:0000 0:0000 2:7641 �4:1438

0:0000 0:0000 0:3822 1:2359

2
6664

3
7775

which has form (5.16) with

U ¼ 4:8641 �4:4404

4:2635 �2:8641

� 	
and

b c

d e

� 	
¼ 2:7641 �4:1438

0:3822 1:2359

� 	
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The characteristic equation of U is l2 � 2lþ 5 ¼ 0, which has as its roots

1� 2i; the characteristic equation of the other 2� 2 matrix is l2 � 4lþ 4:9999 ¼
0, which has as its roots 2� i. These roots are the four eigenvalues of A0. &

Problems 5.3

In Problems 1 through 11, construct QR decompositions for the given matrices.

(1)
1 2

2 1

� 	
: (2)

1 3

1 5

� 	
:

(3)
3 3

�2 3

� 	
: (4)

1 2

2 2

2 1

2
4

3
5:

(5)

1 1

1 0

3 5

2
4

3
5. (6)

3 1

�2 1

1 1

�1 1

2
664

3
775:

(7)

2 0 2

1 1 0

0 1 2

2
4

3
5: (8)

1 2 2

1 0 2

0 1 1

2
4

3
5:

(9)

0 3 2

3 5 5

4 0 5

2
4

3
5: (10)

0 1 1

1 0 1

1 1 0

1 1 1

2
664

3
775:

(11)

1 0 1

1 1 0

0 �1 �1

0 0 0

2
664

3
775:

(12) Discuss what is likely to happen in a QR decomposition of a matrix whose columns

are not linearly independent if all calculations are rounded to a finite number of

significant figures.

(13) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼
0 1 0

0 0 1

18 �1 7

2
4

3
5:

Note that this matrix differs from the one in Example 4 by a single sign.

(14) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼
2 �17 7

�17 �4 1

7 1 �14

2
4

3
5:
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(15) Use one iteration of the QR algorithm to calculate A1 for

A0 ¼

0 0 0 �13

1 0 0 4

0 1 0 �14

0 0 1 4

2
664

3
775:

In Problems 16 through 26, use the QR algorithm to calculate the eigenvalues of the

given matrices.

(16) The matrix in Problem 13.

(17) The matrix in Problem 14.

(18)

3 0 0

2 6 4

2 3 5

2
4

3
5. (19)

7 2 0

2 1 6

0 6 7

2
4

3
5.

(20)

3 2 3

2 6 6

3 6 11

2
4

3
5. (21)

2 0 �1

2 3 2

�1 0 2

2
4

3
5.

(22)

1 1 0

0 1 1

5 �9 6

2
4

3
5. (23)

3 0 5

1 1 1

�2 0 �3

2
4

3
5.

(24) The matrix in Problem 15.

(25)

0 3 2 �1

1 0 2 �3

3 1 0 �1

2 �2 1 1

2
664

3
775. (26)

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

2
664

3
775.

(27) Prove that R is nonsingular in a QR decomposition.

(28) Evaluate QTQ for any square matrix Q in a QR decomposition, and then prove that

Q is nonsingular.

(29) Using Problem 27, show that Ak is similar to Ak�1 in the QR algorithm and deduce

that both matrices have the same eigenvalues.

5.4 LEAST SQUARES

Analyzing data to interpret and predict events is common to business, engineering,

and the physical and social sciences. If such data are plotted, as in Figure 5.8, they

constitute a scatter diagram, which may provide insight into the underlying rela-

tionship between system variables. Figure 5.8 could represent a relationship

between advertising expenditures and sales in a business environment, or between

time and velocity in physics, or between formal control and deterrence in sociology.
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The data in Figure 5.8 appears to follow a straight line relationship, but with

minor random distortions. Such distortions, called noise, are expected when data

are obtained experimentally. To understand why, assume you are asked to ride a

bicycle on a painted line down the middle of a straight path. A paint pot with a

mechanism that releases a drop of paint intermittently is attached to the bicycle

to check your accuracy. If you ride flawlessly, the paint spots will all fall on the

line you are to follow. A perfect ride, however, is not likely. Wind, road

imperfections, fatigue, and other random events will move the bicycle slightly

away from its intended path. Repeat this experiment three times, and the paint

spots from all three rides would look like the data points in Figure 5.8.

Generally, we have a set of data points obtained experimentally from a process

of interest, such as those in Figure 5.8, and we want the equation of the

underlying theoretical relationship. For example, we have the spots left by

a bicycle, and we want the equation of the path the rider followed. In this

section, we limit ourselves to relationships that appear linear.

A straight line in the variables x and y satisfying the equation

y ¼ mxþ c (5:19)

Small random

variations from

expected patterns

are called noise.

Figure 5.8 y

x

Figure 5.9

1 2 3 4

3

2

1

6

5

4

7

9

8

10

y

x
0

��

�

�

� e (4)

e (3)

e (2)

e (0)

e (1)

Denotes a data point

y 
=
 2

x 
+
 1

.5

Denotes a point on the 
straight line for the same
x-value as the data point

�
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where m and c are constants, will have one y value on the line for each value of x.

This y value may not agree with the data at each value of x where data exists (see

Figure 5.9). The difference between the y value of the data point at x and the y

value defined by equation (5.19) for this same value of x is known as the residual

at x, which we denote as e(x).

Example 1 Calculate the residuals between the five data points in Figure 5.9

and their corresponding points on the line defined by y ¼ 2xþ 1:5.

Solution: Data points are provided at x ¼ 0, x ¼ 1, x ¼ 2, x ¼ 3, and x ¼ 4.

Evaluating the equation y ¼ 2xþ 1:5 at these values of x, we generate Table 5.1.

The residuals are

e(0) ¼ 1� 1:5 ¼ �0:5

e(1) ¼ 5� 3:5 ¼ 1:5

e(2) ¼ 3� 5:5 ¼ �2:5

e(3) ¼ 6� 7:5 ¼ �1:5

e(4) ¼ 9� 9:5 ¼ �0:5

Note that these residuals can be read directly from Figure 5.9. &

In general, we have N data points at (x1, y1), (x2, y2), (x3, y3), . . . , (xN , yN) with

residuals e(x1), e(x2), e(x3), . . . , e(xN ) between the data points and a straight line

approximation to the data. Residuals may be positive, negative, or 0, with a zero

residual occurring only when a data point is on the straight line approximation.

The least-squares error E is the sum of the squares of the individual residuals.

That is,

E ¼ [e(x1)]
2 þ [e(x2)]

2 þ [e(x3)]
2 þ . . .þ [e(xN)]2

The least-squares error is 0 if and only if all the residuals are 0.

TABLE 5.1

Given data

Evaluated from

y ¼ 2xþ 1:5

x y y

0 1 1.5

1 5 3.5

2 3 5.5

3 6 7.5

4 9 9.5
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Example 2 Calculate the least-squares error made in approximating the data in

Figure 5.9 by the straight line defined by y ¼ 2xþ 1:5.

Solution: Using the residuals determined in Example 1, we have

E ¼ [e(0)]2 þ [e(1)]2 þ [e(2)]2 þ [e(3)]2 þ [e(4)]2

¼ (� 0:5)2 þ (1:5)2 þ (� 2:5)2 þ (� 1:5)2 þ (� 0:5)2

¼ 0:25þ 2:25þ 6:25þ 2:25þ 0:25

¼ 11:25 &

Corresponding to every straight line approximation to a given set of data is a set

of residuals and a least-squares error. Different straight lines can produce

different least-squares errors, and we define the least-squares straight line to be

the line that minimizes the least-squares error. A nonvertical straight line satisfies

the equation

y ¼ mxþ c (5:19 repeated)

and has residuals

e(xi) ¼ yi � (mxi þ c)

at xi (i ¼ 1, 2, . . . ,N). We seek values of m and c that minimize

E ¼
XN
i¼1

( yi �mxi � c)2

This occurs when

@E

@m
¼
XN
i¼1

2( yi �mxi � c)(� xi) ¼ 0

@E

@c
¼
XN
i¼1

2( yi �mxi � c)(� 1) ¼ 0

or, upon simplifying, when

XN
i¼1

x2
i

 !
mþ

XN
i¼1

xi

 !
c ¼

XN
i¼1

xiyi

XN
i¼1

xi

 !
mþNc ¼

XN
i¼1

yi

(5:20)

System (5.20) makes up the normal equations for a least-squares fit in two

variables.

The least-squares

error is the sum of

the squares of the

individual residuals,

and the least-

squares straight line

is the line that

minimizes the least-

squares error.
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Example 3 Find the least-squares straight line for the following xy data:

x 0 1 2 3 4

y 1 5 3 6 9

Solution: Table 5.2 contains the required summations. For this data, the nor-

mal equations become

30mþ 10c ¼ 65

10mþ 5c ¼ 24

which has as its solution m ¼ 1:7 and c ¼ 1:4. The least-squares straight line is

y ¼ 1:7xþ 1:4. &

The normal equations have a simple matrix representation. Ideally, we would

like to choose m and c for (5.19) so that,

yi ¼ mxi þ c

for all data pairs (xi, yi), i ¼ 1, 2, . . . , N. That is, we want the constants m and c

to solve the system

mx1 þ c ¼ y1

mx2 þ c ¼ y2

mx3 þ c ¼ y3

..

.

mxN þ c ¼ yN

or, equivalently, the matrix equation

x1 1

x2 1

x3 1

..

. ..
.

xN 1

2
666664

3
777775

m

c

� 	
¼

y1

y2

y3

..

.

yN

2
666664

3
777775

TABLE 5.2

xi yi (xi)
2 xiyi

0 1 0 0

1 5 1 5

2 3 4 6

3 6 9 18

4 9 16 36

X5

i¼1

xi ¼ 10
X5

i¼1

yi ¼ 24
X5

i¼1

(xi)
2 ¼ 30

X5

i¼1

xiyi ¼ 65
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This system has the standard form Ax ¼ b, where A is defined as a matrix having

two columns, the first being the data vector [ x1 x2 x3 � � � xN ]T, and the

second containing all ones, x ¼ [ m c ]T, and b is the data vector

[ y1 y2 y3 � � � yN ]T. In this context, Ax ¼ b has a solution for x if and

only if the data falls on a straight line. If not, then the matrix system is

inconsistent, and we seek the least-squares solution. That is, we seek the vector

x that minimizes the least-squares error having the matrix form

E ¼ kAx� bk2 (5:21)

The solution is the vector x satisfying the normal equations, which take the

matrix form

ATAx ¼ ATb (5:22)

System (5.22) is identical to system (5.20) when A and b are as just defined.

We now generalize to all linear systems of the form Ax ¼ b. We are primarily

interested in cases where the system is inconsistent (rendering the methods

developed in Chapter 1 useless), and this generally occurs when A has more

rows than columns. We place no restrictions on the number of columns in A, but

we will assume that the columns are linearly independent. We seek the vector x

that minimizes the least-squares error defined by Eq. (5.21).

" Theorem 1. If x has the property that Ax� b is orthogonal to the

columns of A, then x minimizes kAx� bk2. 3

Proof: For any vector x0 of appropriate dimension,

kAx0 � bk2 ¼ k(Ax0 � Ax)þ (Ax� b)k2

¼ h(Ax0 � Ax)þ (Ax� b), (Ax0 � Ax)þ (Ax� b)i

¼ h(Ax0 � Ax), (Ax0 � Ax)i þ h(Ax� b), (Ax� b)i

þ 2h(Ax0 � Ax), (Ax� b)i

¼ k(Ax0 � Ax)k2 þ k(Ax� b)k2

þ 2h(Ax0, (Ax� b)i � 2hAx, (Ax� b)i

It follows directly from Problem 38 of Section 5.2 that the last two inner

products are both 0 (take p ¼ Ax� b). Therefore,

kAx0 � bk2 ¼ k(Ax0 � Ax)k2 þ k(Ax� b)k2

	 k(Ax� b)k2

and x minimizes Eq. (5.21). &
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As a consequence of Theorem 1, we seek a vector x having the property that

Ax� b is orthogonal to the columns of A. Denoting the columns of A as

A1, A2, . . . , An, respectively, we require

hAi, Ax� bi ¼ 0 (i ¼ 1, 2, . . . , n)

If y ¼ [ y1 y2 � � � yn ]T denotes an arbitrary vector of appropriate dimension,

then

Ay ¼ A1y1 þ A2y2 þ � � � þ Anyn ¼
Xn

i¼1

Aiyi

hAy, (Ax� b)i ¼
Xn

i¼1

Aiyi, (Ax� b)

* +

¼
Xn

i¼1

hAiyi, (Ax� b)i

¼
Xn

i¼1

yihAi, (Ax� b)i

¼ 0 (5:23)

It follows from

hx, yi ¼ xTy (5:2 repeated)

that

hAy, (Ax� b)i ¼ (Ay)T(Ax� b)

¼ (yTAT)(Ax� b)

¼ yT(ATAx� ATb)

¼ hy, (ATAx� ATb)i (5:24)

Equations (5.23) and (5.24) imply that hy, (ATAx� ATb)i ¼ 0 for any y. Using

the results of Problem 37 of Section 5.2, we conclude that (ATAx� ATb) ¼ 0 or

that ATAx ¼ ATb, which has the same form as equation (5.22)! Thus, we have

Theorem 2.

" Theorem 2. A vector x is the least-squares solution to Ax ¼ b if and

only if x is a solution to the normal equations ATAx ¼ ATb. 3
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The set of normal equations has a unique solution whenever the columns of A

are linearly independent, and these normal equations may be solved using any of

the methods presented in the previous chapters for solving systems of simultan-

eous linear equations.

Example 4 Find the least-squares solution to

xþ 2yþ z ¼ 1

3x� y ¼ 2

2xþ y� z ¼ 2

xþ 2yþ 2z ¼ 1

Solution: This system takes the matrix form Ax ¼ b, with

A ¼

1 2 1

3 �1 0

2 1 �1

1 2 2

2
6664

3
7775, x ¼

x

y

z

2
4
3
5, and b ¼

1

2

2

1

2
6664
3
7775

Then,

ATA ¼
15 3 1

3 10 5

1 5 6

2
4

3
5 and ATb ¼

12

4

1

2
4

3
5

and the normal equations become

15 3 1

3 10 5

1 5 6

2
4

3
5 x

y

z

2
4
3
5 ¼ 12

4

1

2
4

3
5

Using Gaussian elimination, we obtain as the unique solution to this set of

equations x ¼ 0:7597, y ¼ 0:2607, and z ¼ �0:1772, rounded to four decimals,

which is also the least-squares solution to the original system. &

Example 5 Find the least-squares solution to

0xþ 3y ¼ 80

2xþ 5y ¼ 100

5x� 2y ¼ 60

�xþ 8y ¼ 130

10x� y ¼ 150
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Solution: This system takes the matrix form Ax ¼ b, with

A ¼

1 3

2 5

5 �2

�1 8

10 �1

2
66664

3
77775, x ¼ x

y

� 	
, and b ¼

80

100

60

130

150

2
66664

3
77775

Then,

ATA ¼ 131 �15

�15 103

� 	
and ATb ¼ 1950

1510

� 	

and the normal equations become

131 �15

�15 103

� 	
x

y

� 	
¼ 1950

1510

� 	

The unique solution to this set of equations is x ¼ 16:8450 and y ¼ 17:1134,

rounded to four decimals, which is also the least-squares solution to the original

system. &

Problems 5.4

In Problems 1 through 8, find the least-squares solution to the given systems of equations.

(1) 2xþ 3y ¼ 8,

3x� y ¼ 5,

xþ y ¼ 6:

(2) 2xþ y ¼ 8,

y ¼ 4,

�xþ y ¼ 0,

3xþ y ¼ 13:

(3) xþ 3y ¼ 65,

2x� y ¼ 0,

3xþ y ¼ 50,

2xþ 2y ¼ 55:

(4) 2xþ y ¼ 6,

xþ y ¼ 8,

�2xþ y ¼ 11,

�xþ y ¼ 8,

3xþ y ¼ 4:

(5) 2xþ 3y� 4z ¼ 1,

x� 2yþ 3z ¼ 3,

xþ 4yþ 2z ¼ 6,

2xþ y� 3z ¼ 1:

(6) 2xþ 3yþ 2z ¼ 25,

2x� yþ 3z ¼ 30,

3xþ 4y� 2z ¼ 20,

3xþ 5yþ 4z ¼ 55:

(7) xþ y� z ¼ 90,

2xþ yþ z ¼ 200,

xþ 2yþ 2z ¼ 320,

3x� 2y� 4z ¼ 10,

3xþ 2y� 3z ¼ 220:

(8) xþ 2yþ 2z ¼ 1,

2xþ 3yþ 2z ¼ 2,

2xþ 4yþ 4z ¼ �2,

3xþ 5yþ 4z ¼ 1,

xþ 3yþ 2z ¼ �1:
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(9) Which of the systems, if any, given in Problems 1 through 8 represent a least-

squares straight line fit to data?

(10) The monthly sales figures (in thousands of dollars) for a newly opened shoe store are

month 1 2 3 4 5

sales 9 16 14 15 21

(a) Plot a scatter diagram for this data.

(b) Find the least-squares straight line that best fits this data.

(c) Use this line to predict sales revenue for month 6.

(11) The number of new cars sold at a new car dealership over the first eight weeks of the

new season are

week 1 2 3 4 5 6 7 8

sales 51 50 45 46 43 39 35 34

(a) Plot a scatter diagram for this data.

(b) Find the least-squares straight line that best fits this data.

(c) Use this line to predict sales for weeks 9 and 10.

(12) Annual rainfall data (in inches) for a given town over the last seven years are

year 1 2 3 4 5 6 7

rainfall 10.5 10.8 10.9 11.7 11.4 11.8 12.2

(a) Find the least-squares straight line that best fits this data.

(b) Use this line to predict next year’s rainfall.

(13) Solve system (5.20) algebraically and explain why the solution would be susceptible

to round-off error.

(14) (Coding) To minimize the round-off error associated with solving the normal

equations for a least-squares straight line fit, the (xi, yi) data are coded before

using them in calculations. Each xi value is replaced by the difference between xi

and the average of all xi data. That is, if

X ¼ 1

N

XN
i¼1

xi

then set x0i ¼ xi � X and fit a straight line to the (x0i, yi) data instead.

Explain why this coding scheme avoids the round-off errors associated with un-

coded data.

(15) (a) Code the data given in Problem 10 using the procedure described in Problem 14.

(b) Find the least-squares straight line fit for this coded data.

(16) (a) Code the data given in Problem 11 using the procedure described in Problem 14.

(b) Find the least-squares straight line fit for this coded data.
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(17) Census figures for the population (in millions of people) for a particular region of

the country are as follows:

year 1950 1960 1970 1980 1990

population 25.3 23.5 20.6 18.7 17.8

(a) Code this data using the procedure described in Problem 14, and then find the

least-squares straight line that best fits it.

(b) Use this line to predict the population in 2000.

(18) Show that if A ¼ QR is a QR decomposition of A, then the normal equations given

by Eq. (5.22) can be written as RTRx ¼ RTQTb, which reduces to Rx ¼ QTb. This is

a numerically stable set of equations to solve, not subject to the same round-off

errors associated with solving the normal equations directly.

(19) Use the procedure described in Problem 18 to solve Problem 1.

(20) Use the procedure described in Problem 18 to solve Problem 2.

(21) Use the procedure described in Problem 18 to solve Problem 5.

(22) Use the procedure described in Problem 18 to solve Problem 6.

(23) Determine the column matrix of residuals associated with the least-squares solution

of Problem 1, and then calculate the inner product of this vector with each of the

columns of the coefficient matrix associated with the given set of equations.

(24) Determine the column matrix of residuals associated with the least-squares solution

of Problem 5, and then calculate the inner product of this vector with each of the

columns of the coefficient matrix associated with the given set of equations.

5.5 ORTHOGONAL COMPLEMENTS

Two vectors in the same inner product space are orthogonal if their inner

product is zero. More generally, we say that the two subspaces U and W of an

inner product space V are orthogonal, written U?W, if u, wh i ¼ 0 for every u 2 U

and every w 2W.

Example 1 The subspaces

U ¼ fat2 þ btþ c 2 P2jb ¼ 0g and W ¼ fat2 þ btþ c 2 P2ja ¼ c ¼ 0g

are orthogonal with respect to the induced Euclidean inner product. If p(t) 2 U,

then p(t) ¼ at2 þ c, for some choice of the real numbers a and c. If q(t) 2W, then

q(t) ¼ bt for some choice of the real number b. Then

h p(t), q(t) i ¼ hat2 þ c, bti ¼ hat2 þ 0tþ c, 0t2 þ btþ 0i

¼ a(0)þ 0(b)þ c(0) ¼ 0 &

Two subspaces U

and W of the inner

product space V are

orthogonal if

u,wh i ¼ 0 for every

u 2 U and every

w 2W.
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Example 2 The subspaces U ¼ span 1 1 1½ �T, 1 �1 0½ �T
n o

and

W ¼ span 1 1 �2½ �T
n o

in R3 are orthogonal with respect to the Euclidean

inner product. Every vector in u 2 U must have the form

u ¼ a

1

1

1

2
4
3
5þ b

1

�1

0

2
4

3
5 ¼ aþ b

a� b

a

2
4

3
5

for some choice of scalars a and b, while every vector in w 2W must have the

form

w ¼ c

1

1

�2

2
4

3
5 ¼ c

c

�2c

2
4

3
5

for some choice of scalar c. Here,

u, wh i ¼ (aþ b)(c)þ (a� b)(c)þ a(� 2c) ¼ 0 &

Orthogonal subspaces in R3 do not always agree with our understanding of

perpendicularity. The xy-plane is perpendicular to the yz-plane, as illustrated

in Figure 5.10, but the two planes are not orthogonal. The xy-plane is the

subspace defined by

U ¼ x y z½ �T2 R3jz ¼ 0
n o

Therefore, u ¼ 1 1 0½ �T is a vector in U. The yz-plane is the subspace defined

by

W ¼ x y z½ �T2 R3jx ¼ 0
n o

Figure 5.10

yz - plane

xy - plane

z

x

y
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and w ¼ 0 1 1½ �T is in W. Here,

u, vh i ¼ 1(0)þ 1(1)þ 0(1) ¼ 1 6¼ 0

If U is a subspace of an inner product space V, we define the orthogonal

complement of U, denoted as U?, as the set of all vectors in V that are orthogonal

to every vector in U, that is,

U? ¼ v 2 Vj u, vh i ¼ 0 for every u 2 Uf g (5:25)

Example 3 In R3, the orthogonal complement of the z-axis is the xy-plane. The

z-axis is the subspace

Y ¼ x y z½ �T2 R3jx ¼ y ¼ 0
n o

so any vector in this subspace has the form 0 0 a½ �T for some choice of the

scalar a. A general vector in R3 has the form x y z½ �T for any choice of the

scalars x, y, and z. If

x
y
z

" #
,

0
0
0

" #* +
¼ za

is to be zero for every choice of the scalar a, then z ¼ 0. Thus, the orthogonal

complement of the z-axis is the set

x y z½ �T2 R3jz ¼ 0
n o

which defines the xy-plane. &

" Theorem 1. If U is a subspace of an inner product space V, then so too

is the orthogonal complement of U. 3

Proof: Let x and y be elements of U?, and let u 2 U. Then x, uh i ¼ 0, y, uh i ¼ 0,

and for any two scalars a and b

axþ by, uh i ¼ ax, uh i þ by, uh i ¼ a x, uh i þ b y, uh i ¼ a(0)þ b(0) ¼ 0:

Thus, axþ by 2 U? and U? is a subspace of V. &

" Theorem 2. If U is a subspace of an inner product space V, then the

only vector common to both U and U? is the zero vector. 3

If U is a subspace of

an inner product

space V, then U?,

the orthogonal

complement of U, is

the set of all vectors

in V that are

orthogonal to every

vector in U.

5.5 Orthogonal Complements . 343



Proof: Let x be a vector in both U and U?. Since x 2 U?, it must be orthogonal

to every vector in U, hence x must be orthogonal to itself, because x 2 U. Thus,

x, xh i ¼ 0, and it follows immediately from Theorem 1 of Section 5.1 that

x ¼ 0. &

Identifying the orthogonal complement of subspaces U of Rn is straightforward

when we know a spanning set S ¼ fu1, u2, . . . , ukg for U. We define a matrix A to

be

A ¼

uT
1

uT
2

..

.

uT
k

2
666664

3
777775 (5:26)

where the column matrices in S become the rows of A. We then transform A to

row-reduced form using elementary row operations, obtaining

A!

vT
1

vT
2

..

.

vT
k

2
666664

3
777775

The nonzero rows of this row-reduced matrix are a basis for U. Any vector

x 2 U? must be orthogonal to each basis vector in U, so

vj, x
� �

¼ 0 ( j ¼ 1, 2, . . . , k): (5:27)

Equation (5.27) yields a set of k equations (some of which will be 0 ¼ 0 when the

rank of A is less than k) for the components of x. These equations define all

vectors in the orthogonal complement of U. But equation (5.27) also defines the

kernel of the matrix A in equation (5.26), so we have proven Theorem 3.

" Theorem 3. If S is a spanning set for a subspace U of Rn (considered as

column matrices) and if a matrix A is created so that each row of A is the

transpose of the vectors in S, then U? ¼ ker(A). 3

Example 4 Find the orthogonal complement of the subspace in R4 spanned by

S ¼

1

3

1

�1

2
664

3
775,

2

7

2

1

2
664
3
775,

1

4

1

2

2
664
3
775

8>><
>>:

9>>=
>>;
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Solution: For these vectors, matrix (5.26) becomes

A ¼
1 3 1 �1

2 7 2 1

1 4 1 2

2
4

3
5

which is transformed by elementary row operation to the row-reduced form

!
1 3 1 �1

0 1 0 3

0 1 0 3

2
64

3
75

!
1 3 1 �1

0 1 0 3

0 0 0 0

2
64

3
75

A basis for U is 1 3 1 �1½ �T, 0 1 0 3½ �T
n o

, hence U is a two-dimen-

sional subspace of R4. If we let x ¼ x1, x2, x3, x1½ �T, denote an arbitrary element

in the kernel of A, then

x1 þ 3x2 þ x3 � x4 ¼ 0

x2 þ 3x4 ¼ 0

0 ¼ 0

whence, x1 ¼ �x3 þ 10x4, x2 ¼ �3x4 with x3 and x4 arbitrary. Thus the kernel

of A is

�x3 þ 10x4

�3x4

x3

x4

2
664

3
775 ¼ x3

�1

0

1

0

2
664

3
775þ x4

10

�3

0

1

2
664

3
775x3 and x4 are arbitrary

8>><
>>:

9>>=
>>;

A basis for U? is �1 0 1 0½ �T, 10 �3 0 1½ �T
n o

, and UT is also a two-

dimensional subspace of R4. &

" Theorem 4. If U is a subspace of Rn, then dim(U)þ dim(U?) ¼ n. 3

Proof: The proposition is true when U ¼ f0g, because h0, yi ¼ 0 for every

y 2 Rn and U? ¼ Rn. In all other cases, let S ¼ u1, u2, . . . , ukf g be a basis for

U, and construct A as in equation (5.26). Then A is a linear transformation from

Rn to Rk. Because S is a basis, r(A) ¼ dim(U) ¼ k, where r(A) denotes the rank of

A. The nullity of A, v(A), is the dimension of the kernel of A, hence v(A) is the

dimension of U?. But r(A)þ v(A) ¼ n (Corollary 1 of Section 3.5), so Theorem 4

is immediate. &
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" Theorem 5. If U is a subspace of Rn, then (U?)? ¼ U. 3

Proof: If u 2 U, then u is orthogonal to every vector in U?, so u 2 (U?)? and

U is a subset of (U?)?. Denote the dimension of U as k. It follows from Theorem

4 that dim(U?) ¼ n� k. But it also follows from Theorem 4 that

dim(U?)þ dim((U?)?) ¼ n, whereupon dim((U?)?) ¼ n� (n� k) ¼ k ¼ dim(U).

Thus, U 
 (U?)? with each subspace having the same dimension, hence

U ¼ (U?)?. &

We began Section 5.2 by writing a vector x 2 R2 as the sum of two vectors uþ v;
which were orthogonal to one another. We now do even more.

" Theorem 6. If U is a subspace of Rn, then each vector x 2 Rn can be

written uniquely as x ¼ uþ u?, where u 2 U and u? 2 U?. 3

Proof: If U ¼ Rn, then U? ¼ f0g; and, conversely, if U ¼ f0g, then U? ¼ Rn,

because x ¼ xþ 0 ¼ 0þ x. In all other cases, let u1, u2, . . . , ukf g be a basis for

U(k < n), and let ukþ1, ukþ2, . . . , unf g be a basis for U?. We first claim that the

set S ¼ u1, u2, . . . , uk, ukþ1, ukþ2, . . . , unf g is linearly independent, which is

equivalent to showing that the only solution to

c1u1 þ c2u2 þ . . .þ ckuk þ ckþ1ukþ1 þ ckþ2ukþ2 þ . . .þ cnun ¼ 0 (5:28)

is c1 ¼ c2 ¼ . . . ¼ cn ¼ 0. If we rewrite equation (5.28) as

c1u1 þ c2u2 þ . . .þ ckuk ¼ �ckþ1ukþ1 � ckþ2ukþ2 � . . .� cnun

we see that the left side of this equation is a vector in U while the right side is

a vector in U?. Since the vectors are equal, they represent a vector in both U and

U? that, from Theorem 2, must be the zero vector. Thus,

c1u1 þ c2u2 þ . . .þ ckuk ¼ 0

and since u1, u2, . . . , ukf g is a linearly independent set (it is a basis for U), we

conclude that c1 ¼ c2 ¼ . . . ¼ ck ¼ 0. Similarly

ckþ1ukþ1 þ ckþ2ukþ2 þ . . .þ cnun ¼ 0

and since ukþ1, ukþ2, . . . , unf g is a linearly independent set (it is as basis for U?),

we conclude that ckþ1 ¼ ckþ2 ¼ . . . ¼ cn ¼ 0. Thus, S is linearly independent as

claimed.

Since the dimension of Rn is n and S is a linearly independent set of n-vectors in

Rn, it follows that S is a basis for Rn. We now have (see Theorem 5 of Section

2.4) that each vector in Rn can be written uniquely as a linear combination of the
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vectors in S. That is, if x 2 Rn, then there exists a unique set of scalars

d1 ¼ d2 ¼ . . . ¼ dn such that

x ¼ d1u1 þ d2u2 þ . . .þ dkuk þ dkþ1ukþ1 þ dkþ2ukþ2 þ . . .þ dnun

Setting u ¼ d1u1 þ d2u2 þ . . .þ dkuk and u? ¼ dkþ1ukþ1 þ dkþ2ukþ2 þ . . .þ dnun,

we have u 2 U, u? 2 U?, and x ¼ uþ u?. &

Example 5 Decompose x ¼ �14 �10 12½ �T into the sum of two vectors, one

in the subspace U spanned by 1 1 5½ �T, 2 �1 1½ �T
n o

and the other in U?.

Solution: The vectors u1 ¼ 1 1 5½ �T and u2 ¼ 2 �1 1½ �T are linearly

independent, so they form a basis for U. We set

A ¼ 1 1 5

2 �1 1

� 	

and then determine that u3 ¼ �2 �2 1½ �T is a basis for ker(A) (see Example 1

of Section 3.5) and, therefore, a basis for U?. Thus, B ¼ u1, u2, u3f g is a basis for

R3.

We want the coordinates of the given vector x ¼ �14 �10 12½ �T with respect

to the B basis; that is, we want the values of the scalars d1, d2, and d3 so that

d1

1

1

5

2
4
3
5þ d2

2

�1

5

2
4

3
5þ d3

�2

�3

1

2
4

3
5 ¼ �14

�10

12

2
4

3
5:

Solving the associated system of simultaneous linear equations by Gaussian

elimination, we find d1 ¼ 2, d2 ¼ �3; and d3 ¼ 5. Finally setting

u ¼ 2u1 þ (� 3)u2 ¼ 2

1

1

5

2
64
3
75þ (� 3)

2

�1

5

2
64

3
75 ¼ �4

5

7

2
64

3
75

u? ¼ 5u3 ¼
�10

�15

5

2
64

3
75

we have u 2 U, u??U?, and x ¼ uþ u?. &

Whenever we have a decomposition of a given vector x into the sum of two

vectors as described in Theorem 6, x ¼ uþ u?, then u is called the projection of

x on U. In the special case where U is a one-dimensional subspace spanned by

a single vector a, the projection of x on U is obtained most easily by equation

(5.6) in Section 5.2.
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Example 6 Using the results of Example 5, we have that u ¼ �4 5 7½ �T is the

projection of the vector x ¼ �14 �10 12½ �T on the subspace U spanned by

1 1 5½ �T, 2 �1 1½ �T
n o

. &

A vector space V is the direct sum of two subspaces U and W, written

V ¼ U�W, if each vector in V can be written uniquely as the sum uþ v, where

u 2 U and v 2 V. It follows from Theorem 6 that Rn ¼ U� U? for each subspace

U of Rn.

Problems 5.5

In Problems 1 through 10, (a) find the orthogonal complement for the subspace U of R3

spanned by the given set of vectors, and then (b) find the projection of x ¼ 1 1 0½ �T
on U.

(1) 0 1 1½ �T
n o

.

(2) 1 1 1½ �T
n o

.

(3) 2 1 1½ �T
n o

.

(4) 1 1 1½ �T, 0 1 2½ �T
n o

.

(5) 2 1 1½ �T, 0 1 2½ �T
n o

.

(6) 0 1 1½ �T, 0 1 2½ �T
n o

.

(7) 1 1 1½ �T, 2 2 0½ �T
n o

.

(8) 1 1 1½ �T, 2 2 2½ �T
n o

.

(9) 1 1 1½ �T, 0 1 1½ �T, 3 2 2½ �T
n o

.

(10) 1 1 1½ �T, 1 0 1½ �T, 1 1 0½ �T
n o

.

In Problems 11 through 20, (a) find the orthogonal complement for the subspace U of R4

spanned by the given set of vectors, and then (b) find the projection of x ¼ 1 0 1 0½ �T
on U.

(11) 0 0 1 1½ �T
n o

.

(12) 0 1 1 1½ �T
n o

.

(13) 0 0 1 1½ �T, 0 1 1 1½ �T
n o

.

(14) 0 1 0 1½ �T, 0 1 0 2½ �T
n o

.

A vector space V is

the direct sum of

two subspaces U

and W if each vector

in V can be written

uniquely as the sum

of a vector in U and

a vector in V.
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(15) 1 1 1 0½ �T, 1 1 0 1½ �T
n o

.

(16) 1 1 1 0½ �T, 1 1 0 1½ �T, 1 0 1 1½ �T
n o

.

(17) 1 1 1 0½ �T, 1 1 1 1½ �T, 1 1 1 2½ �T
n o

.

(18) 1 1 0 0½ �T, 0 1 0 1½ �T, 1 0 1 0½ �T
n o

.

(19) 1 1 1 0½ �T, 1 1 0 1½ �T, 1 0 1 1½ �T, 0 1 1 1½ �T
n o

.

(20) 1 1 1 0½ �T, 1 1 0 1½ �T, 1 2 1 1½ �T, 3 4 2 2½ �T
n o

.

(21) Is it possible for x ¼ 1 1 0½ �T to be in the kernel of a 3� 3 matrix A and also for

y ¼ 1 0 1½ �T to be in the row space of A?

(22) Show that if x ¼ uþ u? as in Theorem 6, then kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ku2k þ ku?k2

q
.

(23) Let U be a subspace of a finite-dimensional vector space V with a basis B, and let W

be subspace of V with basis C. Show that if V ¼ U�W, then B [ C is a basis for V.

(24) Prove that if U and W are subspaces of a finite-dimensional vector space V with

V ¼ U�W, then the only vector common to both U and W is 0.

(25) Prove that if U and W are subspaces of a finite-dimensional vector space V with

V ¼ U�W, then dim(U)þ dim(W) ¼ dim(V).

Chapter 5 Review

Important Terms

Angle between n-tuples (p. 297)

Cauchy-Schwarz Inequality

(p. 300)

Direct sum (p. 348)

Euclidean inner product (p. 348)

Gram-Schmidt orthonormaliza-

tion process (p. 316)

Induced inner product (p. 300)

Inner product space (p. 314)

Kronecker delta (p. 310)

Least-squares error (p. 333)

Least-squares straight line (p. 334)

Magnitude of an n-tuple (p. 296)

Noise (p. 332)

Normal equations (p. 335)

Normalized vector (p. 297)

Orthogonal complement (p. 308)

Orthogonal vectors (p. 299)

Orthonormalsetofvectors (p.310)

Orthogonal subspaces (p. 342)

Projection (p. 308)

QR algorithm (p. 323)

QR decomposition (p. 323)

Residual (p. 333)

Scatter diagram (p. 331)

Unit vector (p. 297)
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Important Concepts

Section 5.1 " The Euclidean inner product of two vectors x and y in Rn is a real number

obtained by multiplying corresponding components of x and y and then

summing the resulting products.

" The inner product of a vector with itself is positive, unless the vector is the zero

vector, in which case the inner product is zero.

" The inner product of a vector with the zero vector yields the zero scalar.

" hx, yi ¼ hy, xi for vectors x and y in Rn.

" hlx, yi ¼ lhx, yi, for any real number l.

" hxþ z, yi ¼ hx, yi þ hz, yi.

" The magnitude of a vector x 2 Rn is the square root of the inner product of x with

itself.

" If u and v are vectors in Rn, then jhu, vij# uk k vk k.

" An induced inner product on two matrices of the same order is obtained by

multiplying corresponding elements of both matrices and summing the results.

" An induced inner product of two polynomials is obtained by multiplying the

coefficients of like powers of the variable and summing the results.

" Two vectors can be orthogonal with respect to one basis and not orthogonal with

respect to another basis.

Section 5.2 " Subtracting from a nonzero vector x its projection onto another nonzero vector

a yields a vector that is orthogonal to both a and the projection of x onto a.

" An orthonormal set of vectors is an orthogonal set of unit vectors.

" An orthonormal set of a finite number of vectors is linearly independent.

" If {x1, x2, . . . , xn} is orthonormal basis for a vector space V, then for any

vector x 2 V, x ¼ hx, x1ix1 þ hx, x2ix2 þ . . .þ hx, xnixn.

" Every set of linearly independent vectors in an inner product space can be

transformed into an orthonormal set of vectors that spans the same subspace.

Section 5.3 " If the columns of a matrix A are linearly independent, then A can be factored

into the product of a matrix Q, having columns that form an orthonormal set,

and another matrix R, that is upper triangular.
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" The QR algorithm is a numerical method of locating all eigenvalues of a real

matrix.

Section 5.4 " The least-squares straight line is the line that minimizes the least-squares error

for a given set of data.

" A vector x is the least-squares solution to Ax ¼ b if and only if x is a solution to

the normal equation ATAx ¼ ATb.

Section 5.5 " If U is a subspace of an inner product space V, then so too is the orthogonal

complement of U.

" If U is a subspace of an inner product space V, then the only vector common to

both U and U? is the zero vector.

" If S is a spanning set for a subspace U of Rn (considered as column matrices) and

if a matrix A is created so that each row of A is the transpose of the vectors in S,

then U? ¼ ker(A).

" If U is a subspace of Rn, then dim(U)þ dim(U?) ¼ n.

" If U is a subspace of Rn, then each vector x 2 Rn can be written uniquely as

x ¼ uþ u?, where u 2 U and u? 2 U?.
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Appendix A

Determinants

Every linear transformation from one finite-dimensional vector space V back to

itself can be represented by a square matrix. Each matrix representation is basis

dependent, and, in general, a linear transformation will have a different matrix

representation for each basis in V. Some of these matrix representations may be

simpler than others. In this chapter, we begin the process of identifying bases

that generate simple matrix representations for linear transformations. This

search will focus on a special class of vectors known as eigenvectors and will

use some of the basic properties of determinants.

Every square matrix has associated with it a scalar called its determinant. Until

very recently, determinants were central to the study of linear algebra, the hub

around which much of the theory revolved. Determinants were used for calcu-

lating inverses, solving systems of simultaneous equations, and a host of other

applications. No more. In their place are other techniques, often based on

elementary row operations, which are more efficient and better adapted to

computers. The applications of determinants have been reduced to less than

a handful.

Determinants are defined in terms of permutations on positive integers. The

theory is arduous and, once completed, gives way to simpler methods for

calculating determinants. Because we make such limited use of determinants,

we will not develop its theory here, restricting ourselves instead to the standard

computational techniques.

Determinants are defined only for square matrices. Given a square matrix A, we

use det(A) or jAj to designate the determinant of A. If a matrix can be exhibited,

we designate its determinant by replacing the brackets with vertical straight lines.

For example, if

A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5 (A:1)
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then

det(A) ¼
1 2 3

4 5 6

7 8 9

������
������ (A:2)

We cannot overemphasize the fact that equations (A.1) and (A.2) represent

entirely different structures. Equation (A.1) is a matrix, a rectangular array of

elements, whereas equation (A.2) represents a scalar, a number associated with

the matrix in (A.1).

The determinant of a 1� 1 matrix [a] is defined as the scalar a. Thus,

the determinant of the matrix [5] is 5 and the determinant of the matrix

[� 3] is �3. The determinant of a 2� 2 matrix
a b

c d

� �
is defined as the scalar

ad – bc.

Example 1 det
1 2

4 3

� �
¼ 1 2

4 3

����
����¼ 1(3)� 2(4)¼ 3� 8¼�5, while det

2 �1

4 3

� �
¼

2 �1

4 3

����
����¼ 2(3)� (� 1)(4)¼ 6þ 4¼ 10: &

We could list separate rules for calculating determinants of 3� 3, 4� 4, and

higher order matrices, but this is unnecessary. Instead we develop a method

based on minors and cofactors that lets us reduce determinants of order n > 2 (if

A has order n� n, then det(A) is said to have order n) to a sum of determinants

of order 2.

A minor of a matrix A is the determinant of any square submatrix of A. A minor

is formed from a square matrix A by removing an equal number of rows and

columns from A and then taking the determinant of the resulting submatrix. In

particular, if

A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5

then
1 2

7 8

����
���� and

5 6

8 9

����
���� are both minors because the matrices

1 2

7 8

� �
and

5 6

8 9

� �
are both submatrices of A. In contrast,

1 2

8 9

����
���� and j1 2j

are not minors because
1 2

8 9

� �
is not a submatrix of A and [1 2], although a

submatrix of A, is not square.

The determinant of

a 1� 1 matrix [a] is

the scalar a; the

determinant of a

2� 2 matrix is the

product of its

diagonal terms less

the product of its

off-diagonal terms.

A minor of a matrix

A is the determinant

of any square

submatrix of A.
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If A ¼ [aij] is a square matrix, then the cofactor of the element aij is the scalar

obtained by multiplying (� 1)iþj with the minor obtained from A by removing

the jth row and jth column. In other words, to compute the cofactor of an

element aij in a matrix A, first form a submatrix of A by deleting from A both

the row and column in which the element aij appears, then calculate the deter-

minant of that submatrix, and finally multiply the determinant by the number

(� 1)iþj.

Example 2 To find the cofactor of the element 4 in the matrix

A ¼
1 2 3

4 5 6

7 8 9

2
4

3
5

we note that 4 appears in the second row and first column, hence i ¼ 2, j ¼ 1,

and (� 1)iþj ¼ (� 1)2þ1 ¼ (� 1)3 ¼ �1. The submatrix of A obtained by delet-

ing the second row and first column is

2 3

8 9

� �

which has a determinant equal to 2(9)� 3(8) ¼ �6. The cofactor of 4 is

(� 1)(� 6) ¼ 6.

The element 9 appears in the third row and third column of A, hence

i ¼ 3, j ¼ 3, and (� 1)iþj ¼ (� 1)3þ3 ¼ (� 1)6 ¼ 1. The submatrix of A

obtained by deleting the third row and third column is
1 2

4 5

� �
; which has a

determinant equal to 1(5)� 2(4) ¼ �3. The cofactor of 9 is (1)(� 3) ¼ �3. &

A cofactor is the product of a minor with the number (� 1)iþj. This number

(� 1)iþj is either þ1 or �1, depending on the values of i and j, and its effect is to

impart a plus or minus sign in front of the minor of interest. A useful schematic

for quickly evaluating (� 1)iþj is to use the sign in the i-jth position of the

patterned matrix:

þ � þ � þ
� þ � þ �
þ � þ � þ
� þ � þ �
þ � þ � þ

2
66664

3
77775

We now can find the determinant of any square matrix.

The cofactor of the

element aij in a

square matrix A is

the product of

(� 1)iþj with the

minor obtained

from A by deleting

its ith row and jth

column.
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Example 3 Find det (A) for A ¼
3 5 0

�1 2 1

3 �6 4

2
4

3
5:

Solution: We arbitrarily expand by the second column. Thus,

jAj ¼ 5 (cofactor of 5)þ 2 (cofactor of 2)þ (� 6) (cofactor of � 6)

¼ 5(� 1)1þ2 �1 1

3 4

����
����þ 2(� 1)2þ2 3 0

3 4

����
����þ (� 6)(� 1)3þ2 3 0

�1 1

����
����

¼ 5(� 1)(� 4� 3)þ 2(1)(12� 0)þ (� 6)(� 1)(3� 0)

¼ (� 5)(� 7)þ 2(12)þ 6(3) ¼ 77 &

Example 4 Redo Example 3 expanding by the first row.

Solution:

jAj ¼ 3(cofactor of 3)þ 5(cofactor of 2)þ 0(cofactor of 0)

¼ 3(� 1)1þ1 2 1

�6 4

����
����þ 5(� 1)1þ2 �1 1

3 4

����
����þ 0

¼ 3(1)(8þ 6)þ 5(� 1)(� 4� 3)þ 0

¼ 3(14)þ (� 5)(� 7) ¼ 77 &

Examples 3 and 4 illustrate two important properties of expansion by cofactors.

First, the value of a determinant is the same regardless of which row or column

selected and second, expanding by a row or column containing zeros signifi-

cantly reduces the number of computations.

Example 5 Find det(A) for A ¼

1 0 5 2

�1 4 1 0

3 0 4 1

�2 1 1 3

2
664

3
775:

Expanding by a row

or column

containing the most

zeros minimizes the

number of

computations

needed to evaluate a

determinant.

Expansion by Cofactors (to calculate the determinant of a square

matrix):

Step 1. Pick any one row or any one column of the matrix (dealer’s

choice).

Step 2. Calculate the cofactor of each element in the row or column

selected.

Step 3. Multiply each element in the selected row or column by its

cofactor and sum the results.
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Solution: The row or column containing the most zeros is, for this matrix, the

second column, so we expand by it.

jAj ¼ 0 (cofactor of 0)þ 4 (cofactor of 4)þ 0 (cofactor of zero)

þ 1 (cofactor of 1)

¼ 0þ 4(� 1)2þ2

1 5 2

3 4 1

�2 1 3

�������
�������þ 0þ 1(� 1)4þ2

1 5 2

�1 1 0

3 4 1

�������
�������

¼ 4

1 5 2

3 4 1

�2 1 3

�������
�������þ

1 5 2

�1 1 0

3 4 1

�������
�������

Using expansion of cofactors on each of these two determinants of order 3, we

calculate

1 5 2

3 4 1

�2 1 3

�������
������� ¼ 1(� 1)1þ1 4 1

1 3

����
����þ 5(� 1)1þ2 3 1

�2 3

����
����þ 2(� 1)1þ3 3 4

�2 1

����
����

¼ 11� 55þ 22 ¼ �22 (expanding by the first row)

and

1 5 2

�1 1 0

3 4 1

�������
������� ¼ 2 (� 1)1þ3 �1 1

3 4

����
����þ 0þ 1(� 1)3þ3 1 5

�1 1

����
����

¼ �14þ 6 ¼ �8 (expanding by the third column)

Consequently, jAj ¼ 4(� 22)þ 1(� 8) ¼ �96. &

With no zero entries, the determinant of a 3� 3 matrix requires 3 � 2 ¼ 3!
multiplications, a 4� 4 matrix requires 4 � 3 � 2 ¼ 4! multiplications, and an

n� n matrix requires n! multiplications. Note that 10! ¼ 3, 628, 000 and 13! is

over 1 billion, so the number of multiplications needed to evaluate a determinant

becomes prohibitive as the order of a matrix increases. Clearly, calculating

a determinant is a complicated and time-consuming process, one that is avoided

whenever possible.

Another complicated operation is matrix multiplication, which is why the follow-

ing result is so surprising. Its proof, however, is beyond the scope of this book.

" Theorem 1. If A and B are of the same order, then

det(AB) ¼ det(A)det(B): 3
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Example 6 Verify Theorem 1 for A ¼ 2 3

1 4

� �
and B ¼ 6 �1

7 4

� �
:

Solution: jAj ¼ 5 and jBj ¼ 31. Also AB ¼ 33 10

34 15

� �
, hence jABj ¼ 155 ¼

jAjjBj. &

Any two column matrices in R2 that do not lie on the same straight line form the

sides of a parallelogram, as illustrated in Figure A.1. Here the column matrices

u ¼ a1

a2

� �
and v ¼ b1

b2

� �
(A:3)

appear graphically as directed line segments with the tip of u falling on the point

A ¼ (a1, a2) in the x-y plane and the tip of v falling on the point B ¼ (b1, b2).

The parallelogram generated by these two vectors is OACB, where O denotes the

origin and C ¼ (a1 þ b1, a2 þ b2). To calculate the area of this parallelogram, we

note that

Area of parallelogram OACB

¼ area of triangle OPBþ area of trapezoid PRCB

� area of triangle OQA� area of trapezoid QRCA

¼ 1
2
b1b2 þ 1

2
a1(b2 þ a2 þ b2)� 1

2
a1a2 þ 1

2
b1(a2 þ a2 þ b2)

¼ a1b2 � a2b1 ¼
a1 b1

a2 b2

����
����

If we interchange the positions of the two columns in this last determinant,

a quick computation shows that the resulting determinant is the negative of the

area of the parallelogram. Because the area of the parallelogram is the same

regardless which vector in equation (A.3) is listed first and which second, we

avoid any concern about ordering by simply placing absolute values around the

determinant. Thus, we have proven:

Figure A.1 y

x
O QP

(b1, 0) (a1, 0)

A = (a1, a2)

B = (b1, b2)

(a1 + b1,0)

C = (a1 + b1, a2 + b2)

R
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" Theorem 2. If u ¼ [ a1 a2 ]Tand v ¼ [ b1 b2 ]Tare two column matri-

ces in R2, then the area of the parallelogram generated by u and v is

jdet[u v]j: 3

Example 7 The area of the parallelogram defined by the column matrices

u ¼ �4

4

� �
and v ¼ 6

2

� �
is det

�4 6

4 2

� �����
���� ¼ j � 32j ¼ 32 square units. These

column matrices and the parallelogram they generate are illustrated in

Figure A.2. &

Example 8 The area of the parallelogram defined by the column matrices

u ¼ �3

�1

� �
and v ¼ 6

2

� �
is det

�3 6

�1 2

� �����
���� ¼ j0j ¼ 0 square units.

These vectors are illustrated in Figure A.3. Because both vectors lie on the same

straight line, the parallelogram generated by these vectors collapses into the line

segment joining (�3, � 1) and (6, 2), which has zero area. &

A linear transformation T: R2 ! R2 maps two vectors u and v in the domain into

T(u) and T(v), respectively. Furthermore, the parallelogram generated by the two

column matrices in equation (A.3) is described by all linear combinations

Figure A.2

−2

−4

−6 −4 −2

(−4, 4)

(6, 2)

2

2

4

u
v

x

y

6

8

4 6 8 10

Figure A.3 y

x

(−3, −1)

(6, 2)

6

4

2

−2

−4

−4 −2

2 4 6 8
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w ¼ auþ bv when the real numbers a and b are restricted between 0 and 1.

Because T is linear, we have

T(w) ¼ T(auþ bv) ¼ aT(u)þ bT(v)

so the parallelogram defined by u and v is mapped into the parallelogram defined

by T(u) and T(v).

A linear transformation T: R2 ! R2 can be represented by a 2� 2 matrix

C ¼ c11 c12

c21 c22

� �

with respect to a given basis. If the coordinate representations for u and v given

by equation (A.3) are with respect to the same basis, then coordinate represen-

tations of T(u) and T(v) are

T(u) ¼ c11 c12

c21 c22

� �
a1

a2

� �
¼ c11a1 þ c12a2

c21a1 þ c22a2

� �

and

T(v) ¼ c11 c12

c21 c22

� �
b1

b2

� �
¼ c11b1 þ c12b2

c21b1 þ c22b2

� �

It follows from Theorems 1 and 2 that the area of a parallelogram generated by

T(u) and T(v) is

det
c11a1 þ c12a2 c11b1 þ c12b2

c21a1 þ c22a2 c21b1 þ c22b2

� �����
���� ¼ det

c11 c12

c21 c22

� �
a1 b1

a2 b2

� �� �����
����

¼ det
c11 c12

c21 c22

� �
det

a1 b1

a2 b2

� �����
����

¼ det
c11 c12

c21 c22

� �����
���� det

a1 b1

a2 b2

� �����
����

The first determinant of this product is det(C) while the absolute value of the

second determinant is the area of the parallelogram generated by u and v. Thus,

we have established the validity of Theorem 3.

" Theorem 3. Let C be a 2� 2 matrix representation for the linear trans-

formationT: R2 ! R2, and let P denote the parallelogram generated by

two vectors u and v in R2. Then T(P) is the parallelogram generated

by T(u) and T(v), and Area of T(P) ¼ jdet(C)j.Area of P: 3
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Example 9 Verify Theorem 3 for the vectors u ¼ [1 2]T, and v ¼ [2 1]T and the

linear transformation

T
a

b

� �
¼ 3a� 2b

a� 4b

� �

Solution: The area of the parallelogram P generated by u and v is

Area of P ¼ det
1 2

2 1

� �����
���� ¼ j � 3j ¼ 3

For transformation T,

T(u) ¼ T
1

2

� �
¼ �1

�7

� �
and T(v) ¼ T

2

1

� �
¼ 4

�2

� �

and the area of the parallelogram T(P) generated by these two vectors is (see

Figure A.4)

Area ofT(P) ¼ det
�1 4

�7 �2

� �����
���� ¼ j30j ¼ 30

A matrix representation for T with respect to the standard basis in R2 is

C ¼ 3 �2

1 �4

� �
with jdet(C)j ¼ j � 10j ¼ 10:

Thus, jdet(C)j �Area of P ¼ 10(3) ¼ 30 ¼ Area of T(P). &

Figure A.4

−2

−2

−4

−6

−10

(−1, −7)

(2, 1)

(4, −2)

(1, 2)

2

4

y

x
2 4 6 8
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Theorem 3 implies that every matrix representation of a linear transformation

T: R2 ! R2 has the same determinant, independent of the basis used to generate

a matrix. This is indeed the case as we will show directly in the Section.

Expansion by cofactors is often a tedious procedure for calculating determin-

ants, especially for matrices of large order. Triangular matrices, however, con-

tain many zeros and have determinants that are particularly easy to evaluate.

" Theorem 4. The determinant of an upper or lower triangular matrix is

the product of the elements on the main diagonal. 3

Proof: We shall prove the proposition for upper triangular matrices by

mathematical induction on the order of the determinant. The proof for lower

triangular matrices is nearly identical and is left as an exercise for the reader. We

first show that the proposition is true for all 1� 1 upper triangular matrices and

thenwe show that if the proposition is true for all (k� 1)� (k� 1) upper triangular

matrices, then it must also be true for all k� k upper triangular matrices.

A 1� 1 upper triangular matrix has the general form A ¼ [a11], containing

a single diagonal element. Its determinant is a11, which is the product of all

diagonal elements in A, thus the proposition is true for n ¼ 1.

We now assume that the proposition is true for all (k� 1)� (k� 1) upper

triangular matrices, and we use this assumption to prove the proposition for

all k� k upper triangular matrices A. Such a matrix has the general form

A ¼

a11 a12 a13 � � � a1, k�1 a1k

0 a22 a23 � � � a2, k�1 a2k

0 0 a33 � � � a3, k�1 a3k

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � 0 akk

2
666664

3
777775

Evaluating det(A) by expansion by cofactors using the cofactors of the elements

in the first column, the column containing the most zeros, we obtain

det (A) ¼ a11 � det (B) (A:4)

where

B ¼

a22 a23 � � � a2, k�1 a2k

0 a33 � � � a3, k�1 a3k

..

. ..
. ..

. ..
.

0 0 � � � 0 akk

2
6664

3
7775

Matrix B is an upper triangular matrix of order (k� 1)� (k� 1) so by the induc-

tion hypothesis its determinant is the product of its diagonal elements. Conse-

quently, det (B) ¼ a22a33 � � � akk, and (A.4) becomes det (A) ¼ a11a22a33 � � � akk,

Mathematical

Induction

If a proposition is

true for n ¼ 1 and

also if the

proposition is true

for n ¼ k whenever

it is assumed true

for n ¼ k� 1, then

the proposition is

true for all natural

numbers

n ¼ 1, 2, 3, . . ..
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which is the product of the diagonal elements of A. Thus, Theorem 1 is proved by

mathematical induction. &

Example 10

det

2 6 �4 1

0 5 7 �4

0 0 �5 8

0 0 0 3

2
664

3
775 ¼ 2(5)(� 5)(3) ¼ �150 &

Because diagonal matrices are both upper and lower triangular, the following

corollary is immediate.

" Corollary 1. The determinant of a diagonal matrix is the product of the

elements on its main diagonal. 3

Expansion by a row or column having many zeros simplifies the calculation of

a determinant; expansion by a zero row or zero column, when it exists, makes the

process trivial. Multiplying each zero element by its cofactor yields zero products

that when summed are still 0. We have, therefore, Theorem 2.

" Theorem 5. If a square matrix has a zero row or a zero column, then its

determinant is 0. 3

A useful property of determinants involves a square matrix and its transpose.

" Theorem 6. For any square matrix A, det(A) ¼ det(AT). 3

Proof: (by mathematical induction on the order of the determinant): A 1� 1

matrix has the general form A ¼ [a11]. Here A ¼ AT, hence jAj ¼ a11 ¼ jATj, and

the proposition is true for n ¼ 1.

We now assume that the proposition is true for all (k� 1)� (k� 1) matrices, and

we use this assumption to prove the proposition for all k� k matrices A. Such

a matrix has the general form

A ¼

a11 a12 a13 � � � a1k

a21 a22 a23 � � � a2k

a31 a32 a33 � � � a3k

..

. ..
. ..

. . .
. ..

.

ak1 ak2 ak3 � � � akk

2
666664

3
777775

Evaluating det(A) by expansion by cofactors using the first column, we obtain
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det (A) ¼ a11(� 1)1þ1 det

a22 a23 � � � a2k

a32 a33 � � � a3k

..

. ..
. . .

. ..
.

ak2 ak3 � � � akk

2
66664

3
77775

þ a21(� 1)2þ1 det

a12 a13 � � � a1k

a32 a33 � � � a3k

..

. ..
. . .

. ..
.

ak2 ak3 � � � akk

2
66664

3
77775

þ � � � þ ak1(� 1)kþ1 det

a12 a13 � � � a1k

a22 a23 � � � a2k

..

. ..
. . .

. ..
.

ak�1, 2 ak�1, 3 � � � ak�1, k

2
66664

3
77775

Each of the matrices on the right side of this last equality has order

(k� 1)� (k� 1) so by the induction hypothesis each of their determinants

equals, respectively, the determinants of their transposes. Consequently,

det (A) ¼ a11(� 1)1þ1 det

a22 a32 � � � ak2

a23 a33 � � � ak3

..

. ..
. . .

. ..
.

a2k a3k � � � akk

2
66664

3
77775

þ a21(� 1)1þ2 det

a12 a32 � � � ak2

a13 a33 � � � ak3

..

. ..
. . .

. ..
.

a1k a3k � � � akk

2
66664

3
77775

þ � � � þ ak1(� 1)1þk det

a12 a22 � � � ak�1, 2

a13 a23 � � � ak�1, 3

..

. ..
. . .

. ..
.

a1k a2k � � � ak�1, k

2
66664

3
77775

¼ det

a11 a21 a31 � � � ak1

a12 a22 a32 � � � ak2

a13 a23 a33 � � � ak3

..

. ..
. ..

. . .
. ..

.

a1k a2k a3k � � � akk

2
66666664

3
77777775
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where this last determinant is evaluated by expansion by cofactors using its first

row. Since this last matrix is AT, we have det (A) ¼ det (AT), and Theorem 6 is

proven by mathematical induction.

An elegant method for substantially reducing the number of arithmetic oper-

ations needed to evaluate determinants of matrices whose elements are all

constants is based on elementary row operations. For the sake of expediency,

we state the relevant properties and then demonstrate their validity for 3� 3

matrices.

" Theorem 7. If matrix B is obtained from a square matrix A by inter-

changing the position of two rows in A (the first elementary row oper-

ation), then jBj ¼ �jAj: 3

Demonstration of Validity: Consider

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 (A:5)

Expanding jAj by cofactors using its third row, we obtain

jAj ¼ a31(a12a23 � a13a22)� a32(a11a23 � a13a21)þ a33(a11a22 � a12a21)

Now consider the matrix B obtained from A by interchanging the positions of

the second and third rows of A:

B ¼
a11 a12 a13

a31 a32 a33

a21 a22 a23

2
4

3
5

Expanding jBj by cofactors using its second row, we obtain

jBj ¼ �a31(a12a23 � a13a22)þ a32(a11a23 � a13a21)� a33(a11a22 � a12a21)

Thus, jBj ¼ �jAj. Through similar reasoning, we can show that the result is valid

regardless of which two rows of A are interchanged. &

As an immediate consequence of Theorem 7, we have the following corollary:

" Corollary 2. If two rows of a square matrix are identical, then its

determinant is 0. 3

Proof: The matrix remains unaltered if the two identical rows are interchanged,

hence its determinant must remain constant. It follows from Theorem 7,
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however, that interchanging two rows of a matrix changes the sign of its deter-

minant. Thus, the determinant must, on the one hand, remain the same and, on

the other hand, change sign. The only way both conditions are met simultan-

eously is for the determinant to be 0. &

" Theorem 8. If matrix B is obtained from a square matrix A by multi-

plying every element in one row of A by the scalar l (the second

elementary row operation), then jBj ¼ ljAj. 3

Demonstration of Validity: Consider the matrix A given in (A.5) and construct B

from A by multiplying the first row of A by l. Then expanding jBj by cofactors

using its first row, we obtain

jBj ¼
la11 la12 la13

a21 a22 a23

a31 a32 a33

�������
������� ¼ la11

a22 a23

a32 a33

����
����� la12

a21 a23

a31 a33

����
����þ la13

a21 a22

a31 a32

����
����

¼ l a11

a22 a23

a32 a33

����
����� a12

a21 a23

a31 a33

����
����þ a13

a21 a22

a31 a32

����
����

� �

¼ l

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
������� ¼ ljAj

Through similar reasoning, we can show that the result is valid regardless of

which row of A is multiplied by l. &

Multiplying a scalar times a matrix multiplies every element of the matrix by that

scalar. In contrast, it follows from Theorem 8 that a scalar times a determinant is

equivalent to multiplying one row of the associated matrix by the scalar and then

evaluating the determinant of the resulting matrix. Thus,

det
8 16

3 4

� �
¼ 8 det

1 2

3 4

� �
¼ det

1 2

24 32

� �

while

det 8
1 2

3 4

� �� �
¼ det

8 16

24 32

� �
¼ 8 det

1 2

24 32

� �
¼ 8(8) det

1 2

3 4

� �

Therefore, as an immediate extension of Theorem 8, we have the next corollary.

" Corollary 3. If A is an n� n matrix and l a scalar, then

det(lA) ¼ ln det(A). 3
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Applying the first two elementary row operations to a matrix changes the

determinant of the matrix. Surprisingly, the third elementary row operation

has no effect on the determinant of a matrix.

" Theorem 9. If matrix B is obtained from a square matrix A by adding to

one row of A a scalar times another row of A (the third elementary row

operation), then jBj ¼ jAj. 3

Demonstration of Validity: Consider the matrix A given in (A.5) and construct B

from A by adding to the third row of A the scalar l times the first row of A. Thus,

B ¼
a11 a12 a13

a21 a22 a23

a31 þ la11 a32 þ la12 a33 þ la13

2
4

3
5

Expanding jBj by cofactors using its third row, we obtain

jBj ¼ (a31 þ la11)

a12 a13

a22 a23

������
������� (a32 þ la12)

a11 a13

a21 a23

������
������

¼ a31

a12 a13

a22 a23

������
������� a32

a11 a13

a21 a23

������
������þ a33

a11 a12

a21 a22

������
������

þ l a11

a12 a13

a22 a23

������
������� a12

a11 a13

a21 a23

������
������þ a13

a11 a12

a21 a22

������
������

8<
:

9=
;

The first three terms of this sum are exactly jAj (expand det(A) by its third row)

while the last three terms of the sum are

l

a11 a12 a13

a21 a22 a23

a11 a12 a13

������
������

(expand this determinant by its third row). Thus,

jBj ¼ jAj þ l

a11 a12 a13

a21 a22 a23

a11 a12 a13

������
������

It follows from Corollary 2 that this last determinant is 0 because its first and

third rows are identical, hence jBj ¼ jAj. &
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Example 11 Without expanding, use the properties of determinants to show

that

a b c

r s t

x y z

������
������ ¼

a� r b� s c� t

rþ 2x sþ 2y tþ 2z

x y z

������
������

Solution:

a b c

r s t

x y z

�������
������� ¼

a� r b� s c� t

r s t

x y z

�������
�������

Theorem 9: adding

to the first row� 1

times the second row

¼
a� r b� s c� t

rþ 2x sþ 2y tþ 2z

x y z

�������
�������

Theorem 9: adding

to the second row 2

times the third row

Pivotal condensation is an efficient algorithm for calculating the determinant of

a matrix whose elements are all constants. Elementary row operations are used

to transform a matrix to row-reduced form, because such a matrix is upper

triangular and its determinant is easy to evaluate using Theorem 4. A record is

kept of all the changes made to the determinant of a matrix while reducing the

matrix to row-reduced form. The product of these changes with the determinant

of the row-reduced matrix is the determinant of the original matrix.

Example 12 Use pivotal condensation to evaluate det

1 2 3

�2 3 2

3 �1 1

2
4

3
5.

Solution:

1 2 3

�2 3 2

3 �1 1

�������
������� ¼

1 2 3

0 7 8

3 �1 1

�������
�������

Theorem 9: adding

to the second row 2

times the first row

¼
1 2 3

0 7 8

0 �7 �8

�������
�������

Theorem 9: adding

to the third row� 3

times the first row

¼ 7

1 2 3

0 1 8=7

0 �7 �8

�������
�������

Theorem 8: applied

to the second row

Pivotal

Condensation

Transform a matrix

into row-reduced

form using

elementary row

operations, keeping

a record of the

changes made.

Evaluate the

determinant by

using Theorems 4, 7,

8, and 9.
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¼ 7

1 2 3

0 1 8=7

0 0 0

�������
�������

Theorem 9: adding

to the third row 7

times the second row

¼ 7(0) ¼ 0 Theorem 4

Example 13 Use pivotal condensation to evaluate det

0 �1 4

1 �5 1

�6 2 �3

2
4

3
5.

Solution:

0 �1 4

1 �5 1

�6 2 �3

�������
������� ¼ (� 1)

1 �5 1

0 �1 4

�6 2 �3

�������
�������

Theorem 7: interchanging

the first and second rows

¼ (� 1)

1 �5 1

0 �1 4

0 �28 3

�������
�������

Theorem 9: adding

to the third row 6

times the first row

¼ (� 1)(� 1)

1 5 1

0 1 �4

0 �28 3

�������
�������

Theorem 8: applied

to the second row

¼
1 �5 1

0 1 �4

0 0 �109

�������
�������

Theorem 9: adding

to the third row 28

times the second row

¼ (� 109)

1 �5 1

0 1 �4

0 0 1

�������
�������

Theorem 8: applied

to the third row

¼ (� 109)(1) ¼ �109 Theorem 4 &

It follows from Theorem 6 that any property about determinants dealing with

row operations is equally true for the analogous operations on columns, because

a row operation on the transpose of a matrix is the same as a column operation

on the matrix itself. Therefore, if two columns of a matrix are interchanged, its
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determinant changes sign; if two columns of a matrix are identical, its determin-

ant is 0; multiplying a determinant by a scalar is equivalent to multiplying one

column of the matrix by that scalar and then evaluating the new determinant;

and the third elementary column operation when applied to a matrix does not

change the determinant of the matrix.

We have from Theorem 6 of Section 2.6 that a square matrix has an inverse if

and only if the matrix can be transformed by elementary row operations to row-

reduced form with all ones on its main diagonal. Using pivotal condensation, we

also have that a matrix can be transformed by elementary row operations to row-

reduced form with all ones on its main diagonal if and only if its determinant is

nonzero. Thus, we have Theorem 10.

" Theorem 10. A square matrix has an inverse if and only if its determin-

ant is nonzero. 3

The matrix given in Example 12 does not have an inverse because its determinant

is 0, while the matrix given in Example 4 is invertible because its determinant is

nonzero. Inverses, when they exist, are obtained by the method developed in

Section 2.3. Techniques also exist for finding inverses using determinants, but

they are far less efficient and rarely used in practice.

If a determinant of a matrix is nonzero, then its determinant and that of its

inverse are related.

" Theorem 11. If a matrix A is invertible, then det(A�1) ¼ 1=det(A). 3

Proof: If A is invertible, then det (A) 6¼ 0 and AA�1 ¼ I. Therefore,

det (AA�1) ¼ det (I)

det (AA�1) ¼ 1

det (A) � det (A�1) ¼ 1

det (A�1) ¼ 1= det (A) &

" Theorem 12. Similar matrices have the same determinant. 3

Proof: If A and B are similar matrices, then there exists an invertible matrix P

such that A ¼ P�1BP. It follows from Theorem 1 and Theorem 11 that

det (A) ¼ det (P�1BP) ¼ det (P�1) det (B) det (P)

¼ [1= det (P)] det (B) det (P) ¼ det (B) &

Any property about

determinants

dealing with row

operations is equally

true for the

analogous

operations on

columns.
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Problems Appendix A

In Problems 1 through 31, find the determinants of the given matrices.

(1)
3 4

5 6

� �
: (2)

3 �4

5 6

� �
: (3)

3 4

�5 6

� �
:

(4)
5 6

7 8

� �
: (5)

5 6

�7 8

� �
: (6)

5 6

7 �8

� �
:

(7)
1 �1

2 7

� �
: (8)

�2 �3

�4 4

� �
: (9)

3 �1

�3 8

� �
:

(10)

1 2 �2

0 2 3

0 0 �3

2
4

3
5: (11)

3 2 �2

1 0 4

2 0 �3

2
4

3
5: (12)

1 �2 �2

7 3 �3

0 0 0

2
4

3
5:

(13)

2 0 �1

1 1 1

3 2 �3

2
4

3
5: (14)

3 5 2

�1 0 4

�2 2 7

2
4

3
5: (15)

1 �3 �3

2 8 3

4 5 0

2
4

3
5:

(16)

2 1 �9

3 �1 1

3 �1 2

2
4

3
5: (17)

�1 3 3

1 1 4

�1 1 2

2
4

3
5: (18)

1 �3 �3

2 8 4

3 5 1

2
4

3
5:

(19)

2 1 3

3 �1 2

2 3 5

2
4

3
5: (20)

�1 3 3

4 5 6

�1 3 3

2
4

3
5: (21)

1 2 �3

5 5 1

2 �5 �1

2
4

3
5:

(22)

�4 0 0

2 �1 0

3 1 �2

2
4

3
5: (23)

1 3 2

�1 4 1

5 3 8

2
4

3
5: (24)

3 �2 0

1 1 2

�3 4 1

2
4

3
5:

(25)

�4 0 0 0

1 �5 0 0

2 1 �2 0

3 1 �2 1

2
664

3
775: (26)

�1 2 1 2

1 0 3 �1

2 2 �1 1

2 0 �3 2

2
664

3
775:

(27)

1 1 2 �2

1 5 2 �1

�2 �2 1 3

�3 4 �1 8

2
664

3
775: (28)

�1 3 2 �2

1 �5 �4 6

3 �6 1 1

3 �4 3 �3

2
664

3
775:
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(29)

1 1 0 �2

1 5 0 �1

�2 �2 0 3

�3 4 0 8

2
664

3
775: (30)

1 2 1 �1

4 0 3 0

1 1 0 5

2 �2 1 1

2
664

3
775:

(31)

11 1 0 9 0

2 1 1 0 0

4 �1 1 0 0

3 2 2 1 0

0 0 1 2 0

2
66664

3
77775:

(32) Find t so that
t 2t

1 t

����
���� ¼ 0:

(33) Find t so that
t� 2 t

3 tþ 2

����
���� ¼ 0:

(34) Find l so that
4� l 2

�1 1� l

����
���� ¼ 0:

(35) Find l so that
1� l 5

1 �1� l

����
���� ¼ 0:

In Problems 36 through 43, find det(A – lI) when A is:

(36) The matrix defined in Problem 1.

(37) The matrix defined in Problem 2.

(38) The matrix defined in Problem 4.

(39) The matrix defined in Problem 7.

(40) The matrix defined in Problem 11.

(41) The matrix defined in Problem 12.

(42) The matrix defined in Problem 13.

(43) The matrix defined in Problem 14.

(44) Verify Theorem 1 for A ¼ 6 1

1 2

� �
and B ¼ 3 �1

2 1

� �
.

(45) Find the area of the parallelogram generated by the vectors [�1 3 ]T and

[ 2 �3 ]T.

(46) Find the area of the parallelogram generated by the vectors [ 1 �5 ]T and

[�4 �4 ]T.
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(47) Find the area of the parallelogram generated by the vectors [ 2 4 ]T and

[ 3 �8 ]T.

(48) Verify Theorem 3 for the two vectors given in Problem 45 and the matrix in

Problem 1, assuming that all representations are with respect to the standard

basis.

(49) Verify Theorem 3 for the two vectors given in Problem 45 and the matrix in

Problem 2, assuming that all representations are with respect to the standard

basis.

(50) Verify Theorem 3 for the two vectors given in Problem 46 and the matrix in

Problem 2, assuming that all representations are with respect to the standard

basis.

(51) An extension of Theorem 2 to R3 states that the volume of parallelpiped

generated by three column matrices u1, u2, and u3 in R3 is jdet[ u1 u2 u3 ]j.
Find the volumes of the parallelepipeds defined by the vectors:

(a) [ 1 2 1 ]T, [ 2 �1 0 ]T, [ 2 1 1 ]T.

(b) [ 1 2 3 ]T, [ 3 2 1 ]T, [ 1 1 1 ]T.

(c) [ 1 0 1 ]T, [ 2 1 1 ]T, [ 4 3 1 ]T.

(52) Use Problem 51 to show that the determinant of a 3� 3 matrix with linearly

dependent columns must be 0.

(53) What can be said about the determinant of an upper triangular matrix? A

lower triangular matrix?

(54) What can be said about the determinant of a matrix containing a zero row? A

zero column?

In Problems 55 through 72, find the determinants of the given matrices using

pivotal condensation.

(55)

1 2 �2

1 3 3

2 5 0

2
4

3
5. (56)

1 2 3

4 5 6

7 8 9

2
4

3
5. (57)

3 �4 2

�1 5 7

1 9 �6

2
4

3
5.

(58)

�1 3 3

1 1 4

�1 1 2

2
4

3
5. (59)

1 �3 �3

2 8 4

3 5 1

2
4

3
5. (60)

2 1 �9

3 �1 1

3 �1 2

2
4

3
5.

(61)

2 1 3

3 �1 2

2 3 5

2
4

3
5. (62)

�1 3 3

4 5 6

�1 3 3

2
4

3
5. (63)

1 2 �3

5 5 1

2 �5 �1

2
4

3
5.

(64)

2 0 �1

1 1 1

3 2 �3

2
4

3
5. (65)

3 5 2

�1 0 4

�2 2 7

2
4

3
5. (66)

1 �3 �3

2 8 3

4 5 0

2
4

3
5.

(67)

3 5 4 6

�2 1 0 7

�5 4 7 2

8 �3 1 1

2
664

3
775. (68)

�1 2 1 2

1 0 3 �1

2 2 �1 1

2 0 �3 2

2
664

3
775.
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(69)

1 1 2 �2

1 5 2 �1

�2 �2 1 3

�3 4 �1 8

2
664

3
775. (70)

�1 3 2 �2

1 �5 �4 6

3 �6 1 1

3 �4 3 �3

2
664

3
775.

(71)

1 1 0 �2

1 5 0 �1

�2 �2 0 3

�3 4 0 8

2
664

3
775. (72)

�2 0 1 3

4 0 2 �2

�3 1 0 1

5 4 1 7

2
664

3
775.

In Problems 73 through 79, use the properties of determinants to prove the stated

identities.

(73)

a b c

r s t

x y z

������
������ ¼ � 1

4

2a 4b 2c

�r �2s �t

x 2y z

������
������.

(74)

a� 3x b� 3y c� 3z

aþ 5x bþ 5y cþ 5z

x y z

������
������ ¼ 0.

(75)

2a 3a c

2r 3r t

2x 3x z

������
������ ¼ 0.

(76)

a b c

r s t

x y z

������
������ ¼

a x r

b y s

c z t

������
������.

(77)

a r x

b s y

c t z

������
������ ¼

aþ x r� x x

bþ y s� y y

cþ z t� z z

������
������.

(78) �12

a r x

b s y

c t z

������
������ ¼

2a 3r x

4b 6s 2y

�2c �3t �z

������
������.

(79) 5

a r x

b s y

c t z

������
������ ¼

a� 3b r� 3s x� 3y

b� 2c s� 2t y� 2z

5c 5t 5z

������
������.

(80) Verify Theorem 6 directly for the matrices in Problems 55 through 58.
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(81) Verify Corollary 3 directly for l ¼ 3 and A ¼ 1 3

�3 4

� �
.

(82) Verify Corollary 3 directly for l ¼ �2 and A ¼ 2 3

�3 �2

� �
.

(83) Verify Corollary 3 directly for l ¼ �1 and A given by the matrix in Problem 1.

(84) Prove that if one row of a square matrix is a linear combination of another row,

then the determinant of the matrix must be 0.

(85) Prove that if the determinant of an n� n matrix is 0, then the rank of that matrix

must be less than n.

(86) Prove that if A and B are square matrices of the same order, then AB is nonsingular

if and only if both A and B are nonsingular.

In Problems 87 through 96, prove the given propositions using mathematical induction.

First show proposition is true for k ¼ 1. Then show proposition is true for k ¼ nþ 1

assuming proposition is true for k ¼ n.

(87) 1þ 2þ � � � þ n ¼ n(nþ 1)=2.

(88) 1þ 3þ 5þ � � � þ (2n� 1) ¼ n2.

(89) 12 þ 22 þ � � � þ n2 ¼ n(nþ 1)(2nþ 1)=6.

(90) 13 þ 23 þ � � � þ n3 ¼ n2(nþ 1)2=4.

(91) 12 þ 32 þ 52 þ � � � þ (2n� 1)2 ¼ n(4n2 � 1)=3.

(92)
Pn
k¼1

(3k2 � k) ¼ n2(nþ 1).

(93)
Pn
k¼1

1
k(kþ1)

¼ n
(nþ1)

.

(94)
Pn
k¼1

2k�1 ¼ 2n � 1.

(95) For any real number x 6¼ 1,
Pn
k¼1

xk�1 ¼ xn�1
x�1

.

(96) 7n þ 2 is a multiple of 3.
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Appendix B

Jordan Canonical Forms

In Chapter 4, we began identifying bases that generate simple matrix

representations for linear transformations of the form T: V! V, when V is an

n-dimensional vector space. Every basis for V contains n-vectors, and every

matrix representation of T has order n� n. We concluded (see Section 4.3) that

T may be represented by a diagonal matrix if and only if T possesses n linearly

independent eigenvectors.

Eigenvectors for a linear transformation T are found by first producing a matrix

representation for T, generally the matrix with respect to a standard basis, and

then calculating the eigenvectors of that matrix. Let A denote a matrix represen-

tation of T. Eigenvectors of A are coordinate representations for the eigenvectors

of T. If A has n linearly independent eigenvectors, then so too does T, and T can

be represented by a diagonal matrix that is similar to A. If A does not have

n linearly independent eigenvectors, then neither does T, and T does not

have a diagonal matrix representation.

In this appendix, we focus on identifying simple matrix representations for all

linear transformations from a finite-dimensional vector space back to itself. We

classify a matrix representation as simple if it contains many zeros. The more

zeros, the simpler the matrix. By this criterion, the simplest matrix is the zero

matrix. The zero matrix represents the zero transformation 0, having the prop-

erty 0(v) ¼ 0 for every vector v 2 V. The next simplest class of matrices is

diagonal matrices, because they have zeros for all elements not on the main

diagonal. These matrices represent linear transformations having sufficiently

many linearly independent eigenvectors. The elements on the main diagonal

are the eigenvalues.

Another simple class of matrices are block diagonal matrices having the

partitioned form

The more zeros

a matrix has, the

simpler it is

as a matrix

representation for

a linear

transformation.
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A ¼

A1 0
A2

. .
.

0 Ak

2
6666664

3
7777775 (B:1)

We will show that every linear transformation from a finite-dimensional vector

space V back to itself can be represented by a matrix in block diagonal form. To

do so, we must develop the concepts of direct sums and invariant subspaces.

Direct sums were introduced in Section 5.5. A vector space V is the direct sum of

two subspaces U and W, written V ¼ U�W, if each vector in V can be written

uniquely as the sum of a vector in U and a vector in W. We know from our work

in the last chapter that if V is an inner product space and if U is any subspace of

V, then V ¼ U� U?. However, there are many other direct sums available to us.

" Theorem 1. Let M and N be subspaces of a finite dimensional vector

space V, with B being a basis for M and C being a basis for N.

V ¼M�N if and only if B [ C is a basis for V. 3

Proof: Assume that V ¼M�N. If x 2 V, then x can be written uniquely as the

sum yþ z with y 2M and z 2 N. Let B ¼ {m1, m2, . . . , mr}. Since B is a basis

for M, there exist scalars c1, c2, . . . cr such that

y ¼ c1m1 þ c2m2 þ . . . þ crmr (B:2)

Let C ¼ {n1, n2, . . . , ns}. Since C is a basis for N, there exist scalars and

d1, d2, . . . , ds such that

z ¼ d1n1 þ d2n2 þ . . . þ dsns (B:3)

Therefore,

x ¼ yþ z ¼ c1m1 þ c2m2 þ . . . þ crmr þ d1n1 þ d2n2 þ . . . þ dsns (B:4)

and B [ C is a spanning set for V.

To show that B [ C is a linearly independent set of vectors, we consider the

vector equation

0 ¼ (c1m1 þ c2m2 þ . . . þ crmr)þ (d1n1 þ d2n2 þ . . . þ dsns)

Clearly,

0 ¼ (0m1 þ 0m2 þ . . . þ 0mr)þ (0n1 þ 0n2 þ . . . þ 0ns)
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The last two equations are two representations of the vector 0 as the sum

of a vector in M (the terms in the first set of parentheses of each equation) and

a vector in N (the terms in the second set of parentheses of each equation). Since

V ¼M�N, the zero vector can only be represented one way as a vector in M

with a vector in N, so it must be the case that cj ¼ 0 for j ¼ 1, 2, . . . , r and

dk ¼ 0 for k ¼ 1, 2, . . . , s. Thus, B [ C is a linearly independent set of vectors.

A linearly independent spanning set of vectors is a basis, hence B [ C is a basis

for V.

Conversely, assume that B [ C is a basis for V. If x 2 V, then there exists a unique

set of scalars c1, c2, . . . , cr and d1, d2, . . . , ds such that equation (B.4) is

satisfied. If we now use equations (B.2) and (B.3) to define y and z, we have

x written uniquely as the sum of a vector y 2M and a vector z 2 N. Therefore,

V ¼M�N : &

Example 1 D ¼ x1 ¼

1

1

0

0

2
664
3
775, x2 ¼

5

2

0

0

2
664
3
775, x3 ¼

1

0

�1

2

2
664

3
775, x4 ¼

�1

0

1

3

2
664

3
775

8>><
>>:

9>>=
>>;

is a basis for R4. If we set B ¼ {x1, x2}, C ¼ {x3, x4}, M ¼ span{B}, and

N ¼ span{C}, then it follows from Theorem 1 that R4 ¼M�N. Alternatively,

if we set Q ¼ span{x2, x3} and S ¼ span{x1, x4}, then R4 ¼ Q� S. Still a third

possibility is to set U ¼ span{x1, x2, x3} and W ¼ span{x4}, in which case

R4 ¼ U�W: &

A subspace U of an n-dimensional vector space V is invariant under a linear

transformation T: V! V if T(u) 2 U whenever u 2 U. That is, T maps vectors

in U back into vectors in U.

Example 2 The subspace ker{T} is invariant under T because T maps every

vector in the kernel into the zero vector, which is itself in the kernel. The

subspace Im(T) is invariant under T because T(u) 2 Im(T) for every vector in

V, including those in Im(T). If x is an eigenvector of T corresponding to the

eigenvalue l, then span{x} is invariant under T; if u 2 span{x}, then u ¼ ax, for

some choice of the scalar a, and

T(u) ¼ T(ax) ¼ aT(x) ¼ a(lx) ¼ (al)x 2 span{x}: &

" Theorem 2. Let B ¼ {u1, u2, . . . , u m} be basis for a subspace U of an

n-dimensional vector space V. U is an invariant subspace under the linear

transformation T: V! V if and only if T(uj) 2 U for

j ¼ 1, 2, . . . , m. 3

Proof: If U is an invariant subspace under T, then T(u) 2 U for every vector

u 2 U. Since the basis vectors uj(j ¼ 1, 2, . . . , m) are vectors in U, it follows

A subspace U is

invariant under a

linear trans-

formation

T if T(u) 2 U

whenever u 2 U.
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that T(uj) 2 U. Conversely, if u 2 U, then there exist scalars c1, c2, . . . , cm such

that

u ¼ c1u1 þ c2u2 þ . . .þ cmum

Now

T(u) ¼ T(c1u1 þ c2u2 þ . . .þ cmum)

¼ c1T(u1)þ c2T(u2)þ . . .þ cmT(um)

Thus, T(u) is a linear combination of the vectors T(uj) for j ¼ 1, 2, . . . , m.

Since each vector T(uj) 2 U, it follows that T(u) 2 U and that U in invariant

under T.

Example 3 Determine whether the subspace

M ¼ span

1

1

0

0

2
664
3
775,

5

2

0

0

2
664
3
775

8>><
>>:

9>>=
>>; is invariant under T

a

b

c

d

2
664

3
775 ¼

aþ b� d

b

cþ d

d

2
664

3
775:

Solution: The two vectors that span M are linearly independent and, therefore,

are a basis for M. Here

T

1

1

0

0

2
664
3
775 ¼

2

1

0

0

2
664
3
775 ¼ 1

3

� � 1

1

0

0

2
664
3
775þ 1

3

� � 5

2

0

0

2
664
3
775 2M

T

5

2

0

0

2
664
3
775 ¼

7

2

0

0

2
664
3
775 ¼ � 4

3

� � 1

1

0

0

2
664
3
775þ 5

3

� � 5

2

0

0

2
664
3
775 2M

It follows from Theorem 2 that M is an invariant subspace of R4 under T. &

Example 4 Determine whether the subspace

N ¼ span

1

0

�1

2

2
664

3
775,

�1

0

1

3

2
664

3
775

8>><
>>:

9>>=
>>;is invariant under the linear transformation defined

in Example 3.

Solution: The two vectors that span N are linearly independent and, therefore,

are a basis for N. Here
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T

1

0

�1

2

2
664

3
775 ¼

�1

0

1

2

2
664

3
775 ¼ � 1

5

� � 1

0

�1

2

2
664

3
775þ 4

5

� � �1

0

1

3

2
664

3
775 2 N

T

�1

0

1

3

2
664

3
775 ¼

�4

0

4

3

2
664

3
775 ¼ � 9

5

� � 1

0

�1

2

2
664

3
775þ 11

5

� � �1

0

1

3

2
664

3
775 2 N

It follows from Theorem 2 that N is an invariant subspace of R4 under T. &

The next result establishes a link between direct sums of invariant subspaces and

matrix representations in block diagonal form.

" Theorem 3. If M and N are invariant subspaces of a finite-dimensional

vector space V with V ¼M�N, and if T: V! V is linear, then T has

a matrix representation of the form

A ¼ B 0

0 C

� �

where B and C are square matrices having as many rows (and columns)

as the dimensions of M and N, respectively. 3

Proof: Let B ¼ {m1, m2, . . . , mr} be a basis for M and let

C ¼ {n1, n2, . . . , ns} be a basis for N. Then, because V is the direct sum of M

and N, it follows that

D ¼ B [ C ¼ {m1, m2, . . . , mr, n1, n2, . . . , ns}

is a basis for V (see Theorem 1). M is given to be an invariant subspace of T, so all

vectors in M, in particular the basis vectors themselves, map into vectors in M.

Every vector in M can be written uniquely as a linear combination of the basis

vectors for M. Thus, for jth basis vector in M( j ¼ 1, 2, . . . , r), we have

T(mj) ¼ b1jm1 þ b2jm2 þ . . .þ brjmr

¼ b1jm1 þ b2jm2 þ . . .þ brjmr þ 0n1 þ 0n2 þ . . .þ 0ns

for some choice of the scalars b1j, b2j , . . . , brj :T(mj) has the coordinate

representation

T(mj)$ [b1jb2j . . . brj00 . . . 0]T:
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Similarly, N is an invariant subspace of T, so all vectors in N, in particular the

basis vectors themselves, map into vectors in N. Every vector in N can be written

uniquely as a linear combination of the basis vectors for N. Thus, for kth basis

vector in N(k ¼ 1, 2, . . . , s), we have

T(nk) ¼ c1k n1 þ c2k n2 þ . . .þ csk ns

¼ 0m1 þ 0m2 ¼ . . .þ 0mr þ c1k n1 þ c2k n2 þ . . .þ csk ns

for some choice of the scalars c1k, c2k, . . . , csk: T(nk) has the coordinate repre-

sentation

T(nk)$ [0 0 . . . 0 c1k c2k . . . csk]
T

These coordinate representations for T(mj) ( j ¼ 1, 2, . . . , r) and T(nk)

(k ¼ 1, 2, . . . , s) become columns of the matrix representation for T with

respect to the D basis. That is,

T $ AD
D ¼

b11 b12 b1r 0 0 0

b21 b22 b2r 0 0 0

br1 br2 brr 0 0 0

0 0 0 c11 c12 c1s

0 0 0 c21 c22 c2s

0 0 0 cs1 cs2 css

2
6666664

3
7777775

which is the form claimed in Theorem 3. &

Example 5 We showed in Example 1 that R4 ¼M�N when

M ¼ span

1

1

0

0

2
664
3
775,

5

2

0

0

2
664
3
775

8>><
>>:

9>>=
>>; and N ¼ span

1

0

�1

2

2
664

3
775,

�1

0

1

3

2
664

3
775

8>><
>>:

9>>=
>>;

We established in Examples 3 and 4 that both M and N are invariant subspaces

under

T

a

b

c

d

2
664

3
775 ¼

aþ b� d

b

cþ d

d

2
664

3
775
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It now follows from Theorem 3 and its proof that T has a matrix representation

in block diagonal form with respect to the basis

D ¼

1

1

0

0

2
664
3
775,

5

2

0

0

2
664
3
775,

1

0

�1

2

2
664

3
775,

�1

0

1

3

2
664

3
775

8>><
>>:

9>>=
>>;

for R4. Here,

T

1

1

0

0

2
664
3
775 ¼

2

1

0

0

2
664
3
775 ¼ 1

3

� � 1

1

0

0

2
664
3
775þ 1

3

� � 5

2

0

0

2
664
3
775þ (0)

1

0

�1

2

2
664

3
775þ (0)

�1

0

1

3

2
664

3
775$

1=3
1=3
0

0

2
664

3
775

D

T

5

2

0

0

2
664
3
775 ¼

7

2

0

0

2
664
3
775 ¼ � 4

3

� � 1

1

0

0

2
664
3
775þ 5

3

� � 5

2

0

0

2
664
3
775þ (0)

1

0

�1

2

2
664

3
775þ (0)

�1

0

1

3

2
664

3
775$

�4=3
5=3
0

0

2
664

3
775

D

T

1

0

�1

2

2
664

3
775 ¼

�1

0

1

2

2
664

3
775 ¼ (0)

1

1

0

0

2
664
3
775þ (0)

5

2

0

0

2
664
3
775þ � 1

5

� � 1

0

�1

2

2
664

3
775þ 4

5

� � �1

0

1

3

2
664

3
775$

0

0

�1=5
4=5

2
664

3
775

D

T

�1

0

1

3

2
664

3
775 ¼

�4

0

4

3

2
664

3
775 ¼ (0)

1

1

0

0

2
664
3
775þ (0)

5

2

0

0

2
664
3
775þ � 9

5

� � 1

0

�1

2

2
664

3
775þ 11

5

� � �1

0

1

3

2
664

3
775$

0

0

�9=5
11=5

2
664

3
775

D

The matrix representation of T with respect to the D basis is

AD
D ¼

1=3 �4=3 0 0

1=3 5=3 0 0

0 0 �1=5 �9=5
0 0 4=5 11=5

2
664

3
775 &

Theorem 3 deals with two invariant subspaces, but that result is easily general-

ized to any finite number of subspaces. If M1, M2, . . . , Mk are invariant sub-

spaces of a linear transformation T: V! V with V ¼M1 �M2 � . . .�Mk, then

the union of bases for each subspace is a basis for V. A matrix representation of

T with respect to this basis for V has the block diagonal form displayed in
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equation (B.1). Thus, the key to developing block diagonal matrix representa-

tions for linear transformations is to identify invariant subspaces.

The span of any set of eigenvectors of a linear transformation generates an

invariant subspace for that transformation (see Problem 35), but there may not

be enough linearly independent eigenvectors to form a basis for the entire vector

space. A vector xm is a generalized eigenvector of type m for the linear trans-

formation T corresponding to the eigenvalue l if

(T � lI)m(xm) ¼ 0 and (T � lI)m�1(xm) 6¼ 0 (B:5)

As was the case with eigenvectors, it is often easier to find generalized eigenvec-

tors for a matrix representation for a linear transformation than for the linear

transformations, per se. A vector xm is a generalized eigenvector of type m

corresponding to the eigenvalue l for the matrix A if

(A� lI)mxm ¼ 0 and (A� lI)m�1xm 6¼ 0 (B:6)

Example 6 x3 ¼ [0 0 1]T is a generalized eigenvector of type 3 corresponding to

l ¼ 2 for

A ¼
2 1 �1

0 2 1

0 0 2

2
4

3
5

because

(A� 2I)3x3 ¼
0 0 0

0 0 0

0 0 0

2
4

3
5 0

0

1

2
4
3
5 ¼ 0

0

0

2
4
3
5

while

(A� 2I)2x3 ¼
0 0 1

0 0 0

0 0 0

2
4

3
5 0

0

1

2
4
3
5 ¼ 1

0

0

2
4
3
5 6¼ 0

Also, x2 ¼ [� 1 1 0]T is a generalized eigenvector of type 2 corresponding to

l ¼ 2 for this same matrix because

(A� 2I)2x2 ¼
0 0 1

0 0 0

0 0 0

2
4

3
5 �1

1

0

2
4

3
5 ¼ 0

0

0

2
4
3
5

A vector xm is a

generalized

eigenvector of type

m corresponding to

the eigenvalue l

for the matrix A if

(A� lI)m(xm) ¼ 0

and (A� lI)m�1

(xm) 6¼ 0.
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while

(A� 2I)1x2 ¼
0 1 �1

0 0 1

0 0 0

2
4

3
5 �1

1

0

2
4

3
5 ¼ 1

0

0

2
4
3
5 6¼ 0

Furthermore, x1 ¼ [1 0 0]T is a generalized eigenvector of type 1 corresponding

to l ¼ 2 for A because (A� 2I)1x1 ¼ 0 but (A� 2I)0x1 ¼ Ix1 ¼ x1 6¼ 0: &

Example 7 It is known, and we shall see why later, that the matrix

A ¼

5 1 �2 4

0 5 2 2

0 0 5 3

0 0 0 4

2
664

3
775

has a generalized eigenvector of type 3 corresponding to l ¼ 5. Find it.

Solution: We seek a vector x3 such that

(A� 5I)3x3 ¼ 0 and (A� 5I)2x3 6¼ 0

Set x3 ¼ [w x y z]T. Then

(A� 5I)3x3 ¼

0 0 0 14

0 0 0 �4

0 0 0 3

0 0 0 �1

2
664

3
775

w

x

y

z

2
664

3
775 ¼

14z

�4z

3z

z

2
664

3
775

(A� 5I)2x3 ¼

0 0 2 �8

0 0 0 4

0 0 0 �3

0 0 0 1

2
664

3
775

w

x

y

z

2
664

3
775 ¼

2y� 8z

4z

�3z

z

2
664

3
775

To satisfy the condition (A� 5I)3x3 ¼ 0, we must have z ¼ 0. To satisfy the

condition (A� 5I)2x3 6¼ 0, with z ¼ 0, we must have y 6¼ 0. No restrictions are

placed on w and x. By choosing w ¼ x ¼ z ¼ 0, y ¼ 1, we obtain x3 ¼ [0 0 1 0]T

as a generalized eigenvector of type 3 corresponding to l ¼ 5. There are infinitely

many other generalized eigenvector of type 3, each obtained by selecting other

values for w, x, and y (y 6¼ 0) with z ¼ 0. In particular, the values

w ¼ �1, x ¼ 2, y ¼ 15, z ¼ 0 lead to x3 ¼ [� 1 2 15 0]T. Our first choice,

however, is the simplest. &

Jordan Canonical Forms . 385



Generalized eigenvectors are the building blocks for invariant subspaces. Each

generalized eigenvector propagates a chain of vectors that serves as a basis for an

invariant subspace. The chain propagated by xm, a generalized eigenvector of

type m corresponding to the eigenvalue l for A, is the set of vectors

{xm, xm�1, . . . , x1} given by

xm�1 ¼ (A� lI)xm

xm�2 ¼ (A� lI)2xm ¼ (A� lI)xm�1

xm�3 ¼ (A� lI)3xm ¼ (A� lI)xm�2

..

.

x1 ¼ (A� lI)m�1xm ¼ (A� lI)x2

(B:7)

In general, for j ¼ 1, 2, . . . , m� 1,

xj ¼ (A� lI)m�jxm ¼ (A� lI)xjþ1 (B:8)

" Theorem 4. The jth vector in a chain, xj, as defined by equation (B.8), is

a generalized eigenvector of type j corresponding to the same matrix and

eigenvalue associated with the generalized eigenvector of type m that

propagated the chain. 3

Proof: Let xm be a generalized eigenvector of type m for a matrix A with

eigenvalue l. Then, (A� lI)mxm ¼ 0 and (A� lI)m�1xm 6¼ 0. Using equation

(B.8), we conclude that

(A� lI ) jxj ¼ (A� lI) j [(A� lI)m�jxm] ¼ (A� lI)mxm ¼ 0

and

(A� lI) j�1xj ¼ (A� lI) j�1[(A� lI)m�jxm] ¼ (A� lI)m�1xm 6¼ 0

Thus, xj is a generalized eigenvector of type j corresponding to the eigenvalue l

for A. &

It follows from Theorem 4 that once we have a generalized eigenvector of type m,

for any positive integer m, we can use equation (B.8) to produce other general-

ized eigenvectors of type less than m.

Example 8 In Example 7, we showed that x3 ¼ [0 0 1 0]T is a generalized

eigenvector of type 3 for

A ¼

5 1 �2 4

0 5 2 2

0 0 5 3

0 0 0 4

2
664

3
775

The chain

propagated by xm,

a generalized

eigenvector of type

m corresponding to

the eigenvalue l for

a matrix A, is the set

of vectors

{xm, xm�1, . . . ,
x1} defined

sequentially by

xj ¼ (A� lI)xjþ1

for j ¼ 1, 2, . . . ,
m� 1.
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corresponding to l ¼ 5. Using Theorem 4, we now can state that

(A� 5I)x3 ¼

0 1 �2 4

0 0 2 2

0 0 0 3

0 0 0 �1

2
664

3
775

0

0

1

0

2
664
3
775 ¼

�2

2

0

0

2
664

3
775

is a generalized eigenvector of type 2 for A corresponding to l ¼ 5, while

(A� 5I)x2 ¼

0 1 �2 4

0 0 2 2

0 0 0 3

0 0 0 �1

2
664

3
775

2

�2

0

0

2
664

3
775 ¼

2

0

0

0

2
664
3
775

is a generalized eigenvector of type 1, and, therefore, an eigenvector of A

corresponding to l ¼ 5. The set

{x3, x2, x1} ¼

0

0

1

0

2
664
3
775,

�2

2

0

0

2
664

3
775,

2

0

0

0

2
664
3
775

8>><
>>:

9>>=
>>;

is the chain propagated by the x3: &

The relationship between chains of generalized eigenvectors and invariant sub-

spaces is established by the next two theorems.

" Theorem 5. A chain is a linearly independent set of vectors. 3

Proof: Let {xm, xm�1, . . . , x1} be a chain propagated from xm, a generalized

eigenvector of type m corresponding to the eigenvalue l for A. We consider the

vector equation

cm xm þ cm�1 xm�1 þ . . . þ c1 x1 ¼ 0 (B:9)

To prove that this chain is linearly independent, we must show that the only

solution to equation (B.9) is the trivial solution cm ¼ cm�1 ¼ . . . ¼ c1 ¼ 0. We

shall do this iteratively. First, we multiply both sides of equation (B.9) by

(A� lI)m�1. Note that for j ¼ 1, 2, . . . , m� 1,

(A� lI)m�1cjxj ¼ cj(A� lI)m�j�1[(A� lI)jxj]

¼ cj(A� lI)m�j�1[0]
because xj is a generalized
eigenvector of type j

¼ 0
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Thus, equation (B.9) becomes cm(A� lI)m�1 xm ¼ 0. But xm is a generalized

eigenvector of type m, so the vector (A� lI)m�1 xm 6¼ 0. It then follows

(Theorem 7 of Section 2.1) that cm ¼ 0. Substituting cm ¼ 0 into equation (B.9)

and then multiplying the resulting equation by (A� lI)m�2, we find, by similar

reasoning, that cm�1 ¼ 0. Continuing this process, we find iteratively that

cm ¼ cm�1 ¼ . . . ¼ c1 ¼ 0, which implies that the chain is linearly

independent. &

" Theorem 6. The span of a set of vectors that forms a chain of generalized

eigenvectors for a matrix A corresponding to an eigenvalue l is an

invariant subspace for A. 3

Proof: The span of any set of vectors in a vector space is a subspace, so it only

remains to show that the subspace is invariant under A. Let {xm, xm�1, . . . , x1}

be a chain propagated from xm, a generalized eigenvector of type m for A

corresponding to the eigenvalue l. It follows that

x j ¼ (A� lI)x jþ1 ( j ¼ 1, 2, . . . , m� 1) (B:8 repeated)

This equation may be rewritten as

Ax jþ1 ¼ lx jþ1 þ x j ( j ¼ 1, 2, . . . , m� 1) (B:10)

A generalized eigenvector of type 1 is an eigenvector, so we also have

Ax1 ¼ lx1 (B:11)

If v 2 span{xm, xm�1, . . . , x2, x1}, then there exists a set of scalars

dm, dm�1, . . . , d2, d1 such that

v ¼ dmxm þ dm�1xm�1 þ . . . þ d2x2 þ d1x1

Multiplying this equation by A and then using (B.10) and (B.11), we have

Av ¼ dmAxm þ dm�1Axm�1 þ . . . þ d2Ax2 þ d1Ax1

¼ dm(lxm þ xm�1)þ dm�1(lxm�1 þ xm�2)þ . . . þ d2(lx2 þ x1)þ d1(lx1)

¼ (ldm)xm þ (dm þ ldm�1)xm�1 þ (dm�1 þ ldm�2)xm�2 þ . . .

þ (d3 þ ld2)x2 þ (d2 þ ld1)x1

which is also a linear combination of the vectors in the chain and, therefore, in

the subspace spanned by the vectors in the chain. Thus, if

v 2 span{xm, xm�1, . . . , x2, x1}; then Av 2 span{xm, xm�1, . . . , x2, x1} and

span{xm, xm�1, . . . , x2, x1} is an invariant subspace of A. &
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It follows from Theorems 5 and 6 that a chain of generalized eigenvectors is a

basis for the invariant subspace spanned by that chain.

We now have the mathematical tools to produce a simple matrix representation

for a linear transformation T: V! V on a finite-dimensional vector space V.

A linear transformation T may not have enough linearly independent eigenvec-

tors to serve as a basis for V and, therefore, as a basis for a diagonal matrix

representation of T. We shall see shortly that a linear transformation always has

enough generalized eigenvectors to form a basis for V, and the matrix represen-

tation of T with respect to such a basis is indeed simple.

A generalized eigenvector xj of type j in the chain propagated by xm is related to

its immediate ancestor, the generalized eigenvector xjþ1 of type j þ 1, by the

formula

xj ¼ [T � lI] (xjþ1) ¼ T(xjþ1)� lxjþ1

which may be rewritten as

T(xjþ1) ¼ lxjþ1 þ xj (j ¼ 1, 2, . . . , m� 1) (B:12)

Since a generalized eigenvector of type 1 is an eigenvector, we also have

T(x1) ¼ lx1 (B:13)

Now let U be the invariant subspace of V spanned by the chain propagated by

xm. This chain forms a basis for U. If we extend this chain into a basis for V, say

B ¼ fx1, x2, . . . , xm�1, xm, v1, v2, . . . , vn�mg

and define W ¼ spanfv1, v2, . . . , vn�mg, then it follows from Theorem 1 that

V ¼ U�W. If W is also an invariant subspace of T, then we have from Theorem

3 that a matrix representation of T with respect to the B basis has the block

diagonal form

A ¼ B 0

0 C

� �
(B:14)

But now we can say even more.

Using (B.12) and (B.13), we have

T(x1) ¼ lx1 ¼ lx1 þ 0x2 þ 0x3 þ � � � þ 0xm�1 þ 0xm

þ 0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation with respect to the B basis of
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T(x1)$ [ l 0 0 � � � 0 ]T

T(x2) ¼ lx2 þ x1 ¼ 1x1 þ lx2 þ 0x3 þ � � � þ 0xm�1

þ 0xm þ 0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation of

T(x2)$ [ 1 l 0 � � � 0 ]T

T(x3) ¼ lx3 þ x2 ¼ 0x1 þ 1x2 þ lx3 þ � � � þ 0xm�1 þ 0xm

þ 0v1 þ 0v2 þ � � � þ 0vn�m

with a coordinate representation of

T(x3)$ [ 0 1 l 0 � � � 0 ]T

This pattern continues through T(xm). In particular,

T(x4)$ [ 0 0 1 l 0 � � � 0 ]T

T(x5)$ [ 0 0 0 1 l 0 � � � 0 ]T

and so on. The resulting coordinate representations become the first m columns

A as given by (B.14). Because the basis for U is a chain, the submatrix B in (B.13)

has the upper triangular form

B ¼

l 1 0 � � � 0 0

0 l 1 � � � 0 0

..

. ..
. ..

. . .
. . .

. ..
.

0 0 0 � � � l 1

0 0 0 � � � 0 l

2
66664

3
77775 (B:15)

with all of its diagonal elements equal to l, all elements on its superdiagonal (i.e.,

all elements directly above the diagonal elements) equal to 1, and all of its other

elements equal to 0.

We call matrices having form (B.15) Jordan blocks. Jordan blocks contain many

zeros and are simple building blocks for matrix representations of linear trans-

formations. A matrix representation is in Jordan canonical form if it is a block

diagonal matrix in which every diagonal block is a Jordan block.

Example 9 The linear transformation T: R4 ! R4 defined by

T

a

b

c

d

2
664

3
775 ¼

4a� c� d

�4aþ 2bþ 2cþ 2d

2aþ bþ 2c

2a� b� 2c

2
664

3
775

A matrix is in Jordan

canonical form if it is a

block diagonal matrix

in which every

diagonal block is a

Jordan block.
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has a matrix representation with respect to the standard basis of

G ¼

4 0 �1 �1

�4 2 2 2

2 1 2 0

2 �1 �2 0

2
664

3
775

which is not simple. We will show in Example 11 that G has two linearly

independent generalized eigenvectors of type 2 corresponding to the eigenvalue

2. Using the techniques previously discussed, we find that two such vectors are

x2 ¼

1

0

0

0

2
664
3
775 and v2 ¼

0

1

0

0

2
664
3
775

Creating chains from each of these two vectors, we obtain

x1 ¼ (G� 2I)x2 ¼

2 0 �1 �1

�4 0 2 2

2 1 0 0

2 �1 �2 �2

2
6664

3
7775

1

0

0

0

2
6664
3
7775 ¼

2

�4

2

2

2
6664

3
7775

v1 ¼ (G� 2I)v2 ¼

2 0 �1 �1

�4 0 2 2

2 1 0 0

2 �1 �2 �2

2
6664

3
7775

0

1

0

0

2
6664
3
7775 ¼

0

0

1

�1

2
6664

3
7775

Setting U ¼ spanfx1,x2g and W ¼ spanfv1, v2g, we have two invariant sub-

spaces of R4, each having as a basis a single chain. Thus, we expect the matrix

representation of T with respect to the basis B ¼ fx1, x2, v1, v2g to contain two

Jordan blocks. Using this basis, we have

T

2

�4

2

2

2
6664

3
7775 ¼

4

�8

4

4

2
6664

3
7775 ¼ (2)

2

�4

2

2

2
6664

3
7775þ (0)

1

0

0

0

2
6664
3
7775þ (0)

0

0

1

�1

2
6664

3
7775þ (0)

0

1

0

0

2
6664
3
7775$

2

0

0

0

2
6664
3
7775

B

T

1

0

0

0

2
6664
3
7775 ¼

4

�4

2

2

2
6664

3
7775 ¼ (1)

2

�4

2

2

2
6664

3
7775þ (2)

1

0

0

0

2
6664
3
7775þ (0)

0

0

1

�1

2
6664

3
7775þ (0)

0

1

0

0

2
6664
3
7775$

1

2

0

0

2
6664
3
7775

B
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T

0

0

1

�1

2
6664

3
7775 ¼

0

0

2

�2

2
6664

3
7775 ¼ (0)

2

�4

2

2

2
6664

3
7775þ (0)

1

0

0

0

2
6664
3
7775þ (2)

0

0

1

�1

2
6664

3
7775þ (0)

0

1

0

0

2
6664
3
7775$

0

0

2

0

2
6664
3
7775

B

T

0

1

0

0

2
6664
3
7775 ¼

0

2

1

�1

2
6664

3
7775 ¼ (0)

2

�4

2

2

2
6664

3
7775þ (0)

1

0

0

0

2
6664
3
7775þ (1)

0

0

1

�1

2
6664

3
7775þ (2)

0

1

0

0

2
6664
3
7775$

0

0

1

2

2
6664
3
7775

B

The matrix representation of T with respect to the B basis is

A ¼

2 1 0 0

0 2 0 0

0 0 2 1

0 0 0 2

2
664

3
775 &

A 1� 1 Jordan block has only a single diagonal element. Therefore, a diagonal

matrix is a matrix in Jordan canonical form in which every diagonal block is

a 1� 1 Jordan block.

In Example 9, we wrote the domain R4 of a linear transformation as the direct

sum of two invariant subspaces, with each subspace having a single chain as

a basis. Perhaps it is possible to always write the domain of a linear transform-

ation T: V! V as the direct sum of a finite number of subspaces, say

V ¼ U1 � U2 � � � � � Up, where each subspace is invariant under T, and each

subspace has as a basis a single chain of generalized eigenvectors for T. If so, we

could produce a matrix representation of T that is in Jordan canonical form.

When finding eigenvalues and eigenvectors, we generally work with matrix

representations of linear transformations rather than with the linear transform-

ations per se because it is easier to do so. Either we begin with a matrix or we

construct a matrix representation for a given linear transformation, generally

a matrix with respect to a standard basis as we did with the matrix G in

Example 9.

A generalized eigenvector xm of rank m corresponding to an eigenvalue l of an

n� n matrix A has the property that

(A� lI)mxm ¼ 0 and (A� lI)m�1xm 6¼ 0 (B:6 repeated)

Thus, xm is in the kernel of (A� lI)m but not in the kernel of (A� lI)m�1.

Clearly, if x 2 ker[(A� lI)m�1], then x 2 ker[(A� lI)m]. Consequently, the

dimension of ker[(A� lI)m�1] < ker[(A� lI)m] or, in terms of rank (see

Corollary 1 of Section 3.5),

r (A� lI)m�1
� �

> r (A� lI)m½ � (B:16)
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The converse is also true. If (B.16) is valid, then there must exist a vector xm that

satisfies (B.6), in which case xm is a generalized eigenvector of type m corre-

sponding to A and l. The difference

rm ¼ r (A� lI)m�1
� �

� r (A� lI)m½ � (B:17)

is the number of linearly independent generalized eigenvectors of type m corre-

sponding to A and its eigenvalue l. The differences rm, m ¼ 1, 2, . . . are called

index numbers.

Example 10 The matrix

A ¼

2 1 �1 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 4

2
6666664

3
7777775

has an eigenvalue 4 of multiplicity 1 and an eigenvalue 2 of multiplicity 5. Here

A� 2I ¼

0 1 �1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2

2
6666664

3
7777775

has rank 4.

(A� 2I)2 ¼

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 2

0 0 0 0 0 4

2
6666664

3
7777775

has rank 2.

(A� 2I)3 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 4

0 0 0 0 0 8

2
6666664

3
7777775

Jordan Canonical Forms . 393



has rank 1.

(A� 2I)4 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 4

0 0 0 0 0 8

0 0 0 0 0 16

2
6666664

3
7777775

also has rank 1. Therefore, we have the index numbers

r1 ¼ r (A� 2I)0
� �

� r (A� 2I)1
� �

¼ r(I)� 4 ¼ 6� 4 ¼ 2

r2 ¼ r (A� 2I)1
� �

� r (A� 2I)2
� �

¼ 4� 2 ¼ 2

r3 ¼ r (A� 2I)2
� �

� r (A� 2I)3
� �

¼ 2� 1 ¼ 1

r4 ¼ r (A� 2I)3
� �

� r (A� 2I)4
� �

¼ 1� 1 ¼ 0

Corresponding to l ¼ 2, A has two linearly independent generalized eigenvectors

of type 1 (which are eigenvectors), two linearly independent generalized eigen-

vectors of type 2, one linearly independent generalized eigenvector of type 3, and

no generalized eigenvectors of type 4. There are also no generalized eigenvectors

of type greater than 4 because if one existed we could create a chain from it and

produce a generalized eigenvector of type 4. The eigenvalue 4 has multiplicity 1

and only one linearly independent eigenvector associated with it. &

Example 11 The matrix

G ¼

4 0 �1 �1

�4 2 2 2

2 1 2 0

2 �1 �2 0

2
664

3
775

has an eigenvalue 2 of multiplicity 4. Here

G� 2I ¼

2 0 �1 �1

�4 0 2 2

2 1 0 0

2 �1 �2 �2

2
664

3
775

has rank 2.

(G� 2I)2 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775
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has rank 0, as will every power of G� 2I greater than 2. The associated index

numbers are

r1 ¼ r (G� 2I)0
� �

� r (G� 2I)1
� �

¼ r(I)� 2 ¼ 4� 2 ¼ 2

r2 ¼ r (G� 2I)1
� �

� r (G� 2I)2
� �

¼ 2� 0 ¼ 2

r3 ¼ r (G� 2I)2
� �

� r (G� 2I)3
� �

¼ 0� 0 ¼ 0

Corresponding to l ¼ 2, G has two linearly independent generalized eigenvec-

tors of type 1 (eigenvectors) and two linearly independent generalized eigenvec-

tors of type 2. &

Once we have a generalized eigenvector xm of type m, we can identify a sequence

of generalized eigenvectors of decreasing types by constructing the chain propa-

gated by xm. An n� n matrix A may not have enough linearly independent

eigenvectors to constitute a basis for Rn, but A will always have n linearly

independent generalized eigenvectors that can serve as a basis. If these general-

ized eigenvectors are chains, then they form invariant subspaces.

We define a canonical basis for an n� n matrix to be a set of n linearly inde-

pendent generalized eigenvectors composed entirely of chains. Therefore, once

we have determined that a generalized eigenvector xm of type m is part of a

canonical basis, then so too are the vectors xm�1, xm�2, . . . , x1 that are in the

chain propagated by xm. The following result, the proof of which is beyond the

scope of this book, summarizes the relevant theory.

" Theorem 7. Every n� n matrix possesses a canonical basis in Rn. 3

In terms of a linear transformation T: V! V, where V is an n-dimensional

vector space, Theorem 1 states that V has a basis consisting entirely of chains

of generalized eigenvectors of T. With respect to such a basis, a matrix repre-

sentation of T will be in Jordan canonical form. This is as simple a matrix

representation as we can get for any linear transformation. The trick is to

identify a canonical basis. It is one thing to know such a basis exists, it is another

matter entirely to find it.

If xm is a generalized eigenvector of type m corresponding to the eigenvalue l for

the matrix A, then

(A� lI)mxm ¼ 0 and (A� lI)m�1xm 6¼ 0 (B:6 repeated)

This means that xm is in the kernel of (A� lI)m and in the range of (A� lI)m�1.

If we find a basis for the range of (A� lI)m�1 composed only of vectors that are

also in the kernel of (A� lI)m, we will then have a maximal set of linearly

independent generalized eigenvectors of type m. This number will equal the

index number rm. Let us momentarily assume that rm ¼ r, and let us designate

A canonical basis

for an n� n matrix

is a set of n linearly

independent

generalized

eigenvectors

composed entirely

of chains.
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these generalized eigenvectors of type m as v1, v2, . . . , vr. These r vectors are

linearly independent vectors in the range of (A� lI)m�1, so the only constants

that satisfy the equation

c1(A� lI)m�1v1 þ c2(A� lI)m�1v2 þ � � � þ cr(A� lI)m�1vr ¼ 0 (B:18)

are c1 ¼ c2 ¼ � � � ¼ cr ¼ 0. It follows that fv1, v2, . . . , vrg is a linearly independ-

ent set, because if we multiply the equation

c1v1 þ c2v2 þ � � � þ cnvr ¼ 0

by (A� lI)m�1, we obtain (B.18) and conclude that c1 ¼ c2 ¼ � � � ¼ cr ¼ 0. It

also follows that the set f(A� lI)v1, (A� lI)v2, . . . , (A� lI)vrg of generalized

eigenvectors of type m� 1 is also linearly independent, because if we multiply the

equation

c1(A� lI)v1 þ c2(A� lI)v2 þ � � � þ cn(A� lI)vr ¼ 0

by (A� lI)m�2, we again obtain (B.18) and conclude that c1 ¼ c2 ¼ � � � ¼ cr ¼ 0.

Thus, we have proven Theorem 8.

" Theorem 8. If S ¼ fv1, v2, . . . , vrg is a set of generalized eigenvectors of

type m such that f(A� lI)m�1v1, (A� lI)m�1v2, . . . , (A� lI)m�1vrg is

a linearly independent set, then S itself is a linearly independent set as is

the set f(A� lI)v1, (A� lI)v2, . . . , (A� lI)vrg of generalized eigen-

vectors of type m� 1. 3

Example 12 The linear transformation T: R6 ! R6 defined by

T

a

b

c

d

e

f

2
6666664

3
7777775 ¼

5aþ bþ c

5bþ c

5c

5d þ e� f

5eþ f

5f

2
6666664

3
7777775

has as its matrix representation with respect to the standard basis

A ¼

5 1 1 0 0 0

0 5 1 0 0 0

0 0 5 0 0 0

0 0 0 5 1 �1

0 0 0 0 5 1

0 0 0 0 0 5

2
6666664

3
7777775
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This matrix (as well as T) has one eigenvalue 5 of multiplicity 6. Here

A� 5I ¼

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 �1

0 0 0 0 0 1

0 0 0 0 0 0

2
6666664

3
7777775

has rank 4,

(A� 5I)2 ¼

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

has rank 2, and all higher powers equal the zero matrix with rank 0. The index

numbers are

r1 ¼ r (A� 5I0
� �

� r (A� 5I)1
� �

¼ r(I)� 4 ¼ 6� 4 ¼ 2

r2 ¼ r (A� 5I)1
� �

� r (A� 5I)2
� �

¼ 4� 2 ¼ 2

r3 ¼ r (A� 5I)2
� �

� r (A� 5I)3
� �

¼ 2� 0 ¼ 2

r4 ¼ r (A� 5I)3
� �

� r (A� 5I)4
� �

¼ 0� 0 ¼ 0

A has two generalized eigenvectors of type 3, two generalized eigenvectors of

type 2, and two generalized eigenvectors of type 1. Generalized eigenvectors of

type 3 must satisfy the two conditions (A� 5I)3x ¼ 0 and (A� 5I)2x 6¼ 0. Here

(A� 5I)3 ¼ 0, so the first condition places no restrictions on x. If we let

x ¼ [ a b c d e f ]T, then

(A� 5I)2x ¼

c

0

0

f

0

0

2
6666664

3
7777775

and this will be 0 if either c or f is nonzero. If we first take c ¼ 1 with

a ¼ b ¼ d ¼ e ¼ f ¼ 0 and then take f ¼ 1 with a ¼ b ¼ c ¼ d ¼ e ¼ 0, we gen-

erate
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x3 ¼

a

b

c

d

e

f

2
6666664

3
7777775 ¼

0

0

1

0

0

0

2
6666664

3
7777775 and y3 ¼

a

b

c

d

e

f

2
6666664

3
7777775 ¼

0

0

0

0

0

1

2
6666664

3
7777775

as two generalized eigenvectors of type 3. It is important to note that x3 and y3

were not chosen to be linearly independent; they were chosen so that

x1 ¼ (A� 5I)2x3 ¼

1

0

0

0

0

0

2
6666664

3
7777775 and y1 ¼ (A� 5I)2y3 ¼

0

0

0

1

0

0

2
6666664

3
7777775

are linearly independent. It follows from Theorem 2 that x3 and y3 are linearly

independent, as are

x2 ¼ (A� 5I)x3 ¼

1

1

0

0

0

0

2
6666664

3
7777775 and y2 ¼ (A� 5I)y3 ¼

0

0

0

�1

1

0

2
6666664

3
7777775

The vectors x1, x2, x3 form a chain as do the vectors y1, y2, y3. A canonical basis

is fx1, x2, x3, y1, y2, y3g, and with respect to this basis a matrix representation of

T is in the Jordan canonical form

J ¼

5 1 0 0 0 0

0 5 1 0 0 0

0 0 5 0 0 0

0 0 0 5 1 0

0 0 0 0 5 1

0 0 0 0 0 5

2
6666664

3
7777775 &

Theorem 8 provides the foundation for obtaining canonical bases. We begin with

a set of index numbers for an eigenvalue. Let m denote the highest type of

generalized eigenvector. We first find a set of generalized eigenvectors of type

m, fv1, v2, . . . , vrg, such that f(A� lI)m�1v1, (A� lI)m�1v2, . . . , (A� lI)m�1vrg
is a basis for the range of (A� lI)m�1. The vectors fw1 ¼ (A� lI)v1, w2 ¼
(A� lI)v2, . . . , wr ¼ (A� lI)vrg are a linearly independent set of generalized
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eigenvectors of type m� 1. If more generalized eigenvectors of type m� 1 are

needed, we find them. That is, if rm�1 ¼ s > r, then we find s� r additional

generalized eigenvectors, wrþ1, wrþ2, . . . ws, such that

(A� lI)m�2w1, (A� lI)m�2, w2, . . . , (A� lI)m�2wr,
�

(A� lI)m�2wrþ1, . . . , (A� lI)m�2ws

�
is a basis for the range of (A� lI)m�2. It follows from Theorem 8 that

f(A� lI)w1, (A� lI)w2, . . . , (A� lI)wr, (A� lI)wrþ1, . . . , (A� lI)wsg

is a linearly independent set of generalized eigenvectors of type m� 2. Now the

process is repeated sequentially, in decreasing order, through all types of gener-

alized eigenvectors.

To Create a Canonical Basis

For each distinct eigenvalue of a matrix A do the following:

Step 1. Using the index numbers, determine the number of linearly inde-

pendent generalized eigenvectors of highest type, say type m, corre-

sponding to l. Determine one such set, fv1, v2, . . . , vrg, so that the

product of each of these vectors with (A� lI)m�1 forms a basis for

the range of (A� lI)m�1. Call the set of v vectors the current set.

Step 2. If m ¼ 1, stop; otherwise continue.

Step 3. For each vector v in the current set of vectors, calculate (A� lI)v,

the next vector in its chain.

Step 4. Using the index numbers, determine the number of linearly inde-

pendent generalized eigenvectors of the type m� 1. If this number

coincides with the number of vectors obtained in Step 3, call this

new set of vectors the current set and go to Step 6; otherwise

continue.

Step 5. Find additional generalized eigenvectors of type m� 1 so that when

these new vectors are adjoined to the current set, the product of each

vector in the newly expanded set with (A� lI)m�2 forms a basis for

the range of (A� lI)m�2. Call this newly expanded set the current set

of vectors.

Step 6. Decrement m by 1 and return to Step 2.
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Example 13 Find a matrix representation in Jordan canonical form for the

linear transformation T: R6 ! R6 defined by

T

a

b

c

d

e

f

2
6666664

3
7777775 ¼

2aþ b� c

2bþ c

2c

2d þ e

2eþ f

4f

2
6666664

3
7777775

Solution: The matrix representation of T with respect to the standard basis is

the matrix A exhibited in Example 10. It follows from Example 10 that A has one

eigenvalue 2 of multiplicity 5 and one eigenvalue 4 of multiplicity 1. Associated

with the eigenvalue 2 are one generalized eigenvector of type 3, two generalized

eigenvectors of type 2, and two generalized eigenvectors of type 1. A generalized

eigenvector of type 3 is

x3 ¼

0

0

1

0

0

0

2
6666664

3
7777775

Then,

x2 ¼ (A� 2I)x3 ¼

�1

1

0

0

0

0

2
6666664

3
7777775

is a generalized eigenvector of type 2. We still need another generalized eigen-

vector of type 2, so we set y2 ¼ [ a b c d e f ]T, and choose the compon-

ents so that y2 is in the kernel of (A� 2I)2 and also so that (A� 2I)y2 and

(A� 2I)x2 constitute a basis for the range of (A� 2I). If y2 is to be in the kernel

of (A� 2I)2, then c ¼ f ¼ 0. Furthermore,

(A� 2I)y2 ¼ (A� 2I)

a

b

0

d

e

0

2
6666664

3
7777775 ¼

b

0

0

e

0

0

2
6666664

3
7777775, (A� 2I)x2 ¼

1

0

0

0

0

0

2
6666664

3
7777775

and y2 must be chosen so that these two vectors are linearly independent.

A simple choice is b ¼ 0 and e ¼ 1. There are many choices for
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y2 ¼ [ a 0 0 d 1 0 ]T, depending how a and d are selected. The simplest is

to take a ¼ d ¼ 0, whereupon

y2 ¼

0

0

0

0

1

0

2
6666664

3
7777775

Next,

y1 ¼ (A� 2I)y2 ¼

0

0

0

1

0

0

2
6666664

3
7777775 and x1 ¼ (A� 2I)x2 ¼

1

0

0

0

0

0

2
6666664

3
7777775

are the required generalized eigenvectors of type 1. There is only one linearly

independent generalized eigenvector associated with the eigenvalue 4. A suitable

candidate is

z1 ¼

0

0

0

1

2

4

2
6666664

3
7777775

We take our canonical basis to be fz1, y1, y2, x1, x2, x3g. With respect to this

basis, T is represented by the matrix in Jordan canonical form

J ¼

4 0 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 1

0 0 0 0 0 2

2
6666664

3
7777775 &

The Jordan canonical form found in Example 13 contained a 1� 1 Jordan block

with the eigenvalue 4 on the main diagonal, a 2� 2 Jordan block with the

eigenvalue 2 on the main diagonal, and a 3� 3 Jordan block again with the

eigenvalue 2 on the main diagonal. The 1� 1 Jordan block corresponds to the

single element chain z1 in the canonical basis, the 2� 2 Jordan block corres-

ponds to the two element chain y1, y2 in the canonical basis, while the 3� 3

Jordan block corresponds to the three element chain in the canonical basis. If we

rearrange the ordering of the chains in the canonical basis, then the Jordan
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blocks in the Jordan canonical form will be rearranged in a corresponding

manner. In particular, if we take the canonical basis to be fx1, x2, x3, y1, y2, z1g,
then the corresponding Jordan canonical form becomes

J ¼

2 1 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 4

2
6666664

3
7777775

If, instead, we take the ordering of the canonical basis to be fx1, x2, x3, z1, y1, y2g,
then the corresponding Jordan canonical form becomes

J ¼

2 1 1 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 4 0 0

0 0 0 0 2 1

0 0 0 0 0 2

2
6666664

3
7777775

Two criteria must be observed if a canonical basis is to generate a matrix in

Jordan canonical form. First, all vectors in the same chain must be grouped

together (not separated by vectors from other chains), and second, each chain

must be ordered by increasing type (so that the generalized eigenvector of type 1

appears before the generalized eigenvector of type 2 of the same chain, which

appears before the generalized eigenvector of type 3 of the same chain, and so

on). If either criterion is violated, then the ones will not appear, in general, on the

superdiagonal. In particular, if vectors are ordered by decreasing type, then all

the ones appear on the subdiagonal, the diagonal just below the main diagonal.

Let A denote a matrix representation of a linear transformation T: V! V with

respect to a basis B (perhaps the standard basis), and let J be a matrix represen-

tation in Jordan canonical form for T. J is the matrix representation with respect

to a canonical basis C. Since J and A are two matrix representations of the same

linear transformation, with respect to different basis, they must be similar. Using

the notation developed in Section 3.4 (see, in particular, Eq. (3.26) in that

section), we may write

JC
C ¼ PB

C

	
)�1AB

BPB
C (B:19)

where PB
C is the transition matrix from the B basis to the C basis.

Let fx1, x2, . . . , xng be a canonical basis of generalized eigenvectors for A. A

generalized modal matrix is a matrix M whose columns are the vectors in the

canonical basis, that is,

In a canonical basis,

all vectors from the

same chain are

grouped together,

and generalized

eigenvectors in each

chain are ordered by

increasing type.
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M ¼ x1 x2 � � � xn½ � (B:20)

If xjþ1 is a direct ancestor of xj in the same chain corresponding to the eigenvalue

l, then

Axjþ1 ¼ lxjþ1 þ xj (B:10 repeated)

If x1 is an eigenvector corresponding to l, then

Ax1 ¼ lx1 (B:11 repeated)

Using these relationships, it is a simple matter to show that AM ¼MJ. Since the

columns of M are linearly independent, M has an inverse. Therefore,

J ¼M�1AM (B:21)

A ¼MJM�1 (B:22)

Comparing (B.21) with (B.19), we see that the generalized modal matrix is just

the transition matrix from the canonical basis C to the B basis. It then follows

that M�1 is the transition matrix from the B basis to the C basis.

Problems Appendix B

(1) Let L: R2 ! R2 be defined by T
a

b

� �
¼ aþ 2b

4aþ 3b

� �
:Determine whether the subspaces

spanned by the following sets of vectors are invariant subspaces of L.

(a) A ¼ 1

1

� �
,

1

�1

� �
 �
; (b) B ¼ 1

1

� �
,
�1

�1

� �
 �
;

(c) C ¼ 2

1

� �
 �
; (d) D ¼ 1

2

� �
 �
;

(e) E ¼ 0

0

� �
 �
; (f) F ¼ 0

0

� �
,

1

�1

� �
 �
:

(2) Let T: R3 ! R3 be defined by T

a

b

c

2
4
3
5 ¼ 4bþ 2c

�3aþ 8bþ 3c

4a� 8b� 2c

2
4

3
5: Determine whether the

subspaces spanned by the following sets of vectors are invariant subspaces of T.

(a) A ¼
2

1

0

2
4
3
5,

2

3

�4

2
4

3
5

8<
:

9=
;; (b) B ¼

0

�2

4

2
4

3
5,

4

4

�4

2
4

3
5

8<
:

9=
;;
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ðcÞ C ¼
2

1

0

2
4
3
5,

0

0

1

2
4
3
5

8<
:

9=
;; ðdÞ D ¼

0

0

1

2
4
3
5,

2

3

�4

2
4

3
5

8<
:

9=
;;

ðeÞ E ¼
0

0

1

2
4
3
5

8<
:

9=
;; ðfÞ F ¼

2

3

�4

2
4

3
5

8<
:

9=
;:

(3) Let R: R4 ! R4 be defined by T

a

b

c

d

2
664

3
775 ¼

2aþ b� d

2bþ cþ d

2c

2d

2
664

3
775: Determine whether the

subspaces spanned by the following sets of vectors are invariant subspaces of R.

(a)

1

0

0

0

2
664
3
775,

�1

1

0

0

2
664

3
775

8>><
>>:

9>>=
>>;; (b)

1

0

0

0

2
664
3
775,

0

0

0

1

2
664
3
775

8>><
>>:

9>>=
>>;;

(c)

1

0

0

0

2
664
3
775,

0

�1

1

�1

2
664

3
775

8>><
>>:

9>>=
>>;; (d)

0

0

0

1

2
664
3
775,

0

�1

1

�1

2
664

3
775

8>><
>>:

9>>=
>>;;

(e)

1

0

0

0

2
664
3
775,

�1

1

0

0

2
664

3
775,

0

0

0

1

2
664
3
775

8>><
>>:

9>>=
>>;; (f)

1

0

0

0

2
664
3
775,

�1

1

0

0

2
664

3
775,

0

�1

1

�1

2
664

3
775

8>><
>>:

9>>=
>>;:

(4) Determine whether the subspaces spanned by the following sets of vectors are

invariant subspaces of A ¼ 3 1

�1 5

� �
:

(a) A ¼ 0

1

� �
 �
; (b) B ¼ 1

1

� �
 �
;

(c) C ¼ 1

2

� �
 �
; (d) D ¼ 1

1

� �
,

0

1

� �
 �
;

(e) E ¼ 1

1

� �
,

2

2

� �
 �
; (f) F ¼ 1

1

� �
,

1

2

� �
 �
:

(5) Determine whether the subspaces spanned by the following sets of vectors are

invariant subspaces of A ¼
5 1 �1

0 5 2

0 0 5

2
4

3
5:
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(a) A ¼
0

0

1

2
4
3
5,

2

3

�4

2
4

3
5

8<
:

9=
;; (b) B ¼

2

0

0

2
4
3
5,

�1

2

0

2
4

3
5

8<
:

9=
;;

(c) C ¼
2

0

0

2
4
3
5,

0

0

1

2
4
3
5

8<
:

9=
;; (d) D ¼

2

0

0

2
4
3
5

8<
:

9=
;;

(e) E ¼
0

0

1

2
4
3
5

8<
:

9=
;; (f) F ¼

�1

2

0

2
4

3
5

8<
:

9=
;:

(6) Determine whether the subspaces spanned by the following sets of vectors are

invariant subspaces of A ¼

3 1 0 �1

0 3 1 0

0 0 4 1

0 0 0 4

2
664

3
775:

(a)

1

0

0

0

2
664
3
775,

0

1

0

0

2
664
3
775

8>><
>>:

9>>=
>>;; (b)

1

0

0

0

2
664
3
775,

1

1

1

0

2
664
3
775

8>><
>>:

9>>=
>>;;

(c)

1

0

0

0

2
664
3
775,

0

0

1

1

2
664
3
775

8>><
>>:

9>>=
>>;; (d)

0

1

0

0

2
664
3
775,

1

1

1

0

2
664
3
775

8>><
>>:

9>>=
>>;;

(e)

1

0

0

0

2
664
3
775,

1

1

1

0

2
664
3
775,

3

1

0

�1

2
664

3
775

8>><
>>:

9>>=
>>;; (f)

1

0

0

0

2
664
3
775,

0

1

0

0

2
664
3
775,

1

1

1

0

2
664
3
775

8>><
>>:

9>>=
>>;:

(7) Using the information provided in Problem 1, determine which of the following

statements are true:

(a) R2 ¼ span{A}� span{B}, (b) R2 ¼ span{A}� span{C},

(c) R2 ¼ span{C}� span{D}, (d) R2 ¼ span{D}� span{E}.

(8) Using the information provided in Problem 2, determine which of the following

statements are true:

(a) R3 ¼ span{A}� span{B}, (b) R3 ¼ span{A}� span{E},

(c) R3 ¼ span{B}� span{F}, (d) R3 ¼ span{C}� span{F}.

(9) Using the information provided in Problem 4, determine which of the following

statements are true:
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(a) R2 ¼ span{A}� span{B}, (b) R2 ¼ span{A}� span{C},

(c) R2 ¼ span{B}� span{C}, (d) R2 ¼ span{E}� span{F}.

(10) Using the information provided in Problem 5, determine which of the following

statements are true:

(a) R3 ¼ span{A}� span{D}, (b) R3 ¼ span{B}� span{D},

(c) R3 ¼ span{B}� span{E}, (d) R3 ¼ span{D}� span{E}.

(11) Characterize the subspace U ¼ span{D}� span{E} for the sets D and E described

in Problem 5.

(12) Let T: R4 ! R4 be defined by T

a

b

c

d

2
664

3
775 ¼

3aþ b� d

3bþ c

4cþ d

4d

2
664

3
775: Set B ¼

1

1

0

0

2
664
3
775,

1

�1

0

0

2
664

3
775

8>><
>>:

9>>=
>>;,

C ¼

�1

�1

�1

0

2
664

3
775,

3

1

0

�1

2
664

3
775

8>><
>>:

9>>=
>>;, M ¼ span (B); and N ¼ span (C):

(a) Show that M and N are both invariant subspaces of T with R4 ¼M�N.

(b) Show that T has a matrix representation in the block diagonal form with respect

to the basis B [ C.

(13) Let T: R4 ! R4 be defined by T

a

b

c

d

2
664

3
775 ¼

2aþ b� d

2bþ cþ d

2c

2d

2
664

3
775: Set B ¼

0

1

�1

1

2
664

3
775

8>><
>>:

9>>=
>>;,

C ¼

1

1

0

0

2
664
3
775,

1

�1

0

0

2
664

3
775,

0

0

0

1

2
664
3
775

8>><
>>:

9>>=
>>;, M ¼ span (B); and N ¼ span (C):

8>><
>>:

(a) Show that M and N are both invariant subspaces of T with R4 ¼M�N.

(b) Show that T has a matrix representation in the block diagonal form with

respect to the basis B [ C.

(14) Let T: R4 ! R4 be defined by T

a

b

c

d

2
664
3
775 ¼

4aþ c

2aþ 2bþ 3c

�aþ 2c

4aþ cþ 2d

2
664

3
775: Set B ¼

0

1

0

1

2
664
3
775,

0

0

0

1

2
664
3
775

8>><
>>:

9>>=
>>;,

C ¼

1

�1

�1

3

2
664

3
775,

1

3

0

1

2
664
3
775

8>><
>>:

9>>=
>>;, M ¼ span (B); and N ¼ span (C):

(a) Show that M and N are both invariant subspaces of T with R4 ¼M�N.

(b) Show that T has a matrix representation in the block diagonal form with

respect to the basis B [ C.

406 . Appendix B



(15) Determine whether the following vectors are generalized eigenvectors of type 3

corresponding to the eigenvalue l ¼ 2 for the matrix

A ¼

2 2 1 1

0 2 �1 0

0 0 2 0

0 0 0 1

2
664

3
775

(a)

1

1

1

0

2
664
3
775, (b)

0

1

0

0

2
664
3
775, (c)

0

0

1

0

2
664
3
775, (d)

2

0

3

0

2
664
3
775, (e)

0

0

0

1

2
664
3
775, (f)

0

0

0

0

2
664
3
775:

For the matrices in Problems 16 through 20, find a generalized eigenvector of type 2

corresponding the eigenvalue l ¼ �1.

(16)
�1 1

0 �1

� �
: (17)

�1 1 0

0 �1 1

0 0 1

2
4

3
5: (18)

0 4 2

�1 4 1

�1 �7 �4

2
4

3
5:

(19)

3 �2 2

2 �2 1

�9 9 �4

2
4

3
5: (20)

2 0 3

2 �1 1

�1 0 �2

2
4

3
5:

(21) Find a generalized eigenvector of type 3 corresponding to l ¼ 3 and a generalized

eigenvector of type 2 corresponding to l ¼ 4 for

A ¼

4 1 0 0 1

0 4 0 0 0

0 0 3 1 0

0 0 0 3 2

0 0 0 0 3

2
66664

3
77775:

(22) The vector [1 1 1 0]T is known to be a generalized eigenvector of type 3

corresponding to the eigenvalue 2 for

A ¼

2 2 1 1

0 2 �1 0

0 0 2 0

0 0 0 1

2
664

3
775

Construct a chain from this vector.

(23) Redo Problem 22 for the generalized eigenvector [0 0 1 0]
T
, which is also of

type 3 corresponding to the same eigenvalue and matrix.

(24) The vector [ 0 0 0 0 1]T is known to be a generalized eigenvector of type 4

corresponding to the eigenvalue 1 for

A ¼

1 0 1 0 �1

0 1 0 0 0

0 0 1 �1 2

0 0 0 1 1

0 0 0 0 1

2
66664

3
77775

Construct a chain from this vector.
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(25) Redo Problem 24 for the generalized eigenvector [ 0 0 0 1 0]T , which is of

type 3 corresponding to the same eigenvalue and matrix.

(26) The vector [ 1 0 0 0 �1]T is known to be a generalized eigenvector of type 3

corresponding to the eigenvalue 3 for

A ¼

4 1 0 0 1

0 4 0 0 0

0 0 3 1 0

0 0 0 3 2

0 0 0 0 3

2
66664

3
77775

Construct a chain from this vector.

(27) Redo Problem 26 for the generalized eigenvector [ 0 1 0 0 0]T , which is of

type 2 corresponding to the eigenvalue 4 for the same matrix.

(28) Find a generalized eigenvector of type 2 corresponding to the eigenvalue �1 for

A ¼ �1 1

0 �1

� �

and construct a chain from this vector.

(29) Find a generalized eigenvector of type 2 corresponding to the eigenvalue �1 for

A ¼
�1 1 0

0 �1 1

0 0 1

2
4

3
5

and construct a chain from this vector.

(30) Find a generalized eigenvector of type 2 corresponding to the eigenvalue �1 for

A ¼
0 4 2

�1 4 1

�1 �7 �4

2
4

3
5

and construct a chain from this vector.

(31) Find a generalized eigenvector of type 4 corresponding to the eigenvalue 2 for

A ¼

2 1 3 �1

0 2 �1 4

0 0 2 1

0 0 0 2

2
664

3
775

and construct a chain from this vector.

(32) Find a generalized eigenvector of type 3 corresponding to the eigenvalue 3 for

A ¼

4 1 1 2 2

�1 2 1 3 0

0 0 3 0 0

0 0 0 2 1

0 0 0 1 2

2
66664

3
77775

and construct a chain from this vector.
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(33) Prove that a generalized eigenvector of type 1 is an eigenvector.

(34) Prove that a generalized eigenvector of any type cannot be a zero vector.

(35) Let T: V! V be a linear transformation. Prove that the following sets are invariant

subspaces under T.

(a) {0}, (b) V;

(c) span{v1, v2, . . . , vk} where each vector is an eigenvector of T (not necessarily

corresponding to the same eigenvalue).

(36) Let V be a finite-dimensional vector space. Prove that V is the direct sum of two

subspaces U and W if and only if (i) each vector in V can be written as the sum of a

vector in U with a vector in W, and (ii) the only vector common to both U and W is

the zero vector.

(37) Let B be a basis of k-vectors for U, an invariant subspace of the linear transform-

ation T: V! V, and let C be a basis for W, another subspace (but not invariant)

with V ¼ U�W. Show that the matrix representation of T with respect to the basis

B [ C has the partitioned form

A ¼ A1 A2

0 A3

� �

with A1 having order k� k.

(38) Determine the length of the chains in a canonical basis if each chain is associated

with the same eigenvalue l and if a full set of index numbers is given by each of the

following.

(a) r3 ¼ r2 ¼ r1 ¼ 1, (b) r3 ¼ r2 ¼ r1 ¼ 2,

(c) r3 ¼ 1, r2 ¼ r1 ¼ 2, (d) r3 ¼ 1, r2 ¼ 2, r1 ¼ 3,

(e) r3 ¼ r2 ¼ 1, r1 ¼ 3, (f) r3 ¼ 3, r2 ¼ 4, r1 ¼ 3,

(g) r2 ¼ 2, r1 ¼ 4, (h) r2 ¼ 4, r1 ¼ 2,

(i) r2 ¼ 2, r1 ¼ 3, (j) r2 ¼ r1 ¼ 2.

In Problems 39 through 45, find a canonical basis for the given matrices.

(39)
3 1

�1 1

� �
. (40)

7 3 3

0 1 0

�3 �3 1

2
4

3
5.

(41)

5 1 �1

0 5 2

0 0 5

2
4

3
5. (42)

5 1 2

0 3 0

2 1 5

2
4

3
5.

(43)

2 1 0 �1

0 2 1 1

0 0 2 0

0 0 0 2

2
664

3
775. (44)

3 1 0 �1

0 3 1 0

0 0 4 1

0 0 0 4

2
664

3
775.
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(45)

4 1 1 0 0 �1

0 4 2 0 0 1

0 0 4 1 0 0

0 0 0 5 1 0

0 0 0 0 5 2

0 0 0 0 0 4

2
6666664

3
7777775.

In Problems 46 through 50, a full set of index numbers are specified for the eigenvalue 2 of

multiplicity 5 for a 5� 5 matrix A. In each case, find a matrix in Jordan canonical form

that is similar to A. Assume that a canonical basis is ordered so that chains of length 1

appear before chains of length 2, which appear before chains of length 3, and so on.

(46) r3 ¼ r2 ¼ 1, r1 ¼ 3. (47) r3 ¼ 1, r2 ¼ r1 ¼ 2.

(48) r2 ¼ 2, r1 ¼ 3. (49) r4 ¼ r3 ¼ r2 ¼ 1, r1 ¼ 2.

(50) r5 ¼ r4 ¼ r3 ¼ r2 ¼ r1 ¼ 1.

In Problems 51 through 56, a full set of index numbers are specified for the eigenvalue 3 of

multiplicity 6 for a 6� 6 matrix A. In each case, find a matrix in Jordan canonical form

that is similar to A. Assume that a canonical basis is ordered so that chains of length 1

appear before chains of length 2, which appear before chains of length 3, and so on.

(51) r3 ¼ r2 ¼ r1 ¼ 2. (52) r3 ¼ 1, r2 ¼ 2, r1 ¼ 3.

(53) r3 ¼ r2 ¼ 1, r1 ¼ 4. (54) r2 ¼ r1 ¼ 3.

(55) r2 ¼ 2, r1 ¼ 4. (56) r2 ¼ 1, r1 ¼ 5.

(57) A canonical basis for a linear transformation T: R4 ! R4 contains three chains

corresponding to the eigenvalue 2: two chains x1 and y1, each of length 1, and one

chain w1,w2 of length 2. Find the matrix representation of T with respect to this

canonical basis, ordered as follows.

(a) fx1, y1,w1,w2g, (b) fy1,w1, w2, x1g,
(c) fw1,w2, x1, y1g, (d) fw1,w2, y1, x1g.

(58) A canonical basis for a linear transformation T: R6 ! R6 contains two chains

corresponding to the eigenvalue 3: one chain x1 of length 1 and one chain y1, y2

of length 2, and two chains corresponding to the eigenvalue 5: one chain u1 of

length 1 and one chain of v1, v2 of length 2. Find the matrix representation of T with

respect to this canonical basis, ordered as follows.

(a) fx1, y1, y2, u1, v1, v2g, (b) fy1, y2, x1, u1, v1, v2g,
(c) fx1, u1, v1, v2, y1, y2g, (d) fy1, y2, v1, v2, x1, u1g,
(e) fx1, u1, y1, y2, v1, v2g, (f) fv1, v2, u1, v1, y1, y2g.

In Problems 59 through 73, find a matrix representation in Jordan canonical form for the

given linear transformation.

(59) T
a

b

� �
¼ 2a� 3b

a� 2b

� �
. (60) T

a

b

� �
¼ 3aþ b

�aþ 5b

� �
.

(61) T
a

b

� �
¼ 2a� b

aþ 4b

� �
. (62) T

a

b

� �
¼ aþ 2b

�aþ 4b

� �
.

410 . Appendix B



(63) T
a

b

� �
¼ 2aþ b

2aþ 3b

� �
. (64) T

a

b

� �
¼ 2a� 5b

a� 2b

� �
.

(65) T

a

b

c

2
4
3
5 ¼ 9aþ 3bþ 3c

3b

�3a� 3bþ 3c

2
4

3
5. (66) T

a

b

c

2
4
3
5 ¼ 2aþ 2b� 2c

2bþ c

2c

2
4

3
5.

(67) T

a

b

c

2
4
3
5 ¼ bþ 2c

�2b

2aþ b

2
4

3
5. (68) T

a

b

c

2
4
3
5 ¼ 2a� c

2aþ b� 2c

�aþ 2c

2
4

3
5.

(69) T

a

b

c

2
4
3
5 ¼ aþ b� c

0

aþ 2bþ 3c

2
4

3
5. (70) T

a

b

c

2
4
3
5 ¼ aþ 2bþ 3c

2aþ 4bþ 6c

3aþ 6bþ 9c

2
4

3
5.

(71) T

a

b

c

d

2
664

3
775 ¼

3aþ b� d

3bþ cþ d

3c

3d

2
664

3
775. (72) T

a

b

c

d

2
664

3
775 ¼

aþ b� d

bþ c

2cþ d

2d

2
664

3
775.

(73) T

a

b

c

d

e

f

g

2
666666664

3
777777775
¼

�a� cþ d þ eþ 3f

b

2aþ bþ 2c� d � e� 6f

�2a� cþ 2d þ eþ 3f

e

f

�a� bþ d þ 2eþ 4f þ g

2
666666664

3
777777775
, with l ¼ 1 as the only eigenvalue.

(74) The generalized null space of an n� n matrix A and eigenvalue l, denoted by Nl(A),

is the set of all vectors x 2 Rn such that (A� lI)kx ¼ 0 for some nonnegative

integer k. Show that if x is a generalized eigenvector of any type corresponding to

l, then x 2 Nl(A).

(75) Prove that Nl(A), as defined in Problem 74, is a subspace of Rn.

(76) Prove that every square matrix A commutes with (A� lI)n for every positive

integer n and every scalar l.

(77) Prove that Nl(A) is an invariant subspace of Rn under A.

(78) Prove that if A has order n� n and x 2 Nl(A), then (A� lI)nx ¼ 0.
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Appendix C

Markov Chains

Eigenvalues and eigenvectors arise naturally in the study of matrix representa-

tions of linear transformations, but that is far from their only use. In this

Appendix, we present an application to those probabilistic systems known as

Markov chains.

An elementary understanding of Markov chains requires only a little knowledge

of probabilities; in particular, that probabilities describe the likelihoods of

different events occurring, that probabilities are numbers between 0 and 1, and

that if the set of all possible events is limited to a finite number that are mutually

exclusive then the sum of the probabilities of each event occurring is 1. Signifi-

cantly more probability theory is needed to prove the relevant theorems about

Markov chains, so we limit ourselves in this section to simply understanding the

application.

" Definition 1. A finite Markov chain is a set of objects (perhaps

people), a set of consecutive time periods (perhaps five-year intervals),

and a finite set of different states (perhaps employed and unemployed)

such that

(i) during any given time period, each object is in only

one state (although different objects can be in differ-

ent states), and

(ii) the probability that an object will move from one

state to another state (or remain in the same state)

over a time period depends only on the beginning and

ending states. 3

We denote the states as state 1, state 2, state 3, through state N, and let pij

designate the probability of moving in one time period into state i from state

j(i, j ¼ 1, 2, . . . , N). The matrix P ¼ [pij ] is called a transition matrix.
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Example 1

Construct a transition matrix for the following Markov chain. A traffic control

administrator in the Midwest classifies each day as either clear or cloudy.

Historical data show that the probability of a clear day following a cloudy day

is 0.6, whereas the probability of a clear day following a clear day is 0.9.

Solution: Although one can conceive of many other classifications such as

rainy, very cloudy, partly sunny, and so on, this particular administrator opted

for only two, so we have just two states: clear and cloudy, and each day must fall

into one and only one of these two states. Arbitrarily we take clear to be state 1

and cloudy to be state 2. The natural time unit is one day. We are given that

p12 ¼ 0:6, so it must follow that p22 ¼ 0:4, because after a cloudy day the next

day must be either clear or cloudy and the probability that one or the other of

these two events occurring is 1. Similarly, we are given that p11 ¼ 0:9, so it also

follows that p21 ¼ 0:1. The transition matrix is

clear cloudy

P ¼
0:9 0:6

0:1 0:4

� �
clear

cloudy &

Example 2

Construct a transition matrix for the following Markov chain. A medical survey

lists individuals as thin, normal, or obese. A review of yearly check-ups from

doctors’ records showed that 80% of all thin people remained thin one year later

while the other 20% gained enough weight to be reclassified as normal. For

individuals of normal weight, 10% became thin, 60% remained normal, and 30%

became obese the following year. Of all obese people, 90% remained obese one

year later while the other 10% lost sufficient weight to fall into the normal range.

Although some thin people became obese a year later, and vice versa, their

numbers were insignificant when rounded to two decimals.

Solution: We take state 1 to be thin, state 2 to be normal, and state 3 to be

obese. One time period equals one year. Converting each percent to its decimal

representation so that it may also represent a probability, we have p21 ¼ 0:2, the

probability of an individual having normal weight after being thin the previous

year, p32 ¼ 0:3, the probability of an individual becoming obese one year after

having a normal weight, and, in general,

thin normal obese

P ¼
0:8 0:1 0

0:2 0:6 0:1

0 0:3 0:9

2
64

3
75 thin

normal &

obese

A transition matrix

for an N-state

Markov chain is an

N �N matrix with

nonnegative entries;

the sum of the

entries in each

column is 1.
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Powers of a transition matrix have the same properties of a transition matrix: all

elements are between 0 and 1, and every column sum equals 1 (see Problem 20).

Furthermore,

" Theorem 1. If P is a transition matrix for a finite Markov chain, and if

p
(k)
ij denotes the i-j element of P k, the kth power of P, then p

(k)
ij is the

probability of moving to state i from state j in k time periods. 3

For the transition matrix created in Example 2, we calculate the second and third

powers as

thin normal obese

P2 ¼
0:66 0:14 0:01

0:28 0:41 0:15

0:06 0:45 0:84

2
64

3
75 thin

normal

obese

and

thin normal obese

P3 ¼
0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
64

3
75 thin

normal &

obese

Here p
(2)
11 5 ¼ 0:66 is the probability of a thin person remaining thin two

years later, p
(2)
32 6 ¼ 0:45 is the probability of a normal person becoming fat

two years later, while p
(2)
13 7 ¼ 0:023 is the probability of a fat person becoming

thin three years later.

For the transition matrix created in Example 1, we calculate the second power

to be

clear cloudy

P2 ¼
0:87 0:78

0:13 0:22

� �
clear

cloudy

Consequently, p
(2)
12 9 ¼ 0:78 is the probability of a cloudy day being followed by

a clear day two days later, while p
(2)
22 10 ¼ 0:22 is the probability of a cloudy day

being followed by a cloudy day two days later. Calculating the tenth power of

this same transition matrix and rounding all entries to four decimal places for

presentation purposes, we have

clear cloudy

P10 ¼
0:8571 0:8571

0:1429 0:1429

� �
clear

cloudy

(C:1)
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Since p
(10)
11 12 ¼ p

(10)
12 13 ¼ 0:8571, it follows that the probability of having a clear

day 10 days after a cloudy day is the same as the probability of having a clear day

10 days after a clear day.

An object in a Markov chain must be in one and only one state at any time, but

that state is not always known with certainty. Often, probabilities are provided

to describe the likelihood of an object being in any one of the states at any given

time. These probabilities can be combined into an n-tuple. A distribution vector d

for an N-state Markov chain at a given time is an N-dimensional column matrix

having as its components, one for each state, the probabilities that an object in

the system is in each of the respective states at that time.

Example 3 Find the distribution vector for the Markov chain described in

Example 1 if the current day is known to be cloudy.

Solution: The objects in the system are days, which are classified as either clear,

state 1, or cloudy, state 2. We are told with certainty that the current day is

cloudy, so the probability that the day is cloudy is 1 and the probability that the

day is clear is 0. Therefore,

d ¼ 0

1

� �
&

Example 4 Find the distribution vector for the Markov chain described in

Example 2 if it is known that currently 7% of the population is thin, 31% of

population is of normal weight, and 62% of the population is obese.

Solution: The objects in the system are people. Converting the stated percentages

into their decimal representations, we have

d ¼
0:07

0:31

0:62

2
4

3
5 &

Different time periods can have different distribution vectors, so we let d(k)

denote a distribution vector after k time periods. In particular, d(1) is a distribu-

tion vector after 1 time period, d(2) is a distribution vector after 2 time periods,

and d(10) is a distribution vector after 10 time periods. An initial distribution

vector for the beginning of a Markov chain is designated by d(0). The distribution

vectors for various time periods are related.

" Theorem 2. If P is a transition matrix for a Markov chain, then

d(k) ¼ Pkd(0) ¼ Pd(k�1),

where Pk denotes the kth power of P. 3

A distribution

vector for an N-state

Markov chain at a

given time is a

column matrix

whose i th

component is the

probability that an

object is in the ith

state at that given

time.

416 . Appendix C



For the distribution vector and transition matrix created in Examples 1 and 3,

we calculate

d(1) ¼ Pd(0) ¼ 0:9 0:6
0:1 0:4

� �
0

1

� �
¼ 0:6

0:4

� �

d(2) ¼ P2d(0) ¼ 0:87 0:78

0:13 0:22

� �
0

1

� �
¼ 0:78

0:22

� �
(C:2)

d(10) ¼ P10d(0) ¼ 0:8571 0:8571

0:1429 0:1429

� �
0

1

� �
¼ 0:8571

0:1429

� �

The probabilities of following a cloudy day with a cloudy day after 1 time

period, 2 time periods, and 10 time periods, respectively, are 0.4, 0.22, and

0.1429.

For the distribution vector and transition matrix created in Examples 2 and 4, we

calculate

d(3) ¼ P3d(0) ¼
0:556 0:153 0:023

0:306 0:319 0:176

0:138 0:528 0:801

2
4

3
5 0:07

0:31

0:62

2
4

3
5 ¼ 0:10061

0:22943

0:66996

2
4

3
5

Rounding to three decimal places, we have that the probabilities of an arbitrarily

chosen individual being thin, normal weight, or obese after three time periods

(years) are, respectively, 0.101, 0.229, and 0.700.

The tenth power of the transition matrix created in Example 1 is given by

equation (C.1) as

P10 ¼ 0:8571 0:8571

0:1429 0:1429

� �

Continuing to calculate successively higher powers of P we find that each is

identical to P10 when we round all entries to four decimal places. Convergence

is a bit slower for the transition matrix associated with Example 3, but it

also occurs. As we calculate successively higher powers of that matrix, we find

that

P10 ¼
0:2283 0:1287 0:0857

0:2575 0:2280 0:2144

0:5142 0:6433 0:6999

2
4

3
5

P20 ¼
0:1294 0:1139 0:1072

0:2277 0:2230 0:2210

0:6429 0:6631 0:6718

2
4

3
5 (C:3)

Markov Chains . 417



and

lim
n!1

Pn ¼
0:1111 0:1111 0:1111

0:2222 0:2222 0:2222

0:6667 0:6667 0:6667

2
4

3
5

where all entries have been rounded to four decimal places for presentation

purposes.

Not all transition matrices have powers that converge to a limiting matrix L, but

many do. A transition matrix for a finite Markov chain is regular if it or one of

its powers contains only positive elements. Powers of a regular matrix always

converge to a limiting matrix L.

The transition matrix created in Example 1 is regular because all of its elements

are positive. The transition matrix P created in Example 2 is also regular because

all elements of P2, its second power, are positive. In contrast, the transition

matrix

P ¼ 0 1

1 0

� �

is not regular because each of its powers is either itself or the 2� 2 identity

matrix, both of which contain zero entries.

By definition, some power of a regular matrix P, say the mth, contains only

positive elements. Since the elements of P are nonnegative, it follows from

matrix multiplication that every power of P greater than m must also have all

positive components. Furthermore, if L ¼ lim
k!1

Pk, then it is also true that

L ¼ lim
k!1

Pk�1. Therefore,

L ¼ lim
k!1

Pk ¼ lim
k!1

(PPk�1) ¼ P lim
k!1

Pk�1

� �
¼ PL (C:4)

Denote the columns of L as x1, x2, . . . , xN , respectively, so that L ¼
[x1 x2 . . . xN ]. Then equation (C.4) becomes

[x1 x2 . . . xN ] ¼ P[x1 x2 . . . xN ]

where xj ¼ Pxj (j ¼ 1, 2, . . . , N), or Pxj ¼ (1)xj. Thus, each column of L is

an eigenvector of P corresponding to the eigenvalue 1! We have proven part of

the following important result:

" Theorem 3. If an N �N transition matrix P is regular, then successive

integral powers of P converge to a limiting matrix L whose columns are

eigenvectors of P associated with eigenvalue l ¼ 1. The components of

this eigenvector are positive and sum to unity. 3

A transition matrix

is regular if one of

its powers has only

positive elements.
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Even more is true. If P is regular, then its eigenvalue l ¼ 1 has multiplicity 1, and

there is only one linearly independent eigenvector associated with that eigen-

value. This eigenvector will be in terms of one arbitrary constant, which is

uniquely determined by the requirement that the sum of the components is 1.

Thus, each column of L is the same eigenvector.

We define the limiting state distribution vector for an N-state Markov chain as

an N-dimensional column vector d(1) having as its components the limiting

probabilities that an object in the system is in each of the respective states after

a large number of time periods. That is,

d(1) ¼ lim
n!1

d(n)

Consequently,

d(1) ¼ lim
n!1

d(n) ¼ lim
n!1

(P nd(0)) ¼ lim
n!1

P n
� �

d(0) ¼ Ld(0)

Each column of L is identical to every other column, so each row of L contains

a single number repeated N times. Combining this with the fact that d(0) has

components that sum to 1, it follows that the product Ld(0) is equal to each of

the identical columns of L. That is, d(1) is the eigenvector of P corresponding to

l ¼ 1, having the sum of its components equal to 1.

Example 5 Find the limiting state distribution vector for the Markov chain

described in Example 1.

Solution: The transition matrix is

P ¼ 0:9 0:6
0:1 0:4

� �

which is regular. Eigenvectors for this matrix have the form

x ¼ x

y

� �

Eigenvectors corresponding to l ¼ 1 satisfy the matrix equation (P� 1I)x ¼ 0,

or equivalently, the set of equations

�0:1xþ 0:6y ¼ 0
0:1x� 0:6y ¼ 0

Solving by Gaussian elimination, we find x ¼ 6y with y arbitrary. Thus,

x ¼ 6y

y

� �

The limiting state

distribution vector

for a transition

matrix P is the

unique eigenvector

of P corresponding

to l ¼ 1, having

the sum of its

components equal

to 1.
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If we choose y so that the sum of the components of x sum to 1, we have

7y ¼ 1, or y ¼ 1=7. The resulting eigenvector is the limiting state distribution

vector, namely

d(1) ¼ 6=7
1=7

� �

Furthermore,

L ¼ 6=7 6=7
1=7 1=7

� �

Over the long run, six out of seven days will be clear and one out of seven days

will be cloudy. We see from equations (C.1) and (C.2) that convergence to four

decimal places for the limiting state distribution and L is achieved after 10 time

periods. &

Example 6 Find the limiting state distribution vector for the Markov chain

described in Example 2.

Solution: The transition matrix is

P ¼
0:8 0:1 0

0:2 0:6 0:1
0 0:3 0:9

2
4

3
5

P2 has only positive elements, so P is regular. Eigenvectors for this matrix have

the form

x ¼
x

y

z

2
4
3
5

Eigenvectors corresponding to l ¼ 1 satisfy the matrix equation (P� 1I)x ¼ 0,

or equivalently, the set of equations

�0:2xþ 0:1y ¼ 0
0:2x� 0:4yþ 0:1z ¼ 0

0:3y� 0:1z ¼ 0

Solving by Gaussian elimination, we find x ¼ (1=6)z, y ¼ (1=3)z, with z arbitrary.

Thus,

x ¼
z=6
z=3
z

2
4

3
5
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We choose z so that the sum of the components of x sum to 1, hence

(1=6)zþ (1=3)zþ z ¼ 1, or z ¼ 2=3. The resulting eigenvector is the limiting

state distribution vector, namely,

d(1) ¼
1=9
2=9
6=9

2
4

3
5

Furthermore,

L ¼
1=9 1=9 1=9
2=9 2=9 2=9
6=9 6=9 6=9

2
4

3
5

Compare L with equation (C.3). The components of d(1) imply that, over the

long run, one out of nine people will be thin, two out of nine people will be of

normal weight, and six out of nine people will be obese. &

Problems Appendix C

(1) Determine which of the following matrices cannot be transition matrices and

explain why:

(a)
0:15 0:57

0:85 0:43

� �
, (b)

0:27 0:74

0:63 0:16

� �
,

(c)
0:45 0:53

0:65 0:57

� �
, (d)

1:27 0:23

�0:27 0:77

� �
,

(e)

1 1=2 0

0 1=3 0

0 1=6 0

2
4

3
5, (f)

1=2 1=2 1=3
1=4 1=3 1=4
1=4 1=6 7=12

2
4

3
5,

(g)

0:34 0:18 0:53

0:38 0:42 0:21

0:35 0:47 0:19

2
4

3
5, (h)

0:34 0:32 �0:17

0:78 0:65 0:80

�0:12 0:03 0:37

2
4

3
5:

(2) Construct a transition matrix for the following Markov chain: Census figures show

a population shift away from a large midwestern metropolitan city to its suburbs.

Each year, 5% of all families living in the city move to the suburbs while during the

same time period only 1% of those living in the suburbs move into the city. Hint:

Take state 1 to represent families living in the city, state 2 to represent families living

in the suburbs, and one year as one time period.

(3) Construct a transition matrix for the following Markov chain: Every four years,

voters in a New England town elect a new mayor because a town ordinance prohibits

mayors from succeeding themselves. Past data indicate that a Democratic mayor is

succeeded by another Democrat 30% of the time and by a Republican 70% of the
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time. A Republican mayor, however, is succeeded by another Republican 60% of

the time and by a Democrat 40% of the time. Hint: Take state 1 to represent

a Republican mayor in office, state 2 to represent a Democratic mayor in office,

and four years as one time period.

(4) Construct a transition matrix for the following Markov chain: The apple harvest in

New York orchards is classified as poor, average, or good. Historical data indicates

that if the harvest is poor one year then there is a 40% chance of having a good

harvest the next year, a 50% chance of having an average harvest, and a 10% chance

of having another poor harvest. If a harvest is average one year, the chance of a poor,

average, or good harvest the next year is 20%, 60%, and 20%, respectively. If

a harvest is good, then the chance of a poor, average, or good harvest the next year

is 25%, 65%, and 10%, respectively. Hint: Take state 1 to be a poor harvest, state 2 to

be an average harvest, state 3 to be a good harvest, and one year as one time period.

(5) Construct a transition matrix for the following Markov chain: Brand X and brand

Y control the majority of the soap powder market in a particular region, and each

has promoted its own product extensively. As a result of past advertising campaigns,

it is known that over a two-year period of time, 10% of brand Y customers change

to brand X and 25% of all other customers change to brand X. Furthermore, 15%

of brand X customers change to brand Y and 30% of all other customers change

to brand Y. The major brands also lose customers to smaller competitors, with 5% of

brand X customers switching to a minor brand during a two-year time period and 2%

of brand Y customers doing likewise. All other customers remain loyal to their past

brand of soap powder. Hint: Take state 1 to be a brand X customer, state 2 a brand

Y customer, state 3 another brand’s customer, and two years as one time period.

(6) (a) Calculate P2 and P3 for the two-state transition matrix:

P ¼ 0:1 0:4
0:9 0:6

� �

(b) Determine the probability of an object beginning in state 1 and remaining in

state 1 after two time periods.

(c) Determine the probability of an object beginning in state 1 and ending in state 2

after two time periods.

(d) Determine the probability of an object beginning in state 1 and ending in state 2

after three time periods.

(e) Determine the probability of an object beginning in state 2 and remaining in

state 2 after three time periods.

(7) Consider a two-state Markov chain. List the number of ways an object in state 1 can

end in state 1 after three time periods.

(8) Consider the Markov chain described in Problem 2. Determine (a) the probability a

family living in the city will find themselves in the suburbs after two years, and (b) the

probability a family living in the suburbs will find themselves living in the city after

two years.

(9) Consider the Markov chain described in Problem 3. Determine (a) the probability

there will be a Republican mayor eight years after a Republican mayor serves, and

(b) the probability there will be a Republican mayor 12 years after a Republican

mayor serves.
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(10) Consider the Markov chain described in Problem 4. It is known that this year that

the apple harvest was poor. Determine (a) the probability next year’s harvest will be

poor, and (b) the probability that the harvest in two years will be poor.

(11) Consider the Markov chain described in Problem 5. Determine (a) the probability

that a brand X customer will remain a brand X customer after 4 years, (b) after

6 years, and (c) the probability that a brand X customer will become a brand Y

customer after 4 years.

(12) Consider the Markov chain described in Problem 2. (a) Explain the significance of

each component of d(0) ¼ [ 0:6 0:4 ]T. (b) Use this vector to find d(1) and d(2).

(13) Consider the Markov chain described in Problem 3. (a) Explain the significance of

each component of d(0) ¼ [ 0:4 0:5 0:1 ]T. (b) Use this vector to find d(1) and d(2).

(14) Consider the Markov chain described in Problem 4. (a) Determine an initial

distribution vector if the town currently has a Democratic mayor, and (b) show

that the components of d(1) are the probabilities that the next mayor will be

a Republican and a Democrat, respectively.

(15) Consider the Markov chain described in Problem 5. (a) Determine an initial

distribution vector if this year’s crop is known to be poor. (b) Calculate d(2) and

use it to determine the probability that the harvest will be good in two years.

(16) Find the limiting distribution vector for the Markov chain described in Problem 2,

and use it to determine the probability that a family eventually will reside in the city.

(17) Find the limiting distribution vector for the Markov chain described in Problem 3,

and use it to determine the probability of having a Republican mayor over the

long run.

(18) Find the limiting distribution vector for the Markov chain described in Problem 4,

and use it to determine the probability of having a good harvest over the long run.

(19) Find the limiting distribution vector for the Markov chain described in Problem 5,

and use it to determine the probability that a person will become a Brand Y

customer over the long run.

(20) Use mathematical induction to prove that if P is a transition matrix for an n-state

Markov chain, then any integral power of P has the properties that (a) all elements

are nonnegative numbers between zero and 1, and (b) the sum of the elements in

each column is 1.

(21) A nonzero row vector y is a left eigenvector for a matrix A if there exists a scalar l

such that yA ¼ ly. Prove that if x and l are a corresponding pair of eigenvectors

and eigenvalues for a matrix B, then xT and l are a corresponding pair of left

eigenvectors and eigenvalues for BT.

(22) Show directly that the n-dimensional row vector y ¼ [ 1 1 1 . . . 1 ] is a left eigen-

vector for any N �N transition matrix P. Then, using the results of Problem 20,

deduce that l ¼ 1 is an eigenvalue for any transition matrix.

(23) Prove that every eigenvalue l of a transition matrix P satisfies the inequality

jlj # 1. Hint: Let x ¼ [ x1 x2 . . . xN]T be an eigenvector of P corresponding

to the eigenvalue l, and let xi ¼ max {x1, x2, . . . , xN}. Consider the ith component

of the vector equation Px ¼ lx, and show that jljjxij # jxij.
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(24) A state in a Markov chain is absorbing if no objects in the system can leave the state

after they enter it. Describe the ith column of a transition matrix for a Markov

chain in which the ith state is absorbing.

(25) Prove that a transition matrix for a Markov chain with one or more absorbing

states cannot be regular.
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Appendix D

The Simplex Method:
An Example

The simplex method is an analytical technique that can be used to solve maxi-

mization or minimization problems. We give the following example to illustrate

this method.

Example 1

Suppose a small company manufactures two types of bicycles: the X model and

the Y model. Let us further assumes that each X model requires two hours of

construction and four hours of painting, while each Y model bicycle requires

three hours of construction and one hour of painting. If the number of person-

hours of construction is limited to 120 hours per week and the number of person-

hours of painting is limited to 140 hours over the same period, how many of each

model should be produced to maximize profits if each X model nets $10 and each

Y model nets $12?

Solution: To solve this problem, we assign the following variables and form the

following two inequalities and one equation:

. Let x equal the number of X model bicycles to be produced

. Let y equal the number of Y model bicycles to be produced

. The ‘‘construction’’ constraint yields 2xþ 3y � 120 hours

. The ‘‘painting’’ constraint implies 4xþ 1y � 140 hours

. The profit (also known as the objective function) is given by P(x, y) ¼
10xþ 12y

We will solve this problem by the simplex method. We will slightly modify the

concepts of a matrix and elementary row operations (see Section 1.4), while

introducing the idea of slack variables.

Our first step is to rewrite our two inequalities as equations—‘‘taking up the

slack’’—by means of the slack variables, s and t. That is,

2xþ 3yþ 1s ¼ 120 (D:1)
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and

4xþ 1yþ 1t ¼ 140 (D:2)

Our next step is to rewrite our profit equation as

�10x� 12yþ 0sþ 0tþ 1P ¼ 0 (D:3)

We will now recast equations (D.1), (D.2), and (D.3) into an augmented matrix,

sometimes call the initial tableau:

x y s t P

2 3 1 0 0 120

4 1 0 1 0 140

�10 �12 0 0 1 0

2
6664

3
7775

We are now ready to execute the simplex method. The algorithm consists of the

following steps:

. Choose the most negative number in the last row; in this case it is �12. This

column (the y column) will provide our first pivot element (see Section 1.4).

. Divide each positive y value into the corresponding element in the last

column; this yields 120=3 ¼ 40 and 140=1 ¼ 140.

. Take the y value that has yielded the least positive number as our pivot

element. In our example, y ¼ 3 gives us the lesser positive value.

. To pivot, we divide each element of the second row by 3:

x y s t P

2=3 1 1=3 0 0 40

4 0 0 1 0 140

�10 �12 0 0 1 0

2
6664

3
7775

. Using elementary row operations, we ‘‘pivot’’ using the ‘‘1’’ in the y column

to arrive at ‘‘0’’ for all other elements in the y column:

x y s t P

2=3 1 1=3 0 0 40

10=3 0 �1=3 1 0 100

�2 0 4 0 1 480

2
6664

3
7775
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. Since we still have a negative element in the last row, we must repeat the

process. We divide each positive x value into the corresponding element in

the last column. This yields 40=(2=3) ¼ 60 and 100=(10=3) ¼ 30.

. Since x ¼ 10=3 gives the least positive value, we will pivot about x ¼ 10=3.

Multiplying the third row by 3/10 gives

x y s t P

2=3 1 1=3 0 0 40

1 0 �1=10 3=10 0 30

�2 0 4 0 1 480

2
6664

3
7775

. Using elementary row operations, we arrive at 0 for all other elements in the

x column

x y s t P

0 1 2=5 �1=5 0 20

1 0 �1=10 3=10 0 30

0 0 19=5 2=5 1 540

2
6664

3
7775

. Since there are no negative elements in the last row, we are finished! That is,

the method is completed once all the negative values in the last row are

eliminated. Our solution can be read directly from this final matrix as

follows: the 1 in the y column implies that the optimum y value can be

ascertained by reading the number in the rightmost column of that row;

ditto for the y value. The actual value of the maximum profit is given by

the element in the lower right-hand corner. That is,

y ¼ 20

x ¼ 30

P ¼ $540

A few remarks are in order. First, we assumed a unique solution existed. If

this was not the case, then complications are introduced into the process.

Second, the slack variables are merely used to transform the inequalities into

equations. Whatever their values are determined to be is unimportant; our

goal was to find x and y, which led to the maximization of the profit. Finally,

this technique can also be used with regard to minimization. In this case, the

approach deals with a concept known as duality.
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Problems Appendix D

(1) Solve the problem illustrated in this Appendix if the constraints are the same, but the

profit function is given by P(x, y) ¼ 7xþ 10y.

(2) Solve the problem illustrated in ithis Appendix if the constraints are the same, but

the profit function is given by P(x, y) ¼ 100xþ 10y.

(3) Solve the problem illustrated in this Appendix if both the ‘‘construction’’ and the

‘‘painting’’ constraints are both 600 hours and the profit function remains at

P(x, y) ¼ 10xþ 12y.
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Appendix E

A Word on Numerical
Techniques and Technology

As we have demonstrated in this text, linear algebra is a very powerful tool. It

can be applied to such diverse areas as differential equations (see Chapter 4) and

to least-squares techniques (see Chapter 5). Yet the actual calculations needed to

arrive at solutions can be very tedious. The computation of higher-order deter-

minants (see Appendix A) and the application of the QR algorithm (see Section

5.3) can likewise require much time.

The field of numerical analysis can assist with calculations and, if appropriate,

with approximations. But even when numerical techniques are uses, one almost

always needs computational assistance in the form of technology.

One of the most useful tools is MATLAB1 (http://www.mathworks.com/prod-

ucts/matlab/).This software is employed by educators and is very useful with

respect to many topics in linear algebra.

Another software package is MATHEMATICA1 (http://www.wolfram.com/).

To illustrate this computer algebra system, the reader is asked to refer to the

modeling problem of Section 4.8.

The syntax for the system of differential equations is given by:

DSolve[{S1[t] ¼ 10� S1[t]=20, S20[t] ¼ S1[t]=50þ S3[t]=25� (6=50)�S2[t], S30[t]

¼ S3[t]=25þ S2[t]=50, S1[0] ¼ 0, S2[0] ¼ 0, S3[0] ¼ 0},

{S1[t], S2[t], S3[t]}, t]

The solution, obtained by hitting the ‘‘Shift’’ and ‘‘Enter’’ keys simultaneously, is

as follows:
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One readily sees why this problem would be difficult to solve without technology.
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Answers and Hints to Selected Problems

Chapter 1

Section 1.1

(1) A is 2� 2, B is 2� 2, C is 2� 2, D is 4� 2, E is 4� 2,

F is 4� 2, G is 2� 3, H is 3� 3, J is 1� 5.

(2) a12 ¼ 2, a31 does not exist;

b12 ¼ 6, b31 does not exist;

c12 ¼ 0, c31 does not exist;

d12 ¼ 1, d31 ¼ 3;

e12 ¼ 2, e31 ¼ 5;

f12 ¼ 1, f31 ¼ 0;

g12 ¼ 1=3, e31 does not exist;

h12 ¼
ffiffiffi
3
p

, h31 ¼
ffiffiffi
5
p

;

j12 ¼ 0, j31 does not exist.

(3) a11 ¼ 1, a21 ¼ 3, b32 does not exist, d32 ¼ �2,

d23 does not exist, e22 ¼ �2, g23 ¼ �5=6,

h33 ¼
ffiffiffi
3
p

, j21 does not exist.

(4) A, B, C, and H. (5) J is a row matrix.

(6)

1

2

3

4

2
664
3
775. (7) 1 4 9 16 25½ ].

(8) A ¼ 1 �1

�1 1

� �
. (9) A ¼

1 1=2 1=3
2 1 2=3
3 3=2 1

2
4

3
5.

(10) B ¼
1 0 �1

0 �1 �2

�1 �2 �3

2
4

3
5. (11) C ¼ 1 1 1 1

1 2 3 4

� �
.

(12) D ¼
0 �1 �2 �3

3 0 �1 �2

4 5 0 �1

2
4

3
5. (13)

2 4

6 8

� �
.
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(14)
�5 �10

�15 �20

� �
. (15)

9 3

�3 6

9 �6

6 18

2
664

3
775. (16)

�20 20

0 �20

50 �30

50 10

2
664

3
775.

(17)

0 �1

1 0

0 0

�2 �2

2
664

3
775. (18)

6 8

10 12

� �
. (19)

0 2

6 1

� �
.

(20)

1 3

�1 0

8 �5

7 7

2
664

3
775. (21)

3 2

�2 2

3 �2

4 8

2
664

3
775. (22) Does not exist.

(23)
�4 �4

�4 �4

� �
. (24)

�2 �2

0 �7

� �
. (25)

5 �1

�1 4

�2 1

�3 5

2
664

3
775.

(26)

3 0

0 2

3 �2

0 4

2
664

3
775. (27)

17 22

27 32

� �
. (28)

5 6

3 18

� �
.

(29)
�0:1 0:2

0:9 �0:2

� �
. (30)

4 �3

�1 4

�10 6

�8 0

2
664

3
775. (31) X ¼ 4 4

4 4

� �
.

(32) Y ¼ �11 �12

�11 �19

� �
. (33) X ¼

11 1

�3 8

4 �3

1 17

2
664

3
775.

(34) Y ¼

�1:0 0:5
0:5 �1:0
2:5 �1:5
1:5 �0:5

2
664

3
775. (35) R ¼ �2:8 �1:6

3:6 �9:2

� �
.

(36) S ¼

�1:5 1:0
�1:0 �1:0
�1:5 1:0

2:0 0

2
664

3
775.

(37)
�u3 þ 6u2 þ u 6u� 6

21 �u3 � 2u2 � uþ 6=u

� �
.

(38) [aij ]þ [bij ] ¼ [aij þ bij ] ¼ [bij þ aij ] ¼ [bij ]þ [aij ].

(39) [aij ]þ [0ij ] ¼ [aij þ 0ij ] ¼ [aij þ 0] ¼ [aij ].

(40) (l1 þ l2)[aij ] ¼ [(l1 þ l2)aij ] ¼ [l1aij þ l2aij ] ¼ [l1aij ]þ [l2aij ] ¼ l1[aij ]þ l2[aij ].

(41) (l1l2)[aij ] ¼ [(l1l2)aij ] ¼ [l1(l2aij)] ¼ l1[l2aij ] ¼ l1(l2[aij ]).
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(42)

Refrigerators Stoves Washing machines Dryers

3 5 3 4 store 1

0 2 9 5 store 2

4 2 0 0 store 3

2
4

3
5

(43)

72 12 16

45 32 16

81 10 35

2
4

3
5.

(44)

Purchase price Interest rate

1,000 0:07

2,000 0:075

3,000 0:0725

2
64

3
75 first certificate

second certificate

third certificate

(45) (a) 200 150½ �, (b) 600 450½ �, (c) 550 350½ �.

(46) (b) 11 2 6 3½ �, (c) 9 4 10 8½ �.

(47) (b) 10,500 6,000 4,500½ �, (c) 35,500 14,500 3,300½ �.

Section 1.2

(1) (a) 2� 2, (b) 4� 4, (c) 2� 1, (d) Not defined, (e) 4� 2,

(f) 2� 4, (g) 4� 2, (h) Not defined, (i) Not defined, (j) 1� 4,

(k) 4� 4, (l) 4� 2.

(2)
19 22

43 50

� �
. (3)

23 34

31 46

� �
. (4)

5 �4 3

9 �8 7

� �
.

(5) A ¼ 13 �12 11

17 �16 15

� �
. (6) Not defined. (7) �5 �6½ �.

(8) �9 �10½ �. (9) �7 4 �1½ �. (10) Not defined.

(11)
1 �3

7 �3

� �
. (12)

2 �2 2

7 �4 1

�8 4 0

2
4

3
5. (13) 1 3½ �.

(14) Not defined. (15) Not defined. (16) Not defined.

(17)

�1 �2 �1

1 0 �3

1 3 5

2
4

3
5. (18)

2 �2 1

2 0 0

1 �2 2

2
4

3
5. (19) �1 1 5½ �.

(21) AB ¼ 0. (22) AB ¼ AC ¼ 8 6

4 3

� �
. (23) AB ¼ CB ¼ 8 16

2 4

� �
.

(24)
xþ 2y

3xþ 4y

� �
. (25)

x� z

3xþ yþ z

xþ 3y

2
4

3
5. (26)

a11xþ a12y

a21xþ a22y

� �
.

(27)
b11xþ b12yþ b13z

b21xþ b22yþ b23z

� �
. (28)

0 0

0 0

� �
.
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(29)
0 40

�16 8

� �
. (30)

0 0 0

0 0 0

0 0 0

2
4

3
5.

(33) Let the ith row of an m� n matrix A be 0. If C ¼ AB, then for j ¼ 1, 2, . . . , n,

cij ¼
Xn

k¼1

aikbkj ¼
Xn

k¼1

(0)bkj ¼ 0

(34)
1 2

3 4

� �
1 1

0 0

� �
¼ 1 1

3 3

� �
.

(35) Let the jth column of an m� n matrix B be 0. If C ¼ AB, then for i ¼ 1, 2, . . . ,m,

cij ¼
Xn

k¼1

aikbkj ¼
Xn

k¼1

aik(0) ¼ 0

(36)
1 0

1 0

� �
1 2

3 4

� �
¼ 1 2

1 2

� �
.

(37) [aij ]([bij ][cij ]) ¼ [aij ]
Xn

k¼1

bikckj

" #
¼

Xm
p¼1

aip

Xn

k¼1

bpkckj

 !" #

¼
Xm
p¼1

Xn

k¼1

aipbpkckj

" #
¼

Xn

k¼1

Xm
p¼1

aipbpkckj

" #

¼
Xn

k¼1

Xm
p¼1

aipbpk

 !
ckj

" #

¼
Xm
p¼1

aipbpj

" #
[cij ] ¼ ([aij ][bij ])[cij ]

(39)
2 3

4 �5

� �
x

y

� �
¼ 10

11

� �
. (40)

5 20

�1 4

� �
x

y

� �
¼ 80

�64

� �
.

(41)

3 3

6 �8

�1 2

2
4

3
5 x

y

� �
¼

100

300

500

2
4

3
5. (42)

1 3

2 �1

�2 �6

4 �9

�6 3

2
66664

3
77775 x

y

� �
¼

4

1

�8

�5

�3

2
66664

3
77775.

(43)
1 1 �1

3 2 4

� � x

y

z

2
4
3
5 ¼ 0

0

� �
. (44)

2 �1 0

0 �4 �1

� � x

y

z

2
4
3
5 ¼ 12

15

� �
.

(45)

1 2 �2

2 1 1

�1 1 �1

2
4

3
5 x

y

z

2
4
3
5 ¼ �1 5 �2½ �. (46)

2 1 �1

1 2 1

3 �1 2

2
4

3
5 x

y

z

2
4
3
5 ¼ 0

0

0

2
4
3
5.
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(47)

1 1 1

2 1 3

1 3 0

2
4

3
5 x

y

z

2
4
3
5 ¼ 2

4

1

2
4
3
5. (48)

1 2 �1

2 �1 2

2 2 �1

1 2 1

2
664

3
775 x

y

z

2
4
3
5 ¼

5

1

7

3

2
664
3
775.

(49)

5 3 2 4

1 1 0 1

3 2 2 0

1 1 2 3

2
664

3
775

x

y

z

w

2
664

3
775 ¼

5

0

�3

4

2
664

3
775. (50)

2 �1 1 �1

1 2 �1 2

1 �3 2 �3

2
4

3
5 x

y

z

w

2
664

3
775 ¼ 1

�1

2

2
4

3
5.

(51) (a) pn ¼ [38,000], which is the total revenue for the flight.

(b) np ¼
26,000 45,500 65,000

4,000 7,000 10,000

2,000 3,500 5,000

2
4

3
5, which is of no significance.

(52) (a) hP ¼ [ 9,625 9,762:50 9,887:50 10,100 9,887:50 ], which tabulates the

value of the portfolio each day.

(b) Ph does not exist.

(53) Tw ¼ [ 14:00 65:625 66:50 ]T, which tabulates the cost of producing each prod-

uct.

(54) qTw ¼ [33,862:50], which is the cost of producing all items on order.

(55) FC ¼
613 625

887 960

1870 1915

2
4

3
5, which tabulates the number of each gender in each state of

sickness.

Section 1.3

(1) (a) (AB)T ¼ BTAT ¼
�3 �1

6 �7

3 4

2
4

3
5, ATBT is not defined.

(b) (AB)T ¼ BTAT ¼ 18 40

24 52

� �
, ATBT ¼

8 18 28

10 22 34

12 26 40

2
4

3
5.

(c) (AB)T ¼ BTAT ¼
27 11 22

8 �19 56

�4 11 �23

2
4

3
5, ATBT ¼

8 2 �15

54 3 2

�27 6 �36

2
4

3
5.

(2)

7 4 �1

6 1 0

2 2 �6

2
4

3
5.

(3) xTx ¼ [29] and xxT ¼
4 6 8

6 9 12

8 12 16

2
4

3
5.

(4) (a) BAT, (b) 2AT, (c) (BT þ C)A, (d) ABþ CT,

(e) ATAT þ ATA� AAT � AA.

(5) (a), (b), and (d).
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(6)
a b

c d

� �
, a b½ �, c d½ �, a

c

� �
,

b

d

� �
, [a], [b], [c], [d].

(7) Partition A into four 2� 2 submatrices. Then A2 ¼

18 6 0 0

12 6 0 0

0 0 1 0

0 0 3 4

2
664

3
775.

(8) Partition B into four 2� 2 submatrices. Then B2 ¼

7 8 0 0

�4 �1 0 0

0 0 5 1

0 0 1 2

2
6664

3
7775.

(9) AB ¼

11 9 0 0

4 6 0 0

0 0 2 1

0 0 4 �1

2
6664

3
7775.

(10) A2 ¼

1 0 0 0 0 0

0 4 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

2
66666664

3
77777775

, A3 ¼

1 0 0 0 0 0

0 8 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666664

3
77777775

,

An ¼

1 0 0 0 0 0

0 2n 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775, n ¼ 4,5,6, . . .

(11) A, B, D, F, M, N, R, and T.

(12) E, F, H, K, L, M, N, R, and T.

(13) Yes.

(14) No, see H and L in Problem 11.

(15) Yes, see L in Problem 11.

(16) AB ¼ BA ¼
�5 0 0

0 9 0

0 0 2

2
4

3
5.

(18) No.

(19) If D ¼ [dij ] is a diagonal matrix, then the jth column of AD is the jth column of A

multiplied by djj .

(20) IfD ¼ [dij ] is adiagonalmatrix, then the ith rowofDA is the ith rowofAmultipliedbydii.

(21) Let A ¼ [aij ]. Then (AT)T ¼ [aji]
T ¼ [aij ] ¼ A.

(22) Let A ¼ [aij ]. Then (lA)T ¼ [laji] ¼ l[aji] ¼ lAT.

(23) (Aþ B)T ¼ ([aij ]þ [bij ])
T ¼ [aij þ bij ]

T ¼ [aji þ bji] ¼ [aji]þ [bji] ¼ AT þ BT.

(24) (ABC)T ¼ [(AB)C]T ¼ CT(AB)T ¼ CT(BTAT).
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(25) BT ¼ [(Aþ AT)=2]T ¼ 1
2
(Aþ AT)T ¼ 1

2
[AT þ (AT)T] ¼ 1

2
(AT þ A) ¼ B.

(26) CT ¼ [(A� AT)=2]T ¼ 1
2
(A� AT)T ¼ 1

2
[AT � (AT)T]

¼ 1
2
(AT � A) ¼ � 1

2
(A� AT) ¼ �C.

(27) A ¼ 1
2
(Aþ AT)þ 1

2
(A� AT).

(28)

1 7=2 �1=2
7=2 1 5

�1=2 5 �8

2
4

3
5þ 0 3=2 �1=2

�3=2 0 �2

1=2 2 0

2
4

3
5.

(29)

6 3=2 1

3=2 0 �4

1 �4 2

2
4

3
5þ 0 �1=2 2

1=2 0 3

�2 �3 0

2
4

3
5.

(30) (AAT)T ¼ (AT)TAT ¼ AAT.

(31) Each diagonal element must equal its own negative and, therefore, must be zero.

(33) For any n� n matrix A, consider sequentially the equations ADi ¼ DiA, where all

the elements in Di (i ¼ 1,2, . . . ,n) are zero except for a single 1 in the i-i position.

Section 1.4

(1) (a) No. (b) Yes.

(2) (a) Yes. (b) No. (c) No.

(3) k ¼ 1.

(4) k ¼ 1=12.

(5) k is arbitrary; any value will work.

(6) xþ 2y ¼ 5

y ¼ 8

Solution: x ¼ �11, y ¼ 8

(7) x� 2yþ 3z ¼ 10

y� 5z ¼ �3

z ¼ 4

Solution: x ¼ 32, y ¼ 17, z ¼ 4

(8) x1 � 3x2 þ 12x3 ¼ 40

x2 � 5x3 ¼ �200

x3 ¼ 25

Solution: x1 ¼ �410,

x2 ¼ �50,

x3 ¼ 25

(9) xþ 3y ¼ �8

yþ 4z ¼ 2

0 ¼ 0

Solution: x ¼ �14þ 12z,

y ¼ z� 4z

(10) x1 � 7x2 þ 2x3 ¼ 0

x2 � x3 ¼ 0

0 ¼ 0

Solution: x1 ¼ 5x3,

x2 ¼ x3,

x3 is arbitrary

(11) x1 � x2 ¼ 1

x2 � 2x3 ¼ 2

x3 ¼ �3

0 ¼ 1

No solution

(12) x ¼ 51, y ¼ 23. (13) x ¼ �103, y ¼ 18.

(14) x ¼ 18:5, y ¼ �6. (15) x ¼ y ¼ 0.
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(16) x ¼ 3y, y is arbitrary.

(17) x ¼ �3=29, y ¼ �2=29, z ¼ 41=29.

(18) x ¼ 3=23, y ¼ 28=23, z ¼ �32=23.

(19) x ¼ 48=35, y ¼ �10=35, z ¼ �9=35.

(20) No solution.

(21) x ¼ 2y� z, y and z are arbitrary.

(22) x ¼ y ¼ z ¼ 0.

(23) x1 ¼ �x3, x2 ¼ 0, x3 is arbitrary.

(24) x1 ¼ x2 � 2x3, x2 and x3 are arbitrary.

(25) x1 ¼ 1, x2 ¼ �2.

(26) x1 ¼ (� x3 þ 5)=7, x2 ¼ (4x3 � 6)=7, x3 is arbitrary.

(27) x1 ¼ �3, x2 ¼ 4.

(28) x1 ¼ 13=3, x2 ¼ x3 ¼ �5=3.

(29) No solution.

(30) Each equation graphs as a plane. If the planes do not intersect, the equations have

no solutions. If the planes do intersect, their intersection is either a line or a plane,

each yielding infinitely many solutions.

(31) Au ¼ A(yþ z) ¼ Ayþ Az ¼ bþ 0 ¼ b.

(32) (a) a can be any real number. (b) a ¼ 1.

(33) 50rþ 60s ¼ 70,000

30rþ 40s ¼ 45,000

Solution: r ¼ 500, s ¼ 750

(34) 5d þ 0:25b ¼ 200

10d þ b ¼ 500

Solution: d ¼ 30, b ¼ 200

(35) 8,000Aþ 3,000Bþ 1,000C ¼ 70,000

5,000Aþ 12,000Bþ 10,000C ¼ 181,000

1,000Aþ 3,000Bþ 2,000C ¼ 41,000

Solution: A ¼ 5, B ¼ 8, C ¼ 6

(36) bþ 0:05cþ 0:05s ¼ 20,000

c ¼ 8,000

0:03cþ s ¼ 12,000

Solution: b ¼ $19,012
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(37) (a) C ¼ 800,000þ 30B

S ¼ 40B

(b) Add the additional equation S ¼ C. Then B ¼ 80,000.

(38) �0:60p1 þ 0:30p2 þ 0:50p3 ¼ 0

0:40p1 � 0:75p2 þ 0:35p3 ¼ 0

0:20p1 þ 0:45p2 � 0:85p3 ¼ 0

Solution: p1 ¼ (48=33)p3, p2 ¼ (41=33)p3, p3 is arbitrary.

(39) (� 1=2)p1 þ (1=3)p2 þ (1=6)p3 ¼ 0

(1=4)p1 � (2=3)p2 þ (1=3)p3 ¼ 0

(1=4)p1 þ (1=3)p2 � (1=2)p3 ¼ 0

Solution: p1 ¼ (8=9)p3, p2 ¼ (5=6)p3, p3 is arbitrary.

(40) �0:85p1 þ 0:10p2 þ 0:15p4 ¼ 0

0:20p1 � 0:60p2 þ 1
3
p3 þ 0:40p4 ¼ 0

0:30p1 þ 0:15p2 � 2
3
p3 þ 0:45p4 ¼ 0

0:35p1 þ 0:35p2 þ 1
3
p3 � p4 ¼ 0

Solution: p1 � 0:3435p4, p2 � 1:4195p4, p3 � 1:1489p4, p4 is arbitrary.

(41) 4. (42) 5. (43) 4. (44) 9. (45) 3. (46) 4.

Section 1.5

(1) (c). (2) None.

(3)
0 1

1 0

� �
. (4)

3 0

0 1

� �
.

(5)
3 0

0 �5

� �
. (6)

1 0 0

0 �5 0

0 0 1

2
4

3
5.

(7)
1 0

3 1

� �
. (8)

1 3

0 1

� �
.

(9)

1 0 0

0 1 3

0 0 1

2
4

3
5. (10)

1 0 0

0 1 0

5 0 1

2
4

3
5.

(11)

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775. (12)

1 0

0 7

� �
.

(13)
1=2 0

0 1

� �
. (14)

1 �2

0 1

� �
.

(15)
1 0

3 1

� �
. (16)

1 0

�1 1

� �
.
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(17)

1 0 0

0 1=2 0

0 0 1

2
4

3
5. (18)

0 1 0

1 0 0

0 0 1

2
4

3
5. (19)

1 0 �3

0 1 0

0 0 1

2
4

3
5.

(20)

1 0 0

0 1 2

0 0 1

2
4

3
5. (21)

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
664

3
775. (22)

1 0 0 0

0 1 0 0

3 0 1 0

0 0 0 1

2
664

3
775.

(23)
4 �1

�3 1

� �
. (24)

1

3

2 �1

�1 2

� �
. (25) Does not exist.

(26)
1

2

1 1 �1

1 �1 1

�1 1 1

2
4

3
5. (27)

0 1 0

0 0 1

1 0 0

2
4

3
5.

(28)

�1 �1 1

6 5 �4

�3 �2 2

2
4

3
5. (29) Does not exist.

(30)
1

2

1 0 0

�5 2 0

1 �2 2

2
4

3
5. (31)

1

6

3 �1 �8

0 2 1

0 0 3

2
4

3
5.

(32)

9 �5 �2

5 �3 �1

�36 21 8

2
4

3
5. (33)

1

17

1 7 �2

7 �2 3

�2 3 4

2
4

3
5.

(34)
1

17

14 5 �6

�5 �3 7

13 1 �8

2
4

3
5. (35) Does not exist.

(36)
1

33

5 3 1

�6 3 12

�8 15 5

2
4

3
5. (37)

1

4

0 �4 4

1 5 �4

3 7 �8

2
4

3
5.

(38)
1

4

4 �4 �4 �4

0 4 2 5

0 0 2 3

0 0 0 �2

2
664

3
775. (39)

1 0 0 0

2 �1 0 0

�8 3 1=2 0

�25 10 2 �1

2
664

3
775.

(41) (a)
4 �1

�3 1

� �
. (b)

4 �6

�6 12

� �
.

(42) x ¼ 1, y ¼ �2.

(43) a ¼ �3, b ¼ 4.

(44) x ¼ 2, y ¼ �1.

(45) l ¼ 1, p ¼ 3.

(46) Not possible; the coefficient matrix is singular.

(47) x ¼ �8, y ¼ 5, z ¼ 3.
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(48) x ¼ y ¼ z ¼ 1.

(49) l ¼ 1, m ¼ �2, n ¼ 0.

(50) Not possible; the coefficient matrix is singular.

(51) x ¼ y ¼ z ¼ 1.

(52) (a) x ¼ 70, y ¼ �40.

(b) x ¼ 134, y ¼ �82.

(c) x ¼ 1:9, y ¼ �1:1.

(d) x ¼ 25, y ¼ �15.

(53) (a) x ¼ 13=3, y ¼ �5=3, z ¼ �5=3.

(b) x ¼ 113=30, y ¼ �34=30, z ¼ �31=30.

(c) x ¼ 79=15, y ¼ �32=15, z ¼ �38=15.

(d) x ¼ 41=10, y ¼ �18=10, z ¼ �17=10.

(54) (a) A�2 ¼ 11 �4

�8 3

� �
, A�3 ¼ 41 �15

�30 11

� �
.

(b) A�2 ¼ 9 �20

�4 9

� �
, A�3 ¼ �38 85

17 �38

� �
.

(c) A�2 ¼ 19 �5

�15 4

� �
, A�3 ¼ 91 �24

�72 19

� �
.

(d) A�2 ¼
1 �2 1

0 1 �2

0 0 1

2
4

3
5, A�3 ¼

1 �3 3

0 1 �3

0 0 1

2
4

3
5.

(e) A�2 ¼
1 �4 �4

0 1 2

0 0 1

2
4

3
5, A�3 ¼

1 �6 �9

0 1 3

0 0 1

2
4

3
5.

(56) Use the result of Problem 19 or Problem 20 of Section 1.3.

(58) (BA�1)T(A�1BT)�1 ¼ [(A�1)TBT][(BT)�1(A�1)�1] ¼ [(AT)�1BT)][(BT)�1A]

¼ A�1[BT(BT)�1]A ¼ A�1IA ¼ A�1A ¼ I.

(60) [(1=l)A�1][lA] ¼ (1=l)(l)A�1A ¼ 1I ¼ I.

(61) (ABC)�1 ¼ [(AB)C]�1 ¼ C�1(AB)�1 ¼ C�1(B�1A�1).

Section 1.6

(1)
1 0

3 1

� �
1 1

0 1

� �
, x ¼ 10

�9

� �
.

(2)
1 0

0:5 1

� �
2 1

0 1:5

� �
, x ¼ 8

�5

� �
.

(3)
1 0

0:625 1

� �
8 3

0 0:125

� �
, x ¼ �400

1275

� �
.
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(4)

1 0 0

1 1 0

0 �1 1

2
4

3
5 1 1 0

0 �1 1

0 0 2

2
4

3
5, x ¼

3

1

�2

2
4

3
5.

(5)

1 0 0

�1 1 0

�2 �2 1

2
4

3
5 �1 2 0

0 �1 1

0 0 5

2
4

3
5, x ¼

5

2

�1

2
4

3
5.

(6)

1 0 0

2 1 0

�1 0 1

2
4

3
5 2 1 3

0 �1 �6

0 0 1

2
4

3
5, x ¼

�10

0

10

2
4

3
5.

(7)

1 0 0
4
3

1 0

1 � 21
8

1

2
64

3
75

3 2 1

0 � 8
3
� 1

3

0 0 1
8

2
64

3
75, x ¼

10

�10

40

2
4

3
5.

(8)

1 0 0

2 1 0

�1 �0:75 1

2
4

3
5 1 2 �1

0 �4 3

0 0 4:25

2
4

3
5, x ¼

79

1

1

2
4

3
5.

(9)

1 0 0

0 1 0

0 0 1

2
4

3
5 1 2 �1

0 2 1

0 0 1

2
4

3
5, x ¼

19

�3

5

2
4

3
5.

(10)

1 0 0

3 1 0

1 1
2

1

2
64

3
75

1 0 0

0 2 0

0 0 2

2
64

3
75, x ¼

2

�1

1=2

2
4

3
5.

(11)

1 0 0 0

1 1 0 0

1 1 1 0

0 1 2 1

2
66664

3
77775

1 0 1 1

0 1 �1 0

0 0 1 �1

0 0 0 3

2
66664

3
77775, x ¼

1

�5

2

1

2
664

3
775.

(12)

1 0 0 0

1
2

1 0 0

0 0 1 0

0 2
7

5
7

1

2
66664

3
77775

2 1 �1 3

0 7
2

5
2
� 1

2

0 0 �1 1

0 0 0 3
7

2
66664

3
77775, x �

266:67

�166:67

166:67

266:67

2
664

3
775.

(13)

1 0 0 0

1 1 0 0

1 1 1 0

0 �1 �2 1

2
66664

3
77775

1 2 1 1

0 �1 1 0

0 0 �1 1

0 0 0 3

2
66664

3
77775, x ¼

10

10

10

�10

2
664

3
775.

(14)

1 0 0 0

1 1 0 0

�2 1:5 1 0

0:5 0 0:25 1

2
66664

3
77775

2 0 2 0

0 2 �2 6

0 0 8 �8

0 0 0 3

2
66664

3
77775, x ¼

�2:5
�1:5

1:5
2:0

2
664

3
775.

(15) (a) x ¼ 5, y ¼ �2; (b) x ¼ �5=7, y ¼ 1=7.
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(16) (a) x ¼ 1, y ¼ 0, z ¼ 2; (b) x ¼ 140, y ¼ �50, z ¼ �20.

(17) (a)

8

�3

�1

2
4

3
5, (b)

2

0

0

2
4
3
5, (c)

35

5

15

2
4

3
5, (d)

�0:5
1:5
1:5

2
4

3
5.

(18) (a)

�1

�1

1

1

2
664

3
775, (b)

0

0

0

0

2
664
3
775, (c)

80

50

�10

20

2
664

3
775, (d)

�1=3
1=3
1=3
1=3

2
664

3
775.

(21) (d) A is singular.

Section 1.7

(1)

1 43 52−1−4 −3−5 −2

5

4

3

2

1

−1

−2

−3

−4

−5

y

x
u

u+
vv

(4)

1 43 52−1−4 −3−5 −2

5
4

3

2
1

−1

−2
−3
−4

y

x

y

x

x+
y

6
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(6)

1 432−1−3 −2

5

4

3

2

1

−1

−2

−3

−4

y

xy

x

y−
x

(7)

1 43 52−1−4 −3 −2

5

4

3

2

1

−1

−2

−3

y

x
u

v u−v

6
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(10)

12

10
9
8
7
6
5
4
3
2

−2
−2−4−6−8−10

−4

−6

−8

−10

1

1

z

y

x

2z

2 3 4 5 6 7 8 910 12

(12)

12

10
9
8
7
6
5
4
3
2

−2
−2−4−6−8−10−12

−4

−6

−8

−10

1

1

z

y

x

−2z

2 3 4 5 6 7 8 910 12
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(17) (a) 341.578, (b) 111.808, (c) 2258,
(d) 59.048, (e) 2708.

(19)
ffiffiffi
2
p

. (20) 5. (21)
ffiffiffi
5
p

. (22)
ffiffiffi
3
p

.

(23)
ffiffiffiffiffiffiffiffi
3=4

p
. (24)

ffiffiffi
3
p

. (25)
ffiffiffiffiffi
15
p

. (26) 2.

(27)
ffiffiffi
2
p

. (28)
ffiffiffiffiffi
39
p

. (29)
ffiffiffi
5
p

.

(16)

1

1

w

w

x

y

1
4

2

3

−1

−1

−2

−3

−4

−2−3−4 4−5

2 3 4

w1−

(30)

4

3

2

1

(3,1,2)

(3,1,0)

(3,0,0)

1
1

2

3

4

5

2
y

z

x

3 4
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(33) z

5

5

4

4

3

3

2

2

1

1
y

x

(−1, 2, 3)

(−1, 2, 3)(−1, 0, 0) −1

−2

−3

−4

−5

(38)

y

z

x

(1000, −500, 200)

(1000, −500, 0)
(1000, 0, 0)

800

600

400

200

200
400

600
800

1000
1200

−1
00

0
−8

00
−6

00
−4

00
−2

00

(39)

z

x

y

(−400, −50, −300)

(−400, −50, 0)

−50

−450−400−350−300−250−200−150
−50

−100

−100
−150
−200

−2
00

−1
50

−1
00

−5
0

−250

−300

−350

(−400, 0, 0)
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(40) Not normalized. (41) Not normalized. (42) Normalized.

(43) Normalized. (44) Not normalized. (45) Normalized.

(46) Normalized. (47) Normalized. (48) Normalized.

Chapter 2

Section 2.1
(1) Vector space. (2) Violates (A1).

(3) Vector space. (4) Vector space.

(5) Violates (A1). (6) Violates (A1).

(7) Vector space. (8) Violates (S1) with negative scalars.

(9) Violates (A1). (10) Vector space.

(11) Violates (A4). (12) Violates (A1).

(13) Vector space. (14) Violates (S3).

(15) Violates (S3). (16) Violates (S3).

(17) Violates (S3). (18) Violates (A4).

(19) Violates (A5). (20) Violates (S4).

(21) Violates (S5). (22) Violates (S5).

(23) Violates (S3). (24) Vector space.

(25) Violates (A1). (26) Vector space.

(27) Violates (A4). (28) Vector space.

(29) Vector space. (30) Violates (A5) for f (t) � 0.

(31) Violates (A2). (32) Vector space.

(34) Let 01 and 02 be two zero vectors. Then 01 ¼ 01 þ 02 ¼ 02.

(35) v� (u� v) ¼ v� (u��v) ¼ v� (� v� u) ¼ (v��v)� u ¼ 0� u ¼ u.

(36) v ¼ 0� v ¼ (� u� u)� v ¼ �u� (u� v)

¼ �u� (u� w) ¼ (� u� u)� w ¼ 0� w ¼ 0.

(37) u� u ¼ 1� u� 1� u ¼ (1þ 1)� u ¼ 2� u.

(38) Given 2� u ¼ 2� v. Then,

u¼1�u¼(1
2
�2)�u¼1

2
�(2�u)¼1

2
�(2�v)¼(1

2
�2)�v¼1�v¼v.
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(39) First show that �b� u ¼ (� b)� u. Then

0 ¼ (a� u)� (� b� u) ¼ a� u� (� b)� u ¼ [aþ (� b)]� u ¼ (a� b)� u

and the result follows from Theorem 7.

(40) 0� 0 ¼ 0. Thus, 0 is an additive inverse of 0, and the additive inverse is unique.

Section 2.2
Problems 4, 5, 9, 11, 13, 16, 20, 21, 22, 24, and 25 are not subspaces; all the others are

subspaces.

(28) (a) and (c). (29) (a) and (c).

(30) (a) and (c). (31) (a) and (c).

(32) All except (f). (33) (b), (c), (d), and (e).

(34) (b), (c), (d), and (e). (35) (a), (b), and (c).

(36)
x

y

� �
2 R2

� ����y ¼ 2x

�
. (37)

a b

c d

� �
2M2�2

� ����d ¼ 0

�
.

(38) a3t
3 þ a2t

2 þ at þ a0e P3ja0 ¼ 0
� �

.

(39) The straight line through the origin defined by the equation y ¼ �5x in an x� y

coordinate system.

(40) Such a straight line satisfies the equation y ¼ ax, for any fixed choice of the scalar

a. The set of points on this line is
x

y

� �
2 R2

� ����y ¼ ax

�
.

(41) The line does not include the origin.

(43) Given that u ¼
Pn
i¼1

civi and vi ¼
Pm
j¼1

aijwj . Then,

u ¼
Pn
i¼1

ci

Pm
j¼1

aijwj

 !
¼
Pn
i¼1

Pm
j¼1

ciaijwj ¼
Pm
j¼1

Pn
i¼1

ciaij

	 

wj .

Define dj ¼
Pn
i¼1

ciaij .

(44) Denote the columns of A as A1,A2, . . . ,An and x ¼ x1 x2 . . . xn½ ]T. Then

y ¼ x1A1 þ x2A2 þ . . .þ xnAn.

(45) Let Ay ¼ Az ¼ 0. Then A(ayþ bz) ¼ a(Ay)þ b(Az) ¼ a(0)þ b(0) ¼ 0.

(46) A(2x) ¼ 2(Ax) ¼ 2b 6¼ b.
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(47) uþ v and u� v belong to spanfu,vg. Also, u ¼ 1
2
(uþ v)þ 1

2
(u� v) and

v ¼ 1
2
(uþ v)� 1

2
(u� v), so u and v belong to spanfuþ v,u� vg.

(48) uþ v, vþ w, and uþ w belong to spanfu,v,wg. Also,

u ¼ 1
2
(uþ v)� 1

2
(vþ w)þ 1

2
(uþ w)

v ¼ 1
2
(uþ v)þ 1

2
(vþ w)� 1

2
(uþ w)

w ¼ � 1
2
(uþ v)þ 1

2
(vþ w)þ 1

2
(uþ w)

so u, v, and w belong to spanfuþ v ,vþ w, uþ wg.

(50) W contains all linear combinations of vectors in S, hence it contains all vectors in

the span(S).

Section 2.3
(1) Independent. (2) Independent. (3) Dependent.

(4) Dependent. (5) Independent. (6) Dependent.

(7) Independent. (8) Dependent. (9) Dependent.

(10) Dependent. (11) Independent. (12) Dependent.

(13) Independent. (14) Independent. (15) Dependent.

(16) Independent. (17) Dependent. (18) Dependent.

(19) Dependent. (20) Independent. (21) Independent.

(22) Independent. (23) Independent. (24) Dependent.

(25) Independent. (26) Independent. (27) Dependent.

(28) Independent. (29) Dependent. (30) Dependent.

(31) One vector is a scalar multiple of the other.

(32) v2 is not a scalar multiple of v1, and the result follows from Theorem 1.

(34) 0 ¼ c1(uþ v)þ c2(u� v) ¼ (c1 þ c2)uþ (c1 � c2)v. Then (c1 þ c2) ¼ 0 and

(c1 � c2) ¼ 0, whereupon c1 ¼ c2 ¼ 0.

(35) 0 ¼ c1(v1 � v2)þ c2(v1 þ v3)þ c3(v2 � v3)

¼ (c1 þ c2)v1 þ (� c1 þ c3)v2 þ (c2 � c3)v3.

Then (c1 þ c2) ¼ 0, (� c1 þ c3) ¼ 0, and (c2 � c3) ¼ 0, whereupon c1 ¼ c2 ¼

c3 ¼ 0.

(36) 0 ¼ c1(v1 þ v2 þ v3)þ c2(v2 þ v3)þ c3(v3)

¼ (c1)v1 þ (c1 þ c2)v2 þ (c1 þ c2 þ c3)v3.

Then (c1) ¼ 0, (c1 þ c2) ¼ 0, and (c1 þ c2 þ c3) ¼ 0, whereupon c1 ¼ c2 ¼
c3 ¼ 0.
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(38) Let R1, R2, . . . , Rp be the nonzero rows, and form the equation

c1R1 þ c2R2 þ . . .þ cpRp ¼ 0

Let k be the column containing the first nonzero element in R1. Since no other row

has an element in this column, it follows that the kth component on the left side of

the equation, after it is summed, is just c1. Thus, c1 ¼ 0. Now repeat this argument

for the second row, using c1 ¼ 0 and conclude that c2 ¼ 0.

(39) Consider c1x1 þ c2x2 þ . . .þ ckxk ¼ 0. Then c1Ax1 þ c2Ax2 þ . . .þ ckAxk ¼
A0 ¼ 0 and c1y1 þ c2y2 þ . . .þ ckyk ¼ 0, whereupon c1 ¼ c2 ¼ . . . ¼ ck ¼ 0.

(40) Nothing.

(41) Nothing.

(43) If fv1, v2, . . . , vkg is linearly dependent, then there exists a set of scalars

c1, c2, . . . , ck, not all zero such that c1v1 þ c2v2 þ . . .þ ckvk ¼ 0. For the set

fv1, v2, . . . , vk, w1, w2, . . . , wrg, we have c1v1 þ c2v2 þ . . .þ ckvk þ 0w1 þ 0w2þ
. . .þ 0wr ¼ 0.

Section 2.4
(1) (a), (b), (c), (d), and (f). (2) (a), (c), (e), and (f).

(3) (a), (b), (c), (e), and (f). (4) (e), (f), and (g).

(5) (a), (b), (c), and (d). (6) (a), (b), and (d).

(7) (c), (d), and (e). (8) (b), (c), (d), and (f).

(9) (a) [�2 3 ]T, (b) [ 0 1 ]T.

(10) (a) [ 0 2 ]T, (b) [ 4 �2 ]T.

(11) (a) [ 2 �1 ]T, (b) [�2 1 ]T.

(12) (a) [ 0 1 ]T, (b) [�0:7 0:4 ]T.

(13) (a) [�50 30 ]T, (b) [�10 6 ]T.

(14) (a) [ 1 1 0 ]T, (b) [ 1 0 0 ]T, (c) [ 0 1 0 ]T.

(15) (a) [ 2 �1 ]T, (b) [ 1 1 ]T.

(16) (a) [ 0 1 �1 0 ]T, (b) [ 0 1 �1 1 ]T.

(17) Denote the spanning set as fx1, x2, . . . , xn, vg with v ¼
Pn
k¼1

dkxk. If y 2 V, then

y ¼
Pn
k¼1

ckxk þ cnþ1v ¼
Pn
k¼1

ckxk þ cnþ1

Pn
k¼1

dkxk ¼
Pn
k¼1

ck þ cnþ1dkð Þxk.

(18) Delete any zero vectors from the set. Order the remaining vectors in the spanning

set, and then consider them one at a time in the order selected. Determine whether

each vector is a linear combination of the ones preceding it. If it is, delete it and use

Problem 17 to conclude that the remaining set spans V. After all vectors have been

considered and, perhaps, deleted, the set remaining has the property that no vector

is a linear combination of the vectors preceding it.

Chapter 2 . 451



(19) First four matrices.

(20) f[ 1 1 ], [ 1 2 ]g.

(21) ft2 þ t, tþ 1, t2 þ 1g.

(23) ft2 þ 2t� 3, t2 þ 5t, 2t2 � 4, t3g.

(24) f[ 1 2 1 ]T, [ 1 2 0 ]T, [ 1 0 0 ]Tg.

(25) ft3 þ t2 þ t, t2 þ tþ 1, tþ 1, t3g.

(26) If it did, then the process described in Problem 18 would yield a basis having less

vectors than the dimension of the vector space.

(27) If the second vector is not a scalar multiple of the first vector, then the second vector

is not a linear combination of the first, and the two vectors are linearly independent.

(28) Choose a basis for W, then use the results of Problem 22.

(29) Let fw1, w2, . . . , wmg be a basis for W and extend it into a basis for V.

(30) Use Problem 26.

(31) Use Problem 18.

Section 2.5
(1) [ 1 1 2 ]T, [ 0 1 4=3 ]T. (2) [ 1 1 2 ]T, [ 0 1 4 ]T, [ 0 0 1 ]T.

(3) [ 1 1
2

1 ]T. (4) [ 1 0 2 ]T, [ 0 1 1 ]T.

(5) First two vectors. (6) [1 0 0 1 ], [ 0 1 1 1], [0 0 1 1].

(7) [ 1 0 �1 1 ], [ 0 1 3 �2 ],

[ 0 0 1 0 ].

(8) Standard basis for Rn.

(9) [1 2 4 0 ], [0 1 4=3 �1=3 ]. (10) t2þ 1, tþ 1, 1.

(11) t2 þ tþ 1, tþ 1
4
. (12) t, 1.

(13) First two vectors. (14) First two vectors.

(15) t3 þ t2 � t, t2 þ tþ 1. (16) t3 þ 1
2
t2 þ 1

2
, t2 þ t, tþ 1.

(17) t3 þ 3t2, t2 þ 1, tþ 1. (18) First two vectors.

(19)
1 1

1 0

� �
,

0 1

1 0

� �
,

0 0

1 0

� �
. (20) First two vectors.

(21)
1 3

1 2

� �
,

0 1

0 1

� �
.

(22) Independent. (23) Independent. (24) Dependent.

(25) Independent. (26) Dependent. (27) Dependent.

(28) Dependent. (29) Independent. (30) Independent.
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(31) Dependent. (32) Independent. (33) Dependent.

(34) Dependent. (35) Independent. (36) Independent.

(37) Dependent. (38) Independent. (39) Independent.

(40) Dependent. (41) Independent. (42) Dependent.

(43) Dependent. (44) No

(45) k ¼ row rank � number of rows ¼ m. Also, each row, considered as a row matrix,

is an n-tuple and, therefore, an element in an n-dimensional vector space. Every

subset of such vectors contains most n-linearly independent vectors (Corollary 1 of

Section 2.4), thus k � n.

Section 2.6
(1) 2. (2) 1. (3) 2. (4) 1. (5) 1.

(6) 2. (7) 3. (8) 2. (9) 3. (10) 4.

(11) Row rank � 3. (12) Column rank � 2. (13) 0.

(14) (a) No, (b) Yes.

(15) (a) Yes, (b) Yes, (c) No.

(16) (a) Yes, (b) No, (c) Yes.

(17) Consistent with no arbitrary unknowns: x ¼ 2=3, y ¼ 1=3.

(18) Inconsistent.

(19) Consistent with one arbitrary unknown: x ¼ (1=2)(3� 2z), y ¼ �1=2.

(20) Consistent with two arbitrary unknowns: x ¼ (1=7)(11� 5z� 2w),

y ¼ (1=7)(1� 3zþ 3w).

(21) Consistent with no arbitrary unknowns: x ¼ y ¼ 1, z ¼ �1.

(22) Consistent with no arbitrary unknowns: x ¼ y ¼ 0.

(23) Consistent with no arbitrary unknowns: x ¼ y ¼ z ¼ 0.

(24) Consistent with one arbitrary unknown: x ¼ �z, y ¼ z.

(25) Consistent with two arbitrary unknowns: x ¼ z� 7w, y ¼ 2z� 2w.

Chapter 3

Section 3.1
(1) Function; image ¼ f1, 2, 3, 4, 5g. (2) Not a function.

(3) Not a function. (4) Function; image ¼ f2, 4g.

(5) Not a function. (6) Function; image ¼ f10, 30, 40, 50g.

(7) Not a function. (8) Function; image ¼ f6g.
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(9) Function; image ¼ fa, c, d, f g. (10) Function; image ¼ fa, b, c, d, f g.

(11) Not a function. (12) Function; image ¼ f2, 4, 6, 8, 10g.

(13) Not a function. (14) Function; image ¼ fblue, yellowg.

(15) Function; image ¼ f10:3, 18:6, 22:7g.

(16) Function. (17) Function. (18) Not a function.

(19) Function. (20) Not a function. (21) Not a function.

(22) Function. (23) Not a function. (24) Function.

(25) Function. (26) Not a function.

(27) A function when the domain is restricted to be all real numbers excluding

�3 < x < 3.

(28) Not a function.

(29) A function when the domain is limited to �4 � x � 4.

(30) (a) No, (b) Yes, (c) No, (d) Yes.

(31) (a) 2, (b) 0, (c) 6, (d) 4x2 � 6xþ 2.

(32) (a) 1, (b) 3, (c) 8x2 � 2x, (d) 2a2 þ 4abþ 2b2 � a� b.

(33) (a) �9, (b) �1, (c) 8z3 � 1,

(d) a3 � 3a2bþ 3ab2 � b3 � 1.

(34) Neither is onto.

(35) 1, 12, and 15.

(36) Figure 3.1 is one-to-one; Figure 3.2 is not.

(37) 1, 6, and 10.

Section 3.2
(1) (a) 4 9½ ], (b) �2 15½ ], (c) �16 600½ ],

(d) 0 �21½ ].

(2) (a) 4 1½ ], (b) 1 3½ ], (c) �6 198½ ],

(d) 2 �9½ ].

(3) (a) 3 3½ ], (b) 1 �3½ ], (c) 0 0½ ],

(d) 5 3½ ].

(4) (a) �2 1½ ], (b) 1 �6½ ], (c) 2 2½ ],

(d) �2 �1½ ].

(5) (a) �4 0½ ], (b) �5 0½ ], (c) �2 0½ ],

(d) 0 0½ ].
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(6) (a) 2 3 3½ ], (b) �1 1 �1½ ],

(c) 3 6 2½ ], (d) 0 0 2½ ].

(7) (a) 2 1 0½ ], (b) �1 �6 5½ ],

(c) 3 0 3½ ], (d) 0 0 0½ ].

(8) (a)
3 1

4 2

� �
, (b)

3 1

3 �1

� �
,

(c)
�5 10

0 20

� �
, (d)

13 28

44 �32

� �
.

(9) (a)
3 0

0 �1

� �
, (b)

0 0

0 0

� �
,

(c)
30 0

0 �5

� �
, (d)

�4 0

0 �31

� �
.

(10) (a) 5t2 � 7t, (b) �t2 þ 2t,

(c) �3t2 þ 3t, (d) �3t2 þ 3t.

(11) Linear. (12) Not linear. (13) Not linear.

(14) Not linear. (15) Linear. (16) Linear.

(17) Linear. (18) Not linear. (19) Linear.

(20) Linear. (21) Not linear. (22) Linear.

(23) Linear. (24) Linear. (25) Not linear.

(26) Linear. (27) Not linear. (28) Linear.

(29) Linear. (30) Linear. (31) Not linear.

(32) Not linear. (33) Linear. (34) Linear.

(35) Linear. (36) Linear. (37) Linear.

(38) Linear. (39) Linear. (40) Not linear.

(41) Linear. (42) Not linear.

(43) I(auþ bv) ¼ auþ bv ¼ aI(u)þ bI(v).

(44) If v 2 V, then v ¼
Pn
i¼1

civi and

L(v) ¼ L
Pn
i¼1

civi

	 

¼
Pn
i¼1

ciL við Þ ¼
Pn
i¼1

civi ¼ v.

(45) 0(auþ bv) ¼ 0 ¼ a0þ b0 ¼ a0(u)þ b0(v).
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(46) If v 2 V, then v ¼
Pn
i¼1

civi and

L(v) ¼ L
Pn
i¼1

civi

	 

¼
Pn
i¼1

ciL við Þ ¼
Pn
i¼1

ci0 ¼ 0:

(47) T(auþ bv) ¼ T(au)þ T(bv) from equation (3:2)

¼ aT(u)þ bT(v) from equation (3:3)

(48) Linear. (49) �2. (50) 3u� v. (51) 2v.

(52) L(v1 þ v2 þ v3) ¼ L[v1 þ (v2 þ v3)] ¼ L(v1)þ L(v2 þ v3)

¼ L(v1)þ L(v2)þ L(v3):

(53) (S þ T)(auþ bv) ¼ S(auþ bv)þ T(auþ bv)

¼ [aS(u)þ bS(v)]þ [aT(u)þ bT(v)]

¼ a[S(u)þ T(u)]þ b[S(v)þ T(v)]

¼ a(S þ T)(u)þ b(S þ T)(v):

(54) (kT) (auþ bv) ¼ k [T(auþ bv)] ¼ k [aT(u)þ bT(v)]

¼ a[kT(u)]þ b[kT(v)]

¼ a(kT)(u)þ b(kT)(v):

(55) (ST) (auþ bv) ¼ S[T(auþ bv)] ¼ S[aT(u)þ bT(v)]

¼ aS[T(u)]þ bS[T(v)] ¼ a(ST)(u)þ b(ST)(v):

(56) (a) 3 6½ ], (b) �2 0½ ], (c) 7 9½ ],

(d) 3 3½ ], (e) �2 �6½ ], (f) �8 �9½ ].

(57) (a) 3 �4½ ], (b) 6 �4½ ], (c) �3 �1½ ],

(d) �3 1½ ], (e) �6 2½ ], (f) 6 �1½ ].

(58) (a) 10 �2½ ], (b) 0 0½ ], (c) 15 �3½ ],

(d) 5 �1½ ], (e) �10 2½ ], (f) �15 3½ ].

(59) (a) �2 �3½ ], (b) 4 6½ ], (c) �8 �12½ ],

(d) �4 �6½ ], (e) 0 0½ ], (f) 10 15½ ].
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(60) (a) 5 �1½ ], (b) 2 6½ ], (c) 5 �9½ ],

(d) 1 �5½ ], (e) �6 �2½ ], (f) �4 12½ ].

(61) L2 a b½ ] ¼ L(L a b½ ]) ¼ L( a 0½ ]) ¼ a 0½ ] ¼ L a b½ ].

(62) (LM) a b½ ] ¼ L(M a b½ ]) ¼ L 0 b½ ] ¼ 0 0½ ] ¼ 0.

Section 3.3

(1)

1 2

1 0

0 2

2
4

3
5. (2)

2 3

0 �1

2 4

2
4

3
5.

(3)

1 0

0 2

0 0

2
4

3
5. (4)

0 �1

2 4

0 0

2
4

3
5.

(5)
2 5 4

�2 �1 5

� �
. (6)

�1 3 0

�3 �8 9

� �
.

(7)
1 9=2 13=2
1 1=2 �5=2

� �
. (8)

�5=2 �1 9=2
3=2 4 �9=2

� �
.

(9)
1 3 0

8 �2 �6

� �
. (10)

25 30

�45 50

� �
.

(11)
550 150

50 250

� �
. (12)

5=2 3

�14 4

� �
.

(13)
55 15

�100 20

� �
. (14)

�185=3 85=3
25=3 115=3

� �
.

(15)
2 0

�1 3

� �
. (16)

20 0

20 15

� �
.

(17)

1 0 0

0 1 0

0 0 1

0 0 0

2
664

3
775. (18)

1 1 0

1=2 0 1=2
1=2 0 1=2
0 1 1

2
664

3
775.

(19)

3=2 1 �1=2

3=2 �1 1=2

�3=2 1 1=2

2
64

3
75. (20)

5=2 2 �3=2
�1=2 0 5=2

� �
.

(21)

�2 �7 3

4 2 �6

0 7 6

2
4

3
5. (22)

5 6 1

�3 �4 0

2 1 3

2 8 �3

2
664

3
775.

(23)

5 6 7

�3 3 �6

�4 �16 6

4 9 0

2
664

3
775. (24)

1 2 0 0

1 �1 3 3

2 �1 �1 9

4 �1 1 13

2
664

3
775.
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(25)
�1=3 0 �13=3 3

2=3 1 11=3 0

� �
. (26)

4

�2

6

2
4

3
5.

(27)

1

3

�2

2
4

3
5. (28)

�2

�8

�6

2
4

3
5.

(29)
5

23

� �
. (30)

8

18

� �
.

(31)
2

�9

� �
. (32)

�65

�240

� �
.

(33) 6t� 2. (34) 6t� 2.

(35)
0

10

� �
. (36)

�4

9

�19

2
4

3
5.

(37)

0

�20

28

2
4

3
5.

(38) (5a� b� 2a)

(39) (8a� 2b)tþ (13a� 3b).

(40) (4a� bþ 3c)t2 þ (3a� 2bþ 2c)tþ (2a� 2bþ c).

(41)
3aþ c 2aþ 2c� 2d

2a� bþ 2c� d a

� �
.

Section 3.4

(1)
�1 0

1 1

� �
. (2)

2 1

�1 0

� �
.

(3)
�1 1

1 0

� �
. (4)

0 1

1 1

� �
.

(5)
�1 �1

3 4

� �
. (6)

�4 �1

3 1

� �
.

(7)
�10 �10

30 �10

� �
. (8) 1

2

1 1 �1

�1 1 1

1 �1 1

2
4

3
5.

(9)

1 �1 0

0 1 �1

0 0 1

2
4

3
5. (10)

1 1 1

0 1 1

0 0 1

2
4

3
5.

(11) 1
2

1 2 1

�1 0 1

1 0 1

2
4

3
5. (12)

1 0 3=2
0 1 3=2
0 0 �1=2

2
4

3
5.

(13)

0 �1 �2

1 0 2

0 1 1

2
4

3
5.
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(14) (a)
1 5

1 �2

� �
, (b)

�4 �5

1 3

� �
.

(15) (a)
17 23

�13 �18

� �
, (b)

1 �1

�5 �2

� �
.

(16) (a)
2 0

6 5

� �
, (b)

5 0

0 2

� �
.

(17) (a)
�1 0

3 2

� �
, (b)

�1 0

0 2

� �
.

(18) (a)
3 0

0 �1

� �
, (b)

15 4

�18 �5

� �
.

(19) (a)
�13 �6

24 13

� �
, (b)

1 6

0 3

� �
.

(20) (a)
1 0

0 1

� �
, (b)

1 0

0 1

� �
.

(21) (a)
0 0

0 0

� �
, (b)

0 0

0 0

� �
.

(22) (a)

3 �1 1

2 0 �2

3 �3 1

2
4

3
5, (b)

2 0 0

0 �2 0

0 0 2

2
4

3
5.

(23) (a)

3 �1 1

2 0 �2

3 �3 1

2
4

3
5, (b)

1 2 3

�1 0 �1

3 0 1

2
4

3
5.

(24) (a)

1 �1 0

0 2 0

1 0 3

2
4

3
5, (b)

1=2 �1 �3=2
3=2 3 3=2
�1=2 0 5=2

2
4

3
5.

(25) (a)

1 0 0

0 2 0

0 0 �3

2
4

3
5, (b)

1 1 �1

0 2 5

0 0 �3

2
4

3
5.

(26) If PA ¼ BP, then P ¼ a b

0 0

� �
, which is singular.

(27) If PA ¼ BP, then P ¼ d

3

�2 1

0 3

� �
with d arbitrary. Choose d 6¼ 0 to make P

invertible.

(29) Given that transition matrices P1 and P2 exist such that A ¼ P�1
1 BP1 and

B ¼ P�1
2 CP2. Then

A ¼ P�1
1 P�1

2 CP2

� �
P1 ¼ A ¼ P�1

1 P�1
2

� �
C P2P1ð Þ ¼ A ¼ P2P1ð Þ�1

C P2P1ð Þ:

Take P ¼ P2P1.

(30) If A ¼ P�1BP, then

A2 ¼ AA ¼ (P�1BP)(P�1BP) ¼ (P�1B)(PP�1)(BP) ¼ (P�1B)I(BP) ¼ P�1B2P:
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(32) If A ¼ P�1BP, then AT ¼ (P�1BP)T ¼ PTBT(P�1)T ¼ PTBT(PT)�1. Take the new

transition matrix to be PT.

(33) Take P ¼ I.

(35) If A ¼ P�1BP, then B ¼ PAP�1. First show that PA�1P�1 is the inverse of B. Next,

A�1 ¼ (P�1BP)�1 ¼ P�1B�1(P�1)�1 ¼ P�1B�1P.

(36) P can be any invertible 2� 2 matrix.

(37) P can be any invertible 2� 2 matrix.

(38) P ¼

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . 1

1 0 0 0 . . . 0

2
6666664

3
7777775.

Section 3.5
(1) (b) and (c).

(2) (b) and (c).

(3) (a), (b), (c), and (d).

(4) (b) and (d).

(5) (d).

(6) (a) 1 0 1½ ], (b) 1 0 �1½ ], (c) 2 0 0½ ], (d) 1 0 2½ ].

(7) (a) Not in the range. (b) 1 0 0½ ],

(c) 2 0 0½ ], (d) Not in the range.

(8) (a) Not in the range, (b)
1 0

0 0

� �
,

(c) Not in the range, (d)
3 0

0 5

� �
.

(9) (a)
1 1

1 1

� �
, (b)

0 0

1 0

� �
, (c)

1 0

0 0

� �
, (d)

0 �5

3 0

� �
.

(10) (a) Not in the range. (b) 2t2 � 2, (c) �3, (d) Not in the range.

(11) Nullity is 0, rank is 2, one-to-one and onto.

(12) Nullity is 0, rank is 2, one-to-one and onto.

(13) Nullity is 1, rank is 1, neither one-to-one nor onto.

(14) Nullity is 1, rank is 2, not one-to-one but onto.

(15) Nullity is 1, rank is 2, not one-to-one but onto.

(16) Nullity is 2, rank is 1, neither one-to-one nor onto.

(17) Nullity is 0, rank is 2, one-to-one but not onto.

(18) Nullity is 0, rank is 2, one-to-one but not onto.
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(19) Nullity is 0, rank is 2, one-to-one but not onto.

(20) Nullity is 1, rank is 1, neither one-to-one nor onto.

(21) Nullity is 1, rank is 1, neither one-to-one nor onto.

(22) Nullity is 2, rank is 1, not one-to-one but onto.

(23) Nullity is 3, rank is 0, neither one-to-one nor onto.

(24) Nullity is 0, rank is 4, one-to-one and onto.

(25) Nullity is 2, rank is 2, neither one-to-one nor onto.

(26) Nullity is 3, rank is 1, neither one-to-one nor onto.

(27) Nullity is 3, rank is 1, not one-to-one but onto.

(28) Nullity is 2, rank is 1, neither one-to-one nor onto.

(29) Nullity is 1, rank is 2, neither one-to-one nor onto.

(30) Nullity is 3, rank is 0, neither one-to-one nor onto.

(31) (b) and (d).

(32) (a) and (d).

(33) (b) and (c).

(34)
�2

1

� �� �
for the kernel;

1

2

� �� �
for the range.

(35) The kernel contains only the zero vector; the range is R2.

(36)

1

1

0

2
4
3
5,

0

0

1

2
4
3
5

8<
:

9=
; for the kernel;

1

�1

� �� �
for the range.

(37)

0

1

0

2
4
3
5

8<
:

9=
; for the kernel; the range is R2.

(38)

�1

�1

1

2
4

3
5

8<
:

9=
; for the kernel;

1

2

3

2
4
3
5,

0

1

1

2
4
3
5

8<
:

9=
; for the range.

(39)

�1

1

0

2
4

3
5,

�1

0

1

2
4

3
5

8<
:

9=
; for the kernel;

1

1

1

2
4
3
5

8<
:

9=
; for the range.

(40) The kernel contains only the zero vector; the range is R3.

(41) The kernel contains only the zero vector; the range is R1.

(42)

�1

1

0

0

2
664

3
775,

�2

0

1

0

2
664

3
775,

�2

0

0

1

2
664

3
775

8>><
>>:

9>>=
>>; for the kernel; the range is R1.

(43) They are the same.
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(44) Rank of T ¼ dimension of W. Use Corollary 1 and the fact that the nullity of T is

nonnegative.

(45) dim (M2�2) ¼ 4 > 3 ¼ dim (P2).

(46) dim (R3) ¼ 3 > 2 ¼ dim (R2).

(47) If
Pk
i¼1

civi ¼ 0, then

0 ¼ T(0) ¼ T
Pk
i¼1

civi

	 

¼
Pk
i¼1

ciT(vi) ¼
Pk
i¼1

ciwi , and c1 ¼ c2 ¼ . . . ¼ ck ¼ 0.

(48) If dim (W) < dim (V), then the nullity of V is greater than zero and many vectors

map into the zero vector.

(49) dim (R3) ¼ 3 < 4 ¼ dim (R4).

(50) dim (R3) ¼ 3 < 4 ¼ dim (M2�2).

(51) If w 2 Im(T), then there exists a vector v 2 V such that T(v) ¼ w. Since v ¼
Pp
i¼1

civi,

it follows that

w ¼ T(v) ¼ T
Pp
i¼1

civi

	 

¼
Pp
i¼1

ciT(vi).

(52) 0 ¼
Pk
i¼1

ciT(vi) implies that 0 ¼ T
Pk
i¼1

civi

	 

. Then

Pk
i¼1

civi ¼ 0 if T is one-to-one and

c1 ¼ c2 ¼ . . . ¼ cn ¼ 0 if fv1, v2, . . . , vng is linearly independent. Conversely, let

fv1, v2, . . . , vng be a basis for V. This set is linearly independent, and by hypothesis

so is fT(v1), T(v2), . . . , T(vn)g.

If T(u) ¼ T(v), with u ¼
Pn
i¼1

civi and v ¼
Pn
i¼1

divi, thenPn
i¼1

ciT(vi) ¼ T(u) ¼ T(v) ¼
Pn
i¼1

diT(vi), and
Pn
i¼1

ci � dið ÞT(vi) ¼ 0, whereupon

ci � di ¼ 0(i ¼ 1, 2, . . . , n), and u ¼ v.

(53) Let fv1, v2, . . . , vng be a basis for V. We are given that fT(v1), T(v2), . . . , T(vn)g

is a basis for W. If T(u) ¼ T(v), with u ¼
Pn
i¼1

civi and v ¼
Pn
i¼1

divi, then

Pn
i¼1

ciT(vi) ¼ T(u) ¼ T(v) ¼
Pn
i¼1

diT (vi), and it follows from Theorem 5 of Section

2.4 that u ¼ v.

(54) Let the dimension of V ¼ n. T is one-to-one if and only if v(T) ¼ 0 (Theorem 5) if

and only if the rank of T equals n (Corollary 1) if and only if an n� n matrix

representation of T has rank n if and only if the matrix has an inverse (Theorem 5 of

Section 2.6).

(55) T is onto if and only if T is one-to-one (Theorem 6). Then use the results of

Problem 54.
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Chapter 4

Section 4.1
(1) (a), (d), (e), (g), and (i).

(2) l ¼ 3 for (a), (e), and (g); l ¼ 5 for (d) and (i).

(3) (b), (c), (d), (e), and (g).

(4) l ¼ 2 for (b); l ¼ 1 for (c) and (d); l ¼ 3 for (e) and (g).

(5) (a), (b), and (d).

(6) l ¼ �2 for (a); l ¼ �1 for (b); l ¼ 2 for (d).

(7) (a), (c), and (d).

(8) l ¼ �2 for (b) and (c); l ¼ 1 for (d).

(9)
2

1

� �� �
for l ¼ 2;

1

1

� �� �
for l ¼ 3.

(10)
1

�1

� �� �
for l ¼ 1;

1

2

� �� �
for l ¼ 4.

(11)
3

�2

� �� �
for l ¼ 0;

1

2

� �� �
for l ¼ 8.

(12)
1

�1

� �� �
for l ¼ �3;

2

3

� �� �
for l ¼ 12.

(13)
1

1

� �� �
for l ¼ 3;

1

�2

� �� �
for l ¼ �3.

(14) No real eigenvalues.

(15)
1

0

� �� �
for l ¼ 3 with multiplicity 2.

(16)
1

0

� �
,

0

1

� �� �
for l ¼ 3 with multiplicity 2.

(17)
1

1

� �� �
for l ¼ t;

�1

2

� �� �
for l ¼ �2t.

(18)
�1

1

� �� �
for l ¼ 2u;

�2

1

� �� �
for l ¼ 3u.

(19)

0

1

0

2
4
3
5

8<
:

9=
; for l ¼ 2;

1

1

1

2
4
3
5

8<
:

9=
; for l ¼ 4;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ �2.

(20)

1

�4

1

2
4

3
5

8<
:

9=
; for l ¼ 1;

0

1

0

2
4
3
5

8<
:

9=
; for l ¼ 2;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ 3.
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(21)

1

�4

1

2
4

3
5

8<
:

9=
; for l ¼ 2;

0

1

0

2
4
3
5

8<
:

9=
; for l ¼ 3;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ 4.

(22)

1

0

�1

2
4

3
5,

1

�1

0

2
4

3
5

8<
:

9=
; for l ¼ 1 with multiplicity 2;

1

0

1

2
4
3
5

8<
:

9=
; for l ¼ 3.

(23)

1

0

�1

2
4

3
5

8<
:

9=
; for l ¼ 1 with multiplicity 2;

1

0

1

2
4
3
5

8<
:

9=
; for l ¼ 3.

(24)

3

0

�1

2
4

3
5,

�1

5

�3

2
4

3
5

8<
:

9=
; for l ¼ 0 with multiplicity 2;

1

2

3

2
4
3
5

8<
:

9=
; for l ¼ 14.

(25)

1

3

9

2
4
3
5

8<
:

9=
; for l ¼ 3 with multiplicity 3.

(26)

1

0

�1

2
4

3
5

8<
:

9=
; for l ¼ 1;

1

�1

1

2
4

3
5

8<
:

9=
; for l ¼ 3;

1

2

1

2
4
3
5

8<
:

9=
; for l ¼ 9.

(27)

0

1

1

2
4
3
5

8<
:

9=
; for l ¼ 1;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ �2;

1

1

1

2
4
3
5

8<
:

9=
; for l ¼ 5.

(28)

�1

1

0

2
4

3
5

8<
:

9=
; for l ¼ 2;

1

1

1

2
4
3
5

8<
:

9=
; for l ¼ 3;

�1

�1

2

2
4

3
5

8<
:

9=
; for l ¼ 6.

(29)

1

1

1

1

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 1 with multiplicity 4.

(30)

1

0

0

0

2
664
3
775,

0

1

1

1

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 1 with multiplicity 4.

(31)

�1

0

0

1

2
664

3
775,

�1

0

1

0

2
664

3
775,

�1

0

0

1

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 1 with multiplicity 3;

0

1

1

1

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 4.

(32)

0

�1

1

0

2
664

3
775,

�1

�1

0

1

2
664

3
775

8>><
>>:

9>>=
>>; for l ¼ 2 with multiplicity 2;

1

0

0

0

2
664
3
775

8>><
>>:

9>>=
>>; for l ¼ 3 with

multiplicity 2.

(33)
2=

ffiffiffi
5
p

1=
ffiffiffi
5
p

� �� �
for l ¼ 2;

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

� �� �
for l ¼ 3.
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(34)
1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

� �� �
for l ¼ 1;

1=
ffiffiffi
5
p

2=
ffiffiffi
5
p

� �� �
for l ¼ 4.

(35)
3=

ffiffiffiffiffi
13
p

�2=
ffiffiffiffiffi
13
p

� �� �
for l ¼ 0;

1=
ffiffiffi
5
p

2=
ffiffiffi
5
p

� �� �
for l ¼ 8.

(36)

0

1

0

2
4
3
5

8<
:

9=
; for l ¼ 2;

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5

8<
:

9=
; for l ¼ 4;

�1=
ffiffiffi
2
p

0

1=
ffiffiffi
2
p

2
4

3
5

8<
:

9=
; for l ¼ �2.

(37)
1=

ffiffiffiffiffi
18
p

�4=
ffiffiffiffiffi
18
p

1=
ffiffiffiffiffi
18
p

2
4

3
5

8<
:

9=
; for l ¼ 1;

0

1

0

2
4
3
5

8<
:

9=
; for l ¼ 2;

�1=
ffiffiffi
2
p

0

1=
ffiffiffi
2
p

2
4

3
5

8<
:

9=
; for l ¼ 3.

(38) �5tþ (3�
ffiffiffiffiffi
34
p

)
� �

for l ¼
ffiffiffiffiffi
34
p

; �5tþ (3þ
ffiffiffiffiffi
34
p

)
� �

for l ¼ �
ffiffiffiffiffi
34
p

.

(39) f�5tþ 2g for l ¼ 1; ft� 1g for l ¼ �2.

(40) ft2 þ 1, tg for l ¼ 1; f�t2 � 2tþ 1g for l ¼ 3.

(41)
1

�1

� �� �
for l ¼ 3 with multiplicity 2.

(42)
5

3

� �� �
for l ¼ 10;

2

�3

� �� �
for l ¼ �11.

(43)

5

�4

1

2
4

3
5

8<
:

9=
; for l ¼ 0;

�1

0

1

2
4

3
5

8<
:

9=
; for l ¼ 2 with multiplicity 2.

(44)

1

0

�1

2
4

3
5,

1

2

1

2
4
3
5

8<
:

9=
; for l ¼ 2 with multiplicity 2;

1

�1

1

2
4

3
5

8<
:

9=
; for l ¼ 5.

(45)
1 1

0 1

� �� �
for l ¼ 1 with multiplicity 3.

(46) f1g for l ¼ 0 of multiplicity 2.

(47) ft, 1g for l ¼ 0 of multiplicity 3.

(48) ft, 1g for l ¼ 0 of multiplicity 3.

(49) fe3tg for l ¼ 3; fe�3tg for l ¼ �3.

(50) fe3t, e�3tg for l ¼ 9 of multiplicity 2.

(51) No real eigenvalues.

(52) fsin t , cos tg for l ¼ 1 of multiplicity 2.

(53) fsin 2t, cos 2tg for l ¼ 4 of multiplicity 2.
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(54) Expanding by the first column,

�l 1 0 . . . 0 0
0 �l 1 . . . 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 	 	 	 1 0
0 0 0 	 	 	 �l 1
�a0 �a1 �a2 . . . �an�1 �an � l

������������

������������

¼ �l

�l 1 0 . . . 0 0
0 �l 1 . . . 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 . . . �l 1
�a1 �a2 �a3 . . . �an�1 �an � l

����������

����������

þ (� 1)na0

1 0 . . . 0 0
�l 1 . . . 0 0
..
. ..

. . .
. ..

. ..
.

0 0 	 	 	 1 0
0 0 . . . �l 1

����������

����������
:

Use the induction hypothesis on the first determinant and note that the second

determinant is the determinant of a lower triangular matrix.

Section 4.2
(1) 9.

(2) 9.2426.

(3) 5þ 8þ l ¼ �4, l ¼ �17.

(4) (5)(8)l ¼ �4, l ¼ �0:1

(5) Their product is �24.

(6) (a) �6, 8; (b) �15, 20; (c) �6, 1; (d) 1, 8.

(7) (a) 4, 4, 16; (b) �8 ,8, 64; (c) 6,� 6,� 12; (d) 1, 5, 7.

(8) (a) 2A, (b) 5A, (c) A2, (d) Aþ 3I.

(9) (a) 2A, (b) A2, (c) A3, (d) A� 2I.

(10) 8þ 2 ¼ 10 ¼ (5þ
ffiffiffiffiffi
18
p

)þ (5�
ffiffiffiffiffi
18
p

) ¼ l1 þ l2;

det (A) ¼ 7 ¼ (5þ
ffiffiffiffiffi
18
p

)(5�
ffiffiffiffiffi
18
p

) ¼ l1l2.

(11) 1þ 2þ 7 ¼ 10 ¼ 0þ (5þ
ffiffiffiffiffi
10
p

)þ (5�
ffiffiffiffiffi
10
p

) ¼ l1 þ l2 þ l3;

det (A) ¼ 0 ¼ (0)(5þ
ffiffiffiffiffi
10
p

)(5�
ffiffiffiffiffi
10
p

) ¼ l1l2l3.

(12)
1

5þ
ffiffiffiffiffi
18
p ¼ 1

7
(5�

ffiffiffiffiffi
18
p

) and
1

5�
ffiffiffiffiffi
18
p ¼ 1

7
(5þ

ffiffiffiffiffi
18
p

) for Problem 10.

The matrix in Problem 11 has a zero eigenvalue and no inverse.
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(13) A ¼ 1 2

4 3

� �
has eigenvalues �1 and 5; B ¼ 2 �1

3 �2

� �
has eigenvalues

1 and �1; Aþ B ¼ 3 1

7 1

� �
has eigenvalues 2
 2

ffiffiffi
2
p

.

(14) Use A and B from the solution to Problem 13. Then AB ¼ 8 �5

14 �10

� �
has

eigenvalues �1

ffiffiffiffiffi
11
p

.

(15) x ¼
�1

1

� �
is an eigenvector of A ¼ 1 2

4 3

� �
, but ATx ¼ 1 4

2 3

� �
�1

1

� �
¼ 3

1

� �
6¼ lx for any real constant l.

(16) (A� cI)x ¼ Ax� cx ¼ lx� cx ¼ (l� c)x.

(17) det (AT � lI) ¼ det (A� lI)T ¼ det (A� lI).

(23) (a) A2 � 4A� 5I ¼
1 2

4 3

� �
1 2

4 3

� �
� 4

1 2

4 3

� �
� 5

1 0

0 1

� �
¼

0 0

0 0

� �
:

(b) A2 � 5A ¼
1 2

2 4

� �
1 2

2 4

� �
� 4

1 2

2 4

� �
� 5

1 0

0 1

� �
¼

0 0

0 0

� �
:

(24) Use the results of Problem 18 and Theorem 7 of Appendix A.

(25) An þ an�1A
n�1 þ 	 	 	 a1Aþ a0I ¼ 0

A[An�1 þ an�1A
n�2 þ 	 	 	 þ a1I] ¼ �a0I

or

A[� 1
a0

(An�1 þ an�1A
n�2 þ 	 	 	 þ a1I)] ¼ I

Thus, (� 1=a0)(A
n�1 þ an�1A

n�2 þ 	 	 	 þ a1I) is the inverse of A.

(26) (a) A�1 ¼ �2 1

3=2 �1=2

� �
, (b) since a0 ¼ 0, the inverse does not exist,

(c) since a0 ¼ 0, the inverse does not exist,

(d) A�1 ¼
�1=3 �1=3 2=3
�1=3 1=6 1=6
1=2 1=4 �1=4

2
4

3
5, (e) A�1 ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

2
664

3
775.

Section 4.3

(1) Yes; M ¼ 3 1

1 1

� �
, D ¼ 1 0

0 �1

� �
.

(2) No, if the vector space is the set of real two-tuples. Yes, if the vector space is the set

of two-tuples with complex valued components; then

M ¼
2þ i 2� i

1 1

� �
, D ¼

i 0

0 �i

� �
.
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(3) No. (4) No.

(5) Yes; M ¼
�10 0 0

1 1 �3

8 2 1

2
4

3
5, D ¼

1 0 0

0 3 0

0 0 �4

2
4

3
5.

(6) Yes; M ¼
1 0 1

�2 �2 0

0 1 1

2
4

3
5, D ¼

3 0 0

0 3 0

0 0 7

2
4

3
5.

(7) Yes; M ¼
3 �2 1

0 1 2

�1 0 3

2
4

3
5, D ¼

0 0 0

0 0 0

0 0 14

2
4

3
5.

(8) Yes; M ¼
1 1 1

0 1 �1

�1 0 1

2
4

3
5, D ¼

2 0 0

0 2 0

0 0 5

2
4

3
5.

(9) No. (10) No. (11) No.

(12) Yes; f3tþ 1, tþ 1g.

(13) Yes; f3tþ 1, �tþ 3g.

(14) Yes; f�10t2 þ tþ 8, tþ 2, � 3tþ 1g.

(15) Yes; ft2 � 2t, � 2tþ 1, t2 þ 1g.

(16) No.

(17) Yes,
3 0

0 �1

� ��
,
�1 5

0 �3

� �
,

1 2

0 3

� ��
.

(18) No.

(19) Yes,
1 0

0 �1

� ��
,

1 0

2 1

� �
,

1 0

�1 1

� ��
.

(20) No.

(21) No.

Section 4.4

(1)
e�1 0

0 e4

� �
. (2)

e2 0

0 e3

� �
.

(3)
e�7 0

0 e�7

� �
. (4)

1 0

0 1

� �
.

(5)
e�7 e�7

0 e�7

� �
. (6)

e2 e2

0 e2

� �
.

(7)
e3 e3

0 e3

� �
. (8)

1 1

0 1

� �
.

(9)
e2 0 0

0 e3 0

0 0 e4

2
4

3
5. (10)

e1 0 0

0 e�5 0

0 0 e�1

2
4

3
5.
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(11)
e2 0 0

0 e2 0

0 0 e2

2
4

3
5. (12)

e2 e2 1
2
e2

0 e2 e2

0 0 e2

2
4

3
5.

(13)
e�1 e�1 1

2
e�1

0 e�1 e�1

0 0 e�1

2
4

3
5. (14)

1 1 1

0 1 1

0 0 1

2
4

3
5.

(15)
e�1 0 0

0 e�1 e�1

0 0 e�1

2
4

3
5. (16)

e2 0 0

0 e2 e2

0 0 e2

2
4

3
5.

(17)

e1 0 0 0

0 e5 0 0

0 0 e�5 0

0 0 0 e3

2
664

3
775. (18)

e�5 0 0 0

0 e�5 0 0

0 0 e�5 0

0 0 0 e�5

2
664

3
775.

(19)

e�5 0 0 0

0 e�5 0 0

0 0 e�5 e�5

0 0 0 e�5

2
664

3
775. (20)

e�5 0 0 0

0 e�5 e�5 1
2
e�5

0 0 e�5 e�5

0 0 0 e�5

2
664

3
775.

(21)

e�5 e�5 0 0

0 e�5 0 0

0 0 e�5 e�5

0 0 0 e�5

2
664

3
775. (22)

e�5 e�5 1
2
e�5 1

6
e�5

0 e�5 e�5 1
2
e�5

0 0 e�5 e�5

0 0 0 e�5

2
664

3
775.

(23)
e2 0 e2

0 e2 0

0 0 e2

2
4

3
5. (24) 1

7

3e5 þ 4e�2 3e5 � 3e�2

4e5 � 4e�2 4e5 þ 3e�2

� �
.

(25) e3 2 �1

1 0

� �
. (26) e2

0 1 3

�1 2 5

0 0 1

2
4

3
5.

(27) ep

1 p=3 (p2=12)� p

0 1 p=2
0 0 1

2
4

3
5. (28) e2

1 1 1

0 1 2

0 0 1

2
4

3
5.

(29)

e 0 0

�eþ 2e2 2e2 �e2

e2 e2 0

2
4

3
5.

(30)

e2 e2 0 0

0 e2 0 0

0 0 e3=2=
ffiffiffiffiffi
27
p� �

sin
ffiffiffiffi
27
p

2
þ

ffiffiffiffiffi
27
p

cos
ffiffiffiffi
27
p

2


 �
e3=2=

ffiffiffiffiffi
27
p� �

14 sin
ffiffiffiffi
27
p

2


 �
0 0 e3=2=

ffiffiffiffiffi
27
p� �

�2 sin
ffiffiffiffi
27
p

2


 �
e3=2=

ffiffiffiffiffi
27
p� �

� sin
ffiffiffiffi
27
p

2
þ

ffiffiffiffiffi
27
p

cos
ffiffiffiffi
27
p

2


 �

2
6666664

3
7777775:

(31) eA ¼ e 3e

0 e

� �
and e�A ¼ e�1 �3e�1

0 e�1

� �
.

(32) eA ¼
1
2
(e8 þ e�8) 1

16
(e8 � e�8)

4 (e8 � e�8) 1
2
(e8 þ e�8)

� �
and e�A ¼

1
2
(e8 þ e�8) � 1

16
(e8 � e�8)

�4(e8 � e�8) 1
2
(e8 þ e�8)

� �
.
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(33) eA ¼
1 1 1=2
0 1 1

0 0 1

2
4

3
5 and e�A ¼

1 �1 1=2
0 1 �1

0 0 1

2
4

3
5. A has no inverse.

(34) eA ¼ e e� 1

0 1

� �
, eB ¼ 1 e� 1

0 e

� �
, eAeB ¼ e 2e2 � 2e

0 e

� �
,

eBeA ¼ e 2e� 2

0 e

� �
, eAþB ¼ e 2e

0 e

� �
.

(35) A ¼ 1 0

0 2

� �
, B ¼ 3 0

0 4

� �
.

(37) 1=7
3e8t þ 4et 4e8t � 4et

3e8t � 3et 4e8t þ 3et

� �
.

(38)
(2=

ffiffiffi
3
p

) sinh
ffiffiffi
3
p

tþ cosh
ffiffiffi
3
p

t (1=
ffiffiffi
3
p

) sinh
ffiffiffi
3
p

t

(� 1=
ffiffiffi
3
p

) sinh
ffiffiffi
3
p

t (� 2=
ffiffiffi
3
p

) sinh
ffiffiffi
3
p

tþ cosh
ffiffiffi
3
p

t

� �
.

Note: sinh
ffiffiffi
3
p

t ¼ e
ffiffi
3
p

t�e�
ffiffi
3
p

t

2
and cosh

ffiffiffi
3
p

t ¼ e
ffiffi
3
p

tþe�
ffiffi
3
p

t

2
.

(39) e3t 1þ t t

�t 1� t

� �
.

(40)
1:4e�2t � 0:4e�7t 0:2e�2t � 0:2e�7t

�2:8e�2t þ 2:8e�7t �0:4e�2t þ 1:4e�7t

� �
.

(41)
0:8e�2t þ 0:2e�7t 0:4e�2t � 0:4e�7t

0:4e�2t � 0:4e�7t 0:2e�2t þ 0:8e�7t

� �
.

(42)
0:5e�4t þ 0:5e�16t 0:5e�4t � 0:5e�16t

0:5e�4t � 0:5e�16t 0:5e�4t þ 0:5e�16t

� �
.

(43) e2t 1 t

0 1

� �
. (44)

1 t t2=2
0 1 t

0 0 1

2
4

3
5.

(45) 1
12

12et 0 0

�9et þ 14e3t � 5e�3t 8e3t þ 4e�3t 4e3t � 4e�3t

�24et þ 14e3t þ 10e�3t 8e3t � 8e�3t 4e3t þ 8e�3t

2
4

3
5.

(46) e�t
1 t t2=2
0 1 t

0 0 1

2
4

3
5. (47) e4t

1 t 0

0 1 0

0 0 1

2
4

3
5.

(48)
e2t te2t 0

0 e2t 0

0 0 e�t

2
4

3
5. (49) (1=2)

�e�t þ 3et �3e�t þ 3et 0

e�t � et 3e�t � et 0

2tet 2tet 2et

2
4

3
5.

(50) e2t

1þ t t 0

�t 1� t 0

t� 1
2
t2 2t� 1

2
t2 1

2
4

3
5.

(51) et

�2tþ 1 �4t 4t
t2

2
� 2t t2 � 3tþ 1 �t2 þ 3t

t2

2
� 3t t2 � 5t �t2 þ 5tþ 1

2
4

3
5
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(52)
cos (8t) 1

8
sin (8t)

�8 sin (8t) cos (8t)

" #
.

(53)
2 sin (t)þ cos (t) 5 sin (t)

� sin (t) �2 sin (t)þ cos (t)

� �
.

(54)
1

3
e�4t

4 sin (3t)þ 3 cos (3t) sin (3t)

�25 sin (3t) �4 sin (3t)þ 3 cos (3t)

� �
.

(55) e4t
� sin tþ cos t sin t

�2 sin t sin tþ cos t

� �
.

(56)
1

3

e�t þ 8e2t 0 4e�t þ 8e2t

3e2t þ 6te2t 6e2t 3e2t þ 6te2t

�e�t � 2e2t 0 �4e�t � 2e2t

2
64

3
75

¼ 1

3

�e�t þ 4e2t 0 �4e�t þ 4e2t

3te2t 3e2t 3te2t

e�t � e2t 0 4e�t � e2t

2
64

3
75 3 0 4

1 2 1

�1 0 �2

2
64

3
75.

(57)
� sin t cos t

� cos t � sin t

� �
¼

cos t sin t

� sin t cos t

� �
0 1

�1 0

� �
.

(58) dA2(t)=dt ¼ 2tþ 40t4 6t2 þ 4tet þ 2t2et

16t3 þ 12t2et þ 4t3et 40t4 þ 2e2t

" #
,

2A(t)dA(t)=dt ¼ 2tþ 48t4 8t2 þ 4t2et

8t3 þ 24t2et 32t4 þ 2e2t

" #
.

Section 4.5
(1)

(2)

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 0.6000 1.0000 5.0000

2 0.5238 1.0000 4.2000

3 0.5059 1.0000 4.0476

4 0.5015 1.0000 4.0118

5 0.5004 1.0000 4.0029

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 0.5000 1.0000 10.0000

2 0.5000 1.0000 8.0000

3 0.5000 1.0000 8.0000
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(3)

(4)

(5)

(6)

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 0.6000 1.0000 15.0000

2 0.6842 1.0000 11.4000

3 0.6623 1.0000 12.1579

4 0.6678 1.0000 11.9610

5 0.6664 1.0000 12.0098

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 0.5000 1.0000 2.0000

2 0.2500 1.0000 4.0000

3 0.2000 1.0000 5.0000

4 0.1923 1.0000 5.2000

5 0.1912 1.0000 5.2308

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 1.0000 0.6000 10.0000

2 1.0000 0.5217 9.2000

3 1.0000 0.5048 9.0435

4 1.0000 0.5011 9.0096

5 1.0000 0.5002 9.0021

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 1.0000 0.4545 11.0000

2 1.0000 0.4175 9.3636

3 1.0000 0.4145 9.2524

4 1.0000 0.4142 9.2434

5 1.0000 0.4142 9.2427
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(7)

(8)

(9)

(10)

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.2500 1.0000 0.8333 12.0000

2 0.0763 1.0000 0.7797 9.8333

3 0.0247 1.0000 0.7605 9.2712

4 0.0081 1.0000 0.7537 9.0914

5 0.0027 1.0000 0.7513 9.0310

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.6923 0.6923 1.0000 13.0000

2 0.5586 0.7241 1.0000 11.1538

3 0.4723 0.6912 1.0000 11.3448

4 0.4206 0.6850 1.0000 11.1471

5 0.3883 0.6774 1.0000 11.1101

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.4000 0.7000 1.0000 20.0000

2 0.3415 0.6707 1.0000 16.4000

3 0.3343 0.6672 1.0000 16.0488

4 0.3335 0.6667 1.0000 16.0061

5 0.3333 0.6667 1.0000 16.0008

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.4000 1.0000 0.3000 �20:0000

2 1.0000 0.7447 0.0284 �14:1000

3 0.5244 1.0000 �0:3683 �19:9504

4 1.0000 0.7168 �0:5303 �18:5293

5 0.6814 1.0000 �0:7423 �20:3976
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(11)

1

1

1

2
4
3
5 is a linear combination of

1

�4

1

2
4

3
5 and

0

1

0

2
4
3
5, which are eigenvectors corre-

sponding to l ¼ 1 and l ¼ 2, not l ¼ 3. Thus, the power method converges to

l ¼ 2.

(12) There is no single dominant eigenvalue. Here, jl1j ¼ jl2j ¼
ffiffiffiffiffi
34
p

.

(13) Shift by l ¼ 4. The power method on A ¼ �2 1

2 �1

� �
converges after three iter-

ations to m ¼ �3:lþ m ¼ 1.

(14) Shift by l ¼ 16. The power method on A ¼
�13 2 3

2 �10 6

3 6 �5

2
4

3
5 converges after

three iterations to m ¼ �14: lþ m ¼ 2.

(15)

(16)

(17)

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 �0:3333 1.0000 0.6000

2 1.0000 �0:7778 0.6000

3 �0:9535 1.0000 0.9556

4 1.0000 �0:9904 0.9721

5 �0:9981 1.0000 0.9981

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 �0:5000

1 �0:8571 1.0000 0.2917

2 1.0000 �0:9615 0.3095

3 �0:9903 1.0000 0.3301

4 1.0000 �0:9976 0.3317

5 �0:9994 1.0000 0.3331

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 0.2000 1.0000 0.2778

2 �0:1892 1.0000 0.4111

3 �0:2997 1.0000 0.4760

4 �0:3258 1.0000 0.4944

5 �0:3316 1.0000 0.4987
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(18)

(19)

(20)

(21)

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000

1 �0:2000 1.0000 0.7143

2 �0:3953 1.0000 1.2286

3 �0:4127 1.0000 1.3123

4 �0:4141 1.0000 1.3197

5 �0:4142 1.0000 1.3203

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 1.0000 0.4000 �0:2000 0.3125

2 1.0000 0.2703 �0:4595 0.4625

3 1.0000 0.2526 �0:4949 0.4949

4 1.0000 0.2503 �0:4994 0.4994

5 1.0000 0.2500 �0:4999 0.4999

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.3846 1.0000 0.9487 �0:1043

2 0.5004 0.7042 1.0000 �0:0969

3 0.3296 0.7720 1.0000 �0:0916

4 0.3857 0.6633 1.0000 �0:0940

5 0.3244 0.7002 1.0000 �0:0907

TABLE

Iteration Eigenvector components Eigenvalue

0 1.0000 1.0000 1.0000

1 �0:6667 1.0000 �0:6667 �1:5000

2 �0:3636 1.0000 �0:3636 1.8333

3 �0:2963 1.0000 �0:2963 1.2273

4 �0:2712 1.0000 �0:2712 1.0926

5 �0:2602 1.0000 �0:2602 1.0424
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(22) We cannot construct an LU decomposition. Shift as explained in Problem 13.

(23) We cannot solve Lx1 ¼ y uniquely for x1 because one eigenvalue is 0. Shift as

explained in Problem 13.

(24) Yes, on occasion.

(25) Inverse power method applied to A ¼
�7 2 3

2 �4 6

3 6 1

2
4

3
5 converges to m ¼ 1=6:

lþ 1=m ¼ 10þ 6 ¼ 16.

(26) Inverse power method applied to A ¼
27 �17 7

�17 21 1

7 1 11

2
4

3
5 converges to m ¼ 1=3:

lþ 1=m ¼ �25þ 3 ¼ �22.

Section 4.6

(1) x(t) ¼ x(t)

y(t)

� �
, A(t) ¼ 2 3

4 5

� �
, f(t) ¼ 0

0

� �
, c ¼ 6

7

� �
, t0 ¼ 0.

(2) x(t) ¼ y(t)

z(t)

� �
, A(t) ¼ 3 2

4 1

� �
, f(t) ¼ 0

0

� �
, c ¼ 1

1

� �
, t0 ¼ 0.

(3) x(t) ¼ x(t)

y(t)

� �
, A(t) ¼ �3 3

4 �4

� �
, f(t) ¼ 1

�1

� �
, c ¼ 0

0

� �
, t0 ¼ 0.

(4) x(t) ¼ x(t)

y(t)

� �
, A(t) ¼ 3 0

2 0

� �
, f(t) ¼ t

tþ 1

� �
, c ¼ 1

�1

� �
, t0 ¼ 0.

(5) x(t) ¼ x(t)

y(t)

� �
, A(t) ¼ 3 7

1 1

� �
, f(t) ¼ 2

2t

� �
, c ¼ 2

�3

� �
, t0 ¼ 1.

(6) x(t) ¼
u(t)

v(t)

w(t)

2
4

3
5, A(t) ¼

1 1 1

1 �3 1

0 1 1

2
4

3
5, f(t) ¼

0

0

0

2
4
3
5, c ¼

0

1

�1

2
4

3
5, t0 ¼ 4.

(7) x(t) ¼
x(t)

y(t)

z(t)

2
4

3
5, A(t) ¼

0 6 1

1 0 �3

0 �2 0

2
4

3
5, f(t) ¼

0

0

0

2
4
3
5, c ¼

10

10

20

2
4

3
5, t0 ¼ 0.

(8) x(t) ¼
r(t)

s(t)

u(t)

2
4

3
5, A(t) ¼

1 �3 �1

1 �1 0

2 1 �1

2
4

3
5, f(t) ¼

sin t

t2 þ 1

cos t

2
4

3
5, c ¼

4

�2

5

2
4

3
5, t0 ¼ 1.

(9) x(t) ¼ x1(t)

x2(t)

� �
, A(t) ¼ 0 1

3 2

� �
, f(t) ¼ 0

0

� �
, c ¼ 4

5

� �
, t0 ¼ 0.

(10) x(t) ¼ x1(t)

x2(t)

� �
, A(t) ¼ 0 1

1 �1

� �
, f(t) ¼ 0

0

� �
, c ¼ 2

0

� �
, t0 ¼ 1.

(11) x(t) ¼ x1(t)

x2(t)

� �
, A(t) ¼ 0 1

1 0

� �
, f(t) ¼ 0

t2

� �
, c ¼ �3

3

� �
, t0 ¼ 0.
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(12) x(t) ¼ x1(t)

x2(t)

� �
, A(t) ¼ 0 1

3 2

� �
, f(t) ¼ 0

2

� �
, c ¼ 0

0

� �
, t0 ¼ 0.

(13) x(t) ¼ x1(t)

x2(t)

� �
, A(t) ¼ 0 1

�2 3

� �
, f(t) ¼ 0

e�t

� �
, c ¼ 2

2

� �
, t0 ¼ 1.

(14) x(t) ¼
x1(t)

x2(t)

x3(t)

2
4

3
5, A(t) ¼

0 1 0

0 0 1

1 0 �1

2
4

3
5, f(t) ¼

0

0

0

2
4
3
5, c ¼

2

1

�205

2
4

3
5, t0 ¼ �1.

(15) x(t) ¼

x1(t)

x2(t)

x3(t)

x4(t)

2
664

3
775, A(t) ¼

0 1 0 0

0 0 1 0

0 0 0 1

0 1 �1 0

2
664

3
775, f(t) ¼

0

0

0

1

2
664
3
775, c ¼

1

2

p

e3

2
664

3
775, t0 ¼ 0.

(16) x(t) ¼

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

2
6666664

3
7777775, A(t) ¼

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 �4 0

2
6666664

3
7777775, f(t) ¼

0

0

0

0

0

t2 � t

2
6666664

3
7777775, c ¼

2

1

0

2

1

0

2
6666664

3
7777775, t0 ¼ p.

Section 4.7

(3) (a) e�3t
1 �t t2=2
0 1 �t

0 0 1

2
4

3
5,

(b) e3(t�2)
1 (t� 2) (t� 2)2=2
0 1 (t� 2)

0 0 1

2
4

3
5,

(c) e3(t�s)
1 (t� s) (t� s)2=2
0 1 (t� s)

0 0 1

2
4

3
5,

(d) e�3(t�2)
1 �(t� 2) (t� 2)2=2
0 1 �(t� s)

0 0 1

2
4

3
5.

(4) (a)
1

6

2e�5t þ 4et 2e�5t � 2et

4e�5t � 4et 4e�5t þ 2et

� �
, (b)

1

6

2e�5s þ 4es 2e�5s � 2es

4e�5s � 4es 4e�5s þ 2es

� �
,

(c)
1

6

2e5(t�3) þ 4e�(t�3) 2e5(t�3) � 2e�(t�3)

4e5(t�3) � 4e�(t�3) 4e5(t�3) þ 2e�(t�3)

� �
.

(5) (a)
1

3

sin 3tþ 3 cos 3t �5 sin 3t

2 sin 3t � sin 3tþ 3 cos 3t

� �
,

(b)
1

3

sin 3sþ 3 cos 3s �5 sin 3s

2 sin 3s � sin 3sþ 3 cos 3s

� �
,

(c)
1

3

sin 3(t� s)þ 3 cos 3(t� s) �5 sin 3(t� s)

2 sin 3(t� s) � sin 3(t� s)þ 3 cos 3(t� s

� �
.
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(6) Only (c). (7) Only (c). (8) Only (b).

(9) x(t) ¼ 5e(t�2) � 3e�(t�2), y(t) ¼ 5e(t�2) � e�(t�2).

(10) x(t) ¼ 2e(t�1) � 1, y(t) ¼ 2e(t�1) � 1.

(11) x(t) ¼ k3e
t þ 3k4e

�t, y(t) ¼ k3e
t þ k4e

�t.

(12) x(t) ¼ k3e
t þ 3k4e

�t � 1, y(t) ¼ k3e
t þ k4e

�t � 1.

(13) x(t) ¼ cos 2t� (1=6) sin 2tþ (1=3) sin t.

(14) x(t) ¼ t4=24þ (5=42 � (2=3þ 3=8.

(15) x(t) ¼ (4=92t þ (5=9�t � (1=3�t.

(16) x(t) ¼ �8 cos t� 6 sin tþ 8þ 6t, y(t) ¼ 4 cos t� 2 sin t� 3.

Section 4.8
Note that the units are kg of sugar for problems (1) through (4) and tons of pollution for

problems (5) through (7).

(1) x(t) ¼ 500e�7t=100(� 1þ e7t=100)

y(t) ¼ 5 e�7t=100(� 100� 7tþ 100e7t=100)

(2) x(t)! 500, y(t)! 437:5 (kg of sugar)

(3) x(t)! 500, y(t)! 583:333 (kg of sugar)

(4) x(t)! 500, y(t)! 500 (kg of sugar)

(5) x(t) ¼ 1

14
e�6t(� 1� 7e6t þ 8e7t)

y(t) ¼ 2

21
e�6t(� 1þ et)2(1þ 2et þ 3e2t þ 4e3t þ 5e4t þ 6e5t)

x(t)!1, y(t)!1 as t!1

(6) x(t) ¼ 1

14
e�6t(� 1� 7e6t þ 8e7t)

y(t) ¼ �2

21
e�6t(� 1þ et)2(1þ 2et þ 3e2t þ 4e3t þ 5e4t þ 6e5t)

x(t)!1, y(t)! �1 as t!1 (Note that this is not a realistic model, due to the

behavior of y(t).)

(7) x(t)!1, y(t)!1 as t!1.

Chapter 5

Section 5.1
(1) (a) 11, (b)

ffiffiffi
5
p

, (c) no.

(2) (a) 0, (b)
ffiffiffi
2
p

, (c) yes.

(3) (a) �50, (b)
ffiffiffiffiffi
74
p

, (c) no.

(4) (a) 0, (b)
ffiffiffiffiffi
68
p

, (c) yes.
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(5) (a) 0, (b) 5, (c) yes.

(6) (a) 6, (b)
ffiffiffi
5
p

, (c) no.

(7) (a) 26, (b)
ffiffiffiffiffi
24
p

, (c) no.

(8) (a) �30, (b)
ffiffiffiffiffi
38
p

, (c) no.

(9) (a) 0, (b)
ffiffiffiffiffiffiffiffiffiffi
1400
p

, (c) yes.

(10) (a) 7/24, (b)

ffiffiffiffiffi
21
p

8
, (c) no.

(11) (a) 2, (b)
ffiffiffi
3
p

, (c) no.

(12) (a) 0, (b)
ffiffiffi
3
p

, (c) yes.

(13) (a) 0, (b)
ffiffiffi
2
p

, (c) yes.

(14) (a) 1, (b) 1, (c) no.

(15) (a) 1/12, (b)

ffiffiffi
3
p

2
, (c) no.

(16) (a) �13, (b)
ffiffiffiffiffi
55
p

, (c) no.

(17) Inner product undefined.

(18) (a) 3=5 4=5½ �T,

(b) 20=
ffiffiffiffiffiffiffiffi
425
p

5=
ffiffiffiffiffiffiffiffi
425
p� �T

,

(c) 1=
ffiffiffiffiffi
21
p

2=
ffiffiffiffiffi
21
p

4=
ffiffiffiffiffi
21
p� �T

,

(d) �4=
ffiffiffiffiffi
34
p

3=
ffiffiffiffiffi
34
p

�3=
ffiffiffiffiffi
34
p� �T

,

(e)
ffiffiffi
3
p

=3
ffiffiffi
3
p

=3
ffiffiffi
3
p

=3
� �T

,

(f) 1=
ffiffiffi
5
p

2=
ffiffiffiffiffi
55
p

3=
ffiffiffiffiffi
55
p

4=
ffiffiffiffiffi
55
p

5=
ffiffiffiffiffi
55
p� �T

.

(19) 36.98. (20) 14.08. (21) 78.78.

(22) 908. (23) 118.58. (24) 50.88.

(25) 19.58. (26) 17.78.

(27) No vector x exists.

(28) With x ¼ [ x1 x2 x3 . . . xn ]T and y ¼ [ y1 y2 y3 . . . yn ]T,

hlx,yi ¼ (lx1)(y1)þ (lx2)(y2)þ . . .þ (lxn)(yn)

¼ l[x1y1 þ x2y2 þ x3y3 þ . . .þ xnyn] ¼ lhx,yi:

(29) * x1

x2

..

.

xn

2
6664

3
7775þ

z1

z2

..

.

zn

2
6664

3
7775,

y1

y2

..

.

yn

2
6664

3
7775
+
¼

*
x1 þ z1

x2 þ z2

..

.

xn þ zn

2
6664

3
7775,

y1

y2

..

.

yn

2
6664

3
7775
+

¼ (x1 þ z1)y1 þ (x2 þ z2)y2 þ . . . (xn þ zn)yn

¼ (x1y1þx2y2þ . . .þxnyn)þ (z1y1þz2y2þ . . .þ znyn)

¼hx,yiþhz,yi
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(30) h0,yi ¼ h00,yi ¼ 0h0,yi ¼ 0.

(31) jjxþ yjj2 ¼ hxþ y,xþ yi ¼ hx,xi þ hx,yi þ hy,xi þ hy,yi
¼ hx,xi þ 0þ 0þ hy,yi ¼ jjxjj2 þ jjyjj2:

(32) jjxþ yjj2 þ jjx� yjj2 ¼ hxþ y,xþ yi þ hx� y,x� yi
¼ [hx,xi þ hx,yi þ hy,xi þ hy,yi]þ [hx,xi � hx,yi � hy,xi þ hy,yi]
¼ 2hx,xi þ 2hy,yi ¼ 2jjxjj2 þ 2jjyjj2

(33) jjxþ yjj2 � jjx� yjj2 ¼ hxþ y,xþ yi � hx� y,x� yi
¼ [hx,xi þ hx,yi þ hy,xi þ hy,yi]� [hx,xi � hx,yi � hy,xi þ hy,yi]
¼ 2hx,yi þ 2hy,xi ¼ 4hx,yi

(34) hx,ayþ bzi ¼ hayþ bz,xi ¼ hay,xi þ hbz,xi ¼ ahy,xi þ bhz,xi
¼ a(0)þ b(0) ¼ 0

(35) 0 � jjlxþ yjj2 ¼ hlxþ y,lxþ yi
¼ hlx,lxi � hlx,yi � hy,lxi þ hy,yi
¼ l2hx,xi � lhx,yi � lhy,xi þ hy,yi

(37) From Problem 35, 0 ¼ jjlx� yjj2 if and only if lx� y ¼ 0 if and only if y ¼ lx.

(38) (a) 48.28, (b) 121.48, (c) 1808, (d) 32.68, (e) 26.08.

(40) (a) 44, (b) �23, (c) �17, (d) �12, (e) �11, (f) 53.

(41) (a) 28, (b) �11:5, (c) �6.

(43) 145. (44) 27. (45) 32.

(47) (a) �8, (b) �5, (c) 7, (d) 3, (e) 2, (f) 1.

(48) (a) �22, (b) �184, (c) 22, (d) �21.

(50) (a) �763=60, (b) 325/6, (c) 107/30, (d) 113/6, (e) 303/70, (f) 2.

Section 5.2

(1) (a)
1:6
0:8

� �
, (b)

�0:6
1:2

� �
.

(2) (a)
0:7059

1:1765

� �
, (b)

0:2941

�0:1765

� �
.

(3) (a)
0:5
0:5

� �
, (b)

2:5
�2:5

� �
.

(4) (a)
0

0

� �
, (b)

4

�1

� �
.

(5) (a)
�0:7529

�3:3882

� �
, (b)

�6:2471

1:3882

� �
.

(6) (a)

1

0

1

2
4
3
5, (b)

1

1

�1

2
4

3
5.
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(7) (a)

8=9
8=9
4=9

2
4

3
5, (b)

1=9
1=9
�4=9

2
4

3
5.

(8) (a)

1:2963

3:2407

3:2407

2
4

3
5, (b)

�1:2963

�0:2407

0:7593

2
4

3
5.

(9) (a)

2=3
2=3
2=3
0

2
664

3
775, (b)

�2=3
1=3
1=3

1

2
664

3
775.

(10) (a)

�7=6
7=3

0

7=6

2
664

3
775, (b)

13=6
�1=3

3

17=6

2
664

3
775.

(11)
3

5

� �
¼ 29

5

3=5
4=5

� �
� 3

5

4=5
�3=5

� �
.

(12)
3

5

� �
¼ 8ffiffiffi

2
p 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
� 2ffiffiffi

2
p 1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

� �
.

(13)
2

�3

� �
¼ �4ffiffiffi

5
p 1=

ffiffiffi
5
p

2=
ffiffiffi
5
p

� �
� 7ffiffiffi

5
p �2=

ffiffiffi
5
p

1=
ffiffiffi
5
p

� �
.

(14)

1

2

3

2
4
3
5 ¼ 11

5

3=5
4=5

0

2
4

3
5� 2

5

4=5
�3=5

0

2
4

3
5þ 3

0

0

1

2
4
3
5.

(15)

10

0

�20

2
4

3
5 ¼ 6

3=5
4=5

0

2
4

3
5þ 8

4=5
�3=5

0

2
4

3
5� 20

0

0

1

2
4
3
5.

(16)

10

0

�20

2
4

3
5 ¼ 10ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
4

3
5� 50ffiffiffi

6
p

�1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
4

3
5� 10ffiffiffi

3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5.

(17)

10

0

�20

2
4

3
5 ¼ � 10ffiffiffi

2
p

�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
4

3
5þ 50ffiffiffi

6
p

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

2
4

3
5þ 10ffiffiffi

3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

2
4

3
5.

(18) 2tþ 1 ¼ 0:4(0:6t� 0:8)þ 2:2(0:8tþ 0:6).

(19) t2 þ 2tþ 3 ¼ �1:8(0:6t2 � 0:8)þ 2:6(0:8t2 þ 0:6)þ 2(t).

(20) t2 � 1 ¼ 1:4(0:6t2 � 0:8)þ 0:2(0:8t2 þ 0:6)þ 0(t).

(21)
1 1

�1 2

� �
¼ 3ffiffiffi

3
p 1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

" #
þ 2ffiffiffi

3
p 0 �1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #

þ 2ffiffiffi
3
p 1=

ffiffiffi
3
p

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

" #
þ 2ffiffiffi

3
p �1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
3
p

" #
:
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(22)
1 2

3 4

� �
¼ 11

5

3=5 4=5

0 0

� �
� 2

5

4=5 �3=5

0 0

� �

� 7

5

0 0

3=5 �4=5

� �
� 24

5

0 0

�4=5 �3=5

� �
:

(23)
4 5

�6 7

� �
¼ 9� 6

ffiffiffi
2
p

2

1=2 1=2

1=
ffiffiffi
2
p

0

� �
� 9þ 6

ffiffiffi
2
p

2

�1=2 �1=2

1=
ffiffiffi
2
p

0

� �

þ 1þ 7
ffiffiffi
2
p

2

�1=2 1=2

0 1=
ffiffiffi
2
p

� �
� 1� 7

ffiffiffi
2
p

2

1=2 �1=2

0 1=
ffiffiffi
2
p

� �
:

(24)
1=

ffiffiffi
5
p

2=
ffiffiffi
5
p

� �
,

2=
ffiffiffi
5
p

�1=
ffiffiffi
5
p

� �
. (25)

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
,
�1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
.

(26)
3=

ffiffiffiffiffi
13
p

�2=
ffiffiffiffiffi
13
p

� �
,

2=
ffiffiffiffiffi
13
p

3=
ffiffiffiffiffi
13
p

� �
. (27)

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

1=
ffiffiffi
6
p

2
4

3
5,

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,
�1=

ffiffiffi
2
p

0

1=
ffiffiffi
2
p

2
4

3
5.

(28)
2=

ffiffiffi
5
p

1=
ffiffiffi
5
p

0

2
4

3
5,
�2=

ffiffiffiffiffi
45
p

4=
ffiffiffiffiffi
45
p

5=
ffiffiffiffiffi
45
p

2
4

3
5,

1=3
�2=3

2=3

2
4

3
5. (29)

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

2
4

3
5,

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
4

3
5,
�1=

ffiffiffi
6
p

1=
ffiffiffi
6
p

2=
ffiffiffi
6
p

2
4

3
5.

(30)

0

3=5
4=5

2
4

3
5,

3=5
16=25

�12=25

2
4

3
5,

4=5
�12=25

9=25

2
4

3
5.

(31)

0

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

2
664

3
775,

3=
ffiffiffiffiffi
15
p

�2=
ffiffiffiffiffi
15
p

1=
ffiffiffiffiffi
15
p

1=
ffiffiffiffiffi
15
p

2
664

3
775,

3=
ffiffiffiffiffi
35
p

3=
ffiffiffiffiffi
35
p

�4=
ffiffiffiffiffi
35
p

1=
ffiffiffiffiffi
35
p

2
664

3
775,

1=
ffiffiffi
7
p

1=
ffiffiffi
7
p

1=
ffiffiffi
7
p

�2=
ffiffiffi
7
p

2
664

3
775:

(32)

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0

2
664

3
775,

�1=
ffiffiffi
6
p

1=
ffiffiffi
6
p

�2=
ffiffiffi
6
p

0

2
664

3
775,

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

0

2
664

3
775,

0

0

0

�1

2
664

3
775.

(33) One of the q vectors becomes zero.

(34) a,x� ha,xi
ha,ai a

� �
¼ ha,xi � a,

ha,xi
ha,ai a

� �
¼ ha,xi � ha,xi

ha,ai ha,ai ¼ 0.

(35) jjsxþ tyjj2 ¼ hsxþ ty,sxþ tyi ¼ s2hx,xi þ 2sthx,yi þ t2hy,yi
¼ s2(1)þ st(0)þ t2(1):

(36) An identity matrix.

(37) Set y ¼ x and use part (a) of Theorem 1 of Section 5.1.

(38) Denote the columns of A as A1, A2, . . . , An, and the elements of y as y1, y2, . . . , yn,

respectively. Then, Ay ¼ A1y1 þ A2y2 þ 	 	 	 þ Anyn and hAy,pi ¼ y1hA1,piþ
y2hA2,pi þ 	 	 	 þ ynhAn,pi.

(39) Use Theorem 1.
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Section 5.3

(1)
0:4472 0:8944

0:8944 �0:4472

� �
2:2361 1:7889

0:0000 1:3416

� �
.

(2)
0:7071 �0:7071

0:7071 0:7071

� �
1:4142 5:6569

0:0000 1:4142

� �
.

(3)
0:8321 0:5547

�0:5547 0:8321

� �
3:6056 0:8321

0:0000 4:1603

� �
:

(4)

0:3333 0:8085

0:6667 0:1617

0:6667 �0:5659

2
64

3
75 3:0000 2:6667

0:0000 1:3744

� �
.

(5)

0:3015 �0:2752

0:3015 �0:8808

0:9045 0:3853

2
64

3
75 3:3166 4:8242

0:0000 1:6514

� �
.

(6)

0:7746 0:4034

�0:5164 0:5714

0:2582 0:4706

�0:2582 0:5378

2
6664

3
7775 3:8730 0:2582

0:0000 1:9833

� �
.

(7)

0:8944 �0:2981 0:3333

0:4472 0:5963 �0:6667

0:0000 0:7454 0:6667

2
64

3
75 2:2361 0:4472 1:7889

0:0000 1:3416 0:8944

0:0000 0:0000 2:0000

2
64

3
75.

(8)

0:7071 0:5774 �0:4082

0:7071 �0:5774 0:4082

0:0000 0:5774 0:8165

2
64

3
75 1:4142 1:4142 2:8284

0:0000 1:7321 0:5774

0:0000 0:0000 0:8165

2
64

3
75.

(9)

0:00 0:60 0:80

0:60 0:64 �0:48

0:80 �0:48 0:36

2
64

3
75 5 3 7

0 5 2

0 0 1

2
64

3
75.

(10)

0:0000 0:7746 0:5071

0:5774 �0:5164 0:5071

0:5774 0:2582 �0:6761

0:5774 0:2582 0:1690

2
6664

3
7775

1:7321 1:1547 1:1547

0:0000 1:2910 0:5164

0:0000 0:0000 1:1832

2
64

3
75.

(11)

0:7071 �0:4082 0:5774

0:7071 0:4082 �0:5774

0:0000 �0:8165 �0:5774

0:0000 0:0000 0:0000

2
6664

3
7775

1:4142 0:7071 0:7071

0:0000 1:2247 0:4082

0:0000 0:0000 1:1547

2
64

3
75.

(12) QR 6¼ A.
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(13) A1 ¼ R0Q0 þ 7I

¼
19:3132 �1:2945 0:0000

0:0000 7:0231 �0:9967

0:0000 0:0000 0:0811

2
64

3
75 �0:3624 0:0756 0:9289

0:0000 �0:9967 0:0811

0:9320 0:0294 0:3613

2
64

3
75

þ 7

1 0 0

0 1 0

0 0 1

2
64

3
75 ¼ 0:0000 2:7499 17:8357

�0:9289 �0:0293 0:2095

0:0756 0:0024 7:0293

2
64

3
75

(14) A1 ¼ R0Q0 � 14I

¼
24:3721 �17:8483 3:8979

0:0000 8:4522 �4:6650

0:0000 0:0000 3:6117

2
64

3
75 0:6565 �0:6250 0:4223

�0:6975 �0:2898 0:6553

0:2872 0:7248 0:6262

2
64

3
75

� 14

1 0 0

0 1 0

0 0 1

2
64

3
75 ¼ 15:5690 �7:2354 1:0373

�7:2354 �19:8307 2:6178

1:0373 2:6178 �11:7383

2
64

3
75

(15) Shift by 4.

R0 ¼

4:1231 �0:9701 0:0000 13:5820

0:0000 4:0073 �0:9982 �4:1982

0:0000 0:0000 4:0005 12:9509

0:0000 0:0000 0:0000 3:3435

2
6664

3
7775

Q0 ¼

�0:9701 �0:2349 �0:0586 �0:0151

0:2425 �0:9395 �0:2344 �0:0605

0:0000 0:2495 �0:9376 �0:2421

0:0000 0:0000 0:2500 �0:9683

2
6664

3
7775

A1 ¼ R0Q0 þ 4I ¼

�0:2353 �0:0570 3:3809 �13:1545

0:9719 �0:0138 �1:0529 4:0640

0:0000 0:9983 3:4864 �13:5081

0:0000 0:0000 0:8358 0:7626

2
6664

3
7775

(16) 7:2077,� 0:1039
 1:5769i. (17) �11,� 22, 17. (18) 2, 3, 9.

(19) Method fails. A0 � 7I does not have linearly independent columns, so no QR

decomposition is possible.

(20) 2, 2, 16. (21) 1, 3, 3. (22) 2, 3
 i. (23) 1,
 i.

(24) 
i, 2
 3i. (25) 3:1265
 1:2638i,� 2:6265
 0:7590i.

(26) 0.0102, 0.8431, 3.8581, 30.2887.

(27) Each diagonal element of the upper triangular matrix R is the magnitude of a

nonzero vector (see Theorem 3 of Section 5.2) and is, therefore, nonzero. Use

Theorems 4 and 10 of Appendix A.
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(28) QTQ ¼ I. Thus, QT ¼ Q�1.

(29) AkRk�1 ¼ Rk�1Qk�1Rk�1 ¼ Rk�1Ak�1.

Set P ¼ (Rk�1)
�1 and use Theorem 1 of Section 4.1.

Section 5.4
(1) x � 2:225, y � 1:464. (2) x ¼ 3, y � 3:25.

(3) x � 9:879, y � 18:398. (4) x � �1:174, y � 8:105.

(5) x � 1:512, y � 0:639, z � 0:945. (6) x � 7:845, y � 1:548, z � 5:190.

(7) x � 81:003, y � 50:870, z � 38:801.

(8) x � 2:818, y � �0:364, z � �1:364.

(9) 2 and 4.

(10) (b) y ¼ 2:3xþ 8:1, (c) 21.9.

(11) (b) y ¼ �2:56xþ 54:39, (c) 31 in week 9, 29 in week 10.

(12) (b) y ¼ 0:27xþ 10:24, (c) 12.4.

(13) m ¼
N
PN
i¼1

xiyi �
PN
i¼1

xi

PN
i¼1

yi

N
PN
i¼1

x2
i �

PN
i¼1

xi

	 
2
, c ¼

PN
i¼1

yi

PN
i¼1

x2
i �

PN
i¼1

xi

PN
i¼1

xiyi

N
PN
i¼1

x2
i �

PN
i¼1

xi

	 
2
.

If N
PN

i¼1 x2
i is near

PN
i¼1 xi


 �2

, then the denominator is near 0.

(14)
PN

i¼1 x0i ¼ 0, so the denominators for m and c found in Problem 13 reduce to

N
PN

i¼1 x0i
�

)2.

(15) y ¼ 2:3x0 þ 15.

(16) y ¼ �2:56x0 þ 42:88.

(17) (a) y ¼ �0:198x0 þ 21:18, (b) year 2000 is coded as x0 ¼ 30; y(30) ¼ 15:24.

(23) E ¼
0:842

0:211

�2:311

2
4

3
5. (24) E ¼

0:161

0:069

�0:042

�0:172

2
664

3
775.

Section 5.5

(1) (a) span

1

0

0

2
4
3
5,

0

�1

1

2
4

3
5

8<
:

9=
;, (b)

0

1=2
1=2

2
4

3
5.

(2) (a) span

�1

1

0

2
4

3
5,

�1

0

1

2
4

3
5

8<
:

9=
;, (b)

2=3
2=3
2=3

2
4

3
5.

(3) (a) span

�1

2

0

2
4

3
5,

�1

0

2

2
4

3
5

8<
:

9=
;, (b)

1

1=2
1=2

2
4

3
5.
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(4) (a) span

1

�2

1

2
4

3
5

8<
:

9=
;, (b)

7=6
4=6
1=6

2
4

3
5.

(5) (a) span

1

�4

2

2
4

3
5

8<
:

9=
;, (b)

8=7
3=7
2=7

2
4

3
5.

(6) (a) span

1

0

0

2
4
3
5

8<
:

9=
;, (b)

0

1

0

2
4
3
5.

(7) (a) span

�1

1

0

2
4

3
5

8<
:

9=
;, (b)

1

1

0

2
4
3
5.

(8) Same as Problem 2.

(9) (a) span

0

�1

1

2
4

3
5

8<
:

9=
;, (b)

1

1=2
1=2

2
4

3
5.

(10) (a) f0g, (b)

1

1

0

2
4
3
5.

(11) (a) span

1

0

0

0

2
664
3
775,

0

1

0

0

2
664
3
775,

0

0

�1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

0

0

1=2
1=2

2
664

3
775.

(12) (a) span

1

0

0

0

2
664
3
775,

0

�1

1

0

2
664

3
775,

0

�1

0

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

0

1=3
1=3
1=3

2
664

3
775.

(13) (a) span

1

0

0

0

2
664
3
775,

0

0

�1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

0

0

1=2
1=2

2
664

3
775.

(14) (a) span

1

0

0

0

2
664
3
775,

0

0

1

0

2
664
3
775

8>><
>>:

9>>=
>>;, (b)

0

0

0

0

2
664
3
775.

(15) (a) span

�1

1

0

0

2
664

3
775,

�1

0

1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

3=5
3=5
4=5
�1=5

2
664

3
775.

(16) (a) span

�2

1

1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

5=7
1=7
8=7
1=7

2
664

3
775.

486 . Answers and Hints to Selected Problems



(17) (a) span

�1

1

0

0

2
664

3
775,

�1

0

1

0

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

2=3
2=3
2=3
0

2
664

3
775.

(18) (a) span

1

�1

�1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

1

0

1

0

2
664
3
775.

(19) (a) f0g, (b)

1

0

1

0

2
664
3
775.

(20) (a) span

0

�1

1

1

2
664

3
775

8>><
>>:

9>>=
>>;, (b)

1

1=3
2=3
�1=3

2
664

3
775.

(21) No.

(22) jjxjj2 ¼ huþ u?, uþ u?i ¼ hu, ui þ hu, u?i þ hu?, ui þ hu?, u?i
¼ hu, ui þ 0þ 0þ hu?, u?i ¼ jjujj2 þ jju?jj2:

(23) Let B ¼ fu1, u2, . . . , urg and C ¼ fw1, w2, . . . , wsg. If v 2 V, then there exists a

u 2 U and w 2W such that v ¼ uþ w. But u ¼
Pr
i¼1

ciui and w ¼
Ps
j¼1

djwj for scalars

c1, . . . , cr, and d1, . . . , ds. Then, v ¼
Pr
i¼1

ciui þ
Ps
j¼1

djwj and B [ C is a spanning set

for V. Consider the equation
Pr
i¼1

ciui þ
Ps
j¼1

djwj ¼ 0. Since
Pr
i¼1

(0)ui þ
Ps
j¼1

(0)wj ¼ 0, it

follows from uniqueness that ci ¼ 0(i ¼ 1, 2, . . . , r) and dj ¼ 0( j ¼ 1, 2, . . . , s).

Thus, B [ C is linearly independent.

(24) Let v 2 U with basis B ¼ fu1, u2, . . . , urg. Then v ¼
Pr
i¼1

ciui for scalars c1, . . . , cr.

Let v 2W with basis C ¼ fw1, w2, . . . , wsg. Then v ¼
Ps
j¼1

djwj for scalars d1, . . . , ds.

0 ¼ v� v ¼
Pr
i¼1

ciui �
Ps
j¼1

djwj . But 0 ¼
Pr
i¼1

(0)ui �
Ps
j¼1

(0)wj , so it follows from

uniqueness that ci ¼ 0(i ¼ 1, 2, . . . , r) and dj ¼ 0(j ¼ 1, 2, . . . , s). Thus,

v ¼
Pr
i¼1

ciui ¼
Pr
i¼1

(0)ui ¼ 0.

(25) Use the results of Problem 23.
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Appendices

Appendix A
(1) �2. (2) 38. (3) 38. (4) �2.

(5) 82. (6) �82. (7) 9. (8) �20.

(9) 21. (10) �6. (11) 22. (12) 0.

(13) �9. (14) �33. (15) 15. (16) �5.

(17) �10. (18) 0. (19) 0. (20) 0.

(21) 119. (22) �8. (23) 22. (24) �7.

(25) �40. (26) 52. (27) 25. (28) 0.

(29) 0. (30) �11. (31) 0.

(32) 0 and 2. (33) �1 and 4. (34) 2 and 3.

(35) 

ffiffiffi
6
p

. (36) l2 � 9l� 2.

(37) l2 � 9lþ 38. (38) l2 � 13l� 2.

(39) l2 � 8lþ 9. (40) �l3 þ 7lþ 22.

(41) �l3 þ 4l2 � 17l. (42) �l3 þ 6l� 9.

(43) �l3 þ 10l2 � 22l� 33.

(44) jAj ¼ 11, jBj ¼ 5, jABj ¼ 55.

(45) 3. (46) 24. (47) 28.

(48) 6 ¼ det
9 �6

13 �8

� �����
���� ¼ j � 2jj � 3j ¼ det

3 4

5 6

� �����
���� det

�1 2

3 �3

� �����
����.

(49) 114 ¼ det
�15 18

13 �8

� �����
���� ¼ 38j � 3j ¼ det

3 �4

5 6

� �����
���� det

�1 2

3 �3

� �����
����.

(50) 912 ¼ det
23 4

�25 �44

� �����
���� ¼ 38j � 24j ¼ det

3 �4

5 6

� �����
���� det

1 �4

�5 �4

� �����
����.

(51) (a) 1, (b) 0, (c) 0.

(52) If the columns are linearly independent, then the parallelpiped generated by the

three vectors collapses into either a parallelogram, a line segment, or the origin

(Theorem 4 of Section 2.4), all of which have zero volume.

(53) It is the product of the diagonal elements.

(54) It must be zero.

(55) �1. (56) 0. (57) �311. (58) �10. (59) 0.

(60) �5. (61) 0. (62) 0. (63) 119. (64) �9.

(65) �33. (66) 15. (67) 2187. (68) 52. (69) 25.

(70) 0. (71) 0. (72) 152.
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(73) Multiply the first row by 2, the second row by �1, and the second column by 2.

(74) Apply the third elementary row operation with the third row to make the first two

rows identical.

(75) Multiply the first column by 1/2, the second column by 1/3, to obtain identical

columns.

(76) Interchange the second and third rows, and then transpose.

(77) Use the third column to simplify both the first and second columns.

(78) Factor the numbers �1, 2, 2, and 3 from the third row, second row, first column,

and second column, respectively.

(79) Factor a 5 from the third row. Then use this new third row to simplify the second

row and the new second row to simplify the first row.

(81) det 3
1 3

�3 4

� �� �
¼ 3 9

�9 12

����
���� ¼ 117 ¼ 9(13) ¼ (3)2

1 3

�3 4

����
����.

(82) det �2
2 3

�3 �2

� �� �
¼ �4 �6

6 4

����
���� ¼ 20 ¼ 4(5) ¼ (�2)2

2 3

�3 �2

����
����.

(83) det �1

1 2 �2

1 3 3

2 5 0

2
4

3
5

8<
:

9=
; ¼

�1 �2 2

�1 �3 �3

�2 �5 0

������
������ ¼ 1 ¼ (�1)(�1) ¼ (�1)3

1 2 �2

1 3 3

2 5 0

������
������.

(84) That row can be transformed into a zero row using elementary row operations.

(85) Transform the matrix to row-reduced form by elementary row operations; at least

one row will be zero.

(86) Use Theorem 1 and Theorem 10 of this section.

(87) (1þ 2þ . . .þ n)þ (nþ 1) ¼ n(nþ 1)=2þ (nþ 1) ¼ (nþ 1)(nþ 2)=2.

(88) [1þ 3þ 5þ . . .þ (2n� 1)]þ (2nþ 1) ¼ n2 þ (2nþ 1) ¼ (nþ 1)2.

(89) (12 þ 22 þ . . .þ n2)þ (nþ 1)2

¼ n(nþ 1)(2nþ 1)=6þ (nþ 1)2

¼ (nþ 1)[n(2nþ 1)=6þ (nþ 1)]

¼ (nþ 1)[2n2 þ 7nþ 6]=6

¼ (nþ 1)(nþ 2)(2nþ 3)=6

(90) (13 þ 23 þ . . .þ n3)þ (nþ 1)3

¼ n2(nþ 1)2=4þ (nþ 1)3

¼ (nþ 1)2[n2=4þ (nþ 1)]

¼ (nþ 1)2(nþ 2)2=4.

(91) [12 þ 32 þ 52 þ . . .þ (2n� 1)2]þ (2nþ 1)2

¼ n(4n2 � 1)=3þ (2nþ 1)2
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¼ n(2n� 1)(2nþ 1)=3þ (2nþ 1)2

¼ (2nþ 1)[n(2n� 1)=3þ (2nþ 1)]

¼ (2nþ 1)(2nþ 3)(nþ 1)=3

¼ [2(nþ 1)� 1][2(nþ 1)þ 1](nþ 1)=3

¼ [4(nþ 1)2 � 1](nþ 1)=3

(92)
Pnþ1

k¼1

3k2 � k
� �

¼
Pn
k¼1

3k2 � k
� �

þ [3(nþ 1)2 � (nþ 1)]

¼ n2(nþ 1)þ [3(nþ 1)2 þ (nþ 1)]

¼ (nþ 1)[n2 þ 3(nþ 1)þ 1]

¼ (nþ 1)(nþ 2)(nþ 1)

¼ (nþ 1)2(nþ 2)

(93)
Xnþ1

k¼1

1

k(kþ 1)

¼
Xn

k¼1

1

k(kþ 1)
þ 1

(nþ 1)(nþ 2)

¼ n

nþ 1
þ 1

(nþ 1)(nþ 2)

¼ n2 þ 2nþ 1

(nþ 1)(nþ 2)

¼ nþ 1

nþ 2

(94)
Pnþ1

k¼1

2k�1 ¼
Pn
k¼1

2k�1 þ 2n ¼ [2n � 1]þ 2n ¼ 2(2n)� 1 ¼ 2nþ1 � 1.

(95)

Xnþ1

k¼1

xk�1 ¼
Xn

k¼1

xk�1 þ xn ¼ xn � 1

x� 1
þ xn

¼ xn � 1þ xn(x� 1)

x� 1
¼ xnþ1 � 1

x� 1
:

(96) 7nþ1 þ 2 ¼ 7n(6þ 1)þ 2 ¼ 6(7n)þ (7n þ 1):6(7n) is a multiple of 3 because 6 is, and

(7n þ 1) is a multiple of 3 by the induction hypothesis.

Appendix B
(1) (a) Yes, (b) No, (c) No, (d) Yes, (e) Yes, (f) Yes.

(2) (a) Yes, (b) Yes, (c) No, (d) Yes, (e) No, (f) Yes.

(3) (a) Yes, (b) No, (c) Yes, (d) No, (e) Yes, (f) Yes.

(4) (a) No, (b) Yes, (c) No, (d) Yes, (e) Yes, (f) Yes.

(5) (a) No, (b) Yes, (c) No, (d) Yes, (e) No, (f) Yes.

490 . Answers and Hints to Selected Problems



(6) (a) Yes, (b) Yes, (c) No, (d) No, (e) Yes, (f) Yes.

(7) (a) No, (b) No, (c) Yes, (d) No.

(8) (a) No, (b) Yes, (c) No, (d) Yes.

(9) (a) Yes, (b) Yes, (c) Yes, (d) No.

(10) (a) Yes, (b) No, (c) Yes, (d) No.

(11)

a

b

c

2
4
3
5 2 R3

8<
:

������b ¼ 0

9=
;.

(12)

7=2 �1=2 0 0

1=2 5=2 0 0

0 0 4 1

0 0 0 4

2
664

3
775.

(13)

2 0 0 0

0 5=2 �1=2 0

0 1=2 3=2 �1

0 0 0 2

2
664

3
775.

(14)

2 0 0 0

0 2 0 0

0 0 3 1

0 0 0 3

2
664

3
775.

(15) (a) Yes, (b) No, (c) Yes, (d) Yes, (e) No, (f) No.

(16)
0

1

� �
. (17)

0

1

0

2
4
3
5. (18)

0

0

1

2
4
3
5. (19)

0

0

1

2
4
3
5. (20)

1

0

�1

2
4

3
5.

(21) For l ¼ 3, x3 ¼

1

0

0

0

�1

2
66664

3
77775, and for l ¼ 4, x2 ¼

0

1

0

0

0

2
66664

3
77775.

(22) x3 ¼

1

1

1

0

2
664
3
775, x2 ¼

3

�1

0

0

2
664

3
775, x1 ¼

�2

0

0

0

2
664

3
775.

(23) x3 ¼

0

0

1

0

2
664
3
775, x2 ¼

1

�1

0

0

2
664

3
775, x1 ¼

�2

0

0

0

2
664

3
775.

(24) x4 ¼

0

0

0

0

1

2
66664

3
77775, x3 ¼

�1

0

2

1

0

2
66664

3
77775, x2 ¼

2

0

�1

0

0

2
66664

3
77775, x1 ¼

�1

0

0

0

0

2
66664

3
77775.
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(25) x3 ¼

0

0

0

1

0

2
66664
3
77775, x2 ¼

0

0

�1

0

0

2
66664

3
77775, x1 ¼

�1

0

0

0

0

2
66664

3
77775.

(26) x3 ¼

1

0

0

0

�1

2
66664

3
77775, x2 ¼

0

0

0

�2

0

2
66664

3
77775, x1 ¼

0

0

�2

0

0

2
66664

3
77775. (27) x2 ¼

0

1

0

0

0

2
66664

3
77775, x1 ¼

1

0

0

0

0

2
66664

3
77775.

(28) x2 ¼
0

1

� �
, x1 ¼

1

0

� �
. (29) x2 ¼

0

1

0

2
4
3
5, x1 ¼

1

0

0

2
4
3
5.

(30) x2 ¼
0

0

1

2
4
3
5, x1 ¼

2

1

�3

2
4

3
5.

(31) x4 ¼

0

0

0

1

2
664
3
775, x3 ¼

�1

4

1

0

2
664

3
775, x2 ¼

7

�1

0

0

2
664

3
775, x1 ¼

�1

0

0

0

2
664

3
775.

(32) x3 ¼

0

0

1

0

0

2
66664
3
77775, x2 ¼

1

1

0

0

0

2
66664
3
77775, x1 ¼

2

�2

0

0

0

2
66664

3
77775.

(33) x is a generalized eigenvector of type 1 corresponding to the eigenvalue l if

(A� lI)1x ¼ 0 and (A� lI)0x 6¼ 0. That is, if Ax ¼ lx and x 6¼ 0.

(34) If x ¼ 0, then (A� lI)nx ¼ (A� lI)n0 ¼ 0 for every positive integer n.

(35) (a) Use Theorem 1 of Section 3.5.

(b) By the definition of T, T(v) 2 V for each v 2 V.

(c) Let T(vi) ¼ livi. If v 2 spanfv1, v2, . . . , vkg, then there exist scalars

c1, c2, . . . , ck such that v ¼
Pk
i¼1

civi. Consequently, T(v) ¼ T
Pk
i¼1

civi

	 

¼

Pk
i¼1

ciT(vi) ¼
Pk
i¼1

ci(�ivi) ¼
Pk
i¼1

(ci�i)vi, which also belongs to spanfv1, v2, . . . , vkg.

(36) If V ¼ U�W, then (i) and (ii) follow from the definition of a direct sum and

Problem 24 of Section 5.5. To show the converse, assume that v ¼ u1 þ w1

and also v ¼ u2 þ w2, where u1 and u2 are vectors in U, and w1 and w2 are

vectors in W. Then 0 ¼ v� v ¼ (u1 þ w1)� (u2 þ w2) ¼ (u1 � u2)þ (w1 � w2), or

(u1 � u2) ¼ (w2 � w1). The left-side of this last equation is in U, and the right side

is in W. Both sides are equal, so both sides are in U and W. It follows from (ii) that

(u1 � u2) ¼ 0 and (w2 � w1) ¼ 0. Thus, u1 ¼ u2 and w1 ¼ w2.

(38) (a) One chain of length 3;
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(b) two chains of length 3;

(c) one chain of length 3, and one chain of length 2;

(d) one chain of length 3, one chain of length 2, and one chain of length 1;

(e) one chain of length 3 and two chains of length 1;

(f) cannot be done, the numbers as given are not compatible;

(g) two chains of length 2, and two chains of length 1;

(h) cannot be done, the numbers as given are not compatible;

(i) two chains of length 2 and one chain of length 1;

(j) two chains of length 2.

(39) x2 ¼
0

1

� �
, x1 ¼

1

�1

� �
.

(40) x1 ¼
�1

1

1

2
4

3
5 corresponds to l ¼ 1 and y2 ¼

0

0

1

2
4
3
5, y1 ¼

3

0

�3

2
4

3
5 correspond to

l ¼ 4.

(41) x3 ¼
0

0

1

2
4
3
5, x2 ¼

�1

2

0

2
4

3
5, x1 ¼

2

0

0

2
4
3
5.

(42) x1 ¼
1

�2

0

2
4

3
5, y1 ¼

0

�2

1

2
4

3
5 both correspond to l ¼ 3 and z1 ¼

1

0

1

2
4
3
5 corresponds

to l ¼ 7.

(43) x3 ¼

0

0

0

1

2
664
3
775, x2 ¼

�1

1

0

0

2
664

3
775, x1 ¼

1

0

0

0

2
664
3
775, y1 ¼

0

�1

1

�1

2
664

3
775.

(44) x2 ¼

0

1

0

0

2
664
3
775, x1 ¼

1

0

0

0

2
664
3
775 correspond to l ¼ 3 and y2 ¼

3

1

0

�1

2
664

3
775, y1 ¼

�1

�1

�1

0

2
664

3
775

correspond to l ¼ 4.

(45) x4 ¼

0

0

0

2

�2

1

2
6666664

3
7777775, x3 ¼

�1

1

2

0

0

0

2
6666664

3
7777775, x2 ¼

3

4

0

0

0

0

2
6666664

3
7777775, x1 ¼

4

0

0

0

0

0

2
6666664

3
7777775 correspond to l ¼ 4, and

y2 ¼

�5

�2

0

1

1

0

2
6666664

3
7777775, y1 ¼

3

2

1

1

0

0

2
6666664

3
7777775 correspond to l ¼ 5.
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(46)

2 0 0 0 0

0 2 0 0 0

0 0 2 1 0

0 0 0 2 1

0 0 0 0 2

2
66664

3
77775. (47)

2 1 0 0 0

0 2 0 0 0

0 0 2 1 0

0 0 0 2 1

0 0 0 0 2

2
66664

3
77775.

(48)

2 0 0 0 0

0 2 1 0 0

0 0 2 0 0

0 0 0 2 1

0 0 0 0 2

2
66664

3
77775. (49)

2 0 0 0 0

0 2 1 0 0

0 0 2 1 0

0 0 0 2 1

0 0 0 0 2

2
66664

3
77775.

(50)

2 1 0 0 0

0 2 1 0 0

0 0 2 1 0

0 0 0 2 1

0 0 0 0 2

2
66664

3
77775. (51)

3 1 0 0 0 0

0 3 1 0 0 0

0 0 3 0 0 0

0 0 0 3 1 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775.

(52)

3 0 0 0 0 0

0 3 1 0 0 0

0 0 3 0 0 0

0 0 0 3 1 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775. (53)

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 1 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775.

(54)

3 1 0 0 0 0

0 3 0 0 0 0

0 0 3 1 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775. (55)

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 1 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775.

(56)

3 0 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775.

(57) (a)

2 0 0 0

0 2 0 0

0 0 2 1

0 0 0 2

2
664

3
775, (b)

2 0 0 0

0 2 1 0

0 0 2 0

0 0 0 2

2
664

3
775,

(c)

2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2
664

3
775, (d)

2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2
664

3
775.
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(58) (a)

3 0 0 0 0 0

0 3 1 0 0 0

0 0 3 0 0 0

0 0 0 5 0 0

0 0 0 0 5 1

0 0 0 0 0 5

2
6666664

3
7777775, (b)

3 1 0 0 0 0

0 3 0 0 0 0

0 0 3 0 0 0

0 0 0 5 0 0

0 0 0 0 5 1

0 0 0 0 0 5

2
6666664

3
7777775,

(c)

3 0 0 0 0 0

0 5 0 0 0 0

0 0 5 1 0 0

0 0 0 5 0 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775, (d)

3 1 0 0 0 0

0 3 0 0 0 0

0 0 5 1 0 0

0 0 0 5 0 0

0 0 0 0 3 0

0 0 0 0 0 5

2
6666664

3
7777775,

(e)

3 0 0 0 0 0

0 5 0 0 0 0

0 0 3 1 0 0

0 0 0 3 0 0

0 0 0 0 5 1

0 0 0 0 0 5

2
6666664

3
7777775, (f )

5 1 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 3 0 0

0 0 0 0 3 1

0 0 0 0 0 3

2
6666664

3
7777775.

(59)
1 0

0 �1

� �
with basis

3

1

� �
,

1

1

� �� �
.

(60)
4 1

0 4

� �
with basis

1

1

� �
,

0

1

� �� �
.

(61)
3 1

0 3

� �
with basis

�1

1

� �
,

1

0

� �� �
.

(62)
2 0

0 3

� �
with basis

2

1

� �
,

1

1

� �� �
.

(63)
4 0

0 1

� �
with basis

1

2

� �
,

1

�1

� �� �
.

(64) Not similar to a real matrix in Jordan canonical form. If matrices are allowed to be

complex, then
i 0

0 �i

� �
with basis

2þ i

1

� �
,

2� i

1

� �� �
.

(65)

3 0 0

0 6 1

0 0 6

2
4

3
5 with basis

�1

1

1

2
4

3
5,

3

0

�3

2
4

3
5,

0

0

1

2
4
3
5

8<
:

9=
;.

(66)

2 1 0

0 2 1

0 0 2

2
4

3
5 with basis

2

0

0

2
4
3
5,

�2

1

0

2
4

3
5,

0

0

1

2
4
3
5

8<
:

9=
;.

(67)

�2 0 0

0 �2 0

0 0 2

2
4

3
5 with basis

1

�2

0

2
4

3
5,

0

�2

1

2
4

3
5,

1

0

1

2
4
3
5

8<
:

9=
;.

(68)

1 0 0

0 1 0

0 0 3

2
4

3
5 with basis

0

1

0

2
4
3
5,

1

0

1

2
4
3
5,

1

2

�1

2
4

3
5

8<
:

9=
;.
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(69)

0 0 0

0 2 1

0 0 2

2
4

3
5 with basis

5

�4

1

2
4

3
5,

�1

0

1

2
4

3
5,

1

0

0

2
4
3
5

8<
:

9=
;.

(70)

0 0 0

0 0 0

0 0 14

2
4

3
5 with basis

3

0

�1

2
4

3
5,

�1

5

�3

2
4

3
5,

1

2

3

2
4
3
5

8<
:

9=
;.

(71)

3 0 0 0

0 3 1 0

0 0 3 1

0 0 0 3

2
664

3
775 with basis

0

�1

1

�1

2
664

3
775,

1

0

0

0

2
664
3
775,

�1

1

0

0

2
664

3
775,

0

0

0

1

2
664
3
775

8>><
>>:

9>>=
>>;.

(72)

1 1 0 0

0 1 0 0

0 0 2 1

0 0 0 2

2
664

3
775 with basis

1

0

0

0

2
664
3
775,

0

1

0

0

2
664
3
775,

�1

�1

�1

0

2
664

3
775,

3

1

0

�1

2
664

3
775

8>><
>>:

9>>=
>>;.

(73)

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1

2
666666664

3
777777775

with basis

0

0

�1

�2

1

0

0

2
666666664

3
777777775
,

1

3

1

0

0

1

0

2
666666664

3
777777775
,

�1

0

1

�1

0

0

0

2
666666664

3
777777775
,

0

0

1

0

0

0

�1

2
666666664

3
777777775
,

0

1

0

0

0

0

0

2
666666664

3
777777775
,

�2

0

2

�2

0

0

�1

2
666666664

3
777777775
,

1

0

0

0

0

0

0

2
666666664

3
777777775

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

.

(74) If x is a generalized eigenvector of type m corresponding to the eigenvalue l, then

(A� lI)mx ¼ 0.

(75) Let u and v belong to Nl(A). Then there exist nonnegative integers m and n

such that (A� lI)mu ¼ 0 and (A� lI)nv ¼ 0. If n � m, then (A� lI)nu ¼
(A� lI)n�m(A� lI)mu ¼ (A� lI)n�m0 ¼ 0. For any scalars a and b,

(A� lI)n(auþ bv) ¼ a[(A� lI)nu]þ b[(A� lI)nv] ¼ a0þ b0 ¼ 0. The reasoning

is similar if m > n.

(76) (A� lI)n is an nth degree polynomial in A, and A commutes with every polynomial

in A.

(77) If (A� lI)kx ¼ 0, then (A� lI)k(Ax) ¼ A[(A� lI)kx] ¼ A0 ¼ 0.

(78) If this was not so, then there exists a vector x 2 Rn such that (A� lI)k ¼ 0 and

(A� lI)k�1 6¼ 0 with k > n. Therefore, x is a generalized eigenvector of type k with

k > n. The chain propagated by x is a linearly independent set of k vectors in Rn

with k > n. This contradicts Theorem 3 of Section 2.4.
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Appendix C
(1) None of the matricies can be transition matrices. (a) Second column sum is greater

than unity. (b) Second column sum is less than unity. (c) Both column sums are

greater than unity. (d) Matrix contains a negative element. (e) Third column sum is

less than unity. (f) Third column sum is greater than unity. (g) None of the column

sums is unity. (h) Matrix contains negative elements.

(2)
0:95 0:01

0:05 0:99

� �
. (3)

0:6 0:7
0:4 0:3

� �
.

(4)

0:10 0:20 0:25

0:50 0:60 0:65

0:40 0:20 0:10

2
4

3
5. (5)

0:80 0:10 0:25

0:15 0:88 0:30

0:05 0:02 0:45

2
4

3
5.

(6) (a) P2 ¼ 0:37 0:63

0:28 0:72

� �
and P3 ¼ 0:289 0:316

0:711 0:684

� �
,

(b) 0.37, (c) 0.63, (d) 0.711, (e) 0.684.

(7) 1! 1! 1! 1, 1! 1! 2! 1, 1! 2! 1! 1, 1! 2! 2! 1.

(8) (a) 0.097, (b) 0.0194.

(9) (a) 0.64, (b) 0.636.

(10) (a) 0.1, (b) 0.21.

(11) (a) 0.6675, (b) 0.577075, (c) 0.267.

(12) (a) There is a 0.6 probability that an individual chosen at random initially will live

in the city; thus, 60% of the population initially lives in the city, while 40% lives

in the suburbs.

(b) d(1) ¼ [ 0:574 0:426 ]T, (c) d(2) ¼ [ 0:54956 0:45044 ]T.

(13) (a) 40% of customers now use brand X, 50% use brand Y, and 10% use other

brands.

(b) d(1) ¼ [ 0:395 0:530 0:075 ]T, (c) d(2) ¼ [ 0:38775 0:54815 0:06410 ]T.

(14) (a) d(0) ¼ [ 0 1 ]T, (b) d(1) ¼ [ 0:7 0:3 ]T.

(15) (a) d(0) ¼ 0 1 0½ �T,

(b) d(3) ¼ [ 0:192 0:592 0:216 ]T. There is a probability of 0.216 that the harvest

will be good in three years.

(16) (a) [1=6 5=6]T, (b) 1=6.

(17) [ 7=11 4=11 ]T; probability of having a Republican is 7=11 � 0:636.

(18) [ 23=120 71=120 26=120 ]T; probability of a good harvest is 26=120 � 0:217.

(19) [ 40=111 65=111 6=111 ]T; probability of a person using brand Y is 65=111 ¼
0:586.
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Appendix D
(1) x ¼ 30 x model bicycles; y ¼ 20 y model bicycles; P¼ $410.

(2) x ¼ 35 x model bicycles; y ¼ 0 y model bicycles; P¼ $3500.

(3) x ¼ 120 x model bicycles; y ¼ 120 y model bicycles; P¼ $2640.
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Index

A

Additive inverse, vectors in vector

space, 95–96

Angle between vectors, 297–299

Answers to selected problems,

431–498

Area, parallelogram, 358–362

Associativity

matrix addition, 5–6

matrix multiplication, 17

Augmented matrix

definition, 38

Gaussian elimination, 39–45

inverse, 53–56

simplex method, 426

B

Basis

change of, 187–199

eigenspace, 225–227

image of linear transformation,

206

kernel of linear transformation,

206

linear transformation, 178–183

orthogonal vector, 301–303

orthonormal basis, 312–313

row space, 138–141

vector space, 119–124, 138

Block diagonal matrix, 26–27, 381

C

Canonical basis

creation, 399–400

definition, 395

generalized eigenvector,

395–398

Cauchy-Schwartz Inequality, 300

Chain, see Markov chain; Vector

chain

Characteristic equation, 222

Closure under addition, 85–86

Closure under scalar multiplication,

85–86

Coefficient matrix, 12, 18, 57–58, 68

Cofactor, 355–357

Column index, 3

Column matrix, 3–4

Column rank, matrix, 145–147

Column space, 145

Commutativity, matrix addition, 5

Complex vector space, 86

Component, matrix, 3

Consistent system, simultaneous

linear equations, 35, 37,

148–149

Coordinate representation

basis change, 187–193

Euclidean inner product,

297–298

handedness, 77

vector, 126–127

Correspondence, rules of, 157–159

D

Dependence, linear, see Linear

dependence

Derivative, of a matrix, 256

Derived set, linear equations, 39–44

Determinant

calculation

cofactors, 355–357

diagonal matrix, 363

elementary row operations,

365–367

pivotal condensation, 368–370

rules based on minors, 354

triangular matrices, 362–363

definition, 353

invertible matrices, 370

parallelogram area, 358–362

similar matrices, 370

Diagonal element, matrix, 3

Diagonal matrix

definition, 26

derivative, 363

diagonalization, 219, 237–245

Differential equations

fundamental form

definition, 272

solution, 278–286

transformation, 273–275

matrix representation, 270–273

modeling, 288–290

software solutions, 429–430

Dilation, linear transformation, 164
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Dimension

matrix, 4

n-space, 73

nullity and kernel dimension,

209

vector space, 124

Direct sum, 378, 381

Directed line segment, 75–76

Distribution vector, 416–417

Domain, 157–158, 163

Dominant eigenvalue, 259,

261–262

Duality, 427

E

Eigenspace

basis, 225–227

definition, 225

Eigenvalue

calculation for matrix, 222–225,

228–229

definition, 220

dominant eigenvalue, 259,

261–262

eigenvector pair, 221

exponential matrices, 255

geometric interpretation in

n-space, 220

inverse power method, 263–267

multiplicity, 224

properties, 232–235

QR algorithm for determination,

326–330

similar matrices, 224–225

Eigenvector

calculation for matrix, 222–225

definition, 220

diagonalization of matrices,

237–245

eigenvalue pair, 221

exponential matrices, 255

generalized, 395–398

geometric interpretation in

n-space, 220

properties, 232–235

type 2, 387

type 3, 384–385

Element, matrix, 2

Elementary matrix, 50–53

Elementary row operations

elementary matrix, 51–53

pivot, 40

simplex method, 425–427

Equations, simultaneous linear,

see Simultaneous linear

equations

Equivalent directed line segments,

75

Euclidean inner product, see also

Orthogonal complement

calculation, 295–296

definition, 295

geometrical interpretation,

297–298

induced inner product, 300–301,

310

Euler’s relations, 255

Expansion by cofactors, 356–357

Exponential matrix

calculation, 247–249

definition, 247

inverse, 253

Jordan canonical form, 249–252

F

Finite Markov chain, 413, 415, 418

Finite-dimensional vector space,

122, 124

Function, see also Transformation

definition, 157

notation, 159

rules of correspondence, 157–159

Fundamental form, differential

equations

definition, 272

solution, 278–286

transformation, 273–275

G

Gaussian elimination, simultaneous

linear equation solution,

38–44, 122, 149

Generalized eigenvector, 395–398

Generalized modal matrix, 402

Generalized Theorem of

Pythagoras, 299

Gram-Schmidt orthonormalization

process, 316–320

H

Homogeneous system

differential equations, 273

simultaneous linear equations,

36–37, 43, 50

I

Identity matrix, 26

Image, linear transformation,

204–209

Inconsistent system, simultaneous

linear equations, 35

Independence, linear, see Linear

independence

Index numbers, 393–394

Induced inner product, 300–301,

310

Infinite-dimensional vector space,

122

Initial conditions, 272–273

Initial tableau, 426

Initial-value problem, 273–276,

283

Inner product space, 314

Invariant subspace, 379–384, 388

Inverse

determinant of matrix, 370

exponential matrix, 253

matrix, 48–49, 51–59

Inverse power method, 263–267

J

Jordan block, 390–392

Jordan canonical form, matrix,

249–252, 390, 400–402

K

Kernel, linear transformation,

202–209

Kronecker delta, 310
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L

Least-squares error, 333–334

Least-squares solution, 337–339

Least-squares straight line, 334

Left distributive law, matrix

multiplication, 17

Limiting state distribution vector,

419–420

Line segment, directed, 75–76

Linear combination, vectors

determination, 105–106

span, 106–107

Linear dependence

definition, 110

vector sets, 114–117, 123

Linear equations, see Simultaneous

linear equations

Linear independence

definition, 110

matrices, 112–113

polynomials, 142

row matrix, 150–151

row rank in determination,

141–142

three-dimensional row matrices,

111–112

two-dimensional row matrices, 111

vectors in a basis, 130

vector sets, 113–117

Linear transformation, see

Transformation

Lower triangular matrix, 27, 233, 362

LU decomposition, 63–69

M

MacLaurin series, 247

Magnitude

n-tuple, 296

row matrix, 73–75

vector, 296

Main diagonal, 3

Markov chain

definition, 413

distribution vector, 416

limiting state distribution vector,

419–420

transition matrix construction,

414

MATHEMATICA1, 429

MATLAB1, 429

Matrix, see also n-tuple

block diagonal matrix, 26–27

column matrix, 3–4

definition, 2

diagonal element, 3

diagonal matrix, 26

differential equation

representation, 270–273

elementary matrix, 50–52

elements, 2

Gaussian elimination for

simultaneous linear equation

solution, 38–44

identity matrix, 26

inverse, 48–49, 51–59

lower triangular matrix, 27

LU decomposition, 63–69

partitioned matrix, 24

row matrix, 3–4, 72

row space, 134–142

simplex method, 425–427

square matrix, 3

submatrix, 17

trace, 232

transpose of matrix, 22–24

upper triangular matrix, 27

zero row, 25–26

Matrix addition

associativity, 5–6

commutativity, 5

sum of matrices of same order, 5

Matrix multiplication

associativity, 17

coefficientmatrix, 12, 18, 57–58, 68

left distributive law, 17

packages approach, 12

postmultiplication, 14

premultiplication, 14

product of two matrices, 13–17

right distributive law, 17

scalar multiplication, 7–8

Matrix representation

change of basis, 195–199

linear transformation, 173–183,

194

Matrix subtraction, 6–7

Minimization, 427

Minor, matrix, 354

Modal matrix, 238–239, 248

Modeling, differential equations,

288–290

Multiplicity, eigenvalue, 224

N

Noise, 332

Nonhomogeneous system

differential equations, 273

simultaneous linear equations, 36

Nonsingular matrix, 49, 56–57

Normal equations, 335, 339

Normalization, n-tuples, 79

Normalized vector, 297

n-space

definition, 72

row space, see Row space

three-dimensional row matrices,

78–79

two-dimensional row matrices,

72–77

n-space

linear transformation, 176–179

subspace, 102–104

n-tuple

definition, 4

4-tuple, 79

5-tuple, 79

normalization, 79

sets, see n-space

three-dimensional row matrices,

78–79

two-dimensional row matrices,

72–77

Null space, linear transformation,

202

Nullity, kernel dimension, 209

O

Objective function, 425

One-to-one linear transformation,

210–213

Order, matrix, 2

Orthogonal complement

definition, 343

projection, 308–309

subspaces, 341–346

Orthogonal vector, 299, 301–303
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Orthonormal basis, 312–313

Orthonormal set, 310–311, 315

Orthonormalization, Gram-

Schmidt orthonormalization

process, 316–320

P

Parallelogram, area, 358–362

Partitioned matrix, 24

Pivot

definition, 40

elementary matrix, 51–53

simplex method, 426

Pivotal condensation, 368–370

Postmultiplication, matrices, 14

Power method

calculation, 260–261

conditions, 259

inverse power method, 263–267

shifted inverse power method,

267–268

Premultiplication, matrices, 14

Problems, answers to, 431–498

Product, inner, see Inner product

Projection

onto x-axis, 168

onto x-axis, 169

orthogonal complement,

308–309

vector, 307–320

Pythagorean theorem, 299

Q

QR algorithm, 323–330, 429

QR decomposition, 323–325

R

Rn, see n-space

Range, 157–158, 163

Rank, 393–394, 397

Real number space, see n-space

Real vector space, 86

Reciprocal, see Inverse

Rectangular coordinate system,

handedness, 77

Reflection

across x-axis, 167

across y-axis, 168

Regular transition matrix,

418–419

Representation, matrix, see

Matrix representation

Residual, 333

Right distributive law, matrix

multiplication, 17

Row matrix, see also n-tuple

features, 3–4

linear independence, 150–151

three-dimensional row matrices,

78–79

two-dimensional row matrices,

72–77

Row rank

column rank relationship,

145–147

definition, 134

determination, 135–137

linear independence

determination, 141–142

Row-reduced matrix

Gaussian elimination, 39–45

transformation, 53

Row space

basis, 138–141

definition, 134

operations, 134–142

Rules of correspondence, 157–159

S

Scalar, see also Cofactor;

Determinant; Eigenvalue

definition, 7

linear equations, 33

Scalar multiplication

closure under scalar

multiplication, 85

matrix, 7–8

subspace, 100–102

vector space, 86, 92, 94–95

Scatter diagram, 331–332

Shifted inverse power method,

267–268

Similar matrices

definition, 199

determinants, 370

eigenvalues, 224–225

Simplex method, 425–427

Simultaneous linear equations

consistent system, 35, 37, 148–149

forms, 31–34

Gaussian elimination for

solution, 38–44

homogeneous system, 36–37, 43,

150

inconsistent system, 35

matrix representations, 32, 37

nonhomogeneous system, 36

trivial solution, 36

Singular matrix, 49, 233

Skew symmetric matrix, 24

Slack variables, 425–426

Span

basis, 138–139

row space of matrix, 134

subspace, 106–107, 119–120

vector chain, 388

Spectral matrix, 238–239

Square matrix, 3

Standard basis, 124–127

Submatrix, 17

Subspace

definition, 99

kernel of linear transformation,

202–204

n-space, 102–104

scalar multiplication, 100–102

span, 106–107, 119–120

vector space, 105–106

Superdiagonal, 390

Symmetric matrix, 24

T

Three-dimensional row matrices,

78–79

Trace, 232–233

Transformation, see also Function

change of basis, 187–199

definition, 163

diagonalization of matrices, 219,

237–245

dilation, 164

image, 202–209

kernel, 202–209
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linear transformation

determinations, 164–170

properties, 201–213

matrix representation, 173–183

one-to-one transformation,

210–213

Transition matrix

change of basis, 188–194

construction for Markov chain,

414

definition, 413

powers of, 415–417

regular, 418–419

Transpose, of matrix, 22–24

Triangular matrix, see Lower

triangular matrix; Upper

triangular matrix

Two-dimensional row matrices,

72–77

U

Unit vector, 297

Upper triangular matrix, 27, 243,

362

V

Vector, see also Eigenvector; n-tuple

angle between vectors, 297–299

distribution vector, 416–417

least-squares solution, 337–339

limiting state distribution vector,

419–420

linear combination

determination, 105–106

span, 106–107

linear independence, 113–117,

130

magnitude, 296

orthogonal vector, 299, 301–303

orthonormal set, 310–311, 315

projection, 307–320

unit vector, 297

zero vector, 93–95

Vector chain, 386–388, 391

Vector multiplication, see Inner

product

Vector space

additive inverse of vectors, 95–96

basis, 119–124

closure under addition, 85–86

closure under scalar

multiplication, 85–86, 92

complex vector space, 86

definition, 86

dimension, 124

efficient characterization, 110

finite-dimensional vector space,

122, 124

infinite-dimensional vector space,

122

linear independence,

110–117

proof of properties, 87–93

real vector space, 86

row space of matrix, 134–142

set notation, 86–87

standard basis, 124–127

subspace, see Subspace

Z

Zero matrix, 377

Zero row, 25–26

Zero transformation, 165, 172

Zero vector, 93–95
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