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Preface

As technology advances, so does our need to understand and characterize it.
This is one of the traditional roles of mathematics, and in the latter half of
the twentieth century no area of mathematics has been more successful in this
endeavor than that of linear algebra. The elements of linear algebra are the
essential underpinnings of a wide range of modern applications, from mathemat-
ical modeling in economics to optimization procedures in airline scheduling and
inventory control. Linear algebra furnishes today’s analysts in business, engin-
eering, and the social sciences with the tools they need to describe and define the
theories that drive their disciplines. It also provides mathematicians with com-
pact constructs for presenting central ideas in probability, differential equations,
and operations research.

The second edition of this book presents the fundamental structures of linear
algebra and develops the foundation for using those structures. Many of the
concepts in linear algebra are abstract; indeed, linear algebra introduces students
to formal deductive analysis. Formulating proofs and logical reasoning are skills
that require nurturing, and it has been our aim to provide this.

Much care has been taken in presenting the concepts of linear algebra in an
orderly and logical progression. Similar care has been taken in proving results
with mathematical rigor. In the early sections, the proofs are relatively simple,
not more than a few lines in length, and deal with concrete structures, such as
matrices. Complexity builds as the book progresses. For example, we introduce
mathematical induction in Appendix A.

A number of learning aides are included to assist readers. New concepts are
carefully introduced and tied to the reader’s experience. In the beginning, the
basic concepts of matrix algebra are made concrete by relating them to a store’s
inventory. Linear transformations are tied to more familiar functions, and vector
spaces are introduced in the context of column matrices. Illustrations give
geometrical insight on the number of solutions to simultaneous linear equations,
vector arithmetic, determinants, and projections to list just a few.

Highlighted material emphasizes important ideas throughout the text. Compu-
tational methods—for calculating the inverse of a matrix, performing a Gram-
Schmidt orthonormalization process, or the like—are presented as a sequence of
operational steps. Theorems are clearly marked, and there is a summary of
important terms and concepts at the end of each chapter. Each section ends
with numerous exercises of progressive difficulty, allowing readers to gain
proficiency in the techniques presented and expand their understanding of the
underlying theory.
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Chapter 1 begins with matrices and simultaneous linear equations. The matrix is
perhaps the most concrete and readily accessible structure in linear algebra, and
it provides a nonthreatening introduction to the subject. Theorems dealing with
matrices are generally intuitive, and their proofs are straightforward. The
progression from matrices to column matrices and on to general vector spaces
is natural and seamless.

Separate chapters on vector spaces and linear transformations follow the mater-
ial on matrices and lay the foundation of linear algebra. Our fourth chapter deals
with eigenvalues, eigenvectors, and differential equations. We end this chapter
with a modeling problem, which applies previously covered material. With the
exception of mentioning partial derivatives in Section 5.2, Chapter 4 is the only
chapter for which a knowledge of calculus is required. The last chapter deals with
the Euclidean inner product; here the concept of least-squares fit is developed in
the context of inner products.

We have streamlined this edition in that we have redistributed such topics as the
Jordan Canonical Form and Markov Chains, placing them in appendices. Our
goal has been to provide both the instructor and the student with opportunities
for further study and reference, considering these topics as additional modules.
We have also provided an appendix dedicated to the exposition of determinants,
a topic which many, but certainly not all, students have studied.

We have two new inclusions: an appendix dealing with the simplex method and
an appendix touching upon numerical techniques and the use of technology.

Regarding numerical methods, calculations and computations are essential to
linear algebra. Advances in numerical techniques have profoundly altered the
way mathematicians approach this subject. This book pays heed to these
advances. Partial pivoting, elementary row operations, and an entire section on
LU decomposition are part of Chapter 1. The QR algorithm is covered in
Chapter 5.

With the exception of Chapter 4, the only prerequisite for understanding this
material is a facility with high-school algebra. These topics can be covered in any
course of 10 weeks or more in duration. Depending on the background of the
readers, selected applications and numerical methods may also be considered in a
quarter system.

We would like to thank the many people who helped shape the focus and content
of this book; in particular, Dean John Snyder and Dr. Alfredo Tan, both of
Fairleigh Dickinson University.

We are also grateful for the continued support of the Most Reverend John
J. Myers, J.C.D., D.D., Archbishop of Newark, N.J. At Seton Hall University
we acknowledge the Priest Community, ministered to by Monsignor James M.
Cafone, Monsignor Robert Sheeran, President of Seton Hall University,
Dr. Fredrick Travis, Acting Provost, Dr. Joseph Marbach, Acting Dean of the
College of Arts and Sciences, Dr. Parviz Ansari, Acting Associate Dean of
the College of Arts and Sciences, and Dr. Joan Guetti, Acting Chair of the
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Department of Mathematics and Computer Science and all members of that
department. We also thank the faculty of the Department of Mathematical
Sciences at the United States Military Academy, headed by Colonel Michael
Phillips, Ph.D., with a special thank you to Dr. Brian Winkel.

Lastly, our heartfelt gratitude is given to Anne McGee, Alan Palmer, and Tom
Singer at Academic Press. They provided valuable suggestions and technical
expertise throughout this endeavor.
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Chapter 1

Matrices

1.1 BASIC CONCEPTS

Figure 1.1

Figure 1.2

We live in a complex world of finite resources, competing demands, and infor-
mation streams that must be analyzed before resources can be allocated fairly to
the demands for those resources. Any mechanism that makes the processing of
information more manageable is a mechanism to be valued.

Consider an inventory of T-shirts for one department of a large store. The
T-shirt comes in three different sizes and five colors, and each evening, the
department’s supervisor prepares an inventory report for management. A para-
graph from such a report dealing with the T-shirts is reproduced in Figure 1.1.

\/\/-\/\/\/\/\/\
T-shirts

Nine teal small and five teal medium; eight
plum small and six plum medium; large sizes
are nearly depleted with only three sand, one
rose, and two peach still available; we also
have three medium rose, five medium sand,
one peach medium, and seven peach small.

L~

Rose Teal Plum Sand Peach

0 9 8 0 7 small
S=1| 3 5 6 5 1 medium
1 0 0 3 2 large
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A matrix is a
rectangular array of
elements arranged
in horizontal rows
and vertical
columns.

This report is not easy to analyze. In particular, one must read the entire
paragraph to determine the number of sand-colored, small T-shirts in current
stock. In contrast, the rectangular array of data presented in Figure 1.2 sum-
marizes the same information better. Using Figure 1.2, we see at a glance that no
small, sand-colored T-shirts are in stock.

A matrix is a rectangular array of elements arranged in horizontal rows and
vertical columns. The array in Figure 1.1 is a matrix, as are

1 3
L=|5 21, (1.1)
0 -1
4 1 1
M= |3 2 1}{, (1.2)
0 4 2
and
19.5
N=| -7 |. (1.3)
V2

The rows and columns of a matrix may be labeled, as in Figure 1.1, or not
labeled, as in matrices (1.1) through (1.3).

The matrix in (1.1) has three rows and two columns; it is said to have order (or
size) 3 x 2 (read three by two). By convention, the row index is always given
before the column index. The matrix in (1.2) has order 3 x 3, whereas that in
(1.3) has order 3 x 1. The order of the stock matrix in Figure 1.2 is 3 x 5.

The entries of a matrix are called elements. We use uppercase boldface letters to
denote matrices and lowercase letters for elements. The letter identifier for an
element is generally the same letter as its host matrix. Two subscripts are
attached to element labels to identify their location in a matrix; the first subscript
specifies the row position and the second subscript the column position. Thus, /;,
denotes the element in the first row and second column of a matrix L; for the
matrix L in (1.2), /;; = 3. Similarly, m3; denotes the element in the third row and
second column of a matrix M; for the matrix M in (1.3), m3, = 4. In general,
a matrix A of order p x n has the form

aypr di2 a3 ... dip
dyy dyp dy3 ... dyp
A= |41 dxn 4 ... d3y (1,4)

apr dpy dp3 ... dpy
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which is often abbreviated to [a;],, or just [a;], where a;; denotes an element in
the ith row and jth column.

Any element having its row index equal to its column index is a diagonal element.
Diagonal elements of a matrix are the elements in the 1-1 position, 2-2 position,
3-3 position, and so on, for as many elements of this type that exist in a particular
matrix. Matrix (1.1) has 1 and 2 as its diagonal elements, whereas matrix (1.2)
has 4, 2, and 2 as its diagonal elements. Matrix (1.3) has only 19.5 as a diagonal
element.

A matrix is square if it has the same number of rows as columns. In general,
a square matrix has the form

an ap aps an ]
an an as o
asy as asz cen a3
L dnl ap ap3 e Ayp 4
with the elements ajj,ax,ass,...,a,, forming the main (or principal)

diagonal.

The elements of a matrix need not be numbers; they can be functions or, as we
shall see later, matrices themselves. Hence

fl(t2+1)dt £ V3 21,
0

sinf cos6
—cosf sinf |

and

X X
: d

e* @lnx
5 x+2

are all good examples of matrices.

A row matrix is a matrix having a single row; a column matrix is a matrix having
a single column. The elements of such a matrix are commonly called its compon-
ents, and the number of components its dimension. We use lowercase boldface
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An n-tuple is a row
matrix or a column
matrix having
n-components.

Two matrices are
equal if they have
the same order and
if their corres-
ponding elements
are equal.

letters to distinguish row matrices and column matrices from more general
matrices. Thus,

1

I
&}

X

is a 3-dimensional column vector, whereas
u=[t 2t —t 0]

is a 4-dimensional row vector. The term n-tuple refers to either a row matrix or
a column matrix having dimension #. In particular, x is a 3-tuple because it has
three components while u is a 4-tuple because it has four components.

Two matrices A = [a;] and B = [b;] are equal if they have the same order and if
their corresponding elements are equal; that is, both A and B have order p x n
and a; =b; (i=1,2,3,...,p;j=1,2,...,n). Thus, the equality

-

Figure 1.2 lists a stock matrix for T-shirts as

S5x 42y
xX=y

implies that 5x +2y =7 and x — 3y = 1.

Rose Teal Plum Sand Peach

0 9 8 0 7 small
S=13 5 6 5 1 medium
1 0 0 3 2 large

If the overnight arrival of new T-shirts is given by the delivery matrix

Rose Teal Plum Sand Peach
9 0 0 9 0 small
D=/ 3 3 3 3 3| medium
6 8 8 6 6 large
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The sum of two
matrices of the same
order is the matrix
obtained by adding
together
corresponding
elements of the
original two
matrices.

then the new inventory matrix is

Rose Teal Plum Sand Peach
9 9 8 9 7 small
S+D=| ¢ 8 9 8 4 | medium
7 8 8 9 8 large

The sum of two matrices of the same order is a matrix obtained by
adding together corresponding elements of the original two matrices; that
is, if both A=[gy] and B=[h;] have order pxn, then
A+B=[a;+b;](i=1,2,3,...,p;j=1,2,...,n). Addition is not defined for
matrices of different orders.

Example 1
5 1 -6 3 54(—06) 1+3 -1 4
7 3+ 2 —=1|=| 7+2 3+(—-1 | = 9 21,
-2 -1 4 1 —2+4 —1+1 2 0
and
£ 5 P S |
3t 0 t —t| | 4 -t

The matrices

—

5 0
-1 0| and {_? 2}
2 1

cannot be added because they are not of the same order. W

» Theorem 1. If matrices A, B, and C all have the same order, then

(a) the commutative law of addition holds; that is,
A+B=B+A,
(b) the associative law of addition holds; that is,

A+B+C)=(A+B)+C. <
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The difference

A — B of two
matrices of the same
order is the matrix
obtained by
subtracting from the
elements of A the
corresponding
elements of B.

Proof: We leave the proof of part (a) as an exercise (see Problem 38). To prove
part (b), we set A = [a;], B = [b;], and C = [¢;]. Then

A+ B+ C) = [ay] + ([by] + [¢;])

= [a;]+ [bj + c;] definition of matrix addition
= [a; + (by + cy)] definition of matrix addition
= [(a; + by) + ¢ associative property of regular addition
= [(a; + by)] + [cif] definition of matrix addition
= ([ag] + [b]) + [ definition of matrix addition

—=A+B)+C H

We define the zero matrix 0 to be a matrix consisting of only zero elements.
When a zero matrix has the same order as another matrix A, we have the
additional property

A+0=A (1.5)
Subtraction of matrices is defined analogously to addition; the orders of the

matrices must be identical and the operation is performed elementwise on all
entries in corresponding locations.

Example 2

5 1 -6 3 5-(—6) 1-3 1 -2
7 3| 2 -1l=|7-2 3-(-Dl=|5 4| m
2 -1 4 1 24 “1-1 -6 -2

Example 3 The inventory of T-shirts at the beginning of a business day is given
by the stock matrix

Rose Teal Plum Sand Peach
9 9 8 9 7 small
S=| 6 8 9 8 4 medium
7 8 8 9 8 large
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The product of a
scalar A by a matrix
A is the matrix
obtained by
multiplying every
element of A by A.

What will the stock matrix be at the end of the day if sales for the day are five
small rose, three medium rose, two large rose, five large teal, five large plum, four
medium plum, and one each of large sand and large peach?

Solution: Purchases for the day can be tabulated as

Rose Teal Plum Sand Peach

5 0 0 0 0 small
P=| 3 0 4 0 0 medium
2 5 5 1 1 large

The stock matrix at the end of the day is

Rose Teal Plum Sand Peach

4 9 8 9 7 small
S-P=| 3 8 5 8 4 medium W
5 3 3 8 7 large

A matrix A can always be added to itself, forming the sum A + A. If A tabulates
inventory, A + A represents a doubling of that inventory, and we would like
to write

A+A=2A (1.6)

The right side of equation (1.6) is a number times a matrix, a product known as
scalar multiplication. If the equality in equation (1.6) is to be true, we must define
2A as the matrix having each of its elements equal to twice the corresponding
elements in A. This leads naturally to the following definition: If A = [q;] is
a p X n matrix, and if A is a real number, then

M =gyl (=12....p:j=12....n) (1.7)

Equation (1.7) can also be extended to complex numbers A, so we use the term
scalar to stand for an arbitrary real number or an arbitrary complex number
when we need to work in the complex plane. Because equation (1.7) is true for all
real numbers, it is also true when A denotes a real-valued function.

Example 4
501 357
71 7 3| =| 49 21| and z[; g}:{; gt} -
2 1 14 7

Example 5 Find 5A —! B if

4 1 6 -20
A=[41] wa m=[ 8 2]
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Solution:

» Theorem 2. [f A and B are matrices of the same order and if A\ and A,
denote scalars, then the following distributive laws hold:

('d) /\1(A+B)=/\]A+/\2B
(b)) A1 +A)A=2A+ 1A
(© MA)A =A1(A2A) <«

Proof: We leave the proofs of (b) and (c) as exercises (see Problems 40 and 41).
To prove (a), we set A = [a;] and B = [b;]. Then

(A + B) = A ([ay] + [by])

= Ail(a; + by)] definition of matrix addition
= [A1(ay + byl definition of scalar multiplication
= [(A1aj + A1by)] distributive property of scalars
= [A1a] + [A1by] definition of matrix addition
= Ailay] + Milby] definition of scalar multiplication

=MA+AB H
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Problems 1.1
@

@

©)]

“@
®)

(6)
M
@®
®
(10

n

12)

Determine the orders of the following matrices:

12 5 6 -1 0
Sl C L H A
13 4 7 8 3 -3
o3 1 —2 2 0 1
-1 2 ) -1 0
D= , E= , F= ,
-2 -3 0 0
I 6 1 2 2
/2 13 1/4 V2ZV3 s
G= . H=|v2 V5 V2,
2/3  3/5  -5/6
Vi V2 3

J=10 0 0 0 0].
Find, if they exist, the elements in the 1-2 and 3-1 positions for each of the matrices
defined in Problem 1.

Find, if they exist, a1, a1, b3z, d32, do3, €22, €23, 33, and jp; for the matrices
defined in Problem 1.

Determine which, if any, of the matrices defined in Problem 1 are square.

Determine which, if any, of the matrices defined in Problem 1 are row matrices and
which are column matrices.

Construct a 4-dimensional column matrix having the value j as its jth component.
Construct a 5-dimensional row matrix having the value i as its ith component.
Construct the 2 x 2 matrix A having a; = (— .

Construct the 3 x 3 matrix A having a; = i/j.

Construct the n x n matrix B having b; = n — i — j. What will this matrix be when
specialized to the 3 x 3 case?

Construct the 2 x 4 matrix C having
i wheni=1
dj =9 .
j wheni=2
Construct the 3 x 4 matrix D having

i+j wheni>j

i—j wheni<j

when i =j
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In Problems 13 through 30, perform the indicated operations on the matrices defined in

Problem 1.

(13) 2A. (14) —5A. 15) 3D. (16) 10E.

(17) -F. (18) A +B. 19 C+A. (200 D+E.

21) D+F. (22) A+D. 23) A-B. 24) C-A

25) D-E. (26) D—F. (27) 2A+3B. (28) 3A-2C.

29) 0.1A+0.2C. (30) —2E+F.

The matrices A through F in Problems 31 through 36 are defined in Problem 1.

31) Find XifA+X=B.

(32) FindYif2B+Y=C.

(33) FindXif3D-X=E.

(34) Find YIfE—-2Y=F.

(35) Find Rif 4A + 5R = 10C.

(36) Find Sif 3F —2S =D.

(37) Find 6A — 6B if

A_[oz 201} and B:{Gzl 6 .
4 1/6 3/0 0% +20+1

(38) Prove part (a) of Theorem 1.

(39) Prove that if 0 is a zero matrix having the same order as A, then A +0 = A.

(40) Prove part (b) of Theorem 2.

(41) Prove part (¢) of Theorem 2.

(42) Store 1 of a three-store chain has 3 refrigerators, 5 stoves, 3 washing machines, and
4 dryers in stock. Store 2 has in stock no refrigerators, 2 stoves, 9 washing machines,
and 5 dryers; while store 3 has in stock 4 refrigerators, 2 stoves, and no washing
machines or dryers. Present the inventory of the entire chain as a matrix.

(43) The number of damaged items delivered by the SleepTight Mattress Company from

its various plants during the past year is given by the damage matrix

80 12 16
50 40 16

90 10 50

The rows pertain to its three plants in Michigan, Texas, and Utah; the columns pertain
to its regular model, its firm model, and its extra-firm model, respectively. The
company’s goal for next year is to reduce by 10% the number of damaged regular
mattresses shipped by each plant, to reduce by 20% the number of damaged firm
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mattresses shipped by its Texas plant, to reduce by 30% the number of damaged
extra-firm mattresses shipped by its Utah plant, and to keep all other entries the
same as last year. What will next year’s damage matrix be if all goals are realized?

(44) On January 1, Ms. Smith buys three certificates of deposit from different institu-
tions, all maturing in one year. The first is for $1000 at 7%, the second is for $2000
at 7.5%, and the third is for $3000 at 7.25%. All interest rates are effective on
an annual basis. Represent in a matrix all the relevant information regarding
Ms. Smith’s investments.

(45) (a) Mr. Jones owns 200 shares of IBM and 150 shares of AT&T. Construct
a 1 x 2 portfolio matrix that reflects Mr. Jones’ holdings.
(b) Over the next year, Mr. Jones triples his holdings in each company. What is his
new portfolio matrix?
(c) The following year, Mr. Jones sells shares of each company in his portfolio.
The number of shares sold is given by the matrix [50 100], where the first
component refers to shares of IBM stock. What is his new portfolio matrix?

(46) The inventory of an appliance store can be given by a 1 x 4 matrix in which the first
entry represents the number of television sets, the second entry the number of air
conditioners, the third entry the number of refrigerators, and the fourth entry the
number of dishwashers.

(a) Determine the inventory given on January 1 by [15 2 8 6].

(b) January sales are given by [4 0 2 3]. What is the inventory matrix on
February 1?

(c) February sales are given by [S 0 3 3], and new stock added in February
isgiven by [3 2 7 8]. What is the inventory matrix on March 1?

(47) The daily gasoline supply of a local service station is given by a 1 x 3 matrix in
which the first entry represents gallons of regular, the second entry gallons of
premium, and the third entry gallons of super.

(a) Determine the supply of gasoline at the close of business on Monday given by
[14,000 8,000 6,000].

(b) Tuesday’s sales are given by [3,500 2,000 1,500]. What is the inventory
matrix at day’s end?

(c) Wednesday’s sales are given by [ 5,000 1,500 1,200]. In addition, the station
received a delivery of 30,000 gallons of regular, 10,000 gallons of premium, but
no super. What is the inventory at day’s end?

1.2 MATRIX MULTIPLICATION

Matrix multiplication is the first operation where our intuition fails. First, two
matrices are not multiplied together elementwise. Second, it is not always
possible to multiply matrices of the same order while often it is possible to
multiply matrices of different orders. Our purpose in introducing a new con-
struct, such as the matrix, is to use it to enhance our understanding of real-world
phenomena and to solve problems that were previously difficult to solve.
A matrix is just a table of values, and not really new. Operations on tables,
such as matrix addition, are new, but all operations considered in Section 1.1 are
natural extensions of the analogous operations on real numbers. If we expect to
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use matrices to analyze problems differently, we must change something, and
that something is the way we multiply matrices.

The motivation for matrix multiplication comes from the desire to solve systems
of linear equations with the same ease and in the same way as one linear equation
in one variable. A linear equation in one variable has the general form

[constant] - [ variable ] = constant

We solve for the variable by dividing the entire equation by the multiplicative
constant on the left. We want to mimic this process for many equations in many
variables. Ideally, we want a single master equation of the form

package package package
of . of = of
constants variables constants

which we can divide by the package of constants on the left to solve for all the
variables at one time. To do this, we need an arithmetic of “packages,” first to
define the multiplication of such “packages” and then to divide “packages” to
solve for the unknowns. The “packages’ are, of course, matrices.

A simple system of two linear equations in two unknowns is

2x+3y =10

(1.8)
4x + 5y =20

Combining all the coefficients of the variables on the left of each equation into
a coefficient matrix, all the variables into column matrix of variables, and the
constants on the right of each equation into another column matrix, we generate

the matrix system
23 X 10
. = (1.9)
4 5 y 20

We want to define matrix multiplication so that system (1.9) is equivalent to
system (1.8); that is, we want multiplication defined so that

2 3 x_(2x+3y)
45.y_

1.10
(4x + 5y) ( )
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The product of two
matrices AB is
defined if the
number of columns
of A equals the
number of rows

of B.

Then system (1.9) becomes

@x+3y)] _[10
@x+5y) |~ |20

which, from our definition of matrix equality, is equivalent to system (1.8).

We shall define the product AB of two matrices A and B when the number of
columns of A is equal to the number of rows of B, and the result will be a matrix
having the same number of rows as A and the same number of columns as B.
Thus, if A and B are

-1 0 10
A{_? ! ﬂ and B=| 3 2 -2 1
4 1 10

then the product AB is defined, because A has three columns and B has three
rows. Furthermore, the product AB will be 2 x 4 matrix, because A has two rows
and B has four columns. In contrast, the product BA is not defined, because the
number of columns in B is a different number from the number of rows in A.

A simple schematic for matrix multiplication is to write the orders of the matrices
to be multiplied next to each other in the sequence the multiplication is to be
done and then check whether the abutting numbers match. If the numbers
match, then the multiplication is defined and the order of the product matrix is
found by deleting the matching numbers and collapsing the two “x”” symbols
into one. If the abutting numbers do not match, then the product is not defined.

In particular, if AB is to be found for A having order 2 x 3 and B having order
3 x 4, we write

(2 x3) 3x4) (1.11)
A

where the abutting numbers are distinguished by the curved arrow. These
abutting numbers are equal, both are 3, hence the multiplication is defined.
Furthermore, by deleting the abutting threes in equation (1.11), we are left
with 2 x 2, which is the order of the product AB. In contrast, the product BA
yields the schematic

(3 x4) (2x3)
A

where we write the order of B before the order of A because that is the order of
the proposed multiplication. The abutting numbers are again distinguished by
the curved arrow, but here the abutting numbers are not equal, one is 4 and the
other is 2, so the product BA is not defined. In general, if A is an n x r matrix and
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To calculate the i~
element of AB, when
the multiplication is
defined, multiply the
elements in the ith
row of A by the
corresponding
elements in the jth
column of B and
sum the results.

B is an r X p matrix, then the product AB is defined as an n x p matrix. The
schematic is

(nxr)y(rxp)y=@mxp) (1.12)

A

When the product AB is considered, A is said to premultiply B while B is said to
postmultiply A.

Knowing the order of a product is helpful in calculating the product. If A and B
have the orders indicated in equation (1.12), so that the multiplication is defined,
we take as our motivation the multiplication in equation (1.10) and calculate the
i-jelement (i =1,2,...,n;j = 1,2,...,p) of the product AB = C = [¢;;] by multi-
plying the elements in the ith row of A by the corresponding elements in the jth
row column of B and summing the results. That is,

ag ap ... Ak b b ... by cnocn ... ap

a» ax ax | | b1 b» by 1 o ... Oy

anl  Ap2 ... dpk b/cl bk2 cee bkp Cnl Cp2 ... Cyp
where

r
cij = a,'lb]_,' + a,'gbz_,' + Cl,’3b3j +---+ Cl,’rbrj = Z a,-kbk_,
k=1
In particular, ¢;; is obtained by multiplying the elements in the first row of A by
the corresponding elements in the first column of B and adding; hence
ci = anby + anbyy + apzbs + - + ay by

The element ¢}, is obtained by multiplying the elements in the first row of A by
the corresponding elements in the second column of B and adding; hence

ci2 = anbi + annbyn + aizby + - - + aibe
The element css, if it exists, is obtained by multiplying the elements in the third
row of A by the corresponding elements in the fifth column of B and adding;

hence

c35 = a31bis 4+ azbys + azzbss + - + azebys

Example1 Find AB and BA for
-7 -8
A:[i : Z} and B=| 9 10
0 -11
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Solution: A has order 2 x 3 and B has order 3 x 2, so our schematic for the
product AB is

2x3)(3x2)
A

The abutting numbers are both 3; hence the product AB is defined. Deleting both
abutting numbers, we have 2 x 2 as the order of the product.

-7 -8
1 2 3

AB = 10
4 56

0 —11

_[1(—7)+2(9)+3(0) 1(=8) +2(10) + 3(—11)
T L4(=7)+509)+6(0)  4(—8) + 5(10) + 6(—11)

C[1ro=21
17 48
Our schematic for the product BA is

(3x2) (2x3)
A

The abutting numbers are now both 2; hence the product BA is defined. Deleting
both abutting numbers, we have 3 x 3 as the order of the product BA.

(-7 -8
123
BA=| 9 10
[4 5 6}
0 —11
[ (=7)1 + (—8)4 (=7)2 + (—8)5 (=7)3 + (~=8)6
= | 9(1)+104) 9(2) + 10(5) 9(3) + 10(6)
0(1) + (—11)4 0(2) + (=11)5 0(3) + (=11)6
(39 54 —69
= 49 6 87| m
|44 55 —66

Example 2 Find AB and BA for

2 1
3 1 5 -1
A:[—; (1):| and B:[4 5 1 0
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Solution: A has two columns and B has two rows, so the product AB is defined.

2 1
3 I 5 -1

AB = | -1 0
4 -2 1 0

3 1

2(3) +14) 2() + 1(=2) 2(5) + 1(1) 2(—-1)+ 1(0)
= | —-1(3)+0(4) —1(1) + 0(=2) —1(5) +0(1) —1(=1) 4+ 0(0)
3(3) + 1(4) 3(1) + 1(=2) 3(5) + 1(1) 3(=1) + 1(0)

(10 0 11 -2
-3 -1 =5 1
13 116 -3

In contrast, B has four columns and A has three rows, so the product BA is not
defined. W

Observe from Examples 1 and 2 that AB # BA! In Example 1, ABisa 2 x 2
matrix, whereas BA is a 3 x 3 matrix. In Example 2, ABis a 3 x 4 matrix, whereas

In general, BA is not defined. In general, the product of two matrices is not commutative.
AB # BA.

Example 3 Find AB and BA for

3 1 1 1
A:[O 4} and B:[O 2}

11
0 2
3+ 1000 3()+ 1)
L0()+4(0)  0(1) +4(2)

Solution:
(3 1
i 0 4

M1 1'[3 1]
BA =

0 2|0 4
[1(3) + 1(0) 1(1) + 1(4)
103)+2(0)  0(1) +2(4)
(3 5
10 8
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In Example 3, the products AB and BA are defined and equal. Although matrix
multiplication is not commutative, as a general rule, some matrix products are
commutative. Matrix multiplication also lacks other familiar properties besides
commutivity. We know from our experiences with real numbers that if the
product ab = 0, then either a = 0 or b = 0 or both are zero. This is not true, in
general, for matrices. Matrices exist for which AB = 0 without either A or B
being zero (see Problems 20 and 21). The cancellation law also does not hold for
matrix multiplication. In general, the equation AB = AC does not imply that
B = C (see Problems 22 and 23). Matrix multiplication, however, does retain
some important properties.

» Theorem 1. IfA,B,andC have appropriate orders so that the following
additions and multiplications are defined, then

(a) A(BC) = (AB)C (associate law of multiplication)
(b) A(B+ C) = AB + AC (left distributive law)
(c) B+ C)A = BA + CA (right distributive law) <«

Proof: We leave the proofs of parts (a) and (c) as exercises (see Problems 37
and 38). To prove part (b), we assume that A = [g;] is an m x n matrix and both
B = [b;] and C = [¢;] are n x p matrices. Then

A(B + C) = [a]([by] + [cy])

= [a][(by + ci)] definition of matrix addition
[ n

= Za,fk (bij + cxy) definition of matrix multiplication
L k=1

= Z (aikbkj + aikckj)]

k=1

i n n
= E aiibyj + E Ak Crj
k=1 k=1

+

i n
= E aikb/cj
L k=1

n
Za,'kckj] definition of matrix addition
k=1

= [a;l[by] + [a;llcy] definition of matrix multiplication [l
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Any system of
simultaneous linear
equations can be
written as the matrix
equation Ax = b.

With multiplication defined as it is, we can decouple a system of linear equations
so that all of the variables in the system are packaged together. In particular, the
set of simultaneous linear equations

Sx-3y+2z=14
X+y—4z=-7 (1.13)
Tx=3z=1

can be written as the matrix equation Ax = b where

5 -3 2 X 14
A=|1 1 -4, x=|y|, and b= | -7
7 0 -3 z 1

The column matrix x lists all the variables in equations (1.13), the column matrix
b enumerates the constants on the right sides of the equations in (1.13), and the
matrix A holds the coefficients of the variables. A is known as a coefficient matrix
and care must taken in constructing A to place all the x coefficients in the first
column, all the y coefficients in the second column, and all the z coefficients in
the third column. The zero in 3-2 location in A appears because the coefficient
of y in the third equation of (1.13) is zero. By redefining the matrices A, x, and
b appropriately, we can represent any system of simultaneous linear equations by
the matrix equation

Ax=b (1.14)

Example 4 The system of linear equations

2x+y—z=4
3x+2y+2w=0

X—2y+3z+4w= -1

has the matrix form Ax = b with

2 1 -1 0 * 4
A= |3 2 0 2|, x=1[”|, and b=| 0| m
) 3 4 fv —1

We have accomplished part of the goal we set in the beginning of this section: to
write a system of simultaneous linear equations in the matrix form Ax =b,
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where all the variables are segregated into the column matrix x. All that remains
is to develop a matrix operation to solve the matrix equation Ax = b for x. To do
so, at least for a large class of square coefficient matrices, we first introduce some
additional matrix notation and review the traditional techniques for solving
systems of equations, because those techniques form the basis for the missing

matrix operation.

Problems 1.2

(1) Determine the orders of the following products if the order of A is 2 x 4, the
order of B is 4 x 2, the order of C is 4 x 1, the order of D is 1 x 2, and the order

of Eis 4 x 4.
(a) AB, (b) BA, (c) AC, (d) CA, (e) CD,
(g) EB, (h) EA, (i) ABC, (j) DAE, (k) EBA,

In Problems 2 through 9, find the indicated products for

12 56 -1 01
A= , B= , C= , D=
{3 4} {7 8} { 3 2 1]

2 2 1 0o 1 2
E=| 0 -2 —1|, F=|-1 -1 of,
10 1 1 2 3
x=[1 =2], y=[1 2 1]
(2 AB. (3 BA. @) AC. (5 BC. (6) CB.
(8) xB. @ xC. (10) Ax. (@11) CD. (12) DC.
(14 yC. (15 Dx. (16) xD. (17) EF.  (18) FE.

()
M

)
13
19

AE,
EECD.

XA.
yD.
yF.

(20) Find AB for A = {2 6} and B = { 3 _6}. Note that AB = 0 but neither A

39
nor B equals the zero matrix.

. 4 2 3 4
21) FlndABfOI‘A=|:2 l}andB={76 8}'

-1 2

2 1 2 1
this result imply about the cancellation law for matrices?

22) FindABandACforA:{4 2],B={1 1],andC:{Z

23) FindABandCBforA:ﬁ ﬂB:ﬁ g],andC:{l
AB = CB but A # C.

1 2||x
(24) Calculate the product {3 4} { y}'

1 0 —1][x
(25) Calculate the product |3 1 1| |»]-
1 3 0f]¢z

2
0 —

3 —

1

6
4

} . What does

} . Show that
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(26)

27

(28)

29

(30)

31

(32)

(33

(34

(35

(36)

37
(3%

Calculate the product {a“ a12} {x} )
a an ||y

bu b bis]|”
Calculate the product 1z U3 y|.
b by bz ||

Evaluate the expression A2 — 4A — 5I for the matrix A = {411 i] .

Evaluate the expression (A — I)(A + 2I) for the matrix A = {73 ﬂ .

2 -1 1
Evaluate the expression (I — A)(A% —I) for the matrix A = {3 -2 1 } .
0 0 1

Use the definition of matrix multiplication to show that

jth column of (AB) = A x (jth column of B).

Use the definition of matrix multiplication to show that

ith row of (AB) = (ith row of A) x B.
Prove that if A has a row of zeros and B is any matrix for which the product AB is
defined, then AB also has a row of zeros.

Show by example that if B has a row of zeros and A is any matrix for which the
product AB is defined, then AB need not have a row of zeros.

Prove that if B has a column of zeros and A is any matrix for which the product AB
is defined, then AB also has a column of zeros.

Show by example that if A has a column of zeros and B is any matrix for which the
product AB is defined, then AB need not have a column of zeros.

Prove part (a) of Theorem 1.

Prove part (c) of Theorem 1.

In Problems 39 through 50, write each system in matrix form Ax = b.

(39

1

43

2x+3y =10 (40) 5x+ 20y =80
4x — 5y =11 —x+4y=-64

3x+3y =100 42) x+3y=4
6x — 8y =300 2x—y=1

—x+ 2y =500 —2x—6y=-8

4x -9y =-5

—6x+3y=-3

X+y—z= “44) 2x—y=12
3x+2y+4z=0 —4y —z=15



1.2 Matrix Multiplication e 21

Co))

)

“9)

(1)

(52

(33

x+2y—2z=-1 46) 2x+y—z=0
2x+y+z=5 X+2y+z=0
—Xx+y—z=-2 x—y+22=0
X+z4+y=2 “48) x+2y—z=5
3z4+2x+y=4 2x —y+2z=1
3y+x=1 2x+2y—z=
xX+2y+z=3

Sx+3y+2z4+4w= 5 S0 2x—y+z—w= 1

x+y+w=0 X+2y—z+2w=-1

3x+2y+2z=-3 x—=3y+2z-3w= 2

X+y+2z4+3w= 4
The price schedule for a Chicago to Los Angeles flight is given by

p=[200 350 500]

where row matrix elements pertain, respectively, to coach tickets, business-class
tickets and first-class tickets. The number of tickets purchased in each class for
a particular flight is given by the column matrix

130
n= | 20
10

Calculate the products (a) pn and (b) np, and determine the significance of each.

The closing prices of a person’s portfolio during the past week are tabulated as

40 40l 401 41 4
P=(3 33 31 4 3I
10 93 108 10 93

where the columns pertain to the days of the week, Monday through Friday, and
the rows pertain to the prices of Orchard Fruits, Lion Airways, and Arrow Oil. The
person’s holdings in each of these companies are given by the row matrix

h=[100 500 400]

Calculate the products (a) hP and (b) Ph, and determine the significance of each.

The time requirements for a company to produce three products is tabulated in

02 05 04
T=(12 23 1.7
0.8 31 1.2
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(54

(55

where the rows pertain to lamp bases, cabinets, and tables, respectively. The
columns pertain to the hours of labor required for cutting the wood, assembling,
and painting, respectively. The hourly wages of a carpenter to cut wood, of
a craftsperson to assemble a product, and of a decorator to paint are given,
respectively, by the columns of the matrix

10.50
w= | 14.00
12.25

Calculate the product Tw and determine its significance.

Continuing with the information provided in the previous problem, assume further
that the number of items on order for lamp bases, cabinets, and tables, respectively,
are given in the rows of

q=[1000 100 200]

Calculate the product qTw and determine its significance.

The results of a flue epidemic at a college campus are collected in the matrix

0.20 0.20 0.15 0.15
F=]0.10 030 0.30 0.40
0.70 0.50 0.55 045

where each element is a percent converted to a decimal. The columns pertain to
freshmen, sophomores, juniors, and seniors, respectively; whereas the rows repre-
sent bedridden students, students who are infected but ambulatory, and well
students, respectively. The male-female composition of each class is given by the
matrix

1050 950
Cc— 1100 1050
360 500
860 1000

Calculate the product FC and determine its significance.

1.3 SPECIAL MATRICES

The transpose A is
obtained by
converting all the
rows of A into
columns while
preserving the
ordering of the
rows/columns.

Certain types of matrices appear so frequently that it is advisable to discuss

them separately. The transpose of a matrix A, denoted by AT, is obtained by
converting all the rows of A into the columns of AT while preserving the ordering

of the rows/columns. The first row of A becomes the first column of AT, the
second row of A becomes the second column of AT, and the last row of A

becomes the last column of AT. More formally, if A = [a;] is an n X p matrix,

then the transpose of A, denoted by AT = [aT} ,is a p X n matrix where a; = aj.

i
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Example1 If A =

N B~~~
o L N
W N~
(o QUL N
O 0

3
6|, then AT =
9

] , while the transpose of

AW N —
0 3 N W

» Theorem 1. The following properties are true for any scalar A and
any matrices for which the indicated additions and multiplications
are defined.

@ AN =A

(b) AA)T =AT

(c) (A+B) =AT+BT
(d) (AB)' =B'A"T <

Proof: We prove part (d) and leave the others as exercises (see Problems 21
through 23). Let A = [a;] and B = [b;] have orders n x m and m X p, so that the
product AB is defined. Then

(AB)" = ([ay] [bs])"

- 1T
m
= Z aybyj definition of matrix multiplication
Lk=1 _
- -
= Z by definition of the transpose
Lk=1 _
[ m i
= Z azjbi definition of the transpose
Lk=1 _
[ m ]
T T
= Zbikakj
Lk=1 i

- bﬂ {aﬂ definition of matrix multiplication

=BTAT m
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A submatrix of a
matrix A is a matrix
obtained from A by
removing any
number of rows or
columns from A.

A matrix is
partitioned if it is
divided into
submatrices by
horizontal and
vertical lines
between rows and
columns.

Observation: The transpose of a product of matrices is not the product of the
transposes but rather the commuted product of the transposes.

A matrix A is symmetric if it equals its own transpose; that is, if A = AT. A matrix

A is skew-symmetric if it equals the negative of its transpose; that is, if A = —AT.
1 2 3 0 2 -3

Example2 A= |2 4 5 |issymmetricwhileB= -2 0 1] is
3 56 3 -1 0

skew-symmetric. W

A submatrix of a matrix A is a matrix obtained from A by removing any number
of rows or columns from A. In particular, if

1 2 3 4
5 6 7 8

A= 9 10 11 12 (1.16)
13 14 15 16

10 12
14 16

obtained by removing the first and second rows together with the first and third
columns from A, while C is obtained by removing from A the second, third, and
fourth rows together with the first column. By removing no rows and no columns
from A, it follows that A is a submatrix of itself.

then both B = { ] and C=[2 3 4] are submatrices of A. Here B is

A matrix is partitioned if it is divided into submatrices by horizontal and vertical
lines between rows and columns. By varying the choices of where to place
the horizontal and vertical lines, one can partition a matrix in different ways.
Thus,

CG+ DJ | CH + DK
EG+FJ | EH + FK

AB =

provided the partitioning was such that the indicated multiplications are
defined.

Example 3 Find AB if

3 1]0
2 01 2 1]/0 0 0
A= |0 0|3| and B= —11‘000
0 0|1 0 10 0 1

0
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Solution: From the indicated partitions, we find that

T3 110 2 1] T0 3 1770 0 07 T0
| 1
[2 o}_—1 1_+[0][0 ) [2 0} 0 0 o_%o}[o 0 1]
0 017 2 1] [3 0 0770 0 01 [3
AB — 01 00 I
[o 0}_—1 1_+H[ ) [o 0} 0 0 o_+H[ )
SENEE 0 0 07
00 0170 11 (10 0 0170 0 1
I RO O N RO
[5 4], [0 O[]0 0 0] [0 0 0]
4 200 ollloo ol Tlo o o
|5 4]0 0|0 0 0] o 00
4 20 o ollloo ol Tlo oo
100 0] 70 0] |[0 0 0] +]0 0 0] |
3‘2‘888 5400 0
4 2] 4200 0
— 1o 3lo0o3l=]03003
010 0 1 0100 1
0 0l0 0 o 00000

Note that we partitioned to make maximum use of the zero submatrices of both
Aand B. B

A zero row in a matrix is a row containing only zero elements, whereas a nonzero
row is a row that contains at least one nonzero element.

» Definition 1. A matrix is in row-reduced form if it satisfies the fol-
lowing four conditions:
(i) All zero rows appear below nonzero rows when both
types are present in the matrix.
(i1) The first nonzero element in any nonzero row is 1.
(iii)  All elements directly below (that is, in the same column
but in succeeding rows from) the first nonzero element
of a nonzero row are zero.
(iv) The first nonzero element of any nonzero row appears
in a later column (further to the right) than the first
nonzero element in any preceding row. <«

Row-reduced matrices are invaluable for solving sets of simultaneous linear equations.
We shall use these matrices extensively in succeeding sections, but at present we are
interested only in determining whether a given matrix is or is not in row-reduced form.
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Example 4
1 1 -2 4 7
0 0 -6 5 7
A= 0 0 0 0 0
0 0 0 0 0

is not in row-reduced form because the first nonzero element in the second row is
not 1. If ay3 was 1 instead of —6, then the matrix would be in row-reduced form.

I 2
B=|0 0
0 0

—_—o W

is not in row-reduced form because the second row is a zero row and it appears
before the third row, which is a nonzero row. If the second and third rows had
been interchanged, then the matrix would be in row-reduced form.

2 3 4
C=(0 0 1 2
1 0 5

is not in row-reduced form because the first nonzero element in row two appears
in a later column, column 3, than the first nonzero element in row three. If the
second and third rows had been interchanged, then the matrix would be in row-
reduced form.

1 -2 3 3
D=0 0 1 -3
0 0 1 0

is not in row-reduced form because the first nonzero element in row two appears
in the third column and everything below this element is not zero. Had d33 been
zero instead of 1, then the matrix would be in row-reduced form. W

For the remainder of this section, we restrict ourselves to square matrices,
matrices having the same number of rows as columns. Recall that the main
diagonal of an n x n matrix A = [a;] consists of all the diagonal elements
ay,an, ..., ay. A diagonal matrix is a square matrix having only zeros as
non-diagonal elements. Thus,

300
{(5) _ﬂ and 0 3 0
0 0 3

are both diagonal matrices or orders 2 x 2 and 3 x 3, respectively. A square zero
matrix is a special diagonal matrix having all its elements equal to zero.
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An identity matrix I
is a diagonal matrix
having all its
diagonal elements
equal to 1.

An identity matrix, denoted as I, is a diagonal matrix having all its diagonal
elements equal to 1. The 2 x 2 and 4 x 4 identity matrices are, respectively,

(=l e

1 0 0
0 1 0
0 0 0
0 0 1
If A and I are square matrices of the same order, then

Al =1A = A. (1.17)

A block diagonal matrix A is one that can be partitioned into the form

FA ;
N 0
A= A;
0
where Aj, Ay, ..., Ay are square submatrices. Block diagonal matrices are par-

ticularly easy to multiply because in partitioned form they act as diagonal
matrices.

A matrix A = [a;] is upper triangular if a; = 0 for i > j; that is, if all elements
below the main diagonal are zero. If a; = 0 for i < j, that is, if all elements above
the main diagonal are zero, then A is lower triangular. Examples of upper and
lower triangular matrices are, respectively,

1 2 4 00 0
01 3 —1 120 0
00 2 and 1 3 0
000 5 21 4 1

» Theorem 2. The product of two lower (upper) triangular matrices of
the same order is also lower (upper) triangular. <

Proof: We prove this proposition for lower triangular matrices and leave the
upper triangular case as an exercise (see Problem 35). Let A = [a;] and B = [b;]
both be n x n lower triangular matrices, and set AB = C = [c;;]. We need to show
that C is lower triangular, or equivalently, that ¢; = 0 when i < j. Now

n j—1 n
cjj = E aiby; = E aibij + g aircbig
k=1 k=1

k=j
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We are given that both A and B are lower triangular, hence a; = 0 when i < k
and by; = 0 when k < j. Thus,

j-1 =
> awby =Y ar(0) =0
i pa

because in this summation k is always less than j. Furthermore, if we restrict
i <j, then

n

Zaikbkj = Z (O)bkj =0
k=j

k=j

because i < j < k. Thus, c; =0wheni<;. W
Finally, we define positive integral powers of matrix in the obvious manner:

A% = AA, A’ = AAA = AA? and, in general, for any positive integer n

A" =AA...A (1.18)

n-times

For n = 0, we define A = 1.

=2 > |1 =271 =2 |-1 -8
Example 5 IfA_[1 3},thenA _[1 3H1 3]_[ 4 7}

It follows directly from part (d) of Theorem 1 that
(AZ)T _ (AA)T _ ATAT _ (AT)2’
which may be generalized to

(AN = ATy (1.19)

for any positive integer n. W

Problems 1.3

(1) For each of the following pairs of matrices A and B, find the products (AB)T,ATBT,
and BTAT and verify that (AB)T = BTAT.

130 121
@ A=y 1]’ B:{ 3 -1 0}'

r 1 2
(b)Aziﬁﬁ], B_ |3 4|

L 5 6

6

2

-1

15 -1
© A=1[2 1 3|, B=
0 7 -8

1 3
0 —-1].
-7 2
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@

©)]

“@

®

(6)

™

@®

®

(10

Q)

Verify that (A + B)T = AT 4+ B for the matrices given in part (c) of Problem 1.

2
Find xTx and xxT for x = [3] :
4
Simplify the following expressions:
(@ (ABH'
(b) (A+BT) +AT
© [ATB+CN]
d) [(AB)' +C]"
© [(A+AT)A-AT)"

1
Which of the following matrices are submatrices of A = | 4
7

[c BNV, I \S}

3
61?
9

O A O Ol FH BC I

Identify all of the nonempty submatrices of A = {a b} .

c d
(4 1 0 0
. 2 2 0 0. . 2
Partition A = 001 0 into block diagonal form and then calculate A-.
100 1 2
3 20 0
. -1 1 0 0]. . 2
Partition B = 0 0 2 1 into block diagonal form and then calculate B-.
0 01 -1

Use the matrices defined in Problems (7) and (8), partitioned into block diagonal

form, to calculate AB.

Use partitioning to calculate A% and A® for

1 0000O0O
020000
000100

A=10000 1 0
000O0O0 I
0000000

What is A” for any positive integer n > 3?

Determine which, if any, of the following matrices are in row-reduced form:

010 4 -7 110 4 -7

0 0 01 2 01 01 2
A= s B= ,

0 0 0O 1 0010 1

00 0 O0 O 0 0 0 1 5
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12)
13
14
1s)
(16)

amn
(18)
19

110 4 —7 010 4 —7
0101 2 0000 0
C=loo0o00 1" P loooo 1|
0001 5 0000 0
2 2 27 00 0
E=|0 2 2|, F=]0 0 0},
0 0 2] 00 0
o2 37 000
G=1(0 0 1|, H=|01 0],
1 0 0] 000
0o 1 17 1 0 2
J=11 0 2|, K=|0 -1 1}/,
0 0 0] 0 0 0
2 0 07 1 1/2 1/3
L=|0 2 0|, M=|0 1 1/4],
L0 0 0] 0 0 1
10 07
N=|0 0 1], Qfﬁ H
0 0 0]
o1 10
R=10 0}’ S:{l 0}’
12
T__o 1}

Determine which, if any, of the matrices in Problem 11 are upper triangular.
Must a square matrix in row-reduced form necessarily be upper triangular?
Must an upper triangular matrix be in row-reduced form?

Can a matrix be both upper triangular and lower triangular simultaneously?

Show that AB = BA for

-1 0 0 500
A= 0 3 0| and B=|0 3 0].
0 01 00 2

Prove that if A and B are diagonal matrices of the same order, then AB = BA.
Does a 2 x 2 diagonal matrix commute with every other 2 x 2 matrix?

Calculate the products AD and BD for

1 2 2.0 0
4 5{, and D=|0 3 0].
7 8 0 0 -5

What conclusions can you make about postmultiplying a square matrix by

a diagonal matrix?
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(20)

@1
(22
23
24

25
(26)
@7

(28)

29

(30)
@31
(32

(33)

(34
(35

Calculate the products DA and DB for the matrices defined in Problem 19. What
conclusions can you make about premultiplying a square matrix by a diagonal
matrix?

Prove that (AT)T = A for any matrix A.
Prove that WA)T = AAT for any matrix A and any scalar A.
Prove that if A and B are matrices of the same order then (A +B)T = AT + BT,

Let A, B, and C be matrices of orders m x p, p X r, and r x s, respectively. Prove
that (ABC)T = CTBTAT.

Prove that if A is a square matrix, then B = (A + AT) /2 is a symmetric matrix.
Prove that if A is a square matrix, then C = (A — AT)/2 is a skew-symmetric matrix.

Use the results of the last two problems to prove that any square matrix can be
written as the sum of a symmetric matrix and a skew-symmetric matrix.

Write the matrix A in part (c) of Problem 1 as the sum of a symmetric matrix and
a skew-symmetric matrix.

Write the matrix B in part (c) of Problem 1 as the sum of a symmetric matrix and
a skew-symmetric matrix.

Prove that AAT is symmetric for any matrix A.
Prove that the diagonal elements of a skew-symmetric matrix must be zero.

Prove thatifa 2 x 2 matrix A commutes with every 2 x 2 diagonal matrix, the A must

be diagonal. Hint: Consider, in particular, the diagonal matrix D = { (1) 8} .

Prove that if a n x n matrix A commutes with every n x n diagonal matrix, the
A must be diagonal.
Prove that if D = [dj;] is a diagonal matrix, then D = [dﬂ .

Prove that the product of two upper triangular matrices is upper triangular.

1.4 LINEAR SYSTEMS OF EQUATIONS

Systems of simultaneous linear equations appear frequently in engineering and
scientific problems. The need for efficient methods that solve such systems was
one of the historical forces behind the introduction of matrices, and that need
continues today, especially for solution techniques that are applicable to large
systems containing hundreds of equations and hundreds of variables.

A system of m-linear equations in n-variables xi, x3, . .., x,, has the general form

anx; +apxy + ...+ ayux, = b

a) Xy +anxy + ...+ apx, = by
(1.20)

am1X1 + apXo + .o+ GupXp = bm
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where the coefficients ¢ (i=1,2,...,m; j=1,2,..., n) and the quantities b;
are all known scalars. The variables in a linear equation appear only to the first
power and are multiplied only by known scalars. Linear equations do not involve
products of variables, variables raised to powers other than one, or variables
appearing as arguments of transcendental functions.

For systems containing a few variables, it is common to denote the variables by
distinct letters such as x, y, and z. Such labeling is impractical for systems
involving hundreds of variables; instead a single letter identifies all variables
with different numerical subscripts used to distinguished different variables, such
as X1, X2,..., Xp.

Example 1 The system
2x 4+ 3y — z = 12,000
4x — 5y + 6z = 35,600

of two equations in the variables x, y, and z is linear, as is the system

20x1 + 80x5 + 35x3 + 40x4 + 55x5 = —0.005
90x; — 15x3 — 70x3 + 25x4 + 55x5 = 0.015
30x1 + 35x5 — 35x3 + 10x4 — 65x5 = —0.015

of three equations with five variables x;, x», ..., x5. In contrast, the system

2x 4+ 3xy =25
4+/x +sin y = 50
is not linear for many reasons: it contains a product xy of variables; it contains

the variable x raised to the one-half power; and it contains the variable y as the
argument of the transcendental sine function. W

As shown in Section 1.2, any linear system of form (1.20) can be rewritten in the
matrix form

Ax=Db (1.14 repeated)
with
ain  ap ... iy X1 by
a  an ... ay X2 by
A= , X= , and b=

Am1  dm2 .. dmn Xn bm
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A solution to linear
system of equations
is a set of scalar
values for the
variables that when
substituted into
each equation of the
system makes each
equation true.

If m # n, then A is not square and the dimensions of x and b will be different.

A solution to linear system (1.20) is a set of scalar values for the variables
X1,X2,...,X, that when substituted into each equation of the system makes
each equation true.

Example 2 The scalar values x = 2 and y = 3 are a solution to the system

3x4+2y=12
6x +4y =24
A second solution is x =—4 and y =12. In contrast, the scalar values

x =1,y =2, and z = 3 are not a solution to the system

2x +3y+4z=20
4x 4+ 5y + 6z =32
Tx +8y+9z =40

because these values do not make the third equation true, even though they do
satisfy the first two equations of the system. W

» Theorem 1. If x| and x, are two different solutions of Ax =b,
then 7 = axy + Bxy is also a solution for any real numbers o and B
witha+B=1. <«

Proof: x; and x; are given as solutions of Ax =b, hence Ax; =b, and
Ax; = b. Then

Az = A(ax; + Bx2) = a(AX)) + B(Ax2) =ab+Bb=(a+B)b=Db,

so z is also a solution. W

Because there are infinitely many ways to form o + 8 =1 (let « be any real
number and set 8 = 1 — a), it follows from Theorem 1 that once we identify two
solutions we can combine them into infinitely many other solutions. Conse-
quently, the number of possible solutions to a system of linear equations is either
none, one, or infinitely many.

The graph of a linear equation in two variables is a line in the plane; hence
a system of linear equations in two variables is depicted graphically by a set of
lines. A solution to such a system is a set of coordinates for a point in the plane
that lies on all the lines defined by the equations. In particular, the graphs of the
equations in the system
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Figure 1.3 y
4t x-y=0
31 N
/2]
xX+y=1
o172, 1/2)
: : : : i X
3 2 A 1.2 3
14
ol
x+y=1
Y (1.21)
x—y=0
are shown in Figure 1.3. There is only one point of intersection, and the
coordinates of this point x = y =1 is the unique solution to System (1.21). In
contrast, the graphs of the equations in the system
x+y=1
Y (1.22)
x+y=2
are shown in Figure 1.4. The lines are parallel and have no points of intersection,
so System (1.22) has no solution. Finally, the graphs of the equations in the
system
x+y=0
‘ (1.23)
2x+2y=0
Figure 1.4 y
4_.
31 X+y=2
/ 24
x+y=1
19
f t t f t t X
-3 -2 - 4l 1 2 3
2+
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Figure 1.5

Figure 1.6

ox+2y=0 7
x+y=0 g+
3,,
2,,
14
f f t t t t X
-3 2 - i 1 2 3
o4

are shown in Figure 1.5. The lines overlap, hence every point on either line is
a point of intersection and System (1.23) has infinitely many solutions.

A system of simultaneous linear equations is consistent if it possesses at least one
solution. If no solution exists, the system is inconsistent. Systems (1.21) and (1.23)
are consistent; System (1.22) in inconsistent.

The graph of a linear equation in three variables is a plane in space; hence
a system of linear equations in three variables is depicted graphically by a set
of planes. A solution to such a system is the set of coordinates for a point in
space that lies on all the planes defined by the equations. Such a system can have
no solutions, one solution, or infinitely many solutions.

Figure 1.6 shows three planes that intersect at a single point, and it represents
a system of three linear equations in three variables with a unique solution.
Figures 1.7 and 1.8 show systems of planes that have no points that lie on all
three planes; each figure depicts a different system of three linear equations in
three unknowns with no solutions. Figure 1.9 shows three planes intersecting at
a line, and it represents a system of three equations in three variables with
infinitely many solutions, one solution corresponding to each point on the line.
A different example of infinitely many solutions is obtained by collapsing the
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Figure 1.7

Figure 1.8

Figure 1.9

A homogeneous
system of linear
equations has the
matrix form Ax = 0;
one solution is the
trivial solution
x=0.

three planes in Figure 1.7 onto each other so that each plane is an exact copy of
the others. Then every point on one plane is also on the other two.

System (1.20) is homogeneous if the right side of each equation is 0; that is, if
by = b, = ... =b,, = 0. In matrix form, we say that the system Ax = b is homo-
geneous if b = 0, a zero column matrix. If b ## 0, which implies that at least one
component of b differs from 0, then the system of equations is nonhomogeneous.
System (1.23) is homogeneous; Systems (1.21) and (1.22) are nonhomogeneous.
One solution to a homogeneous system of equations is obtained by setting all
variables equal to 0. This solution is called the trivial solution. Thus, we have the
following theorem.
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» Theorem 2. A homogeneous system of linear equations is
consistent. <

All the scalars contained in the system of equations Ax = b appear in the

The augmented coefficient matrix A and the column matrix b. These scalars can be combined
matrix for Ax =b into the single partitioned matrix [A|b], known as the augmented matrix for the
is the partitioned system of equations.

matrix [A|b].

Example 3 The system
X1 +Xx—2x3=-3
2x1 4+ 5x + 3x3 = 11

— X1 +3x+x3=5

can be written as the matrix equation

1 1 =2 [ x1 -3
2 5 3l (x| =111
-1 3 1] |x3 5

11 2| -3
Abl=| 2 5 3| 11|. m
-1 3 1] 5

Example 4 Write the set of equation in x, y, and z associated with the
augmented matrix

Solution:

—2x+y+3z= 8 -
4y +5z=-3

The traditional approach to solving a system of linear equations is to manipulate
the equations so that the resulting equations are easy to solve and have the
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same solutions as the original equations. Three operations that alter equations
but do not change their solutions are:

(i) Interchange the positions of any two equations.
(i) Multiply an equation by a nonzero scalar.
(i)  Add to one equation a scalar times another equation.

If we restate these operations in words appropriate to an augmented matrix, we
obtain the three elementary row operations:

(Ry) Interchange any two rows in a matrix.
(R;) Multiply any row of a matrix by a nonzero scalar.

(R3) Add to one row of a matrix a scalar times another row of that same
matrix.

Gaussian elimination is a four-step matrix method, centered on the three
elementary row operations, for solving simultaneous linear equations.

Gaussian Elimination

Step 1. Construct an augmented matrix for the given system of equa-
tions.

Step 2. Use elementary row operations to transform the augmented
matrix into an augmented matrix in row-reduced form.

Step 3. Write the equations associated with the resulting augmented
matrix.

Step 4. Solve the new set of equations by back substitution.

The new set of equations resulting from Step 3 is called the derived set, and it is
solved easily by back-substitution. Each equation in the derived set is solved for
the first unknown that appears in that equation with a nonzero coefficient,
beginning with the last equation and sequentially moving through the system
until we reach the first equation. By limiting Gaussian elimination to elementary
row operations, we are assured that the derived set of equations has the same
solutions as the original set.

Most of the work in Gaussian elimination occurs in the second step: the trans-
formation of an augmented matrix to row-reduced form. In transforming
a matrix to row-reduced form, it is advisable to adhere to three basic principles:

(i) Completely transform one column to the required form before consid-
ering another column.

(i) Work on columns in order, from left to right.

(ii1)  Never use an operation that changes a zero in a previously transformed
column,
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Example 5 Use Gaussian elimination to solve the system

x+3y =4,
2x —y =1,
3x+2y =135,
S5x+ 15y = 20.

Solution: The augmented matrix for this system is

3 4
-1 1
2 5
15| 20

WD W N —

We transform this augmented matrix into row-reduced form using only the three
elementary row operations. The first nonzero element in the first row appears in
the 1-1 position, so use elementary row operation Rj to transform all other
elements in the first column to zero.

1 3 4 1 3 4 by adding to the
2 -1 1 0o -7 -7 second row —2
3 2 51713 2 5 times the first row
5 151 20 5 15| 20
1 3 4 by adding to the
0o -7 -7 third row —3
“lo —7| -7 times the first row
5 15| 20
1 3 4 by adding to the
. 0o -7 1| -7 fourth row —5
0o -7 -7 times the first row
0 0 0

The first row and the first column are correctly formatted, so we turn our
attention to the second row and second column. We use elementary row oper-
ations on the current augmented matrix to transform the first nonzero element in
the second row to one and then all elements under it, in the second column, to
zero. Thus,
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A pivot is
transformed to
unity prior to using
it to cancel other
elements to zero.

1 3 4 by multiplying the
second row by — 1/7
0 1
-
0 -7 -7
0 0 0
1 3|4 by adding to'the
third row 7 times
0 1)1 the second row
-
0 0]0
0 00

This augmented matrix is in row-reduced form, and the system of equations
associated with it is the derived set

x+3y=4
y=1
0=0
0=0.

Solving the second equation for y and then the first equation for x, we obtain
x =1 and y =1 as the solution to both this last set of equations and also the
original set of equations. W

When one element in a matrix is used to convert another element to zero by
elementary row operation Rj, the first element is called a pivot. In Example 5,
we used the element in the 1-1 position first to cancel the element in the 2-1
position and then to cancel the elements in the 3-1 and 4-1 positions. In each
case, the unity element in the 1-1 position was the pivot. Later, we used the
unity element in the 2-2 position to cancel the element —7 in the 3-2 position;
here, the 2-2 element served as the pivot. We shall always use elementary row
operation R; to transform a pivot to unity before using the pivot to transform
other elements to zero.

Example 6 Use Gaussian elimination to solve the system

X+2y+z= 3,
2x + 3y —z = —6,
3x =2y —4z=-2.
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Solution: Transforming the augmented matrix for this system into row-reduced

form using only elementary row operations, we obtain

12 1] 3 o2 1 37
2 3 1| -6|—=1]0 -1 =3]-12
3 -2 -4 -2 3 -2 —4| -2

o2 1 37
— 10 -1 =3|-12
8 -7 | —11]

1 2 1 37
— |0 1 3 12

0 -8 —7 | —11]
12 1] 3
- 1 3|12
0 0 1785
12 1] 3
- 3|12
0 1] 5

by adding to
the second row —2
times the first row

by adding to
the third row —3
times the first row

by multiplying the
second row by — 1

by adding to the
third row 8 times
the second row

by multiplying the
third row by 1/17

This augmented matrix is in row-reduced form; the derived set is

X+2y+z=3
y+3z=12
z=35

Solving the third equation for z, then the second equation for y, and lastly, the
first equation for x, we obtain x =4, y = —3, and z = 5 as the solution to both

this last system and the original system of equations. W

Elementary row operation R; is used to move potential pivots into more useful

locations by rearranging the positions of rows.

Example 7

Use Gaussian elimination to solve the system

2x3+3x4 =0
X1+ 3x3+x4=0
X1+x+2x3=0
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If the solution to a
derived set involves
at least one
arbitrary unknown,
then the original
system has infinitely
many solutions.

Solution: The augmented matrix for this system is

00 2 3]0
1 0 3 110
1 1 2 010

Normally, we would use the element in the 1-1 position to transform to zero the
two elements directly below it, but we cannot because the 1-1 element is itself
zero. To move a nonzero element into the ideal pivot position, we interchange
the first row with either of the other two rows. The choice is arbitrary.

00 2 3]0 1 0 3 110 by interchanging the
10 3 1 ol =10 0 2 310 first and second rows
1 1200 1 1 2 010

1 0 3 1|0 by adding to the
third row — 1 times
the first row

01 -1 —-11]0
1 0 3 1]0 by interchanging the
~1lo 1 =1 =110 second and third rows
00 2 310

1
—
(e
(98]
—
(e

by multiplying the
third row by 1/2

1
=)
-
!
_
!
—

[e)

1 3/21]0

This augmented matrix is in row-reduced form; the derived set is

X1 +3x3+x4=0
XQ—X3—X4=0
X3—|-%X4=0

We use the third equation to solve for x3, then the second equation to solve for
X3, and lastly, the first equation to solve for x1, because in each case those are the
variables that appear first in the respective equations. There is no defining
equation for x4, so this variable remains arbitrary, and we solve for the other
variables in terms of it. The solution to both this last set of equations and the
original set of equations is x; = (7/2)x4, X, = (— 1/2)x4 and x3 = (— 3/2)x4
with x4 arbitrary. The solution can be written as the column matrix

X1 (7/2)X4 7
. X2 . (—1/2))(4 _ﬁ -1
T ey T2 o3| ™

X4 X4 2
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If a derived set
contains a false
equation, then the
original set of
equations has no
solution.

Example 7 is a system of equations with infinitely many solutions, one for each
real number assigned to the arbitrary variable x4. Infinitely many solutions
occur when the derived set of equations is consistent and has more unknowns
than equations. If a derived set contains » variables and r equations, n > r, then
each equation in the derived set is solved for the first variable in that equation
with a nonzero coefficient; this defines r variables and leaves the remaining n — r
variables as arbitrary. These arbitrary variables may be chosen in infinitely many
ways to produce solutions.

A homogeneous set of linear equations is always consistent. If such a system
has more variables than equations, then its derived set will also have more
variables than equations, resulting in infinitely many solutions. Thus, we have
the following important result:

» Theorem 3. A homogeneous system of linear equations containing
more variables than equations has infinitely many solutions. <«

In contrast to homogeneous systems, a nonhomogeneous system may have no
solutions. If a derived set of equations contains a false equation, such as 0 = 1,
that set is inconsistent because no values for the variables can make the false
equation true. Because the derived set has the same solutions as the original set,
it follows that the original set is also inconsistent.

Example 8 Use Gaussian elimination to solve the system

xX+2y=2,
3x+6y="7.

Solution: Transforming the augmented matrix for this system into row-reduced
form, we obtain

1 2 ‘ 2 1 212 by adding the second row
—
—3 times the first row

This augmented matrix is in row-reduced form; the derived set is

x+2y=2
0=1

No values of x and y can make this last equation true, so the derived set, as well
as the original set of equations, has no solution. [
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Finally, we note that most augmented matrices can be transformed into a variety
of row-reduced forms. If a row-reduced augmented matrix has two nonzero
rows, then a different row-reduced augmented matrix is easily constructed by
adding to the first row any nonzero constant times the second row. The equa-
tions associated with both augmented matrices, different as they may be, will
have identical solutions.

Problems 1.4

(O]

2

3

“@

Determine whether the proposed values of x, y, and z are solutions to:
X+ y+2z=2,
x—y—2z=0,
X+2y+2z=1.
(@ x=1, y=-3, z=2. ®)x=1, y=—-1, z=1.
Determine whether the proposed values of xi, x,, and x3 are solutions to:
x| +2x2+3x3 =6,
X1 —3x4+2x3=0,
3x; —4xy + Tx3 = 6.
(a) X = I,X2=1,X3=1.
(b) X1 = 2,)62:2, X3:0.
(C) X1 = 14, Xy = 2, X3 = —4.
Find a value for k such that x = 2 and y = k is a solution of the system
3x+ 5y =11,
2x — Ty = -3.
Find a value for k such that x = 2k, y = —k, and z = 0 is a solution of the system
x+2y+z=0,

—2x -4y +2z=0,
3x—6y—4z=1.
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(5) Find a value for k such that x = 2k, y = —k, and z = 0 is a solution of the system

xX+2y+2z=0,
2x+4y +2z=0,
—3x—-6y—4z=0.

In Problems 6 through 11, write the set of equations associated with the given augmented
matrix and the specified variables and then solve.

(1 2|5
6) 0 1 ‘8] for x and y.

1 -2 3|10
@ {0 1 -5| -3] forx, y,and z.
0 0 1 4

1 -3 12 40
@® [0 1 —6 | =200 | for xy, x3, and x3.
0 0 1 25

1 3 0] -8
@ (0 1 4 2| for x, y, and z.

10 0 0 0
1 -7 0

10) | 0 1 —1 1] 0| for x1, x3, and x3.
100 0
(1 -1 0 1
0 1 - 2

1) o 0 1|3 for xi, x», and x3.
100 1

In Problems 12 through 29, use Gaussian elimination to solve the given system of
equations.

(12) x—2y=35, (13) 4x+ 24y = 20,
—3x+7y=8. 2x + 11y = -8.
(14) -y =6, a5y —x+3y=0,
2x 4+ 7y = -5. 3x+5y=0.
(16) —x+3y=0, a7 x+2y+3z=4,
3x -9y =0. —x—y+2z=3,
—2x+3y=0.
(18) y—2z=4, 19 x+3y+2z=0,
x+3y+2z=1, —x—4y+3z=-1,
“2x+3y+z=2. 2x —z =13,
2x —y+4z=2.
(20) 2x+4y—z=0, 1) -3x+6y—3z=0,
—4x —8y+2z=0, x—=2y+z=0,

—2x—4y+z=-1. x—2y+z=0.
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(22)

4

(26)

(28)

(30)

31

(32)

(33)

(34

(35

(36)

—3x+3y—-3z=0, (23) —3x; + 6x2 — 3x3 =0,
x—y+2z=0, X1 —x3+x3=0.
2x—2y+z=0,
x+y+z=0.
X1 —x3 +2x3 =0, (25) X1 +2x, = =3,
2x1 — 2x7 +4x3 =0. 3x1 +x =1.
X1 +2x, — x3 = —1, 27 X1 +2x, =5,
2x1 — 3x2 + 2x3 = 4. —3x1+x, =13,
4x; + 3x, =0.
2x1 +4x; =2, (29) 2x1+3x; —4x3=2,
3x; +2x2 +x3 =8, 3x1 — 2x, = —1,
5x1 — 3x, + Tx3 = 15. 8x1 — xp — 4x3 = 10.

Show graphically that the number of solutions to a linear system of two equations
in three variables is either none or infinitely many.

Let y be a solution to Ax = b and let z be a solution to the associated homogeneous
system Ax = 0. Prove that u =y + z is also a solution to Ax = b.

Let y and z be as defined in Problem 31.
(a) For what scalars « is u = y + @z also a solution to Ax = b?
(b) For what scalars « is u = ay + z also a solution to Ax = b?

In Problems 33 through 40, establish a set of equations that models each process
and then solve.

A manufacturer receives daily shipments of 70,000 springs and 45,000 pounds of
stuffing for producing regular and support mattresses. Regular mattresses r require
50 springs and 30 pounds of stuffing; support mattresses s require 60 springs and 40
pounds of stuffing. How many mattresses of each type should be produced daily to
utilize all available inventory?

A manufacturer produces desks and bookcases. Desks d require 5 hours of cutting
time and 10 hours of assembling time. Bookcases b require 15 minutes of cutting
time and 1 hour of assembling time. Each day the manufacturer has available
200 hours for cutting and 500 hours for assembling. How many desks and
bookcases should be scheduled for completion each day to utilize all available
workpower?

A mining company has a contract to supply 70,000 tons of low-grade ore, 181,000
tons of medium-grade ore, and 41,000 tons of high-grade ore to a supplier. The
company has three mines that it can work. Mine A produces 8,000 tons of
low-grade ore, 5,000 tons of medium-grade ore, and 1,000 tons of high-grade ore
during each day of operation. Mine B produces 3,000 tons of low-grade ore, 12,000
tons of medium-grade ore, and 3,000 tons of high-grade ore for each day it is in
operation. The figures for mine C are 1,000, 10,000, and 2,000, respectively. How
many days must each mine operate to meet contractual demands without producing
a surplus?

A small company computes its end-of-the- year bonus b as 5% of the net profit after
city and state taxes have been paid. The city tax c is 2% of taxable income, while the
state tax s is 3% of taxable income with credit allowed for the city tax as a pretax
deduction. This year, taxable income was $400,000. What is the bonus?
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37

(38)

(39

(40)

A gasoline producer has $800,000 in fixed annual costs and incurs an additional

variable cost of $30 per barrel B of gasoline. The total cost C is the sum of the fixed

and variable costs. The net sales S is computed on a wholesale price of $40 per

barrel.

(a) Show that C, B, and S are related by two simultaneous equations.

(b) How many barrels must be produced to break even, that is, for net sales to
equal cost?

(Leontief Closed Models) A closed economic model involves a society in which all
the goods and services produced by members of the society are consumed by those
members. No goods and services are imported from without and none are exported.
Such a system involves N members, each of whom produces goods or services
and charges for their use. The problem is to determine the prices each member
should charge for his or her labor so that everyone breaks even after one year. For
simplicity, it is assumed that each member produces one unit per year.

Consider a simple closed system limited to a farmer, a carpenter, and a weaver.
The farmer produces one unit of food each year, the carpenter produces one unit of
finished wood products each year, and the weaver produces one unit of clothing
each year. Let p; denote the farmer’s annual income (that is, the price she charges
for her unit of food), let p, denote the carpenter’s annual income (that is, the price
he charges for his unit of finished wood products), and let p; denote the weaver’s
annual income. Assume on an annual basis that the farmer and the carpenter
consume 40% each of the available food, while the weaver eats the remaining
20%. Assume that the carpenter uses 25% of the wood products he makes, while
the farmer uses 30% and the weaver uses 45%. Assume further that the farmer uses
50% of the weaver’s clothing while the carpenter uses 35% and the weaver consumes
the remaining 15%. Show that a break-even equation for the farmer is

0.40p; + 0.30p; + 0.50p3 = p,

while the break-even equation for the carpenter is

0.40p; + 0.25p> + 0.35p3 = p»

What is the break-even equation for the weaver? Rewrite all three equations as
a homogeneous system and then find the annual incomes of each sector.

Paul, Jim, and Mary decide to help each other build houses. Paul will spend half his
time on his own house and a quarter of his time on each of the houses of Jim and Mary.
Jim will spend one third of his time on each of the three houses under construction.
Mary will spend one sixth of her time on Paul’s house, one third on Jim’s house, and
one half of her time on her own house. For tax purposes, each must place a price on his
or her labor, but they want to do so in a way that each will break-even. Show that the
process of determining break-even wages is a Leontief closed model containing three
homogeneous equations and then find the wages of each person.

Four third-world countries each grow a different fruit for export and each uses the
income from that fruit to pay for imports of the fruits from the other countries.
Country A4 exports 20% of its fruit to country B, 30% to country C, 35% to country
D, and uses the rest of its fruit for internal consumption. Country B exports 10% of
its fruit to country A4, 15% to country C, 35% to country D, and retains the rest for
its own citizens. Country C does not export to country 4; it divides its crop equally
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between countries B and D and its own people. Country D does not consume its
own fruit; all is for export with 15% going to country 4, 40% to country C, and 45%
to country D. Show that the problem of determining prices on the annual harvests
of fruit so that each country breaks even is equivalent to solving four homogeneous
equations in four unknowns and then find the prices.

Gaussian elimination is often programmed for computer implementation, but
because all computers store numbers as a finite string of digits, round-off error
can be significant. A popular strategy for minimizing round-off errors is partial
pivoting, which requires that a pivot always be larger than or equal in absolute value
than any element below the pivot in the same column. This is accomplished by using
elementary row operation R; to interchange rows whenever necessary. In Problems
41 through 46, determine the first pivot under a partial pivoting strategy for the
given augmented matrix.

1 3|35 1 -2 | -5
“n 14 8 ‘ 15} “2) 5 3 ' 85}

-2 8 -3 100 12 3| 4
43) 4 5 4| 75 @) |5 6 7| 8

|3 -1 2250 19 10 11|12

1 8 8| 400 0 2 3 410
@ |o 1 7800 @6) |1 04 08 0.1 |90

0 3 9600 4 10 1 8 |40

1.5 THE INVERSE

An n X n matrix
A~! is the inverse of
an n X n matrix A if
AATT=ATTA=T

In Section 1.2, we defined matrix multiplication so that any system of linear
equations can be written in the matrix form

Ax=Db (1.14 repeated)
with the intent of solving this equation for x and obtaining all the variables in the
original system at the same time. Unfortunately, we cannot divide (1.14) by the
coefficient matrix A because matrix division is an undefined operation. An
equally good operation is, however, available to us.

Division of real numbers is equivalent to multiplication by reciprocals. We can
solve the linear equation 5x =20 for the variable x either by dividing the
equation by 5 or by multiplying the equation by 0.2, the reciprocal of 5. A real
number b is the reciprocal of « if and only if ab = 1, in which case we write
b=a"'. The concept of reciprocals can be extended to matrices. The matrix
counterpart of the number 1 is an identity matrix I, and the word inverse is used
for a matrix A instead of reciprocal even though the notation A~! is retained.
Thus, a matrix B is an inverse of a matrix A if

AB=BA =1 (1.24)

in which case we write B = A~
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The requirement that a matrix commute with its inverse implies that both
matrices are square and of the same order. Thus, inverses are only defined
for square matrices. If a square matrix A has an inverse, then A is said to
be invertible or nonsingular; if A does not have an inverse, then A is said to be
singular.

-2 1
1.5 —-0.5

an= 5 3l[s s =lo 1) =[5 —os]ls 3] m

and we write

Example1 The matrix B = { 3 4

} 1s an inverse of A = {1 2] because

-1
Gt 2 2 1
A [3 4} [1.5 0.5}

1172

In contrast, C = [1/3 1/4

} is not an inverse of A because

AC= B 421]{1}3 im = [153//33 5}2} 71 |

Equation (1.24) is a test for checking whether one matrix is an inverse of another
matrix. In Section 2.6, we prove that if AB =1 for two square matrices of the
same order, then A and B commute under multiplication and BA =1. If we
borrow this result, we reduce the checking procedure by half. A square matrix
B is an inverse of a square matrix A if either AB =1 or BA = I; each equality
guarantees the other. We also show later in this section that an inverse is unique;
that is, if a square matrix has an inverse, it has only one.

We can write the inverses of some simple matrices by inspections. The inverse of
a diagonal matrix D having all nonzero elements on its main diagonal is
a diagonal matrix whose diagonal elements are the reciprocals of the correspond-
ing diagonal elements of D. The inverse of

At 00 0 /Ay 0 0 0
0 A, O 0 0 1/A; 0 0
D=0 0 A3 0 is D' = 0 0 1/As 0

0 0 0 ... A4 0 0 0 ... 1/x
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An elementary
matrix E is a square
matrix that
generates an
elementary row
operation on a
matrix A under the
multiplication EA.

if none of the diagonal elements is zero. It is easy to show that if any diagonal
element in a diagonal matrix is zero, then that matrix is singular (see Problem
56).

An elementary matrix E is a square matrix that generates an elementary row
operation on a matrix A (which need not be square) under the multiplication EA.
Elementary matrices are constructed by applying the desired elementary row
operation to an identity matrix of appropriate order. That order is a square
matrix having as many columns as there are rows in A so that the multiplication
EA is defined. Identity matrices contain many zeros, and because nothing is
accomplished by interchanging the positions of zeros, or multiplying zeros by
constants, or adding zeros together, the construction of an elementary matrix
can be simplified.

Creating elementary matrices:

(1) To construct an elementary matrix that interchanges the ith row with
the jth row, begin with an identity matrix I. First interchange the 1 in
the i-i position with the 0 in the j-i position and then interchange the
1 in the j-j position with the 0 in the i-j position.

(i) To construct an elementary matrix that multiplies the ith row of
a matrix by the nonzero scalar k, begin with an identity matrix I
and replace the 1 in the i-i position with k.

(i) To construct an elementary matrix that adds to the jth row of
a matrix the scalar k times the ith row of that matrix, begin with an
identity matrix and replace the 0 in the j-i position with k.

Example 2 Find elementary matrices that when multiplied on the right by any
3 x 5 matrix A will (a) interchange the first and second rows of A, (b) multiply
the third row of A by —0.5, and (c) add to the third row of A 4 times its second
rOw.

Solution:
01 0 1 0 0 1 0 0
(a) 1 0 0], (b) 0 1 0 [, @01 0. W
010 0 0 —-05 0 4 1

Example 3 Find elementary matrices that when multiplied on the right by any
4 x 3 matrix A will (a) interchange the second and fourth rows of A, (b) multiply
the third row of A by 3, and (c) add to the fourth row of A —5 times its second
row.
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Solution:
100 0 100 0 1 00 0
000 1 0100 0 10 0
@ 1901 0" ® o003 00"© o 01 0
0100 000 1 0 =5 0 1

» Theorem 1. (a) The inverse of an elementary matrix that inter-
changes two rows is the elementary matrix itself.

(b) The inverse of an elementary matrix that multiplies
one row by a nonzero scalar k is a matrix obtained
by replacing the scalar k in the elementary matrix
by 1/k.

(c) The inverse of an elementary matrix that adds to one
row a constant kK times another row is a matrix
obtained by replacing the scalar k in the elementary
matrix by —k. <«

Proof: (a) Let E be an elementary matrix that has the effect interchanging the
ith and jth rows of a matrix. E comes from interchanging the i th and j th rows of
the identity matrix having the same order as E. Then EE = 1, because interchang-
ing the positions of the ith row of an identity matrix with jth row twice in
suclcession does not alter the original matrix. With EE =1, it follows that
E =E.

(b) Let E be an elementary matrix that has the effect of multiplying the ith row of
a matrix by a nonzero scalar k, and let F be an elementary matrix that has the
effect of multiplying the ith row of a matrix by a nonzero scalar 1/k. E comes
from multiplying the ith of the identity matrix having the same order as E by k.
Then FE = I, because multiplying the ith row of an identity matrix first by k and
then b}; 1/k does not alter the original matrix. With FE =1, it follows that
F=E".

(c) The proof is similar to the part (b) and is left as an exercise for the reader (see
Problem 63). W

Example 4 The inverses of the elementary matrices found in Example 2 are,
respectively,

010 10 0 1 00
@ |1 0 0], ® (01 of, © |0 10
010 00 -2 0 —4 1
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The inverses of the elementary matrices found in Example 3 are, respectively,

0 10 0 0 10
1 01 0 0 0 1
ol ® 1o 0 13 o ©@ |0 o
0 00 0 1 0 5

Elementary row operations are the backbone of a popular method for calculat-
ing inverses. We shall show in Section 2.6 that a square matrix is invertible if and
only if it can be transformed into a row-reduced matrix having all ones on the
main diagonal. If such a transformation is possible, then the original matrix can
be reduced still further, all the way to an identity matrix. This is done by
applying elementary row operation Rz—adding to one row of a matrix a scalar
times another row of the same matrix—to each column, beginning with the last
column and moving sequentially towards the first column, placing zeros in all
positions above the diagonal elements.

Example5 Use elementary row operations to transform the row-reduced matrix

to the identity matrix.

Solution:
1 21 (1 2 17 by adding to
01 3{—=1]01 0 the second row
0 0 1 L0 0 1] —3 times the third row
(1 2 07 by adding to
— 10 1 0 the first row
L0 0 1] —1 times the third row
1 0 07 by adding to the
— 10 1 0 first row —2 times W
L0 0 1] the second row

Thus, a square A has an inverse if and only if A can be transformed into an
identity matrix with elementary row operations. Because each elementary row
operation can be represented by an elementary matrix, we conclude that a matrix
A has an inverse if and only if there exists a sequence of elementary matrices
E;, Ey ..., E; such that

EE ... E;tEIA=1
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Denoting the product of these elementary matrices by B, we have BA = I, which
implies that B = A~!. To calculate the inverse of a matrix A, we need only record
the product of the elementary row operations used to transform A to I. This is

accomplished by applying the same elementary row operations to both A and
I simultaneously.

Calculating inverses:

Step 1. Create an augmented matrix [A | I], where A is the n x n matrix to
be inverted and I is the n x n identity matrix.

Step 2. Use elementary row operations on [A | I] to transform the left
partition A to row-reduced form, applying each operation to the
full augmented matrix.

Step 3. If the left partition of the row-reduced matrix has zero elements
on its main diagonal, stop: A does not have inverse. Otherwise,
continue.

Step 4. Use elementary row operations on the row-reduced augmented
matrix to transform the left partition to the n x n identity matrix,
applying each operation to the full augmented matrix.

Step 5. The right partition of the final augmented matrix is the inverse
of A.

Example 6 Find the inverse of A = {1 2} .

3 4
Solution:
1201 0 1 20 10 by adding to
— the second row —3
34101 0 =231 times the first row
0 2 1 0 by multiplying the
-
0 1 |32 —-1/2 second row by —1/2

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

by adding to the
- {1 0 ‘ —2 ! } first row —2 times
0 1 3/2 —1/2 the second row

Thus,

Ne i )
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5 8 1
Example 7 Find the inverse of A= [0 2 }
Solution: 43 -
5 8 1 1 00
0 2 1 01 0
4 3 -1 0 0 1
116 02/02 0 0 by multiplying the
— |0 2 1 0 1 0 .
4 3 —110 o 1 first row by 0.2
1 1.6 0.2 02 0 0 by adding to the
— |0 2 1 0 1 0 third row —4 times
0 -34 —-18| —-08 0 1 the first row
1 1.6 0.2 02 0 O C
~Jo 1 05| 0 050 by multiplying tll}ez
0 —34 —18|-08 0 1 y
[1 1.6 0.2 02 0 0 by adding to the
— |0 1 0.5 0 05 0 third row 3.4 times
10 0 -01] -08 1.7 1 the second row

by multiplying the

—- 10 1 05| 0 05 0 third row by —10

0 0 1 &8 —-17 -10

[1 1.6 02]02 0 O]

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

1 1.6 0202 0 0] by adding to the

— 10 1 0 —4 9 5 second row —0.5
100 1 8 —17 —10 | times the third row
(1 16 0] —14 34 27 by adding to the

— {0 1 0 —4 9 5 first row —0.2
[0 0 1 8 -17 —10 | times the third row
1 0 0 5 —11 6 by adding to the

— 1 0| —4 9 5 first row —1.6 times
10 0 1 8 —17 -10 the second row
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Thus,
5 —-11 -6
Al=1-4 9 51 m
8 —17 -—10
0 1 1
Example 8 Find the inverscsof A= |1 1 1.
1 1 3
Solution:
01 11100
1 117010
1 1. 3/0 0 1
L1 1o 10 by interchanging the
— (0111100 first and second rows
1 1.3/0 0 1
(11 1]0 1 0 by adding to the
- (0 1 111 0 0 third row —1 times
10 0 0 -1 1 the first row
110 ! 0 by multiplying the
— o b0 0 third row by 1/2
00 1|0 —1/2 1/2
1 1 110 1 0 by adding to the
- [0 1 0|1 /2 -1/2 second row —1
0010 —-1/2 1/2 times the third row
1 10,0 3/2 —-1/2 by adding to the
- 10 1 0|1 1/2 —-1/2 first row —1 times
00 1,0 —-1/2 1/2 the third row
1 0 0] —1 1 0 by adding to the
- 10 1 0 1 1/2 -1)2 first row —1 times the
0 0 1 0 -1/2 1)2 second row
Thus,
-1 1 0
Al = 1 /2 -1/2 |
0 -1/2 1/2
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Example 9 Find the inverse of A = {1 2] .

2 4
Solution:
{1 2 ‘ 1 O] {1 2 ‘ 1 0] by adding to the
- second row —2
24101 0 0]-21 times the first row

A has been transformed into row-reduced form. Because the main diagonal
contains a zero entry, A does not have an inverse; A is singular. W

» Theorem 2. The inverse of a matrix is unique. <«

Proof: 1f B and C are both inverses of the matrix A, then

AB=1, BA=1 AC=I and CA=L
It now follows that

C = CI = C(AB) = (CA)B = IB = B.

Thus, if B and C are both inverses of A, they must be equal; hence, the inverse
is unique. W

Using Theorem 2, we can prove some useful properties of inverses.

» Theorem 3. If A and B are n x n nonsingular matrices, then

@ A=A

(b) (AB)'=B7'A7!,

© @AH " =@A"h,

d (A= (1//\)A_], if A is a nonzero scalar. <

Proof: We prove parts (b) and (c) and leave parts (a) and (d) as exercises (see
Problems 59 and 60). To prove (b), we note that

B 'AHAB) = B'A'A)B=B'IB=B 'B=1

Thus, B"'A™! is an inverse of AB. Because the inverse is unique, it follows that
(AB)"' =B 1AL
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The matrix equation
Ax = b has

x = A"'b as its
solution if the
coefficient matrix

A is invertible.

To prove (c), we note that
AHAH = @A A =17 = 1.

Thus, (A™")T is an inverse of AT. Because the inverse is unique, it follows that
-1 —INT

AH'=@Aa"hl m

The process of finding an inverse is known as inversion, and, interestingly, some

matrix forms are preserved under this process.

» Theorem 4. (a) The inverse of a nonsingular symmetric matrix is
symmetric.

(b) The inverse of a nonsingular upper or lower trian-
gular matrix is again an upper or lower triangular
matrix, respectively. <«

Proof: If A is symmetric, then AT = A. Combining this observation with part
(c) of Theorem 2, we find that

T -1 _
A =@ah =@
so A~ ! also equals its transpose and is symmetric. This proves part (a). Part (b) is

immediate from Theorem 2 and the constructive procedure used for calculating
inverses. The details are left as an exercise (see Problem 62).

A system of simultaneously linear equations has the matrix form
Ax=b (1.14 repeated)

If the coefficient matrix A is invertible, we can premultiply both sides of equation
(1.14) by A! to obtain

AlAx)=A""p
A"A)x=A"b
Ix=A"b
or
x=A"b m (1.25)

This is precisely the form we sought in Section 1.2. With this formula, we can
solve for all the variables in a system of linear equations at the same time.
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Example 10 The system of equations

X+ 2y =150
3x + 4y = 250

can be written as Ax = b with

1 2 b 150
[ 2} e[ o[22

Using the results of Example 6, we have that the coefficient matrix A is
invertible and

AR AR

Hence, x = —50 and y = 100. W

Example 11 The system of equations
S5x+8y+z= 2
2y+z=-1
4x+3y—z= 3

can be written as Ax = b with

Using the results of Example 7, we have that the coefficient matrix A is
invertible and

5 11 -6 2 3
{x]:x:Alb: 4 9 511=1]=|-2
Y 8 —17 —10 3 3

Hence, x=3,y=—-2,andz=3. N
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Not only does the invertibility of the coefficient matrix A provide us with
a solution to the system Ax = b, it also provides us with a means to show that
this solution is the on/y solution to the system.

» Theorem 5. If A is invertible, then the system of simultaneous
linear equations defined by Ax = b has a unique (one and only one)
solution. <

Proof: Define w = A~ 'b. Then
Aw = AAb=Ib=0b (1.26)

and w is one solution to the system Ax = b. Let y be another solution to this
system. Then necessarily

Ay=b (1.27)
Equations (1.26) and (1.27) imply that
Aw = Ay
Premultiplying both sides of this last equation by A~!, we find
A7'(Aw) = A7 (AY)
A"A)w = (A 'A)y
Iw=1y
or

w=y

Thus, if y is a solution of Ax = b, then it must equal w. Therefore, w = A 'bis
the only solution to this system. W

If A is singular, so that A~! does not exist, then equation (1.25) is not valid and
other methods, such as Gaussian elimination, must be used to solve the given
system of simultaneous equations.
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Problems 1.5

O

(1) Determine if any of the following matrices are inverses for A = B 3} :
1 1/3 -1 -3
A R
3 -1 9 -3
© {72/3 1/3}’ @ {—2 1]'

(2) Determine if any of the following matrices are inverses for A = “ ” :
11 -1 1
O O |

o 1) w1
In Problems 3 through 12, find elementary matrices that when multiplied on the right by
the given matrix A will generate the specified result.
(3) Interchange the order of the first and second rows of a 2 x 2 matrix A.
(4) Multiply the first row of a 2 x 2 matrix A by 3.
(5) Multiply the second row of a 2 x 2 matrix A by —5.
(6) Multiply the second row of a 3 x 3 matrix A by —5.
(7) Add to the second row of a 2 x 2 matrix A three times its first row.
(8) Add to the first row of a 2 x 2 matrix A three times its second row.
(9) Add to the second row of a 3 x 3 matrix A three times its third row.
(10) Add to the third row of a 3 x 4 matrix A five times its first row.
(11) Interchange the order of the second and fourth rows of a 6 x 6 matrix A.
(12) Multiply the second row of a 2 x 5 matrix A by 7.

In Problems 13 through 22, find the inverses of the given elementary matrices.

20 12 )
3 1o 1} 14) [0 1} 13) [—3 1}
o 100 0 1 0
(16) 11} an o 2 0| a1 00
- 00 1 0 0 1
10 3 10 0 IR
a) o 10l @lo1 2| e
00 1 00 1 0 0 01
L 0 01 0
T 100 0
01 00|,
@) |3 91 o|Ar =A
00 0 1
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o 6]

In Problems 23 through 39, find the inverses of the given matrices, if they exist.

11 (2 1 (4 4
23) 13 4 @4 |12 (25) 14 4
1 1 0] [0 0 1] (2 0 —17
(26) 1 0 1 @27 |1 0 28) |0 1
10 1 1] 10 1 0] 13 1 1]
(1 2 3] (2 0] 2 1 57
29) 4 5 6 30 (51 0 3B |0 3 -1
|7 8 9] |4 1 1] 100 ]
(3 2 1] 1 2 —1]
(32) 4 0 1 (33) 2 0
13 9 2] -1 1 ]
M1 2 1 (2 4 3
(34) 3 -2 -4 35 |3 -4 -4
12 3 -1} E 0 -1
['5 0 —1] 3 1 1
(36) 2 -1 2 @37 |1 3 -1
| 2 3 -1} 12 3 -1
11 1 2 M1 0 0 0
01 -1 1 2 -1 0 0
(38) 00 2 3 (39) 4 6 2 0
10 0 0 -2 13 2 4 -1
(40) Show directly that the inverse of A = {(Z Z] , when ad — bc # 0 is
_ 1 d —-b
Al =
ad—bc{—c a}

(41) Use the result of Problem (40) to calculate the inverses of

N E Y P

In Problems 42 through 51, use matrix inversion, if possible, to solve the given systems of

equations:
) x+2y=-3 43) a+2b=5
Ix+y=1 —3a+b=13
44) 4x+2y=6 45 4-p=1
2x -3y =1 5I-2p=-1
(46) 2x+3y=38 7) x+2y—z=-1
6x +9y =24 2x+3y+2z=5

y—z=
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“48) 2x+3y—z=4 49) 60/ +30m +20n =0
—Xx—=2y+z=-2 307 + 20m + 15n = —10
3x—y=2 20/ + 15m+12n = —10
(50) 2r+3s—4r=12 B1) x+2y—-2z=-1
3r—2s=—1 2x+y+z=5
8r—s—4t=10 —X+y—z=-2

(52) Solve each of the following systems using the same inverse:

(a) 3x+5y=10 () 3x+5y=-8
2x +3y =20 2x+3y =22

() 3x+5y=02 (d) 3x+5y=0
2x+3y=0.5 2x+3y =5

(53) Solve each of the following systems using the same inverse:

(a) 2x+4y =2 (b) 2x+4y =3
3x+2y+z=28 3x+2y+z=28
Sx=3y+7z=15 Sx=3y+7z=15

(© 2x+4y =2 (d) 2x+4y =1
3x+2y+z=9 3x+2y+z=7
Sx=3y+7z=15 5x-3y+7z=14

(54) If A is nonsingular matrix, we may define A™ = (A~!)", for any positive integer n.
Use this definition to find A~> and A~ for the following matrices:

I e N 8 i R

111 1 2 -1
@ o1 1], @ ]o 1 —1].
00 1 00 1

(55) Prove that a square zero matrix does not have an inverse.

(56) Prove that if a diagonal matrix has at least one zero on its main diagonal, then that
matrix does not have an inverse.

(57) Prove that if A> = I, the A~' = A.

(58) If A is symmetric, prove the identity (BA™") (A~'BT) ' = L.

(59) Prove that if A is invertible, then (A’1)71 =A.

(60) Prove that if A is invertible and if A is a nonzero scalar, then AA)™! = (l/A)A_l.

(61) Prove that if A, B, and C are n x n nonsingular matrices, then (ABC)™! =
c'B AT

(62) Prove that the inverse of a nonsingular upper (lower) triangular matrix is itself
upper (lower) triangular.

(63) Prove part (c) of Theorem 1.
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(64) Show that if A can be partitioned into the block diagonal form

with Ay, Ay, ..

1.6 LU DECOMPOSITION

Ay
A

0

., A, all invertible, then

—Afl

A=

Aj

0

Ag |

-1
A/c

Matrix inversion of elementary matrices is at the core of still another popular
method, known as LU decomposition, for solving simultaneous equations in
the matrix form Ax = b. The method rests on factoring a nonsingular coefficient
matrix A into the product of a lower triangular matrix L with an upper triangular
matrix U. Generally, there are many such factorizations. If L is required to have all
diagonal elements equal to 1, then the decomposition, when it exists, is unique and

we may write

with

A=LU
1 0 O
by 1 0

oS O

Uln
Uz
Usy

Upnn

(1.28)
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To decompose A into form (1.28), we first transform A to upper triangular form
using just the third elementary row operation Rj3. This is similar to transforming
a matrix to row-reduced form, except we no longer use the first two elementary
row operations. We do not interchange rows, and we do not multiply rows by
nonzero constants. Consequently, we no longer require that the first nonzero
element of each nonzero row be 1, and if any of the pivots are 0—which would
indicate a row interchange in the transformation to row-reduced form—then the
decomposition scheme we seek cannot be done.

Example1 Use the third elementary row operation to transform the matrix

2 -1 3
A= 4 21
-6 -1 2
into upper triangular form.
Solution:
2 -3 2 -l 3 by adding to the
A= 4 2 1| — 0 4 -5 second row — 2 times
6 —1 2 6 -1 2 the first row
[2 -1 3] by adding to the
— {0 4 -5 third row 3 times
0 —4 11 the first row
2 -1 3] by adding to the
— |0 4 -5 third row 1 times
1 0 0 6 | the second row W

If a square matrix A can be reduced to upper triangular form U by a sequence
of elementary row operations of the third type, then there exists a sequence of
elementary matrices Ey, E31, Eqy,. .., E, ,_1 such that

(En,n—l ...E41E31E21)A=U (129)

where E;; denotes the elementary matrix that places a 0 in the 2-1 position, Ej3,
denotes the elementary matrix that places a 0 in the 3-1 position, E4; denotes the
elementary matrix that places a 0 in the 4-1 position, and so on. Since elementary
matrices have inverses, we can write (1.29) as
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A square matrix A
has an LU
decomposition if A
can be transformed
to upper triangular
form using only the
third elementary
row operation.

A=(Ey B3 By ... E}, U (1.30)

Each elementary matrix in (1.29) is lower triangular. It follows from Theorem 4
of Section 1.5 that each of the inverses in (1.30) are lower triangular and then
from Theorem 2 of Section 1.3 that the product of these lower triangular inverses
is itself lower triangular. If we set

L=(E E5 E;/... E, |
then L is lower triangular and (1.30) may be rewritten as A = LU, which is the
decomposition we seek.

Example 2 Construct an LU decomposition for the matrix given in Example 1.

Solution: The elementary matrices associated with the elementary row oper-
ations described in Example 1 are

1 00 1 0 0 1 0 0
E21 =1-2 1 0 S E31 = 01 0 , and E32 =10 1 0
0 0 1 -3 0 1 0 -1 1

with inverses given respectively by

100 100 100
Ej'=1{2 1 0|, Ej/=| 0 1 0|, and Ej =[0 1 0.
0 -3 0 1

0 1 0 -1 1
Then,
2 -1 3 1 00 1 00 1 0 02 -1 3
4 2 1|(=12 10 0 1 0]{0 1 o[|0 4 -5
-6 -1 2 0 0 1 -3 0 1]]0 =1 1{1|0 0 6

or, upon multiplying together the inverses of the elementary matrices,

2 -1 3 1 0 0|2 -1 3
4 2 1|= 2 1 0f|0 4 -5
-6 -1 2 -3 -1 1]]0 0 6

Example 2 suggests an important simplification of the decomposition process.
Note that the elements in L located below the main diagonal are the negatives of
the scalars used in the elementary row operations in Example 1 to reduce A to
upper triangular form! This is no coincidence.
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» Observation 1. If, in transforming a square matrix A to upper triangular
form, a zero is placed in the i-j position by adding to row i a scalar k times
row j, then the i-j element of L in the LU decomposition of Ais —k. <«

We summarize the decomposition process as follows: Use only the third ele-
mentary row operation to transform a square matrix A to upper triangular form.
If this is not possible, because of a zero pivot, then stop. Otherwise, the LU
decomposition is found by defining the resulting upper triangular matrix as U
and constructing the lower triangular matrix L according to Observation 1.

Example 3 Construct an LU decomposition for the matrix

2 1 2 3
6 2 4 8
A= 1 -1 0 4
0 1 -3 —4
Solution: Transforming A to upper triangular form, we get
21 2 3 2 1 2 3 .
by adding to the
6 2 4 8 0 -1 -2 -1 .
- second row — 3 times
1 -1 0 4 1 -1 0 4 '
the first row
0 1 -3 —4 0 1 -3 —4
(2 1 2 37 .
0 -1 -2 —1 by' adding to lth.e
- 0 -3 _1 5 third row — 5 times
2 2 the first row
L0 1 -3 —4]
(2) —} —g _? by adding to the
- third row — 2 times
0 0 24 the second r%)w
K 1 -3 —4]
21 2 3 by adding to the
- 0 -1 =2 - fourth row 1 tim
0 0 2 4 ourth row 1 times
0 0 -5 -5 the second row
2 1 2 3 .
0 -1 -2 -1 by adding to the
- fourth row 3 times
0 0 2 4 the third ro%v
0o 0 0 5
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IfA=LU fora
square matrix A,
then the equation
Ax = b is solved by
first solving the
equation Ly = b for
y and then solving
the equation Ux =y
for x.

We now have an upper triangular matrix U. To get the lower triangular matrix L
in the decomposition, we note that we used the scalar —3 to place a 0 in the 2-1
position, so its negative —( — 3) = 3 goes into the 2-1 position of L. We used the
scalar —% to place a 0 in the 3-1 position in the second step of the preceding
triangularization process, so its negative, %, becomes the 3-1 element in L; we
used the scalar % to place a 0 in the 4-3 position during the last step of the
triangularization process, so its negative, —%, becomes the 4-3 element in L.
Continuing in this manner, we generate the decomposition

2 1 2 3] 1 0 o0 o0J[2 1 2

6 2 4 8| [3 1 o0ofllo -1 —2 1

1 -1 0 4|~ |1 2 1 o0lfo 2 u
0 3 4] |0 -1 -3 1]lo o o 5

LU decompositions, when they exist, are used to solve systems of simultaneous
linear equations. If a square matrix A can be factored into A = LU, then the
system of equations Ax = b can be written as L(Ux) = b. To find x, we first solve
the system

Ly=b (1.31)

for y, and then once y is determined, we solve the system

Ux=y (1.32)

for x. Both systems (1.31) and (1.32) are easy to solve, the first by forward
substitution and the second by backward substitution.

Example 4 Solve the system of equations:

2x —y+3z=9
4x+2y+z=9
—6x—y+2z=12

Solution: This system has the matrix form

2 -1 37[x
4 2 1 y| =
z

-6 -1 2 12
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The LU decomposition for the coefficient matrix A is given in Example 2. If
we define the components of y by «, 8, and vy, respectively, the matrix system

Ly=bis
I 0 0][a 9
2 1 0||Bl=1]9
-3 -1 1] |y 12

which is equivalent to the system of equations
a=9
20+B=9

—3a-B+y=12

Solving this system from top to bottom, we get « =9, 8 = -9, and y = 30.
Consequently, the matrix system Ux =y is

2 -1 31| x 9
0 4 -5|({y|=1-9
0 0 6 30

which is equivalent to the system of equations

2x —y+3z= 9
4y —5z=-9
6z = 30

Solving this system from bottom to top, we obtain the final solution
x=-1,y=4,andz=5. N

Example 5 Solve the system

2a+b+2c+3d= 5
6a+2b+4c+8d= 8
a—b+4d =—-4
b—3c—4d = -3
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Solution: The matrix representation for this system has as its coefficient matrix
the matrix A of Example 3. Define

y=la B, v 8"

Then, using the decomposition determined in Example 3, we can write the matrix
system Ly = b as the system of equations

a=>5

3a+B=28

1 3
— _ :—4
2a+2,8+‘y
5
B Sy

which has as its solution a« =5, 8= -7, y =4, and 6 =0. Thus, the matrix
system Ux =y is equivalent to the system of equations

2a+b+2c+3d=5

—b—2c—d=-7
2c44d =4
5d =0

Solving this set from bottom to top, we calculate the final solution as
a=-1,b=3,c=2,andd=0. W

Problems 1.6

In Problems 1 through 14, A and b are given. Construct an LU decomposition for the
matrix A and then use it to solve the system Ax = b for x.

(11 1 2 1 11

R L o L R )
_ 1 10 4
8§ 3 625

@ a-[ 3] o] m[l ; } [ }
- 01 1
[—1 20 -1

S A= I =3 1|, b=|-2{.

2 =23 3

[ 2 1 3 10
6) A= 4 1 0], b=1|-40]|.
-2 -1 =2 0
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Y

@®

&)

(10

1

12)

13

(14

1s)

(16)

(a)

(b)

(a)

(b)

M2 -1 8

02 1|, b=|-1].
0 0 1 5

1 0 0 27

32 0[, b=|4].

11 2 2|

Mo 1 1 [ 4
1 1 0 1 -3
L1 1ol P2
[0 1 1 1 |2
1 -1 3 1000
14 2 1| | 200
00 -1 1} 100
01 01 100
12 1 1 30
L2 1) |30
111 2" " |10
01 11 10
20 20 -2
220 6| ,_| 4
4 3 1 11" "7 9
10 31 4

Use LU decomposition to solve the system

—Xx+2y=-9

2x+3y =4
Use the decomposition to solve the preceding system when the right sides of
the equations are replaced by 1 and —1, respectively.

Use LU decomposition to solve the system
x+3y—z=-1

2x+5y+z=4
2x+Ty—4z=-6

Use the decomposition to solve the preceding system when the right side of
each equation is replaced by 10, 10, and 10, respectively.
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an

(18)

19

(20)

1)

Solve the system Ax =b for the following vectors b when A is given as in
Problem 4:

5 2 40 1
@ | 7, ® 2], © [50], @ [1].
—4 0 | 20 3

Solve the system Ax =b for the following vectors b when A is given as in
Problem 13:

[—17 0 190 1

1 0 130 1

@ | | ®{] @]l @
1 0 60 1

Show that LU decomposition cannot be used to solve the system

2y+z=-1
xX+y+3z=38
2x—y—z=1

but that the decomposition can be used if the first two equations are interchanged.

Show that LU decomposition cannot be used to solve the system

X+2y+z=2
2x+4y—z=17
X+y+2z=2

but that the decomposition can be used if the first and third equations are inter-
changed.

(a) Show that the LU decomposition procedure given in this section cannot be
applied to

0 2
1o 3]
(b) Verify that A = LU, when

1 0 0 2
L:{1 1} and U:{O 7]

(c) Verify that A = LU, when

1 0 0 2
L:{3 1} and U:{O 3]
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(d) Why do you think the LU decomposition procedure fails for this A? What might
explain the fact that A has more than one LU decomposition?

1.7 PROPERTIES OF R"

R" is the set of
ordered arrays of n
real numbers. This
set is represented
either by the set of
all n-dimensional
row matrices or by
the set of all n-
dimensional column
matrices.

Points on the plane in an x-y coordinate system are identified by an ordered pair
of real numbers; points in space are located by an ordered triplet of real numbers.
These are just two examples of the more general concept of an ordered array of
n-real numbers known as an n-tuple. We write an n-tuple as a 1 x n row matrix.
The elements in the row matrix are real numbers and the number of elements
(columns) n is the dimension of the row matrix. The set of all n-tuples is often
referred to as n-space and denoted by R”. In particular, the ordered pair[1 2]is
a member of R%* it is a 2-tuple of dimension two. The ordered triplet
[10 20 30]is a member of R%; it is a 3-tuple of dimension three. The p-tuple
a=[a; a a3 ... ap], where ¢ (j=1,2,...,p) is a real number, is a
member of R”, and has dimension p.

An ordered array of real numbers also can be written as a column matrix, and
often is. Here we work exclusively with row matrix representations, but only as
a matter of convenience. We could work equally well with column matrices.

Row matrices are special types of matrices, those matrices having only one row,
so the basic matrix operations defined in Section 1.1 remain valid for n-tuples
represented as row matrices. This means we know how to add and subtract
n-tuples of the same dimension and how to multiple a real number times an
n-tuple (scalar multiplication). If we restrict ourselves to R?> and R’, we can
describe these operations geometrically.

A two-dimensional row matrix v=[a b] is identified with the point (a, b) on
x-y plane, measured « units along the horizontal x-axis from the origin and then
b units parallel to the vertical y-axis. If we draw a directed line segment, or
arrow, beginning at the origin and ending at the point (a, b), then this arrow, as
shown in Figure 1.10, is a geometrical representation of the row matrix [a  b]. It
follows immediately from Pythagoras’s theorem that the length or magnitude of
v, denoted by ||v||, is

Il =llla bl = a5

and from elementary trigonometry that the angle 6 satisfies the equation

b
tan 0 = —
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Figure 1.10 y

Example 1 Represent the row matrices v=[2 4] and u=[-1 1]
geometrically and then determine the magnitude of each and the angle each
makes with the horizontal x-axis.

Solution: The row matrices are graphed in Figure 1.11. For v, we have

4
[v] = \/(2)* + (4)* ~ 4.47, tan§ = 7= 2,and 0 ~ 63.4°

For u, similar computations yield

1
Jull = /(= 1P + (1P & 114, tanf = — = ~Land 6 = 135" M

Figure 1.11 y
4l (% 4)
34
2- oS
3
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Figure 1.12

To graph u+ v in
R, graphuand v on
the same coordinate
system, translate v
so its initial point
coincides with the
terminal point of u,
and then draw an
arrow from the
origin to the
terminal point of v
after translation.

To graph u —v in
R?, graph u and v on
the same coordinate
system and then
draw an arrow from
the terminal point of
v to the terminal
point of u.

Figure 1.13

>

To geometrically construct the sum of two row matrices u and v in R?, graph u
and v on the same coordinate system, translate v so its initial point coincides with
the terminal point of u, being careful to preserve both the magnitude and direction
of v, and then draw an arrow from the origin to the terminal point of v after
translation. This arrow geometrically represents the sum u+ v. The process is
illustrated in Figure 1.12 for the row matricesu =[—1 1]Jandv=[2 4].

To construct the difference of two row matrices u — v geometrically, graph both
u and v normally and construct an arrow from the terminal point of v to the
terminal point of u. This arrow geometrically represents the difference u — v. The
process is depicted in Figure 1.13 foru=[—1 1]Jandv=[2 4].
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Figure 1.14

Figure 1.15

Translating an arrow (directed line segment) that represents a two-dimensional
row matrix from one location in the plane to another does not affect the
representation, providing both the magnitude and direction as defined by the
angle the arrow makes with the positive x-axis are preserved. Many physical
phenomena such as velocity and force are completely described by their magni-
tudes and directions. A wind velocity of 60 miles per hour in the northwest
direction is a complete description of that velocity, and it is independent of where
that wind occurs, be it Lawrence, Kansas, or Portland, Oregon. This independ-
ence is the rationale behind translating row matrices geometrically. Geometric-
ally, two-dimensional row matrices having the same magnitude and direction are
call equivalent, and they are regarded as being equal even though they may be
located at different positions in the plane. The four arrows drawn in Figure 1.14
are all geometrical representations of the same row matrix [1 —3].

To recapture a row matrix from the directed line segment that represents it, we
translate the directed line segment so that its tail lies on the origin and then read
the coordinates of its tip. Alternatively, we note that if a directed line segment w
does not originate at the origin, then it can be expressed as the difference between
a directed line segment u that begins at the origin and ends at the tip of w and
a directed line segment v that originates at the origin and ends at the tail of w as
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Figure 1.16

The graph of k, in
R? is a directed line
segment having
length |k| times the
length of u with the
same direction as u
when the scalar & is
positive and the
opposite direction
to u when £ is
negative.

y

50
\40
30

20

10 >

t t t t t t t t t X
~50 40 -30 20 -10 | 10/&; 30 40 5
~20-
-30-
—40-
-50-

shown in Figure 1.15. Therefore, if the tip of w is at the point (x,, y») and the tail
at the point (x1, y1), then u represents the row matrix [x, ), ], v represents the
row matrix [x; ], and w is the differencew =u—-v=[x; —x; y» —»1].

Example 2 Determine the two-dimensional row matrix associated with the
directed line segments w and z shown in Figure 1.16.

Solution: The tip of the directed line segment w is at the point (40, 30) while its
tail lies on the point (10, — 20), so

w=1[40-10 30— (—20)]=[30 50]

The tip of the directed line segment z is at the point ( — 10, 30) while its tail lies on
the point ( — 50, 50), so
z=[-10—-(—-50) 30-50]=[40 -20] W

A scalar multiplication ku is defined geometrically in R? to be a directed line
segment having length |k| times the length of u, in the same direction as u when
k is positive and in the opposite direction to u when £ is negative. Effectively, ku
is an elongation of the directed line segment representing u when |k| is greater
than 1, or a contraction of u by a factor of |k| when |k| is less than 1, followed by
no rotation when k is positive or a rotation of 180 degrees when k is negative.

Example 3 Find —2u and ' v geometrically for the row matricesu =[—1 1]
andv=[2 4].

Solution: To construct —2u, we double the length of u and then rotate the
resulting arrow by 180°. To construct % v, we halve the length of v and effect
no rotation. These constructions are illustrated in Figure 1.17. W
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Figure 1.17

Figure 1.18

21

To graphically depict a three-dimensional row matrix, we first construct
a rectangular coordinate system defined by three mutually perpendicular lines,
representing the axes, that intersect at their respective origins. For convenience,
we denote these axes as the x-axis, the y-axis, and the z-axis, and their point of
intersection as the origin.

Rectangular coordinate systems are of two types: right-handed systems and left-
handed systems. An xyz system is right-handed if the thumb of the right hand
points in the direction of the positive z-axis when the fingers of the right hand are
curled naturally—in a way that does not break the finger bones—from the
positive x-axis towards the positive y-axis. In a left-handed system, the thumb
of the left hand points in the positive z-axis when the fingers of the left hand are
curled naturally from the positive x-axis towards the positive y-axis. Both types
of systems are illustrated in Figure 1.18. In this book, we shall only use right-
handed coordinate systems when graphing in space.

A three-dimensional row matrix v=_[a b c]is identified with the point (a, b,
¢) In an xyz-coordinate system, measured a units along the x-axis from the
origin, then b units parallel to the y-axis, and then finally ¢ units parallel to the

Right-handed System

Left-handed System
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Figure 1.19

Figure 1.20

V4
7.
6
5.
41 (2,4,6)
3
u
2
1
T 2ls 4 56 7
~
2.0,0)  (24,0)
o
w

z-axis. An arrow or directed line segment having its tail at the origin and its tip at
the point (a, b, ¢) represents the row matrix v geometrically. The geometrical
representations of the row matrices u=[2 4 6] and v=[5 2 —3] are
illustrated in Figures 1.19 and 1.20, respectively.

All of the geometrical processes developed for the addition, subtraction, and
scalar multiplication of 2-tuples extend directly to 3-tuples. In particular,
to graph u—v, first graph both directed line segments normally and then
construct an arrow from the tip of v to the tip of u. Multiplication of a directed
line segment u by the scalar k is again an elongation of u by |k| when |k| is
greater than unity and a contraction of u by |k| when |k| is less than unity,
followed by no rotation when k is positive or a rotation of 180 degrees when

x
(5,0,0) v 3
o (5, 270)

(5,2,-3)



1.7 Properties of R" e 79

An n-tuple is
normalized if it has
a magnitude equal
to one.

k is negative. If a directed line segment has its tip at the point (x2,),22)
and its tail at the point (xi,y1,z1), then the row matrix associated with it is

[Co—x1) (2—y1) (22 —2z1)]

Although geometrical representations for R” are limited to n < 3, the concept
of magnitude can be extended to all n-tuples. We define the magnitude of the
n-dimensional row matrixa=[a; a a3 ... a,]as

||a|\:\/a%+a§+a§+...+a£ (1.33)

Example 4 The magnitude of the 4-tuplea=[1 2 3 4]is

fall = 1 + @7 + 3 + @ = V30

while the magnitude of the 5-tupleu=[—-4 -5 0 5 4]is

ol = /(=42 + (= 52+ O + (2 + @’ = V&2 m

An n-tuple is normalized if it has a magnitude equal to one. Any n-tuple
(row matrix) is normalized by multiplying the n-tuple by the reciprocal of its
magnitude.

Example 5 As shown in Example 4, a=[1 2 3 4] has magnitude

Jall = v/30, so

1 1 2 3 4
e ‘”‘{m NRRVEL m]

is normalized. Similarly, u =[—4 -5 0 5 4]has magnitude |jul| = v/82, so

! i}
82

ﬁ[_4 -5 0 5 4]:[

|
o0
7l
7l
Bl @
Bl
o

is normalized. W

Two row matrices of the same dimension can be added and subtracted but they
cannot be multiplied. Multiplication of a 1 x n matrix by another 1 X n» matrix is
undefined. Scalar multiplication of row matrices is defined but inversion is not
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defined for row matrices of dimension greater than 1, because such row matrices
are not square. Thus, row matrices, and therefore n-tuples, do not possess all the
properties of real numbers. Listing the properties that n-tuples do share with real
numbers and then developing an algebra around those properties is the focus of
the next chapter.

In preparation for our work in Chapter 2, we list some of the important
properties shared by all n-tuples. If a, b, and ¢ denote row matrices of the same
dimension #, then it follows from Theorem 1 of Section 1.1 that

at+b=b+c (1.34)

and
a+(b+c)=(@+b)+c (1.35)
If we define the zero row matrix of dimensionnas0=[0 0 0 ... 0], the

row matrix having entries of zero in each of its n-columns, then it follows from
equation (1.5) that

a+0=a (1.36)
Setting a=[a; a a3 ... a,]and —a=(—la=[—-a; —-a -3
—a,], we also have
at+(—a)=0 (1.37)

It follows from Theorem 2 of Section 1.1 that if A; and A, denote arbitrary real
numbers, then

A(a+b)=Aa+Ab (1.38)
A1 +A)a=Xra+Aa (1.39)

and
(A1r2)a = A1(r2a) (1.40)

In addition,

I(a)=a (1.41)
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Problems 1.7

In Problems 1 through 16, geometrically construct the indicated 2-tuple operations for
u=[3 -1], v=[-2 5], w=[—-4 -—4], x=[3 5], and
y=[0 -=2].

1) u+v. 2) u+w. 3) v+w 4 x+y.

S x-y. 6 y—x. 7 u-—v. @) w-—u

9 u—w. (10) 2x. (11) 3x. 12) —2x.

13) u. 14 —iu as) iv. (16) —iw.

(17) Determine the angle that each directed line segment representation for the following
row matrices makes with the positive horizontal x-axis:
(@ w=[3 -1, (b)) v=[-2 5], (o) w=[-4 4]
d x=[3 5] () y=[0 -=-2].

(18) For arbitrary two-dimensional row matrices u and v, construct on the same graph
the sums u + v and v + u. Show that u + v = v + u, and show for each that the sum

is the diagonal of a parallelogram having as two of its sides the directed line
segments that represent u and v.

In Problems 19 through 29, determine the magnitudes of the given 3-tuples.

19 [1 -1]. 0) [3 4] @n [1 2]
22 [-1 -1 1] @3) [1/2 1/2 1/2]. @4 [1 1 1]
@5 [2 1 -1 3] @6 [1 -1 1 —1] @) [1 0 1 0]

28 [0 -1 5 3 2] 29 [1 1 1 1 1]

In Problems 30 through 39, graph the indicated n-tuples.

@30) [3 1 2] @3y [1 2 3] 32 [-1 2 3]
33 [-1 2 -3] (34) [20 —-50 10].  (35) [100 O 100].
36) [2 2 2] 37n [-2 -1 2] (38) [1000 —500 200].

(39) [—400 —50 —300].

In Problems 40 through 48, determine which, if any, of the given row matrices are

normalized.

@0) [1 1] @) [1/2 1,21 “2) [% ;—%]
@3) [0 1 0] @) [1/2 1/3 1/6].

45) [ﬁ L %} @6 [1/2 1/2 1/2 1)2].

@) [1/6 5/6 3/6 1/6]. @8) | 0 L *7;}
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Chapter 1 Review

Important Terms

Important Concepts

Section 1.1

>

>

augmented matrix (p. 37) main diagonal (p. 3)
block diagonal matrix (p. 27) matrix (p. 2)
coefficient matrix (p. 12) nonhomogeneous
column matrix (p. 3) equations (p. 36)
component (p. 3) nonsingular matrix (p. 49)
consistent equations (p. 35) normalized n-tuple (p. 79)
derived set (p. 38) n-tuple (p. 4)
diagonal element (p. 3) order (p.2)
diagonal matrix (p. 26) partitioned matrix (p. 24)
dimension (p. 3) pivot (p. 40)
directed line segment (p. 75) power of a matrix (p. 28)
element (p. 2) R" (p.72)
elementary matrix (p. 50) right-handed coordinate
elementary row operations system (p. 77)

(p. 38) row matrix (p. 3)
equivalent directed line row-reduced form (p. 25)

segments (p. 75) scalar (p. 7)
Gaussian elimination (p. 38) singular matrix (p. 49)
homogeneous equations (p. 36) skew-symmetric matrix (p. 24)
identity matrix (p. 27) square (p. 3)
inconsistent equations (p. 35) submatrix (p. 24)
inverse (p. 48) symmetric matrix (p. 24)
invertible matrix (p. 49) transpose (p. 22)
linear equation (p. 31) trivial solution (p. 36)
lower triangular matrix (p. 27) upper triangular matrix (p. 27)
LU decomposition (p. 63) zero matrix (p. 6)

magnitude (p. 27)

Two matrices are equal if they have the same order and if their corresponding
elements are equal.

The sum of two matrices of the same order is a matrix obtained by adding
together corresponding elements of the original two matrices. Matrix addition
is commutative and associative.

The difference of two matrices of the same order is a matrix obtained by
subtracting corresponding elements of the original two matrices.
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Section 1.2

Section 1.3

Section 1.4

>

>

>

The product of a scalar by a matrix is the matrix obtained by multiplying every
element of the matrix by the scalar.

The product AB of two matrices is defined only if the number of columns of A
equals the number of rows of B. Then the i-j element of the product is obtained
by multiplying the elements in the ith row of A by the corresponding elements in
the jth column of B and summing the results.

Matrix multiplication is not commutative. The associative law of multiplication
as well as the left and right distributive laws for multiplication are valid.

A system of linear equations may be written as the single matrix equation
Ax =b.

The transpose of a matrix A is obtained by converting all the rows of A into
columns while preserving the ordering of the rows/columns.

The product of two lower (upper) triangular matrices of the same order is also
a lower (upper) triangular matrix.

A system of simultaneous linear equations has either no solutions, one solution,
or infinitely many solutions.

A homogeneous system of linear equations is always consistent and admits the
trivial solution as one solution.

A linear equation in two variables graphs as a straight line. The coordinates of
a point in the plane is a solution to a system of equations in two variables if and
only if the point lies simultaneously on the straight line graph of every equation
in the system.

A linear equation in three variables graphs as a plane. The coordinates of a point
in space is a solution to a system of equations in three variables if and only if the
point lies simultaneously on the planes that represent every equation in the
system.

The heart of Gaussian elimination is the transformation of an augmented matrix
to row-reduced form using only elementary row operations.

If the solution to a derived set involves at least one arbitrary unknown, then the
original set of equations has infinitely many solutions.

A homogeneous system of linear equations having more variables than equations
has infinitely many solutions.

If a derived set contains a false equation, then the original set of equations has no
solution.
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Section 1.5 >

Section 1.6 >

Section 1.7 >

An inverse, if it exists, is unique.

The inverse of a diagonal matrix D with no zero elements on its main diagonal is
another diagonal matrix having diagonal elements that are the reciprocals of the
diagonal elements of D.

The inverse of an elementary matrix is again an elementary matrix.

The inverse of a nonsingular upper (lower) triangular matrix is again an upper
(lower) triangular matrix.

A square matrix has an inverse if it can be transformed by elementary row
operations to an upper triangular matrix with no zero elements on the main
diagonal.

The matrix equation Ax = b has as its solution x = A~'b if the A is invertible.
A square matrix A has an LU decomposition if A can be transformed to upper
triangular form using only the third elementary row operation.

If A =LU for a square matrix A, then the equation Ax = b is solved by first

solving the equation Ly = b for y and then solving the equation Ux =y for x.

Addition, subtraction, and scalar multiplication of 2-tuples can be done
graphically in the plane.



Vector Spaces

2.1 VECTORS

Chapter 2

At the core of mathematical analysis is the process of identifying fundamental
structures that appear with some regularity in different situations, developing
them in the abstract, and then applying the resulting knowledge base back to the
individual situations. In this way, one can understand simultaneously many
different situations by investigating the properties that govern all of them.
Matrices would seem to have little in common with polynomials, which in
turn appear to have little in common with directed line segments, yet they
share fundamental characteristics that, when fully developed, provide a richer
understanding of them all.

What are some of the fundamental properties of matrices, directed line segments,
n-tuples, and even polynomials? First, they can be added. A matrix can be added
to a matrix of the same order and the result is another matrix of that order.
A directed line segment in the plane can be added to another directed line segment
in the plane and the result is again a directed line segment of the same type. Thus,
we have the concept of closure under addition: objects in a particular set are
defined and an operation of addition is established on those objects so that the
operation is doable and the result is again another object in the same set. Second,
we also have the concept of closure under scalar multiplication. We know how to
multiply a matrix or a directed line segment or a polynomial by a scalar, and the
result is always another object of the same type. Also, we know that the commu-
tative and associate laws hold for addition (see, for example, Theorem 1 in Section
1.1). Other properties are so obvious we take them for granted. If we multiply
a matrix, directed line segment, or polynomial by the number 1 we always get back
the original object. If we add to any matrix, polynomial, or directed line segment,
respectively, the zero matrix of appropriate order, the zero polynomial, or the
zero directed line segment, we always get back the original object.

Thus, we have very quickly identified a series of common characteristics. Are
there others? More interesting, what is the smallest number of characteristics
that we need to identify so that all the other characteristics immediately follow?
To begin, we create a new label to apply to any set of objects that have these

85
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In set notation, € is
read “belongs to”
and the vertical line
segment | is read
“such that.”

characteristics, vector space, and we refer to the objects in this set as vectors. We
then show that matrices, directed line segments, n-tuples, polynomials, and even
continuous functions are just individual examples of vector spaces. Just as cake,
ice cream, pie, and JELL-O are all examples of the more general term dessert, so
too will matrices, directed line segments, and polynomials be examples of the
more general term vectors.

» Definition 1. A set of objects V= {u,v,w,...} and scalars
{a,B, v, ...} along with a binary operation of vector addition & on
the objects and a scalar multiplication ® is a vector space if it possesses
the following 10 properties:

Addition

(A1) Closure under addition: If u and v belong to V, then so too doesu @ v.

(A2) Commutative law for addition: If u and v belong to V, then
udv=vdu

(A3) Associative law for addition: If u, v, and w belong to V, then
ud(VeEWwW) =UPv)Dw.

(A4) There exists a zero vector in V denoted by 0 such that for every vector
uinV,ue 0 =u.

(A5) For every vector u in V there exists a vector —u, called the additive
inverse of u, such thatu @ —u = 0.

Scalar Multiplication
(S1) Closure under scalar multiplication: If u belongs to V, then so too does
a O u for any scalar a.

(S2) For any two scalars a« and B and any vector u in
V,a©(BoOu =(aB)ou.

(S3) For any vectoruinV,1 @ u = u.

(S4) For any two scalars o« and B and any vector u in
V,(@a+B)Ou=audBou

(S5) For any scalar o and any two vectors u and v in
V,a@udv)=adOuda®yv. «

If the scalars are restricted to be real numbers, then V is called a real vector space;
if the scalars are allowed to be complex numbers, then V is called a complex
vector space. Throughout this book we shall assume that all scalars are real and
that we are dealing with real vector spaces, unless an exception is noted. When
we need to deal with complex scalars, we shall say so explicitly.

Since vector spaces are sets, it is convenient to use set notation. We denote sets
by upper case letters in an outline font, such as V and R. The format for a subset
Sofaset Wis S={weW|propertyd}. The € is read “belongs to” or “is
a member of” and the vertical line segment | is read “such that.” An element
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w belongs to S only if w is a member of W and if w satisfies property 4.
In particular, the set

S={lx y z]eR'|y=0}

is the set of all real 3-tuples, represented as row matrices, with a second com-
ponent of zero.

Example 1 Determine whether S = {[x y z]e R’|y =0} is a vector space
under regular addition and scalar multiplication.

Solution: Following our convention, it is assumed that the scalars are real.
Arbitrary vectors u and vin S have the formu=[a 0 b]landv=[c 0 d]
with a, b, ¢, and d all real. Now,

udv=[a 0 bl+[c 0 d]l=[a+c 0 b+d]
and, for any real scalar «,
aGu=afa 0 b]=[aa 0 ab]

which are again 3-dimensional row matrices having real components, of which
the second one is 0. Thus, S is closed under vector addition and scalar multipli-
cation and both properties Al and S1 are satisfied.

To prove property A2, we observe that

udv=[a 0 bl+[c 0 d]=[a+c 0 b+d]
=[c+a 0 d+b]l=[c 0 d]+[a 0 b]
=vdu

To prove property A3, we set w=[e 0 f], with e and f representing real
numbers, and note that

wevyew=(([a 0 bl+[c 0 d])+[e 0 f]
=la+c 0 b+d]+[e 0 f]

[(a+c)+e 0 (b+d)+f]

=la+(c+te) 0 b+(d+))]

=la 0 b]l+[c+d 0 d+f]

=[a 0 b]+(c 0 d]+[e O f]

=ud(vew)

The row matrix [0 0 0] is an element of S. If we denote it as the zero vector 0,
then

ud0=[a 0 H]+[0 O O]=[a+0 040 bh+0]
=[a 0 b]l=u
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so property A4 is satisfied. Furthermore, if we define, —-u=[—-a 0 —b], then

ud—-u=[a 0 b]+[—-a 0 —bl=[a+ —a 0+0 b+ —b]
=[0 0 0]=0
and property AS is valid.

For any two real numbers « and 8, we have that

a®@Bow=a0Bla 0 bl)=ao[Ba 0 pbl=a[Ba 0 PBb]
=(p)la 0 b]=(ap)Ou

so property S2 holds. In addition,
lou=1[a 0 b]l=[la 0 1b]=[a 0 b]=u
so property S3 is valid. To verify properties S4 and S5, we note that

(a+B)ou=(@+pB)a 0 b]
=[l@+Ba (a+p)0 (a+p)b]
=laa+Ba 0 ab-+Bb]
=[aa 0 ab]+[Ba 0 PBb]
=afla 0 b]+B[a 0 b]
=a®la 0 b]+BO[a 0 b]
=a®ud Pu

and

a@@ev)=a0(a 0 b]+[c 0 d)
=a@[a+c 0 b+d]
=lal@a+c¢) a0) ad+d))]
=laa+ac 0 ab+ad]
=[laa 0 ab]l+[ac 0 ad]
=afa 0 b]+afc 0 d]
=adOubadv

Therefore, all 10 properties are valid, and S is a vector space. W

Example 2 Determine whether the set M., of all p x n real matrices under
matrix addition and scalar multiplication is a vector space.

Solution: This is a vector space for any fixed values of p and n because all
10 properties follow immediately from our work in Chapter 1. The sum of two
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The set M, of all
p X n real matrices
under matrix
addition and scalar
multiplication is a
vector space.

The set R" of
n-tuples under
standard addition
and scalar
multiplication for
n-tuples is a vector
space.

The symbol &
emphasizes that
vector addition may
be nonstandard.

real p X n matrices is again a matrix of the same order, as is the product of a
real number with a real matrix of this order. Thus, properties Al and S1 are
satisfied. Properties A2 through A4 are precisely Theorem 1 in Section 1.1 and
Equation (1.5). If A = [a;], then —A = [ — g;] is another element in the set and

AD A =gl +[—aj]l = [(a5 + —ap)] =0

which verifies property AS. Properties S2, S4, and S5 are Theorem 2 in Section
1.1. Property S3 is immediate from the definition of scalar multiplication. W

It follows from Example 2 that the set of all real 3 x 3 matrices (p =n = 3) is
a vector space, as is M., the set of all real 2 x 6 matrices (p = 2 and n = 6).
Also, R" is a vector space, for any positive integer 7, because R" is M ,, when we
take R" to be the set of all n-dimensional real row matrices, and R" is M,,,.; when
we take R” to be the set of all n-dimensional real column matrices.

Example3 Determine whether the set of all 2 x 2 real matrices is a vector space
under regular scalar multiplication but with vector addition defined to be matrix
multiplication. That is,

udv=uv

Solution: This is not a vector space because it does not satisfy property A2.
In particular,

1 2 56 1 27[5 6 19 22

A 2 I | ) Il e

23 34 5 671 2 56 1 2

g E i O i B B X P

31 46 7 8]13 4 7 8 3 4
We use the & symbol to emphasize that vector addition may be nonstandard, as
it is in Example 3. The notation denotes a well-defined process for combining
two vectors together, regardless of how unconventional that process may be.
Generally, vector addition is standard, and many writers discard the & notation
in favor of the more conventional 4+ symbol whenever a standard addition is in
effect. We shall, too, in later sections. For now, however, we want to stress that
a vector space does not require a standard vector addition, only a well-defined

operation for combining two vectors that satisfies the properties listed in Defin-
ition 1, so we shall retain the @ notation a while longer.

Example 4 Redo Example 3 with the matrices restricted to being diagonal.

Solution: Diagonal matrices do commute under matrix multiplication, hence
property A2 is now satisfied. The set is closed under vector addition, because the
product of 2 x 2 diagonal matrices is again a diagonal matrix. Property A3 also
holds, because matrix multiplication is associative. With vector addition defined
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to be matrix multiplication, the zero vector becomes the 2 x 2 identity matrix; for
any matrix A in the set, A ® 0 = AI = A. To verify property A5, we must show
that every real diagonal matrix A has an additive inverse —A with the property
A & —A = 0. Given that we have just identified the zero vector to be the identity
matrix and vector addition to be matrix multiplication, the statement
A @ —A = 0 is equivalent to the statement A( — A) = I. Property A5 is valid if
and only if every matrix in the set has an inverse, in which case we take
—A =A"'. But, a diagonal matrix with at least one 0 on its main diagonal
does not have an inverse. In particular the matrix,

vfh o

has no inverse. Thus, property A5 does not hold in general, and the given set is
not a vector space. W

Example 5 Redo Example 3 with the matrices restricted to being diagonal and
all elements on the main diagonal restricted to being nonzero.

Solution: Repeating the reasoning used in Example 4, we find that properties
A1-AS5 are satisfied for this set. This set, however, is not closed under scalar
multiplication. Whenever we multiply a matrix in the set by the zero scalar,
we get

0 0
00A=0A= [0 0}

which is no longer a diagonal matrix with nonzero elements on the main
diagonal and, therefore, not an element of the original set. Thus, the given set
is not a vector space. W

Example 6 Determine whether the set of nth degree polynomials in the
variable ¢ with real coefficients is a vector space under standard addition and
scalar multiplication for polynomials if the scalars are restricted also to being
real.

Solution:  Arbitrary vectors u and v in this set are polynomials of the form

u=a," +a, 1" "+ +at+a
V="b,0"+ by "+ bt + by

with a; and b; (j =0, 1, ..., n) all real, and both a, and b, nonzero. Here,

UV = (at" +ay 1"+ art +ap)
4 (bt +bn — 11"V - £ byt + by)
= (an + b)" + (@p1 + by )" + - + (a1 + b1)t + (a0 + bo)
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Note that when @, = —b,,u @ v is no longer an nth degree polynomial, but rather
a polynomial of degree less than n, which is not an element of the given set. Thus,
the set is not closed under vector addition and is not a vector space. W

Example 7 Determine whether the set P" containing the identically zero
polynomial and all polynomials of degree n or less in the variable ¢ with real
coefficients is a vector space under standard addition and scalar multiplication
for polynomials, if the scalars also are restricted to being real.

Solution: 1f u € P" and v € P", then u and v have the form

Uu=a," + a1+ +art+ a

V="bu" + by "+ bt + by

with g; and b; (j =0, 1, ...,n) real and possibly 0. Using the results of Example
6, we see that the sum of two polynomials of degree n or less is either another
polynomial of the same type or the zero polynomial when u and v have their
corresponding coefficients equal in absolute value but opposite in sign. Thus,
property Al is satisfied. If we define the zero vector to be the zero polynomial,
then

u® 0= (a,"+a, 1"+ 4+ art + ap)
+ (0" + 07" - 4+ 0+ 0)
= (an + 0)" + (an-1 + 0)" ' + - + (a1 + 0)t + (ag + 0)
=u
Thus, property A4 is satisfied. Setting

n—1 _

u=—a,t" —a,_t S —ayt — ap

we note that property AS is also satisfied. Now,
WOV = (a," + ap "+ +at + ap)
+ (but" + by 1" 4 -+ byt + by)
= (an + b1 + (an-1 + by )" + -+ + (ar + b))t + (ag + bo)
= (bu+ a)t" + (b1 + an- )" + - + (b1 + @)t + (bo + ao)

= (bpt" 4 by 1" 4 -+ byt + by)
+ (ant" + @y 10"+ art + ag)

=vdu

so property A2 is satisfied. Property A3 is verified in a similar manner. For any
real number «, we have
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The set P of all
polynomials of
degree less than or
equal to n, including
the identically zero
polynomial, under
normal addition and
scalar multiplication
for polynomials is a
vector space.

a@Ou=a@t+a, """+ +ajt+ a)

= (adn)t + (ady_ )" + - + (aar)t + (aap)

which is again an element in the original set, so the set is closed under scalar
multiplication. Setting « = 1 in the preceding equation also verifies property S3.
The remaining three properties follow in a straightforward manner, so P" is a
vector space. W

Example8 Determine whether the set of two-dimensional column matrices with
all components real and equal is a vector space under regular addition but with
scalar multiplication defined as

a —aa

o 3] =[]
Solution: Following convention, the scalars are assumed to be real numbers.
Since column matrices are matrices, it follows from our work in Chapter 1 that
properties Al through A5 hold. It is clear from the definition of scalar multipli-
cation that the set is closed under this operation; the result of multiplying
a real two-dimensional column matrix by a real number is again a real two-

dimensional column matrix. To check property S2, we note that for any two real
numbers « and 8 and for any vector

_|a
"=
we have
(@B) ©Gu=(ap)© m = Hﬁgm = {:352}
while
B al\ —Ba| _[(—a)—Ba)| _ |aBa
“@(B@“)_a@(/g@[bb_a@{—ﬁb}_[(—a)(—ﬁb)]_[aﬁb}

These two expressions are not equal whenever « and B8 are nonzero, so property
S2 does not hold and the given set is not a vector space.

Property S3 is also violated with this scalar multiplication. For any vector

i

we have
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The symbol ©®
emphasizes that
scalar multiplication
may be
nonstandard.

a —a
1ou=10 {b} = {b} #u
Thus, we conclude again that the given set is not a vector space. W

We use the ® symbol to emphasize that scalar multiplication may be nonstan-
dard, as it was in Example 8. The ® symbol denotes a well-defined process for
combining a scalar with a vector, regardless of how unconventional the process
may be. In truth, scalar multiplication is generally quite standard, and many
writers discard the ® notation whenever it is in effect. We shall, too, in later
sections. For now, however, we want to retain this notation to stress that a vector
space does not require a standard scalar multiplication, only a well-defined
process for combining scalars and vectors that satisfies properties S1 through S5.

Example 9 Determine whether the set of three-dimensional row matrices with
all components real and equal is a vector space under regular addition and scalar
multiplication if the scalars are complex numbers.

Solution: An arbitrary vector in this set has the formu=[a a «a], whereais
real. This is not a vector space, because the set violates property S1. In particular,
if @ is any complex number with a nonzero imaginary part, then @ ® u does not
have real components. For instance, with « = 3iandu=[1 1 1], we have

acu=@Gi)[l 1 1]=[3i 3i 3i]

which is not a real-valued vector; the components of the row matrix are complex,
not real. Thus, the original set is not closed under scalar multiplication. The
reader can verify that all the other properties given in Definition 1 are applicable.
However, as soon as we find one property that is not satisfied, we can immedi-
ately conclude the given set is not a vector space. Wl

The purpose of defining a vector space in the abstract is to create a single
mathematical structure that embodies the characteristics of many different
well-known sets, and then to develop facts about each of those sets simultane-
ously by studying the abstract structure. If a fact is true for vector spaces in
general, then that fact is true for M., the set of all p x n real matrices under
regular matrix addition and scalar multiplication, as well as R” and P", the set of
all polynomials of degree less than or equal to » including the zero polynomial,
and any other set we may subsequently show is a vector set.

We first inquire about the zero vector. Does it have properties normally associ-
ated with the word zero? If we multiply the zero vector by a nonzero scalar, must
the result be the zero vector again? If we multiply any vector by the number 0, is
the result the zero vector? The answer in both cases is affirmative, but both
results must be proven. We cannot just take them for granted! The zero vector is
not the number 0, and there is no reason to expect (although one might hope)
that facts about the number O are transferable to other structures that just
happen to have the word zero as part of their name.
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» Theorem 1. For any vector u in a vector space V,0Gu=0. <«

Proof: Because a vector space is closed under scalar multiplication, we know
that 0 ©® u is a vector in V (whether it is the zero vector is still to be determined).
As a consequence of property A5, 0 ©u must possess an additive inverse,
denoted by —0 ® u, such that

Oowad(-0ou)=0 2.1)

Furthermore,
0Oou=(04+00Cu A property of the number 0
=00ud00u Property S4 of vector spaces

If we add the vector —0 © u to each side of this last equation, we get

0oud-00u=00us0couwd-00u

0=00ue0coud—-006u From Eq. (2.1)
0=00ud(0Quad -00ou) Property A3
0=0cua0 From Eq. (2.1)
0=00u Property A4

which proves Theorem 1 using just the properties of a vector space. W

» Theorem 2. In any vector space V, a © 0 =0, for every scalar «. <

Proof: 0 €V, hence a ®0 €V, because a vector space is closed under scalar
multiplication. It follows from property A5 that o ® 0 has an additive inverse,
denoted by —a ® 0, such that

(@00)d(—ac0)=0 (2.2)

Furthermore,
a@0=a00d0) Property A4
=a000a060 Property S5

Adding —a ® 0 to both sides of this last equation, we get
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a0 —a00=@00a00)d—ac0

0=(002a00)®-—ac0 From Eq. (2.2)
0=0002@0p-a0) Property A3
0=@o0)0 From Eq. (2.2)
0=a00 Property A4

Thus, Theorem 2 follows directly from the properties of a vector space. W

Property A4 asserts that every vector space has a zero vector, and property
A5 assures us that every vector in a vector space V has an additive inverse.
Neither property indicates whether there is only one zero element or many
or whether a vector can have more than one additive inverse. The next two
theorems do.

» Theorem 3. The additive inverse of any vector v in a vector space V is
unique. <«

Proof: Let v; and v, denote additive inverses of the same vector v. Then,

vev =0 (2.3)
vov,=0 (2.4)
It now follows that

vi=vip0 Property A4

=v&(vew) From Eq.(2.4)

=vVI®V)PWV Property A3

=(VOV)DV Property A2

=08Ww From Eq.(2.3)

=va0 Property A2

=V Property A4

» Theorem 4. The zero vector in a vector space V is unique. <«

Proof: This proof is similar to the previous one and is left as an exercise for the
reader. (See Problem 34.)
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» Theorem 5. For any vector w in a vector space V, —1 Ow = —w. <«

Proof: We need to show that —1 ©® w is the additive inverse of w. First,

(-lowoew=(-1owa(low) Property S3
=(-14+1)ow Property S5
=00w Property of real numbers
=0 Theorem 1

Therefore, —1 ® w is an additive inverse of w. By definition, —w is an additive
inverse of w, and because additive inverses are unique (Theorem 3), it follows
that -1 ©w = —w.

» Theorem 6. For any vector w in a vector space V, — (—w) =w. <«

Proof: By definition, —w is the additive inverse of w. It then follows that w is
the additive inverse of —w (see Problem 33). Furthermore,

—-WE—(—-wW=—-10wd—(—w) Theorem 5
=—-1owg-10(—-w) Theorem 5
=—-10 W —w) Property S5
=-160 Property AS
=0 Theorem 2

Therefore, —( — w) is an additive inverse of —w. Since w is also an additive
inverse of —w, it follows from Theorem 3 that the two are equal. W

» Theorem 7. Let o be a scalar and w a vector in a vector space V.
If a ©u =0, then eithera =0 oru=0. <«

Proof: We are given
aGu=0 (2.5

Now either « is 0 or it is not. If « is 0, the theorem is proven. If « is not 0, we
form the scalar 1/« and then multiply Eq. (2.5) by 1/«, obtaining
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1) o (@aouw=1/a)®0

(1/a)©(@®u)=0 Theorem 2
1
<— a) Qu=0 Property S2
o
lou=0 Property of numbers
u=0 H Property S3

Problems 2.1

In Problems 1 through 32 a set of objects is given together with a definition for vector
addition and scalar multiplication. Determine which are vector spaces, and for those that
are not, identify at least one property that fails to hold.

@™

@
©)]

“

®

©6)
™
@®

®

10

an

{ {f 2] } € Myy2]b = 0.} under standard matrix addition and scalar multiplication.
{ {i Z] } € My,2]c = 1.} under standard matrix addition and scalar multiplication.
The set of all 2 x 2 real matrices A = [a;] with a;; = —ay under standard matrix

addition and scalar multiplication.

The set of all 3 x 3 real upper triangular matrices under standard matrix addition
and scalar multiplication.

The set of all 3 x 3 real lower triangular matrices of the form

1 0
a 1
b ¢

under standard matrix addition and scalar multiplication.

—_ o O

{la b] € R*a+ b =2} under standard matrix addition and scalar multiplication.
{la b] € R*a = b} under standard matrix addition and scalar multiplication.

All 2-tuples representing points in the first quadrant of the plane, including the
origin, under standard addition and scalar multiplication for 2-tuples.

All 2-tuples representing points in the first and third quadrants of the plane,
including the origin, under standard addition and scalar multiplication for 2-tuples.

All 2-tuples representing points in the plane that are on the straight line y = —2x
under standard addition and scalar multiplication for 2-tuples.

All 2-tuples representing points in the plane that are on the straight line
y = —2x + 1, under standard addition and scalar multiplication for 2-tuples.
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12)

13)

(14)

as)

(16)

a7

(18)

19

(20)

@n

(22)

23

(24

(25

(26)

o)

(28)

All 2-tuples representing points in the plane that are on the parabola y = x?, under
standard addition and scalar multiplication for 2-tuples.

The set consisting of the single element 0 with vector addition and scalar multipli-
cation defined as 0 ® 0 = 0 and « ® 0 = 0 for any real number «.

The set of all real two-dimensional row matrices {[@ b]} with standard matrix
addition but scalar multiplication defined asa ®[a b5]=[0 O0].

The set of all real two-dimensional row matrices {[@ b]} with standard matrix
addition but scalar multiplication defined asa ®[a b]=[0 ab].

The set of all real two-dimensional row matrices {[@ 5]} with standard matrix
addition but scalar multiplication defined as @ © [a¢ b]=[2aa 2ab].

The set of all real two-dimensional row matrices {[@ 5]} with standard matrix
addition but scalar multiplication defined asa ®[a b]=[5a 5b].

The set of all real three-dimensional row matrices {[a b ¢]} with standard scalar
multiplication but vector addition defined as

[a b c]l®[x y z]l=[a+x b+y+1 c+z]

The set of all real three-dimensional row matrices {[a b ¢]} with standard scalar
multiplication but vector addition defined as

[a b clolx y z1=[a b+y cl
The set of all real three-dimensional row matrices {[¢ b c¢]} with standard
matrix addition but scalar multiplication definedasa ®[a b c]=[aa ab 1].

The set of all real three-dimensional row matrices {[¢ b c¢]} with positive com-
ponents under standard matrix addition but scalar multiplication defined as

a®la b c]l=[a* b* "]
The set of all real numbers (by convention, the scalars are also real numbers) with
a®b=a® b= ab, the standard multiplication of numbers.

The set of all positive real numbers with a @ b = ab, the standard multiplication of
numbers, and ¢ @ b = a.

The set of all solutions of the homogeneous set of linear equations Ax = 0, under
standard matrix addition and scalar multiplication.

The set of all solutions of the set of linear equations Ax = b, b = 0, under standard
matrix addition and scalar multiplication.

{p(t) € P*| p(0) = 0} under standard addition and scalar multiplication of polyno-
mials.

All polynomials in P, under standard addition and scalar multiplication, satisfying
the constraint that the graph of each polynomial is above the z-axis on the interval
1 <t<3.

The set of all real-valued continuous functions on the interval [—1, 1] under
standard function addition and scalar multiplication, usually denoted as C[ — 1, 1].
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29

(30)

@31

(32)

(33

(34
(35
(36)
37
(3%
39
(40)

The set of all real-valued continuous functions on the interval [0, 1] under
standard function addition and scalar multiplication, usually denoted as C[0, 1].

The set of all real-valued continuous functions, {f(¢)}, on the interval [0, 1]
under standard scalar multiplication but with vector addition defined as
11(0) @ f2(t) = fi(0)f2(?), the standard product of functions.

The set of all real-valued continuous functions, {f(¢)}, on the interval [0, 1]
under standard scalar multiplication but with vector addition defined as
f1(8) @ f2(t) = f1(f2(2)), the standard composition of functions.

The set of all solutions of the differential equation y” + y = 0 under standard
function addition and the multiplication of a function by a scalar.

Let w be a vector in a vector space V. Prove that if —w is the additive inverse of w
then the reverse is also true: w is the additive inverse of —w.

Prove Theorem 4.

Prove that v (u — v) = u if u — v is shorthand for u & —v.
Prove that if u®v=u®w, then v=w.

Prove that u @ u = 2u if 2u is shorthand for 2 ® u.

Prove that the only solution to the equationu u=2visu=y.
Prove that ifu # 0 and « ©u =B ®u, then a = B.

Prove that the additive inverse of the zero vector is the zero vector.

2.2 SUBSPACES

A subspace of a
vector space Vis a
subset of V that is a
vector space in its
own right.

To show that a set of objects S is a vector space, we must verify that all
10 properties of a vector space are satisfied, the 5 properties involving vector
addition and the 5 properties involving scalar multiplication. This process,
however, can be shortened considerably if the set of objects is a subset of
a known vector space V. Then, instead of 10 properties, we need only verify the
2 closure properties, because the other 8 properties follow immediately from
these 2 and the fact that S is a subset of a known vector space.

We define a nonempty subset S of a vector space V as a subspace of V if S is itself
a vector space under the same operations of vector addition and scalar multipli-
cation defined on V.

» Theorem 1. Let S be a nonempty subset of a vector space N with

operations @ and ©. S is a subspace of V if and only if the following
two closure conditions hold:

(1) Closure under addition: Ifu € S andv € S, thenu®v € S.

(ii) Closure under scalar multiplication: If u € S and « is any
scalar, thena ©u € S. <«
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Proof: 1If S is a vector space, then it must satisfy all 10 properties of a vector
space, in particular the closure properties defined by conditions (i) and (ii). Thus,
if S is a vector space, then (i) and (ii) are satisfied.

We now show the converse: If conditions (i) and (ii) are satisfied, then S is
a vector space; that is, all 10 properties of a vector space specified in Definition 1
of section 2.1 follow from the closure properties and the fact that S is a subset of
a known vector space V. Conditions (i) and (ii) are precisely Properties Al and
S1. Properties A2, A3, and S2 through S5 follow for elements in S because these
elements are also in V and V is known to be a vector space whose elements satisfy
all the properties of a vector space. In particular, to verify Property A2, we let
u and v denote arbitrary elements in S. Because S is a subset of V, it follows that
u and v are in V. Because V is a vector space, we have u @ v = v @ u. To verify S3,
we let u again denote an arbitrary element in S. Because S is a subset of V, it
follows that u is an element of V. Because V is a vector space, we have | © u = u.

All that remains is to verify that the zero vector and additive inverses of elements
in S are themselves members of S. Because S is nonempty, it must contain at
least one element, which we denote as u. Then, for the zero scalar, 0, we know
that 0 ®uisin S, as a result of condition (i1), and this vector is the zero vector as
a result of Theorem 1 of the previous section. Thus, Property A4 is satisfied. If u
is an element of S, then the product —1 ® u is also an element of S, as a result of
condition (ii); it follows from Theorem 5 of the previous section that —1 ® u is
the additive inverse of u, so Property A5 is also satisfied.

» Convention: For the remainder of this book, we drop the & and ©
symbols in favor of the traditional sum symbol ( + ) and scalar multipli-
cation denoted by juxtaposition. All vector spaces will involve standard
vector addition and scalar multiplication, unless noted otherwise. <«

We use Theorem 1 to significantly shorten the work required to show that some
sets are vector spaces!

. b .
Example 1 Determine whether } € Myalb=c= 0} is a vector space

d
under standard matrix addition and scalar multiplication.

Solution: Theset S of 2 x 2 real matrices with zeros in the 1-2 and 2-1 positions
is a subset of My.», and M, is a vector space (see Example 4 in Section 2.1 with
p =n =2). Thus, Theorem 1 is applicable, and instead of verifying all 10 prop-
erties of a vector space, we need only verify closure in S under matrix addition
and scalar multiplication.

Arbitrary elements u and v in S have the form

_|la O d_cO
u=|g p| and v=1, .
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If a set is a subset of
a known vector
space, then the
simplest way to
show the set is a
vector space is to
show the set is a
subspace.

for any real numbers «, b, ¢, and d. Here

u_i_v:{a—l—c 0 ]

0 b+d
and for any real scalar «,
u | 0
W=10 ab

Because these matrices are again elements in S, each having zeros in their 1-2 and
2-1 positions, it follows from Theorem 1 that S is a subspace of M,4,. The set
S is therefore a vector space. W

Example 2 Determine whether the set S = {[x y z]e R*[y =0} is a vector
space under standard matrix addition and scalar multiplication.

Solution: We first observe that S is a subset of R, considered as row matrices,
which we know is a vector space from our work in Section 2.1. Thus, Theorem 1
is applicable. Arbitrary elements u and v in S have the form

u=[a 0 blandv=[c 0 d]

It follows that
ut+v=[a+c 0 b+d]eS

and for any real scalar «,
au=[aa 0 able$S

Thus, S is closed under addition and scalar multiplication, and it follows from
Theorem 1 that S is a subspace of R®. The set S is therefore a vector space. W

Compare Example 2 to Example 1 of Section 2.1. In both, we were asked
to prove that the same set is a vector space. In Section 2.1, we did this by
verifying all 10 properties of a vector space; in Example 2, we verified the
2 properties of a subspace. Clearly it is simpler to verify 2 properties than 10;
thus, it is simpler to show that a set is vector space by showing it is a subspace
rather than demonstrating directly that the set is a vector space. To do so,
however, we must recognize that the given set is a subset of known vector
space, in this case R>.

The subspace in Example 2 has an interesting graphical representation. R>, the
set of all 3-tuples, is represented geometrically by all points in three-space. The
set S in Example 2 is the set of all points in R* having a second component of 0.
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Figure 2.1

Figure 2.2
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J

/1
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In an x, y, z coordinate system, these points fill the entire x-z plane, which is
illustrated graphically by the shaded plane in Figure 2.1.

Example 3 Determine whether the set S, illustrated graphically by the shaded
plane in Figure 2.2, is a subspace of R>.

Solution: The shaded plane is parallel to the y-z plane, intersecting the x-axis at
x = 3. The x-coordinate of any point on this plane is fixed at x = 3, and the
plane is defined as

S={[x y z]eR}x=3}
Elements u and v in S have the form
u=[3 a blandv=[3 ¢ d]
for some choice of the scalars a, b, ¢, and d. Here

ut+v=[6 a+c b+d]
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If a subset of a
vector space does
not include the zero
vector, that subset
cannot be a
subspace.

which is not an element of S because its first component is not 3. Condition (i) of
Theorem 1 is violated. The set S is not closed under addition and, therefore, is
not a subspace. W

As an alternative solution to Example 3, we note that the set S does not contain the
zero vector, and therefore cannot be a vector space. The zero vector in R* is
0=[0 0 0], and this vector is clearly not in S because all elements in S have
a first component of 3. Often we can determine by inspection whether the zero
vector of a vector space is included in a given subset. If the zero vector is not
included, we may conclude immediately that the subset is not a vector space and,
therefore, not a subspace. If the zero vector is part of the set, then the two closure
properties must be verified before one can determine whether the given set is a
subspace.

One simple subspace associated with any vector space is the following:

» Theorem 2. For any vector space V, the subset containing only the zero
vector is a subspace. <

Proof: 1t follows from the definition of a zero vector that 0 + 0 = 0. It also
follows from Theorem 2 of Section 2.1 that «0 = 0 for any scalar «. Both closure
conditions of Theorem 1 are satisfied, and the set S containing just the single
element 0 is a subspace. W

Example 4 Determine whether the set S = {[a 2« 4a]|a is a real number}
is a subspace of R>.

Solution: Setting a = 0, we see that the zero vector, 0 =[0 0 0], of R> is an
element of S, so we can make no conclusion a priori about S as a subspace. We
must apply Theorem 1 directly. Elements u and v in S have the form

u=[t 2t 4t]andv=[s 25 4s]
for some choice of the scalars s and ¢. Therefore,

ut+v=_[t+s 2t+2s 4t+4s]
=[@+s) 2(t+s) 4t+s)]€S

and for any real scalar «,

ou=[at «a2t) aldt)]
=[(at) 2(at) 4at)]eS

Because S is closed under vector addition and scalar multiplication, it follows
from Theorem 1 that S is a subspace of R3. [ |
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Figure 2.3

Lines through the
origin and planes
that contain the
origin are subspaces
of R3.

3 * line that contains u

The subspace in Example 4 also has an interesting graphical representation.
If we rewrite an arbitrary vector u as

u=[tr 2t 4t]=1q1 2 4]

we see that every vector is a scalar multiple of the directed line segment having its
tail at the origin and its tip at the point (1, 2, 4). Because ¢ can be any real
number, zero, positive or negative, we can reach any point on the line that
contains this directed line segment. Thus, the subspace S is represented graph-
ically by the straight line in R? illustrated in Figure 2.3.

As a result of Examples 2 through 4 and Theorem 2, one might suspect that a
proper subset S of R? is a subspace if and only if S is the zero vector or else the
graph of S is either a straight line through the origin or a plane that contains the
origin. This is indeed the case as we shall prove in Section 2.4.

The two conditions specified in Theorem 1 can be collapsed into a single
condition.

» Theorem 3. A nonempty subset S of a vector space V is a subspace of V
if and only if whenever u and v are any two elements in' S and o and B are
any two scalars, then

au + By (2.6)

isalsoin'S. <«

Proof: 1If S is a subspace, then it must satisfy the two conditions of Theorem 1.
In particular, if u is an element of S and « a scalar, then au is in S as
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A vector u is a linear
combination of

a finite number of
other vectors if u
can be written as

a sum of scalar
multiples of those
vectors.

a consequence of condition (ii). Similarly, 8v must be an element of S whenever v
is an element and B is a scalar. Knowing that au and Bv are two elements in S, we
may conclude that their sum, given by equation (2.6), is also in S as a conse-
quence of condition (i).

Conversely, if equation (2.6) is an element in S for all values of the scalars « and
B, then condition (i) of Theorem 1 follows by setting &« = 8 = 1. Condition (ii)
follows by setting 8 = 0 and leaving « arbitrary. W

Example 5 Determine whether S = {p(r) € P?| p(2) = 1} is a subspace of P2,

Solution: [P? is a vector space (see Example 7 of Section 2.1 with n = 2). The
zero vector 0 in P? has the property 0(r) = 0 for all real values of ¢. Thus,
0(2) = 0 # 1, the zero vector is not in S, and S is not a subspace. W

Example 6 Determine whether S = {p(r) € P?| p(2) = 0} is a subspace of P2,

Solution: Letu = p and v = ¢ be any two polynomials in S. Then p(2) = 0 and
¢(2) = 0. Set w = au + By, for arbitrary values of the scalars « and 8. Then w is
also a polynomial of degree two or less or the zero polynomial. Furthermore,

W(2) = (ap + Bg)(2) = ap(2) + Bq(2) = a0 + B0 = 0,

so w is also an element of S. It follows from Theorem 3 that S is a subspace
of P". W

Expression (2.6) in Theorem 3 is a special case of a linear combination. We say
that a vector u in a vector space V is a linear combination of the vectors
Vi, Va2, ..., V, In V if there exists scalars dy, d,, ..., d, such that

u=d\vi +dwvr+...+dv, 2.7

Example 7 Determine whetheru =1 2 3]is a linear combination of

vi=[1 1 1], va=[2 4 0], and vs=[0 0 1]

Solution: These vectors are all in the vector space R>, considered as row
matrices. We seek scalars d;, d>, and d5 that satisfy the equation

[1 2 3]1=d[1l 1 1]+d[2 4 0]+d3[0 0 1]
or
[1 2 3]=[di+2d, dH +4d, d| +d;]

This last matrix equation is equivalent to the system of equations
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1 =d, +2d;
2=d +4d,
3=d +ds

Using Gaussian elimination, we find that the only solution to this system is
dl = O, d2 = 1/2, and d3 =3. Thus,

[1 2 3]=0[1 1 1]+i[2 4 0]+3[0 0 1]

and the vectoru=[1 2 3]is a linear combination of the other three. W

Example 8 Determine whether u = [_21 2} is a linear combination of

U1 g o [3 02
V]—zzanV2—35

Solution: These vectors are in the vector space M,,,. We seek scalars d) and d,
that satisfy the equation

Gl dee] e

or

-1 0| d+3d, d+2d,
2 4| |2di+3dy 2d+5d,

which is equivalent to the system of equations

—1=d; +3d;,
0=d +2d,
2 =2d; + 3d,
4 = 2d, + 5d,

Using Gaussian elimination, we find that this system has no solution. There are
no values of d; and d, that satisfy (2.8), and, therefore, u is not a linear
combination of v; and v,.

The span of a finite The set of @/l linear combinations of a finite set of vectors, S = {v;,va, ..., Vv, }, 18
number of vectorsis  called the span of S, denoted as span {vi,v,, ...,v,} or simply span(S). Thus, the
the set of all linear span of the polynomial set {¢2, 7,1} is P* because every polynomial p(z) in P* can
combinations of be written as

those vectors.
p(t) = dit* + dot + di(1)
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for some choice of the scalars d, d>, and d3. The span of the set {{[I 0 0 0],
[0 1 0 O]} are all row-vectors of the form [d; ¢, 0 0] for any choice of
the real numbers d» and ds.

The span of a finite set of vectors is useful because it is a subspace! Thus, we
create subspaces conveniently by forming all linear combinations of just a few
vectors.

» Theorem 4. The span of a set of vectors S = {vi,va, ..., V,} in a vector
space V is a subspace of V. <«

Proof: Let uand w be elements of span(S). Then
u=d\vi+dovo+...+d,v, and w = c;v] + cavas + ...+ ¢V,
for some choice of the scalars d; through d, and ¢, through ¢,. It follows that

ou+ Bw = a(d\vy +dovo + ...+ d,v,) + B(c1vi + cava + ...+ ¢, V)
= (ad)vi + (ady)va + ... + (ady)Vy + (Be)Vi + (Bea)va + ... + (Ben)Va

= (ad) + Be))vi + (ads + Bea)va + ... + (ad, + Bey)Vy,

Each quantity in parentheses on the right side of this last equation is
a combination of scalars of the form ad; + Bc¢; (for j=1,2,...,n) and is,
therefore, itself a scalar. Thus, eu + Bw is a linear combination of the vectors
in S and a member of span(S). It follows from Theorem 3 that span(S) is a
subspace of V. W

Not only is the span(S) a subspace that includes the vectors in S, but it is the
smallest such subspace. We formalize this statement in the following theorem,
the proof of which is left as an exercise for the reader (see Problem 50).

» Theorem 5. If'S = {vi, Vo, ..., V,} is a set of vectors in a vector space V
and if W is a subspace of V that contains all the vectors in' S, then W
contains all the vectors in span(S). <

Problems 2.2

In Problems 1 through 27, determine whether each set is a vector space.

(1) S={la b]eR)a=0}.

2 S={la bleRa=—-b}.
3 S={la bleR*b=—5a}.
@ S={la bleRb=a+3}.
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3
©)
)
@®
&)
(10)
n
12)
13)

(14

as)

(16)

a7

18)
19

(20)

1)
(22)
(23)
)
25
(26)

)

(28

29

(30)

b] e R*|b > a}.
b] € R*la = b = 0}.
b cleR|a=h}.
b cleRYb=0}.
b cleRja=hb+1}.
b cleRc=a—b}.
b ]
b ]
b ]

Il
~~

S

I
—~

)

Il
—~

S

Il
—~~

N

Il
~~

N

Il
—~

S

c
cl€R¥|la=band ¢ = 0}.
cleR}b=3aand c=a+3}.

I
—~

S

»w n u v umo u v v um
Il

e R S e i e e e
N

Il
—~~

N

a is real} as a subset of M, 3.

a 2a 0
S_{{0 a Za}
b
e

C
. € Mhy
e

c=e=f =0},

[
(s s} ewopeees}

00 0
S:{{O 0 0}}asasubsetoff\/ﬂ2x3.

S = {A € Mi3.3|A is lower triangular}.

~ o

:|~€M2><3

S = {A € Mi343|A is a diagonal matrix}.

a @& &
S = @& a &
@ & a

S = {A € Mi«»|A is invertible}.

S = {A € Ma«2|A is singular}.

S = {a® + bt +c € P*|b = 0}.

S = {p(1) € P*|p(3) — 2p(1) = 4}.

S = {f () € C[0,1] + 1 (¢) > 0}. (C[0, 1] is defined in Problem 29 of Section 2.1.)

S={f()eC[-L1If(—1)=f®}. (C[—1,1] is defined in Problem 28 of
Section 2.2.)

S={f0eC[-L1f(-1=—-f(n}

Determine whether u is a linear combination of vy =[1 2]andv, =[3 6].
(@ u=[2 4] (b) u=[2 -4],
©u=[-3 -6], (du=[2 2]

ais real} as a subset of M 3.

Determine which, if any, of the vectors u defined in the previous problem are in
span{v;,v2}.

Determine whether u is a linear combination of v;=[1 0 1] and
vpo=[1 1 1]
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(@u=[3 2 3]
(©u=[0 0 0],

(byu=[3 3 2],
du=[0 1 1].

(31) Determine which, if any, of the vectors u defined in the previous problem

(32)

(33

(34

(35

(36)
37
(3%)
39
(40

Cl)

are in span{vy,va}.

Determine whether the following vectors are linear combinations of

ol el

1 1 2
@ |0, (b 0}, © [2}

[27] [1
@ (2], @ |2],
3
Determine whether the following matrices are linear combinations of
(1 0 0 1 11
Al:_o o}’ Azz[o 0}’ AFL 0}
(1 2 11
3 0], (©) [0 0},
00 [ 2 0 0 0
@ oo @[30 o I

Determine which, if any, of the matrices given in parts (a) through (f) of the
previous problem are in span{A;, Az, As}.

Determine whether the following polynomials are linear combinations of
(P42, P+t P+

(@ P+~2+t, (b)) 28—t (¢) 5, (d) 22 +1.

Find span{vi, v,} for the vectors given in Problem 28.

Find span{Ai, A, A3} for the matrices given in Problem 33.

Find span{p, (1), p,(t), p3(¢)} for the polynomial given in Problem 35.
Describe the graph of all points in the set S described in Problem 3.

Show that the set of points in the plane on a straight line passing through the origin
is a subspace of R”.

Show that S as given in Problem 4 is the set of points in the plane on the graph of
the straight line y = x + 3. Describe a characteristic of this line that precludes S
from being a subspace.
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(42) Show that P? is a subspace of P3. Generalize to P and P" when m < n.

(43) Show that if u is a linear combination of the vectors vy, vs, ...,v, and if each v;
(i=1,2,...,n) is a linear combination of the vectors wy,w,, ..., Ww,, then u can
also be expressed as a linear combination of wy, wa, ..., W,,.

(44) Let A be an n x n matrix and both x and y n x 1 column matrices. Prove that if
y = AXx, then y is a linear combination of the columns of A.

(45) Show that the set of solutions of the matrix equation Ax =0, where Aisa p xn
matrix, is a subspace of R".

(46) Show that the set of solutions of the matrix equation Ax = b, where Aisa p xn
matrix, is not a subspace of R” when b # 0.

(47) Prove that span{u,v} = span{u+ v,u — v}.

(48) Prove that span{u,v,w} = span{u+ v,v + w,u + w}.
(49) Prove that span{u,v,0} = span{u,v}.

(50) Prove Theorem 5.

2.3 LINEAR INDEPENDENCE

The set of vectors
{V,¥2, ooV}

is linearly
independent if the
only set of scalars
that satisfy

Cc1V1 + oV
+...+ev,=0
sci=0=...
=¢,=0.

Most vector spaces contain infinitely many vectors. In particular, if u is a nonzero
vector of a vector space V and if the scalars are real numbers, then it follows
from the closure property of scalar multiplication that au € V for every real
number «. It is useful, therefore, to determine whether a vector space can be
completely characterized by just a few representatives. If so, we can describe
a vector space by its representatives. Instead of listing all the vectors in a vector
space, which are often infinitely many in number, we simplify the identification
of a vector space by listing only its representatives. We then use those represen-
tatives to study the entire vector space.

Efficiently characterizing a vector space by its representatives is one of the major
goals in linear algebra, where by efficiently we mean listing as few representatives
as possible. We devote this section and the next to determining properties that
such a set of representatives must possess.

A set of vectors {vi, V2, ...,v,} in a vector space V is linearly dependent if there
exist scalars, ¢y, ¢, ..., c,, not all zero, such that

cavi+cevat ... +cev, =0 2.9
The vectors are linearly independent if the only set of scalars that satisfies
equation (2.9)isthesetc; =, =...=¢, =0.

To test whether a given set of vectors is linearly independent, we first form vector
equation (2.9) and ask, “What values for the ¢’s satisfy this equation?”’ Clearly,
cg=c¢=...=c¢, =0 is a suitable set. If this is the only set of values that
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satisfies (2.9), then the vectors are linearly independent. If there exists a set of
values that is not all zero, then the vectors are linearly dependent.

It is not necessary for all the ¢’s to be different from zero for a set of vectors to be
linearly dependent. Consider the vectors v =[1 2],v,=[1 4], and
v3; =[2 4]. The constants ¢; =2,c; =0, and ¢3 = —1 is a set of scalars, not
all zero, such that ¢;v; + ¢2v2 + ¢3v3 = 0. Thus, this set is linearly dependent.

Example1 Istheset {[1 2].[3 4]}in R? linearly independent?

Solution: Herevi =[1 2],vo=[3 4], and equation (2.9) becomes
[l 2]+ e[3 4]=[0 0]
This vector equation can be rewritten as
[er 2¢1]4+[3¢2 4c2]=[0 0]
or as
[ec1+ 3¢ 2¢1+4c]=[0 0]
Equating components, we generate the system

c1+3c=0
2¢1 +4c¢, =0

which has as its only ¢; = ¢; = 0. Consequently, the original set of vectors is
linearly independent. W

Example 2 Determine whether the set of column matrices in R?

2 3 8
61,|1],] 16
-2 2 -3

is linearly independent.

Solution: Equation (2.9) becomes

il -

which can be rewritten as

0
0 (2.10)
0
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2¢q RIS 8c3
6cy | + o |+ 16¢;
—26’1 2(,'2 —3(,’3

|
| —
o O O
|

or
2¢1 4 3¢y + 8c¢; 0
6c1+ ca+16c3 | = 1|0
—2¢1 4+ 2¢; — 3¢; 0

This matrix equation is equivalent to the homogeneous system of equations

2¢1 + 3¢+ 83 =0
6c1 + ¢ +16c3=0
—2¢1 + 2¢—3¢3=0

Using Gaussian elimination, we find the solution to this system is ¢; = —2.5¢3,
¢y = —c3, 3 arbitrary. Setting ¢3 = 2, we obtain ¢; = —5,¢c; = —-2,c3 =2 as a
particular nonzero set of constants that satisfies equation (2.10). The original set
of vectors is linearly dependent. [l

Example 3 Determine whether the set of matrices

o ol Lo [ 2LL vl ]}

in M«» is linearly independent.

Solution: Equation (2.9) becomes

1o 0 1 0 0 1o 117 [0 0
R I e R B R R U

or

c1+cq4+cs c1+ao+os _ 0 0
c3tc ot cetestos 0 0

which is equivalent to the homogeneous system of equations

ci+eq+es=0
cica+ces5=0
c3+cs =0
c+ce3tces+ce5=0
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This system has more unknowns than equations, so it follows from Theorem 3 of
Section 1.4 that there are infinitely many solutions, all but one of which are
nontrivial. Because nontrivial solutions exist to equation (2.9), the set of vectors
is linearly dependent. W

Example4 Determine whether the set {#*> + 2t — 3, 1> + 5¢,2¢> — 4} of vectors in
P? is linearly independent.

Solution: Equation (2.9) becomes
(42t -3+ (P +50)+ 322 —4) =0
or
(c1 + 2+ 2¢3) 4+ (2¢1 + Sea)t + (— 3¢; — 4e3) = 022 + 0140
Equating coefficients of like powers of ¢, we generate the system of equations

ci+c+2c3=0
2¢1+5¢, =0
—3C1—4C3=0

Using Gaussian elimination, we find that this system admits only the trivial
solution ¢; = ¢; = ¢3 = 0. The given set of vectors is linearly independent. W

The defining equations for linear combinations and linear dependence, (2.7) and
(2.9), are similar, so we should not be surprised to find that the concepts are
related.

» Theorem 1. A finite set of vectors is linearly dependent if and only if one
of the vectors is a linear combination of the vectors that precede it, in the
ordering established by the listing of vectors in the set. <«

Proof: First, we must prove that if a set of vectors is linearly dependent, then
one of the vectors is a linear combination of other vectors that are listed before it
in the set. Second, we must show the converse: if one of the vectors of a given set
is a linear combination of the vectors that precede it, then the set is linearly
dependent.

Let {vi,v2, ...,v,} be a linearly dependent set. Then there exists scalars
1,6, -..,Cy, not all zero, such that equation (2.9) is satisfied. Let ¢; be the last
nonzero scalar. At the very worst i = n when ¢, # 0, but if ¢, =0, then i < n.
Equation (2.9) becomes

cavi+eva+ ...+ Vi +evi+0vi +0viio+ ... +0v, =0
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which can be rewritten as

Vi1 (2.11)

Consequently, v; is a linear combination of vy, vy, ..., v, 1, with coefficients
dy = —c1/ci, dy = —c2/ci, ..., dii1 = —ci1/ci.

Now let one vector of the set {v;,v,, ...,v,}, say v;, be a linear combination of
the vectors in the set that precede it, namely, v, v,, ..., v, . Then there exist
scalars dy,d>, ...,d;—1 such that

Vi=d\vi+dovo+ ... +di_1vi_y
which can be rewritten as
dvi+dovo+...+divvii+(—1Dv;+0vi +0vino+...4+0v, =0

This is equation (29) with ¢ =d;(j=12,...,i—1),¢;=-1, and
¢ =0(j=i+ 1,i4+2,...,n). Because this is a set of scalars not all zero, in
particular ¢; = —1, it follows that the original set of vectors is linearly
dependent. W

It is not necessary for every vector in a given set to be a linear combination of
preceding vectors if that set is linearly dependent, but only that at least one vector
in the set have this property. For example, the set {[1 0],[2 0],[0 1]} is
linearly dependent because

—2[1 O0]+1[2 0]+0[0 1]=[0 O]
Here [0 1] cannot be written as a linear combination of the preceding two

vectors; however, [2 0] can be written as a linear combination of the vector
that precedes it, namely, [2 0]=2[1 O].

» Theorem 2. A subset of a vector space N/ consisting of the single vector
u is linearly dependent if and only ifu=0. <«

Proof: 1f the set {u} is linearly dependent, then there exists a nonzero scalar ¢
that satisfies the vector equation

cu=0 (2.12)

It then follows from Theorem 7 of Section 2.1 that u = 0. Conversely, if u =0,
then it follows from Theorem 1 of Section 2.1 that equation (2.12) is valid for any
scalar ¢. Thus nonzero scalars exist that satisfy (2.12) and the set {u} is linearly
dependent. W
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Figure 2.4

» Theorem 3. A subset of a vector space NV consisting of two distinct
vectors is linearly dependent if and only if one vector is a scalar multiple
of the other. <

Proof: 1If the set {v;,v,} is linearly dependent, then it follows from Theorem 1
that v, can be written as a linear combination of v;. That is, v, = d;v;, which
means that v, is a scalar multiple of v;.

Conversely, if one of the two vectors can be written as a scalar multiple of the
other, then either v; = av; or v = av, for some scalar «. This implies, respect-
ively, that either

avi+(—=Dvy=0 or ()vi —av; =0
Both equations are in the form of equation (2.9), the first with ¢; = a, ¢, = —1

and the second with ¢; = 1, ¢; = —a. Either way, we have a set of scalars, not all
zero, that satisfy equation (2.9), whereupon the set {v;, v»} is linearly dependent.

I

(b)
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Two vectors are
linearly dependent
in R or R® if and
only if they lie on
the same line.

A set of three
vectors in R’ is
linearly dependent if
and only if all three
vectors lie on the
same line or all lie in
the same plane.

Figure 2.5

Theorem 3 has an interesting geometrical representation in both R* and R®.
We know from our work in Section 1.7 that a scalar multiple of a nonzero vector
in R? or R? is an elongation of the nonzero vector (when the scalar in absolute
value is greater than unity) or a contraction of that nonzero vector (when the
scalar in absolute value is less than unity), followed by a rotation of 180° if the
scalar is negative. Figure 2.4 illustrates two possibilities in R for a particular
nonzero vector v,. If vo = 2v;, we have the situation depicted in Figure 2.4(a); if,
however, v, = —1/2v;, we have the situation depicted in Figure 2.4(b). Either
way, both vectors lie on the same straight line. The same situation prevails in R*,
We conclude that two vectors are linearly dependent in either R> or R? if and
only if both vectors lie on the same line. Alternatively, two vectors are linearly
independent in either R? or R* if and only if they do not lie on the same line.

A set of three vectors in R, {v1,v2,v3}, is linearly dependent if any two of the
vectors lie on the same straight line (see Problem 31). If no two vectors lie on the
same straight line but the set is linearly dependent, then it follows from Theorem
1 that v3 must be a linear combination of v; and v, (see Problem 32). In such a
case, there exist scalars d; and d> such that v3 = d;v| + dbv,. This situation is
illustrated graphically in Figure 2.5 for the particular case where both vectors v;
and v; are in the x-y plane, d; is a positive real number that is less than unity, and
d, is a positive real number that is slightly greater than unity. It follows from our
work in Section 1.7 that vz = djv| 4+ d,v; is another vector in the x-y plane. The
situation is analogous for any two vectors in R* that do not lie on the same line:
any linear combination of the two vectors will lie in the plane formed by those
two vectors. We see, therefore, that if a set of three vectors in R? is linearly
dependent, then either all three vectors lie on the same line or all three lie in the
same plane.

<\

o

2
5
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» Theorem 4. A set of vectors in a vector space V that contains the zero
vector is linearly dependent. <«

Proof: Consider the set {vi,va, ...,v,,0}. Pick ¢, =cx=...=¢,=0 and
¢ne1 = 5 (any other nonzero number will do equally well). This is a set of scalars,
not all zero, such that

avi+eava+ ...+ eV +¢c10=0

Hence, the set of vectors is linearly dependent.

» Theorem 5. If a set of vectors S in a vector space V is linearly inde-
pendent, then any subset of'S is also linearly independent. <

Proof: See Problem 42.

» Theorem 6. If a set of vectors S in a vector space N is linearly depen-
dent, then any larger set containing S is also linearly dependent. <«

Proof: See Problem 43.

Problems 2.3
In Problems 1 through 30, determine whether each set is linearly independent.
@ {[r opfo 1.
@ (v 1101 -17n
3 {[2 —4L[-3 6]}
@ {[r 3102 1501 1gn

®

©6)

™

{
{
i
{
{

1T T 1
—_—O N _—— O DN =
1L Il

®

(10)

1T
S o O
1L

—_O m, m, O = =, O -
— O W = e e O = O —
]l L ]l L
T
L

T

L

r

L 1L

T 1
W = N

| S



118 e Vector Spaces

3
n

12) {
13) {

a4 {1 1 oL[1 -1 O]}

asy {{1 2 31.[-3 -6 -9}

(16) {[10 20 20].[10 —10 10][10 20 10]}.

a7 {[10 20 20],[10 —10 10L[10 20 10],[20 10 207}.

as) {[2 1 1L[3 -1 41[1 3 -2].

——
T 1
)
T 1
)
———

_1_

1
—_— R W= W =
]l L ]l L

1
—_ e W = N W — N

L l L
— .
| |
W N =
1
———

T
2
_1_
.
0
_2_

N

2 4 8

1 -1 1
19) 1l 2l la

3] [-1 5]

(1 o] [o 17 o o] o O
(20) {_0 0]°[0 0] |1 0_’[0 1}}
1 17 [1 [0 0]

1) {_0 0|1 |1 1_}'
11 1 0] [0 0]
22 {_0 o]"[1 1]°]1 1_}'
1 o] 1 171 1770 1
@3) {_1 171 0|0 1_’{1 1”
(1 o] [1 172 271 0
@4 {_1 1|1 0 {0 2}’{2 0]}
25 {12

26) {P+ P+t P+1}

Qn £+, 78—, 8 -32).

@8 {(P+e,P-2 8-t P+1}.
29) {P+t, 2+1—1,2+1, 1}
B0) {A+t, 24+1-2,1}.

(31) Consider a set of three vectors in R®. Prove that if two of the vectors lie on the same
straight line, then the set must be linearly dependent.

(32) Consider a linearly dependent set of three vectors {vi,v2,v3} in R>. Prove that if
no two vectors lie on the same straight line, v; must be a linear combination of v,
and v,.
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(33

(34
(35

(36)

37

(38)

39

(40)

(1)
“42)
3

Prove that a set of vectors is linearly dependent if and only if one of the vectors is a
linear combination of the vectors that follow it.

Prove that if {u, v} is linearly independent, then so too is {u+ v,u — v}.

Prove that if {vi,v,,v3} is linearly independent, then so too is the set {u;,u,uz}
where u; = v — v, u; = vy +v3, and uz3 = v, — vs.

Prove that if {v{,v,,v3} is linearly independent, then so too is the set {u;,u,u3}
where u; = vi + v, + v3,up = v + v3, and u3 = vs.

Prove that if {vj,v,v3} is linearly independent, then so too is the set
{a1v1, aav2, a3v3} for any choice of the nonzero scalars a;, az, and as.

Prove that the nonzero rows, considered as row matrices, of a row-reduced matrix is
a linearly independent set.

Let A be an n x n matrix and let {x;, X2, ..., X} and {y,,¥,, ..., ¥} be two sets of
n-dimensional column vectors having the property that Ax; =y, i=1,2, ...,k).
Show that the set {x;, Xz, ..., Xy} is linearly independent if the set {y;, y,, ..., y;} is.

What can be said about a set of vectors that contains as a proper subset a set of
linearly independent vectors?

What can be said about a subset of a linearly dependent set of vectors?
Prove Theorem 5.

Prove Theorem 6.

2.4 BASIS AND DIMENSION

The set of vectors S
is a spanning set for
a vector space V if
every vector in V
can be written as a
linear combination
of vectors in S.

We began the previous section with a quest for completely characterizing vector
spaces by just a few of its representatives and determining the properties repre-
sentatives must have if the characterization is to be an efficient one. One property
we want is the ability to recreate every vector in a given vector space from its
representatives; that is, we want the ability to combine representatives to gener-
ate all other vectors in a vector space. The only means we have for combining
vectors is vector addition and scalar multiplication, so the only combinations
available to us are linear combinations (see Section 2.2). We define a set of
vectors S in a vector space V as a spanning set for V if every vector in V can be
written as a linear combination of the vectors in S; that is, if V = span{S}.

Example1 Determine whether any of the following sets are spanning sets for R,
considered as column matrices:

(a) §1={81=>(1)_, 82=_(1)}
(b) SZZ{eIZ-Oa 82:_(1) P flz{l}}

(©) §3:{ 1=

I
~
[38]

Il

(SN
—
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A basis for a vector
space V is a set of
vectors that is
linearly independent
and also spans V.

Solution: An arbitrary column matrix u € R? has the form

-

for some choice of the scalars a and b.

HRCEIEH

it follows that every vector in R? is a linear combination of e; and e,. Thus, S; is
a spanning set for R”.

(b) Since

(a) Since

ARCHECHEH

it follows that S, is also a spanning set for R>.

(c) Ss is not a spanning set for R*. Every linear combination of vectors in S;
has identical first and second components. The vector [1 2] does not have
identical components and, therefore, cannot be written as a linear combination
offand f,. W

If S is a spanning set for a vector space V, then S is said to span V. As a spanning
set, S represents V completely because every vector in V can be gotten from the
vectors in S. If we also require that S be a linearly independent set, then we are
guaranteed that no vector in S can be written as a linear combination of other
vectors in S (Theorem 1 of Section 2.3). Linear independence ensures that the set
S does not contain any superfluous vectors. A spanning set of vectors that is also
a linearly independent set meets all our criteria for efficiently representing a given
vector space. We call such a set a basis.

Example 2 Determine whether the set C = {> +2¢t—3, >+ 5t, 22 —4} is a
basis for P?.

Solution: C is not a spanning set for P, because ° is a third-degree polynomial
in P* and no linear combination of the vectors in C can equal it. Because C does
not span P*, C cannot be a basis. We could show that C is linearly independent
(see Example 4 of Section 2.3), but that is now irrelevant. [l

Example 3 Determine whether the set

o={[s o115 00 D

is a basis for M.
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Solution: 1t follows from Example 3 of Section 2.3 that D is linearly dependent,
not independent, so D cannot be a basis. We could show that D does indeed span
M2, but that no longer matters.

Example4 Determine whether the set S = {e1 = { (1)} ,€) = {ﬂ } is a basis for
R?, considered as column matrices.

Solution: We need to show that span (S) = R*> and also that S is linearly
independent. We showed in part (a) of Example 1 that S is a spanning set for
R?. To demonstrate linear independence, we form the vector equation

RRE
BRE

The only solution to this vector equation is ¢; = ¢; = 0, so the two vectors are
linearly independent. It follows that S is a basis for R>.

or

A straightforward extension of Example 4 shows that a basis for R", considered
as column vectors, is the set of the n-tuples

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
el = . 9e2: . :e3: . ) "'aen—l = . aen: . (213)
0 0 0 1 0
10 10 | 1 0 ] 1 0] 1]
where ¢; (j =1,2,3, ...,n) has its jth component equal to unity and all other

components equal to zero. This set is known as the standard basis for R".

Example 5 Determine whether the set B = { 1= {”,fz = {_i ] } is a basis
for R?, considered as column matrices.

Solution: An arbitrary vector u in R? has the form

-l

for some choice of the scalars a and b. B is a spanning set for R? if there exist
scalars d; and d, such that
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A vector space is
finite-dimensional if
it has a basis
containing a finite
number of vectors.

o[ ++[1]- 18

Note that we do not actually have to find the scalars d; and d>, we only need to
show that they exist. System (2.14) is equivalent to the set of simultaneous
equations

di+dr=a
dy—d,=b

which we solve by Gaussian elimination for the variables d; and d,. The aug-
mented matrix for this system is

HE A o s o e
S 0 —2|b-a times the first row
by multiplying
- - the second row
0 1|ia-1b

by —1/2

The system of equations associated with this row-reduced augmented matrix is

di+dr=a
1 1 (2.15)
d2 = za — zb

System (2.15) has a solution for d; and d, for every choice of the scalars a and b.
Therefore, there exist scalars d; and @, that satisfy (2.14) and B is a spanning set
for R?.

We next show that B is linearly independent, which is tantamount to showing
that the only solution to the vector equation d;f; + d>f, = 0 is the trivial solution
dy = d, = 0. This vector equation is precisely (2.14) with ¢« =b =0, and it
reduces to (2.15) with ¢ = b = 0. Under these special conditions, the second
equation of (2.15) is d» = 0, and when it is substituted into the first equation
we find d; = 0. Thus, B is also a linearly independent set, and a basis for R>. H

»  Observation: To show that a set of vectors is a basis for a vector space
V, first verify that the set spans V. Much of the work can be reused to
determine whether the set is also linearly independent. <«

A vector space V is finite-dimensional if it has a basis containing a finite number
of vectors. In particular, R? is finite-dimensional because, as shown in Example
4, it has a basis with two (a finite number) of the vectors. A vector space that is
not finite-dimensional is called infinite dimensional, but we shall not consider
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such vector spaces in this book. It follows from Examples 4 and 5 that a finite-
dimensional vector space can have different bases. The fact that different bases
of a vector space must contain the same number of vectors is a consequence of
the next two theorems.

» Theorem 1. If'S = {v,va, ...,V,} is a basis for a vector space V, then
any set containing more than n vectors is linearly dependent. <

Proof: LetT ={uj,u, ...,u,} beaset of p vectorsin V with p > n. We need to
show that there exist scalars ci,c2, ..., ¢y, not all zero, that satisfy the vector
equation

ciup +cou + ...+ cu, =0 (2.16)

Because S is a spanning set for V, it follows that every vector in V, in particular
those vectors in T, can be written as a linear combination of the vectors in S.
Therefore,

up =anvi +anva+...+ auvy

U = a;pvy +anvr + ...+ apnvy
(2.17)

U, = apVi + ayVa + ...+ aypVy

for some values of the scalars a; (i=1,2,...,n;j=1,2,...,p). Substituting
the equations of system (2.17) into the left side of (2.18) and rearranging, we
obtain

(crai + c2ain + ... + cpaip)vi
+ (c1ax + c2am + ... + cpaz)va
+ ... 4 (cram +c2an + ... 4 o)V, =0
Because S is a basis, it is a linearly independent set, and the only way the above
equation can be satisfied is for each coefficient of v; (j = 1,2, ..., n) to be zero.

Thus,

ajcr +aper+ ... +ape, =0

ayc1 +ancy + ...+ apc, =0

apiC1 + apcr + ...+ aypcy, = 0

But this is a set of n-equations in p-unknowns, ci, 2, ..., c,, With p > n, so it
follows from Theorem 3 of Section 1.4 that this set has infinitely many solutions.
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The dimension of a
vector space is the
number of vectors in
a basis for that
vector space.

Most of these solutions will be nontrivial, so there exist scalars, not all zero, that
satisfy (2.18). W

As an immediate consequence of Theorem 1, we have

» Corollary 1. If'S = {v|,va, ..., V,} is a basis for a vector space V, then
every linearly independent set of vectors in N/ must contain n or fewer
vectors. <«

We are now in the position to state and prove one of the fundamental principles
of linear algebra.

» Theorem 2. Every basis for a finite-dimensional vector space must
contain the same number of vectors. <«

Proof: Let S={vi,v2,...,V,} and T = {uj,m,...,u,} be two bases for
a finite-dimensional vector space V. Because S is a basis and T is a linearly
independent set, it follows from Corollary 1 that p < n. Reversing roles, T is
a basis and S is a linearly independent set, so it follows from Corollary 1 that
n < p. Together, both inequalities imply that p =n. W

Because the number of vectors in a basis for a finite-dimensional vector space V
is always the same, we can give that number a name. We call it the dimension of
the V and denote it as dim(V).

The vector space containing just the zero vector is an anomaly. The only non-
empty subset of this vector space is the vector space itself. But the subset {0} is
linearly dependent, as a consequence of Theorem 2 of Section 3.3 and, therefore,
cannot be a basis. We define the dimension of the vector space containing just
the zero vector to be zero, which is equivalent to saying that the empty set is the
basis for this vector space.

Example 6 Determine the dimension of P”.

Solution: A basis for this vector space is S = {¢",t""!, ..., ¢,1}. First, Sis a
spanning set, because if p(¢) is a vector in P", then

p() = ayt" + ap 11"+t art +ag(1)

for some choice of the scalars a; (j =0,1, ...,n). Second, S is a linearly inde-
pendent set, because the only solution to

"+ ent" et =0=0"+0t" ... +0r+0

1Sco) =c¢; =...=c, =0. The basis S contains n + 1 elements, and it follows that
dim(P") = n+ 1. S is often called the standard basis for P". W
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dim(R") = n
dim(P") =n+1
dim(M,,) = pn

Example 7 The standard basis for M, is

s={[s oL [0 ol [0 8118 40)

(See Problem 5.) Thus, dim(M,y,) = 4. More generally, the standard basis for
M, is the set of pn matrices, each having a single 1 in a different position with
all other entries equal to zero. Consequently, dim(M,,) = pn. W

Example 8 The dimension of R" is n. R" = M ,,, when we represent n-tuples as
row matrices, whereas R" =M, ; when we represent n-tuples as column
matrices. Either way, it follows from Example 7 that dim(R") = dim(M,) =
dim(M,,.1) = n. The standard basis for R", considered as column matrices, is
depicted in (2.13). W

As an immediate consequence of Theorem 1, we obtain one of the more import-
ant results in linear algebra.

» Theorem 3. In an n-dimensional vector space, every set of n+1 or
more vectors is linearly dependent. <

Example9 Theset A= {[1 5], [2 —4], [-3 —41]} is a set of three vectors
in the two-dimensional vector space R?, considered as row matrices. Therefore,
A is linearly dependent. The set R = {r* +¢, > —t, t+ 1, t — 1} is a set of four
vectors in the three-dimensional vector space 2. Therefore, R is linearly
dependent. W

In Section 2.2, we surmised that lines through the origin and planes that include
the origin are subspaces of R*. The following theorem formalizes this conjecture
and provides a complete geometric interpretation of subspaces in R.

» Theorem 4. Let U be a subspace of R,
(1) If dim(U) = 0, then U contains just the origin.
(1) If dim(U) = 1, then the graph of U is a straight line
through the origin.
(i) If dim(U) = 2, then the graph of U is a plane that
includes the origin. <«

Proof: By definition, a vector space has dimension zero if and only if the vector
space contains just the zero vector, which for R* is the origin [0 0 0]. This
proves part (i).

If U is a one-dimensional subspace, then it has a basis consisting of a single
nonzero vector, which we denote as u. Every vector in U can be written as a linear
combination of vectors in a basis for U, which here implies that every vector v in
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Figure 2.6

U is a scalar multiple of u; that is, v = au for some scalar «. The set of all such
vectors graph as a line through the origin that contains u. (See Figure 2.3 for the
specialcaseu=[1 2 4]. In Figure 2.3, « > 1 generates a point on the line that
is further from the origin than u but in the same direction as u; & < 1 but still
positive generates a point on the line that is closer to the origin than u but still in
the same direction as u; a < 0 generates a point in the opposite direction of u.
Finally, if U is a two-dimensional subspace, then it has a basis consisting of two
nonzero vectors, which we denote as v; and v,. The vectors in such a basis must
be linearly independent, so v, cannot be a scalar multiple of v,. Therefore, v,
does not lie on the line through the origin containing v;. Any vector v in U can be
written as a linear combination of v; and v,, so

v=av)+8v

for particular values of the scalars a and 8. Consider the plane that contains the
two basis vectors. From the geometric representation of vector addition and
scalar multiplication in R? developed in Section 1.5, it follows that every point in
the plane containing the two basis vectors can be reached as a linear combination
of v; and v, and that every linear combination of these two vectors is in the plane
defined by those two vectors. (See Figure 2.6 where v denotes a point in the plane
defined by v; and v,; here 0 < @ < 1 and B is negative.) W

The standard basis in R?, considered as column vectors, consists of the two

vectors
1 0
el{o} and ez[l]

which in many engineering texts are denoted by i and j, respectively. Both are
graphed in Figure 2.7. For an arbitrary vector v in R?, we have

V= {Z} = ae; + bey = ai + bj

The standard basis in R>, considered as column vectors, consists of the three
vectors

plane containing v; and v,
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Figure 2.7

Figure 2.8

y
3+
24
11
i

] 1 | .t

Ll X
-2 -1 1 2 3

1t
24+

1 0
epe=10]|,e=|1|,andes=1]0
0 0 1
which in many engineering texts are denoted by i, j, and k, respectively. These are
graphed in Figure 2.8. For an arbitrary vector v in R, we have
a

v=|b| =ae + be; + ces = ai+ bj+ ck
¢

More generally, if S = {vy,v2, ...,V,} is a basis for a vector space V, then S is

a spanning set V. Consequently, if v € V, then there exist scalars d},d,, ...,d,
such that
v=d\vi +dovo + ...+ d,v, (2.18)
34
24
14
A
Mi
i | ] T T y
1 2 3
1
2
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We shall prove shortly that this set of scalars is unique for each v; that is, for each
v there is one and only one set of scalars dy,d, ...,d, that satisfies equation
(2.18). These scalars are called the coordinates of v with respect to S and are
represented by the n-tuple

di
d>
ve |

dl‘l §

Example 10 Find the coordinate representations of the vector v =[7 2]T, first
with respect to the standard basis C = {[1 0]7,[0 1]} and then with respect
to the basis D; = {[1 1]7,[1 —1]"}.

Solution: With respect to the standard basis, we have

HEUbIESH

so the coordinates are 7 and 2 and the 2-tuple representation is

2 2]
To determine the representation with respect to S;, we need to first write the

given vector as a linear combination of the vectors in S;. We need values of the
scalars d; and d, that satisfy the equation

) =ali] v o]

This is equivalent to the system of equations

di+dr =17
dy—dr, =2

which admits the solution d; = 9/2 and d» = 5/2. These are the coordinates of v
with respect to S1, and we may write

HE IR AR
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It was no accident in the previous example that the n-tuple representation of the
vector v with respect to the standard basis was the vector itself. This is always the
case for vectors in R” with respect to the standard basis. Consequently, we drop
the subscript notation on the n-tuple representation of the coordinates of a vector
whenever we deal with the standard basis.

Example 11 Determine the coordinate representation of the matrix [2 ;] with
respect to the basis

s={[1 310 S L o

Solution: We first determine scalars dy, dp,ds, and d, that satisfy the matrix

equation
4 3 0 1 1 0 1 1 11
o 2] ol el S eals 2] vali o]

This is equivalent to the system of equations

d+ds+dy =4
di+ds+dy =3
di+dr+dy =6
dy+dh+dy =2

which admits the solution d; = 1,d> = 2,d; = —1, and dy = 3. These are the
coordinates of the given matrix with respect to S, and we may write

1

43 2

[62]H—1 u
3§

The notation « signifies that the n-tuple on the right side equals the sum of the
products of each coordinate times its corresponding vector in the basis. The
subscript on the n-tuple denotes the basis under consideration. In Example 10,
the notation

9/2 91 57 1
[5/2}[') denotes the sum 5[1}—1—5[_1}

while in Example 11, the notation
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denotes the sum

31s

0 1 1 0 1 1 1 1
(1)[1 1}+(2>[1 1]+(—1)[0 1}+(3)[1 0]

Although a vector generally has different coordinate representations for different
bases, a vector’s coordinate representation with respect to any one basis is
unique! In Example 10, we produced two coordinate representations for the
vector [7 2]T, one for each of two bases. Within each basis, however, there is
one and only one coordinate representation for a vector. We formalize this fact
in the following theorem.

» Theorem 5. Let {vy,Vv, ...,V,} be a basis for a vector space \ and let
veV. If

v=cVi+eva+ ...t vy and v=divi +dovy + ...+ dyy,

are two ways of expressing v as linear combinations of the basis vectors,
then ¢; = d; for eachi (i=1,2,...,n). <«

Proof:

0=v—v
=(civi+eva+...+cpvy) —(divi +dova + ...+ dyvy)
=(c1 —d\)Vi +(c2 —dav2) + ... + (¢ — dp)Va

Vectors in a basis are linearly independent, so the only solution to the last
equation is for each of the coefficients within the parentheses to be 0. Therefore,
(¢; — d;) = 0 for each value of i, (i = 1,2, ...,n), which implies that ¢; = d.

We conclude this section with a two-part theorem, the proofs of which we leave
as exercises for the reader (see Problems 18 and 22).

» Theorem 6. Let V be an n-dimensional vector space.
(1) If'S is a spanning set for V, then some subset of S forms a
basis for V; that is, S can be reduced to a basis by deleting
from'S a suitable number (perhaps 0) of vectors.

(1) If'S is a linearly independent set of vectors in V, then
there exists a basis for \V that includes in it all the vectors
of S; that is, S can be extended to a basis by augmenting
onto it a suitable number (perhaps 0) of vectors. <«
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Problems 2.4
(1) Determine which of the following sets are bases for R?, considered as row matrices.
@ {[1 0L[1 1]} ® {[0 1.[1 17}
© {1 1LI1 2]} (@ {[1 21.[1 31}
@ {[1 2L[2 4]} (0 {[10 201.[10 —20]}.
(® {[10 20].[-10 —20]}. () {[1 1L[1 2L[2 1]}

(2) Determine which of the following sets are bases for R?, considered as column vectors.
o {BHS @Al lel)
I 3 121710
o ) @B
© { 20}’@8”' (f){ 0 “(5)8”
o (B} o {BLBE
(3) Determine which of the following sets are bases for R*, considered as row vectors.
(@ {[1 0 0],[0 1 0][0 O 1]}
by {[1 1 O0L[0O I 15[l O 17}
(¢ {[1 0 OL[l T OL[L T 17}
@ {[tr 1 op[o 1 I1L[1 2 17}
(e {[1 1 0][0 1 1L[l 3 1]}
@® {[t 1t oL[0 1 11[1 4 1]}
(® {[1 2 3104 5 6L[0 0 O}
() {[1 2 3L,[4 5 6L[7 8 91}
(4) Determine which of the following sets are bases for R, considered as column
vectors.
@ {1 2 1101 2 o]}
() {t 2 o1, 2 111 2 217
(© {[t 2 ol",[1 2 112 4 17"}
(@ {1 2 o1,[2 4 oI[2 4 1]'}
e {[1 2 -31%11 2 ol",[1 o -37"}.
® {1 12 o2 2 1t
@ {2 1 1112 2 11512 2 -17'}
() {(r 2 1701 3 1 o4 1h[r s o1th
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®

Determine which of the following sets are bases for Myyo».

w {[s S0 o] I3 815 2T}
o {fo o [0 o} [V T[T AT}
o {lo o}lo o1 o}l ]}
@ {1 oo 1] [ TR L)

(6) Determine which of the following sets are bases for P!

(@) {r+ 1,1} (b) {t+1,1}.
(© {r+1,1,1}. (d) {r+1,t—-1}.

(7) Determine which of the following sets are bases for P2.

@®

&)

(10)

an

12)

13)

(@ {#+t+1, 1}. b) {#+26t+1, 2+1, 1}
© {P+t+1, t+1,1} (D) {P+t4+1, 141, 11}
(@ {P+t t+1, 2+1}. O {2+t+1, t+1, 2}
Determine which of the following sets are bases for P>
@ {P+P2+62+t+11+1)

by {£,2.t1}.

(© {P+P+6P+r+1,1+1,1}.

(d {P+2.2+6t+1,1%

e {P+P2+6+22+60t+1,1}

) {(P+A7° -2+ 1t—1}).

(@ {F+2+1,3+2t+1,t—1%

h {F+2++2,02+1,8+1).

Find an n-tuple representation for the coordinates of [1 3] with respect to the sets
given in (a) Problem 1(a) and (b) Problem 1(d).

Find an n-tuple representation for the coordinates of [2 2] with respect to the sets
given in (a) Problem 1(a) and (b) Problem 1(d).

Find an n-tuple representation for the coordinates of [1 —1] with respect to the
sets given in (a) Problem 1(a) and (b) Problem 1(b).

Find an n-tuple representation for the coordinates of [1 —2]T with respect to the
sets given in (a) Problem 2(c) and (b) Problem 2(e).

Find an n-tuple representation for the coordinates of [ 100 —100 1F with respect to
the sets given in (a) Problem 2(e) and (b) Problem 2(f).
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(14

1s)

(16)

an

(18)

19
(20)

@1

(22

(23

24

(25

(26)

@7n

(28

29
(30)

@31
(32

(33

(34

Find an n-tuple representation for the coordinates of [1 1 0] with respect to the
sets given in (a) Problem 3(a), (b) Problem 3(b), and (c) Problem 3(c).

Find an n-tuple representation for the coordinates of ¢ + 2 with respect to the sets
given in (a) Problem 6(a) and (b) Problem 6(b).

Find an n-tuple representation for the coordinates of #* with respect to the sets given
in (a) Problem 8(c) and (b) Problem 8(d).

Let S be a spanning set for a vector space V, and let v € S. Prove that if v is a linear
combination of other vectors in the set, then the set that remains by deleting v from
S is also a spanning set for V.

Show that any spanning set for a vector space V can be reduced to a basis by
deleting from S a suitable number of vectors.

Reduce the set displayed in Example 3 to a basis for M.

Show that the set displayed in Problem 1(h) is a spanning set for R? and reduce it to
a basis.

Show that the set displayed in Problem 7(b) is a spanning set for [P? and reduce it to
a basis.

Prove that any linearly independent set of vectors in a vector space V can be
extended to a basis for V. Hint: Append to the set a known basis and then use
Problem 18.

Extend the set displayed in Example 2 into a basis for P3.

Show that the set displayed in Problem 4(a) is linearly independent and extend it
into a basis for R>.

Show that the set displayed in Problem 8(a) is linearly independent and extend it
into a basis for P*,

Prove that a spanning set for a vector space V cannot contain less elements then the
dimension of V.

Prove that any set of two vectors in R? is a basis if one vector is not a scalar multiple
of the other.

Let W be a subspace of a vector space V and let S be a basis for W. Prove that S can
be extended to a basis for V.

Let W be a subspace of a vector space V. Prove that dim(W) < dim(V).

Let W be a subspace of a vector space V. Prove that if dim(W) = dim(V), then
W=V.

Prove that in an n-dimensional vector space V no set of n — 1 vectors can span V.

Prove that if {v;,v,} is a basis for a vector space, then so too is {uj,u,}, where
u =vy+vyand up = vy —vy.

Prove that if {v|, v2, v3} is a basis for a vector space, then so too is {u;, up, uz}, where
Uy =V +Vvy+v3,u=v, —v3, and u3 = vs.

Prove that if {v;,vs,...,v,} is a basis for a vector space, then so too is
{kivi,kava, .. kyv Hur, up, us }, where ky, ks, ..., k, is any set of nonzero scalars.
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2.5 ROW SPACE OF A MATRIX

The row space of a
matrix is the
subspace spanned
by the rows of the
matrix; the
dimension of the
row space is the row
rank.

An m x n matrix A contains m-rows and n-columns. Each row, considered as
a row matrix in its own right, is an element of R", so it follows from Theorem 4 of
Section 2.3 that the span of the rows, considered as row matrices, is a subspace.
We call this subspace the row space of the matrix A. The dimension of the row
space is known as the row rank of A.

1 23
4 5 6

[4 5 6], both of which are elements of R*. The row space of A consists of
all linear combinations of these two vectors; that is, if we set S ={[1 2 3],
[4 5 6]}, then the row space of A is span(S). The dimension of span(S) is the
row rank of A. W

Example 1 The matrix A[ ] 1 has two rows, [1 2 3] and

To determine the row rank of a matrix, we must identify a basis for its row space
and then count the number of vectors in that bases. This sounds formidable, but
as we shall see that it is really quite simple. For a row-reduced matrix, the
procedure is trivial.

» Theorem 1. The nonzero rows of a row-reduced matrix form a basis
for the row space of that matrix, and the row rank is the number of
nonzero rows. <«

Proof: Let v; designate the first nonzero row, v, the second nonzero row, and
so on through v,, which designates the last nonzero row of the row-reduced
matrix. This matrix may still have additional rows, but if so they are all zero. The
row space of this matrix is span{v,vo, ...,v,}. The zero rows, if any, will add
nothing to the span.

We want to show the nonzero rows form a basis for the row space. Thus, we
must show that these rows, considered as row matrices, span the subspace and
are linearly independent. They clearly span the subspace, because that is precisely
how the row space is formed. To determine linear independence, we consider the
vector equation

cavi+ovr+...+c¢v. =0 (2.19)

The first nonzero element in the first nonzero row of a row-reduced matrix must
be one. Assume it appears in column j. Then, no other row has a nonzero element
in column j. Consequently, when the left side of equation (2.19) is computed, it
will have ¢; as its jth component. Because the right side of (2.19) is the zero
vector, it follows that ¢; = 0. With ¢; = 0, equation (2.19) reduces to

Vo +e3v3+ ...+ ¢v, =0
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A similar argument then shows that ¢; = 0. With both ¢; = ¢; = 0, equation
(2.19) becomes

V3 +ceaVa+ ...+ v, =0

A repetition of the same argument shows iteratively that ¢, c;, ..., ¢, are all
zero. Thus, the nonzero rows are linearly independent. W

Example 2 Dectermine the row rank of the matrix

1 0 -2 53
00 1 -4 1
A=1o00 0 10
00 0 00

Solution: A is in row-reduced form. Because A contains three nonzero rows, the
rowrank of Ais3. W

Most matrices are not in row-reduced form. All matrices, however, can be
transformed to row-reduced form by elementary row operations, and such
transformations do not alter the underlying row space.

» Theorem 2. If B is obtained from A by an elementary row operation,
then the row space of A is the same as the row space of B. <

Proof: We shall consider only the third elementary row operation and leave
the proofs of the other two as exercises (see Problems 46 and 47). Let B be
obtained from A by adding N times the jth row of A to the kth row of
A. Consequently, if we denote the rows of A by the set of row matrices A =
{AI,As, ..., A, ... A, ... A, } and therows of Bby B = {B,B,, ....B;, ...,
B, ....B,}, then B; = A;foralli=1,2, ...,nexcept i = k, and By = A + \A;.
We need to show that if v is any vector in the span of A, then it is also in the span
of B and vice versa.

If v is in the span of A, then there exists constants ¢y, ¢, ..., ¢, such that
vV=_CA +C2A2—|—...+CjAj+...+CkAk—‘r...-‘,—CnAn.
We may rearrange the right side of this equation to show that

V=C1A1+C2A2+...+(Cj+)\ck—)\C/()Aj—‘r...—‘erAk—F...-i-CnA,,
=ClA1+02A2+...+(Cj—)\C/()Aj—i-...—‘rck(Ak—l—)\Aj)-‘r...-i-ann
=cBi+aB+.. . 4+ —Ae)Bj+ ...+ B +... + B,

Thus, v is also in the span of B.
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To find the row
rank of a matrix, use
elementary row
operations to
transform the
matrix to row-
reduced form and
then count the
number of nonzero
TOWS.

Conversely, if v is in the span of B, then there exists constants di, ds, . .., d, such
that

v=dB +d2B2+...+ijj+...+dkBk+...+dan
We may rearrange the right side of this equation to show that

VZdlAl—‘rdzAz—l—...—I—cl'j-Aj—‘y-...—l—dk(Ak—l—)\A,-)—i-...—i—dnAn
=diA|+ Ay + ..+ (d+dNA + . d A+ L+ dA,

Thus, v is also in the span of A. W

As an immediate extension of Theorem 2, it follows that if B is obtained from A
by a series of elementary row operations, then both A and B have the same row
space. Together Theorems 1 and 2 suggest a powerful method for determining
the row rank of any matrix. Simply use elementary row operations to transform
a given matrix to row-reduced form and then count the number of nonzero rows.

Example 3 Determine the row rank of

1 3 4
2 -1 1
A= 3 2 5
5 15 20

Solution: In Example 5 of Section 1.4, we transformed this matrix into the row-
reduced form

SO O =
SO = W
SO = B

Because B is obtained from A by elementary row operations, both matrices have
the same row space and row rank. B has two nonzero rows, so its row rank, as
well as the row rank of A, is2. W

Example 4 Determine the row rank of

1 2 1 3
A=|2 3 -1 -6
3 -2 -4 -2

Solution: In Example 6 of Section 1.4, we transformed this matrix into the row-
reduced form
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A basis for the row
space of a matrix is
the set of nonzero
rows of that matrix,
after it has been
transformed to row-
reduced form by
elementary row
operations.

To find a basis for a
set of n-tuples,
create a matrix
having as its rows
those n-tuples and
then find a basis for
the row space of
that matrix.

1 21 3
B=|0 1 3 12
001 5

B has three nonzero rows, so its row rank, as well as the row rank of A, is3. W

A basis for the row space of a matrix is equally obvious: namely, the set of
nonzero rows in the row-reduced matrix. These vectors are linearly independent
and, because they are linear combinations of the original rows, they span the
same space.

Example 5 Find a basis for the row space of the matrix A given in Example 3.

Solution: The associated row-reduced matrix B (see Example 3) has as nonzero
rows the row matrices[1 3 4]and[0 1 1]. Together these two vectors are
a basis for the row space of A. W

Example 6 Find a basis for the row space of the matrix A given in Example 4.

Solution: The associated row-reduced matrix B (see Example 4) has as nonzero
rows the row matrices[1 2 1 3],[0 1 3 12],and[0 O 1 5]. These
three vectors form a basis for the row space of A. W

A basis of the row space of a matrix A is a basis for the span of the rows of A.
Thus, we can determine a basis for any set of n-tuples simply by creating a matrix
A having as its rows those n-tuples and then finding a basis for the row space of

A. This is an elegant procedure for describing the span of any finite set of vectors
Sin R".

2 3 8
Example 7 Find a basis for the span of S = 61,1, 16
-2 2 -3

Solution: We create a matrix A having as its rows the vectors in S. Note that
the elements of S are column matrices, so we use their transposes as the rows of
A. Thus,

2 6 -2
A=1(3 1 2
8§ 16 -3

Reducing this matrix to row-reduced form, we obtain

1 3 -1
0 1 -5/8
0 0 0
The nonzero rows of this matrix, [1 3 —1]and [0 1 —5/8], form a basis

for the row space of A. The set of transposes of these vectors
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1 0
B = 3], 1
1] | -5/8

is a basis for the span of S, therefore, span(S) is the set of all linear combinations
of the vectorsin B. W

We can extend this procedure to all finite-dimensional vector spaces, not just
n-tuples. We know from Section 2.4 that every vector in a finite-dimensional
vector space can be represented by an n-tuple. Therefore, to find a basis for the
span of a set of vectors S that are not n-tuples, we first write coordinate
representations for each vector in S, generally with respect to a standard basis
when one exists. We then create a matrix A having as its rows the coordinate
representations of the vectors in S. We use elementary row operations to identify
a basis for the row space of A. This basis will consist of n-tuples. Transforming
each n-tuple in this basis vector back to the original vector space provides a basis
for the span of S.

Example 8 Find a basis for the span of the vectors in
C={r+32 20 +2t—2, -6 +31—3, 3 —1+1}
Solution: The vectors in C are elements of the vector space [P*, which has as its

standard basis {t3, 21, 1}. With respect to this basis, the coordinate representa-
tions of the polynomials in C are

1 2
3 0
3 2 3
43t , 2042t-2 ,
+3" « 0 + — )
0 -2
1 0
—6 3

P —6r4+3t—3 3 | and 37 —14+1<
-3 1

We create a matrix A having as its rows these 4-tuples. Thus,

1 3 0 0
2 0 2 =2
A= 1 -6 3 -3
0 3 -1 1

Reducing this matrix to row-reduced form, we obtain
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13 0 0
o1 <13 13
B=100 0 o0
00 0 0

The nonzero rows of B, namely, [1 3 0 OJand[0 1 -1/3 1/3], forma
basis for the row space of A. The set of transposes of these vectors are coordinate
representatives for the polynomials

1 0

1 1
3 — £ 43¢, and _1}3 <—>tz—§t+§.
0 1/3

These two polynomials are a basis for span(C). W

Example 9 Describe the span of the vectors in set

o= (o s} 6 10 2 o)

Solution: The vectors in R are elements of the vector space Ml,,», which has as

its standard basis
1 0 0 1 0 0 0 0
0O 0’0 O’|1 O)>]0 1

Coordinate representations of the matrices in R with respect to the standard
basis are

N L) N 0 & BN K N (O 1
{0 0]_()[0 0]+()[0 0]+()[1 0}—'—(){0 1}H 0

0

0 1 10 0 1 0 0 0 0 1
{0 1]_@{0 0]“1){0 0]+(0)[1 0}“1){0 1}‘_’ 0
I

10 10 0 1 0 0 0 0
o =0l o] refs o] rolt o] renf 5] -

—_—0 O
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0 0 10 0 1 00 0 0
ol o roly ool ool i)

—_——O O

0 1 10 0 1 0 0 0 0
ol =ols s sols o <ot o] oy v] -

We create a matrix A having as its rows these 4-tuples. Thus,

S = = O

1 1.0 0
010 1
A=(1 0 0 -1
00 1 -1
0 1 1 0

Reducing this matrix to row-reduced form, we obtain

1 1.0 0
010 1
B=(0 0 1 -1
00 0 O
00 0 O

The nonzero rows of B,[1 1 0 OL[0 1 0 1],and[0 O 1 —1],form
a basis for the row space of B. The set of transposes of these vectors are
coordinate representatives for the matrices

.
1 AT O [0 T 0T L f® O [t !
0 H(){o O}H){o 0]+()[1 o%()[o 1}_[0 0]
L0

o

1 o1 0T [ 1T [0 07, [0 0] _[0 1
0 H()[o 0}+(){0 0]+()[1 o]+()[o 1}_{0 1}
0-

O ot Oy f® 1], [0 © N
1 H()[o 0%(){0 0}“)[1 0]+(_ ){o 1]_{1 —1]
—1]
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These three matrices form a basis for span(R). Consequently, every matrix in the
span of R must be a linear combination of these three matrices; that is, every
matrix in span(S) must have the form

oo eely 1]l

for any choice of the scalars @, 8, and v. W

[a a+B]
Yy B+vy

Row rank is also useful for determining if a set of n-tuples is linearly independent.

» Theorem 3. Let S be a set of k n-tuples and let A be the k x n matrix
having as its rows the n-tuples in S. S is linearly independent if and only
if the row rank of A is k, the number of elements in S. <«

Proof: Assume that the k n-tuples of S are linearly independent. Then these k
n-tuples are a basis for span(S), which means that the dimension of span(S) is k.
But the row rank of A is the dimension of the row space of A, and the row space
of A is also span(S). Because every basis for the same vector space must contain
the same number of elements (Theorem 2 of Section 2.4), it follows that the row
rank of A equals k.

Conversely, if the row rank of A equals k, then a basis for span(S) must contain k
n-tuples. The vectorsin S are a spanning set for span(S), by definition. Now, either
Sis linearly independent or linearly dependent. If it is linearly dependent, then one
vector must be a linear combination of vectors that precede it. Delete this vector
from S. The resulting set still spans S. Keep deleting vectors until no vector is a
linear combination of preceding vectors. At that point we have a linearly inde-
pendent set that spans S that is a basis for span(S), which contains fewer than k
vectors. This contradicts the fact that the dimension of span(S) equals k. Thus, S
cannot be linearly dependent, which implies it must linearly independent. W

Example 10 Determine whether the set

D={0 1 2 3 0][1 3 —1 2 1],
[2 6 -1 =3 114 0 1 0 2]}

is linearly independent.

Solution: We consider the matrix

0 1 30
1 3 — 21
A=l 6 1 -3 1
4 0 0 2
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which can be transformed (after the first two rows are interchanged) to the row-
reduced form

13 -1 2 1
01 2 3 0
B=10 0 1 -7 -
00 0 1 27231

Matrix B has four nonzero rows, hence the row rank of B, as well as the row rank
of A, is four. There are four 5-tuples in D, so it follows from Theorem 3 that S is
linearly independent. W

We can extend Theorem 3 to all finite-dimensional vector spaces, not just
n-tuples. We represent every vector in a given set S by an n-tuple with respect
to a basis and then apply Theorem 3 directly to the coordinate representations.

Example 11 Determine whether the set of four polynomials in Example 8 is
linearly independent.

Solution: Coordinate representations for each of the given polynomials with
respect to the standard basis in [P* were determined in Example 8. The matrix A
in Example 8 has as its rows each coordinate representation. A can be trans-
formed into the row-reduced form of the matrix B in Example 8. It follows that
the row rank of B is two, which is also the row rank of A. This number is less
than the number of elements in S, hence S is linearly dependent. W

Problems 2.5
In Problems 1 through 21, find a basis for span(S).

171 27 [4
@ s= 1], |-t ]t}
2] | o] [4
17 2] [4
@ s=<{|1],|1].]1
2] [o] |4

27 [-27 [4] [-4]
@3 s=<{|1].|-1].]2].]-2
2] | 2] [4] [-4]
(17 [=17 [0] [—1T
@ s=¢ol.| t|.]t].] 2
2] [-1] [1] | o

G S={1 2 -1 110 1 2 1L[2 3 -4 11[2 4 —2 2].
6 S={0 11 11[1 0 0 I1}[-1 1 1 0L[1 1 0 1]}

(M S={1 0 -1 1L[3 1 0 1L[1 1 2 —1L[3 2 3 ~—1].
1
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® S={2 2 1 1}[1 =1 0 1L,[0 —4 —1 1L[1 0 2 1],
[0 -1 2 2.
© S={1 2 4 0L[2 4 8 0L[1 -1 0 1L[4 2 8 2],
[4 -1 4 3]}
10) S={+¢ t+1, £+1,1}
A1) S={+t+1, 22 -2t+1, 2 -3t}.
12) S={e, t+1, t—1,1}.
13) S={+1t t-1, P+1}.
14) S={P+t+1, t+1, £}
A5) S={P+2—t, P+22+1, 28432 —t+1, 38 +52 —1t+2}.
16) S={28+2+1, P41, 208 —t+1, t+1, 28 +2}.
A7) S={A+32, 2+1, t+1, 8 +42+t+2, 2 +t+2}.
1 0] [0 1 1 2 1 3
(18) S*{_o 0”10 0}’{0 O}’{O 0}}
't 17 -1 1 1 -1 1 1
19 SZ{_I 0] 1 0}’{1 0}’{71 0”'
1 0] [0 1 1 1 1 -1
(20) Si{_O 1_’_1 0}’{1 1]’{—1 1}}
't 371 2 0 1 2 17
@n g_{_l 2_’_1 1}’{0 1]’{2 5}}
In Problems 22 through 43, use row rank to determine whether the given sets are linearly
independent.
22) {[1 0l[0 11}
23 {[1 1L[1 —1]}
24 {[2 —-41[-3 6]}
(17 [17 [0]
(25) of,|tf, 1]}
1] 0] |1]
(17 [17 27
(26) 0f,[0],]0] ».
1] 12] |1]
(17 1] [ 1
2N o, |1],]-1]}%.
1] 1] | 1
(07 [37 [2
(28) of,|21(,1]8%.
3
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(29

(30)
@31
(32)
(33

(34

(35

(36)

37

(3%
(39
(40)
41)
42)
43
44
45)
(46)

7

17 37 [2
20120111 5.
3 |1 |3
{1 1 0L[1 -1 O]
{1 2 31.[-3 -6 -9}
{[10 20 20], [10 —10 10], [10 20 10]}.

{{2 1 1,[3 -1 4L[1 3 -=2]}
_ L 170 o

_0 0_’»1 1_’_1 1_ ’
1 171 0] [0 O]
_0 0_’_1 1_’_1 1_ ’
(1 o] [1 1771 1] 70 1
|1 1)7[1 o]0 171 1]f
(1 o] [1 1]]2 2 1 0

|1 1|1 o][o 2)[2 O
{1,2}.

B+, 8+t 2+1}

B+, 78—, 8 -32).

—_
—_
—_
—_
(e}

B+, -2, 02—t A +1}L

P+t 2+t—1, 241, 1}

{P+1, 2+1-2, 1}

Can a 4 x 3 matrix have linearly independent rows?

Prove that if the row rank of an m x n matrix is k, then k& < minimum {m, n}.

Prove that if a matrix B is obtained from a matrix A by interchanging the positions of
any two rows of A, then both A and B have the same row space.

Prove that if a matrix B is obtained from a matrix A by multiplying one row of A by
a nonzero scalar, then both A and B have the same row space.

2.6 RANK OF A MATRIX

We began this chapter noting that much of mathematical analysis is identifying
fundamental structures that appear with regularity in different situations, devel-
oping those structures in the abstract, and then applying the resulting knowledge
base back to the individual situations to further our understanding of those
situations. The fundamental structure we developed was that of a vector space.
We now use our knowledge of this structure to further our understanding of sets
of simultaneous linear equations and matrix inversion.
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The column space of
a matrix is the
subspace spanned
by the columns of
the matrix; the
dimension of the
column space is the
column rank.

In the last section we defined the row space of a matrix A to be the subspace
spanned by the rows of A, considered as row matrices. We now define the column
space of a matrix A to be the subspace spanned by the columns of A, considered
as column matrices. The dimension of the column space is called the column
rank of A.

1 2 3
4 5 6

The column space of A consists of all linear combinations of the columns of A;

hat . wo {1

then the column space of A is span(T). The dimension of span(T) is the column
rank of A. W

Example1 The matrix A = { } has three columns, all belonging to R

The row space of a p X n matrix A is a subspace of R" while its column space is a
subspace of R”, and these are very different vector spaces when p and n are
unequal. Surprisingly, both have the same dimension. The proof of this state-
ment is a bit lengthy, so we separate it into two parts.

» Lemma 1. The column rank of a matrix is less than or equal to its row
rank. <«

Proof: Let Aj,A,, ..., A, be the rows, considered as row matrices, of a p x n
matrix A = [a;]. Then

Ai=laqn ap ... ap); (=12,...,p)

Let k denote the row rank of A. Thus, k is the dimension of the subspace spanned
by the rows of A, and this subspace has a basis containing exactly k vectors.
Designate one such basis as the set B = {u;, uy, ..., u;}. Each vector in the basis
is an n-tuple of the form

w=[u1 up - upl; (=12,..., k)

Since B is a basis, every vector in the subspace spanned by the rows of A can be
written as a linear combination of the vectors in B, including the rows of A
themselves. Thus,

A =diu +dpup + - -+ dijug
Ay = doyuy + dypuy + -+ + doyuy

A, = dpuy + dpuy + - - - + dprug
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The rank of a
matrix A, denoted
as r(A), is the row
rank of A, which is
also the column
rank of A.

for some set of uniquely determined scalars d; (i=1,2,...;j=1,2,...,k).
In each of the preceding individual equalities, both the left and right sides are
n-tuples. If we consider just the jth component of each n-tuple (j = 1,2, ...,n),

first the jth component of A}, then the jth component of A,, sequentially through
the jth component of A,, we obtain the equalities

ay; = dyuy + dioug; + - - - 4 digy

ayj = dauyy + dounj + - - - + doukg

apj = dpiuij + dpotinj + -+ - + dprtti

which can be rewritten as the vector equation

ai; d din dik

) dy dr i
=uy| . +uwy| . + -t Uy

Apj dpl de dpk

Thus, the jth column of A can be expressed as a linear combination of k vectors.
Since this is true for each j, it follows that each column of A can be expressed as a
linear combination of the same k vectors, which implies that the dimension of the
column space of A is at most k. That is, the column rank of A < k = the row
rank of A.

» Theorem 1. The row rank of a matrix equals its column rank. <«

Proof: For any matrix A, we may apply Lemma 1 to its transpose and conclude
that the column rank of AT is less than or equal to its row rank. But since the
columns of AT are the rows of A and vice versa, it follows that the row rank of A
is less than or equal to its column rank. Combining this result with Lemma 1, we
have Theorem 1. W

Since the row rank and column rank of a matrix A are equal, we refer to them
both simply as the rank of A, denoted as r(A).

With the concepts of vector space, basis, and rank in hand, we can give explicit
criteria for determining when solutions to sets of simultaneous linear equations
exist. In other words, we can develop a theory of solutions to complement our
work in Chapter 1.
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A system of m simultaneous linear equations in #» unknowns has the form

anxi +apxy + -+ apx, = by

anXxy + anxs + -+ + ayx, = by

(2.20)
A1 X1 + A X2 + -+ + QunXp = biy
or the matrix form
Ax=b (2.21)
If we denote the columns of A by the m-dimensional column matrices
ap an din
A = i Ay an o A — aon
am1 am2 Amn
then we can rewrite (2.20) in the vector form
XA+ xA 4+ -+ x,A,=b (2.22)

Example 2 The system of equations

x—2y+4+3z=17
4x 4+ 5y — 6z =38

has the vector form

NEEEREE
4 5 —6 8

Solving (2.20) or (2.21) is equivalent to finding scalars x;2, ..., x, that satisfy
(2.22). If such scalars exist, then the vector b is a linear combination of the
vectors Ay, Ay, ..., A,. That is, b is in the span of {A,A,, ..., A,} or, equiva-
lently, in the column space of A. Consequently, adjoining b to the set of vectors
defined by the columns of A will not change the column rank of A. Therefore, the
column rank of A must equal the column rank of [A|b]. On the other hand, if no
scalars xi,xp, ..., x, satisfy (2.22), then b is not a linear combination of
A, Ay, ..., A,. That is, b is not in the span of {A, Ay, ..., A,}, in which case,
the column rank of [A|b] must be greater by 1 than the column rank of A. Since
column rank equals row rank equals rank, we have proven Theorem 2.
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» Theorem 2. The system Ax=Db is consistent if and only if
r(A) =r{Ab]. <«

Example 3 Determine whether the following system of equations is consistent:

x+y—z=1
x+y—z=0

Solution:

11 -1 1 11 11
A:{l 1 —1}’ b:[o]’ [Ab]:[l 1 —1‘0]

[A]b] is transformed to row-reduced form

{l 1 _1‘1] {1 1 _1' 1} by adding to the
—

second row
1 —1]0 00 0f-1 — 1 times the first row
. (2.23)
1 1 _1 1 by mul‘[lplylng
— [ ’ ] the second row
0 0 0|1 by —1

This matrix has two nonzero rows, hence r[A|b] = 2. If we delete the last column
from the matrix in (2.23), we have A in the row-reduced form

1 1 -1
00 0
This matrix has one nonzero row, so r(A) = 1. Since r(A) # r[A|b], it follows

from Theorem 2 that the given set of equations has no solution and is not
consistent. W

Example 4 Determine whether the following system of equations is consistent:

XxX+y+w=3
2x+2y+2w =06
—Xx—y—w=-3
Solution:
1 1 1 3 1 1 1| 3
A= 2 2 2|, b= 6(, [Ab]= 2 2 216
-1 -1 -1 -3 -1 -1 -1|-3
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By transforming both A and [A]b] to row-reduced form, we can show that
r(A) = r[A|b] = 1. Therefore, the original system is consistent. Il

Once a system is determined to be consistent, the following theorem specifies the
number of solutions.

» Theorem 3. If the system Ax =b is consistent and if r(A) =k, then
solutions to the system are expressible in terms of n—k arbitrary
unknowns, where n denotes the total number of unknowns in the
system. <«

Proof: To determine the rank of the augmented matrix [A|b], reduce the
augmented matrix to row-reduced form and count the number of nonzero
rows. With Gaussian elimination, we can solve the resulting row-reduced matrix
for the variables associated with the first nonzero entry in each nonzero row.
Thus, each nonzero row defines one variable and all other variables remain
arbitrary. W

Example 5 Determine the number of solutions to the system described in
Example 4.

Solution: The system has three unknowns, x, y, and w, hence n = 3. Here
r(A) = r[A|b] = 1, so k = 1. The solutions are expressible in terms of 3 — 1 =2
arbitrary unknowns. Using Gaussian elimination, we find the solution as
x =3 —y — w with both y and w arbitrary. W

Example 6 Determine the number of solutions to the system

2x =3y 4+z= -1

XxX—y+2z=2
2x+y—3z=3
Solution:
2 =3 1 —1 2 -3 11-1
A=|1 -1 21, b= 21, [Abp]l=]1 -1 21 2
2 1 -3 3 2 1 -3 3

By transforming both A and [A]b] to row-reduced form, we can show that
r(A) = r[A|b] = 3; hence, the given system is consistent. In this case, n =3
(three variables) and (rank) k& = 3; the solutions are expressible in terms of
3 — 3 =0 arbitrary unknowns. Thus, the solution is unique (none of the un-
knowns is arbitrary). Using Gaussian elimination, we find the solution as
x=y=2,z=1. N
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A homogeneous
system of equations
is always consistent,
and one solution is
always the trivial
solution.

A homogeneous system of simultaneous linear equations has the form

anxy +apxy + -+ apx, =0

anxi + anxs + -+ ayx, =0
(2.24)

A1 X1 + Ay X2 + -+ + A Xy = 0
or the matrix form
Ax =0 (2.25)

Since (2.25) is a special case of (2.21) with b = 0, Theorems 2 and 3 remain valid.
Because of the simplified structure of a homogeneous system, however, we can
draw conclusions about it that are not valid for nonhomogeneous systems. In
particular, a homogeneous system is consistent, because the trivial solution x = 0
is always a solution to Ax = 0. Furthermore, if the rank of A equals the number
of unknowns, then the solution is unique and the trivial solution is the only
solution. On the other hand, it follows from Theorem 3 that if the rank of A is
less than the number of unknowns, then the solution will be in terms of arbitrary
unknowns. Since these arbitrary unknowns can be assigned nonzero values,
nontrivial solutions exist. Thus, we have Theorem 4.

» Theorem 4. A homogeneous system of equations Ax = 0 in n unknowns
will admit nontrivial solutions if and only if r(A) #n. <«

The concept of rank also provides the tools to prove two results we simply stated
in the previous chapter. We can now determine a criterion for the existence of an
inverse and also show that, for square matrices, the equality AB = I implies the
equality BA = I. For convenience, we separate the analysis into segments.

» Lemma 2. Let A and B be n x n matrices. If AB = 1, then the system of
equations AxX =y has a solution for every choice of the vectory. <«

Proof: Once y is specified, set x = By. Then
Ax = A(By) = (AB)y = Iy =y

hence x = By is a solution of Ax =y. W

» Lemma 3. If A and B are n x n matrices with AB =1, then the rows
of A, considered as n-dimensional row matrices, are linearly
independent. <
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Proof: Designate the rows of A by A}, As, ..., A,, respectively, and the columns

of I as the vectors ey, ey, ...,e,, respectively. It follows from Lemma 2 that the
set of equations Ax =e¢; (j = 1,2, ..., n) has a solution for each j. Denote these
solutions by xi, Xy, ..., X,, respectively. Therefore,

AX; = ¢; (2.26)

Since e; is an n-dimensional column matrix having a unity element in row j and
zeros elsewhere, it follows from (2.26) that, for i = 1,2, ..., n,

1 wheni=j

ith component of Ax; = { 0 when i/

This equation can be simplified if we make use of the Kronecker delta &
defined as

_J1 wheni=j
5’7_{0 when i # j (227)

Thus, (2.26) may be written as
ith component of Ax; = §;

or, more simply, as

Ain = 61/ (228)
Now consider the vector equation
> cAi=0 (2.29)
i=1

We want to show that each constant ¢; (i = 1,2, ...,n) must be 0. Multiplying
both sides of (2.29) on the right by the vector x;, and using Eqs. (2.27) and (2.28),
we have

n n n n
0=0x; = (Z CfAt> X = (AN =Y clAix) =Y 8y =¢
i—1 i—1 i—1 i—1
Thus, for each x;(j=1,2,...,n) we have ¢; =0, which implies that
¢y = ¢y =---=¢, =0 and that the rows of A, namely, A, A, ..., A,, are lin-
early independent. W

It follows directly from Lemma 3 and the definition of an inverse thatif an n x n
matrix A has an inverse, then A must have rank #. This in turn implies that if A
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does not have rank n, then A does not have an inverse. We also want the
converse: that is, if A has rank #z, then A has an inverse.

» Lemma 4. If an n x n matrix A has rank n, then there exists a square
matrix C such that CA =1. <«

Proof: 1If an n x n matrix A has rank »n, then its row-reduced form is an upper
triangular matrix with all elements on the main diagonal equal to 1. Using these
diagonal elements as pivots, we can use elementary row operations to further
transform A to an identity matrix. Corresponding to each elementary row
operation is an elementary matrix. Therefore, if A has rank #n, then there is
a sequence of elementary matrices E{, E,, ..., E;_;, E; such that

E:E; ;... B EA =1
Setting

C=EFE, .. EE (2.30)

we have

CA=1 m (2.31)

» Lemma 5. If A and B are n x n matrices such that AB =1, then
BA=1 <«

Proof: 1f AB =1, then it follows from Lemma 3 that A has rank n. It then
follows from Lemma 4 that there exists a matrix C such that CA = 1. Conse-
quently,

C=CI=C(AB)=(CAB=IB=B

so the equality CA = I implies that BA=1. W

If we replace A by C and B by A in Lemma 5, we have that, if Cand A are n x n
matrices such that CA = I, then it is also true that

AC =1 (2.32)

Therefore, if A is an n x n matrix with rank », then (2.31) holds, whereupon
(2.32) also holds. Together (2.31) and (2.32) imply that C is the inverse of A.
Thus, we have proven Theorem 5.
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» Theorem 5. An n x n matrix A has an inverse if and only if A has
rank n. <

In addition, we also have Theorem 6.

» Theorem 6. A square matrix has an inverse if and only if it can be
transformed by elementary row operations to an upper triangular matrix
with all elements on the main diagonal equal to 1. <«

Proof: Ann x nmatrix A has an inverse if and only if it has rank n (Theorem 5).
It has rank » if and only if it can be transformed by elementary row operations
into a row-reduced matrix B having rank n (Theorem 2 of Section 2.5). B has
rank 7 if and only if it contains n nonzero rows (Theorem 1 of Section 2.5).
A row-reduced, n x n matrix B has n nonzero rows if and only if it is upper
triangular with just ones on its main diagonal.

Problems 2.6

In Problems 1 through 7, find the ranks of the given matrices.
(1 2 0 2 8 -6

M5 —5} @ {—1 4 3}'
(4 1 4 3

3 |2 3. @ (6 12].
12 2 9 18
1 4 =2 1 2 4 2

) 2 8 —4. @ |1 1 3 2.
-1 -4 2 1 4 6 2
(1 7 0

7 |0 1 1}].
|1 10

(8) What is the largest possible value for the rank of a 2 x 5 matrix?

(9) What is the largest possible value for the rank of a 4 x 3 matrix?
(10) What is the largest possible value for the rank of a 4 x 6 matrix?
(11) Show that the rows of a 5 x 3 matrix are linearly dependent.
(12) Show that the columns of a 2 x 4 matrix are linearly dependent.
(13) What is the rank of a zero matrix?

(14) Use the concept of rank to determine whether [3 7] can be written as a linear
combination of the following sets of vectors.

@ {1 2504 8]}, () {[1 2L[3 2]}
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(15) Use the concept of rank to determine whether [2 3] can be written as a linear
combination of the following sets of vectors.

@ {[10
© {2

15],[4 6]},
—41,[-3 6]}
(16)

(b) {[1

Use the concept of rank to determine whether [1 1

1,[1 —1]},

1 }T can be written as a linear

combination of the following sets of vectors.

SRR
© 01, |1,
_l_ _1_

o L = AL
il

In Problems 17 through 25, discuss the solutions of the given systems of equations in
terms of consistency and number of solutions. Check your answers by solving the systems

wherever possible.

a7 x—=2y=0
x+y=1
2x —y=1
19 x+y+z=1
X—y+z=2
Ix+y+3z=4
(21) 2x—y+z=0
x+2y—z=4
x+y+z=1
(23) x—y+2z=0
2x+3y—z=0

—2x+T7y—-T7z=0

25 x—2y+3z+3w=0
y=2z42w=0
xX+y—3z4+9%9% =0

18) x+y=0
2x =2y =1
x—y=0
(20) x+3y+2z—w=2
2x—y+z+w=3
(22) 2x+3y=0
x—4y=0
(24) x—y+2z=0
2x —3y+5z=0
—2x+7y—-9z=
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Chapter 2 Review

Important Terms

Important Concepts

Section 2.1 [
>

Section 2.2 S

\4

Section 2.3 >

v

Section 2.4 S

additive inverse (p. 86) P" (p.92)

basis (p. 120) R" (p. 89)
column rank (p. 145) rank (p. 144)
column space(p. 145) row rank (p. 134)

coordinates (p. 128) row space (p. 134)

dimension (p. 124) span of vectors (p. 106)

finite-dimensional vector space spanning set (p. 119)
(p. 122) subspace (p. 99)

linear combinations (p. 106) vector (p. 86)

linearly dependent vectors  (p. 110)
linearly independent vectors

(p. 110)
Myxn  (p. 89)

vector space (p. 86)
zero vector (p. 93)

The zero vector in a vector space is unique.

The additive inverse of any vector v in a vector space is unique and isequal to —1 - v.
A nonempty subset S of a vector space V is a subspace of V if and only if S is
closed under addition and scalar multiplication.

If a subset of a vector space does not include the zero vector, then that subset
cannot be a subspace.

Lines through the origin and planes that contain the origin are subspaces of R>.
The span of a set of vectors S in a vector space V is the smallest subspace of V
that contains S.

A set of vectors is linearly dependent if and only if one of the vectors is a linear
combination of the vectors that precede it.

Two vectors are linearly dependent in R? or R? if and only if they lie on the same line.
A set of three vectors in R? is linearly dependent if and only if all three vectors lie
on the same line or all lie on the same plane.

dim(R") = n; dim(P") = n + 1; dim(M,x,,) = pn.

Every basis for a finite-dimensional vector space contains the same number of
vectors.

In an n-dimensional vector space, every set of n 4+ 1 or more vectors is linearly
dependent.
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Section 2.5

Section 2.6

>

>

v

v

A spanning set of vectors for a finite-dimensional vector space V can be reduced
to a basis for V; a linearly independent set of vectors in V can be expanded into
a basis.

If matrix B is obtained from matrix A by an elementary row operation, then the
row space of A is the same as the row space of B.

To find the row rank of a matrix, use elementary row operations to transform the
matrix to row-reduced form and then count the number of nonzero rows. The
nonzero rows are a basis for the row space of the original matrix.

The row rank of a matrix equals its column rank.

The system of equation Ax = b is consistent if and only if the rank of A equals
the rank of the augmented matrix [A|b].

If the system Ax = b is consistent and if 7(A) = k, then the solutions to the system
are expressible in terms of n — k arbitrary unknowns, where n denotes the total
number of unknowns in the system.

A homogeneous system of equations is always consistent, and one solution is
always the trivial solution.

An n x n matrix A has an inverse if and only if A has rank n.

A square matrix has an inverse if and only if it can be transformed by elementary
row operations to an upper triangular matrix with all unity elements on its main
diagonal.
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A function is a rule
of correspondence
between two sets,

a domain and range,
that assigns to each
element in the
domain exactly one
element (but not
necessarily a
different one) in
the range.

Figure 3.1

Chapter 3

Linear Transformations

Relationships between items are at the heart of everyday interactions, and if
mathematics is to successfully model or explain such interactions, then math-
ematics must account for relationships. In commerce, there are relationships
between labor and production, between production and profit, and between
profit and investment. In physics, there are relationships between force and
acceleration, and between mass and energy. In sociology, there is a relationship
between control and evasions. We need, therefore, mathematical structures to
represent relationships. One such structure is a function.

A function is a rule of correspondence between two sets, generally called the
domain and range, that assigns to each element in the domain exactly one element
(but not necessarily a different one) in the range.

Example 1 The rules of correspondence described by the arrows in Figures 3.1
and 3.2 between the domain {4,B,C} and the range {1,2,3,4,5} are functions.
In both cases, each element in the domain is assigned exactly one element in the
range. In Figure 3.1, A4 is assigned 1, B is assigned 3, and C is assigned 5.
Although some elements in the range are not paired with elements in the
domain, this is of no consequence. A function must pair every element in

e

1
|
— 5
N
5|

A
B

I~
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Figure 3.2

The image of a
function is the set of
all elements in the
range that are
matched with
elements in the
domain by the rule
of correspondence.

Figure 3.3

[of =] >]

1
|
5|
N
s |

the domain with an element in the range, but not vice versa. In Figure 3.2, each
element in the domain is assigned the same element in the range, namely, 2. This
too is of no consequence. A function must pair every element in the domain with
an element in the range, but not necessarily with a different element. W

Example 2 The rule of correspondence described by the arrows in Figure 3.3
between the domain and range, which are both the set of words {dog, cat, bird}, is
not a function. The word cat, in the domain, is not matched with any element in
the range. A function must match every element in the domain with an element
in the range. W

The image of a function consists of those elements in the range that are matched
with elements in the domain. An element y in the range is in the image only if
there is an element x in the domain such that x is assigned the value y by the rule
of correspondence. In Figure 3.1, the image is the set {1, 3, 5} because 1, 3, and 5
are the only elements in the range actually assigned to elements in the domain.
In Figure 3.2, the image is the set {2} because the number 2 is the only number in
the range matched with elements in the domain.

The domain and range of a function can be any type of set, ranging from sets of
letters to sets of colors to sets of animals, while the rule of correspondence can be
specified by arrows, tables, graphs, formulas, or words. If we restrict ourselves to
sets of real numbers and rules of correspondence given by equations, then we
have the functions studied most often in algebra and calculus.

dog dog

cat cat

bird bird
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Whenever we have two sets of numbers and a function f relating the arbitrary
element x in the domain to the element y in the range through an equation, we
say that y is a function of x and write y = f(x). Letters other than x and y may be
equally appropriate. The equation R = f(NV) is shorthand notation for the state-
ment that we have a function consisting of two sets of numbers and an equation,
where N and R denote elements in the domain and range, respectively. If the
domain is not specified, it is assumed to be all real numbers for which the rule of
correspondence makes sense; if the range is not specified, it is taken to be the set
of all real numbers.

If we have a rule of correspondence defined by the formula f(x), then we find the
element in the range associated with a particular value of x by replacing x with
that particular value in the formula. Thus, f(2) is the effect of applying the rule of
correspondence to the domain element 2, while £(5) is the effect of applying the
rule of correspondence to the domain element 5.

Example 3 Find f(2), (5), and f( — 5) for f(x) = 1/x>.

Solution: The domain and range are not specified, so they assume their default
values. The formula 1/x? is computable for all real numbers except 0, so this
becomes the domain. The range is the set of all real numbers. The image is all
positive real numbers because those are the only numbers actually matched to
elements in the domain by the formula. Now

fQ=1/2%=1/4 =025

f5) =1/ =1/25 =0.04
f(=5=1/(=57>=1/25=004 W

Problems 3.1

In Problems 1 through 16, the rules of correspondence are described by arrows. Determine
whether the given relationships are functions and, for those that are, identify their images.

@ el clo ] @ [leTclole]
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a3)
red | blue | green yellow|
Wl [T [a[5s]
| blue | green | yellow|
s)

\}%(/

|103

18.6 | 22.7 |

In Problems 16 through 18, determine whether the given tables represent functions where
the rule of correspondence is to assign to each element in the top row the element directly
below it in the bottom row.

a6 x| 1 [2] 3| 4] 5 (17)x”1|2|3‘4|5
y |10 | 18| 23| 18| 10 y H 10 | 10| 20 ‘ zo| 20
asy x| 1 |2 | 3| 4] s
y |10 | 18| 23| 29| 34

In Problems 19 through 22, determine whether the specified correspondences constitute

functions.

(19) The correspondence between people and their weights.

(20) The correspondence between people and their social security numbers.

(21) The correspondence between cars and the colors they are painted.

(22) The correspondence between stocks listed on the New York Stock Exchange and
their closing prices on a given day.
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In Problems 23 through 29, determine whether a domain exists on the horizontal axis so
that the given graphs represent functions. The rule of correspondence assigns to each
x value in the domain all y values on the vertical axis (the range) for which the points (x, y)
lie on the graph.

y
y

23) (24)

25) (26)

27 28) ’

0.3)
(. 49,
0,-4)
29

0.-4)

(30) Determine whether the following equations represent functions on the specified
domains:

(a) y=+yx for —oo<x<o0.
(b) y=+/x for0<x< oo.
() y==+yx for0<x<cc.

d y= \3/35 for — 0o < x < 0.



3.2 Linear Transformations e 163

(31) Given the function y = f(x) = x> — 3x + 2 defined on all real numbers, find
(@) f(0), (®) f(D), (©f(=1D, (d) f(2x).

(32) Given the function y = f(x) = 2x?> — x defined on all real numbers, find
(@ f(), ®) f(=1D, (o) f2x), () fla+b)

(33) Given the function y = f(x) = x> — 1 defined on all real numbers, find
@ f(=2)., ) f0), (© fQ2). (d) fla+b).

(34) A function is onto if its image equals its range. Determine whether either of the
functions defined in Example 1 are onto.

(35) Determine which of the functions defined in Problems 1 through 15 are onto.

(36) A function is one to one if the equality f(x) = f(z) implies that x = z; that is, if each
element in the image is matched with one and only one element in the domain.
Determine whether either of the functions defined in Example 1 are one to one.

(37) Determine which of the functions defined in Problems 1 through 15 are one to one.

3.2 LINEAR TRANSFORMATIONS

A transformation is
a function with
vector spaces for its
domain and range.

Two frequently used synonyms for the word function are mapping and trans-
formation. In high-school algebra and calculus, the domain and range are
restricted to subsets of the real numbers and the word function is used almost
exclusively. In linear algebra, the domain and range are vector spaces and the
word transformation is preferred.

A transformation T is a rule of correspondence between two vector spaces,
a domain V and a range W, that assigns to each element in V exactly one element
(but not necessarily a different one) in W. Such a transformation is denoted by
the shorthand notation T:V — W. We write w = T(v) whenever the vector w in
W is matched with the vector v in V by the rule of correspondence associated
with T. We will, on occasion, discard the parentheses and write w = Tv when
there is no confusion as to what this notation signifies.

The image of T is the set of all vectors in W that are matched with vectors in V
under the rule of correspondence. Thus, w is in the image of T if and only if there
exists a vector v in V such that w = T(v).

A transformation T:V — W is linear if for any two scalars, o and B, and any two
vectors, u and v, in V the following equality holds:

T(au+ Bv) =aT()+ BT(v) 3.1
For the special case « = 8 = 1, (3.1) reduces to

T(u+v) = Tu)+ T(V) (3.2)
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A transformation is
linear if it preserves
linear combinations.

Figure 3.4

while for the special case 8 = 0, (3.1) becomes
T(ou) = aT(u) (3.3)

Verifying (3.1) is equivalent to verifying (3.2) and (3.3) separately (see
Problem 47).

The left side of (3.1) is the mapping of the linear combination au + Bv from the
vector space V into the vector space W. If T is linear, then the result of mapping
au + Bv into W is the same as separately mapping u and v into W, designated as
T(u) and T(v), and then forming the identical linear combination with T(u) and
T(v) in W as was formed in V with u and v; namely, « times the first vector plus
B times the second vector. Linear combinations are fundamental to vector spaces
because they involve the only operations, addition and scalar multiplication,
guaranteed to exist in a vector space. Of all possible transformations, linear
transformations are those special ones that preserve linear combinations.

Example 1 Dectermine whether the transformation 7:V — V defined by
T(v) = kv for all vectors v in V and any scalar k is linear.

Solution: In this example, V = W; that is, both the domain and the range are
the same vector space. For any two vectors u and v in V, we have

T(ou + Bv) = k(au + Bv) = a(ku) + B(kv) = aT(u) + BT (V)

Thus, (3.1) is valid, and the transformation is linecar. W

The linear transformation in Example 1 is called a dilation. In R?, a dilation
reduces to a scalar multiple of a 2-tuple, having the geometrical effect of elong-
ating v by a factor of |k| when |k| > 1 or contracting v by a factor of |k| when
|k| < 1 followed by a rotation of 180° when £ is negative and no rotation when &
is positive. These dilations are illustrated in Figure 3.4. When V = R? and
k = —1, the transformation T is sometimes called a rotation through the origin.
It is illustrated in Figure 3.5.

=

/
I
\;
2

2
0o,
I~}

L
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Figure 3.5

Example 2 Dectermine whether the transformation 7:V — W defined by
T(v) = 0 for all vectors v in V is linear.

Solution: For any two scalars « and 8 and for any two vectors u and v in V, we
have

T(au+Bv)=0=0-+0=a0+p80=aT)+ ATV

Thus, (3.1) is valid, and T is linear. Transformations of this type are called zero
transformations because they map all vectors in the domain into the zero vector
mW. N

Example 3 Determine whether the transformation L is linear if L: P* — P? is
defined by

L(a3l3 + azlz +ait+ ap) = 3a3t2 + 2a5t + a3

where ¢; (i =0, 1,2, 3) denotes a real number.

Solution: A transformation is linear if it satisfies (3.1) or, equivalently, both
(3.2) and (3.3). For practice, we try to validate (3.2) and (3.3). Setting

U=+ +ait+ay and v= b3t + byt> + byt + by

we have L(u) = 3a31*> + 2a»t + a, L(v) = 3b3t> + 2byt + by, and
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Lu+v) = L((as8 + aa® + art + ag) + (b3t> + bat* + byt + by))
= L((as + b3)f* + (a2 + b2)* + (a1 + by)t + (ao + by))
= 3(a3 + b3)P* + 2az + ba)t + (a1 + by)
= Baz? + 2ast + ay) + (3b3*> + 2byt + by)
= L(u) + L(v)

For any scalar «, we have

L(au) = L(a (Cl313 + a2t2 +ait + ao))
= L((aa3)f* + (aa)? + (aa))t + (aap))

3(aa3) + 2(aar)t + (aay)

= oz(3agl‘2 + 2ayt + ay)
= aL(u)
Therefore, both (3.2) and (3.3) are satisfied, and L is linear. Readers familiar

with elementary calculus will recognize this transformation as the
derivative. W

Example 4 Determine whether the transformation T is linear if 7:R*> — R! is
defined by T[a b] = ab for all real numbers « and b.

Solution: This transformation maps 2-tuples into the product of its components.
In particular, T[2 —-3]=2(—-3)=-6 and T[1 0]=1(0) =0. In general,
settingu=[a b]andv=[c d], wehave T(u) =ab, T(v) = cd, and
T()+ T(v)=ab+ cd (3.4)
while
Tw+v)=T(a b]+[c d])
=Tla+c b+d] (3.5)

=(a+c)b+d)=ab+ cb+ cd+ ad

Equations (3.4) and (3.5) are generally not equal, hence (3.2) is not satisfied, and
the transformation is not linear. In particular, foru=[2 —-3]Jandv=][1 0],

T+v)=T([2 -3]+[1 0)=T[3 -3]=3(-3)=-9
4-6+0=T[2 —3]+T[1 0]=Tu+Ty
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Figure 3.6

We can also show that (3.3) does not hold, but this is redundant. If either (3.2) or
(3.3) is violated, the transformation is not linear. W

Example 5 Determine whether the transformation T is linear if 7T:R> — R? is
defined by T[a b]=[a —b]for all real numbers ¢ and b.

Solution: This transformation maps 2-tuples into 2-tuples by changing the sign
of the second component. Here, T[2 3]=[2 -3, T[0 —-5]=[0 5], and
T[-1 0]=[-1 O0]. In general, settingu=[a b]and v=[c d], we have
Tw)=[a -b],T(v)y=[c —d],and

Tu+v)=T([a bl+[c d))
—Tla+c b+d]
—la+ec —(b+d)]
—la+c¢ —b—d]
=[a —b]l+[c —d]
= T(u) + T(v)

For any scalar a, we have

T(auw) = T(ala b])=T[aa ab]=[aa —abl=ala —b]=aT(u)

Thus, (3.2) and (3.3) are satisfied, and the transformation is linear. W

The linear transformation T defined in Example 5 is called a reflection across
the x-axis. For vectors graphed on an x-y coordinate system, the transformation

y
5
(-1, 4)
14
3
. 2)
Tw\ [?
1 u
-3 2 -1 2 3 4
—1 T (u)
v -2
4, -2)
-3
—4

(~1.-4)
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Figure 3.7

(3.3)

4 2.4

maps each vector into its mirror image across the horizontal axis. Some illustra-
tions are given in Figure 3.6. The counterpart to 7 is the linear transformation
S:R? — R? defined by S[a b]=[—a b], which s called a reflection across the
y-axis. For vectors graphed on an x-y coordinate system, the transformation .S
maps each vector into its mirror image across the vertical axis. Some illustrations
are given in Figure 3.7.

Example 6 Determine whether the transformation L is linear if L: R> — R? is
defined by L[a b]=[a 0] for all real numbers a and b.

Solution: Here L[—-2 5]=[-2 0],L[0 4]=[0 0], and L[4 0]=[4 O].
In general, setting u=[a b] and v=[c d], we have L(u)=[a 0],
L(v)=[c 0], and for any scalars « and 83,

Lau+Bv) = Lia[a b]+Blc d])
— Llaa+Be ab+Bd]
— [aa+Be 0]
=afa 0]+B[c 0]
= aL(u) + BL(v)

Equation (3.1) is satisfied, hence L is linear. W

The linear transformation defined in Example 6 is called a projection onto the
x-axis. Its counterpart, the transformation M:R*> — R’ defined by
M[a b]=[0 b] for all real numbers a and b, is also linear and is called
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Figure 3.8

~

4 2,4)

a projection onto the y-axis. Some illustrations are given in Figure 3.8. Note that
for any vector v in R, v = L(v) + M(v).

Example 7 Determine whether the transformation R is linear, if R is defined by

R4l — cosf —sinf||a| |acos® —bsinf
b| |sin6 cosf||b| |asinf+bcosh
where a and b denote arbitrary real numbers and 6 is a constant.

Solution: R is a transformation from R? to R? defined by a matrix multiplica-
tion. Setting

a c cosf —sinf
u= [b}’v_ [d]’ and A = [sin(i cos(i]

it follows directly from the properties of matrix multiplication that
R(au + Bv) = A(au + Bv) = aAu + BAvV = aR(u) + BR(V)

for any choice of the scalars o and B. Equation (3.1) is valid, hence R is
linear. W

The linear transformation defined in Example 7 is called a rotation, because it
has the geometric effect of rotating around the origin each vector v by the angle 0
in the counterclockwise direction. This is illustrated in Figure 3.9.

The solution to Example 7 is extended easily to any linear transformation defined
by matrix multiplication on n-tuples. Consequently, every matrix defines a linear
transformation.
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Figure 3.9 y

R (u)

» Theorem 1. If L: R" — R" is defined as L(u) = Au for an m X n matrix
A, then L is linear. <«

Proof: 1t follows from the properties of matrices that for any two vectors u and
vin R”, and any two scalars @ and B, that

L(au + Bv) = A(au + Bv) = A(au) + A(BY)
= a(Au) + B(Av) = aL(u) + BL(v) W

Problems 3.2

(1) Define T:R> — R*by T'[a b]=[2a 3b]. Find
(@ T[2 3] (b) T[-1 5],
() T[-8 200], (d) T[0O —7I.

(2) Redo Problem 1 with T[a b]l=[a+2 b-2].

(3) Define S:R* - R’by S[a b c¢]=[a+b c]. Find
(@ S[1 2 3], (b)S[-2 3 -3],
(c S[2 -2 0], () S[1 4 3]

(4) Redo Problem 3 with S[a b c]=[a—c c—b].

(5) Redo Problem 3 with S[a b c¢]=[a+2b—3c 0]

(6) Define N:R* = R*by N[a b]l=[a+b 2a+b b+2] Find
(@ NI[1 1], (b) N[2 3],
() N[3 0], (d N[O 0]

(7) Redo Problem 6 with N[a b]=[a+b ab a-—Db].

¢ a

d b

(8) Define P:Mbys — May as P{i Z] = [

} . Find
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(9) Redo Problem 8 with P {a b} = {

@ »y 3.

10 20

1 -1
o Py ).

© P{—s o}’ (d)P{B

28 32
44 |-
a+b 0
c d 0 c—d|

(10) Define T: P?> — P2 by T(art* + a1t + ag) = (a> — a1)2 + (a1 — ao)t. Find

(a) TQr —3t+4),
(© T(@p),

(b) T(#* + 2¢),
(d) T(—£+2t—1).

In Problems 11 through 40, determine whether the given transformations are linear.

n
12)
13)
(14
as)
(16)
an
(18)
19
(20)
@n
22
23
24
25
(26)
@7

28

29

(30)

T:R* - R%Tla b]=[2a 3b]

T:R> > R:Tla bl=[a+2 b-2]

T:R> - R%Tla bl=[a 1]

S:R* - R, S[a b]=

SR R2S[a b
SR> R S[a b
SR> R S[a b
S:R* - R, S[a

cl=la—-c

cl=[a+2b-3c

[« %]

cl=[a+b c]

c—b].
0].

bl=[a+b 2a+b b+2]

S:R2 - R S[a bl=[a 0 b]

N:R2 =R N[a b]=[0 0 O]

N:RP =R N[a bl=[a+b ab a-Db]

N:R =R N[a b]=[0 0 2a-35b]

T:R> R Tla bl=[a —a -8al

TR >R, T[a b cl=a—c.

SRR S[a b c¢]=abe.

LR SR Lla b c]=0.

PR >R Pla b c]

P: My, — szz,P{z

P:- My, — szz,P{i

a
T:- My, — Mo, T{c

Il
—_
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31

(32)

(33

(34)
@35)
36)
@7
(38)
39)
(40)
@1

42)

43

)

43)

(46)

7

49
49

(50

(1)

(52)

b b 0
T: Moy Hszz,T{Z d} = {Zd 0}-
T:M2X2—>R1,T{? 2} = ad — be.
R:M2X2—>R1,R[i Z} =b+2c—3d.

S: My — My, S(4) = AT

S: My — My, S(A) = —A.

L: M, = My, L(A) = A — AT,

L:P? — P2, L(ay 4 ait + ag) = aot.

T:P? = P2, T(ar + ayt + ag) = ax(t — 1> + a1 (¢ — 1) + a.
T:P? — P2, T(ary? + art + ag) = (a2 — ) + (a1 — ap)t.
S:P? = P2 S(ar® + art + ag) = (a2 — 122

Let S: M5, — R! map an n X n matrix into the sum of its diagonal elements. Such
a transformation is known as the trace. Is it linear?

-1 . . .
Let T:M,y, — My, be defined as T(A) = A if A'is nonsingular o
linear? 0 if A is singular

Let I: V — V denote the identity transformation defined by I(v) = v for all vectors
v in V. Show that 7/ is linear.

Let L:V — V denote a linear transformation and let {v|,v,, ..., v,} be a basis for
V. Prove that if L(v;) =v; for all i ( = 1,2, ...,n), then L must be the identity
transformation.

Let 0:V — W denote the zero transformation defined by 0(v) = 0 for all vectors v in
V. Show that 0 is linear.

Let L:V — W denote a linear transformation and let {v;, v, ..., v,} be a basis for
V. Prove that if L(v;) =0 for all i (i = 1,2, ...,n), then L must be the zero trans-
formation.

Prove that Equations (3.2) and (3.3) imply (3.1).
Determine whether T:M,,,, — M, defined by T(A) = AAT is linear.

Find T(u+ 3v) for a linear transformation 7 if it is known that 7(u) = 22 and
T(v) = -8.

Find T(u) for a linear transformation T if it is known that T(u + v) = 2u + 3v and
T(u—v)=4u+5v.

Find T(v) for a linear transformation T if it is known that T(u+ v) =u and
T(u) =u—2v.

Let L:V — W denote a linear transformation. Prove that L(v; 4+ vy +v3) =
L(vy) + L(v2) + L(v3) for any three vectors vy, v2, and v3 in V. Generalize this result
to the sum of more than three vectors.
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(33

(54

(35

(56)

(57
(58)

(39
(60)

(61)
(62)

Let S:V — W and T:V — W be two linear transformations. Their sum is another
transformation from V into W defined by (S + T)v = S(v) + T(v) for all v in V.
Prove that the transformation S + T is linear.

Let T:V — W be a linear transformation and k& a given scalar. Define a new
transformation kT:V — W by (kT)v = k(Tv) for all v in V. Prove that the trans-
formation kT is linear.

Let S:V — W and T:V — V be two linear transformations and define their prod-
uct as another transformation from V into V defined by (ST)v = S(Tv) for all v in
V. This product first applies T to a vector and then S to that result. Prove that the
transformation ST is linear.

Let S:R* — R? be defined by S[a b]=[2a+b 3a]and T:R> — R? be defined
by T[a b]l=[b —a]. Find ST(v) for the following vectors v:

(@ [1 2], (b) [2 0], (©[-1 3]
d [-1 1), (@@[-2 -2}, ®[2 -3]
Find TS(v) for the vectors and transformations given in the previous problem.

Let S:R?* — R? be defined by S[a b]=[a+b a—b] and T:R* > R* be
defined by T[a b]=1[2b 3b]. Find ST(v) for the following vectors v:

(@ [1 2], () [2 0], () [-1 3],
(d [-1 1], @ [-2 -2] ®[2 3]
Find TS(v) for the vectors and transformations given in the previous problem.

Let S: R? — R? be defined by S[a b]=[a a+2b]and T:R> — R? be defined
by Tla bl=[a+2b a—2b]. Find ST(v) for the following vectors v:

(@ [1 2], (b) [2 0], (© [-1 3]
d [-1 1), (@@[-2 -2, B2 -3]
Let L be defined as in Example 6. Show that L> = L.

Let L and M be transformations from R? into R, the first a projection onto the x-
axis and the second a projection onto the y-axis (see Example 6). Show that their
product is the zero transformation.

3.3 MATRIX REPRESENTATIONS

We showed in Chapter 2 that any vector in a finite-dimensional vector space can
be represented as an n-tuple with respect to a given basis. Consequently, we can
study finite-dimensional vector spaces by analyzing n-tuples. We now show that
every linear transformation from an n-dimensional vector space into an m-
dimensional vector space can be represented by an m x n matrix. Thus, we can
reduce the study of linear transformations on finite-dimensional vector space to
the study of matrices!
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Recall from Section 2.4 that there is only one way to express v as a linear
combination of a given set of basis vectors. If vis any vector in a finite-dimensional

vector space V, and if B = {v|,vy, ...,v,} is a basis for V, then there exists
a unique set of scalars ¢y, ¢z, ..., ¢, such that
V=1oC1V] + vV + -+, (3.6)
We write
C1
(6]
Ve | (3.7
Cl‘l B

to indicate that the n-tuple is a coordinate representation for the sum on the right
side of (3.6). The subscript on the n-tuple denotes the underlying basis and
emphasizes that the coordinate representation is basis dependent.

Example 1 Find a coordinate representation for the vector v = 4> 4 3¢+ 2 in
P? with respect to the basis C = {+t,t+1,t—1}.

Solution: To write v as a linear combination of the basis vectors, we must
determine scalars ¢, ¢z, and c¢3 that satisfy the equation

4P +3t+2=c1(P+ D+t + D) +e3(1—1)
=1+ (c1 + e+ e3)t+ (¢ — c3)

Equating coefficients of like powers of ¢, we generate the system of equations

6’124
cit+e+e3=3
62—63:2

which has as its solution ¢; =4,¢; =1/2, and ¢3 = —3/2. Accordingly (3.6)
becomes

4P 43t 42 =4+ 1)+ A/ + 1)+ (=3/2(—1)
and (3.7) takes the form
4

4 +3t+2< | 1)2 [
-3/2,
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A linear
transformation is
described
completely by its
actions on a basis
for the domain.

If T:V — W is a linear transformation and v is any vector in V expressed in form
(3.6), then

T(v) = T(c1vi + cava + -+ - + ¢pVy)
:CIT(V1)+C2T(V2)+"'+ch(Vn) (38)

Consequently, T is described completely by its actions on a basis. Once we know
how T transforms the basis vectors, we can substitute those results into the right
side of (3.8) and determine how T affects any vector v in V.

Example 2 A linear transformation 7:R> — R® has the property that

Determine 7(v) for any vector v € R>.

Solution: Ifve R thenv=[a b]" for some choice of the real numbers a and
b. The set {[1 0]",[0 1]"} is the standard basis for R?, and with respect to

this basis
)=o) ++[1]
Consequently,
| 0 1 0 a
T{Z]aT{O}+bT{l}a 2|1 +b|3| =|2a+3b |
0 4 4b

Example 2 has an interesting geometrical interpretation. We see from the

solution that
1 0 ! 0
T(a 0 +b 1 =al|2|+b|3
0 4

Thus, linear combinations of the vectors in the standard basis for R* are mapped
into linear combinations of the vectorsw; =[1 2 0]Tand w, =[0 3 4]
All linear combinations of the vectors in the standard basis for R* generate the
x-y plane. All linear combinations of w; and wy is the span of {w;, w,}, a plane in
R?, which is partially illustrated by the shaded region in Figure 3.10. Thus, the
linear transformation defined in Example 2 maps the x-y plane onto the plane
spanned by {w, w;}.
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Figure 3.10 z
5 +
Example 3 A linear transformation 7: R> — R? has the property that
1 5 1 7
1] = & e 4] 3
Determine Tv for any vector v € R?.
Solution: Thesetofvectors {[1 1]7,[1 —1]T}isabasisforR®.Ifv=[a b]"
for some choice of the real numbers a and b, then
al _a+bl1 n a—b| 1
bl 2 |1 2 | -1
and
a a+b_ 1 a—b 1
T| | =T —
M 2 H i {—1}
_a+b[5 +a—b 71 [6a—b
2 |6 2 (8] [Ta—b
With these two concepts—first, that any finite-dimensional vector can be repre-
sented as a basis dependent n-tuple, and second, that a linear transformation is
Every linear completely described by its actions on a basis—we have the necessary tools to
transformation show that every linear transformation from one finite-dimensional vector space
from one finite- into another can be represented by a matrix. Let T designate a linear transform-
d1men§1onal vector ation from an n-dimensional vector space V into an m-dimensional vector space
space into another W, and let B = {v,v2, ...,v,} be a basis for V and C = {w;,w, ..., w,} be
can be represented a basis for W. Then T(vy), T(v3), ..., T(v,) are all vectors in W and each can

by a matrix. be expressed as a linear combination of the basis vectors in C.
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A§ denotes a matrix
representation of a
linear trans-
formation with
respect to the B
basis in the domain
and the C basis in
the range.

In particular,

T(vi) = anwi +anwa + -+ AWy
for some choice of the scalars a1, az1, ..., a1,
T(v2) = aiaWi + anWws + -+ + Wy,
for some choice of the scalars ayy, a2, ..., a,, and, in general,
T(vj)) = aijwi + aywa + - - - + AWy (3.9

for some choice of the scalars ay;, ay;, ..
representations of these vectors are

ami (j=1,2,...,m). The coordinate

ap ap
a an
T(V1)<—> . . T(V2)<—> A s ey
Ldmi ¢ am2 1 ¢
[ aiy; 47
@ Aoy
T(VJ)H . R T(Vn)(_’
Ldmjd ¢ n 1 ¢

If we use these n-tuples as the columns of a matrix A, then, as we shall show
shortly, A is the matrix representation of the linear transformation 7. Because
this matrix is basis dependent, in fact dependent on both the basis B in V and the
basis C in W, we write A% to emphasize these dependencies. The notation A%
denotes the matrix representation of 7 with respect to the B basis in V and the C
basis in W. Often, the subscript B or the superscript C is deleted when either is
the standard basis in R” and R", respectively.

Example 4 Find the matrix representation with respect to the standard basis in
R? and the standard basis C = {/2,7,1} in P? for the linear transformation
T:R*> — P? defined by

TB}:MF+M+@H&b

Solution:

2
TB}:QW+ay+®nH 1
0 C
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and

0 0
T[l]:(O)t2+(1)t+(3)l<—> 1
3 C

2 01"
AC=111
0 3
We suppressed the subscript notation for the basis in the domain because it is the
standard basis in R>. [

SO

Example 5 Redo Example 4 with the basis for the domain changed to
B={1 1].[1 -1]"}.

Solution:
1 2
T{l]:(2)t2+(2)t+(3)1<—> 2
3 C
and
1 2
T{_l} =P+ O+ (=Nl | 0
_3 C
hence,
2 21°
Af=12 o0 [
3 -3,

Example 6 Find the matrix representation with respect to the standard basis in
R? and the basis D = {2 +t,¢+ 1, — 1} in P? for the linear transformation
T:R?> — P? defined by

T[Z] = (4a + b)* + (Ba)t + 2a — b)

Solution: Using the results of Example 1, we have

4
TH =42 +3t42 | 1)2
0
-3/2 |,
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Similar reasoning yields

1

Tm =2 —1=ME+0+ (= D+ D+ O~ 1) [_1]
0 D

Thus,

D

4 1
AP =] 172 -1 |

~3/2 0

Example 7 Find the matrix representation for the linear transformation
T:Myyr — My defined by

pla b]_[a+2b+3c 2b—3c+dd
¢ d|~ |3a—4b—5d 0

with respect to the standard basis

o= {o oL o} 1 SM6 )

Solution:

B R B RN R B 2[00
[0 0}_[3 0]_(){0 0}4_(){0 0%()[1 0}

1

of0 0 0

H){o 1]H 3

OB
A0 T[22 [t 0], [0 ! o0 0
[0 0]_[—4 0}_()[0 0}“)[0 0}“_ )[1 0}

2

ol® 2

+()[0 1} —4
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A0 0] 3 =3]_ [t 0 NN
[1 0}_[0 0]_()[0 0]”_ )[0 0]“)[1 0}
3
000 -3
H)[o 1}H 0
0lp
S0 0] [0 4 1 0] 0 1 S [0 0
[0 1}_[—5 0}_()[0 0}”)[0 0}”_ )[1 0}
0
000 4
+()[o 1}H =5
0lp
Therefore,
1 2 3 01®
0 2 =3 4
As=13 4 ¢ 5| ®
0 0 0 0],

To prove that A%, as we defined it, is a matrix representation for a linear trans-
formation 7, we begin with a vector v in the domain V. If B = {v;,v,, ...,v,} isa
basis for V, then there exists a unique set of scalars ¢y, ¢y, ..., ¢, such that

n
V=cCVi +CVr+ ...+ ¥y = E Cjvj
J=1

The coordinate representation of v with respect to the B basis is

Setting w = T'(v), it follows from (3.8) and (3.9) that

w=T(v)= T(i cjvj>
j=1

= Z CjT(Vj)
j=1
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n
cilaywy + axywa + ...+ ApWyy)

We now have w in terms of the basis vectors in C = {w;, w2, ..., W, }. Since the
summation in the last parentheses is the coefficient of each basis vector, we see
that the coordinate representation for w with respect to the C basis ist

n T
> ¢
Jj=1
n
> @y¢
T =we | 5
L
> AmjCj
L/=1 C
This vector is the matrix product
ai ap - dig 1
azy dx - A (&)
aml Am2 " Ay Cn
Thus,
C
T(v) =w < Agvp (3.10)

We can calculate T(v) in two ways: first, the direct approach using the left side
of (3.10), by evaluating directly how T affects v; or second, the indirect
approach using the right side of (3.10), by multiplying the matrix representa-
tion of T by the coordinate representation of v to obtain A%VB, the m-tuple
representation of w, from which w itself is easily calculated. These two
processes are shown schematically in Figure 3.11, the direct approach by the
single solid arrow and the indirect approach by the path of three dashed
arrows.

Example 8 Calculate T [;

illustrated in Figure 3.11 for the linear transformation 7:R> — P? defined

} using both the direct and indirect approaches
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Figure 3.11

by T Lﬂ =2ar’ + (a+ b)t +3b. With the indirect approach, use B =
{[1 175,[1 —1]"} as the basis for R* and C = {#%,1,1} as the basis for P2

Solution: Using the direct approach, we have

TM 22+ (1 4+3)+33) =22 + 4149

Using the indirect approach, we first determine the coordinate representation for
[1 3]" with the respect to the B basis. It is

1 1 1 2
-l 4 - [
Then, using the results of Example 5, we have

2 21° 2
C 2 2
Agve = |2 0 {_1} = 4| <2 +4t+9
3 34 B 9]¢

which is the same result obtained by the direct approach. W

Example 9 Calculate T {_ﬂ using both the direct and indirect approaches

illustrated in Figure 3.11 for the linear transformation and bases described in
Example 6.

Solution: Using the direct approach, we have

T[_g] =[4Q2)+ (=32 +3Q)+[2Q2) — (= 3)] =52 +61+7
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Figure 3.12

Using the indirect approach, we note that

] =2lo] v i] =[S

Then, using the results of Example 6, we have

4 11° ,
Afve=| 1/2 -1 [ 3} =
- B
~3/2 0], -3¢

SSEF DA+ DH (=3 —-1) =52 +61+7

which is the same result obtained by the direct approach. W

The direct approach illustrated in Figure 3.11 is clearly quicker. The indirect
approach, however, is almost entirely in terms of matrices and matrix operations,
which are conceptually easier to understand and more tangible. Theorem 1 of
Section 2.2 states that every matrix represents a linear transformation. We just
showed that every linear transformation can be represented by a matrix. Thus,
matrices and linear transformations are equivalent concepts dressed somewhat
differently. We can analyze one by studying the other.

The subscript-superscript notation we introduced on matrices and coordinate
representations is actually helpful in tracking a linear transformation 7:V — W,
where V and W are vector spaces of dimensions n and m, respectively. Suppose
w = T(v). We let vg denote the coordinate representation of v with respect to a B
basis and w¢ denote the coordinate representation of w with respect to a C basis.
The indirect approach yields the matrix equation

WwWec = AEVB

The matrix A maps an n-tuple with respect to the B basis into an m-tuple with
respect to the C basis. The subscript on A must match the subscript on v. The
superscript on A matches the subscript on w. Figure 3.12 demonstrates the
directional flow with arrows.

Oy

we = Agve

v
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Problems 3.3

In Problems 1 through 25, find the matrix representation for 7:V — W with respect to the
given bases, B for a vector space V and C for a vector space W.

a+b
) T:R2_>R3definedbyrmz a—b ,B:{[l},{l]},and

()
o s ten (1] 1]}
o o[ ]}
@ protem 1vina— {[1], [} amac - {HHH}
) T:R%Wdeﬁnedbyrm - {Z”Jgibszc],[a_{[o},[ﬂ,{1}},@(1
@:{[iH"]}-
o s (L)
o rosmsune ([ [ 1]}
we|

o s ([ e 12D

a+2b—3c

(9) Problem 5 with Tk] = {9 8 7J
L2 2 al N 25a + 300 o~ .. 2
(10) T:R° — R” defined by T{b_ = {—45a+50b}’B = C = the standard basis in R-.

10]

(11) Problem 10 with B = { {10

, {(5)} } and C again the standard basis.

10]
10

(12) Problem 10 with C = { { , {(5)} } and B again the standard basis.

(13) Problem 10 with B =C = {“8}, {(5)} }
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(14

1s)

(16)
an

(18)

19

(20)

@n

(22

23

24

25

oo ({4} e (3 ]}

. a 2a
Problem 10 with T{b} = [3bfa}'

The transformation in Problem 15 with the bases of Problem 14.

T:P? — P3 defined by T(ar* + bt + ¢) = t(at* + bt + ¢), B = {12, 1,1}, and
C=1{ 211}

Problem 17 with B = {#> + t,£2 + 1,t + 1} with C= {£, 2 + 1,2 — 1,1}

T:P? — P? defined by T(at® +b2 +ct+d)=3a’* +2bt+c,B={F,2+ 1,2 — 1,1},
and C={~+4,+1,t+1}.

[ 2a+0
.2 2 2 ) —
T:P” — R~ defined by T(at* + bt + ¢) = 3a—db+c
1 1
e={li}[]}
[2a+3b
T:P? — R’ defined by T(ar* + bt +¢) = | 4a—5¢ | ,B = {2, — 1,1}, and

(A T —

T: P?> — My, defined by T(ar® + bt + ¢) = {

},[B: {2,£* — 1,1}, and

4a—5¢ 6b+Tc

1 0 1 1 0 0 0 0
22 _
B— {1 l,t},andCf{{O OHO oH1 1H1 _IH.

. I 0 11 1 1 11
ProblemZZthC—{[O 0}{ 0],[0 1}’[1 1}}

T:Ms,» — P?  defined by T[Z Z}=(a+b)t3+(a72b)12+(2a73b+4c)t
+(a—d),
1 o] [1
B_{_O 010 1 |
. 2 b _ a+b+3c
T:-Mh, — R deﬁnedbyTL d]_{b—k—c—Sd}’
0 0
1

o= {5 S} (o s}[3 L0 ] emac- {13}

10 0710 O]

2a+b c—3a}

(=]

1 07 [o 0] a3
o 1 1 },andC_{t,t - 1,r=1,1}.

—
—

In Problems 26 through 37, find the indicated mapping directly and by the indirect
approach illustrated in Figure 3.11.

(26)

27

T { ;} with the information provided in Problem 1.

T { _ﬂ with the information provided in Problem 1.
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28) T 3 with the information provided in Problem 2.
B
(29) T |2 | with the information provided in Problem 5.
13
[2
(30) T |2 | with the information provided in Problem 5.
|2
[ 2
(31) T| —1 | with the information provided in Problem 5.
-1
32 T ﬂ with the information provided in Problem 10.

(33) T(3#* — 2¢) with the information provided in Problem 19.
(34) T(31* — 2t + 5) with the information provided in Problem 19.
(35) T(t* — 2t — 1) with the information provided in Problem 20.
(36) T(#> — 2t — 1) with the information provided in Problem 21.
(37) T(4) with the information provided in Problem 21.

B
! 2} with respect to B =

(38) A matrix representation for T:P!'— P! is {3 4
B

{t+ 1, —1}. Find T(at + b) for scalars a and b.

c
! 2} with respect to C =

39) A matrix representation for T: pl — pl is
C

{t+ 1,1+ 2}. Find T(at + b) for scalars a and b.

B
1 2
(40) A matrix representation for T: P2 - P? is [1 1 } with respect to B =
20

— N W

B
{222 +t,£2 + ¢t + 1}. Find T(at®> + bt + ¢) for scalars a, b, and c.

B

with respect to the

1
(41) A matrix representation for T:Mjy, — My, is (1)
1

— N = O
_—— O DN

1
1
0
1 B

. 1 0 1 1 1 1 1 1 . a b
basis [EB:{[O 0},{0 O}’{l 0},{1 1}} Find T[c d} for scalars

a, b, ¢, and d.
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3.4 CHANGE OF BASIS

In general, a vector
has many
coordinate
representations, a
different one for
each basis.

Coordinate representations for vectors in an n-dimensional vector space are basis
dependent, and different bases generally result in different n-tuple representa-
tions for the same vector. In particular, we saw from Example 10 of Section 2.4
that the 2-tuple representation for v=1[7 2]"is

Ve = m@ (3.11)

with respect to the standard basis = {[1 0]7,[0 1]} for R?, but

Vo = {2;;]@ (3.12)

with respect to the basis D = {[1 1]7,[1 —1]"}. Itis natural to ask, therefore,
whether different coordinate representations for same vector are related.

Let C = {uj,uy, ...,u,} and D = {v;, v, ..., v,} be two bases for a vector space
V. If v € V, the v can be expressed as a unique linear combination of the basis
vectors in C; that is, there exists a unique set of scalars ¢y, ¢;, ..., ¢, such that

n
v=cu +cu+...+cu, = chuj (3.13)
j=1

Similarly, if we consider the D basis instead, there exists a unique set of scalars
di,ds, ...,d, such that

v=divi+dvr+ ..+ dy, =Y dyi (3.14)
i=1

The coordinate representations of v with respect to C and D, respectively, are

1 d

€ d>
ve=| . and vp =

e d, D

Now since each basis vector in C is also a vector in V, it too can be expressed as a
unique linear combination of the basis vectors in D. In particular,

U =puvi+pava+...+puiva
for some choice of the scalars py1,p21, - .-, Pul;
Uy = p1avy +pnva+ ...+ PuaVa

for some choice of the scalars pj», p22, ..., pm; and, in general,
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n
W = pyvi +pyVa+ o+ PyiVn = ZPU‘VZ‘ (.15
i=1

for some choice of the scalars pij,pa, ...,pw,(j=1,2,...,n). The n-tuple
representations of these vectors with respect to the [ basis are

pn P12 bij Pin
P21 P22 P2y P2n

u < . , U > . s ey W . soeees Uy .
Pullp P2 {p Pulp Pun 1 p

If we use these n-tuples as the columns of a matrix P, then

pu pr2 .- Py -+ Pl

pD _ P p2n . P2 .- P
CcC — . . . .

Pnt Pn2 --- Pnj .-+ Pm

where the subscript-superscript notation on P indicates that we are mapping
from the C basis to the D basis. The matrix Pg is called the transition matrix
from the C basis to the D basis. It follows from (3.13) and (3.15) that

n n n n n
VZE Ci“jZE G E PiVi :E Pi€j | Vi
j=1 j=1 i=1 i=1 \j=1

But we also have from (3.14) that

n
V= E d,’V,‘
i=1

and because this representation is unique (see Theorem 5 of Section 2.4), we may
infer that

di = ZpijCj
Jj=1

Therefore,

M=

Pi¢

~.
Il
—_

D2j€j

|

~.
i
I

S
-

M=

Prj€j

~.
Il
_
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which can be written as the matrix product

d; pPu pi2 ... Py ... Pin cl
d P P2 - Pyo--- DPu| |
dn D Pl P2 oo P oo+ Pmn Cnfc
or
_ pD
Vp = PCV@ (3.16)

We have proven:

» Theorem 1. If v¢ and vy are the n-tuple (coordinate) representations of
a vector v with respect to the bases C and D, respectively, and if P; is
the n-tuple representation of the j-th basis vector in C (j =1,2, ...,n)
with respect to the D basis, then vp = P%v@ where the j-th column of P%
is Pj. 4

Example1 Find the transition matrix between the bases C = {[1 0]",[0 1]}
and for P! and D ={[1 1]%,[1 —1]T} in R? and verify Theorem 1 for
the coordinate representations of v=[7 2]' with respect to each basis.

Solution: We have

-4 - [, -

0 171 1 1 1/2
= — —_ = —
1 211 21 -1 -1/2]p
and the transition matrix from C to D as

=i 1A

The coordinate representation of [7 2]T with respect to the C and D bases were
found in Example 10 of Section 2.4 to be, respectively,

oo[f] w2

Here

-1 A2 »
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Although Theorem 1 involves the transition matrix from C to D, it is equally
valid in the reverse direction for the transition matrix from D to C. If P§
represents this matrix, then

ve = Phvp (3.17)

Example 2 Verify (3.17) for the bases and vector v described in Example 1.

Solution: As in Example 1, C={[1 0]",[0 1]'} and D={[1 1]\,
[1 —1]"}. Now, however,

)=o) = i e
=l - L

and the transition matrix from D to C is

Here

O e R

Note that the subscript-superscript notation is helpful in tracking which transi-
tion matrix can multiply which coordinate representation. The subscript on the
matrix must match the subscript on the vector being multiplied! The superscript
on the transition matrix must match the subscript on the vector that results from
the multiplication. Equation (3.16) is

vp = PCve
A

while equation (3.17) is
VC = Pﬂgvl[n

The arrows show the matches that must occur if the multiplication is to be
meaningful and if the equality is to be valid.

An observant reader will note that the transition matrix Pf; found in Example 2
is the inverse of the transition matrix P2 found in Example 1. This is not
a coincidence.
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» Theorem 2. The transition matrix from C to D, where both C and D are
bases for the same finite dimensional vector space, is invertible and its
inverse is the transition matrix from D to C. <«

Proof: Let P2 denote the transition matrix from basis C to basis D and let P
be the transition matrix from D to C. If the underlying vector space is
n-dimensional, then both of these transition matrices have order »n x n, and
their product is well defined. Denote this product as A = [a;]. Then

air ap ... A
a dzxp ...
DpC _ _
PP =A=| . . (3.18)
anl Ay ... Ay

We claim that A is the n x n identity matrix.

We have from Theorem 1 that vp = PEVC. Substituting into the right side of this
equation the expression for v¢ given by (3.17), we obtain

vp = (PEPH)vp = Avp (3.19)
Equation (3.18) is valid for any n-tuple representation with respect to the D
basis. For the special case, vp =[1 0 0 ... 0], equation (3.19) reduces to
_1- _a” dypp ... al,,_ _1-
0 @ a a 0
0 a21 azz e azn 0
o = [® @2 e ]|,
_0_ _a,,l dyy ... a,m_ _0_
or
1 [a |
0 a
0 = |an
0 _anl ]

which defines the first column of the product matrix in (3.18). For the special
case, vp =[0 1 0 ... 0], equation (3.19) reduces to
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0 a dip ... di 0
1 ay ap ... ay||1
O =|an ax ... ax||0
0 anl an nn 0
or
ap
1 [755)
= | axn
0 an

which defines the second column of A. Successively, substituting for vp the
various vectors in the standard basis, we find that

P2PS =1

from which we conclude that P2 and P are inverses of one another.

Example 3 Find transition matrices between the two bases G = {r+ 1, t— 1}
and H={2r+1, 3t+1} for P' and verify the results for the coordinate
representations of the polynomial 37 + 5 with respect to each basis.

Solution: Setting v = 3¢ + 5, we may express v as a linear combination of vectors
in either basis. We have

3t+5=M@4t+D+[-1]z-1)
and
3t+5=[12]Qt+ 1) +[— 713t + 1)

so the coordinate representations of v with respect to these bases are

4 12
o= ] mew= 5],

Now writing each vector in the H basis as a linear combination of the vectors in
the G basis, we obtain

20+ 1 =[15)¢+ 1) +[0.5](r — 1) = {(l)ﬂ
16



3.4 Change of Basis e 193

Figure 3.13

and

31 =20+ D) +[1)¢— 1) < m
G

Consequently, the transition matrix from the H basis to the G basis is

o [15 2
P _[0.5 1]

while the transition matrix from the G basis to the H basis is
H G\ ! 2 —4
Pg = (P[H]) = {_1 3]

Then

o [15 2][12] [ 4] _
PHVH[O.S 1|=7] = |[-1] 7"

and

pe=| 3 )] =) v

If we graph the standard basis in R? in the x-y plane, we have the directed line
segments e; and e, shown in Figure 3.13. Another basis for R? is obtained by
rotating these two vectors counterclockwise about the origin by an angle 6,
resulting in the directed line segments u; and u, graphed in Figure 3.13. The
magnitudes of all four directed line segments are one. It then follows from ele-
mentary trigonometry that the arrowhead for u; falls on the point (cos 0, sin 6)

‘ On e
(—sin O, cos 0) “ez \00%%’

u26 uy

e T (1,0)
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In general, a linear
transformation has
many matrix
representations, a
different matrix for
each pair of bases in
the domain and
range.

while that for u, falls on the point (—sin6, cos ). Setting S = {e;,e;} and
R = {u;,uy}, we have

CPSO = cosf ! +sin 6 v — CF)SO
sin 6 0 1 sinf |

and

—sin @ — _sing 1 4 cosd 0 - —sinf
cos 0 0 1 cosf | ¢
The transition matrix from the R basis to the S basis is

s |cosf —sinf
R™ |sinf  cosb

Hence, the transition matrix from the S basis to the R basis is

R_ (pSy-! | cos@ sinf
Ps = (Pg) _[—sinﬁ cosH]

Consequently, if

v _[x] and v _[x’]
S y < R y/ n

denote, respectively, the coordinate representation of the vector v with respect to
the standard basis S and the coordinate representation of v with respect to the R
basis, then

x! ~ve — PRy cosf sinf ||x| | xcosf-+ysiné
y | T RTESYS T _sing cosf ||y | | —xsin® + ycos6

Equating components, we have the well-known transformations for a rotation of
the coordinate axis in the x-y plane by an angle of # in the counterclockwise
direction:

= xcosf + ysiné
y' = —xsin + ycosf

We showed in Section 3.3 that a linear transformation from one finite-dimen-
sional vector space to another can be represented by a matrix. Such a matrix,
however, is basis dependent; as the basis for either the domain or range is
changed, the matrix changes accordingly.
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Example 4 Find matrix representations for the linear transformation T:
R? — R? defined by
T2~ 11a +3b
b| |-5a-5b

(a) with respect to the standard basis C = {[1 0]",[0 1]}, (b) with respect to
the basis D={[1 1]', [1 —1]"}, and (c) with respect to the basis
E={[3 -1, [1 -5]"}.

Solution: (a) Using the standard basis, we have

rlof = [55]=nlo) <3 - [,

and

(b) Using the B basis, we have

AR R I R

and

(c) Using the E basis, we obtain

= Lol = el ol = 1),

and
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E
10 0
SO

It is natural to ask whether different matrices representing the same linear
transformation are related. We limit ourselves to linear transformations from
a vector space into itself, that is, linear transformations of the form 7: V — V,
because these are the transformations that will interest us the most. When the
domain and range are identical, both have the same dimension, and any matrix
representation of 7 must be square. The more general case of transformations
that map from one vector space V into a different vector space W is addressed in
Problem 40.

Let T: V — V be a linear transformation on an n-dimensional vector space V
with w = T'(v). If C is a basis for a vector space V, then the n-tuple representation
for w with respect to C, denoted by wg, can be obtained indirectly (see
Section 3.3), by first determining the n-tuple representation for v with respect
to C, denoted by v, then determining the matrix representation for T with
respect to the C basis, denoted by AL, and finally calculating the product A%VC.

That is,
_aC
We = ACV@ (320)
If we use a different basis, denoted by D, then we also have
_ D
Wp = ADVD (3.21)

Since v¢ and vp are n-tuple representations for the same vector v, but with respect
to different bases, it follows from Theorem 1 that there exists a transition matrix
P2 for which

v = P{ve (3.22)
Because (3.22) is true for any vector in V, it is also true for w, hence
wp = P2wc (3.23)
Now, (3.21) and (3.22) imply that
wp = ADvp = ApPEve (3.29)
while (3.23) and (3.20) imply that
wp = P2we = P2ALve (3.25)

It follows from (3.24) and (3.25) that
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DA C DpD

This equality is valid for all n-tuples v¢ with respect to the C basis. If we
successively take vg to be the vector having 1 as its first component with all
other components equal to zero, then the vector having 1 in its second compon-
ent with all other components equal to zero, and so on through the entire
standard basis, we conclude that

PPAL = ADPD

We know from Theorem 2 that the transition matrix is invertible, so we may
rewrite this last equation as

AS = (P2) ' ADPE (3.26)

Conversely, the same reasoning shows that if (3.26) is valid, then A% and AB are
matrix representations for the same linear transformations with respect to the
C basis and D basis, respectively, where these two bases are related by the
transition matrix P%. If we simplify our notation by omitting the subscripts
and superscripts and using different letters to distinguish different matrices, we
have proven:

» Theorem 3. Two n x n matrices A and B represent the same linear
transformation if and only if there exists an invertible matrix P such that

A=P 'BP (327) <«

Although equation (3.27) is notationally simpler, equation (3.26) is more reveal-
ing because it explicitly exhibits the dependencies on the different bases.

Example 5 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (b) of Example 4.

Solution: From Example 4,

s 11 3 s [ 2 4
AS_[—S —5} AB_[u 4}

and from Example 1,

11
2 2
P2 =
11
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Therefore,
11
Bl B 11172 47|12 2
(PS) AaPs i 1“12 411 1
2 2
Tl 3
= =AS
-5 —5} s M

Example 6 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (c) of Example 4.

Solution: Here the bases are S={[1 0]",[0 1]"} and E={[3 —1]",
[1 =5 ]T}, so equation (3.26) takes the notational form

AS = (PE) ' AfPE
From Example 4,

c_ |11 3 E_ |10 0
A [_5 _5}, and A[E{O _4}

Writing each vector in the S basis as a linear combination of vectors in the
E basis, we find that
[ 5 /14]
—1/14 |

) =] e ls) - L)
= — —_— >

1 14 —1 14| -5 -3/14 |;
Matrices A and B

are similar if they Pg — { 5/14 1/14]
represent the same -1/14 -3/14
linear trans-

formation, in which Therefore,

case there exists a

—
(e
[E—
I
=l
—
Lo
—
|
==
—
thr—n
[
!

whereupon

transition matrix P (P[E)ilA[EP[E _ { 3 1] [10 0] [ 5/14 1/14]
such that SSOTEST o1 —5] 0 —4][-1/14 -3/14
A=P'BP.
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We say that two matrices are similar if they represent the same linear transform-
ation. It follows from equation (3.27) that similar matrices satisfy the matrix
equation

A=P 'BP (3.27 repeated)

If we premultiply equation (3.27) by P, it follows that A is similar to B if and only
if there exists a nonsingular matrix P such that

PA = BP (3.28)

Of all the similar matrices that can represent a particular linear transformation,
some will be simpler in structure than others and one may be the simplest of all.
In Example 4, we identified three different matrix representations for the same
linear transformation. We now know all three of these matrices are similar. One, in
particular, is a diagonal matrix, which is in many respects the simplest possible
structure for a matrix. Could we have known this in advance? Could we have
known in advance what basis would result in the simplest matrix representation?
The answer is yes in both cases, and we will spend much of Chapters 4 and 6
developing methods for producing the appropriate bases and their related matrices.

Problems 3.4

In Problems 1 through 13, find the transition matrix from the first listed basis to the
second.

M B={1 of",[1 1I'LC={0 111 1]}
@ B={1 o[t 1T"L,D={1 11,1 2"}
@ C={0 1101 1I"LD={1 11501 2T}
(4) Same as Problem 3 but with D listed first.
G E={[1 2][1 3T'"LF={[-1 115.[0 1]}
(6) Same as Problem 5 but with [ listed first.

(7 G={[10 201,110 —201"},F={[-1 1]%,[0 1]}.

® S={1 0 o],[jo 1 o]f,[0 o 1]},
T={1 1 o],jo 1 115,01 0 117}
@ S={1 0 o], [0 1 o],[0 O 11"},
U={1 o ol[1 1 ol,[1 1 177
(10) Same as Problem 9 but with U listed first.
an u={1 o ol5[1 1 olL[1 1 117},
T={1 1 o]0 1 17501 0o 119}
a2 v={1 1 o150 1 17511 3 117},
T={1 1 o]0 1 115,[1 o 17"
a3 v={1 1 o150 1 11511 3 117},

U= {1

(e}

0151 1 o1%[1 1 177
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In Problems 14 through 25, a linear transformation is defined and two bases are specified.
Find (a) the matrix representation for 7: V — V with respect to the first listed bases, (b)
the matrix representation for the linear transformation with respect to the second listed
basis, and (c) verify equation (3.18) using the results of parts (a) and (b) with a suitable
transition matrix.

[a]  [2a+b]. .

(14) T_b_ = _a—3b}’ B and C as given in Problem 1.
[a]  [2a+b]. .

as) T_b_ = _a—3b}’ E and [F as given in Problem 5.
[a] [8a —3b]. o .

(16) T_b_ = l6a—b ], B and D as given in Problem 2.

an T-a- = [ 2a ; B and C as given in Problem 1
15| |3a—b]’ )
(a]  [lla—4b]. o

(18) T_b_ = _24‘1_%}, E and [F as given in Problem 5.
(a]  [1la—4b]. o

(19) T_b_ = »24‘1_%], B and D as given in Problem 2.

20 T Z = Z}, E and [F as given in Problem 5.

@y T Z = 8}, C and D as given in Problem 3.
[a] [3a—b+c

22) T|b| = |2a-2c ; S and T as given in Problem 8.
L ¢ |3a—3b+c
[a] [3a—b+c

23) T|b| =|2a-2c ; S and U as given in Problem 9.
L ¢ ] |3a—3b+c
[a] [a—b

4) T|b| = 2b |;Sand T as given in Problem 8.
| ¢ ] | a+3c
[a [ a

25) T|{b| =] 2b |;S andU as given in Problem 9.
c —3c

(26) Show directly that A = {2 0

0 2} andB:{

21 are not similar
0 2 )
a b

Hint: Set P = L d} and show that no elements of this matrix exist that make

equation (3.27) valid.

(27) Show directly that there does exist an invertible matrix P that satisfies equation

4 3 5 —4
(3.27) for A = {_2 —l} and B = [3 _2}.

(28) Prove that if A is similar to B then B is similar to A.
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29
(30)
@31
(32)
(33
(34
(35

(36)

37

(38

(39

(40)

Prove that if A is similar to B and B is similar to C, then A is similar to C.
Prove that if A is similar to B, then A? is similar to B

Prove that if A is similar to B, then A is similar to B®.

Prove that if A is similar to B, then AT is similar to BT.

Prove that every square matrix is similar to itself.

Prove that if A is similar to B, then kA is similar to kB for any constant k.

Prove that if A is similar to B and if A is invertible, then B is also invertible and
A1 is similar to B™!.

Show that there are many P matrices that make equation (3.26) valid for the two
matrix representations obtained in Problem 20.

Show that there are many P matrices that make equation (3.26) valid for the two
matrix representations obtained in Problem 21.

Let C={vi,v2, ...,v,} and let D = {va,v3, ...,v,,v;} be a re-ordering of the
C basis by listing v; last instead of first. Find the transition matrix from
the C basis to the D basis.

Let S be the standard basis for R" written as column vectors. Show that if
B = {vi,v2, ...,v,} is any other basis of column vectors for R”", then the columns
of the transition matrix from B to S are the vectors in B.

Let C and [ be two bases for a vector space V, D and F be two bases for a vector
space W, and T: V — W be a linear transformation. Verify the following:

(i) For any vector vin V there exists a transition matrix P such that v¢ = PEV[E.

(i) For any vector w in W there exists a transition matrix Q such that
PN
wp = Q[F VE.

(iii) If A is a matrix representation of T with respect to the C and D bases, then
_AD
wp = Agve.

(iv) If A is a matrix representation of T with respect to the E and F bases, then
_ AF
W = AEV[E

v) wp= AEP%V[E.
(vi) wp = QEAEVE.
(vii) ACPE = QPA;.

(viiy AL = (QP) ' ARPE.

3.5 PROPERTIES OF LINEAR TRANSFORMATIONS

Because a linear transformation from one finite-dimensional vector space to
another can be represented by a matrix, we can use our understanding of
matrices to gain a broader understanding of linear transformations. Alterna-
tively, because matrices are linear transformations, we can transport properties



202 e Linear Transformations

The kernel of a
linear trans-
formation T is the
set of all vectors v in

the domain for
which T(v) = 0.

of linear transformations to properties of matrices. Sometimes it will be easier to
discover properties dealing with matrices, because the structure of a matrix is so
concrete. Other times, it will be easier to work directly with linear transform-
ations in the abstract, because their structures are so simple. In either case,
knowledge about one, either linear transformations or matrices, provides an
understanding about the other.

» Theorem 1. If T:V — W is a linear transformation, then T(0) =0. <«

Proof: We have from Theorem 1 of Section 2.1 that 00 = 0. In addition, 7(0) is
a vector in W, so 07(0) = 0. Combining these results with the properties of linear
transformations, we conclude that

T(0) = T(00) = 0T(0) =0 M

Note how simple Theorem 1 was to prove using the properties of vector spaces
and linear transformations. To understand Theorem 1 in the context of matrices,
we first note that regardless of the basis B = {uj,u, ..., u,} selected for a vector
space, the zero vector has the form

0:0u1+0u2+...+0up

The zero vector is unique (Theorem 4 of Section 2.1) and can be written only one
way as a linear combination of basis vectors (Theorem 5 of Section 2.4), hence
the coordinate representation of the zero vector is a zero column matrix. Thus, in
terms of matrices, Theorem 1 simply states that the product of a matrix with
a zero column matrix is again a zero column matrix. Theorem 1 is obvious in the
context of matrices, but only after we set it up. In contrast, the theorem was not
so obvious in the context of linear transformations, but much simpler to prove.
In a nutshell, that is the advantage (and disadvantage) of each approach.

Theorem 1 states that a linear transformation always maps the zero vector in the
domain into the zero vector in W. This may not, however, be the only vector
mapped into the zero vector; there may be many more. The projection
L:R* — R? defined in Example 7 of Section 3.2 as

Lla bl=[a 0]

generates the mappings L[0 1]=[0 0]=0,L[0 2]=[0 0]=0, and, in
general, L[0 k]=0 for any real number k. This projection maps infinitely
many different vectors in the domain into the zero vector. In contrast, the
identity mapping I(v) = v maps only the zero vector into the zero vector. We
define the kernel (or null space) of a linear transformation 7:V — W, denoted
by ker(T), as the set of all vectors v € V that are mapped by T into the zero vector
in W; that is, all v for which T(v) = 0. It follows from Theorem 1 that ker(T)
always contains the zero vector from the domain, so the kernel is never an empty
set. We can say even more.
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The set of vectors
that satisfy the
homogeneous matrix
equation Ax =0 is a
subspace called the
kernel of A.

» Theorem 2. The kernel of a linear transformation is a subspace of the
domain. <«

Proof: Letuand v be any two vectors in the kernel of a linear transformation T,
where T(u) = 0 and T(v) = 0. Then for any two scalars « and B, it follows from
the properties of a linear transformation that

T(ou+pv) = aT) + BT(V) =a0+B0=0-+0=0

Thus, au + Bv is also in the kernel and the kernel is a subspace. W

In terms of a specific matrix A, the kernel is the set of column vectors x that
satisfy the matrix equation Ax = 0. That is, ker(A) is the set of all solutions to the
system of homogeneous equations Ax = 0. Theorem 2 implies that this set is
a subspace.

Example 1 Dectermine the kernel of the matrix A = { é 7} ﬂ .

Solution: The kernel of A is the set of all three-dimensional column matrices
x =[x y z]' that satisfy the matrix equation

[1 1 5} ’y“ 3 8
2 -1 1 - 0
or, equivalently, the system of linear equations

xX+y+5z=0
2x—y+z=0

The solution to this system is found by Gaussian elimination to be
x = =2z, y = =3z, with z arbitrary. Thus, x € ker(A) if and only if

X -2
x=|y|3=z|-3
z 1

where z is an arbitrary real number. The kernel of A is a one-dimensional
subspace of the domain R®; a basis for ker(A) consists of the single vector
[-2 =3 11". m

The image of a transformation 7:V — W is the set of vectors in W that are
matched with at least one vector in V; that is, w is in the image of T if and only if
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The image of a
linear trans-
formation T is the
set of all vectors w in
the range for which
there is a vector v in
the domain
satisfying T(v) = w.

The image of a
matrix is its column
space.

there exists at least one vector v in the domain for which T(v) = w. We shall
denote the image of T by Im(T). If T is linear, it follows from Theorem 1 that
Im(T) always contains the zero vector in W, because the zero vector in V is
mapped into the zero vector in W. We can say even more.

» Theorem 3. The image of a linear transformation T:V — W is a
subspace of W. <«

Proof: Let w; and w, be any two vectors in the image of a linear transformation
T. Then there must exist vectors v; and v, in the domain having the property that
T(vi) =w; and T(v;) = w,. For any two scalars « and B, it follows from the
properties of a linear transformation that

aw) + Bwy = aT(vy) + BT(v2) = T(av, + Bv,)

Because V is a vector space, av; 4+ Bv, is in the domain, and because this linear
combination maps into aw; + Bw,, it follows that aw; + Bw; is in the image of T.
Consequently, Im(T) is a subspace. W

In terms of a specific matrix A, the image is the set of column matrices y that
satisfy the matrix equation Ax = y. That is, Im(A) is the set of products Ax for
any vector x in the domain. Theorem 3 implies that this set is a subspace. Denote
the columns of A by A}, Ay, ..., A,, respectively, and a column matrix x as
X=[x1 X3 ... Xp ]T. Then

AX = x1A] + A + ...+ x,A,

That is, the image of A is the span of the columns of A, which is the column space
of A.

Example 2 Determine the image of the matrix A = B _} ﬂ .
Solution: The column space of A is identical to the row space of AT. Using
elementary row operations to transform AT to row-reduced form, we obtain

1 2

0 1

00
This matrix has two nonzero rows; hence, its rank is 2. Thus the rank of AT, as
well as the rank of A, is 2. A is a 2 x 3 matrix mapping R’ into R?. The range R?

has dimension 2, and since the image also has dimension 2, the image must be
the entire range. Thus, Im(A) = R>. o
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Example 3 Identify the kernel and the image of the linear transformation
T:P? — Ma,, defined by

2 | 2b

T(at"+bt+c) = {O a]

for all real numbers a, b, and c.

Solution: This transformation maps polynomials in ¢ of degree 2 or less into
2 x 2 matrices. In particular,

) 3 8
T(3t +4t+5)[0 3}

and
T(—C+5t+2)=T(—t*+5t-8) = [_(1) 1(”

A polynomial in the domain is mapped into the zero matrix if and only if
a=b=0, so the kernel is the set of all polynomials of the form 0¢> + 0z + c;
that is, the subspace of all zero-degree polynomials. A basis for ker(T) is {1}.
Thus, the kernel is a one-dimensional subspace of P2

M «» is a four-dimensional vector space. The image of T is the subspace contain-
ing all matrices of the form

ER R bR R

which is spanned by the two matrices

o 1] e o g

It is a simple matter to prove that these two matrices are linearly independent, so
they form a basis for the image of 7. Thus, Im(T) is a two-dimensional subspace
of Mao. W

It is important to recognize that the kernel and image of a linear transformation
T:V — W are conceptually different subspaces: the kernel is a subspace of the
domain V while the image is a subspace of the range W. Figure 3.14 is a
schematic rendition of these concepts. The vector space V is depicted by the
palette on the left, the vector space W by the palette on the right, and because
these vector spaces can be different, the palettes are drawn differently. Each
point in the interior of a palette denotes a vector in its respective vector space.
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Figure 3.14

"-\%
W
Needless to say, both palettes are just symbolic representations of vector spaces
and not true geometrical renditions of either the domain or range.

The palettes in Figure 3.14 are partitioned into two sections, one shaded and one
not. The shaded portion of the left palette represents ker(T), and, as such, every
point in it must be mapped into the zero vector in W. This is shown symbolically
by the vector v;. Vectors in the unshaded portion of the left palette, illustrated by
the vectors v, v3 and v4, are mapped into other vectors in W. The zero vector in
V is mapped into the zero vector in W as a consequence of Theorem 1.

The shaded portion of the right palette represents the image of T. Any vector w
in this region has associated with it a vector v in the left palette for which
w = T(v). The unshaded portion of the right palette is not in the image of T
and vectors in it are not matched with any vectors in domain represented by the
left palette.

Even though the kernel and image of a linear transformation are conceptually
different, their bases are related.

» Theorem 4. Let T be a linear transformation from an n-dimensional
vector space N into W and let {v,va, ..., Vi } be a basis for the kernel of
T. If this basis is extended to a basis {Vi,Va, ..., Vi, Vkil, - .-, Vu} for V,
then {T(Vk11), T(Vis2), - .., T(vy)} is a basis for the image of T. <«

Proof: 'We must show that {T(viy1), T(Vii2), - - ., T(v,)} is a linearly independ-
ent set that spans the image of 7. To prove linear independence, we form the
equation

1 T(Viy1) + k2 T(Ve2) + oo+ ¢n T(v) = 0 (3.29)

and show that the only solution to this equation is ¢x41 = g2 = ... = ¢, = 0.
Because T is linear, equation (3.29) can be rewritten as

T(ckr1 Vit + CraVira + -+ V) =0

which implies that the sum cgy Vi) + CkaaViaa + ... + ¢V, In a vector in the
kernel of T. Every vector in the kernel can be expressed as a unique linear



3.5 Properties of Linear Transformations e 207

combination of its basis vectors (Theorem 5 of Section 2.4), so there must exist a
unique set of scalars ¢y, ¢a, ..., c; such that

Ci+1Vk+1 + Ckt2Viy2 + oo+ CpVp = C1V1 + C2V2 + ... + iV
which can be rewritten as
—CIV] — V2 — ... — OV + Chg 1 Vip 1 F Crg2Vip2 + oo+ ¥y =0 (3.30)

But {v, Vs, ..., V,} is basis for V; consequently, it is linearly independent and the
only solution to equation (3.30)is —¢; = —¢; = ... = —Ct = Ck41 = Chi2 = ... =
¢, = 0. Thus, ¢x11 = ¢xy2 = ... = ¢, = 0 is the only solution to equation (3.29),
and {T(Vi41), T(Vks2), - .., T(v,)} is linearly independent.

It remains to show that { T(vi11), T(Viy2), - .., T(v,)} spans the image of T. Let w
denote an arbitrary vector in the image. Then there must be at least one vector v
in the domain having the property that 7T(v) = w. Writing v as a linear combin-
ation of basis vectors, we have v=d\vi+drvo+ ...+ dpVi + dir1Vi1+
diy2Viio + ... + d,v, for a unique set of scalars dy,d,, . ..,d,. Then

w=T ) =T(d\v\+dovo+ ...+ dVi + dii1Vir1 + diaoViao + ...+ dyvy)
=diT(V1) + & T(V2) + ... + de T(Vi) + i1 T(Viei1) + i 2 T(Viet2)
+...+d,T(vy)
=d\0+ 0+ ...+ di0+ di 1 T(Vir1) + dr2 T(Vig2) + .. 4 dy T (V)
=di1 T(Vir1) + des2 T(Vey2) + -+ dy T(Vy)
because vi,Vy, ...,V, are (basis) vectors in the kernel of T and all vectors in
ker(T) map into the zero vector. We conclude that every vector w in the image of

T can be written as a linear combination of {T(viy1), T(Vii2), ..., T(v,)}, so this
set spans the image.

We have shown that {T(viy1), T(Vii2), ..., T(v,)} is a linearly independent set
that spans the image of T; hence, it is a basis for that image. W

Example 4 Apply Theorem 4 to the linear transformation given in Example 3.

Solution: A basis for the kernel was found to be the set {1} while a basis for the
domain is {1, ¢,#*}. Theorem 4 states that

T(*) = T(1£* + 0t +0) = Ll) (1)]

and

T(t) = T(OF + 11+ 0) = [8 g]
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form a basis for the image of T, which is precisely the same result obtained in

Example 3. W
Example 5 Apply Theorem 4 to the linear transformation 7:R* — R® defined
by
Z a+b
T =|b+c+d
c
y a—c—d

Solution: A vector in R* is in the kernel of T if and only if its components a, b, c,
and d satisfy the system of equations

a+b=0
b+c+d=0
a—c—d=0

Using Gaussian elimination on this system, we obtain as its solution ¢ = ¢ + d,

b = —c — d with ¢ and d arbitrary, which takes the vector form
a c+d 1 1
b —c—d -1 -1
c| c = |t d 0
d d 0 1

Every vector of this form is in the kernel of T. It is clear that the two vectors on
the right side of this last equation span the kernel of T. It is also easy to show that
these two vectors are linearly independent, so they form a basis for ker(T).

This basis for ker(T) can be extended to the set

1 0

-1 -1 0 1
1 0(7]01(° [0

0 1 0 0

which forms a basis for R*. It now follows that

T =10 and T =1
0 1 0 0
0 0

form a basis for the image of 7. W
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The nullity and rank
of a linear
transformation are,
respectively, the
dimensions of its
kernel and image.

Because the kernel and image of a linear transformation 7:V — W are sub-
spaces, each has a dimension. The dimension of the kernel is its nu/lity, denoted
by v(T); the dimension of the image is its rank, denoted by r(7). Assume that
dim(V)I = n. 1t follows from Theorem 4 that if there are k& vectors in the basis
{v1, V2, ..., v} for the kernel of T, so that v(T) = k, then a basis for the image of
T given by {T(vki1), T(Viy2), ..., T(vy)} contains n—k vectors and
r(T) = n — k. Together, (T) +v(T) = (n — k) + k = n, the dimension of V.

The proof of Theorem 4 assumes that 1 < k < n. If k = 0, then ker(T) contains
just the zero vector, which has dimension 0. In this case, we let {v;,v,, ..., v,} be
any basis for V, and with minor modifications the proof of Theorem 4 can be
adapted to show that {T(v}), T(v2), ..., T(v,)} is a basis for the image of T. Once
again, r(T) + v(T) = n+ 0 = n. Finally, if v(T) = n, then ker(T) must be all of
the domain, all vectors in V map into 0, the image of T is just the zero vector,
r(T) =0, and r(T) +v(T) = 0+ n = n. We have, therefore, proven one of the
more fundamental results of linear algebra.

» Corollary 1. For any linear transformation T from an n-dimensional
vector space N to W, the rank of T plus the nullity of T equals n, the
dimension of the domain. That is,

n)4+v(T)=n <«

The startling aspect of Corollary 1 is that the dimension of W is of no conse-
quence. Although the image of T is a subspace of W, its dimension when
summed with the dimension of the null space of T is the dimension of the
domain.

Example 6 Verify Corollary 1 for the linear transformation T: P? — May,
defined by

2 | 2b
T(at +bt+c)—[0 a]

for all real numbers a, b, and c.

Solution: The domain P? has dimension 3. We showed in Example 3 that a
basis for the kernel contains a single vector and a basis for the image of T
contains two elements. Thus, r(T) = 2,v(T) =1, and #(T) +v(T) =2+ 1 =3,
the dimension of the domain. W

Example 7 Verify Corollary 1 for the linear transformation T: R* — R? defined

by
E at+b
T =|b+c+d
c
d a—c—d
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A linear
transformation is
one-to-one if it maps
different vectors in
the domain into
different vectors in
the range.

Figure 3.15

Solution: The domain R* has dimension four. We showed in Example 5 that
bases for both the kernel and the image contain two vectors, so
r(T)+v(T) = 2 + 2 = 4, the dimension of the domain. N

If we restrict our attention to an n x p matrix A, then the kernel of A is the
subspace of all solutions to the homogeneous system of equation Ax = 0 and the
dimension of this subspace is v(A), the nullity of A, The image of A is the column
space of A and its dimension is the column rank of A, which is the rank of the
matrix. Thus, Corollary 1 is simply an alternate formulation of Theorem 3 of
Section 2.5.

A linear transformation T:V — W is one-to-one if the equality T(u) = T(v)
implies u = v. A one-to-one linear transformation maps different vectors in V
into different vectors in W, as illustrated in Figure 3.15(a). If two different
vectors u and v in V map into the same vector in W, as illustrated in Figure
3.15(b), then T(u) = T(v) with u # v, and the transformation is not one-to-one.

Example 8 Determine whether the linear transformation T:P? — Mhyo
defined by

2 _|a 2b
T(at +bt+c)—[0 a}

is one-to-one.

Solution: Here

T(—C+5t42) = T(— 2 +5t—8) = [_1 10}

0 -1

(a) T is one-to-one.

\

(b) T is not one-to-one.
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Settingu = —#> 4 5t +2 and v= —* 4 5t — 8, we have T(u) = T(v) with u # v,
hence T is not one-to-one. W

Example9 Determine whether the linear transformation 7: R? — R* defined by

a a+b
T[b} a—>b
2a+3b

1S one-to-one.

Solution: Setting u=1[a b]",v=[c d]', and T(u)= T(v), we obtain the
vector equation

a+b c+d
a—b| =| c—d
2a +3b 2¢ + 3¢

which is equivalent to the system of equations

a+b=c+d
a—-b=c—d
2a+3b=2c+3d

Solving this system by Gaussian elimination for the variables ¢ and b, thinking of
¢ and d as fixed constants, we generate the single solution ¢ = ¢ and b =d.
Therefore, the equality T(u) = T(v) implies that u = v, and T is one-to-one. W

Often, the easiest way to show whether a linear transformation is one-to-one is to
use the following:

» Theorem 5. A linear transformation T:N — W is one-to-one if and only
if the kernel of T contains just the zero vector, i.e., v(T) =0. <«

Proof: Assume that T is one-to-one. If v € ker(T), then T(v) =0. We know
from Theorem 1 that 7(0) = 0. Consequently, T(v) = T(0), which implies that
v =0, because T is one-to-one. Thus, if v € ker(T), then v = 0, from which we
conclude that the kernel of T contains just the zero vector.

Conversely, assume that the kernel of T contains just the zero vector. If u and v
are vectors in the domain for which T(u) = T(v), then T(u) — T(v) =0 and
T(u—v) =0, which implies that the vector u — v is in the kernel of 7. Since
this kernel contains only the zero vector, it follows that u —v=0 and u=v.
Thus, the equality T(u) = T(v) implies u = v, from which we conclude that T is
one-to-one.
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A linear trans-
formation is onto
if its image is its
range.

Example 10 Determine whether the linear transformation 7:R* — R?® defined

by
g a+b
T =|b+c+d
C
d a—c—d

1S one-to-one.

Solution: We showed in Example 5 that a basis for the kernel of T contained
two vectors. Thus, v(T) = 2 # 0, and the transformation is not one-to-one. W

A linear transformation 7:V — W is onto if the image of T is all of W; that is, if
the image equals the range. The dimension of the image of T is the rank of 7.
Thus, T is onto if and only if the rank of T equals the dimension of W. This
provides a straightforward algorithm for testing whether a linear transformation
1s onto.

Example 11 Determine whether the linear transformation T:P? — Mhyo
defined by

2 _|a 2b
T(at +bt+c)—[0 a}

is onto.

Solution: We showed in Example 3 that a basis for the kernel of the transform-
ation is the set {1}, hence v(T) = 1. The dimension of the domain P? is 3, so it
follows from Corollary 1 that r(7T)+ 1 =3 and r(T) = 2. Here W = M4, has
dimension 4. Since r(T) = 2 # 4 = dim(W), the transformation is not onto. W

Example 12 Determine whether the linear transformation T:Mh,, — R
defined by

a b a+b
T [c d] =|b+c
c+d
1s onto.
Solution: A matrix in M, is in the kernel of 7 if and only if its components a,

b, ¢, and d satisfy the system of equations

a+b=0
b+c=0
c+d=0
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The solution to this system is found immediately by back substitution to be
a=—d, b=d, ¢ =—d, with d arbitrary. Thus, a matrix in ker(T) must have

the form
—d d -1 1
it

which implies that the kernel of T is spanned by the matrix

-1 1

-1 1
This matrix is nonzero. It follows from Theorem 2 of Section 2.3 that, by itself,
this matrix is a linearly independent set. Consequently, this matrix forms a basis
for ker(T), and v(T) = 1. The dimension of the domain V = M, is 4, so it

follows from Corollary 1 that »(T) 4+ 1 = 4 and r(T) = 3. The dimension of the
range R is also 3, hence the transformation is onto.

Alternatively, we may show that the matrix representation of T with respect to
the standard bases in both M., and R? is

1 100
A=10 1 1 0
0 0 1 1

A is in row-reduced form and has rank 3. Therefore, /(T) = r(A) = 3 = dim(R>),
and we once again conclude that the transformation is onto. W

In general, the attributes of one-to-one and onto are quite distinct. A linear
transformation can be one-to-one and onto, or one-to-one and not onto, onto
but not one-to-one, or neither one-to-one nor onto. All four possibilities exist.
There is one situation, however, when one-to-one implies onto and vice versa.

» Theorem 6. Let a linear transformation T:N — W have the property
that the dimension of \V equals the dimension of W. Then T is one-to-one
if and only if T is onto. <«

Proof: T is one-to-one if and only if (from Theorem 5) v(T) = 0, which is true
if and only if (Corollary 1) n(T) = dim(V). But dim(V) = dim(W); hence, T is one-
to-one if and only if r(T) = dim(W), which is valid if and only if T is onto. W

Problems 3.5

(1) Define T: > — R? by Tla b c¢]=[a+b c]. Determine whether any of the
following vectors are in the kernel of T.

@ [t -1 3] ([l -1 0],
(© [2 =2 0], (d[1 25 1 0]
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@

3

“@

®

©6)

@)

@®

®

(10)

Define S: R* — R? bySla b c]=[a—c c¢—b] Determine whether any of the
following vectors are in the kernel of .

(@ [1 -1 1], (®) [T 1T 1]

(¢ [-2 =2 =2], @[1 1 O]

Define L: R* - R, L[a b c¢]=[a+2b—3c 0]. Determine whether any of the
following vectors are in the kernel of L.

@ [1 1 1], () [5 —1 1],
© [-1 2 11, @[-1 5 31

Define P: Mo — Msyo, P{(z Z] = {a—(o)—b c _O d]' Determine whether any of

the following matrices are in the kernel of P.

11 I -1 1 1 I -1
I N e SR I RO
Define T:P? — P? by T(axf® + ait + ap) = (ay — a1)t> + (a; — ap)t. Determine
whether any of the following vectors are in the kernel of T.
(@) 22 -3t+4, (b) 2+1, (c) 3t+3, (dy -2 —1t-1.

Determine whether any of the following vectors are in the image of the linear
transformation defined in Problem 1. For each one that is, produce an element in
the domain that maps into it.

(@ [1 1L  ®m[1 -1}  ([2 0], ([T 2]

Determine whether any of the following vectors are in the image of the linear
transformation defined in Problem 3. For each one that is, produce an element in
the domain that maps into it.

@ [1 1] (®[1 0 (9 [2 0] (@[ 2]

Determine whether any of the following matrices are in the image of the linear
transformation defined in Problem 4. For each one that is, produce an element in
the domain that maps into it.

o [1) el e[l el

b
Redo Problem 8 for P:My,» — Mhy» byP{Z d} = Lcl Z}

Determine whether any of the following vectors are in the image of the linear
transformation defined in Problem 5. For each one that is, produce an element in
the domain that maps into it.

(@ 222-3t+4, (b) 2+2t, (¢ 31, (d) 2r—1.

In Problems 11 through 30, find the nullity and rank of the given linear transformations,
and determine which are one-to-one and which are onto.

an
12)

T:R* - R% T[a b]=[2a 3b].
T:R* >R T[a bl=[a a+Db]
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13) T:R*—>R* T[a bl=[a O]
14 SR —-R%, S[a b c]

[a+b <]
as) S:R—-R%,S[a b c]

[a—c c—b].
16) S:RP—>R%LS[a b cl=[a+2b-3c 0]
17 S:R2—R S[a bl=[a+b 2a+b al.
18 SRR S[a bl=[a 0 b]

19 N:R*—= R N[a bl=[a+b 2a+b b]
20) N:R*—= R, Na b]=[0 0 2a-—5b]
Q) T:R*—>RT[a bl=[a —a -8al
22 TR =R, T[a b ¢cl=a—c.

23 LR >R, Lla b c]=0.

@4 P:MZXwMzXz,P:‘C’ Z :[; Z}.
(25) P:M2X2_>M2><29P:i Z_:{aq(;b cgd}'
(26) TI’\/szz—’f\/ﬂzxz,T:LCZ Z :{2(;{ 8}
@7 R:M2X2—>R‘,R{Z 2]:b+20—3d.

(28) L:P? — P%, L(ay? + a1t + ag) = apt.
29) T:P?> = P% T + art + ap) = (a2 — a) + (a1 — ap)t.
3B0) S:P? = P?, S(@f +ait+ap) = 0.

(31) Determine whether any of the following vectors are in the image of
1 3
A= [ ! 0} .
2 2 0 0
@ M (b) M © M (@) M

(32) Redo the previous problem for the matrix A = { ; 8} .

1 0
(33) Determine whether any of the following vectors are in the image of A = [1 1} .
11

1 2 4 4
(@ (0], (®) |0{, © |31, (d |4].
1 0 3 3

In Problems 34 through 42, find a basis for the kernels and a basis for the image of the
given matrices.
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(34

(36)

(3%

(40

42)
43)
44

45)

(46)

7

49

49

(50)

(1)

(52)

(33

(54

(55

12 12
A=, 4}. (35) B:{2 5}.
1 -10 10 2
c=| , 0}. 37 D:{3 0 4}.
10 1 111
E=|2 1 3. (9 F=|1 1 1].
13 1 4 111
110 1
G=|1 0 1 @) H= |2
11 3

K=[1 1 2 2]
What can be said about the ranks of similar matrices?

Prove that if a linear transformation 7: V — W is onto, then the dimension of W
cannot be greater than the dimension of V.

Use the results of the previous problem to show directly that the transformation
defined in Example 3 is not onto.

Use the results of Problem 44 to show directly that the transformation defined in
Example 9 is not onto.

Prove that if {w;,w,, ..., w;} are linearly independent vectors in the image of
a linear transformation L: V —W, and if w;=T(v;,) (i=1,2,...,k), then
{V1,v2, ..., ¥} is also linearly independent.

Prove that a linear transformation T: V — W cannot be one-to-one if the dimension
of W is less than the dimension of V.

Use the result of the previous problem to show directly that the transformation
defined in Example 5 cannot be one-to-one.

Use the result of Problem 48 to show directly that the transformation defined in
Example 12 cannot be one-to-one.

Let {vi,v2, ...,v,} be a spanning set for V and let T: V — W be a linear trans-
formation. Prove that {T(v), T(v2), ..., T(v,)} is a spanning set for the image of 7.

Prove that a linear transformation 7: V — W is one-to-one if and only if the image
of every linearly independent set of vectors in V is a linearly independent set of
vectors in W.

Let T: V — W be a linear transformation having the property that the dimension of
V is the same as the dimension of W. Prove that T is one-to-one if the image of any
basis of V is a basis for W.

Prove that a matrix representation of a linear transformation 7: V — V has an
inverse if and only if T is one-to-one.

Prove that a matrix representation of a linear transformation 7: V — V has an
inverse if and only if T is onto.
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Chapter 3 Review
Important Terms
coordinate representation (p. 174) projection onto the x-axis  (p. 168)
dilation (p. 164) projection onto the y-axis (p. 169)
domain (p. 157) range (p. 157)
function (p. 157) rank (p. 209)
image (p. 158) reflection across the x-axis (p. 167)
kernel (p. 202) reflection across the y-axis  (p. 168)

Important Concepts

Section 3.1

Section 3.2

Section 3.3

Section 3.4

>

v

linear transformation (p. 163)
nullity (p. 209)

null space (p. 202)
one-to-one (p. 210)

onto (p.212)

rotations in the x-y plane (p. 194)
similar matrices (p. 199)
transformation (p. 163)
transition matrix (p. 188)

zero transformation (p. 165)

A function is a rule of correspondence between two sets, a domain and range,
that assigns to each element in the domain exactly one element (but not
necessarily a different one) in the range.

A transformation 7T is a rule of correspondence between two vector spaces,
a domain V and a range W, that assigns to each element in V exactly one
element (but not necessarily a different one) in W.

A transformation is linear if it preserves linear combinations.

Every matrix defines a linear transformation.

A linear transformation is described completely by its actions on a basis for the
domain.

Every linear transformation from one finite-dimensional vector space to another
can be represented by a matrix that is basis dependent.

In general, a vector has many coordinate representations, a different one for each
basis.

The transition matrix from C to D, where both C and D are bases for the same
finite-dimensional vector space, is invertible and its inverse is the transition
matrix from D to C.

If v¢ and vp are the coordinate representations of the same vector with respect to
the bases C and D, respectively, then vp = Pv¢ where P is the transition matrix
from C to D.

In general, a linear transformation may be represented by many matrices,
a different one for each basis.
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Section 3.5

>

>

Two square matrices A and B represent the same linear transformation if and
only if there exists a transition matrix P such that A = P~'BP.

A linear transformation always maps the zero vector in the domain to the zero
vector in the range.

The kernel of a linear transformation is a nonempty subspace of the domain; the
image of a linear transformation is a nonempty subspace of the range.

The kernel of the linear transformation defined by a matrix A is the set of all
solutions to the system of homogencous equations Ax = 0; the image of the
linear transformation is the column space of A.

If {vi,va, ..., Vi } is a basis for the kernel of a linear transformation 7 and if this
basis is extended to a basis {v|,Va, ..., Vi, Vki1, -..,V,} for the domain, then
{T(Vis1)> T(Viy2), - ., T(vy)} is a basis for the image of 7.

The rank plus the nullity of a linear transformation from one finite-dimensional
vector space to another equals the dimension of the domain.

A linear transformation is one-to-one if and only if its kernel contains just the
zero vector.

A linear transformation is onto if and only if its rank equals the dimension of the
range.

A linear transformation 7:V — W, having the property that dim(V) = dim(W),
is one-to-one if and only if the transformation is onto.



Chapter 4

Eigenvalues, Eigenvectors,
and Differential Equations

4.1 EIGENVECTORS AND EIGENVALUES

Many of the uses and applications of linear algebra are especially evident by
considering diagonal matrices. In addition to the fact that they are easy to multiply,
a number of other properties readily emerge: their determinants (see Appendix A)
are trivial to compute, we can quickly determine whether such matrices have
inverses and, when they do, their inverses are easy to obtain. Thus, diagonal
matrices are simple matrix representations for linear transformations from a
finite-dimensional vector space V to itself (see Section 3.4). Unfortunately, not all
linear transformations from V to V can be represented by diagonal matrices. In this
section and Section 4.3, we determine which linear transformations have diagonal
matrix representations and which bases generate those representations.

To gain insight into the conditions needed to produce a diagonal matrix repre-
sentation, we consider a linear transformation T:R® — R® having the diagonal
matrix representation

Ar 000
D=0 X, 0
0 0 A3

with respect to the basis B = {xi, X5, X3}. The first column of D is the coordinate
representation of T(x;) with respect to B, the second column of D is the
coordinate representation of T(x;) with respect to B, and the third column of
D is the coordinate representation of 7T'(x3) with respect to B. That is,

T(x1) = A x; + 0x2 + 0x3 = A1X)
T(x5) = 0x1 + A2x5 + 0X3 = ArXp
T(x3) = 0x; + 0x2 + A3X3 = A3X3
Mapping the basis vectors X, X3, or X3 from the domain of T to the range of T is

equivalent to simply multiplying each vector by the scalar A, A,, or A3, respectively.

219
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A nonzero vector x
is an eigenvector of
a square matrix A if
there exists a scalar
\, called an
eigenvalue, such
that Ax = \x.

Figure 4.1

We say that a nonzero vector X is an eigenvector of a linear transformation T if
there exists a scalar A such that

T(x) = Ax 4.1)

In terms of a matrix representation A for 7T, we define a nonzero vector x to be an
eigenvector of A if there exists a nonzero scalar A such that

AX = AX 4.2)

The scalar A in equation (4.1) is an eigenvalue of the linear transformation 7 the
scalar A in equation (4.2) is an eigenvalue of the matrix A. Note that an eigen-
vector must be nonzero; eigenvalues, however, may be zero.

Eigenvalues and eigenvectors have an interesting geometric interpretation in R?
or R* when the eigenvalues are real. As described in Section 1.7, multiplying
a vector in either vector space by a real number A results in an elongation of the
vector by a factor of |A| when |A| > 1, or a contraction of the vector by a factor of
|A| when |A| < 1, followed by no rotation when A is positive, or a rotation of 180°
when A is negative. These four possibilities are illustrated in Figure 4.1 for the
vector u in R* with A = 1/2 and A = —1/2, and for the vector v in R* with A = 3
and A = —2. Thus, an eigenvector x of a linear transformation 7 in R* or R? is
always mapped into a vector 7(x) that is parallel to x.

Not every linear transformation has real eigenvalues. Under the rotation trans-
formation R described in Example 7 of Section 3.2, each vector is rotated around
the origin by an angle 6 in the counterclockwise direction (see Figure 4.2). As
long as 6 is not an integral multiple of 180°, no nonzero vector is mapped into
another vector parallel to itself.

y

-2v
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Figure 4.2

Example1 The vector x = {_} } is an eigenvector of A = [41‘ ﬂ because

s [ o

The corresponding eigenvalue isA = —1. W
47 1 2 3
Example2 The vector x = 1| is an eigenvector of A= |2 4 6 | because
-2 | 3609
1 2 3][ 4 0 4
Ax= |2 4 6 Il =10]=0] 1|=0x
36 9][-2 0 -2

The corresponding eigenvalue isA =0. W

Eigenvectors and eigenvalues come in pairs. If x is an eigenvector of a matrix A,
then there must exist an eigenvalue A such that Ax = Ax, which is equivalent to
the equation Ax —Ax =0 or

(A—ADx =0 4.3)

Note that we cannot write equation (4.3) as (A — A)x = 0 because subtraction
between a scalar A and a matrix A is undefined. In contrast, A — Al is the
difference between two matrices, which is defined when A and I have the same
order.

Equation (4.3) is a linear homogeneous equation for the vector x. If (A — AI)™!
exists, we can solve equation (4.3) for x, obtaining x = (A — AD~'0 = 0, which
violates the condition that an eigenvector be nonzero. It follows that x is an
eigenvector for A corresponding to the eigenvalue A if and only if (A — AI) does
not have an inverse. Alternatively, because a square matrix has an inverse if and
only if its determinant is nonzero, we may conclude that x is an eigenvector for
A corresponding to the eigenvalue A if and only if
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To find eigenvalues
and eigenvectors for
a matrix A, first
solve the
characteristic
equation, equation
(4.4), for the
eigenvalues and
then for each
eigenvalue solve
equation (4.3) for
the corresponding
eigenvectors.

det(A—AD) =0 (4.4)

Equation (4.4) is the characteristic equation of A. If A has order n X n, then
det (A — AI) is an nth degree polynomial in A and the characteristic equation of
A has exactly n roots, which are the eigenvalues of A. Once an eigenvalue is
located, corresponding eigenvectors are obtained by solving equation (4.3).

Example 3 Find the eigenvalues and eigenvectors of A = [411 ﬂ .

Solution:

1 2 1 0 -2 2
A‘“‘[4 3]_’\[0 1}_[ 4 3—/\]

with det(A —AI) = (1 —A)(3—A) — 8 =A% —4A — 5. The characteristic equa-
tion of A is A2 —4A — 5 = 0, having as its roots A = —1 and A = 5. These two
roots are the eigenvalues of A.

Eigenvectors of A have the form x =[x y]'. With A = —1, equation (4.3)

== {[4 3=l ST - (6]

2 2||x| |0

4 41|ly| |0
The solution to this homogeneous matrix equation is x = —y, with y arbitrary.
The eigenvectors corresponding to A = —1 are

X -y -1
X = = =
M [ y} g [ 1}
for any nonzero scalar y. We restrict y to be nonzero to insure that the eigen-
vectors are nonzero.

or

With A = 5, equation (4.3) becomes

a=a={[3 3] =so V35[0
a1

or
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The solution to this homogeneous matrix equation is x = y/2, with y arbitrary.
The eigenvectors corresponding to A = 5 are

=[] -3]

for any nonzero scalar y. W

Example 4 Find the eigenvalues and eigenvectors of A =

Solution:

2 -1 0 1 00 2-A -1 0
A-AM=|3 -2 0f{—-A|0 I 0] = 3 —2-A 0
0 0 1 0 0 1 0 0 1-A

Using expansion by cofactors with the last row, we find that
det(A—AD=(1-M)[2=M)(=2-1)+3]=1-1DA>=1)

The characteristic equation of A is (1 — A)(A? — 1) = 0; hence, the eigenvalues of
AareAd; =A;=1and A3 = —1.

Eigenvectors of A have the form x =[x y z]". With A = 1, equation (4.3)
becomes

2 -1 0 1 0 0]) [x 0
A-ADx=?¢ |3 2 ol -m]o 1 o||y|l=]0
0 0 1 00 1 z 0

or

The solution to this homogeneous matrix equation is x = y, with both y and z
arbitrary. The eigenvectors corresponding to A = 1 are

B

for y and z arbitrary, but not both zero to insure that the eigenvectors are
nonzero.

N =
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With A = —1, equation (4.3) becomes

2 -1 0 1 00 X 0
A-ADx={|3 =2 0| -(=D|0 1 0 yl=10
0 0 1 00 z 0
or
3 -1 0][x 0
3 -1 0||y|=1]0
0 0 2|]|: 0

The solution to this homogeneous matrix equation is x = y/3 and z = 0, with y

arbitrary. The eigenvectors corresponding to A = —1 are
X v/3 1
z 0 0

for any nonzero scalar y. W

The roots of a characteristic equation can be repeated. If A} = Ay = A3 = ... A,
the eigenvalue is said to be of multiplicity k. Thus, in Example 4, A =1 is an
eigenvalue of multiplicity 2 while A = —1 is an eigenvalue of multiplicity 1.

Locating eigenvalues is a matrix-based process. To find the eigenvalues of a more
general linear transformation, we could identify a matrix representation for the
linear transformation and then find the eigenvalues of that matrix. Because
a linear transformation has many matrix representations, in general a different
one for each basis, this approach would be useless if different matrix represen-
tations of the same linear transformation yielded different eigenvalues. Fortu-
nately, this cannot happen. We know from Theorem 3 of Section 3.4 that two
different matrix representations of the same linear transformation are similar.
To this we now add:

» Theorem 1. Similar matrices have the same characteristic equation
(and, therefore, the same eigenvalues). <

Proof: Let A and B be similar matrices. Then there must exist a nonsingular
matrix P such that A = P~'BP. Since

Al =AP'P =P AP =P AIP

it follows that
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If two matrices do
not have the same
characteristic
equations, then they
are not similar.

An eigenspace of A
for the eigenvalue A
is the kernel of

A — M. Nonzero
vectors of this
vector space are
eigenvectors of A.

|A —AI| = [P7'BP — P~'AIP| = [P~ /(B — ADP|

=P | |B—AI| |P| Theorem 1 of Appendix A
1 .

= Pl |B— Al |P| Theorem 8 of Appendix A

= |B —Al|

Thus the characteristic equation of A, namely |A — AI| = 0, is identical to the
characteristic of B, namely [B—AI| =0. W

It follows from Theorem 1 that if two matrices do not have the same character-
istic equations then the matrices cannot be similar. It is important to note,
however, that Theorem 1 makes no conclusions about matrices with the same
characteristic equation. Such matrices may or may not be similar.

Example 5 Determine whether A = H g] is similar to B = H g] .

Solution: The characteristic equation of A is A2 — 4A — 5 = 0 while that of B is
A? — 3\ — 10 = 0. Because these equations are not identical, A cannot be similar
toB. W

The eigenvectors x corresponding to the eigenvalue A of a matrix A are all
nonzero solutions of the matrix equation (A — AI)x = 0. This matrix equation
defines the kernel of (A — AI), a vector space known as the eigenspace of A for the
eigenvalue A. The nonzero vectors of an eigenspace are the eigenvectors. Because
basis vectors must be nonzero, the eigenvectors corresponding to a particular
eigenvalue are described most simply by just listing a basis for the corresponding
eigenspace.

2 -1 0
Example 6 Find bases for the eigenspaces of A= |3 -2 0
0 0 1

Solution: 'We have from Example 4 that the eigenvalues of A are 1 and —1.
Vectors in the kernel of A — (1)I have the form

1 0
x=yp(l]|+2z]|0
0 1

with y and z arbitrary, but not both zero. Clearly [1 1 0] and[0 0 1]F
span the eigenspace of A for A = 1, and because these two vectors are linearly
independent they form a basis for that eigenspace.

Vectors in the kernel of A — (— 1)I have the form
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To find the
eigenvalues and
eigenvectors for a
linear trans-
formation

T:V — 'V, find the
eigenvalues and
eigenvectors of any
matrix repre-
sentation for T.

o

|
W=
S W =

Because every vector in the eigenspace of A for A = —1 is a scalar multiple of
[1 3 0]", this vector serves as a basis for that eigenspace. W

If AL is a matrix representation of a linear transformation with respect to a basis
Cand if AD is a matrix representation of the same linear transformation but with
respect to a basis D, then it follows from equation (3.26) of Section 3.4 that

AE = (PR)'AD P

where P denotes a transition matrix from C to D. Let A be an eigenvalue of A&
with a corresponding eigenvalue x. Then

ASx = ax

(P2) AL PEx = Ax

and
AD P2x = P2(Ax) = APEx
If we set
y = P{x 4.5)
we have
Apy =y

which implies that y is an eigenvector of A%. But it follows from Theorem 1 of
Section 3.4 that y is the same vector as X, just expressed in a different basis. Thus,
once we identify an eigenvector for a matrix representation of a linear trans-
formation T, that eigenvector is a coordinate representation for an eigenvector of
T, in the same basis used to create the matrix.

We now have a procedure for finding the eigenvalues and eigenvectors of a linear
transformation T from one finite-dimensional vector space to itself. We first
identify a matrix representation A for 7 and then determine the eigenvalues and
eigenvectors of A. Any matrix representation will do, although a standard basis
is used normally when one is available. The eigenvalues of A are the eigenvalues
T (see Theorem 1). The eigenvectors of A are coordinate representations for the
eigenvectors of T, with respect to the basis used to generate A.

Example 7 Determine the eigenvalues and a basis for the eigenspaces of
T:P' — P! defined by

T(at + b) = (a + 2b) + (4a + 3b)
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Solution: A standard basis for P! is B = {7, 1}. With respect to this basis

1
T()=t+4=)+41) [ ]
4

2
T(1)=21+3 =) +3(1) = l ]
3

so the matrix representation of T with respect to B is

St

We have from Example 3 that the eigenvalues of this matrix are —1 and 5, which
are also the eigenvalues of T. The eigenvectors of A are, respectively,

431

with y arbitrary but nonzero.

The eigenspace of A for A = —1 is spanned by [—1 1]7, hence this vector serves
as a basis for that eigenspace. Similarly, the eigenspace of A for A = 5 is spanned
by [l 2 ]T, so this vector serves as a basis for that eigenspace. These 2-tuples are
coordinate representations for

[_”H(—l)ﬂr(l)l—ﬂrl

and

Mﬁ(l)w(znzmz

Therefore, the polynomial —z+ 1 is a basis for the eigenspace of T for the
eigenvalue —1 while the polynomial ¢z + 2 is a basis for the eigenspace of T for
the eigenvalue 5. As a check, we note that

T(—i+1)=t—1=—1(—1+1)
T(t+2)=5+10=5¢+2) W

The characteristic equation of a real matrix may have complex roots, and these
roots are not eigenvalues for linear transformations on real-valued vector spaces.
If a matrix is real, then eigenvectors corresponding to complex eigenvalues have
complex components and such vectors are not elements of real vector space.
Thus, there are no vectors in a real-valued vector space that satisfy Ax = Ax
when A is complex.
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Example 8 Determine the eigenvalues of T:R® — R® defined by

a 2a
T|b| =]|2b+5¢c
C -b—2c

Solution: Using the standard basis for R*, we have

1 27 0 0 2
T|o|=1]0l=2[0|+0[1|+0][0|< [0
0 0] o] |0 1 0
07 [ 0] (17 J0] 07 [ 0]
T|1|=] 2[=0]{0|+2|1]|+(-D|0]| =] 2
o] | -1] o] |0 1] -1
07 [ o] [1] [0] 0] [ 0]
T|0|=]| 5[=0{0[+5|1|+(-2|0]| <
1] |-2] o] o] 1] | -2]

where (as always when using this basis) the coordinate representation for any
vector in R? is the vector itself. The matrix representation for T with respect to
the standard basis is

2 0 0
A=10 2 5
0o -1 -2
Here
2—A 0 0
A—-A= 0 2—-A 5
0 -1 -2-A

Using expansion by cofactors with the first row, we find that
det(A=AD=Q2-N)[2-N)(=2-D)+5]=2-1N)A\*+1)

The characteristic equation of A is (2 — A)(A? 4+ 1) = 0 with roots A} = 2,1, = i,
and A3 = —i. The only real root is 2, which is the only eigenvalue for the given
linear transformation. [l

Once an eigenvalue of a matrix is known, it is straightforward to identify the
corresponding eigenspace. Unfortunately, determining the eigenvalues of a
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matrix, especially a square matrix with more than 10 rows, is difficult. Even some
square matrices with just a few rows, such as

1

N 00 3O

8 7
6 5
10 9
9 10

WD N L

1

can be problematic. In most applications, numerical techniques (see Sections 4.4,
5.4, and Appendix E) are used to approximate the eigenvalues.

Problems 4.1

(1) Determine by direct multiplication which of the following vectors are eigenvectors

1 2
for A = {_4 7}.

CNH O Y HE

@[l el ol
2 :ﬂ (h) 73} ) m

(2) What are the eigenvalues that correspond to the eigenvectors found in Problem 1?

(3) Determine by direct multiplication which of the following vectors are eigenvectors

2 0 -1
for A = 1 2 1].

-1 0 2

1 0 1
(@ (0], () 1], © [-2].
0 0 1

(=37 -1 (1]
(d | 6/, (e) [ 0}, ® (0],
-3

[ 2] 1 [07]
@ | of, M [1} @ (0]
1 0

(4) What are the eigenvalues that correspond to the eigenvectors found in Problem 3?
(5) Determine by direct evaluation which of the following matrices are eigenvectors

for the linear transformation T:Mj.; — Moy, defined by T {i Z] =
a-+3b a—b
c+2d 4c+3d|
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I -1 0 0 1 0
@ly o o[l I el ]
31 0 0 11
@ ol ©hol ofs
(6) What are the eigenvalues that correspond to the eigenvectors found in Problem 5?
(7) Determine by direct evaluation which of the following polynomials are eigenvectors
for the linear transformation T:P! — P! defined by T(at+ b) = (3a + 5b)t—
(2a +4b).
(@) 1—1, (b) #+1, (c) 515,
(d) 5t-2, (e) 5¢, (f) —10z + 2.

(8) What are the eigenvalues that correspond to the eigenvectors found in Problem 7?

In Problems 9 through 32, find the eigenvalues and a basis for the eigenspace associated
with each eigenvalue for the given matrices.

12 e 23
o | 4}. ao | 3}. an | 6].
'3 6 12 T2 s
a2 |5 6}. a3 |, 71}. a9 | ] 72}.
'3 '3 0 o0
as |3 3}. as |; 3]. an |, 7[}.
i 10 3 T2 0 -1
18) fg 23] a9y [1 2 1 ey | 2 2 2|
30 1 10 2
T30 -1 211 211
eny | 23 200 e»lo1 o @) o1 ol
10 3 11 2 12 2
12 3 0 10 4 2 1
Q4 |2 4 6| @) o o 1], @27 2]
3 6 9 27 27 9 12 4
(s 7 7 RS 8 (1) ? g
@y |4 -3 4 e | 1 3 -1 29)
4 -1 2 1 -1 s 0.0 01
i I 14 6 4
10 00 10 0 0 311 2
00 10 121 1 03 1 1
G0 1o 0 0 1 GD 1y 7 2 G 1o 02 0
01 -3 3 111 2 000 2

In Problems 33 through 37, find a basis of unit eigenvectors for the eigenspaces associated
with each eigenvalue of the following matrices.

(33) The matrix in Problem 9.
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(34) The matrix in Problem 10.
(35) The matrix in Problem 11.
(36) The matrix in Problem 19.
(37) The matrix in Problem 20.

In Problems 38 through 53, find the eigenvalues and a basis for the eigenspace associated
with each eigenvalue for the given linear transformations.

(38) T:P! — P! such that T(at + b) = (3a + 5b)t + (5a — 3b).
39) T:P'— P! such that T(ar + b) = (3a + 5b)t — (2a + 4b).
(40) T:P? — P? such that T(a12 +bt+c)=Qa—- )2+ Qa+b—20)t+(—a+20).

20 —b
@1) T:R?* — R?such that T =
a-+4b
_— 5 B 4a + 10b
42) T:R* — R?such that T =
9a — 5b
r at+b—c
43) T:R*—>Rsuchthat T|b| = 0
Lc La+2b+ 3¢
fa M 3a—b+c
44) T:R° >RsuchthatT|b| =|-a+3b—c]|.
Lc] Ll a—b+3c

@45) T:V — 'V, where V is the set of all 2 x 2 real upper triangular matrices, such that

a b b c
0 ¢| |0 a=3b+3c|

(46) T:P' — P! such that T = d/dr; that is, T(at + b) = %(m +b)=a.

T

47) T:P* - P? such that T =d/dt; that is, T(at*+bt+c)= %(mz +bt+c)=
2at +b.

(48) T:P? — P? such that T = d2/dr?; that is, T(ar*> + bt + ¢) = j—;(at2 +bt+c) = 2a.

49) T:V — V such that T = d/dt and V = span{e*, e},

(50) T:V — V such that T = d?/df* and V = span{e¥,e™'}.

(51) T:V — Vsuch that T = d/dt and V = span{sint, cos t}.

(52) T:V — Vsuch that T = d?/dr> and V = span{sint, cost}.

(53) T:V — V such that T = d?/df> and V = span{sin 2t, cos 2t}.
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(54) Consider the matrix

0 1 0 0
0 0 1 0
C= :
0 0 0 1
—ay —ap —ay ... —dy|

Use mathematical induction to prove that

det(C—AD = (= D"\ 4+ ap_ A"V 4+ @d? + a1 + ag).

Deduce that the characteristic equation for this matrix is
Mt a N 4 oAt ad+ay=0.

The matrix C is called the companion matrix for this characteristic equation.

4.2 PROPERTIES OF EIGENVALUES AND EIGENVECTORS

The eigenvalues of a linear transformation 7 from a finite-dimensional vector
space to itself are identical to the eigenvalues of any matrix representation for 7.
Consequently, we discover information about one by studying the other.

The kernel of A — Al is a vector space for any square matrix A, and all nonzero
vectors of this kernel are eigenvectors of A. A vector space is closed under scalar
multiplication, so kx is an eigenvector of A for any nonzero scalar k whenever x is
an eigenvector. Thus, in general, a matrix has a finite number of eigenvalues but
infinitely many eigenvectors. A vector space is also closed under vector addition,
so if x and y are two eigenvectors corresponding to the same eigenvalue A, then
so too is x + y, providing this sum is not the zero vector.

The trace of a square matrix A, designated by 7r(A), is the sum of the elements on
the main diagonal of A. In particular, the trace of

-1 2 0
A=|-3 6 8
5 4 =2

is 1r(A) = —1 + 6 4 (—2) = 3.

» Theorem 1. The sum of the eigenvalues of a matrix equals the trace of
the matrix. <«

We leave the proof of Theorem 1 as an exercise (see Problem 21). This result
provides a useful check on the accuracy of computed eigenvalues. If the sum of
the computed eigenvalues of a matrix do not equal the trace of the matrix, there
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is an error! Beware, however, that Theorem 1 only provides a necessary condi-
tion on eigenvalues, not a sufficient condition. That is, no conclusions can be
drawn from Theorem 1 if the sum of a set of eigenvalues equals the trace.
Eigenvalues of a matrix can be computed incorrectly and still have their sum
equal the trace of the matrix.

Example 1 Determine whether A; = 12 and A, = —4 are eigenvalues for

13
]

Solution: Here tr(A) =11+ (—5) = 6 # 8 = A| + A, so these numbers are not
the eigenvalues of A. The eigenvalues for this matrix are 10 and —4, and their
sum is the trace of A. W

The determinant of an upper (or lower) triangular matrix is the product of
elements on the main diagonal, so it follows immediately that

» Theorem 2. The eigenvalues of an upper or lower triangular matrix are
the elements on the main diagonal. <«

1 0 0
Example 2 The matrix |2 1 0 | is lower triangular, so its eigenvalues are
3 4 -1

AM=A=landA;=-1. N

Once the eigenvalues of a matrix are known, one can determine immediately
whether the matrix is singular.

» Theorem 3. A matrix is singular if and only if it has a zero
eigenvalue. <«

Proof: A matrix A has a zero eigenvalue if and only if det(A —0I) =0, or
(since 0I =0) if and only if det(A) =0, which is true (see Theorem 11 of
Appendix A) if and only if A is singular. W

A nonsingular matrix and its inverse have reciprocal eigenvalues and identical
eigenvectors.

» Theorem4. Ifx isan eigenvector of an invertible matrix A correspond-
ing to the eigenvalue A, then X is also an eigenvector of A~' correspond-
ing to the eigenvalue 1/A. <«
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Proof: Since A is invertible, Theorem 3 implies that A # 0; hence 1/A exists. We
have that Ax = Ax. Premultiplying both sides of this equation by A~', we obtain

x=A"'x or A'x=(1/A)x

Thus, x is an eigenvector of A~! with corresponding eigenvalue 1/A. W

We may combine Theorem 3 with Theorem 10 of Appendix A and Theorems 5
and 6 of Section 2.6 to obtain the following result.

p» Theorem 5. The following statements are equivalent for an n X n
matrix A:

(1) A has an inverse.
(i1) A has rank n.

(ii1) A can be transformed by elementary row operations to an
upper triangular matrix with only unity elements on the
main diagonal.

(iv) A has a nonzero determinant.

(v) Every eigenvalue of A is nonzero. <«

Multiplying the equation Ax = Ax by a scalar k, we obtain (kA)x = (kA)x. Thus
we have proven Theorem 6.

» Theorem 6. Ifx is an eigenvector of A corresponding to the eigenvalue
A, then kA and x are a corresponding pair of eigenvalues and eigenvec-
tors of kA, for any nonzero scalar k. <«

Theorem 1 provides a relationship between the sum of the eigenvalues of a matrix
and its trace. There is also a relationship between the product of those eigen-
values and the determinant of the matrix. The proof of the next theorem is left as
an exercise (see Problem 22).

» Theorem 7. The product of all the eigenvalues of a matrix (counting
multiplicity ) equals the determinant of the matrix. <«

11 3
-5 =5
det(A)=-55+15=-40=A11,. N

Example 3 The eigenvalues of A = [ } are A\; = 10 and A, = —4. Here

» Theorem 8. [fx is an eigenvector of A corresponding to the eigenvalue
A, then A" and x are a corresponding pair of eigenvalues and eigenvectors
of A", for any positive integer n. <
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Proof: We are given that Ax = Ax and we need to show that
A'x = \'x (4.6)

We prove this last equality by mathematical induction on the power n. Equation
(4.6) is true for n = 1 as a consequence of the hypothesis of the theorem. Now
assume that the proposition is true for n = k — 1. Then

A x = AT

Premultiplying this equation by A, we have
AAFx) = AW x)

or

Afx = A 1(Ax)
It now follows from the hypothesis of the theorem that

Afx = A 1(ax)
or

Afx = aFx

which implies that the proposition is true for n = k. Thus, Theorem 8 is proved
by mathematical induction. [l

The proofs of the next two results are left as exercises for the reader (see
Problems 16 and 17).

» Theorem 9. Ifx is an eigenvector of A corresponding to the eigenvalue
A, then for any scalar ¢,A — ¢ and x are a corresponding pair of eigen-
values and eigenvectors of A — cl. <

» Theorem10. IfX is an eigenvalue of A, then A also an eigenvalue of A*. Wl

Problems 4.2

(1) One eigenvalue of the matrix A = [g ﬂ is known to be 2.

Determine the second eigenvalue by inspection.

(2) One eigenvalue of the matrix A = [g ;} is known to be 0.7574 rounded to four

decimal places. Determine the second eigenvalue by inspection.
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®)]

(O]
3

©)

7

@®

©)

(10

n

(12)
13

(14)

1s)
(16)
a7
(18)

19

Two eigenvalues of a 3 x 3 matrix are known to be 5 and 8. What can be said about
the third eigenvalue if the trace of the matrix is —4?

Redo Problem 3 if —4 is the determinant of the matrix instead of its trace.

The determinant of a 4 x 4 matrix is 144 and two of its eigenvalues are known to be
—3 and 2. What can be said about the remaining eigenvalues?

A 2 x 2 matrix A is known to have the eigenvalues —3 and 4. What are the
eigenvalues of

(@) 2A, () 5SA, (c) A—3L  (d) A+4L

A 3 x 3 matrix A is known to have the eigenvalues —2, 2, and 4. What are the
eigenvalues of

(@) A2,  (b) A, (c) =3A, (d) A+3L

A 2 x 2 matrix A is known to have the eigenvalues —1 and 1. Find a matrix in
terms of A that has for its eigenvalues

(a) —2 and 2, (b) —5and 5, (¢c) land 1, (d) 2 and 4.

A 3 x 3 matrix A is known to have the eigenvalues 2, 3, and 4. Find a matrix in
terms of A that has for its eigenvalues

(a) 4, 6, and 8, (b) 4,9, and 16, (c) 8,27, and 64, (d) 0,1, and 2.

Verify Theorems 1 and 7 for A = {g ;} .

1 3 6
Verify Theorems 1 and 7 for A = {—1 2 —1} .
2 1 7

What are the eigenvalues of A~! for the matrices defined in Problems 10 and 117

Show by example that, in general, an eigenvalue of A + B is not the sum of an
eigenvalue of A with an eigenvalue of B.

Show by example that, in general, an eigenvalue of AB is not the product of an
eigenvalue of A with an eigenvalue of B.

Show by example that an eigenvector of A need not be an eigenvector of AT.
Prove Theorem 9.
Prove Theorem 10.

The determinant of A — Al is known as the characteristic polynomial of A. For an
n x n matrix A it has the form

det(A —AD) = (— 1)'(\" + @y A" '+ @A + .+ @A + @) +ap),

where @,_1, a,_2, ..., az, a;, and ay are constants that depend on the elements
of A. Show that (— 1)"ag = det (A).

(Problem 18 continued.) Convince yourself by considering arbitrary 2 x 2,3 x 3,
and 4 x 4 matrices that ( — l)a,—; = tr(A).
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(20)

1)
(22
23

24

25

(26)

Consider an n x n matrix A with eigenvalues A, Az, ...,A,, where some or all of the
eigenvalues may be equal. Each eigenvalue A;(i=1,2,...,n) is a root of the
characteristic polynomial; hence (A —A;) must be a factor of that polynomial.
Deduce that det (A —AI) = (= 1)"A —A)DA —X2) ... (A —A,).

Use the results of Problems 19 and 20 to prove Theorem 1.
Use the results of Problems 18 and 20 to prove Theorem 7.

The Cayley-Hamilton theorem states that every square matrix A satisfies its own
characteristic equation. That is, if the characteristic equation of A is

Nt a A a, A" 2+ e Fah +ay =0,
then
A"+ ay A" a2 A"+ AP+ a1 A+ agl = 0.

Verify the Cayley-Hamilton theorem for
2 0 1
@i o[y i] el af
0 0 -1

| — 0

1
@ o 3
2 1

-1

2
2

(== e
—_o o O

0

Let the characteristic equation of a square matrix A be as given in Problem 23. Use
the results of Problem 18 to prove that A is invertible if and only if ay # 0.

Let the characteristic equation of a square matrix A be given as in Problem 23. Use
the Cayley-Hamilton theorem to show that

-1
A7 = — (A" + a1 A"+ + A+ )
0

when ay # 0.

Use the result of Problem 25 to find the inverses, when they exist, for the matrices
defined in Problem 23.

4.3 DIAGONALIZATION OF MATRICES

We are ready to answer the question that motivated this chapter: Which linear
transformations can be represented by diagonal matrices and what bases gener-
ate such representations? Recall that different matrices represent the same linear
transformation if and only if those matrices are similar (Theorem 3 of Section
3.4). Therefore, a linear transformation has a diagonal matrix representation
if and only if any matrix representation of the transformation is similar to
a diagonal matrix.
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A matrix is
diagonalizable if it is
similar to a diagonal
matrix.

To establish whether a linear transformation T has a diagonal matrix represen-
tation, we first create one matrix representation for the transformation and then
determine whether that matrix is similar to a diagonal matrix. If it is, we say the
matrix is diagonalizable, in which case T has a diagonal matrix representation.

If a matrix A is similar to a diagonal matrix D, then the form of D is determined.
Both A and D have identical eigenvalues, and the eigenvalues of a diagonal
matrix (which is both upper and lower triangular) are the elements on its main
diagonal. Consequently, the main diagonal of D must be the eigenvalues of A. If,

for example,
1 2
=i

with eigenvalues —1 and 5, is diagonalizable, then A must be similar to either

RN

Now let A be an n x n matrix with n linearly independent eigenvectors X1,Xa, ..., X,
corresponding to the eigenvalues A1, A, ..., A,, respectively. Therefore,

AX; = A)X; 4.7
for j=1,2,...,n. There are no restrictions on the multiplicity of the eigen-

values, so some or all of them may be equal. Set

A0 ... 0

Ay ... O

M=[x; X ... X,] and D= .. .
0 0 ... A,

Here M is called a modal matrix for A and D a spectral matrix for A. Now

AM=A[Xx; X3 ... X,]
=[Ax; Ax; ... Ax,]
=[AX1 AaXa e ApXy]
=[x; X2 ... x,]D
=MD (4.3)

Because the columns of M are linearly independent, the column rank of M is #,
the rank of M is n, and M~ exists. Premultiplying equation (4.8) by M~!, we
obtain

D=M!AM 4.9)
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Postmultiplying equation (4.8) by M~!, we have
A =MDM™! (4.10)
Thus, A is similar to D. We can retrace our steps and show that if equation (4.10)

is satisfied, then M must be an invertible matrix having as its columns a set of
eigenvectors of A. We have proven the following result.

» Theorem 1. Ann x nmatrix is diagonalizable if and only if the matrix
possesses n linearly independent eigenvectors. <«

Example 1 Determine whether A = H i] is diagonalizable.

Solution: Using the results of Example 3 of Section 4.1, we have A; = —1 and
Ay = 5 as the eigenvalues of A with corresponding eigenspaces spanned by the

vectors
-1 1
xl—[ 1} and xz—{z}

respectively. These two vectors are linearly independent, so A is diagonalizable.
We can choose either

M- -1 1 M — 1 -1
L2 T2
Making the first choice, we find

R R [ R

Making the second choice, we find

i I | e [ P S A

In general, neither the modal matrix M nor the spectral matrix D is unique.
However, once M is selected, then D is fully determined. The element of D
located in the jth row and jth column must be the eigenvalue corresponding to
the eigenvector in the jth column of M. In particular,

M=[x X X3 ... X,]
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1s matched with

A, O 0 ... 0
0 A 0 ... O
D=/0 0 A3 ... O
0O 0 O A
while
M= [Xn Xn—1 X1 ]
i1s matched with
An O 0
0 A 0
D= )
0 0 Al
2 -1 0
3 -2 O] is diagonalizable.

Example 2 Determine whether A = {
0 0 1

Solution:  Using the results of Example 6 of Section 4.1, we have

1 0
X| = [1} and xp = {0]
0 1

as a basis for the eigenspace corresponding to eigenvalue A = 1 of multiplicity 2

and

0

as a basis corresponding to eigenvalue A = —1 of multiplicity 1. These three
vectors are linearly independent, so A is diagonalizable. If we choose

1 0 0
01 0
0 0 -1

1 0 1

M:[103
010

], then M 'AM =
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The process of determining whether a given set of eigenvectors is linearly
independent is simplified by the following two results.

» Theorem 2. Eigenvectors of a matrix corresponding to distinct eigen-
values are linearly independent. <«

Proof: Let Ai,Ay, ..., A, denote the distinct eigenvalues of an n x n matrix A
with corresponding eigenvectors X1, X, ..., Xg. If all the eigenvalues have multi-
plicity 1, then k& = n, otherwise k < n. We use mathematical induction to prove
that {x;,Xz, ..., X} is a linearly independent set.

For k = 1, the set {x; } is linearly independent because the eigenvector x; cannot
be 0. We now assume that the set {x;,Xa, ..., X;_1} is linearly independent and
use this to show that the set {x;,Xa, ..., Xx_1, X¢} is linearly independent. This is
equivalent to showing that the only solution to the vector equation

Xyt eXo+ .o+ o1 Xe Faxe =0 (4.11)

Scp=c=...=c¢1 =c¢=0.

Multiplying equation (4.11) on the left by A and using the fact that Ax; = A;x;
forj=1,2,...,k, we obtain

CIAIX] F+ CAoXo + .o+ Ch 1A 1 X1 + Ak X = 0 4.12)
Multiplying equation (4.11) by Ay, we obtain
CIALX] + CARXo + .o C AR X =1 + AKX = 0 (4.13)
Subtracting equation (4.13) from (4.12), we have
11 = AX1 + 2y = A)Xa + -+ 1M1 — A)X-1 = 0

But the vectors {xj,Xa, ...,X,_; } are linearly independent by the induction
hypothesis, hence the coefficients in the last equation must all be 0; that is,

ctdr —Ap) =0y —A) = ... = 1 (Ak—1 —Ap) =0

from which we imply that ¢; = c¢; = ... = ¢, = 0, because the eigenvalues are
distinct. Equation (4.11) reduces to ¢;x; = 0 and because x is an eigenvector, and
therefore nonzero, we also conclude that ¢, = 0, and the proof is complete. [l

It follows from Theorems 1 and 2 that any n x n real matrix having n distinct real
roots of its characteristic equation, that is a matrix having n eigenvalues all of
multiplicity 1, must be diagonalizable. (See, in particular, Example 1.)
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2 00
Example 3 Determine whether A = | —3 3 0] is diagonalizable.
2 -1 4

Solution: The matrix is lower triangular so its eigenvalues are the elements on
the main diagonal, namely 2, 3, and 4. Every eigenvalue has multiplicity 1, hence
A is diagonalizable. W

» Theorem 3. If A is an eigenvalue of multiplicity k of an n x n matrix A,
then the number of linearly independent eigenvectors of A associated
with A is n — r(A — Al), where r denotes rank. <«

Proof: The eigenvectors of A corresponding to the eigenvalue A are all nonzero
solutions of the vector equation (A — AI)x = 0. This homogeneous system is
consistent, so by Theorem 3 of Section 2.6 the solutions will be in terms of
n — r(A — Al) arbitrary unknowns. Since these unknowns can be picked inde-
pendently of each other, they generate n — r(A — AI) linearly independent
eigenvectors. W

In Example 2, A is a 3 x 3 matrix (n = 3) and A = 1 is an eigenvalue of multi-
plicity 2. In this case,

1 -1 0
A-(DI=A-I={3 -3 0
0 00

can be transformed into row-reduced form (by adding to the second row —3
times the first row)

1 -1 0
0 00
0 00

having rank 1. Thus, n —r(A—1I)=3—1=2 and A has two linearly inde-
pendent eigenvectors associated with A = 1. Two such vectors are exhibited in
Example 2.

Example 4 Determine whether A = [(2) ﬂ is diagonalizable.
Solution: The matrix is upper triangular so its eigenvalues are the elements on
the main diagonal, namely, 2 and 2. Thus, A is 2 x 2 matrix with one eigenvalue
of multiplicity 2. Here

0 1
A-2= {0 0]
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If V is an n-
dimensional vector
space, then a linear
transformation
T:V — V may be
represented by a
diagonal matrix if
and only if T
possesses a basis of
eigenvectors.

has a rank of 1. Thus, n — (A —2I) =2 —1=1 and A has only one linearly
independent eigenvector associated with its eigenvalues, not two as needed.
Matrix A is not diagonalizable.

We saw in the beginning of Section 4.1 that if a linear transformation 7:V — V
is represented by a diagonal matrix, then the basis that generates such a repre-
sentation is a basis of eigenvectors. To this we now add that a linear transform-
ation T:V — V, where V is n-dimensional, can be represented by a diagonal
matrix if and only if T possesses n-linearly independent eigenvectors. When such
a set exists, it is a basis for V.

Example5 Determine whether the linear transformation 7: P' — P! defined by

T(at+ b) = (a + 2b)t + (4a + 3D)

can be represented by a diagonal matrix.

Solution: A standard basis for P! is B = { 1,1}, and we showed in Example 7
of Section 4.1 that a matrix representation for T with respect to this basis is

[

It now follows from Example 1 that this matrix is diagonalizable; hence T can be
represented by a diagonal matrix D, in fact, either of the two diagonal matrices
produced in Example 1.

Furthermore, we have from Example 7 of Section 4.1 that —z + 1 is an eigen-
vector of T corresponding to A; = —1 while 5¢+ 10 is an eigenvector corre-
sponding A, = 5. Since both polynomials correspond to distinct eigenvalues,
the vectors are linearly independent and, therefore, constitute a basis. Setting
C ={-t+1,5t+ 10}, we have the matrix representation of T with respect to
C as

10
Ag:D:[ 0 5} =

Example 6 Let U be the set of all 2 x2 real upper triangular matrices.
Determine whether the linear transformation 7: U — U defined by

Tl bl |3a+2b+c 2b
0 c¢| 0 a+2b+3c

can be represented by a diagonal matrix and, if so, produce a basis that generates
such a representation.
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Solution: U is closed under addition and scalar multiplication, so it is a sub-
space of M. A simple basis for U is given by

o= {[s oL [5 3105 1))

With respect to these basis vectors,

3
1 0] [3 0 10 0 1 0 0
T = =3 +0 +1 - |0
0 0] |01 0 0 00 0 1 |
0 1 2 2 10 0 1 0 0
T = —2 +2 +2 o |2
0 0] [0 2 0 0 0 0 0 1
1
0 0 10 10 0 1 0 0
T = —1 +0 +3 - |0
0 1 0 3 0 0 1 .

and a matrix representation for T is

3 21
A=10 2 0
1 23

The eigenvalues of this matrix are 2, 2, and 4. Even though the eigenvalues are
not all distinct, the matrix still has three linearly independent eigenvectors,

namely,
-2 -1 1
X|] = 1 , Xy = 0 . and X3 = 0
0 1 1

Thus, A is diagonalizable and, therefore, T has a diagonal matrix representation.
Setting

2 -1 1 2.0 0
M=| 1 0 0|, wehave D=M'AM= |0 2 0
0 1 1 0 0 4

which is one diagonal representation for 7.

The vectors xi, X,, and x3 are coordinate representations with respect to the B
basis for
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[—27 - _ , _ . _ .
0 0 1 0 -2 1
1| < (=2 +1 +0 =
00 0 1 00
L 0] i ) ) ) ) ) )
r—17 - _ , _ . _ -
0 1 0 -1 0
0] «(=1 +0 +1 =
00 0 1 0 1
L 1 i ) ) ) h ) )
17
1 0 1 00 10
0] <1 +0 +1 =
. 0 0 00 0 1 0 1

e={[% o[ 00 )

is a basis of eigenvectors of T for the vector space U. A matrix representation of
T with respect to the C basis is the diagonal matrix D. W

Problems 4.3

In Problems 1 through 11, determine whether the matrices are diagonalizable. If they are,
identify a modal matrix M and calculate M~' AM.

(1 A=

©))

)

Y

®

(1) A=

2 -3 4 3
|1 —2}' (Z)A:3—4}’
1 1
_f ;} @A=1[0 1 of.
[0 0 1
1 0 0 (s 1 2
2 -3 3 G A=1[0 3 0f.
1 22 2 15
12 3 3 -1 1
2 4 6. ® A=|-1 3 —1/.
13 6 9 1 -1 3
7 33 310
0 1 0|. @)A=1[0 3 1
-3 3 1 0 0 3
(30 0
03 1.
0 0 3

In Problems 12 through 21, determine whether the linear transformations can be represented
by diagonal matrices and, if so, produce bases that will generate such representations.
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(12) T:P' — P' defined by T(ar + b) = Qa — 3b)t + (a — 2b).
(13) T:P! — P! defined by T(at + b) = (4a + 3b)t + (3a — 4b).
(14) T:P? — P? defined by

T(ar® + bt + ¢) = ar* + 2a — 3b + 3¢)t + (a + 2b + 2¢).
15) T:P? — P? defined by
T(at* + bt + ¢) = (5a + b+ 2¢)* + 3bt + (2a + b + 5¢).
(16) T:P?> — P? defined by
T(at* + bt + ¢) = 3a+ b)? + (3b + ¢)t + 3c.

(17) T:U — U where U is the set of all 2 x 2 real upper triangular matrices and

T{a b] {a+2b+3c 2a+4b+6c}

0 c| 0 3a + 6b + 9¢

(18) T:U — U where U is the set of all 2 x 2 real upper triangular matrices and

T a b _ T7a +3b+ 3c b
0 ¢ 0 —3a—-3b+c]

19) T:W — W where W is the set of all 2 x 2 real lower triangular matrices and

0] 3a—b 0
T{a :{ a +c }

b c| —a+3b—-c a—b+3c
fa’ [c
(20) T:R® — R3definedby T|b | = a}
lc] Lb
[a] [3a+Db
21 T:R*— R*definedby T|b| = |3b+c
C

4.4 THE EXPONENTIAL MATRIX

In this section and the next section (Power Methods), we will use eigenvalues and
eigenvectors extensively and conclude our chapter with sections dealing with
differential equations.

One of the most important functions in the calculus is the exponential function
¢*. It should not be surprising, therefore, to find that the “exponentials of
matrices” are equally useful and important.
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The exponential of a
square matrix A is

defined by the
infinite series
. 00 Ak
CEL
k=0
AN
BT}
A3
I ? +....

To develop this idea, we extend the idea of Maclaurin series to include matrices.
As we further our discussion, we will make reference to the Jordan canonical
form (see Appendix B).

We recall that this function can be written as a Maclaurin series:

k 2 3

P oeaX Xt x
e :;E:1+x+5+§+..‘ (4.14)

Then we can use this expansion to define the exponential of a square matrix A as

2 A3

Ak A
A— _ — R R
e _;k!_1+1!+2!+3!+... (4.15)

Equation (4.14) converges for all values of the variable x; analogously, it can be
shown that equation (4.15) converges for all square matrices A, although the
actual proof is well beyond the scope of this book. Using equation (4.14), we can
easily sum the right side of equation (4.15) for any diagonal matrix.

2 0
0 -03

20 (T2 071 172 o7’
+—' +—' +
0 —-03| 2o -03 30 -03

Example1 For A = [ } , we have

B 1
e’ = +ﬂ

(1 0] [2/1! 0 ] [(2)2/2! 0 ]
+ +

10 1 0 (-0.3)/1!] 0 (—03)?/2
(2)*/3! 0 ]
+
0  (—03)/3!
0 2/c 0
B ;_! B [ez 0 ] =
- = (—03)F | [0 e
0 ; i
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To calculate the
exponential of a
diagonal matrix,
replace each
diagonal element by
the exponential of
that diagonal
element.

then
A0 0
b |0 e 0
P = . : (4.16)
0 0 e
1 0 0
Example2 Finde? forD= {0 2 0].
0 0 2

Solution:

el 0 0
LP=10 & 0| W

0 0 ¢

If a square matrix A is not diagonal, but diagonalizable, then we know from our
work in Section 4.3 that there exists a modal matrix M such that
A =MDM! (4.17)

where D is a diagonal matrix. It follows that
A% = AA = MDM H(MDM ) = MD(M~'M)DM !

=MD(I)DM~! = MD’M!

A’ = A’A = MD*M H(MDM ) = MD’ (M~ 'M)DM ! = MD*(I)DM !
=MD’M"!
and, in general,
A" =MD'M™! (4.18)
for any positive integer n. Consequently,

AF & MDFM! >, p¥
oA :Z_: i A V| Z_ M~ = MePM! (4.19)
k=0 " k=0

Example 3 Find ¢ for A — [3‘ ﬂ .

Solution: The eigenvalues of A are —1 and 5 with corresponding eigenvectors

1 1
{_1} and {2} Here,
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If A is similar to a
matrix J in Jordan
canonical form, so
that A = MJM !
for a generalized
modal matrix M,

then eA = Me'M ™.

(See Appendix B.)

o[ e ) e e[

It follows first from equation (4.19) and then from (4.16) that
1 1 —1 2/3 -1/3
A =MPM ! = [ } ¢ 05
-1 2 0 e 1/3 1/3

B 1 Qe l4ed —e 14l
3| 2e 4285 el 4268

Even if a matrix A is not diagonalizable, it is still similar to a matrix J in Jordan
canonical form (see Appendix B). That is, there exists a generalized modal matrix
M such that

A=MIJM! (4.20)
Repeating the derivation of (4.18) and (4.19), with J replacing D, we obtain
A =Me'M! 4.21)

Thus, once we know how to calculate ¢ for a matrix J in Jordan canonical form,
we can use equation (4.21) to find e* for any square matrix A.

A matrix J in Jordan canonical form has the block diagonal pattern

Ji 0 ... 0
0o J, ... 0
=|. . . . (4.22)
0o 0 ... J,
with each J;(i = 1,2, ...,r) being a Jordan block of the form
A 10 0 0
Al ... 0 0
Ji= o (4.23)
0 0 0 ... A; 1
0 0 O 0 A;

Powers of a matrix in Jordan canonical form are relatively easy to calculate.

Ji 0 ... 07[/i O ... 0 20 .0

P 0 J o 2.0

o
[e)
.\%
o

0 0 ... Lo o ... J 0 0 ... J2
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Ji 0 ... 0[JF 0 ... 0 J0 ... 0
T O | R I B
0 0 .. uflo o 2] Lo oo ..
and, in general,
[JE 0 ... 0
o 0 Jk 0
L0 0 Jk

for any positive integer value of k. Consequently,

F e gk
I S B |
— k!

N (| k

x| S
o

DY

< gk o> 1[0 J5 .00
J_ _ _
e—Z—.—Z—.. o | T k=0
k=0 " k=0 " | : o . . . .
JI‘
0 0 ZH
L k=0 "
et 0 0
0 ¢ ... 0
= . .. ) (4.24)
0 0 e’

Thus, once we know how to calculate the exponential of a Jordan block, we can
use equation (4.24) to find e’ for a matrix J in Jordan canonical form and then
equation (4.21) to obtain e* for a square matrix A.

A 1 x 1 Jordan block has the form [A] for some scalar A. Such a matrix is
a diagonal matrix, indeed all 1 x 1 matrices are, by default, diagonal matrices,
and it follows directly from equation (4.16) that el = [¢}]. All other Jordan
blocks have superdiagonal elements, which are all ones. For p x p Jordan block
in the form of (4.23), we can show by direct calculations that each successive
power has one additional diagonal of nonzero entries, until all elements above
the main diagonal become nonzero. On each diagonal, the entries are identical. If

we designate the nth power of a Jordan block as the matrix {a?’ j} , then the entries
can be expressed compactly in terms of derivatives as

1 &
—— (A7 forj=0,1,...,n
i = J! d)t]( ) /

a .
i

0 otherwise
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The exponential of a
matrix in Jordan
canonical form
(4.22) has block
diagonal form
(4.24), with the
exponential of each
Jordan block given
by (4.25).

Equation (4.15) then reduces to

r 1 1 1 1 1
1 2 3 -1
1 1 1
L T (p-2)
Py (4.25)
0 0 1 ! !
1 @ -23)
L 0 0 0 0 1
2t 0
Example4 Find ¢’ forJ = {O 2t 1} )
0 0 2t

Solution: J is a single Jordan block with diagonal elements A; = 2¢. For this

matrix, equation (4.25) becomes

Example 5 Find ¢’ for J =

S = = O O

0

Solution: J is in the Jordan canonical form

with J; = [2] and J, = [3] both of order 1 x 1, and

J:

J; =

S O O =

Ji
0 J,
0

0

- —_- O O O O

0 J3

S O = =

S = = O

—_—— O O
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Here,
' =[], " =][¢'], and
1 1 1/2 1/6 e e e/2 el6
01 1 1/2 0 e e ¢/2
e =e! =
0 0 1 1 0 0 e e
00 O 1 0 0 O e
Then,
> 0 00 0 07
0 & 00 0 0
o 0 0 e e e/2 e/6 -
0 0 0 ¢ e ¢/2
0 0 O e
LO 0 O 0 e |

0 4 2
Example6 Finde*forA=|-3 8 3.
4 -8 -2

Solution: A canonical basis for this matrix has one chain of length 2:
x,=[0 0 1]" and x;,=[2 3 —4]", and one chain of length 1:
y, =12 1 O]T, each corresponding to the eigenvalue 2. Setting

2 20 2 00
1 30 and J=|0 2 1
0 —4 1 0 0 2

we have A = MJM'. Here J contains two Jordan blocks, the 1 x 1 matrix

M =

J; =[2] and the 2 x 2 matrix J, = B ;] We have,
1 1 -62 &2
=l e e{o 1] 0 e2]
e 0 0]
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To calculate e,
where A is a square
constant matrix and
t 18 a variable, set

B = At and
calculate €B.

2 2 0]Je 0 0 3/4 —1/2 0
A=MIM =1 3 0||0 e

5]

|| —1/4 1/2 0
0 —4 1 0 0 ¢ -1 21
-1 4 2
= | -3 7 3 [ |
4 -8 -3

Two important properties of the exponential of a matrix are given in the next
theorems.

» Theorem 1. ¢ =1, where 0 is the n x n zero matrix and 1is the n x n
identity matrix. <«

Proof: In general,

[e%e) k 00
eA:ZA—|:1+ZA—, (4.26)

With A = 0, we have

» Theorem 2. (eA)flze’A. »

Proof:

ere A =

Ak
D

k=0

o

k=0

A2 4P A2 4
= [1+A+—+—,+.,.] [1+A+—+—+...]

21 3 2l 3
1 1 1111
_ _ 21 ~ 3|\~ -
— 11 + A[l 1]+AL! 1+2J—|—A{ R 2!+3J+...

=1

Thus, e~ is the inverse of e*.

We conclude from Theorem 2 that e? is always invertible even when A is not. To
calculate e directly, set B = —A, and then determine eB.
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A particularly useful matrix function for solving differential equations is e*?,

where A is a square constant matrix (that is, all of its elements are constants) and
t is a variable, usually denoting time. This function may be obtained directly by
setting B = At and then calculating B.

3 0 4
Example7 FindeAforA=| 1 2 1
-1 0 -2
3t 0 4t
Solution: Set B = At = t 2t t
-t 0 =2t

A canonical basis for B contains one chain of length 1, corresponding to the
eigenvalue —¢ of multiplicity 1, and one chain of length 2, corresponding to the
eigenvalue 2¢ of multiplicity 2. A generalized modal matrix for B is

1 0 4
M=| 0 3 0
-1 0 -1
Then,
0 0
J=M'BM=| 0 2 e
0 0 2 0 0 &
1 0 47[e’ 0 -1/3 0  —4/3
A=B=MIM'=| 0 3 0||0 & 62’ 0 1/3n 0
-1 0 —1]]|0 0 ][ 1/3 0 1/3
. +4e* 0 —de 446
=3 3te* 3¢ 3te*
el — 2t 0 4! 621

Observe that this derivation may not be valid for r = 0 because M~! is undefined
there. Considering the case t = 0 separately, we find that eA° = ¢’ = 1. Our
answer also reduces to the identity matrix at ¢ = 0, so our answer is correct for
allz. W

The roots of the characteristic equation of B = A7 may be complex. As noted in
Section 4.1, such a root is not an eigenvalue when the underlying vector space is
R", because there is no corresponding eigenvector with real-valued components.
Complex roots of a characteristic equation are eigenvalues when the underlying
vector space is the set of all n-tuples with complex-valued components. When
calculating matrix exponentials, it is convenient to take the underlying vector
space to be complex-valued n-tuples and to accept each root of a characteristic
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equation as an eigenvalue. Consequently, a generalized modal matrix M may
contain complex-valued elements.

If A is a real matrix and ¢ a real-valued variable, then Bt is real-valued. Because
all integral powers of matrices with real elements must also be real, it follows
from equation (4.26) that ¢® must be real. Thus, even if J and M have complex-
valued elements, the product e® = Me?M ™! must be real. Complex roots of the
characteristic equation of a real matrix must appear in conjugate pairs, which
often can be combined into real-valued quantities by using Euler’s relations:

it 4 ot o _ o—i0
cosf =——— and sinf = -
2 2i

Example 8 Find ¢ for A = [_(1) é]

Solution: Set B = At = {Ot (’)]

The eigenvalues of B are A; = it and A, = —it, with corresponding eigenvectors
[1 i]"and [1 —i]", respectively. Thus,

and

| % s

elt + e—l[ el[ _ e*ll

2 2 cost sint
= it =it it 4 it | = .
e —e” e +e —sint cost
2i 2

If the eigenvalues of B = At are not pure imaginary but rather complex numbers
of the form B + i6 and 8 — 6, then the algebraic operations needed to simplify ¢®
are more tedious. Euler’s relations remain applicable, but as part of the following
identities:

eBHi0 | o Bib B eBei® 4 oBoit B ePle® 4+ ¢—10)

= — — LB
3 3 3 e” cosf

and

eBHi0 _ oB=i0  oBoi0 _ oBo—i0  oB(pi _ =i B g
= = = ePsin
2i 2i 2i
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The derivative of a
matrix is obtained
by differentiating
each element in the
matrix.

The exponential of a matrix is useful in matrix calculus for the same reason the
exponential function is so valuable in the calculus: the derivative of e*’ is closely
related to the function itself. The derivative of a matrix is obtained by differen-
tiating each element in the matrix. Thus, a matrix C = [¢;] has a derivative if and
only if each element c; has a derivative, in which case, we write

. - dC(l) _ dCl‘j(t)
C( = = { 0 } 4.27)
[ 2 sin t]
Example9 If C(y) = , |, then
Int €

d(*) d(sint)

' dC(z dt dt 2t cost
C(Z) - T) - 2 = 7
! d(Int)  d(e") 1/t 2te
dt di
At
» Theorem 3. If A is a constant matrix, then e AeM = AMA. o
Proof:
de*' _d ( - <Ar>k> _d (f: Akrk) 5 (Akzk) ke
di di\ = Kl dt \ = k! £ dr \ k! 2k
4 Akfltkfl 00 Ak,ltk,l
k; (k= D! (; (k—l)!)
= = )

If we factor A on the right, instead of the left, we obtain the other identity.
By replacing A with —A in Theorem 3, we obtain:

At
» Corollary 1. If A is a constant matrix, then AN = —MA. <

dt
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Problems 4.4

In Problems 1 through 30, find the exponential of each matrix.

(-1 0 (2 0 -7 0
@ 0 4} ? 0 3}- 3) { 0 _7]»
[0 0 [—7 1 2 1
C)) 0 0} ) 0 77]- (6) {0 2]~
_ 2 00
31 0 1
(@) 0 3}. ®) 0 0}. @ (0 3 0f.
L 0 0 4
(1 0 0 (2 0 0 2 10
10y {0 -5 0. an {0 2 o]. 1z) (0 2 1].
10 0 -1 |10 0 2 0 0 2
[—1 1 0 [0 1 0 [—1 0
(13) 0 -1 1]. (14) (0 0 1]. (15) 0 -1
| 0 0 -1 10 0 0 | 0 0 -
- (1 0 0 0 (-5 0 0 0]
2 00
05 00 0 -5 0 0
(16) 8 5 ;} an 00 -5 ol (18) 0 0 -5 0
L 100 03 | 0 0 0 —5]
(-5 0 0 0] (-5 0 0 0]
0 -5 0 O 0 -5 1 0
(19 0 0 -5 1] (20) 0 0 -5 1]
| 0 0 0 —5] | 0 0 0 —5]
(-5 0 0 0] [-5 1 0 0]
0 -5 1 0 0 -5 1 0
@D 1o 0 s 1) @y o0 5 1]
| 0 0 0 —5] | 0 0 0 —5]
(2 0 1 -
23 |0 2 0]. 24) {411 g] 25) 411 _;}
10 0 2 L
1 1 27 (7 =/3 —m 210
(26) -1 3 4 2N |0 T w/2]. 28 |0 2 2].
| 0 0 2] | 0 0 T 0 0 2
RN
29) % i -1 (30) 00 2 7
L - |10 0 -1 1
. 1 3
(31) Verify Theorem 2 for A = {0 1}.

. 0 1
(32) Verify Theorem 2 for A = {764 0} .
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(33)

(34

0 10
Verify Theorem 2 for A= |0 0 1 |. What is the invers
0 00
Find e*¢B, eBe?, and eA B when
1 1 0 1

-l

0 0

} and B:[O 1

J

and show that eA*B £ eAeB £ eBeA,

(35) Find two matrices A and B such that eAeP = ¢A+B,

(36) Using equation (4.15) directly, prove that eAeB = eA+B

In Problems 37 through 55, find eA for the given matrix A.

(37

(40)

43

(46)

49)

(52)

(35

(4 4
E 5}. (38)
0 1
14 9]. @1
21
0 2} (44)
-1 1 0
-1 1 “7)
L0 -1
i 30
-1 -2 0. (50)
I 11
0 1
| —64 0}' 3
301
-2 5]

2 1] 4
1 2 39) [71
[—3 2] -10

Syt 42) { p
[0 1 0] !
00 1]. 45) 4
[0 0 0] | -1
(4 1 0] (2 1
0 4 0 48) |0 2
[0 0 4] [0 0
[ 3 10 [ 5
-1 1 0|. (5D 2
L1 2 2 | 7

2 5 0
-1 72}' 54) | 25

(56) Verify Theorem 3 for the matrix A given in Example 7.

(57
(58

Verify Theorem 3 for the matrix A given in Example 8.

Using the formula

dlA(1)B(1)]

dB(1)

dt

_ (dA(t)

o )B(t) + A(1) (7

e of A?

when A and B commute.

1
ik
6
-10

|

)

derive a formula for differentiating A’(¢). Use this formula to find dAz(t)/dt

when
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¢t 27
A(t) = |:4t3 e[ :|:

and show that dAz(t)/dz # 2A(t)dA(t)/dt. Therefore, the power rule of differentiation
does not hold for matrices unless a matrix commutes with its derivative.

4.5 POWER METHODS

The dominant
eigenvalue of a
matrix is the one
having the largest
absolute value.

The analytic methods described in Section 4.1 are impractical for calculating the
eigenvalues and eigenvectors of matrices of large order. Determining the char-
acteristic equations for such matrices involves enormous effort, and finding its
roots algebraically is usually impossible. Instead, iterative methods that lend
themselves to computer implementation are used. Ideally, each iteration yields a
new approximation, which converges to an eigenvalue and the corresponding
eigenvector.

The dominant eigenvalue of a matrix is the eigenvalue with the largest absolute
value. Thus, if the eigenvalues of a matrix are 2, 5, and —13, then —13 is
the dominant eigenvalue because it is the largest in absolute value. The power
method 1s an algorithm for locating the dominant eigenvalue and a correspond-
ing eigenvector for a matrix of real numbers when the following two conditions
exist:

Condition 1. The dominant eigenvalue of a matrix is real (not complex) and is
strictly greater in absolute value than all other eigenvalues.

Condition 2. If the matrix has order n x n, then it possesses n linearly inde-
pendent eigenvectors.

Denote the eigenvalues of a given square matrix A satisfying Conditions 1 and 2
by A1,A2, ...,A,, and a set of corresponding eigenvectors by vi,va, ...,V,,
respectively. Assume the indexing is such that

il > Azl = N3] = - = A

Any vector X can be expressed as a linear combination of the eigenvectors of A,
SO we may write

Xo = €1Vl + Vo + -+ CyVy

Multiplying this equation by AX, for some large, positive integer k, we get

Afxg = Af(ervi + eava + -+ V)
= C]Akvl + CzAkVQ + e+ CnAkVn

It follows from Theorem 8 of Section 4.2 that
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k .
A'xg = cl)\]fvl + czx\lz‘vz + o+ cn/\f;vn

Lo ' bt '
c1v C v C v
1v1 2 )\1 2 n Al n

~ )\’fclvl for large k

=k

This last pseudo-equality follows from noting that each quotient of eigenvalues is
less than unity in absolute value, as a result of indexing the first eigenvalue as the
dominant one, and therefore tends to 0 as that quotient is raised to successively
higher powers.

Thus, A¥x, approaches a scalar multiple of v;. But any nonzero scalar multiple
of an eigenvector is itself an eigenvector, so A*x, approaches a scalar multiple of
vi, which is itself an eigenvector of A corresponding to the dominant eigenvalue,
providing ¢; is not 0. The scalar ¢; will be 0 only if Xy is a linear combination of
{VQ,V3, ey Vn}.

The power method begins with an initial vector x¢, usually the vector having all
ones for its components, and then iteratively calculates the vectors

X1 = AX()
Xy = AX] = A2X()

X3 = AX2 = A3X()

X = AXk,l = AkX()

As k gets larger, x; approaches an eigenvector of A corresponding to its dom-
inant eigenvalue.

The Power Method

Step 1. Begin with an initial guess x( for an eigenvector of a matrix A,
having the property that the largest component of x, in absolute
value is one. Set a counter k equal to 1.

Step 2. Calculate x; = Axy_;.

Step 3. Set \ equal to the largest component of x; in absolute value and
use \ as an estimate for the dominant eigenvalue.

Step 4. Rescale x; by dividing each of its components by \. Relabel the
resulting vector as X.

Step 5. If A is an adequate estimate for the dominant eigenvalue, with x;
as a corresponding eigenvector, stop; otherwise increment k by
one and return to Step 2.
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We can even determine the dominant eigenvalue. If & is large enough so the x; is
a good approximation to the eigenvector to within acceptable roundoff error,
then it follows that Ax; = A1x,. If x; is scaled so that its largest component in
absolute value is 1, then the component of x;;; = Ax; = A;x; that has the
largest absolute value must be A;. We can now formalize the power method.

Example 1 Find the dominant eigenvalue and a corresponding eigenvector for

St

Solution: We initialize xo = [ 1 l]T. Then, for the first iteration,

om0

AT

1
xi < 53 71" =10.428571 1]*
For the second iteration,

{1 2] [0.428571]
Xy = AX1 =

4 3 1
A~ 4.714286

2.428571
4.714286

X5 [2.428571 4.714286]F =[0.515152 1]*

T 4714286

For the third iteration,

{1 2] [0.515152] [2.515152}
X3 :AX2 = =

4 3 1 ~ 15.060606
A =~ 5.060606

X3 [2.515152 5.060606]" =[0.497006 1]*

——
5.060606

For the fourth iteration,

{1 2} [0.497006}
X4 = AX3 =

4 3 1
A = 4.988024

2.497006
4.988024

X4 [2.497006 4.988024]T=10.500600 117

——
4.988024

The method is converging to the eigenvalue 5 and its corresponding eigenvector
(05 11". m



262 e FEigenvalues, Eigenvectors, and Differential Equations

Example 2 Find the dominant eigenvalue and a corresponding eigenvector for

0 1 0
A= 0 O 1
18 -1 -7

Solution: We initialize xo =[1 1 1]T. Then, for the first iteration,

0 1 0 1 1
X; = Axy = 0 0 1 1| = 1
18 -1 -7 1 10

For the second iteration,

0 1 o07fo.1 0.1
xx=Ax;=| 0 0 1[]01]= 1
18 -1 -7 1 5.3
A~ —-53
Xy — %[0.1 1 —53]"=[-0.018868 —0.188679 1]T
For the third iteration,
0 1 0][-0.018868 —0.188679
x3=Ax,=| 0 0 1[]|—0.188679 | = 1
18 -1 -7 1 —7.150943

A = —7.150943

1

X = T 150943

[—0.188679 1 —7.150943]"

=10.026385 —0.139842 11"

Continuing in this manner, we generate Table 4.1, where all entries are rounded
to four decimal places. The algorithm is converging through six decimal places to
the eigenvalue —6.405125 and its corresponding eigenvector

[0.024375 —0.156125 1]° m

Although effective when it converges, the power method has deficiencies. It does
not converge to the dominant eigenvalue when that eigenvalue is complex, and
it may not converge when there is more than one equally dominant eigenvalue
(see Problem 12). Furthermore, the method, in general, cannot be used to locate
all the eigenvalues.
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The inverse power
method is the power
method applied to
the inverse of a
matrix A; in general,
the inverse power
method converges
to the smallest
eigenvalue of A in
absolute value.

TABLE 4.1

Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.1000 0.1000 1.0000 10.0000
2 —0.0189 —0.1887 1.0000 —5.3000
3 0.0264 —0.1398 1.0000 —7.1509
4 0.0219 —0.1566 1.0000 —6.3852
5 0.0243 —0.1551 1.0000 —6.4492
6 0.0242 —0.1561 1.0000 —6.4078
7 0.0244 —0.1560 1.0000 —6.4084
8 0.0244 —0.1561 1.0000 —6.4056

A more powerful numerical method is the inverse power method, which is the
power method applied to the inverse of a matrix. This, of course, adds another
assumption: The inverse must exist, or equivalently, the matrix must not have
any zero eigenvalues. Since a nonsingular matrix and its inverse share identical
eigenvectors and reciprocal eigenvalues (see Theorem 4 of Section 4.4), once we
know the eigenvalues and eigenvectors of the inverse of a matrix, we have the
analogous information about the matrix itself.

The power method applied to the inverse of a matrix A will generally converge to
the dominant eigenvalue of A~!. Its reciprocal will be the eigenvalue of A having
the smallest absolute value. The advantages of the inverse power method are that
it converges more rapidly than the power method, and it often can be used to
find all real eigenvalues of A; a disadvantage is that it deals with A~!, which is
laborious to calculate for matrices of large order. Such a calculation, however,
can be avoided using LU decomposition.

The power method generates the sequence of vectors
X = AXj_q
The inverse power method will generate the sequence
X = A7 X
which may be written as
AXj = Xp_1

We solve for the unknown vector x; using LU decomposition (see Section 1.6).

Example 3 Use the inverse power method to find an eigenvalue for

S
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Solution: We initialize xo = [1 1]". The LU decomposition for A has A = LU
with

1 0 2 1
L:[1 l]andU:[O 2]

For the first iteration, we solve the system LUx; = x¢ by first solving the system

Ly = x, fory, and then solving the system Ux; =y forx;. Sety = [y, y»]" and
x; = [a b]". The first system is
yi+0y=1
yity=1

which has as its solution y; = 1 and y, = 0. The system Ux; =y becomes

2a+b=1
2b=0

which admits the solution ¢ = 0.5 and b = 0. Thus,
x1=A"'xg=[05 0]"
A=0.5 (an approximation to an eigenvalue for A™")

1
xi < 5505 0]'=1 o]f

For the second iteration, we solve the system LUx, = x; by first solving the
system Ly =x; for y, and then solving the system Ux, =y for x,. Set
y=[y | andx, =[a b]". The first system is

n+0pn=1
yi+y2=0
which has as its solution y; = 1 and y, = —1. The system Ux; =y becomes
2a+b=1
2b=—1

which admits the solution ¢ = 0.75 and b = —0.5. Thus,
x;=A"'x; =[0.75 —0.5]"
A ~0.75

1 T T
21075 —0.5]"=[1 —0.666667
X2 — 5z =1 ]
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For the third iteration, we first solve Ly = x, to obtain y = [1 —1.666667]",
and then Ux; = y to obtain x3 = [0.916667 —0.833333]" Then,

A = 0.916667

X3 [0.916667 —0.833333]"=[1 —0.909091]"

-
0.916667

Continuing, we converge to the eigenvalue 1 for A~! and its reciprocal 1 /1=1
for A. The vector approximations are converging to [1 —1 ]T, which is an eigen-
vector for both A" and A. W

Example 4 Use the inverse power method to find an eigenvalue for

720
A=1(2 1 6
0 6 7
Solution: We initialize xo =[1 1 1]'. The LU decomposition for A has
A = LU with

1 0 0 7 2 0
L=]0285714 1 0| and U= |0 0.428571 6
0 14 1 0 0 =77

For the first iteration, set y = [y y3]T and x; =[a b c]T. The first
system 1is

y1+0y2+0y; =1
0.285714y1 +y2 + 0y =1

Oy1 +14y2 +y3 =1

which has as its solution y; =1, y, =0.714286, and y; = —9. The system
Ux; =y becomes

Ta+2b=1
0.428571b + 6¢ = 0.714286

~77¢ = -9

which admits the solution ¢ = 0.134199, 5 = 0.030303, and ¢ = 0.116883. Thus,
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x; = A 'xg =[0.134199 0.030303 0.116833]"

A~ 0.134199 (an approximation to an eigenvalue for A™")

X| [0.134199 0.030303 0.116833]T

- -
0.134199
=11 0.225806 0.870968]T

For the second iteration, solving the system Ly = x; for y, we obtain

y=[1 —0.059908 1.709677]"

Then, solving the system Ux, =y for x,, we get

X, = [0.093981 0.171065 70.022204}T
Therefore,

A = 0.171065

X2 [0.093981 0.171065 70.022204]T

-
0.171065
=[0.549388 1 —0.129796]T

For the third iteration, solving the system Ly = x; for y, we obtain

y =[0.549388 0.843032 —11‘932245}T

Then, solving the system Ux; =y for x3, we get

x3 =[0.136319 —0.202424 0.154964]T
Therefore,

A~ —0.202424

1

T
— —o30045 | 0-136319 —0.202424  0.154964]

X3
=[—0.673434 1 —0.765542]"

Continuing in this manner, we generate Table 4.2, where all entries are rounded
to four decimal places. The algorithm is converging to the eigenvalue —1/3 for
A~! and its reciprocal —3 for A. The vector approximations are converging to
[—0.2 1 —0.6]", which is an eigenvector for both A™' and A. W
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TABLE 4.2
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 1.0000 0.2258 0.8710 0.1342
2 0.5494 1.0000 —0.1298 0.1711
3 —0.6734 1.0000 —0.7655 —0.2024
4 —0.0404 1.0000 —0.5782 —0.3921
5 —0.2677 1.0000 —0.5988 —0.3197
6 —0.1723 1.0000 —0.6035 —0.3372
7 —0.2116 1.0000 —0.5977 —0.3323
8 —0.1951 1.0000 —0.6012 —0.3336
9 —0.2021 1.0000 —0.5994 —0.3333
10 —0.1991 1.0000 —0.6003 —0.3334
11 —0.2004 1.0000 —0.5999 —0.3333
12 —0.1998 1.0000 —0.6001 —0.3333

We can use Theorem 9 of Section 4.2 in conjunction with the inverse power
method to develop a procedure for finding all eigenvalues and a set of corre-
sponding eigenvectors for a matrix, providing that the eigenvalues are real and
distinct, and estimates of their locations are known. The algorithm is known as
the shifted inverse power method.

If ¢ is an estimate for an eigenvalue of A, then A — cI will have an eigenvalue near
0 and its reciprocal will be the dominant eigenvalue of (A — ¢I)~'. We use the
inverse power method with an LU decomposition of A — ¢l to calculate the
dominant eigenvalue A and its corresponding eigenvector x for (A —cI)~'.
Then 1/A and x are an eigenvalue and eigenvector pair for A — ¢l while
¢+ (1/A) and x are an eigenvalue and eigenvector pair for A.

The Shifted Inverse Power Method

Step 1.

Step 2.
Step 3.
Step 4.

Step 5.

Begin with an initial guess x( for an eigenvector of a matrix A,
having the property that the largest component of x in absolute
value is one. Set a counter k equal to 1 and choose a value for the
constant ¢ (preferably an estimate for an eigenvalue if such an
estimate is available).

Calculate x; = (A — D) 'x¢_;.
Set A equal to the largest component of x; in absolute value.

Rescale x; by dividing each of its components by . Relabel the
resulting vector as xy.

If ¢ + (1/)\) is an adequate estimate for an eigenvalue of A, with x;
as a corresponding eigenvector, stop; otherwise increment k by
one and return to Step 2.



268 e FEigenvalues, Eigenvectors, and Differential Equations

Example 5 Find a second eigenvalue for the matrix given in Example 4.

Solution: Since we do not have an estimate for any of the eigenvalues, we
arbitrarily choose ¢ = 15. Then

-8 2 0
A—cd= 2 —-14 6
0 6 -8
which has an LU decomposition with
1 00 -8 2 0
L=|-025 1 0| and U=| 0 -135 6
0 —0.444444 1 0 0 —5.333333

Applying the inverse power method to A — 151, we generate Table 4.3, which is

T
convergingtoA = —0.25and x = B % 1 ] . The corresponding eigenvalue of

Ais (1/—0.25) 4+ 15 = 11, with the same eigenvector.

Using the results of Examples 4 and 5, we have two eigenvalues, A} = —3 and
Ay = 11, of the 3 x 3 matrix defined in Example 4. Since the trace of a matrix
equals the sum of the eigenvalues (Theorem 1 of Section 4.2), we know
7+147=-=3+11+ A3, so the last eigenvalue isA; =7. W

TABLE 4.3
Iteration Eigenvector components Eigenvalue
0 1.0000 1.0000 1.0000
1 0.6190 0.7619 1.0000 —0.2917
2 0.4687 0.7018 1.0000 —0.2639
3 0.3995 0.6816 1.0000 —0.2557
4 0.3661 0.6736 1.0000 —0.2526
5 0.3496 0.6700 1.0000 —0.2513
6 0.3415 0.6683 1.0000 —0.2506
7 0.3374 0.6675 1.0000 —0.2503
8 0.3354 0.6671 1.0000 —0.2502
9 0.3343 0.6669 1.0000 —0.2501
10 0.3338 0.6668 1.0000 —0.2500
11 0.3336 0.6667 1.0000 —0.2500
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Problems 4.5

In Problems 1 through 10, use the power method to locate the dominant eigenvalue and
a corresponding eigenvector for the given matrices. Stop after five iterations.

M

“@

™

(10

)

12)

13

(14

as)

(16)

a7

18)

(2 1 (2 3 (3 6
|2 3]' @ |4 6}' @) 19 6}'
[0 1 (8 2 (8 3
| —4 6}' ®) 13 3}' ©) 13 2]'
(3 0 0 (7 2 0 32 3
2 6 4. ® |21 6|. ©I|26 6
12 35 0 6 7 13 6 11
[ 2 —17 7
-17 -4 1.

7 1 —14

Use the power method on

2 0 -1
A= 2.2 2
-1 0 2

and explain why it does not converge to the dominant eigenvalue A = 3.

5

and explain why it does not converge.

Use the power method on

Shifting can also be used with the power method to locate the next most dominant
eigenvalue, if it is real and distinct, once the dominant eigenvalue has been deter-
mined. Construct A — AI, where A is the dominant eigenvalue of A, and apply the
power method to the shifted matrix. If the algorithm converges to p and x, then
1+ A is an eigenvalue of A with the corresponding eigenvector x. Apply this shifted
power method algorithm to the matrix in Problem 1. Use the result of Problem 1 to
determine the appropriate shift.

Use the shifted power method as described in Problem 13 on the matrix in Problem
9. Use the results of Problem 9 to determine the appropriate shift.

Use the inverse power method on the matrix defined in Example 1. Stop after five
iterations.

Use the inverse power method on the matrix defined in Problem 3. Take
xo =[1 —0.5]T and stop after five iterations.

Use the inverse power method on the matrix defined in Problem 5. Stop after five
iterations.

Use the inverse power method on the matrix defined in Problem 6. Stop after five
iterations.
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(19) Use the inverse power method on the matrix defined in Problem 9. Stop after five
iterations.

(20) Use the inverse power method on the matrix defined in Problem 10. Stop after five
iterations.

(21) Use the inverse power method on the matrix defined in Problem 11. Stop after five
iterations.

(22) Use the inverse power method on the matrix defined in Problem 4. Explain the
difficulty and suggest a way to avoid it.

(23) Use the inverse power method on the matrix defined in Problem 2. Explain the
difficulty and suggest a way to avoid it.

(24) Can the power method converge to a dominant eigenvalue if that eigenvalue is not
distinct?

(25) Apply the shifted inverse power method to the matrix defined in Problem 9, with a
shift constant of 10.

(26) Apply the shifted inverse power method to the matrix defined in Problem 10, with a
shift constant of —25.

4.6 DIFFERENTIAL EQUATIONS IN FUNDAMENTAL FORM

An important application of Jordan canonical forms (see Appendix B), in
general, and the exponential of a matrix, in particular, occurs in the solution of
differential equations with constant coefficients. A working knowledge of the
integral calculus and a familiarity with differential equations is required to
understand the scope of this application. In this section, we show how to
transform many systems of differential equations into a matrix differential
equation. In the next section, we show how to solve such systems using the
exponential of matrix.

A differential equation in the unknown functions xi(f), x5(?), ..., x,(f) is an
equation that involves these functions and one or more of their derivatives. We
shall be interested in systems of first order differential equations of the form

dx(t
10— 11510 + )+ ) D)
dx,(t
20 _ o110+ amalt) + - a0 (4.28)
dx,(t
% = a”xl(t) -+ 6112)C2([) +...4+ alnx,,(t) +f1(I)
Here a;; (i,j = 1,2, ..., n)is restricted to be a constant and fi(¢) is presumed to be

a known function of the variable ¢. If we define
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x1(7) a a2 ... dip Si(0)
x2(1) @ a ce. §210)
xp=| A= T and iy = |7 (4.29)
Xu(?) apl  dp2 ... dpp Ju(2)
then equation (4.28) is equivalent to the single matrix equation
% = Ax(t) + f(?) (4.30)

Example 1 The system of equations

% = 2x(t) + 39(f) + 4z(t) + (# — 1)
% = 5y(t) + 6z(1) + ¢'
d;(;) — 7x(t) — 8y(1) — 9(1)

is equivalent to the matrix equation

dx(1)/dt 2 3 47[x( £—1
dy(t)/dt | = [0 5 6] [y(t)} + [ e ]
d=(1)/dt 7 =8 9]z 0

This matrix equation is in form (4.30) with

x(1) 2 3 4 2 -1
x(7) = {y(z)], A= [0 5 6], and f(t)=| e
(1) 78 -9 0

In this example, x;(7) = x(2), x2(t) = ¥(¢), and x3(t) = z(z). N

We solve equation (4.30) in the interval ¢ < ¢ < b by identifying a column matrix
x(#) that when substituted into (4.30) makes the equation true for all values of ¢ in
the given interval. Often, however, we need to solve more than just a set of
differential equations. Often, we seek functions x(z), x2(?), ..., x,(¢) that satisfy
all the differential equations in (4.28) or, equivalently, equation (4.30) and also
a set of initial conditions of the form

x1(ty) = c1,  x2(to) = €2, ..., Xu(t0) = o 4.31)

where ¢j, ¢, ..., cq are all constants, and £ is a specific value of the variable
t inside the interval of interest. Upon defining
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A system of
differential
equations is in
fundamental form if
it is given by the
matrix equations
dx(t)

x(f) =c.

¢
%)
c=| .
Cn
it follows that
x1(to) 1
x2(to) €
x(t9) = =1 .| =c
xnUO) Cn

Thus, initial conditions (4.31) have the matrix form
x(ty) = ¢ (4.32)

We say that a system of differential equations is in fundamental form if it is given
by the matrix equations

dx(r) _
a = A0+ (4.33)
x(f)) = ¢

Example 2 The system of equations

dr(t)
% = 4r(t) + 5s(2)

r(m) = 10, s(m) = —20

is equivalent to the matrix equations
dr(n/de] [2 —3} {r(z‘)] . m
ds(1)/dt 4 5]Ls() 0

r(m] 10
L(W)] a [—20]

This set of equations is in fundamental form (4.33) with

o[ a- [t - [} mee- [ 5]

In this example, x;(¢) = r(¢) and x;(¢) = s(r). W
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A system of
differential
equations in
fundamental form is
homogeneous when
f(r)=0.

A system of differential equations in fundamental form is homogeneous when
f(r) = 0 and nonhomogeneous when f(¢) # 0 (that is, when at least one element of
f(t) is not zero). The system in Example 2 is homogeneous; the system in Example
1 is nonhomogeneous.

Generally, systems of differential equations do not appear in fundamental form.
However, many such systems can be transformed into fundamental form by
appropriate reduction techniques. One such group are initial-value problems of
the form

d"x(t d"x(t dx(t
ay x()+an_1 ic()+...+a1ﬁ+aox(t) =1
dm dm-1 dt (4.34)
(t0) = dx(to) d"'x(ty) '
X 0) — cla d[ — €2y oo vy dtn71 - C}’l*l

This is a system containing a single nth-order, linear differential equation with
constant coefficients along with n — 1 initial conditions at #y. The coefficients
ap,ay, ...,a, are restricted to be constants and the function f{7) is presumed to be
known and continuous on some interval centered around #g.

A method of reduction for transforming system (4.34) into fundamental form is
given by the following six steps.

Step 1. Solve system (4.34) for the nth derivative of x(¢).

d"x(t) a1\ d"'x(1) ap\ dx(t) ay 1)
ar “(W) a T (a—H)W‘ (a)x(’”a—,,

Step 2. Define n new variables (the same number as the order of the differential
equations) x1(7), x2(?), ..., x,(?) by the equations

dx  d’x _dx _dx
E,X:«s =i <o Xn—1 = a2 Xn =1

(4.35)

x1=x(t), x3=

Here we simplified x;(r) (j = 1,2, ...,n) to x;. By differentiating the
last equation in system (4.35), we obtain

dx, d"x

dt  dr (4.36)

Step 3. Substitute equations (4.35) and (4.36) into the equation obtained in
Step 1, thereby obtaining an equation for dx,/dt in terms of the new
variables. The result is

dx,  (an . a .
dr a, )" a, 2

(?)m SO 4.37)

n ay
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Step 4. Using (4.35) and (4.37), construct a system of # first-order differential

equations for xi, x», ..., x,. The system is

dx1

— =X

dt 2
de

— =X

dt .

dxn—l —x

dt "

dx, e t
s <@>xl(ﬂ>x2... (u)x,ﬂrf() (4.38)
dt a, ay ap ap
In this last equation, the order of the terms in equation (4.37) was

rearranged so that x; appears before x,, which appears before x; and
so on. This was done to simplify the next step.

Step 5. Write system (4.38) as a single matrix differential equation. Define

SV -0
X2 0
x(=| + |, ()=
Xn—1 0
L X, L f(O/ay |
r 0 1 0 0 0 17
0 0 1 0 0
0 0 0 1 0
A =
0 0 0 0 ... 1
o ap a as ap—1
L a, a, a, a, a, |

: : . . . odx(t
Then equation (4.38) is equivalent to the matrix equation _X(t) =

Ax(?) +£(2).

Step 6. Write the initial conditions as a matrix equation. Define
c=[c & ... cn]T.Then,
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x1(fo) x(10) ¢
x(19) = xz(.l‘)) _ dx(to)/dt B e
() i d c'n
The results of Steps 5 and 6 are a matrix system in fundamental form. [l

Example 3 Write the initial-value problem

d?x(1) dx(m)
d’; Fx(t)=2; x(m) =0, xd;T -

in fundamental form.

Solution: The differential equation may be rewritten as

d>x(1)
e —x(1)+2
This is a second-order differential equation, so we define two new variables
d d d? .. . . .

x; = x(¢) and x; = 7); Thus, % = d—; and the original differential equation
becomes % = —x + 2. A first-order system for the new variables is

d

%:)Q:Oxl + 1x,

d

%: X1 +2=—-1x1+0x,+2

0 1

Define x(¢) = Bl}, A= [ 1 O}’ f(r) = B}, and ¢ = [ (1)] Then, the
) _ _

initial-value problem is equivalent to the fundamental form

% =Ax() +f(1); x(m)=c MW

Example 4 Write the initial-value problem

d*x  dx d*x  dx
25 45T 1165 — S 4 2x =sint
drt dr + drr dt tax=si

dx(0)

d?x(0)
d 2

0 _
a =

x0) = 1, =0

in fundamental form.



276 e FEigenvalues, Eigenvectors, and Differential Equations

Solution: The differential equation may be rewritten as

ﬁ—2&—8612—)6—1-ld—x—x—i-1sint
it~ T dB e ' 2dt 2

This is a fourth-order differential equation, so we define four new variables

o dx d*x and d*x
x1=x(8), x2=—, X3 =—, X4 = —
! 2T T ade CTAn
d. d .. . . .
Thus, % = W‘)‘C and the original differential equation becomes
dxy 1 1.
= 2x4 — 8x3 +§xz — X +§smt

A first-order system for the new variables is

dX1 o
I =
de -
7 =
dX3 -
W =
dX4

— = —X —&—lx — 8x3 + 2x —|—lsint
ar T2 3 4T

X2
X3

X4

X1 0 0
Define x(t) = 2 , A=
X3 0

o
S O =

NoI—

X4 -1
1
2
-1
0

CcC =

Then, the initial-value problem is equivalent to the fundamental form

W Ax() + 1 xO) = ¢ m
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Problems 4.6
Put the following initial-value problems into fundamental form:
dx (1) _ dy () _
@) - 2x (1) + 3y (1) 2 - 3y () +2:z()
dy (1) dz(1) _
7 =4x(t)+ 5y () 7 4y (1) +z(0)
x(0) =6 y0)=7 y@@ =1, z(0)=1
dx (1) dx (1)
@ —m= -0+ O+1 @) =3+
dy (1) dy(t)
I =4x() -4y () -1 7—2x(1)+z+1
x(0)=0, y(©0)=0 x(0)=1 y(0)=-
®) d’;ﬁ’) = 3x(1)+ Ty (1) +2 ©) d”;gl) u(t)+ v (1) +w(o)
dy(1) dv(y
fo(l)—ky(t)—l-Zt r =u(®)—=3v(@)+w()
=2 y)=- dv;t(’) =v(0)+w(0)
u@=0vd=LwH4) =-
dx (1) B dr(t) B B
) % = 6y (1) +z(2) ®) - r(t) —3s(t) —u(t) +sint
d
dydgt) X(0) = 32(1) sd(tt) r)—s(+72+1
dzdgt) =-2y(1) % =2r(t)+s(t) —u(t) +cost
x(0) = 10, y(0) = 10,2(0) = 20 r()=4,s5(1)=-2,u(l)=5
Q) dzd);(’) 2% “3x() =0 (10) dzd);(’) dx(t) X =
o, dx(0) _ dx(l)_
x(0) =4, — = =5 x(1)=2.—==0
2 2
a1 dd’;(l) —x() =12 12) d;z(t) - 2‘%&” () =2
o, dx(0) _, dx(0)
x(0)= -3, == =3 X(0)=0,===0
2 3 2
(13) dd’;(’) _ 3% Yox()=e'  (14) d(;,s(t) + ddt(;) —x()=0
dx(1 dx(—1 d?
x() =2, Xd(t)=2 x(—1)=2, X(dz ), d’;([):—zos
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d*x d’x dx
(15) W + W =1+ E
. dx(0) d?>x(0) B d>x(0) 5
MO=1 =r=2 g =™ g ¢
d°x  d*x
(16) W+4W_t —t
., dx(m) d?x(mr) B d3x(1r) B
Mm=2 == =g =0 =2
d*x(m) { d>x(m) 0
a7 ds

4.7 SOLVING DIFFERENTIAL EQUATIONS IN FUNDAMENTAL FORM

We demonstrated in Section 4.6 how various systems of differential equations
could be transformed into the fundamental matrix form

ax(t) = Ax(?) +f(?)
dt (4.39)
x(t)) =c¢

The matrix A is assumed to be a matrix of constants, as is the column matrix ¢. In
contrast, the column matrix f(#) may contain known functions of the variable .
Such differential equations can be solved in terms of eA’.

The matrix differential equation in (4.39) can be rewritten as

dx(t) B
T Ax(1) = £(2)

If we premultiply each side of this equation by e~A/, we obtain

[

At
d[ —Ax(z)} — M)

which may be rewritten as (see Corollary 1 of Section 4.4)

% [eAx(1)] = e A1)

Integrating this last equation between the limits of 7y and ¢, we have

t

/ % [e A x(1)]dt = /e’A’f(t)dt

1o
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or
t t

= / e Nf(s)ds (4.40)

1 to

e AMx(1)

Note that we have replaced the dummy variable ¢ by the dummy variable s in the
right-side of equation (4.40), which has no effect on the definite integral (see
Problem 1). Evaluating the left side of equation (4.40), we obtain

t
e Ax(1) — Mx(ty) = / e NS (s)ds
4]
or

e Ax(t) = eMe + / e (s)ds (4.41)

to

where we substituted for x(7) the initial condition x(#y) = ¢. We solve explicitly
for x(¢) by premultiplying both sides of equation (4.41) by (¢~A")~!, whence

t

x(1) = (e_Af)_leA"’c + (63_”")_l /e"“f(s)ds (4.42)

)

But (eA)~! = ¢A’ (see Theorem 2 of Section 4.4). Also, A7 commutes with Az,
so eAleAl = ¢Al=1) (see Problem 36 of Section 4.4). Equation (4.42) may be
simplified to

t
x() = AT 4 A / e M (s)ds (4.43)

to

and we have proven

» Theorem 1. The solution to the system % = Ax(t) + f(?); x(t9) = ¢

in fundamental form is
t

x(t) = AT e 4 A / e Mf(s)ds

to

A simple technique for calculating the matrices eA(~) and e~4* is to first find e’
and then replace the variable ¢ wherever it appears by the quantities (r — #y) and
( — ), respectively.
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—t

—t _
Example 1 A = {e te } for A = { ! 1]. Consequently,

0 et 0 -1

—(t—to) _ —(1—t9) S apS
At—19) _ | € (t — to)e As | € se
eAl—10) — [ 0 R and e™¥ = 0 ol [

Note that when ¢ is replaced by (¢ — #o) in e, the result is e ") = ¢~*% and not
e~'~" That is, we replace the quantity t by the quantity (t — ty); we do not simply
add —1y to the variable ¢ wherever ¢ appeared.

Example 2 Use matrix methods to solve

du(t)

e u(t) + 2v(t) + 1
dv(t)

R 4u(t) 4+ 3v(t) — 1

u0) =1, v(0)=2

Solution: This system can be transformed into fundamental form if we define

x(1) = {Zm A= [i ﬂ £(1) = {_” and ¢ — M

and take 1y = 0. For this A, we calculate

A 1 [285’ +det 20 — 26[]

6 | 4e° —4e™! de 4 2e7!
Hence,
o5 1 |:2€_5S +4ef 207 — 261
6| 4e™> —4ef 47 426
and

eA(l—to) _ eAr
since tg = 0. Thus,

209 4 dem! 2e — et
4¢3 — 4ot 47 4 27!

1
A(t*t(])c —
6

4

H

1 [ 1265 + 4e~1] + 2[2¢5 — 2] 1
6|1

[4e> — de™] + 2[4 + 27

— [ e } (4.44)

2€5t
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e’ASf(s) _ l 207 +4¢° 2e7 —2¢° [ 1 ]
6| de™> —4¢f de™> +2¢ | [ 1
112 ae) — 120 — 207 ] [ es}
6| 1[de™™ —def] — 1[de > +2¢] | [ ¢
Hence,
/ ~A5(s) [y ds B o _ [ e -1
fo —e* ds fes|6 | —¢' +1
- s - s -
A /e*ASf 1 207" +4et 2" —2e7" || (e = 1)
6 |46 —de™! 4 4 2e7 | [ (1 —€)

(4.45)

1 [ [2e5 +de~][e! — 1] + [2¢> — 2¢7][1 — et]]
6| [deS — de e’ — 1] + [4e% + 2¢71][1 — €]

il
L1+
Substituting (4.44) and (4.45) into (4.43), we have
u([) B B €5I 1 _ e—l‘ B
{V(t)] =X = [2&] " {1 +e’} -

u(t)y =" —e ' 41
vt)=2"+e "1 W

65f+1_e—f

20 — 1+ et

or

Example 3 Use matrix methods to solve

2
d7y 3dy 2y = o

dr? dt

_y o @ _

Solution: This system can be transformed into fundamental form if we define

x(f) = {xl(t)} [ g 3] f(r) = Li’} and ¢ = [(1)]

x2(1)
and take ¢ty = 0. For this A, we calculate
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Thus,
Al=1)¢
Now
f(1)
e M (s) =
Hence,

/t e M (s) ds

1o

t
e / e ME(s) ds

fo

o M 420t QM o
e =
=26 +2¢' 2% — ¢
_2=1) + 2et=1) Q2=1) _ oi=1)
—22=1) L 9plr=1)  9p2(t=1) _ pt=1)

(_ezt +2€t)
(—2e% + 2¢)
(—56’5’ + %efm + %675
(_ %675t 4 %efm 4 %875

1,3t 1,02t=-5) _ 1,4
¢~ tse 1€

3,3t 4 2,02t-5) _ 1,14
¢ t3e 1€

|L:}

(4.46)
0
—3x‘|
e
e
(4.47)
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An alternate form of
the solution to a
matrix differential
equation in
fundamental form is

x(f) = A0

1

+ / AIf(s) ds.

fo

Substituting (4.46) and (4.47) into (4.43), we have that

X([) B _xl(t) B _ (=1 + 2et—1 %e—m Jr%e(Zt—S) o iet,4
_Xz(l) —2e2=1) 4 9=l —%6_3’ + %8(2’_5) _ %61_4

r_,2(t—1) t—1 1,3t 1,02t-5) _ 1,4
e +2e'7 - 55e7 +ze 4

_n,2(t-1) t—1 _ 3 -3t 2,02t-5) _1,t-4
| —2e +2e 0€¢ ' tse €

It follows that the solution to the original initial-value problem is

1 1
y(1) = xi(f) = ="V 421 4 (%) e — Ze’*“ u

The most tedious step in Example 3 was multiplying the matrix eA’ by the column

t
matrix [ e A'f(s)ds. This step can be eliminated if we are willing to tolerate
to
a slightly more complicated integral. The integration in equation (4.43) is with
respect to the dummy variable s. If we bring the matrix eA’, appearing in front of
the integral, inside the integral, we may rewrite equation (4.43) as

t
x(1) = e e 4 / e Me NS (s) ds (4.48)
ty

AtefAs

But At and —As commute, so e = A9 and equation (4.48) becomes

I3
x(1) = A0 e 4 / A (s) ds (4.49)

to

The matrix eA?~ is obtained by replacing the variable ¢ in A’ by the quantity

(t—5).

Example 4 Use matrix methods to solve

d’x
aw TR
dx()
-0 =1
xm=0,

Solution: This system can be transformed into fundamental form if we define

_xl(t)A_()lf_O d_0
(0= w»@o| T | -1 o 0= 2T
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and take 79 = w. The solution to this initial-value problem is given by either
equation (4.43) or (4.49). In this example, we shall evaluate equation (4.49),
thereby saving one matrix multiplication. For this A, ¢A’ was determined in
Example 8 of Section 4.4 to be

cost sint

—sint cost
Thus,
), _ [ cos(t—ar) sin(t—a)[ O
M= | —sin(z — ) COS(Z—W):| {—1}
[ —sin(t—m)
[ —cos(t— 77)] s
s [ cos(t—s) sin(z—1s)][0 '
M) = | —sin(z —s) cos(t—s)} {2}
_ [ 2sin(z—s)
B _ZCOS(l—S)]
Hence,
/teA“S)f(s) g lfq}Zsin(t — ) ds}
t0 J_2cos(t —s) ds
_ [2—2cos(t —m)
B [ 2sin(t — m) } (4:31)

Substituting (4.50) and (4.51) into (4.49) and using the trigonometric identities

sin(# — 7) = —sint and cos(t — ) = — cos t, we have
xi()] [ —sin(z =) 2 —2cos(t — )
[xz(t)} =x(1) = [—cos(l—ﬂ')} + [ 2sin(1 — ) }

_ sint+2cost+2
N cost —2sint

Thus, since x(#) = x;(t), it follows that the solution to the initial-value problem
is given by

x(t)=sint+2cost+2 N

A great simplification to both equation (4.43) and equation (4.49) is effected
when the differential equation is homogeneous, that is, when f(¢) = 0. In both
formulas, the integral becomes a zero-column matrix, and the solution reduces to
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The solution to the

homogeneous
system

dx(t)

— = Ax(¥);
x(f) =cis
x(f) = A,

x(7) = AU ¢ (4.52)

Occasionally, one needs to solve a differential equation by itself, and not an
entire initial-value problem. In such cases, the general solution is (see Problem 2)

x(1) = Mk + M / e Mf(t) dt (4.53)

where k is an arbitrary column matrix of suitable dimension. The general
solution to a homogeneous differential equation by itself is

x(1) = Nk (4.54)

Example 5 Use matrix methods to solve

du(t)

7 = u(l) + 2V(l)
av(t)

7 4u(t) + 3v(2)

Solution: This system can be transformed into fundamental form if we define

_u(t)A_IZ df_0
x(0) = oy | |4 3 » and 1) = 0

This is a homogeneous system with no initial conditions specified; the general
solution is given in (4.54). For this A, we have

267" 4+ 4! 203 — ¢!
4¢3 — 4ot 4¢3 4 Dot

N

1 [k [2¢° + de™] + ka[2¢%" — 26’]]

1
Al —

6

Thus,

1 [2e7 +4e™" 2 —2e!

| 4e5 — 4e! 47" + 2e!
6 Lki[4e™ — de™!] + ky[4e> + 2¢71]

1 [ €5t(2k1 + 2k2) + 671(4](1 — Zkz)
(4.55)

O | &5 (dky + 4ks) + e (—dky + 2k)



286 e FEigenvalues, Eigenvectors, and Differential Equations

Substituting (4.55) into (4.54), we have that

[u(l)] ! l 51 (2ky + 2ka) + e (dky — 2k)
- 6

6 | 51 (4, + ko) + e~ (4