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IVJLatlK'inatifS is a world ol woiulci—a place

where, with only a few numbers and points at

our command, the most amazing formulas and

geometric figures appear as out of a magician "s

liat. Mathematics is also a tool—a ser\ ant to our

needs. When we wish to know how much? how

many? how large? how fast? in what direction?

with what chances?—the mathematician gives us

a way to find the answer.

But above all mathematics is the Queen of

Knowledge. It has its own logic—that is, a way

of thinking. By applying this way of reasoning

to numbers and to space, we can come up with

ideas and conclusions that only the human mind

can develop. These ideas often lead us to the

hidden secrets of the ways in which nature

works.

All this is revealed in the pages that follow,

and I am happy to invite you to a glorious ad-

venture in numbers and space as you read the

words and study the beautiful pictures in this

delightful book.

This book does not teach you ordinary arith-

metic as you study it in school. It does tell you

the extraordinary tilings that come from the use

of what you study. It unfolds the story of man s

struggle to explain tlie quantitative aspects of

the world in which he lives. It tells the story of

exceedingly small numbers, and numbers so

large as to be beyond comprehension—from the

infinitesimal—to the infinite. It takes you from a

point, along a line, into a plane, out into space,

and even beyond our space. And it shows how

space itself was finally conquered by number.

This book also deals with practical things,

such as how to make parallel lines and perpen-

dicular lines, and where they are used. It de-

scribes die angles that a sur\eyor needs to know,

and shows how to discover the speed at which

a stone is falling or a rocket is traveling in space.

How to find an area, or a \olume, or how l)y the

use of probability to predict ones chances of

winning a game, are simply explained. But even

more astounding is the unfolding of seemingly

magical numbers for the interpretation of nature

—a sea shell—a growing tree—a beautiful rec-

tangle—the golden section. The arts of music

and painting become the mathematics of har-

monics and perspective, and the behavior of our

entire universe is revealed as a mathematical

system.

This is a book for inquisitive minds—those of

young readers—and bright adults also—which if

read and reread, each new time with more care-

ful thought and study, will pay rich dividends

in intellectual satisfaction. Each topic is only an

initial episode that, if pursued by further study

in school or other books, will reveal a knowledge

on which the world of tomorrow is being built.

Because I teach this subject and train teach-

ers to teach this subject; because I enjoy all

mathematics to the utmost; and because I know

the pleasure it gives—I welcome you to the pages

that follow.

—Howard F. Fehr
Teachers College, Cahiiiihia Universitij

Professor of Mathcnuitics

page 9



The Science of Numbers and Space

At work or at play, we often ha\e to answer

questions like "How many?" '"How big?" or

"How far?" To answer such questions we have

to use numbers. We have to know how numbers

are related and how different parts of space fit

together. To be sure our answers are correct,

we try to think carefull)'. When we do these

diings, we are using mathematics.

Mathematics is the science in which we think

carefuUy about numbers and space. It helps us

keep score at a baseball game, measure tlie area

of a floor, or decide which purchase is a better

buy. It helps the engineer design a machine. It

helps the scientist explore the secrets of nature.

It supphes us with useful facts. It shows us short

cuts for solving problems. It helps us under-

stand the world we live in. It also gives us games

and puzzles that we can do for fun.

I,
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Mathematics and Civilization

//

6

Mathematics grew up with cixilization. It arose

out of practical problems, and it helps people

solve these problems.

In the days when men got their food by hunt-

ing, and gathering wild fruits, berries, and seeds,

they had to count to keep track of their supplies.

Counting, measuring, and calculating became

more important when people became farmers

and shepherds. Then people had to measure

land and count their flocks.

When they built irrigation dams and canals,

they had to figure out how much earth to re-

move, and how many stones and bricks they

would use. The overseers had to know in ad-

vance how much food to store up for the work-

ing force. Caqienters and masons had to meas-

ure and calculate as they built homes for the

people, palaces for their rulers, and great tombs

for their dead kings.

As trade grew, merchants measured and

weighed their wares, and counted their money.

Tax collectors figured the tax rate, and kept ac-

^-f^

counts. To deal with all these activities, men
invented arithmetic, which studies numbers,

and geometry, which studies space.

To predict the changes of the seasons, priests

studied the motions of the sun, moon and stars.

Navigators looked to the sky, too, for the stars

that guided them from place to place. To help

them in this work, men invented trigonometry,

which relates distances to directions.

Commerce spread over the world. The same

kinds of calculations often had to be repeated.

To save time, some people worked out rules for

doing them, and ways of doing many problems

at once. This was the beginning of algebra.

As the centuries went by, men built machines

and workshops. Scientists studied the earth, the

sea, die air, and the sky. In tliese activities, peo-

ple worked with things that mo\'e or change.

To think accurately about motion and change,

they invented calculus. New kinds of work cre-

ated new problems, and men invented new

branches of mathematics to solve them.

V
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Numbers and How We Write Them

In the scene abo\ e. a team of primiti\e hunters

has just killed some game w ith well-aimed ar-

rows. The hunters can see at a glance that the

set of animals killed doesn't match the set of

men in the team. A man is left without an ani-

mal, so the hunters conclude that there are

more men in the team than there are animals

in the catch. Matching sets of objects in this

way probabK^ led to man's first mathematical

ideas, the ideas of more and Jess.

We ha\e many words in our language that

grew out of our experience with trying to match

sets. We distinguish a single person from a

couple. A lone wolf is different from a pack. We
also talk about a pair of socks or a brace of

ducks. Words like single, couple, lone, pack,

pair, and brace answer the question "How

man\? " At first this question used to get mi.\ed

up with the c|uestion "\\'hat kind? So separate

words like couple, pair, and brace were used to

describe different kinds of objects.

But people soon learned that a couple of

people matches a pair of socks or a brace of

ducks, and that the matching has nothing to do

with the kinds of things that they are. They

realized that a couple, a pair, and a brace have

somediing in common that makes it possible

for them to match. This is how the idea of num-

ber arose. Today we use the number word two

to answer the question "How many? for any

set that matches a couple, no matter what kind

of objects are in the set.

Numbers were used long before there was

anv need to write them. The earliest written



70 IL^
An early form of the Arabic numerals

numbers we know about are found in the temple

records of ancient Sumeria. Here priests kept

track of the amount of taxes paid or owed, and

of the supphes in the warehouses.

As time passed, men in\ented new and bet-

ter ways of writing numbers. At first, men wrote

them by making notches in a stick, or Hues on

the ground. We still use this system when we

write the Roman numerals I, II, and III. We
find it hidden, too, in our Arabic numerals 2

and 3. They began as sets of separated strokes.

Then, when the strokes were written in a hurr\',

tliey were joined to each other.

The Arabic numbers use only ten symbols, the

digits 0, 1, 2, 3, 4, 5, 6, 7, S, 9. But, with these

ten digits, we can write down any number we

like. We do this by breaking large numbers into

groups, just as we do with money. W'e can sepa-

rate thirteen pennies into groups of ten and

three. We can exchange the ten pennies for a

dime. Then we have one dime and tJiree pen-

nies. To write the number thirteen, we write 13.

The 1 written in the second space from the right

means one group of ten, just as one dime means

one group of ten pennies.

Ancient records written in clay

If we ha\e only ten pennies, the\' form a

poiip of ten, with no additional pennies left

o\er. To write the number ten, we put a 1 in the

second space from the right to represent one

group of ten. But to recognize this space as the

second space, we nnist write something in the

first space, e\ en though there are no additional

pennies be)ond the groui^ of ten. We write the

digit to represent "no pennies. ' If we didn't

use the s\mbol in this wa\', the whole sxstem

would not work.

The first people who recognized that the\'

needed a SNnibol for the numl)er zero were the

people of ancient India. The Arabs learned it

from the Indians, and then built it into the sys-

tem of written numbers that we use todav.

;
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The Metric System

In most countries ot the world today the

standard units of measurement are those of the

metric system. The metric system was first

adopted in France in 1795, and then spread to

other countries. In tliis system, the standard units

are based on measurements of tlie eartlt and

water. The unit of lengtli is called a meter and was

derived from the distance around the earth in

this way: A circle drawn on the surface of the

earth through the north and south poles is called

a meridian. One fourth of a meridian is called a

quadrant. A quadrant was divided into ten mil-

lion equal parts. The length of one of these parts

was chosen to be a meter.

After scientists made careful measurements

to find out how long the meter is, they measured

its length between two scratches on a platinum

bar. This bar, kept in a vault in Paris, is the

official standard of length. A meter is about

39.37 inches long. For measuring small dis-

tances, it is subdivided into one hundred equal

parts. Each part is called a centimeter. There

are about 22 centimeters in an inch.

The unit of volume in the metric system is the

cubic centimeter (ablireviated as cc. ). It is the

volume of a cube that is one centimeter high. A

thimbleful is nearly equal to 1 cc. The imit of

mass in the metric system is called a ^ram. It

was chosen to be the mass of 1 cc. of water. One

pound contains about 454 grams.

Units of Time

We use many different units of time. Each of y

them is based on some rhythm in nature, m ^

which an interval of time is repeated over and

over again. The year is based on the rhythm of

the earth s motion around the sun. The month is i||

based on the rh>thm of the moons motion

around the earth. The day is based on the

rhythm of the earth s rotation around its axis.

The smaller units that v\ e call an hour, a minute,

and a second are obtained by subdividing the

average length of a day.

We used to think of the dav' and its subdivi-

sions as the best standard miits, because th

rotation of the earth was the most regular

rhythm we knew about. We now have better

units, based on very rapid rhythms inside mole-

cules or atoms. These are used in molecular or

atomic clocks. One, the ammonia clock, uses as

its imit of time the period of a vibration inside

an ammonia molecule. This period is so small

that there are 23,870 million vibrations a sec-

ond. With a molecular clock we can measure

irregularities in the spinning of the earth.

NITROGEN ATOM



Numbers We Cannot Split

Ycni can make a "picture" of a whole luimber b>-

using a line of checkers. To form the picture, use

as many checkers as the number tells you to.

A line of four checkers can be split into two

lines with two checkers each. If we put these

hues under each other, the checkers fonii a rec-

tangle. Rectangles can also be formed with 6, 8,

9 or 10 checkers. So we call these numbers rec-

tangle numbers. The rectangle for the number

10 has 2 lines that ha\ e 5 checkers in each line.

Notice that 2x5 = 10. Every rectangle num-

ber is tJic product of smaller numbers.

There arc some numbers that cannot be split

in this wa\'. For example, we cannot arrange 7

There is a smiple way of finding out whether

a number is a rectangle or prime number. This

method is called the sieve of Eratostlienes, after

the Greek scientist who devised the system, two

centuries before the birtli of Christ. Imagine all

the whole numbers, starting with 2, arranged in

order in a line. The number 2, wliich stands at

the head of the hne, is a prime number. Now
count by 2's, and cross out exery number you

get. This remo\es the number 2. and all multi-

ples of 2. They are numbers like 4. 6, S, and so

on, that form rectangles with two lines. Among

the numbers that are left, the number 3 now

stands at the head of the line. It is the ne.xt prime

i

^ 9 10

checkers in a rectangle. \\'e can arrange them in

se\en lines, with one checker in each line. But

then they are still arranged in a single line, onl\'

now the line runs up and down instead of going

from right to left. The number 7 is not a rec-

tangle number. Numbers that cannot be pic-

tured as rectangles are called prime numbers.

This is because they cannot be written as the

product of smaller numbers.

number. Now cross out the numbers \ou get

when }"ou count by 3 s. The\' are numbers like 9

and 15, that form rectangles with three lines.

Among the numbers that are left, the number 5

now stands at the head of the line. It is the third

prime number.

Continue in this way, removing from the line

the number at the head of the line, and all mul-

tiples of that number. After each famil\- of

page 16
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TRIANGLE NUMBERS

The Shapes

of Numbers

Numbers, like people, come in many shapes.

Some numbers form rectangles. There are others

that form triangles, squares, or cubes.

Triangle Numbers

We find the numbers that form triangles b}'

placing lines of checkers under each other. Put 1

checker in the first line, 2 checkers in the second

line, 3 checkers in the third line, and so on. We
get larger and larger triangles in this way. The

number of checkers in a triangle is called a tri-

angle number. The first four triangle numbers

are 1, 3, 6, and 10. What is the seventh triangle

number? One way to find out is to make the sev-

enth triangle. Then count the number of check-

ers in it. But there is a short cut we can use. The

drawing on the side shows the se\ enth triangle,

with another one just like it placed next to it

upside down. The two triangles together form a

rectangle, so the triangle number is half of the

rectangle number. The rectangle has se\en

® ® 9 9 # # ®
mmmmmmmm
mmmmmmmm
mmmmmmmm
• •••
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lines, and eiglit checkers in eacli line. S(i the rec-

tangle nnmber is 7 X 8, or 56. Half of that is 28.

To find a triangle number, multiply the number

of lines in the triangle by the ne.xt higher num-

ber, and then take half of the product. To find

the eighth triangle number, take half of S 9.

Most whole numbers are not triangle num-

bers. But e\ en those that are not triangle num-

12 ^ few ^
13 ^ k " fci^ few

bers are related to them in a simple way. Each of

them is the sum of two or three triangle num-

bers. For example, 11 = 1 -f 10; 12 = 3 + 3 +
6; 13 == 3 + 10; 14 = 1 + 3 + 10. Find three

triangle numbers tliat add up to 48.

Square Numbers

We form a square by making a rectangle in

which the number of lines is the same as the

number of checkers in each line. The smallest

sc^uare has only one line, with one checker in the

line. So the smallest square number is 1. The

next square has two lines, with two checkers in

each fine. So the second square number is 2 X 2,

or 4. The third square number is 3 X 3, or 9. To

get a square innnber, multiply any number by

itself. The seventh square number is 7 ' 7, or

49. We call it "seven-squared" and sometimes

write it as 1'. The little two written in the upper

right hand corner is a way of showing that the

7 is to be used as a multiplier twice. "Eight-

squared" is written as 8', and means 8 8, or 64.

The square numbers are relatives of the odd

numbers (numbers that cannot form rectangles

with two lines). If you list the odd numbers in

order, stop when you like, and add those you

have fisted, the sum is always a squart' numbei.

The drawing abo\e shows you why.

Square numbers are also relatives of the tri-

angle numbers. Add any triangle number to the

next higher triangle number. You always get a

square number. The drawing below shous why.

>^

SQUARE NUMBERS

MULTIPLICATION TABLE

The square numbers are

found on the diagonal



Cubic Numbers

If we use blocks instead of checkers, we can

arrange them in hnes to form a square, and

pile the squares on top of each other in lasers.

When the number of la\ers equals the number

of blocks in a line, we have a cube.

The number of blocks in a cube is called a

cubic number. The smallest culiic number is 1.

The second cubic number is 2 2 v 2, or 8. We
call it "two-cubed, and sometimes write it as 2\

The little three written in the upper right cor-

ner shows that the 2 is to be used as a multi-

plier three times. The fifth cubic number is "five-

cubed. " It is written as 5\ and means 5 < 5 X 5,

or 125. \\'hat does 6' mean? Compare tlie mean-

ings of 2' and 3'.

Two-squared, which is written as 2", is also

called "two raised to the second power. Two-

cubed, which is written as '2\ is also called "two

raised to the third power." In the same way, 2*

is used as a short way of writing 2X2X2X2
(2 used as a multiplier four times), and is called

"two raised to the fourth power." Multiphing

out, we find that 2^ = 16. We read 2' as "two

raised to the fifth power, \Miat does it mean?

V
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The Puzzle

of the Reward

A wealthy king was t)nee sa\ecl Ironi drown-

ing by a poor farm l)o\-. To reward the boy, the

king offered to pay him sums of money in thirty

daily instaUments. But he offered the boy a

clioice of two pkrns of paxnient.

Under pkm number 1, the king would pa>- SI

the first day, S2 the second day, $3 the third da\-.

and so on, the payment increasing by Sf each

da\\ Under plan number 2, the king would pay

!(• the first da\', 2' the second da\', 4< the third

day, and so on, the payment doubling each day.

Which plan would gi\e the boy the greatest

reward?

We can answer the question' by simply writ-

ing down the thirty installments under each

plan, and then adding them up. But there is a

shorter way of getting the answer, too. Under

plan number f, the total reward in dollars is

the sum of all the whole numbers from 1 to 30.

This is simpl)' the thirtieth triangle number.

According to the rule given on page 19, we can

calculate it by multiplying 30 by 31, and then

dividing by 2. The total reward under this plan

would be $465.

Under plan number 2, the second installment

in cents is 2; the third installment is 2 • 2 or 2';

the fourth installment is 2 2 2 or 2'; each

new installment is a higher power of 2, and the

last installment is
2"''. A short cut for calculating

the total sum is to write down what the reward

would be if it were doubled, and then take awa\-

the single reward from the doubled reward;

Double reward

:

2 + 2' + 2'^ + 2^ + 2"** + 2"*^ + 2'^"

Single reward:

1 + 2 + 2" + 2'' + 2'' + 2"'"* + 2"''

When we subtract, those installments that are

equal to each other cancel. Then we see that the

difference is 2^" — 1. We can calculate this num-

ber quickly b\- noticing that 2' = 32; 2"^ =
32 X 32 = 1024; 2'" = 1024 >: 1024 X

1024 == 1,073,741,824. Now we subtract 1 to

find the total reward: 1,073,741,823 cents, or

$10,737,418.23.

We see that an amount grows fast when it is

doubled repeatedly. Keep this in mind when

you try to answer the next puzzle: An amoeba

is placed in an empty jar. After one second, the

amoeba splits into two amoebas, each as big as

the mother amoeba. After another second, tlie

daughter amoebas split in the same w^ay. As

each new generation splits, the number of amoe-

bas and their total bulk douliles each second. In

one hour the jar is full. When is it half-fuH?

Splitting in two, or doubling,

amoebas reproduce rapidly



Turns and Spins

Tliere are many things that turn or spin. A

wheel of a moving automobile turns. So does a

phonograph turntable. The earth spins on its

a.xis, and the minute hand of a elock rotates

around the faee. Since so many things turn, we

often have to measure the amount of turning.

An amount of rotation is called an angle. The

unit we use for measuring an angle is called a

degree. There are 360 degrees in one complete

rotation.

To measure an angle we use a protractor.

In the drawing above, a protractor has been

placed over the face of a clock. When the min-

ute hand points to the 12 on the clock, it points

to the zero on the protractor. As it moves away

from the 12, it points out the number of degrees

through which it has turned. It turns 30 degrees

to reach the 1 on the clock. It turns 90 degrees

to reach the 3. It turns 180 degrees, or half a

complete rotation, to reach the 6.

There are two hands on the face oi a clock. At

eacli moment of the day there is an angle be-

tween them. The angle is the amount of rotation

needed to turn one hand to the position of the

other. At one o'clock, the angle between the

hands of a clock is 30 degrees. At two o'clock,

the angle is 60 degrees. What will the angle

between the hands be at half-past two? The

answer is printed upside down at the bottom of

tliis page.

The face of a clock is like a circular race track

around which the minute hand and the hour

hand race against each other. They both start

from the same position at 12 o'clock. But the

minute hand moves faster than the hour hand,

and gets ahead of it. The gap between them

widens, until the hour hand is a full lap behind

the minute hand. When this happens, the two

hands are together again. What is the first time

after twelve o'clock that this happens? It is not

hard to figure out the answer.

The face of the clock is divided into 60 spaces.

The hour hand moves around the face at a speed

of 5 spaces an hour. The minute hand moves at

a speed of 60 spaces an hour. The difference

between 60 and 5 is 55. So, as the hour hand

falls behind the minute hand, the gap between

them widens at the rate of 55 spaces an hour. A
full lap contains 60 spaces, so the gap becomes a

full lap after 1= of an hour, or 1 ^ hours. One

eleventh of an hour is j\ 60 minutes, or 5 ^
minutes. So the first time the hands are together

again is 5^ minutes after one o'clock.

I



The Right Angle

The angle tliat we use most oltcn is an anisic ol

90 degrees. We call it a right angle. We make

bricks with right angles in each corner so the\-

will stack easily in \ertical piles. Then walls

stand up straight instead ol leaning over, and

Hoors are le\ el.

One way of making a riglit angle is to measure

out 90 degrees with a protractor. There are

other ways of making a riglit angle without using

a protractor at all. A bricklayer makes a right

angle with strings. lie makes one string hori-

zontal witli the help of a le\el. He makes the

other string \ ertieal by hanging a weight from

its end. A draftsman makes a right angle by

drawing two circles tliat cross each other. lie

^^^
\

^ ^^B

iM:
90

then draws a straight line between the points

at wliich the circles cross, and another line be-

tween the centers of the circles.

In aiicii'nt Egypt, surxeyors made a right

angle by "rope-stretching." They used a long

rope that was divided into twelve equal spaces

by knots. One man held the two ends of the

rope together. A second man held the knot diat

was three spaces from one end. A third man
held the knot that was lour spaces from the

other end. Wlien the rope was stretched tight,

a right angle was formed.

The simplest way to make a right angle is

to fold a piece of paper. Fold it once. Then fold

it again, so the crease falls on the crease.



A
Triangles and the

Distance to the Moon

A
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Triangles ma\' ha\ e different sizes and shapes,

but the three angles of an\- triangle always add

up to the same amount. To see this for \ourself,

cut a triangle out of paper. Then tear off the

tliree angles. Place them side b\' side, corner to

comer, and edge to edge. You will see that they

add up to exactly 180 degrees.

This is a useful fact to know, because it gives

you a short cut for finding the angles of a tri-

angle. You can find all three angles, e\ en if \ou

measure only two of them. For example, if one

of the angles is 40 degrees, and the second one

is 60 degrees, you can find the number of de-

grees in the third angle widiout measuring it.

Simpl)- add 40 to 60 and then subtract the result

from ISO.

This short cut is especially helpful if the third

angle is out of reach. For example, suppose

that two men, standing at separate places on

the earth, look at the moon. The two men and

the moon form a triangle. There is nobody on

the moon to measure the angle up there. But

we can calculate it from the angles we can

measure on the earth. Knowing this angle is

important to astronomers, because it helps them

calculate the distance to the moon. If the moon

were further awa\- than it is, the angle would

be smaller. If the moon were closer, the angle

would be larger. The moon is approximateh'

240.000 miles awa\- from the earth.

Once we know angles A ond 6, we can calculate angle C.

Angle A =^ angle x -r angle y. Angle B = angle z —
angle w. Angle y and angle w can be calculated from

the positions of the observers, Oi and Oi, on earth.

Angle x = height of moon above horizon as seen by Oi

Angle z = height of moon above horizon as seen by Oj



Figures

with Many Sides

A closed figure with straight sides is called a

polygon. The number ot angles in a polygon is

the same as the number of sides. A polygon widi

three sides is a triangle. One with four sides is

called a (]uacliilatcral. The names for some poly-

gons with more than four sides are shown in

the table below.

If we join opposite corners of a quadrilateral,

two triangles are fonned. If we add the angles

of both triangles we ha\e the sum of the angles

of the quadrilateral. Since the angles of each

triangle add up to ISO degrees, the angles of

the quadrilateral add up to 2 ISO degrees,

or 360 degrees. A five-sided figme can be di\ided

into three triangles, so its angles add up to

3 X 180 degrees. A six-sided figure can be

divided into four triangles, so its angles add up

to 4 X 180 degrees. To get the number of

degrees in the sum of the angles of any polygon,

take two less than the number of sides, and

then multiply this number by ISO.

NAME NUMBER OF SIDES Tn "dEgTe^S

''



3.1415926535897932384...

Circumference = n diameter

Circumference ^ 2„ rodius

Area ^ >r • radius radius

^K.

/
Circles and Toothpicks

We see circles everywhere. The wheels of auto-

mobiles, the rims of cups, and the faces of nick-

els and quarters are all circles. The sun and the

full moon look Hke circles in the sky.

The distance across a circle, through its cen-

ter, is called the diameter of the circle. The dis-

tance around the circle is called its circumfer-

ence. Measure the diameter of a quarter, and

you will find that it is about one inch long. You

can measure the circumference of the quarter,

too. First wind enough string around it to go

around once. Then unwind the string, and meas-

ure it with a ruler. You will find that it is about

three times as long as the diameter. Measure

the circumference and diameter of the rim of a

cup and you will get the same result. The cir-

cumference of any circle is a fixed number times

the diameter. This fixed number cannot be writ-

ten exactly as a fraction or decimal, so we use

the Greek letter ^ (pi) to stand for it. It is almost

equal to 3i, or 3.14.

Strange as it may seem, there is a way of cal-

culating the value of t by dropping a stick on

the floor. The floor has to be made of planks of

the same width. Use a thin stick, such as a tooth-

pick, that is as long as the planks are wide.

Simply drop the stick many times. Keep count

of the number of times you drop it and the num-

ber of times it falls on a crack. Double the num-

ber of times you drop the stick and then divide

by the number of times it fell on a crack. The

result is your value of t.

For example, if you drop the stick 100 times,

and it falls on a crack only 62 times, divide 200

by 62. The result is about 3.2. This is not a very

accurate value of ^r. The more times you drop

the stick, the more accurate a value you will

get. When you drop the stick, whether or not it

crosses a crack depends on where its center falls,

and how it is turned around its center. When

a stick turns around its center, it moves around

a circle. That is why t, which is related to meas-

uring a circle, is also related to the chance that

the stick will cross a crack.

/

^
\

You can calculate n by dropping toothpicks on a wood floor

i^^
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the first column, and the .s(iuiiie of each numlier

appears in tlie second cohnnn. If we intercliange

the coKimns, it becomes a table of square roots.

Then, for each number that appears on the left,

its square root appears to the right of it. But in

this new table, we no longer find every whole

number in the first column. The numbers 1, 4,

and 9, for example, are listed, but the numbers

2, 3, 5, 6, 7, and 8 are not. They do not appear

because they are not the squares of whole num-

bers, or, to say it in the opposite direction, their

square roots are not whole numbers. These

numbers have square roots that can be written

appro.ximately as decimal fractions. Since 2 is

between 1 and 4, \/2 lies between \/l and \/4,

that is, between 1 and 2. Since 7 lies between

4 and 9, \/7 lies between \/4 and \/9, that is,

between 2 and 3.

There are many methods for finding these in-

between square roots. We shall use a method

that may be described as "getting the right an-

swer from a wrong guess." To show how it

works, let us try it out first on a number that

is the square of a whole number. Suppose we

want to find tlie square root of 625. We take a

guess, and say it is 20. Now we check our guess

by dividing 20 into 625. li our guess is right,

the answer we get by dividing should conu> out

the same as the di\ isor. But it doesn t. It comes

out about 31 instead. But this gives us a hint

on how we can correct om- bad guess. Now we

know that the answer should be between 20

and 31. If we try the number 25, we find that

it really is the square root of 625. By multiplying

25 times 25, we get 625.

Now let us use the same method to get an

approximate value for the square root of 10. We
take a guess and say it is 3. Dividing 3 into 10.0,

we get 3.3. So a better guess is the average of

3 and 3.3. This number is 3.15. Now, to test how

good a guess 3.15 is, we divide it into 10.0000.

The quotient comes out 3.17, so a better guess

would be the average of 3.15 and 3.17, which

is 3.16. This is the best answer we can get with

two decimal places. If we want a more accurate

answer with more decimal places, we simply

continue the process, checking each new guess

by di\ iding it into 10. Approximate square roots

of the ninnbers from 1 to 10 are shown in the

third table on the preceding page.
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Rabbits, Plants and the Golden Section

A man bought a pair of ralsliits, and liied them.

The pair produced one pair of offspring after

one montli, and a second pair of offspring after

die second month. Tlien they stopped breeding.

Eacli new pair also produced two more pairs in

the same way, and then stopped breeding. How

many new pairs of rabbits did lie get each month?

To answer this question, let us write down in

a line the number of pairs in each generation of

rabbits. First write the number 1 for the single

pair he started with. Next we write the number 1

for the pair they produced after a month. The

page 30

Pine cones have Fibonacci ». ">_
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next month, hoth pairs producccl, so the next

number is 2. We now have three numbers in a

line: 1, 1, 2. Each number represents a new gen-

eration. Now the first generation stopped pro-

ducing. The second generation ( 1 pair) produced

1 pair. The third generation (2 pairs) produced

2 pairs. So the next number we write is 1 + 2,

or 3. Now die second generation stopped pro-

ducing. The third generation (2 pairs) produced

2 pairs. The fourth generation (3 pairs) produced

3 pairs. So the next number we write is 2 + 3,

or 5. Each month, only the last two generations

produced, so we can get the next number by

adding tlie last two numbers in the line. The

numbers we get in this way are called Fihoiuicci

numbers. The first twelve of them are:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

They have very interesting properties, and keep

popping up in many places in nature and art.

Here is one of the curious properties of these

numbers. Pick any three numbers that follow

each other in the line. Square the middle num-

ber and multiply die first number by the third

number. The results will always differ by 1. For

example, if we take the numbers 3, 5, 8, we get

5' = 5 X 5 = 25, while 3 X 8 = 24.

If we divide each number by its right hand

neighbor, we get a series of fractions:

1 2 3 5 8 13 21 34 55 89 144

These fractions are related to the growth of

plants. When new leaves grow from the stem of

a plant, they spiral around the stem. The spiral

turns as it climbs. The amount of turning from

one leaf to the next is a fraction of a complete

rotation around the stem. This fraction is ohcinjs

one of the Fibonacci fractions. Nature spaces

^J
.^Normal daisies usually have

21
the Fibonacci ratio -r—

34
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The construction of the "golden section," with the ratios

|1= |1 ^ £2 ^
(J>.

The lines of the five-pointed star ore

broken up in ratios: -fj^ 7^= «!"^ *t>-

Living things often show surprising relationships to the

golden section. The diagram of the athlete to the right

shows ratios: |£= g = -Ji = -g = -^ ^ -^ = <^ Rec-

tangles obcd and wxyz ore "golden rectangles." The

same ratios are evident in the spacing of the knuckles and

the wrist joint of the average hand ^ feT"

die leaves in this way so that the higher lea\ es

do not shade die lower lea\es too niucli.

The same fractions come up in art. For ex-

ample, not all rectangles are equally pleasing to

the eye. Some look too long and narrow. A
square looks too stubby and fat. There is a shape

between these extremes that looks the best. In

this best-looking of rectangles the ratio of the

width to the length is about the same as the

ratio of the length to the sum of the width and

length. It is called the golden section.

There is a formula that gi\es directions for cal-

culating the golden section. The directions are:

Subtract 1 from the square root of 5, and di\ ide

li\' 2. Tlie square root table on page 28 shows

that the square root of 5 is approximateh^ 2.24.

Subtracting 1, and dixiding by 2, we get .62 as

an approximate \alue of the golden section.

Fibonacci fractions are close to the golden

section. In fact, the further out the\' are in the

series, the closer they get to it. The fraction Q is

closer to the golden section than 5. The fraction

-^ is closer than s, and so on. In die design be-

low, the golden section was used sexeral times

either to di\ide lines or to form rectangles.

A

M
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1 ^ Courier of The Museum of Morferr Arl

Mondrian's Black, White and Red has these ratios equal to

the golden section: »c=Bc = Dj = Ec=If — cj— TfJ — iJii— tT
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Getting through the Doorway

Sandy was building a large model airplane

out in the little shed whieh was his workshop.

As he was about to glue the wings to the body

of the plane, Sandy thought, '1 wonder if I'll

be able to get the plane through the shed door-

way after I put the wings on. The wingspread

is 5 2 feet across, and the shed doorway is 3 feet

wide and 5 feet Iiigh."

We can help Sandy solve his problem by find-

ing out how the sides of a right triangle are

related to each other. On a sheet of graph paper,

make a right triangle four units wide (first leg)

and three units high (second leg). Measure the

hypotenuse (the longest side). It will be five

units long. Now make two more right triangles

as shown in the diagram. Measure the hypoten-

use of each triangle:

Leg



(second leg)"

3X3=9
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The Short Cut

There is an empty lot next to Sand\' s house.

The lot is 300 feet long and 100 feet w ide. W'hen

Sandy comes home from school, lie cuts across

the lot diagonally. How much distance does he

save this way?

The rule of Pythagoras helps us answer this

question. The width, the length, and the diag-

onal of the lot form a riglit triangle. Expressed

in hundreds of feet, the legs of the right tri-

angle are 1 and 3. Using the rule of Pythag-

oras, we find that (hypotenuse)" = 1" + 3" =
1 + 9 = 10. Then the number of himdred feet

in the diagonal is \/T0, or 3.16. (.See the table

of square roots on page 28.) So the diagonal has

a length of 316 feet. Along the sides of the lot,

the distance is 400 feet. By taking the short cut,

Sandy saves a distance of 84 feet.

The Trunk

Sandy is storing in an old trunk scraps of

wood and metal that he thinks he may find a

use for later. The trunk is 12 inches wide, 30

inches long, and 18 inches high. What is the

longest piece of metal that can fit into the closed

trunk? The answer to this question is the length

of the diagonal of the tr\mk. We can find this

diagonal by using an extension of the rule of

Pythagoras: (length f + (widthf + (heightf =
(diagonal)'. In this case we have 30" + 12' +
18' -= (diagonal)'. Then (diagonal)' = 900 +
144 + 324 = 1368. The number of inches in

the diagonal is \/l368, or almost 37 inches.

(37 X 37 = 1369.)

page .35
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Salt and

Diamonds

Many minerals form beautiful crystals with

smooth flat faces and sharp edges. In some of

these crystals, the faces are regular polygons

that ha\e the same size and shape, with the same

number of polygons at each corner. A solid that

is built in this way is called a rep,ular solid. There

are exactly fi\c regular solids. Their names show

the number of faces that they have.

The ictrahcdron (four faces) is made of tri-

angles, with three triangles at each corner. The

hexahedron or cube (six faces) is made of squares,

with three squares at each corner. The octa-

hedron (eiglit faces) is made of triangles, with

four triangles at each corner. The dodecahedron

(twelve faces) is made of pentagons, with three

pentagons at each corner. The icosaliedron

(twenty faces) is made of triangles, with five tri-

angles at each corner.

An interesting characteristic of all solids with

flat faces is that if )'ou add the mnnber of cor-

ners to the number of faces of any one of these

TETRAHEDRON OCTAHEDRON

ICOSAHEDRON

HEXAHEDRON CUBE
DODECAHEDRON



solids, you will get the mimlier of edges in the

solid plus 2. Try it with the eube shown in the

picture. There are eight corners, and six faces,

so the sum of these numl)ers is 14. Now count

the number of edges.

If )ou look at table salt under a magnifying

glass, you will see diat each crystal is a cube.

A diamond crystal is an octahedron.

The regular solids make interesting decora-

tions. Some are now made for sale as paper-

weights. There are calendars printed on a dodec-

ahedron, with each month on a separate face.

You can make a model for each of the regular

solids by using the patterns shown here. First

make an equilateral triangle, a square, and a

regular pentagon on cardboard, and cut diem

out. Then you can make each figure as many

times as you have to, and in the right position,

by tracing around the cardboard form. When a

pattern is complete, cut it out, and make creases

on the lines. After you fold it up, seal it by

binding the edges with adhesive tape.

Theories That Failed

There are exactly five regular solids, no more

and no less. This fact has fascinated people ever

since it became known. It led some to believe

that the regular solids must have a special mean-

ing in nature. In ancient Greece, the philos-

ophers who were followers of Pythagoras con-

nected it with the dieory that the universe is

built of four elements, earth, air, fire, and water.

An old print showing the ancient theory of the uni- '^Jf^
verse. From Cuningham's The Cosmogrophica/ G/osse ^

HtccanetenanteLunam,Solifqilabores

JrElur!<q;,pluuiafq; hyad.^inofq- trioes

nvinvfii^nvi'ttWhVl^'"*^'"^"^"™'"" "»"""'""*



They said that earth is made of cubes, air is

made of octahedrons, fire is made of tetrahe-

drons, and water is made of icosahedrons. The

dodecaliedron was the symbol of tlie uni\erse

as a whole. We know now that the structure of

the uni\erse is far more comphcated. There are

about one hundred chemical elements, not only

four. It is interesting, tliough, that crystals

formed by some combinations of the elements

do have the shapes of regular solids.

The regular solids appear, too, in one of the

theories of Johannes Kepler, the great astron-

omer of the sixteentli century. Kepler knew of

the existence of six planets; Merctinj, Venus,

Earth, Mars, Jupiter, and Saturn. He thought

that there weren't any others, and wondered

why there should be exactl\- six of them. Since

there are fi\e spaces separating the six planets

from each other, and there are five regular

solids, he thought there must be a connection

between these two facts.

He advanced the theory diat the solids are

related to the spacing of the planets in this way

:

He pictured the earth on a sphere aroimd the

sun. Around this sphere, with its faces touching

the sphere, is a dodecahedron. A larger sphere

passes through the corners of the dodecahedron.

Mars, Kepler said, is on this second sphere. A

tetrahedron surrounds the second sphere, and a

page 38

third sphere surrounds the tetrahedron. On this

third sphere lies Jupiter. A cube surrounds the

third sphere, and a fourth sphere surrounds the

cube. Saturn lies on the fourth sphere. Then he

started again from the sphere that has the earth

on it, and worked inwards toward the sun.

There is an icosahedron inside the sphere, with

a fifth sphere inside the icosahedron. The fifth

sphere marks the position of Venus. In this

sphere lies an octahedron, which in turn sur-

rounds a sixth sphere, on which the innermost

planet Mercury moves.

Kepler's neat little theory has been spoiled

by the fact that his spheres don't quite match the

actual distances of these six planets from the

sun. Besides, we now know of three other

planets: Uranus, Neptune, and Pluto. But, while

this theory failed, his otlier theories about the

motion of the planets were very successful. Kep-

ler was the first to show that the orbit of each

planet is an o\al-shaped figure known as an

ellipse. (See the drawing on page .54.)

JOHANNES KEPLER

Johannes Kepler proved

travels along an ellipse

sun. This model shows h

planet spacing, later proved wrong

b



The knotted cords, or qu'pu, hove been used ,

since ancient times by the Peruvian shep- 3^

herd for recording the numbers of his flock

Five Number Systems

A popular toy made in many countries is a nest

of dolls of different sizes. Each doll except the

smallest one is like a hollow box. When you open

it, you find another doll inside. Our number

system is like this nest of dolls. It consists of five

nmiiber systems, one within the other. The

oldest of these systems is the smallest one. It

grew up into the larger systems in several jumps,

as new numbers were added to meet new needs.

Numbers for the Shepherd

A shepherd uses numbers to count his flock.

The numbers used for counting, like 0, 1,2, 3, 4,

and so on, are called natural miiubcrs. They

make up the smallest and oldest of the number

systems we use. An important fact about this

system is that we can add or multiply any two

natural numbers, and the answer will also be

a natural number.

There is a way of picturing the natural num-

bers as points on a line. Start at any point on

the line and tlien mark off more points at equal

intervals to the right of it. Attach a number to

each of these points by counting spaces from

the starting point. If we imagine the line extend-

ing indefinitely to the right, then there is a point

SYSTEM OF NATURAL NUMBERS

^

t^^ 2 spaces

.

JJ.
+ 3 spaces -" 5 spaces

k^
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on it f(ir exery natural nuinljer. We can use this

picture for doing problems in addition.

To add 2 + 3, place your finger at die 2, and

mo\e it 3 spaces to the right. Then \'our finger

lands at 5, which is the answer. To add 3 + 4,

start at the 3, and moxe your finger 4 spaces to

the right. Under this scheme, you add a mimbcr

<^
by moving that number of spaces to the right.

"iou can do subtraction on the line, too, by

mo\ing to the left instead. To do the problem

5 — 2, start at the 5 and move 2 spaces to the

t

left. You land at the point marked 3, so 3 is the

answer. But you have trouble if you tiy to do

2 — 5. Start at the 2, and move 5 spaces to the

left. You land at a point that has no number

attached to it. This shows that subtraction is not

always possible in the natural number system.

Trying to subtract 5 from 2 is not as silly as

it ma\- sovmd. It \ou ha\e onl\- two sheep in a

pen, you cannot remo\e fi\e sheep. But if you

ha\ e only two dollars, you can lose fi\ e dollars,

and end up with a debt of three dollars. So while

the problem 2 — .5 may not arise for a shepherd,

it may for his bookkeeper. To be able to do such

an example, we need a larger number system.



Numbers for the Bookkeeper

Onr picture of the natural nunil)er system

suggests an easy way to enlarge it. So far we

ha\e counted off equal spaces only to the right

of 0. Now let's count off equal spaces to the left

of 0. We have a new set of points marked off,

with a number attached to each point. To dis-

tinguish them from the old numbers, let us put

a plus sign before each number that lies to the

right of 0, and a minus sign before each number

that lies to the left of 0. The new enlarged s\s-

tem is called the system of integers. In this

system, the old natural numbers acquire a new

name. We call them positive integers. The other

numbers, which lie to the left of 0, are called

negative integers.

To do addition in the enlarged system, we

extend the scheme in which we add a number

by moving along the line. To add a positive

integer, which is the same as a natural number,

follow the old rule of nio\ing to the right. To

add a negati\e integer, mo\e to the left instead.

The example (—2) + ( + 5) means start at —2

turning e\cry subtraction example into an addi-

tion example, accoi'ding to this rule: To suhtraet

a number, add the number that has the opposite

sign. Let us try this rule out on the example we

could not do in the natural number sxstem, 2 —

5. The natural number 2 is the same as the posi-

tive integer +2, and 5 is the same as +5. So we

rewrite the problem in this way: ( + 2) — ( + 5).

According to our rule, subtracting ( + 5) is the

fl f2 f3

T T t ?

t T t ?
-fl f2

t--ai

and move 5 spaces to the right. The answer is

T ? ? T T ? I

+ 3. The example (—2) + (—3) means start at

—2 and move your finger 3 spaces to the left.

The answer is —5.

We do subtraction examples with integers by

same as adding (—5). So, starting at +2, move

5 spaces to the left. You land at —3, and that is

the answer. In the system of integers, every

subtraction example has an answer.

To multiply two integers, we think of one of

them as a multiplier, and look at it for directions

telling us what to do with the other one. First

we disregard the signs, and multiply as if we

were working with natural numbers. Then we

pay attention to the signs in this way. If the sign

of the multiplier is + , it tells us to keep the sign

of the other number for the answer. If the sign

of the multipher is — , it tells us to change the

sign of the other number, and attach it to the

answer.

For example, to multiply (—2) : (—3), think

of die —2 as the multiplier. Since 2 >; 3 = 6,

the answer will be either + 6 or —6. To find out

which it is, we look at the signs. The sign of the

multiplier is — , so it tells us to change the sign

of the —3 and attach it to the answer. Then the

answer is +6. With this rule, every multiplica-

tion example in the system of integers has an

answer that is an integer.

Division is like multiplication done back-
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uted rather thickly along the number line, with

each number attached to a point. Does the ra-

tional number system gi\e us enough numbers

to assign a number to every point on the line?

Over two thousand )ears ago, the mathemati-

cians ot ancient Greece aheady understood that

it does not. It we make a square, each of whose

sides has length 1, we can figure out the length

of its diagonal by the rule of Pythagoras (see

page 34). We find that the lengtli of the diagonal

is \/2. The diagram abo\e shows how we can

locate a point on the number line whose distance

from is equal to this length. But it can be

shown that there is no rational number that is

ecjual to V^- So, in the rational number s\stcm.

I 1

This symbol, meaning "one port of . . .," wos used

by Egyptians to express a fraction. It was used

in combination witfi a number, as shown below;

there is no nmnber we can attach to this point.

So, we ha\ e to expand our luunber system again.

The clue to this next extension ol the number

s\'stem is found in another wa\- in which rational

numbers can be written. We can conxert a com-

mon traction into a decimal fraction by means

of dixision, as shown in the draxving beloxw The

fraction I can be xxritten as .5. The fraction
i can

lie written as .25. But to xxrite the traction ;'; we

need the decimal .33333 . . ., that has an endless

chain of 3's. W'e call a decimal like this one an

i)}fiuitc decimal. The traction \ can be xxritten

as an infinite decimal, too, by xvriting it as

.500000. . . . The fraction -^ can be xvritten as

the infinite decimal .15151515. . . .

If xxe examine the infinite decimals we get

from rational numbers by long dix ision, xve find

an interesting feature in them all. Each ends up

as a repeating decimal. For example, the deci-

mal .49999 . . . repeats the 9 ox er and oxer again.

But there are some infinite decimals that do not

haxe a repeating pattern. We get a larger numlier

system by using all infinite decimals, xvhether

they repeat or not. This expanded sxstem, made

up of all infinite decimals, is called the real num-

ber systen^. In this system, xve finally get a num-

lier for cmtx' point on tlu' number line.

7=211.0 ==-
.25

4
I

1.00

8

20
20

25

100

i
0^



Rotation through 90® multi-fi^ ~

plies each number by /
i
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Numbers for the Electrician

The electric current brought to \ou in wires

by the electric compan\- is produced in coils of

wire that are rotating in a magnetic field. To

stud\- the changes in the current, electricians

Pnd it convenient to use numbers to represent

otations. For example, a rotation of 360 degrees

'.ui
'^ represented by the number 1. A rotation

of 180 degrees can be represented b\- the num-

ber - 1. Performing two rotations, one after the

other, is like multipKing their numbers. Thus,

(-1) :< (-1) = 1, which checks with the fact

that two rotations of 180 degrees are like a

single rotation of 360 degrees.

In this scheme, what number can stand for

a rotation of 90 degrees? \\'hate\er it is. when

it is multiplied by itself, the product should

come out —1, which is die number that repre-

sents a rotation of 180 degrees. But no real num-

ber, when multiplied by itself, can give —1 as

a product. This is so because of the rules for

multiplying real numbers. The number times

itself gixes as a product. A positi\e number

times itself gi\ es a positi\ e number as a product.

A negati\e number times itself also gi\es a posi-

tive number as the product. So no real number

times itself can gi\e the negati\e number —1 as

a product. This means that there is no real num-

ber that can represent a rotation of 90 degrees.

To be able to represent e\"er\- rotation b\- a num-

ber we ha\ e to extend the number system once

more. The enlarged number s)stem is called die

complex number system.

In diis system, the number that stands for a

90 degree rotation is represented by the letter /,

and has the property that / X / = — 1. Every

complex number is written as a real number

plus i times another real number. A rotation of

45 degrees is written as l \/2 + il \ 2. When

we multipK- this number by itself, and make use

of the fact that \/'2~X \/2^= 2, while / X i
=

—I, we find that the product is i. This checks

widi the fact that two rotations of 45 degrees
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^rtt " Two 45* rotations equal

one 90** rotation

SYSTEM OF COMPLEX NUMBERS

(4 + 3i)

(-2 + 2i)

M3»

-3 -2 -1

combined are ecjiial to one rotation of 90 degrees.

To picture real numbers we used the points

on a line. To picture complex numbers, we need

all the points of a plane. The picture is formed

in this wa\ . First draw a horizontal line in the

plane and put the real numbers on it. Call this

line the (ixis of reals. Now rotate the line 90 de-

grees counterclockwise. The rotation multiplies

e\ery real number by the number i. In this way,

we attach to each point on the vertical line

through a real number multiplied by /. These

products are called iiiiaginanj numbers, and the

\ertical line is called the axis of imaginaries.

Now, in order to attach a number to any point

in the plane, draw a horizontal line and a \er-

tical line through that point. The vertical line

points out a real ninriber on the axis of reals.

The horizontal line points out an imaginary'

number on the axis of imaginaries. The sum of

these two niuubers is the complex number at-

tached to the point.

Now we ha\e the complete nest of fi\e num-

ber systems. Listing them from smallest to larg-

est, with each number s\stem lying within the

next larger one, the\' are: natural numbers, in-

tegers, rational numbers, real numbers, and

complex numbers.
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Miniature Number Systems

Now that we ha\e seen fi\e distinct number

systems, it will not be surprising that there are

many more. Some of them are little toy number

systems, containing only a few numbers. We
shall find examples of them hidden within the

natural number system.

A System with Two Numbers

Some natural numbers, like 0, 2, 4, 6, 8, and

so on, are divisible by 2. They make up the

family of even numbers. Those that are not

divisible by 2, like 1, 3, 5, 7, and so on, make

4 6

EVEN

ODD

10 12 14

I 1 i ,

5 7 9 ^
up the family of odd numbers. We can use these

two families to build a number system that has

only two numbers in it. In this system, each

family is tliought of as a single number, and we

have a way of adding two families, or multi-

plying two famiUes. To add two families, pick

any member of each family, and add them.

Then see what family the sum belongs to. For

example, to add the odd family to the odd fam-

ily, add an odd number to an odd number. The

result is an even number. So the odd family

plus the odd family equals die even family. In

the same way, we find that odd plus even equals

odd; even plus odd equals odd; and even plus

even equals even. These results can be sum-

marized in the following addition table.



of 1 when you divide by 3. The 2 family con-

sists of numbers hke 2, 5, S, etc., that give a

remainder of 2 wlien you di\ ide In' o. We add

or multiply these families by the same rules used

for the odd and e\en families: Add or multiply

any representatives of the families, and then

find tlie family the sum or product l^elongs to.

Following these rules, we get the tables below.

Number System ivitli Only Three Numbers
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coiner. No regular pohgon witli more than six

sides would do, because then each angle \vt)uld

contain more than 120 degrees, and three or

more of them could not possibly fit together in

the 360 degrees around a point. So we see that

the only regular polygons that may ser\e as cells

are equilateral triangles, s(|uares, or regular hex-

agons. Of these three possibilities, the regular

hexagon is best, because it stores the most honey

between the walls of wax.

Beneath the honeycomb is a shell of the nau-

tilus, an animal that lives in tlie sea. It has been

cut open to show the chambers inside. The

cmve that winds out from the center is called a

spiral. At the bottom of the page we see many

spirals like it, winding out in two directions from

the center of the giant sunflower.

In 1943 the ground opened up in a cornfield

near Paricutin, Mexico. Hot lava rose up out of

the ground and spread over the field. Layer fell

on layer, and as the cinders rolled to the ground,

they fonned a perfect cone.

In the sky above, the moon, the sun, and the

stars are all splwres. We can see the spherical

shape clearly in the moon, which is nearest to

the earth.

We have ah'eady seen some regular solids in

dead matter, like crystals of diamond or salt.

There are more of them among living things,

too. The pictures on the side show the skeletons

of some radiolarians. They are tiny animals that

live in the sea. The floors of the Pacific and

Indian Oceans are coxered with such skeletons,

left by animals that li\ ed millions of years ago.

The skeleton at the left is an almost perfect

octahedron, or eight-faced solid. The one on the

right is a dodecaliedron, with tweKe faces. The

third is an icosahedron, with twenty faces.

l*<u( Cinders from on eruptinc

fj^roll to the ground to for

ng volcano

a cone

The sun, the moon end the stars are spheres

I iiLi These skeletons of radiolarians, which are tiny

H
'- sea animals, are shaped like regular solids
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Letters for Numbers

We know that 1 + 2 = 2 + 1, 2 + 3 =
3 -|- 2, and 4 + 7 = 7 + 4. We can make any

number of true statements like this. Simply

write a first number plus a second number on

one side of the equals sign. On the other side of

the equals sign let the numbers change places.

niH TRIANGLE NUMBER

n{n + 1)

Instead of writing each statement separately,

we can write them all at once in this way. Let

the letter a stand for any number. Let the letter

h stand for any other number. Then we simply

u'rite: a + h = b + a. When we do this, we

have taken the step from arithmetic to algebra.

ANGLES OF A TRIANGLE

A+ B + C 180'

ANGLES OF A POLYGON ANGLES OF A REGULAR POLYGON

n= NUMBER OF SIDES IN A POLYGON

S = SUM OF ITS ANGLES

s = (n-2) 180°

n = NUMBER OF ANGLES

A = NUMBER OF DEGREES IN ONE ANGLE

(n -2) 180^

RULE OF PYTHAGORAS CIRCUMFERENCE OF A CIRCLE

K
a^ b^ c^

C = CIRCUMFERENCE

D = DIAMETER

C -TTD

(77 = 3.1416)
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In algebra, we let letters stand lor nnnibers.

It is like nsinu a code for sa>ing many things in

a small spaee. In this code, we do not use X

to mean "times, because we may mix it up with

the letter .v. We show multiplication by using

a dot instead, or by writing the midtipliers side

b\- side with no SNinbol between them. In this

code, (I • h means: "the number that ci stands

for, midtiplied by the number that /; stands tor.

When the same multiplier is used o\er and o\er

again, we use the same short wa\' of writing the

product that was used for scjuare nnml^ers and

cubic numbers on pages 19 to 20. When we

write .v', we mean .v.v.v.v. Some of the rules

described in earlier sections of this book are

shown in code on the preceding page.

Here is a statement in code that is not alwa\'s

true: .v -+ 2 = 5. It is not true if .v stands for 7,

because 7 + 2 is not 5. It is true if .v stands for

3. A statement like this is called an ccjiuition.

To solve the equation means to find the number

which makes it a true statement.

An equation resembles a balance scale. The

X + 2 is supposed to balance the 5 the w^ay

equal weights balance on a scale. If we change

one weight on a scale, we can make the weights

balance again by changing the other weight in

the same wa\'. This is a hint on how we can

solve an equation: Simply change lioth sides of

the equation in the same wa\'. Since 5 is the

same as 3 + 2, the equation .v + 2 = 5 says:

.1 + 2 = 3 + 2. If we take away 2 from both

sides, they will still balance each other. In this

way we find that .v = 3 is the answer. To solve

the equation o.v =12, we di\ide both sides b\'

3, and w^e get .v = 4 as the answer.

Can you sol\e the equation 3.v — 4 = S? To

find the answer, add 4 to each side of the equa-

tion, and then di\ ide each side bv 3.

page .5
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Your Number in Space

Many big cities are divided into blocks In-

streets running in one direction, and axenues

crossing them at right angles. In these cities you

can locate an\" street corner by mentioning two

nunrbers: the number of the street and the num-

ber of the avenue that cross there. In the map

on tlie right we can describe the corner marked

b\' tlie cross b\' using the pair of numbers (3,4),

if we agree that the first is the street number

and the second is the avenue number.

In the same wa\'. we can locate any seat in a

classroom b\" mentioning two numbers: the row

number and the seat number. In the classroom

in the picture, the rows are numbered from

right to left, and the seats are numbered from

front to back. The teacher has just said to

the class, "Raise >our hand if your row number

and seat number add up to 5." The locations of

the pupils who raised their hands are gi\en by

the pairs of numbers, (1,4), (2,3), (3,2), and (4.1),

where the first number in each pair is the row

number. If we let r stand for row number, and

s stand for seat number, we can list these loca-

tions in the table shown on the blackboard. \\'e

can also describe these locations by the equa-

tion: r + s = 5. Notice that the pupils whose

hands are up are arranged in a straiglit line. The

equation is a description of the locations on this

line. Also, the fine is a picture of the number

pairs described by the equation.

This is an example of an important discox er>-

made in the seventeenth centur\' by the great

French mathematician and philosopher Rene

Descartes. An equation with two unknowns can

be i^ictured by means of a line (straight or
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6 7 8

furved), called a unipli. Also, e\er\' line is de-

scribed by means of an equation. The branch of

mathematics that grew out of this disco\ery is

called analytic gcomctnj.

The connection between a line and its equa-

tion is usually shown in this way: The paper on

which the line is drawn is di\ ided into squares

by two sets of lines that cross each other, like

streets and avenues. To number these lines, we

pick out one line in each set and call it the zero

line, or axis. Then we number the lines by count-

ing boxes away from each axis, in l)oth direc-

tions. In one direction we attach a plus sign to

each number. In the opposite direction we use

a minus sign, so we can tell them apart. Then

each intersection is described b\' a pair of num-

bers, telling you how far it is right or left and up

or down from the axes. We call the right or left

numl)er the .v number. We call the up or down

number the y number. Numbers with Iractions

describe points that are between the lines.

X =-' NUMBER OF INCHES IN WIDTH

Y = NUMBER OF INCHES IN LENGTH

Y - ;

if X



You con draw an ellipse with two pins or tacks, ^_J^
a drawing board, o pencil, and a loop of string I.'—

*
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I he George Washington bridge in New York

City is a suspension bridge. Each of the two

cables that support the roadway is a parabola

sound coming from one focus and reflects it

back to the other. In tliis way, the scjund that

was scattered and weakened as it spread out

from one focus through tlie chamber is concen-

trated at the other focus and restored to almost

its original loudness.

Here are some more places where we find

these cur\es:

When you tilt a glass of water, the boundary

of the water surface is an ellipse.

The path ot a ball thrown through the air is

a parabola. The cable supporting the roadway

of a suspension bridge is a parabola. The road-

way is a parabola, too, and a cross-section of a

searchhght reflector is a parabola. The same

type of parabolic reflector is used in solar fur-

naces to catch sunlight faUing on a large area

.^ and concentrate it in a small spot.

f^ The shadow on the wall made by a cylindrical

'T|i lampshade is a hyperbola.

LIGHT

SOURCE
iFOCUSl

PARALLEL RAYS

PARALLEL RA>^

%
In a searchlight, a parabolic reflector is

used to send out parallel rays. In a reflect-

ing telescope, however, it is used to catch

parallel rays and bring them to a focus

A hyperbola is formed where the 1 \

cone of light from the lamp shade is i^'Si

cut by the flat surface of the wall |^

In many domes such as this one, a whis-

per at Fi, after being reflected twice

by the dome, can be heard clearly at Fj



Shadow Reckoning

A
3

units

If you stand out in the sunshine before sunset,

you cast a long shadow. Your shadow is Hke a

picture of you, rolled flat, painted black, and

stretched out on the ground. If you look at the

shadows of other objects, you see that they are

stretched in the same way. If you are 5 feet tall,

and your shadow at some moment is 10 feet

long, we compare these lengths by writing the

fraction -^ . We call this fraction a ratio. Since

the shadows of all objects are stretched in the

same way, you get the same ratio when \ou

compare die height of anything with the length

of the shadow it casts at the same time. This fact

leads to a way of measuring the height of a tall

object by measuring its shadow instead.

Let us note a simple fact about equal ratios.

The ratios -^ and
{_^

are equal, because they

both reduce to 2. If you multiply the 5 by the

14, you get 70. If \ou multiply the 10 by the 7,

you get 70, too. In ecfual ratios, you get equal

products tchcn you multiply the numerator of

one ratio by the denominator of the other.

This rule helps us do shadow reckoning. If a

tower casts a shadow 15 feet long at the same

3Bf

©^^3^3

Oi

^^^3

15

units

time that a 2-foot stick casts a 3-foot shadow,

how high is the tower? Let us call die height of

the tower .r. When we compare it to the length

of its shadow, we get die ratio f^ . For the stick,

the ratio of height to shadow is §. To show that

they are equal we write ^ = §. The rule tells

us that 3*.v = 2*15, or 3.v = 30. Dividing both

sides by 3, we find that .v = 10. So the height

of the tower is 10 feet.

Problem: If a flagpole casts a shadow that is

8 feet long at the same time that a 3-foot stick

casts a 2-foot shadow, how high is the flagpole?

3_FEET X

2 FEET 8 fEET

X = ?

2 FEET
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Vibrations, Wheels and Waves

The world is lull ot xibrations which create

disturbances in space. When these disturbances

mo\e, they move in the form of waves. When

a ship glides across a lake, it sends water waves

rolling away from its prow. When we speak, the

\ ibrations of our \'ocal cords send sound waves

out into the air. Light consists of waves sent out

by \'ibrations within the atom.

To study these different kinds of waves, scien-

tists compare them with a model wa\e that is

easily produced with the help of a turning

wheel. They find that the simplest ot the waxes

are just like the model wave. The more com-

plicated waves are often made up of several

simple waves that are combined.

Let us see how a turning wheel can produce

the model wave. First we pick out one spoke

of the wheel, and watch it as the wheel turns

with a steady speed. Wc shall pay special atten-

tion to the point on the spoke that is at the rim

of the wheel. In the diagram this point is called

P. As the wheel turns, this point is sometimes

above the level of tlie center of the wheel, and

sometimes below it. It keeps moving up and

down with a steady rh\ thm. This up and down

motion is the vibration we shall use to form a

model wave.

Let us trace out the motion of the point P

as the wheel makes one full turn. When the

spoke is horizontal, P is on the same level as the

center of the wheel. So its height above this

level is 0. As the wheel turns, the height of P

at first increases. The height is greatest after the

wheel has turned 90 degrees, and the spoke is

vertical. Then the height decreases as the wheel

turns some more. When the amount of turning

reaches 180 degrees, the spoke is horizontal

again, and the height of P is once more. Then

P begins to fall below the lev el of the center of

the wheel. It reaches its lowest position when

i
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Our Home the Earth

The earth is a sphere. We describe the position

of any point on its siuface by means of two

numl:)ers, called the latitude and longitude of

the point. They fix the position of a place on the

earth in the same way that the numbers of a

street and axenue that cross each otlier fix the

position of a street corner in a big city. They

identify the place as the intersection of a lati-

tude circle and a meridian.

Latitude Circles: The earth is spinning like a

top. The North Pole and South Pole lie on the

axis around which it spins. A circle around the

earth, halfway between the poles, is called the

ecjuator. The latitude circles girdle the earth

like hoops around a barrel. Points that are on

the same latitude circle are the same distance

from the equator. The latitude of a point is the

number of degrees through which a radius of

the earth would have to turn, north or south,

to move from the equator to the latitude circle.

Meridians : The meridians are half-circles that

join the Nordi Pole to the South Pole. The zero

meridian is the one that passes through Green-

wich, England, where a na\'al obserxatory is

located. We can imagine the Greenwich merid-

ian turning east or west to reach the position

of any other meridian. The number of degrees

through which it would have to turn is called

the longitude of that meridian.

Through every point on the earth's surface,

except the North and South Poles, there is only

one meridian. In one direction, it leads to the

Nortli Pole. This is the direction we call North.

When you stand outdoors where you live, how

can you tell which way is north? You may think

that a magnetic compass will answer this ques-

tion for you, but it won't.

A magnetic compass, e\'en if it works without

interference, doesn't point to the North Pole.

It points to the magnetic north pole, which is

somewhere in Hudson Bay. Besides, nearliy

masses of iron, like die steel frame of a building,

interfere with its operation. So the direction

pointed out as north by a compass is usually

wrong. The compass is useful for finding true

nordi only if you know what the error of the

compass is, so you can subtract the error.

To find the direction of true north, you have

to get help from the rotation of die earth. One

way of doing this is to use a shadow stick, driven

vertically into the ground. The rotation of the

earth makes the sun seem to rise in the east,

^



MORNING SUN -^ '^

AFTERNOON SUN )?'

v<

cross the sky, and set in the west. As the sun

changes its position in the sky, the shadow of

the stick turns and also changes in length. When

the shadow is shortest, it points to true north.

This happens at about noon.

The noontime shadow changes in length \ ery

slowly. So it is difficult to locate north accurately

by watching the noontime shadow. You can do

it more accurately by watching the shadow in

the morning and afternoon, when it changes

length more rapidly. With the help of a rope

tied to the shadow stick, make a circle on the

ground around the stick. Locate the positions

of the shadow, in the morning and in the after-

noon, when the end of the shadow lies on the

circle. True north is halfway between these posi-

tions, and can be located with a rope and stakes

as shown in the drawings.

A fairly accurate and quick way of locating

north uses a small shadow stick and a watch.

Hold the watch level, w ith a diin stick standing

vertically o\er the center of the watch. Turn

the watch until the hour hand is under the

shadow. Then the direction of north will be half-

way between the shadow and the twelve.

Locating north is easiest at the South Pole.

There every direction is north! At the North

Pole, every direction is south. This peculiar fact

^ -^

SHADOW STICK

about the poles inspired this well-known puzzle:

A hunter lea\es his tent and walks one mile

south and then one mile east. He .shoots a bear

and then heads north with it. After tra\eling

one mile, he arrives back at his tent. What is

the color of the bear? The answer was supposed

to be "White," because whoe\er invented the

puzzle thought tlie only place where a path that

goes one mile south, then one mile east, and

then one mile north could form a closed loop is

near the North Pole, where polar bears are

white. (See the diagram.) It could also happen

near the South Pole, as shown lielow, except

that there are no land mammals in Antarctica.

'%

% SOUTH POIE

\
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Distances on the Earth

On a flat suit ace, the shortest path between

two points is a straight Hne. The earth is not

flat, so there are no straight paths on it. On the

eartli, the shortest path between two points is

the one that curves the least. The larger a circle

is, the less it cur\es. So the shortest path be-

tween two points on tlie earth is along the

largest circle that joins them. Such a circle is

called a great circle. Meridians and the equator

A

are examples of such great circles on the earth.

In the days before the airplane, the usual way

of going to Europe from North America was by

ship across the Atlantic Ocean. Ship lanes ran

appro.\imately east and west, and we used maps

known as Mcrcator maps which were built

around this east-west way of tra\eling. Now
that we ha\'e airplanes, it is possible to traxel

shorter routes between Europe and North Amer-

ica by following great circle paths. Many of

these great circle paths run more nearly north

and south than east and west. They are demon-

strated by means of a circumpolar map that

shows what the earth looks like from abo\ e the

North Pole. The circumpolar map shows that

places that seemed to be far apart on the old

maps are really quite close to each other.



Navigation

!^6 5.

A iia\igat()r lias two kinds of problems to solve.

One is to find ont where lie is on the earth.

The other is to figure out what course his ship

should take to go from one place to another. His

tools for soK'ing these problems are a compass,

a se.xtant, a clock, and an almanac. His compass,

after he corrects for its error, tells him which

way is north, so he can measure directions cor-

rectly. With his se.xtant he can measme the

height of the sun, tlie moon, or a star above the

horizon. His clock tells him tlie time in Green-

wich, England. His almanac tells him how the

sky looks at Greenwich any day of the year, any

time of the day. With all this information, he

can figure out the answer to his problems.

Let us see how he can locate his position on

the earth. The eartli is a sphere spinning on its

axis. The axis points almost directly to Polaris,

the North Star. The diagram below shows men

in different positions on the earth looking at

Polaris. The man on the equator sees Polaris

on his horizon. For the others, the line to Polaris

makes an angle with the horizon. The fmther

north the man is, the larger the angle is. So,

measuring this angle tells him how far north

he is above the equator. If the angle is 60

degrees, then he knows he is somewhere on the

latitude circle 60 degrees above the equator.

Now he has to find out where lie is on that

circle. This circle is crossed by the meridian that

passes through Greenwich, England. His clock

tells him the time at Greenwich. His almanac

tells him what the sky looks like there. The sky

he sees above him looks different. Compared to

the sky as seen from Greenwich, it looks as

though it were turned through an angle. The

amount of tliis turning tells him how tar around

the earth he is from the place where the merid-

ian through Greenwich crosses his latitude

circle. This information fixes his position.

NORTH POLE

60

EQUATOR /60
30

EQUATOR

-ariil
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Mathematics for

a Changing World

We li\'e in a \vt)ild ol change. People and

things move abont. Animals and plants grow in

size and numbers. When things change, we
often have to know die speed with which they

change. It is easy to calculate it if the speed is

steady. Suppose a car travels 120 miles in 3

hours, moving at a steady speed. Then its speed

must be 40 miles an hour. We find it by using

the rule: Speed = Distance -^ Time. But speeds

are not always steady. A speed can change, too.

For example, when something falls from a great

height, the longer it falls, the faster it falls. How
do we find its speed in this case?

Suppose we drop a stone from a cliff and take

a movie of its fall. The movie shows us where

the stone is at any time. After 1 second, the

stone has fallen 16 feet. After 2 seconds, it has

fallen 64 feet. How far it gets in 3, 4 and 5 sec-

onds is shown in the table below. This table

gives us the rule: Distance = 16 (timef.

From this rule we can figure out how far the

stone falls in any number of seconds. In 6 sec-

onds, for example, the distance would be

16 X 6' = 16 X 6 ;: 6 = 576 feet.

TIME OF FALL
IN SECONDS



Distance the stone fell

Dui iiig tlif 1st second the stone fell 16 iwt.

During tlie 2nd second, the stone fell 64 — 16 = 48 feet.

During the 3rd second, the stone fell 144 — 64 = 80 feet.

During the 4th second, the stone fell 256 — 144 = 112 feet.

During the 5th second, the stone fell 400 — 256 = 144 feet.

Now let us see how far the stone falls during

one second alone. During the first second, it

fell 16 feet. During tlie first two seconds it fell

64 feet. To find out how far it fell in the second

second alone, we take away the 16 feet it fell

in the first second: 64 — 16 = 48. The table

shows the calculation for each of the other sec-

onds. So we see that the stone fell 16 feet during

tlie first second, 48 feet during the second sec-

ond, 80 feet during the third second, and so on.

Its speed increases as it falls.

How fast is the stone falling after three sec-

onds? We may use our table to get an estimate,

or rough answer. During the third second, the

stone fell 80 feet. So our estimate is that, after

three seconds, its speed was 80 feet per second.

But we know that our estimate is wrong, be-

cause the speed was changing all through that

second. Eighty feet per second is only an aver-

age speed. The stone actually moved more slow-

ly than tliat at the beginning of the second, and

it moved faster than that at the end of the sec-

ond. We can get a better estimate by getting its

average speed during a shorter period of time,

when the speed had less of a chance to change.

For example, during the first 2i seconds, die

stone fell 16 X 2i X 2i feet, or 100 feet. During

the first three seconds it fell 144 feet. So during

the last half-second of this three-second fall,

the stone fell 144 — 100 feet, or 44 feet. Now
our estimate of its speed after 3 seconds is 44

feet per half-second, or 88 feet per second. B>'

the same kind of calculation, we find that its

average speed during the last quarter-second

of its three-second fall is 92 feet per second. Its

average speed during the last eighth of a second

Distance fallen in almost 3 seconds
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Kepler discovered the laws of planetary motion.

Earth satellites obey similar lows. One of them is

that the line joining a satellite to the earth sweeps

over equal areas in equal times. Newton, using

calculus, derived the law of gravitation from Kep-

ler's laws. In the orbit shown, the satellite travels at

varying speeds. Distances A, to Bi, A, to Bj, Aj to

Bj, and A4 to Ba are all covered in the same amount

of time

B,

is 94 feet per second. Its a\erage speed during

the last sixteenth of a second is 95 feet per sec-

ond. Eacli new estimate is wrong, l)ut it is less

wrong than the one before it. We gradually

sneak up on the correct answer. It turns out to

be 96 feet per second. During the seventeenth

century, the English scientist Newton and the

German philosopher Leibnitz inxented an effi-

cient method of sneaking up on the right answer.

It shows that the speed of a falling body is 32

times the number of seconds it has fallen. This

checks with our result, because 32 >C 3 = 96.

The branch of mathematics that uses die

method of Newton and Leibnitz is called dif-

ferential calculus. When Sputnik, the first earth

satellite, began flying around the earth, scien-

tists used calculus to figure out how fast it was

moving. They needed calculus to do it because

Sputniks speed was changing all the time. Cal-

culus is used every day by physicists, astron-

omers, and engineers whenever they study

changes in which the change itself is changing.

A rocket launching a satellite
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Finite and Infinite

when we count the objects in a collection or

set, we say the natural numbers in order, assign-

ing each number in turn to an object in the set.

To count the set of \ owels in the alphabet, we

say, "A, 1; £, 2; /, 3; O, 4; V, 5." Because we

run througli the complete set of \ owels in this

way, we say that the set is finite. This means

that counting it comes to an end. We can try to

count the set of even natural numbers by assign-

ing natural numbers to them, in this wa\': "2, 1;

4, 2; 6, 3; 8, 4;
" and so on. In this case, the count-

ing never comes to an end, because no matter

how many even numbers we count, there are

always more left oxer. So we say that the set of

e\en numbers is infinite.

Infinite sets differ from finite sets in an im-

portant way. If you remo\e a member of a finite

set, what is left will not match the original set.

For example, the set of \owels c, /, o, n does not

match the complete set of vowels, a, e, i, o, u.

ijjuj>fcw<»Tagi-7nji^gassaaBiKHtw»r.jB^acijeag^aMSgtty:



Measuring

Areas and Volumes

WHAT IS THE AREA OF A 1

y-y^ir^

100 SQUARES WEIGH .6 OZS.
THEN 1 SQUARE WEIGHS .006 OZS.

y,«.^^«r^<_v'

A WEIGHS 9 OZS.

A = 09 OR 1 5 SQUARES

006

j^^tmaiaiSiimtmmtm m!i^^itSi^msssa/s*mi*t! n̂Mniif

To measure an area, we (li\ ide it into sqviare.s

that aie one unit wide, and then eoinit the num-

l)er of squares. For example, to measure the area

of a rectangle that is three units wide and fi\e

units long, we divide it into squares, as shown

in the diagram. Counting the squares, we find

that the area of this rectangle is fifteen square

units. In this case, we could ha\e used a short

cut for counting the squares. Since there are

three rows of squares, with fi\ e scjuares in each

row, the number of squares must he 3 5. The

same .short cut can be used for an\' rectangle.

Simply multiply the number of units in the

length by the number of units in the width. This

rule is usually written as the formula Area =
len<j,th widtJi.

How would you find an area enclosed by an

irregular curve? One way is to cover it with a

network of lines that di\ ide it into unit squares,

and then count the squares. Where more than

half a square is inside the area, count it as a full

square. Where less than half a square is inside,

do not count it at all. In this way we get an

appro.ximate value of the area. Here, too, we

can use a short cut. Using cardboard of uniform

thickness, cut out a square ten units long and

ten units wide. Then weigli it on a sensitixe

scale. Suppose the weight turns out to lie .6 of

an ounce. Since the square contains 100 unit

squares, each unit square weighs .006 of an

ounce. Now draw the irregular area you want

to measure on cardboard of the same thickness.

Cut the area out, and weigh it. The weight will

tell you the area, since each .006 of an ounce

of weight represents one square unit ot area.

•-^Another way of finding an irregular area is



to cross it with e\enly spaced

parallel lines. Then, between

each pair of parallel lines,

draw the largest rectangle

that will fit inside the area.

The area of a rectangle can

be calculated by means of the

formula Area = length

icidtl}. After that, adding up

the areas of the rectangles

gives an approximate \alue for

the irregular area. To get a

better approximation, repeat

the process, using tliinner rectangles. By taking

thinner and thinner rectangles, we can get an

infinite sequence of approximations, approach-

ing the actual area as a limit. A special branch

of mathematics called integral cdJcuhis has the

job of finding out wliat tlie limit is.

To measure a \olume, we di\ide it into unit

cubes, and then count them. For example, a

rectangular box three units wide, fi\ e units long.

and four units high, \\ ould yield sixt\- unit cubes.

There is a short cut that we can use for counting

them. The box contains four

layers, and each la^er con-

tains three rows with fi\e unit

cubes in each row. So the to-

tal nuniber of unit cubes is

4 3 5. This short cut is

expressed in the formula Vol-

ume = length width X

height.

Measuring the \olume of

an irregular solid is a more

difficult problem. But there

are interesting short cuts that

are sometimes useful. For example, suppose you

wanted to measure the \olume of a stone. First

measure out a \olume of water in a measuring

cup. Then put the stone into the cup. The water

le\el rises in the cup, and the increase in \olume

is the \olume of the stone. To calculate the

\olume in cubic inches, make use of the fact diat

one fluid ounce equals 1.8 cubic inches. If the

water le\el rises from the S-ounce mark to the

12-ounce mark, then \ou know the \okurie of

the stone is 7.2 cubic inches.

1 fluid ounce = 1 .8 cubic inches

So 4 fluid ounces = 7.2 cubic inches
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Surface and Volume

in Nature

It a man falls from a licitilit ot llirec tliousand

feet, and has no parachute, he will surely be

killed when he strikes the ground. But a mouse

can fall from the same height, and simph' get

up and walk away, unhurt. Why?
A man can be well fed by eating about one

fiftieth of his weight in food eveiy day. A mouse

has to eat one half of his weight in food each

MANS WEIGHT

^^
n.

day, just in order to sta\ ali\e. Why is this so?

Large animals can li\ e through a cold Arctic

winter. Small animals cannot. \Vh\'?

\\c find a clue to the answer to these ques-

tions by first comparing the surface and \olume

of large and small bodies. Examine a cube whose

edge is two inches long. Using the formula

Volume = lengtli • aidt]} height, we find

that its volume is 2 • 2 2, or 8 cubic inches.

Its surface is made up of six squares, each of

which contains 2 2 square inches. So the

total surface is 24 scjuare inches. This cube has

three square inches of surface for e\'ery cubic

inch of \olume. Now examine a cube whose

^\

i MOUSES WEIGHT

y
olume = 8 cubic units
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edge is only one inch long. Its \olume is one

cubic inch; its surface is six square inches. So

this cube has si.x square inches of surface for

every cubic inch of volume, or t^vice as much

surface per cubic inch as the larger cube has.

Small bodies have more surface per unit volume

than hirge bodies loith the same shape.

The Built-in Parachute

If a man falls from a great height, he is pulled

dow n by a force equal to his weight. The size of

his weight depends on his \olume. As he falls,

the air resists his fall. The size of this air resist-

ance depends on his surface. It is not strong

enough to balance his weight, so the man falls

faster and faster until he strikes the ground.

However, if he has a parachute, the open para-

chute exposes a large surface to the air. Then

there is a large air resistance which soon bal-

ances the mans weight, and he floats down

gently. A mouse, because it is so small, has much

more surface compared to its weight than a man

has. Its bod\' surface acts as a built-in parachute,

and it floats gently to the ground.

surface for each cubic inch of volume than the

man does, he loses his heat faster, and has to

replace it faster. That is wh\' he has to eat so

much food e\ery day.

Making up for lost heat is a greater problem

for animals li\ ing in a cold climate than it is for

animals that live in a warm climate. A bear

living in the Arctic regions has a large volume

producing heat, and a small surface, compared

to his volume, losing it. So he can manage to

keep himself both warm and alive. But a mouse

has onl\' a small voliune producing heat, and

a large surface, compared to this volume, losing

it. In the Arctic regions, where the heat loss

would be greater than it is in warmer parts of

the earth, he wouldn t be able to keep up with

the loss at all. That is why mice and other small

mammals cannot sta\' alive through the cold

Arctic winter.

Having a large bodv' is a heat-saving advan-

tage in a cold climate. For this reason, animals

that live in the far north tend to be larger than

their cousins that live near the equator. This

interesting fact of biology has its roots in the

mathematics of surfaces and volumes.

<̂«

Heat Production and Loss

A man and a mouse are both warm-blooded

animals whose bodies must remain warm to

stay alive. Heat is produced in each part of the

liv ing bodv". The amount of heat produced de-

pends on the volume of the bodv. At the same

time, heat is constantly lost through the surface

of the bodv'. The amount of heat that is lost

depends on the size of the surface. Both the

man and the mouse eat food partlv' as fuel for

the chemical fires inside them that replace the

heat that is lost. Because the mouse has more
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rhe four possible throws

Fires, Coins

and Pinball Machines

when a house burns down, thousands of dol-

lars' worth of property is destroyed. The loss is

too much for any one person to bear. So people

join together to share the loss. They do this

through insurance. Each person pays in to the

insurance company a small sum each year.

Then, if somebody's house burns down, the

money is there, ready to be paid out to him to

cover the loss. To know how much money each

person should pay in, the insurance company

must know first what the chance is that a fire

might break out.

Figuring out this chance is done with the

help of branches of mathematics called prob-

ability and statistics. A life insurance company

uses these branches of mathematics to calculate

the chance that a person will die in any given

year. A pension fund uses them to figure out

how long pensions will probably be paid to

people who retire after a certain age.

Figuring out the chance that something will

happen is like looking into die future. It is done

by using common sense and a knowledge of

what happened in the past. To see how it works

in a simple case, let us try to foresee what hap-

pens when you toss a coin. The coin has two

faces, head and tail. Common sense and ex-

perience join to tell us that, out of a large num-

ber of tosses, about half will come out heads,

and the rest will be tails. Saying-it another way:

on the average, one out of two tosses will come

out heads. So we say tlie chance of getting a

head is i.

If we toss two coins, there are three possible

results. We may get two heads, or two tails, or

one head and one tail. What is the chance of

getting each of these results? It is not one out

of three. If we use two different coins (say a

penny and a dime), we see that there are really

four possible results. Throwing the penny first

and the dime second, we might get head-head,

or head-tail, or tail-head, or tail-tail. The chance

of getting two heads is one out of four, or J[. The

chance of getting two tails is also \. The chance

the eight possible throws

! 9i Ti 4i 5i Ai 71 8«' ^* -^*
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3 out of 8



of getting one head and one tail is two out of

four, or I.

What is the chance of getting two heads and

a tail when you toss three coins? To answer this

question, we must first notice that there are

three ways of getting two heads and a tail. We
may get head-head-tail, or head-tail-head, or

tail-head-head. Compare this number with the

total number of ways three coins can fall. This

number is eight, since each coin can fall in two

ways, and 2 X 2 X 2 = 8. So the chance of

getting two heads and a tail is 'i-

There is a short cut for finding the chance of

getting any special combination. It is summed
up in the arrangement of numbers known as

Pascal's triangle. Pascal, a French philosopher

and mathematician of the 17tli century, was

for a time interested in roulette and other games

of chance. This interest led him to discover cer-

tain important rules about the probabilities of

getting heads or tails on the toss of a coin. His

findings are described in a triangular formation

of numbers which shows easily the chance of

getting heads or tails, or any combination of

PASCAL'S TRIANGLE§^ J



them, on a given number of tosses of a coin.

Each line in the triangle is obtained from the

line above it in this way: Write a 1 at each end;

and under each pair of numbers that are side

by side, write their sum. The first line is for

tossing one coin; the second line for two coins;

the third line for three coins; and so on. The first

number in a line is for all heads. The next num-

ber is for one less head, and one more tail, and

so on down the line. To figure the probabilities

for tossing four coins, use the fourth line. For

two heads and two tails, use the diird number

3



o Line up the two rulers so that the 2 on the lovv

scale is under the mark

of the upper scale . .

then under the number 3 of the upper scale

find the sum of 2 - 3 on the lower scale

ssi t sssatt
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^k^ Two rulers con be used as a simple "adding mochine i^B^iA modern calculating machine

Calculating Machines

when we solve a problem, we tr\' to figure it

out in the shortest and easiest way. The easiest

way to solve a problem is not to work on it at all.

Let a machine do it for you, instead.

You can make your own adding machine out

of two ordinaiy rulers. Simply place one ruler

ne.xt to the other, edge to edge. Now your

machine is ready for use. If you want to add

2 and 3, place the zero-edge of the upper ruler

over the 2 on the lower ruler. Then locate the

3 on the upper ruler. Use the line that belongs

A Chinese abacus

to the 3 as a pointer. It points out the answer

on the lower ruler.

The Stick That Multiplies

By making a slight change in the rulers, we

can turn them into a machine that multiplies.

We get a hint on how to do it from one of the

things we learned on page 20. A short way of

writing 2-2-2-2 is 2'. But 2-2-2-2 = 16. So

2^ is another wav of writing 16. The 4, which

Napier's rods, invented in 1617, !^3
were used to multiply numbers ykt\

'^Two methods of computing used during the Middle Ages:

numerols and counters. Counter reckoning was really a

form of the abacus. John Napier, a Scotsman, made on

early mechanical device. (Drawing from print c. 1503)
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i^Jil-

tells us lunv iiian\' twos to niultii^ly to i^et 16,

is called the Jo^aiitliiii ot 16. In the same way,

2' is another way of writing 8, and the logarithm

of S is 3. To multiply 16 by 8, we multiply 2^

hy 2'. That means take 2-2-2-2 times 2-2-2. Re-

placing the word "times" by a multiplication

sign, we get 2'2*2*2'2*2-2. The short way of

writing this result is 2 . This number, multiplied

out, is 128, and its logarithm is 7.

Notice that while the numbers 16 and S were

multiplied to get 128, their logarithms, 4 and 3,

were added to get 7. This is our hint. We know

already that two rulers can add the distances

that are measured on them. So we make up a

special pair of rulers in which the distance of

each number from the end of the ruler is equal

to tlie logarithm of the niunber. The rulers will

add the logarithms. And adding the logarithms

is like multiplying the numbers.

A pair of special rulers made up in this way

is called a slide rule. Slide rules are used bv

people in many different kinds of work—engi-
neers, architects, printers, and anyone else who
has to make man\' rapid calculations.

Counting Wheel

Another simple calculating machine is the

odometer in a car, which tells you how many

miles the car has traxeled. It is made up of a

series of wheels placed side by side. The num-

bers from to 9 are printed on the rim of each

wheel. One of these numbers on each wheel

shows through the little window on the dash-

board. The wheel on the right counts tenths of

a mile. When the car travels one tenth of a mile,

the wheel turns around just enough to mo\e

the next higher number into place at the win-

dow. After 9 tenths of a mile, the number 9

shows through the window. Alter the ne.xt tenth,

the wheel turns the into place, and, at the

same time, turns the wheel next to it one space.

Line up the 2 of the lower

scole with the 1 of the upper

scale . . .

under the 3 of the upper scale,

the product of 2 X 3 con be

found on the lower scale

The first calculating machine (1642) wh

automatically carried the tens was invented

by Pascal, philosopher and mathemati-

cian. It could add figures up to six places

ed W.J
Notice that the numbers on the slide rule are not equally spaced.

The slide rule multiplies numbers by adding their logarithms



An odometer records the number of

miles a car has traveled. For each mile,

the units wheel advances 1 space. Ten

spaces make a complete turn. When a

turn is completed, the "fingers" on the

edge turn the gear above. This makes

the tens wheel advance 1 space. Thus,

10 spaces on the units wheel are ex-

changed for 1 space on the tens wheel

,J? ^1? 1?
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1^1 TENS WHEEL ^:^ UNITS WHEEL

The effect is to exchange ten spaces on the first

wheel for one space on tlie second \\'heel. In

tlie same way the second wheel, after com-

pleting a full turn, exchanges ten spaces for one

space on the third wheel. So, while the first

wheel coimts tenths of a mile, the second wheel

counts whole miles, the third wheel counts tens

of miles, the fourth wheel coimts hundreds of

miles, and so on.

Most desk calculators work in the same \\a\'.

They are simply counting machines. They add

two numhers the way people add on their fin-

gers. They count out the first numlier, and then,

starting where the first lunnlier lea\ es off, tlu'\'

count out the second number. The\' multipK-

by adding the same number many times. To

multiply 4 '. 5, for example, a desk calculator

adds 5, 5, 5, and 5.

The fastest calculators are the machines that

work electronically. They are counting ma-

chines. Instead of having a series of turning

wheels, they use a series of electrical circuits.

They keep count b\' turning currents on and off

in these circuits. Just as in the odometer one

wheel passes the count on to the next b\ turning

it, in electronic calculators one circuit passes

the count on to the next by turning its current

on or off. Each wheel in an odometer has ten

positions, so tlie odometer builds up large niun-

bers in groups of ten. Each circuit in an elec-

tronic calculator has just two positions, on and

off. So an electronic calculator builds up large

numbers in groups of two. xA.lthough this is a

slower way of coimting, electronic calculators

work \ery rapidly, because electric currents

tra\el almost as fast as light.

The odometer, desk calculator, and counting

macliine are all called digital inacliincs, because

the\- make all their calculations by simple steps

of coimting repeated o\er and o\er again, the

wa\" a person would who counts on his fingers.

There is another t\pe of calculator which meas-

ures instead of counts. Tliese machines first con-

\'ert numbers into such quantities as length,

angle, and electric current. Then they combine

the quantities, and con\ ert the result back into

a number. The slide rule is one example of this

t\pe of calculating machine.

ELECTRONIC CALCULATOR

lEIectronic calculators build up large

numbers by counting electrical pulses

in groups of two. The numbers can be

shown by a panel of lights. A single

pulse turns on the number 1 light on the

right. A second pulse turns off this light

and turns on the number 2 light. A third

pulse turns on the 1 light again. The

number of pulses is shown by adding

the numbers of the lights thot are on

BASE
OF

10

1

5

4

1 5 4

BASE
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PITACORAS
Pythogoras and his followers made many dis-

coveries in music as well as in mathematics

It was Pythagoras who found that when the length of a

vibrating string is halved, lhe tone on octave higher

is sounded. A J- division produces the dominant tone

Mathematics and Music

A musical tone is made In a \il)ratioii. For

example, if you stretch a string tight, and then

pluck it, the string \ ibrates and produces a tone.

What the tone sounds like depends on the num-

ber of \ibrations that the string makes in a sec-

ond. That is why tones are related to numbers,

and music and mathematics are partners. The

number of \'ibrations per second is called the

freciuenc}' of the tone.

When a song is written, it is usually composed

out of a family of tones called a hey. To see how

the tones in a key are related, let us actually

build one.

The most important tone in a key is the one

on which the song ends. It is called the tonic.

Let us choose as tonic the tone made by a string

that \ibrates 256 times a second. We call this

tone C. If we cut the string in half, it \ibrates

twice as fast. The tone made by this shorter

string is also called C. Its frequency is 512 vibra-

tions per second. It we double the frequency

again, we get another tone called C, whose fre-

quency is 1024. \Vc use the same name for tico

tones, uhen the freciiiencij of one is iJoul>le the

frequency of the other. The frec|uenc\' 256 is

double 128, and this in turn is double 64, and

so on. So we get more tones that are called C

by di\iding b\' two. \\e gi\e these tones the

same name because we think of them as the

same tone played at different le\els.

Now let us vibrate a string whose length is

two-thirds the- length of the original one. The

tone it produces is the tonic's closest relative.

We call it the dominant. Its frequency is U
times as great as the frequency of the tonic. This

number ll is the basis for building up a key.

A key is a family of tones in uhich each tone is

foUoiced by its dominant. In order to find the

dominant of any tone in the chain, we simply

multiply its frequency by l^-
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We began with the C whose frequency is 256.

Its dominant has a frequency of 384, and is

called G. G's dominant has a frequency of 576,

and is called D. D"s dominant has a frequency

of 864, and is called A. A's dominant has a fre-

quency of 1296, and is called E. E's dominant

has a frequencx- of 1944, and is called B. Now

we start at C again, and go the other way. The

frequency 256 is IJ times as great as the fre-

quency 171. The tone with this last frequency is

called F, and C is the dominant of F. The seven

tones we ha\e named make up the key of C.

They are listed in order in the first column of

the table.

We started with die tone C that has a fre-

quency of 256. The ne.xt higher C has a fre-

quency of 512. We can get all of the tones of

our ke>- to lie between these limits. We can do

this, because, when the frequencN* of a tone is

too high or too low, we can replace it by a tone

with the same name whose frequency is half

as large or twice as large. Our G is not too high,

so we keep it. All tlie others except F are too

high, so we dixide by 2 o\er and over again

until the frequency lies between 256 and 512.

The frequenc\- of F is too low, so we doul)le it.

The results are shown in tlie third column of

the table. Now, if we arrange the tones in order

of frequency, starting with C (256) and ending

with C (512), we have a ladder of tones climb-

ing from C to tlie next higher C. This ladder is

called a scale. We have them now in this order:

C(256), D(288), E(.324), F(342), G(384), A(432),

B(486), C(512). This is tlie order of the white

keys on a piano keyboard

To build up a scale that starts with another

tonic or keynote instead of C, we have to bring

in the black keys on the piano. They are named

after the white keys that are near them. When

a black key carries the name of a white key that

it follows, it is called sharp (#). When it carries

the name of a white key that comes after it,

it is called flat (b).

To find the scale that begins with any tone,

we can use the wheels tliat are printed on this

page. Copy tliem on cardboard. Punch a hole

through tlie center of each copy, and fasten

them together with a snap fastener. Turn the

small wheel until the 1 lies next to the tone you

want to use as tonic. Then the numbers from

2 to 7 point out the other tones in the scale,

numbered in the correct order.

/ I

page 78

F
C
G
D
A

E
B

Chain of Dominants Key of C

FBEQUENCY

171

256

384

576

864

1296

1944

256 AND 512

You can make your own device for finding the scale beginning with any tone.

Trace these wheels on paper and cut out. Make hole in center for snap fastener



Mathematics and Art

Compare the two pictures tliat are on this page.

The one at the left lias been drawn to look

like an old Egyptian painting. Everything in it

looks flat, and each part looks as though it were

right on top of the next part. It is hard to tell

at a glance which elements are supposed to be

nearer to you.

The other picture is a painting by the Italian

artist Gentile Bellini. You can see that the people

are closer than the building. You can also see

that there is a feeling of distance between the

different parts of the painting. The space in

Bellini's painting looks much more real than

that in the Egyptian painting because he used

mathematics when he laid it out on his canvas.



HORIZON LINE

The great Gennan artist Albrecht Diirer said,

"Geometry is the right foundation of paint-
ing." To make a painting look real, the painter
thinks of his canvas as a "window" through
which he is looking at a scene that is beyond it.

He reasons in this way; Each point of the scene
sends a ray of light to the eye of the person

looking at it. These rays of light pass through
the "window" between the eye and the scene.
The place where a ray crosses the window is

the place where the point it comes from will

appear in the picture. The collection of rays
going from the scene to the eye is called a pro-

icction. The picture formed where the window
crosses die projection is called a section. To
figure out what the section will look like is a
problem of perspective. The rules of perspec-
tive were worked out with the help of geometr>\

In Belhni's painting you see how he used
two of the rules of perspective: The further

away something is, the smaller it looks. Parallel

lines that go off into the distance, like straight

railroad tracks, look as though they come to

a point.

Mathematics helped art dirough the science
of perspecti\e. But then art repaid its debt. This
is because the study of perspective led to the

de\elopnient of a new branch of mathematics
called projective geometry.

A picture can be enlarged with the help of two
sheets of tracing paper marked off in squares.
Make one set of squares larger than the other



Mathematics for Fun

There are niatliematical cards tliat seem to

perform amazing feats. You can make a set by

following these directions. Use four square

cards, each six inches wide. Make a margin of

one inch at each edge, and divide the center

space into one-inch squares. Then copy the pat-

tern for each card. Cut out the bo.xes that are

marked "Cut out. Notice that one card has

numbers written on the back as well as the front.

Be sure to place them as shown.

Now that the cards are ready, ask someone

to think of a number from 1 to 15. Show him

the front of each card, and ask him if his num-

ber is on the card. If he says "yes," put the card

down on the table with the word "yes" on top.

If he says "no," turn the card so that the "no"

will be on top. Stack the cards one over the

other, with the card that has no hole in it put

down last, over the others. Pick up the cards

and turn the stack over. The correct number

will show through a window in the cards.

Magic Squares

The arrangement of mmibers shown above

is called a five-by-five magic square. It uses

all the whole numbers from 1 to 25. The "magic"

property of the square is this: If you add the

numbers in any row, or any column, or either

17 24 i
1

23 I 5

4- 6 13

10 12 19 21

11 t 18 Z-^

8

'4
[

'
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A Card Trick

There are many card tricks that are worked

mathematically. This one is easy to do, and looks

very mysterious. Use a deck of 52 cards, and

shuffle it well. Ask someone in your audience

to count out three stacks of cards from the deck,

while you turn your back. He .should follow

these directions: "Put the first card face up,

and start counting with the number on the card.

Think of an Ace as 1, Jack as 11, Queen as 12,

and King as 13. Count out more cards on top

of it until you reach 13. If the first card is a 6,

for example, you will reach 13 when you have

put seven more cards on top of it. If the first

card is a King, you won't have to put any more

cards on top of it. Then turn the first stack over

and start a new stack, until there are three stacks

on the table, face down."

Now ask for the cards that are left over. Count

them, and remember the number. Ask someone

in the audience to turn up the top card in any

two of the stacks. Then you tell them, without

looking at it, what the top card on the other

stack is. "ibu figure it out mentally in this way:

Add the numbers of the two cards turned up,

and add ten to the result. Then subtract the sum

from the number you got by counting the left-

over cards. For example, if the cards turned up

happen to be 3 and 8, and the number of left-

over cards is 32, you would add 3 + S + 10,

giving you 21. When you subtract 21 from 32,

you get 11. So you now know that the top card

of the third stack is a Jack.

52 CARD DECK STACK B STACK C

. ]



Proving It

Many statements may be made about num-

bers or space. Some of the statements are true,

and some are false. We find out which ones are

true by following the rules of logic, or careful

thinking.

One type of proof often used in mathematics

is a kind of cliaiii reasoning. In this type of proof

we move forward towards our result through a

series of steps, each of which leads to the next,

like links in a chain. We use this kind of reason-

ing, for example, when we solve an equation

like: 3.V + 5 = 20. Our problem is to find out

what number x stands for if the equation is a

true statement. The equation says that the num-

ber which 3x + 5 stands for, and the number

20, are equal. This is the first link in die chain.

We join it to the second link with the help of

a rule that we know is true. This rule says that

if we subtract the same number from equal

numbers, we get equal results. So we subtract

5 from both numbers, and get the equation

3x' ^ 15. This is the second link in the chain.

We join it to the third link by using another

rule that we know is true. This rule says that if

we divide equal numbers by the same number,

we get equal results. So we divide by 3, and get

the equation x = 5. This is the third fink in the

chain. The three-link chain tells us then, that

if 3.V + 5 = 20, then x must be equal to 5.

There is another kind of proof in which we

back into our result instead of moving forward

to it. We use a process of elimination. We first

list a series of statements, chosen so that we are

sure that one of them must be true. Next, we

eliminate all the statements except one by prov-

ing they are false. Then the statement that is

left must be true.

Here is an example of reasoning by elimina-

tion. Suppose there are more than twelve people

in a room. Then we shall prove that at least two

of them have their birthdays in the same month.

First we list two statements: (1) At least two of

the people in the room have birthdays in the

same month; (2) No two of the people in the

room ha\e liirthdays in the same month. We are

sure one of these statements must be true. Now,

if statement (2) is true, it means that the people

in the room all have birthdays in different

months. But, if there are more than twelve

people in the room, and their birthdays are in

different months, it means there are more than

twelve different months. But this is impossible.

So we eliminate statement (2). Once we have

eliminated the second statement, we are sure that

statement (1) must be true, because it is the only

one that is left.



Three Great

Mathematicians

Mathematics is a growing science. New ques-

tions are always coming up, rising partly from

practical problems, and partly from problems

of pure theoiy. In each generation, men ha\e

developed new ideas and methods to answer

diese questions. Thousands of men ha\'e shared

in this work. Among the greatest were Archi-

medes, Isaac Newton, and Carl Friedrich Gauss.

Archimedes and his boast

Moving the Earth

Archimedes was a citizen of Syracuse, a city

on the island now known as Sicily. He was born

in 287 B.C., and died at the age of 75. He made

great disco\eries in both mathematics and

physics. He worked out a way of measuring the

area within a closed curve by using a method

almost like the method of modern calculus. He

sliced the area into thin strips, and added the

largest rectangles that could be drawn in these

strips. By taking thinner and thinner strips, he

got better and better approximations of the area

within the curve. He made a careful study of

levers, by means of which a small force can be

used to balance a large weight. After his dis-

co\ery of how this can be done, he is reported

to have said, "GiNe me a place to stand on, and

I can move the earth."

The King of Syracuse once ordered a crown

made of pure gold. When the crown was fin-

ished, the King suspected that some silver had

The screw of Archimedes, a kind of

M, water pump used in ancient times
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At the Battle of Syracuse, the machines of ArchimecJes created havoc among the

Roman galleys. Above, one of Archimedes' machines lifts a ship out of the water.

How Archimedes proved that the

king's crown was not pure gold |j

been mi.xed with the gold. He asked Archimedes

to figure out a way of checking whether the

crown was all gold, or not. One day, while Archi-

medes was at the public bath, he noticed how
the level of the water rose when he stepped into

it. He suddenly realized how he could solve the

problem of the crown, and became so e.xcited

about his discovery diat he ran home, naked,

shouting, "Eureka!" (I ha\e found it!). His idea

was that he could measure the \olume of the

crown by putting it into a dish of water. (See

page 68). If the crown contained any silver,

the volume of the crown would be greater than

the volume of an equal weight of pure gold.

.. block of gold bal- o gold block makes c crown made level

«n,„, •!,« „ water level rise rise more than theance^he^rpwn water lev

42^ u gold did

block of silver bal u
Therefore, the crown

was not pure gold

Archimedes was captured by the Romans while he

was working on a problem. The geometric design

depicted on the left was inscribed on his tomb

When Syracuse was attacked by Rome, its

soldiers defended the city with the help of great

machines in\ented by Archimedes. According

to the stories told in Roman history books, they

used giant catapults to hurl great stones at the

Roman ships. They had giant claws that lifted

ships out of the water and smashed them against

the rocks on the shore. However, in spite of

these mechanical mar\ els, the Romans e\entu-

ally won the war. When Syracuse was captured,

Archimedes was killed by a Roman soldier.

page 85



What appears to be "white" light is actually a mixture of

colors. As shown here, a prism can separate the colors

Weighing the Sun

Isaac Newton was born in England in 1642,

and died in 1727. We remember him chiefly for

three great discoveries: He showed diat white

hght is a mixture of colors; he discovered the

law of gravitation and the laws of motion that

now bear his name; and he invented calculus,

the mathematical tool for studying motion. He

made all three disco\eries before he was 24

years old.

Newton's law of gravitation was the fourth

Unk in a chain of great discoveries in astronomy.

Tycho Brahe's accurate observations of the motions of the

,
planets helped lead to the formulation of Sir Isaac Newton's

law of gravitation. An old print depicts Tycho's Observatory

^-TT~-^nnr^r

Newton was the first man to weigh the sun. He did

it mathematically — using his law of gravitation



The ancient model of the solar system, and on »• ^:r-

the right, the modern one proposed by Copernicus ((.GK?^

Copernicus supplied the first link hy jiroposing

the theory that the earth was a planet revolving

around the sun. Tycho Brahe supplied the sec-

ond link by making very accurate observations

of the apparent motions of die sun and planets

in the sky. Kepler supplied the third link by

discovering, from Tyehos tables, the rules ac-

cording to which the planets move. He found

that the path of each planet is an ellipse, that

the speed of a planet increases as it comes closer

to the sun, and that the time it takes for a planet

to make a round trip around the sun is related

to its distance from the sun.

Newton supplied the fourth link when he

showed by mathematical reasoning tliat the

planets would move in this way only if the sun

were pulling on each of them, and found the

formula for calculating the strength of this pull.

Using his formula, Newton was the first man to

weigh the sun.

Newton also has an important in\ention to

his credit. He invented the reflecting telescope,

which uses a curved mirror instead of a lens.

The great 200-inch telescope in the observatory

on Mt. Palomar is a telescope of this type.

In October, 1957, our use of Newton s laws

of gravitation and motion took a new turn. For

almost three hundred years we had used them

to explain the movements of the sun, the moon,

the planets, and the stars. Now they help us

launch man-made moons and planets that take

their places alongside those found in nature.

The Iwo-hundred-inch telescope on Mt. Palomar is a reflecting telescope

•go 87



A Mathematical Giant

The greatest mathematician of all time was

Carl Friedrich Gauss. He was bom into a poor

family in Brunswick, Germany, in 1777. When
he died, in 1855, he was world-famous as a

mathematician, astronomer and physicist.

Gauss showed his talent for mathematics

when he was very young. Once, at the age of

three, young Garl listened attentively as his

father, foreman of a group of bricklayers, cal-

culated wages. Everyone was astounded when

the boy called out that one of his father "s figures

was wrong—and then gave the correct figure.

His father did the calculation oxer again, and

found that Carl was right.

In elementary school. Gauss" teacher once

asked the class to add all the numbers from 1 to

100. As soon as the teacher finished stating the

problem. Gauss, who was then nine years old,

wrote the answer on his slate and put it on the

teacher's desk. He had figured it out mentally,

using his own short cut. This short cut is the

method for finding triangle numbers that is ex-

plained on page 19. Gauss' outstanding ability

as a student led the Duke of Brunswick to spon-

sor his higher education.

Two of Gauss earliest discoveries are among

his best known. In 1796 he showed that a reg-

ular polygon of 17 sides can be constructed by

means of a straight edge and compasses. In

1799, in his Ph.D. thesis, he gave the first flaw-

less proof of what is known as the Fundamental

Theorem of Algebra, that every algebraic equa-

tion has a solution.

Gauss made great contributions in many

branches of mathematics. He did outstanding

work in the theory of numbers, the theory of

functions, probability and statistics, and the

When Ceres was lost behind the glare of the

sun, Gauss' calculations enabled astronomers

to rediscover the planet by tracing its orbit

Carl Friedrich Gauss and Wilhelm Eduard Weber, co-workers in the study

of magnetism, were the first to construct on electromagnetic telegraph

In the field of optics. Gauss designed

a lens for correction of astigmatism



The pseudo-sphere is a curved surface

whose geometry is non-Euclidean, w^
'^^T"

On this surface, the sum of the j^.LJ*^

angles of a triangle is less than 180*
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The curve of probability, diagramed

J above, was of interest to Gauss in his

1^^ studies of probability and statistics

An important advance in Euclidean constructions was

Gauss' proof that a regular polygon of 17 sides could

be constructed with a straight edge and compass
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geometry of curved surfaces. He was one of

the pioneers in constructing a new sNslein of

geometry, now known as non-Euclidean geom-

etiy, in whicli the sum of the angles of a tri-

angle is less than ISO degrees.

At the same time that he was making dis-

coveries in pure mathematics, Gauss always

had a strong interest in practical applications.

He spent many years working as an astronomer.

He was active as a surveyor and map maker.

Working closely with Wilhelm Weber, the physi-

cist, he studied electricity and magnetism. He

also studied the structure of crystals.

In 1801, after the planetoid Ceres was dis-

covered, astronomers lost track of it when it

passed the sun. Gauss calculated the orbit of the

planetoid, using a new method he had devised.

Guided by Gauss' calculations, the astronomers

found Ceres again in 1802.

Gauss made a study of the magnetism of the

earth. From his observations and calculations,

he predicted where the south magnetic pole

could be found. Navigators later found that this

prediction was correct.

Gauss was an inventor as well as a theoretical

scientist. He invented the heliotrope, a survey-

or s instrument that uses a mirror for flashing

sunlight across a great distance. Together with

Weber he invented the telegraph at about the

same time that Samuel Morse, working inde-

pendently, developed the telegraph in America.

Later, he invented a kind of magnetometer, an

instrument that measures the strength of a mag-

netic field.

Gauss has been called "the prince of mathe-

maticians." In honor of his great work, his name

has been made part of the international language

of science. The unit of magnetic field strength

is now known as a gauss.

Gauss invented the bifilar magnetometer, on instrument used for meas-

uring the strength of magnetic fields. The lines of force in the mag-

netic field surrounding the earth ore illustrated in this picture



Mathematics

in Use Today

'^
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Mathematics is part of our daily lives.

A housewife uses mathematics when she goes

shopping: she compares prices, figures out her

bills, and counts her change.

A bookkeeper uses mathematics to keep track

of a company's income and expenses.

A machinist uses matliematics when he plans

his work. He must measure and figure to know

how to set his tool, so that it will cut out parts

with the riglit size and shape.

An engineer uses mathematics when he de-

signs a new machine. He uses formulas to help

him pick the right parts. Equations help him

predict how they will work.

An airplane pilot uses mathematics to help

him chart his course. He must figure distances

and directions to know how to get from one

place to another.

A farmer uses mathematics to figure out how

much seed, feed, and fertilizer he needs. Like

any businessman, he also has to reckon his

accounts.

An astronomer uses mathematics to figure out

how far away the stars are. He uses equations

to help explain how stars are formed, what

makes them shine, and how they change as

they grow older.

The physicist uses mathematics to explore the

m\'steries of the atom. His experiments gi\e him

facts. His equations show how these facts are

related. Often his equations lead to new facts

that were never known before. New facts often

lead to new inventions. Then new inventions

produce new products for our use.

Equations That Built an Industry

The strange-looking symbols at the top of

this page are equations written in a mathe-

matical shorthand. They are known as Ma.x-

well's equations. Because of these equations, you

can sit at home and hear a concert being placed

a thousand miles away, or watch a baseball

game on your television screen.

During tlie 1870's, James Clerk Maxwell, a

British scientist, was studying the beha\ior of

electricit)' and magnetism. He found that he

could sum up their properties in these four equa-

tions. After he discovered tliese equations, the

equations told him something that nobody had

suspected before. They told him that electrical

disturbances travel dirougli space as waves,

mo\'ing with the speed of hght. In 1883, the
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Maxwell's equations revealed the fact that electrical disturbances travel through

space as waves. This discovery lead to the invention of the radio. Today, radio

waves bounce between the ionosphere and the ground as they travel around the world

Irish scientist FitzGerald suggested that a rapid-

ly changing electric current could send out such

a wave. Three years later, the German scientist

Hertz proved all these predictions in his labora-

tory by sending out \va\es at one end of the

room and receixing them at the other end. This

was the beginning of radio, because Hertz's

waves were the first radio waves produced by

man. Today, radio waves travel around the

world.

The Ma.wvell equations show how useful a

mathematical theory can be. A few equations

written on paper led to a great industry that

gives jobs to hundreds of thousands of people,

and serves miUions of people who own radio

and television sets.

At home, or in the workshop, or in the lab-

oratory, mathematics is a tool that helps us

exery day.

JAMES CLERK MAXWELL
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Prime numbers, 16-17

Prob.ibiUty. 71-73

Projection. 80

Projecti\e geometry, 80

Proof, mathematical, 83

Pythagoras, 34, 37, 77

musical theories, 77

theorem, 34, 50

Quadrant, 15

Quadrilateral. 25, 27
Quipu. 39

R,idio.91

Radiolarians. 4.9

Rational numbers, 42
Ratios, 31,.56

Real numbers, 43

Reasoning b\' elimination, 83

Rectangle numbers, 16

Regular poKgons, 27, 48
angles, formula for, 50

Regular solids. .36-37

Right angles. 23

Right triangles. 33, 34
Roman numerals. 13

Satellite launching, 65
SatelHte orbit, 54, 65
Scales, musical, 78
Sextant, 62

Shadow reckoning, 56
Shadow stick. 60

Sieve of Erathosenes, 16-i7

Sine of an angle, 58
Sine wa\e, 58
Slide rule. 75
Snowflake. 48

Sokir system. 87

Sohds, regular, 36-37

Soroban. 13

Speed, 63
Sphere, 49
Spiral, 49
Sfjuare numbers. 19, 28
Square roots, 28

Stand;ird measures, 14-15

Statistics, 71-73

Sun, weight, 86

Simflower seed, 48

Surface, compared to \olunie, 69-70

S\Tacuse, Battle of, 85

Telegraph, 89

Telescopes, 5.5, 87
Tetrahedron, 36

Time, units of, 15

Triangle: angles, formula for, 50

equilateral. 27

right, 33, 34
Triangle numbers, IS, .50, 81

Triangulation, 24

Trigonometry, 1

1

Nibrations, 57
\'olume; compared to surface, 69-70

measurement, 67

\\';i\es, model, 57

Weber, Wilhelm. 88, 89

Weights, metric. 15

Zero, invention of. 13

of the Eugene Dietzi;en Co., Inc.. 75 (circiil.ir slide rule); Gallerie alle Opere

d'.\rte. 79rCourte,sv of the Monroe Cakul.iting Machine Co., 74 (modem calcu-

lator); Courtesy of ilie Museum of Modem .Art. 32; New York Public Library, 10

(map); U.S. .\ir Force, 61 (circunipolar iii.ip); Courtesy of Yeshi\a University, 91









This lively and authoritahve book, with more than 200 full-color

pictures, introduces voung readers to the fascinating science of

numbers and space. Words and pictures explain the fundamental

ideas of arithmetic, algtbra, geometry, trigonometry, and calculus,

as well as mothematii.s in nature and art. The reader will see why

mathemcitics is important to our daily lives, and how men have used

•t across the centuries, from the Pyramid builders of ancient Egypt

to astronomers of today. Plus mathematical tricks and games.
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