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i}\lnthcnmti('h is a world of wonder—a place
where, with only a few nmnbers and points at
our command, the most amazing formulas and
geometric figures appear as out of a magician’s
hat. Mathematics is also a tool—a servant to our
needs. When we wish to know how much? how
many? how large? how fast? in what direction?
with what chanees?—the mathematician gives us
a way to find the answer.

But above all mathematics is the Queen of
Knowledge. It has its own logic—that is, a way
of thinking. By applying this way of reasoning
to numbers and to space. we can come up with
ideas and conclusions that only the human mind
can develop. These ideas often lead us to the
hidden seerets of the ways in which nature
works.

All this is revealed in the pages that follow,
and I am happy to invite you to a glorious ad-
venture in numbers and space as you read the
words and study the beautitul pictures m this
delightful book.

This book does not teach you ordinary arith-
nietie as you study it in school. It does tell you
the extraordinary things that come from the use
of what you study. It unfolds the story of man’s
struggle to explain the quantitative aspects of
the world in which he lives. It tells the story of
exceedingly small numbers, and nmumbers so
large as to be beyond compreliension—from the
infinitesimal—to the infinite. It takes yvou from a
point, along a line, into a plane, out into space,
and even beyond our space. And it shows how

space itself was finally conquered by nmuber.

This book also deals with practical things.
such as how to make parallel lines and perpen-
dicular lines, and where they are used. 1t de-
scribes the ungles that a surveyor needs to know .
and shows how to discover the speed at which
a stone is Lalling or a rocket is traveling in space.
How to find an area, or a volume, or how by the
use of probability to predict one’s chauces of
witming a game, are simply explained. But even
nore astounding is the unfolding of seemingly
magical mumbers for the interpretation of nature
—a sea shell—a growing tree—a beantiful rec-
tangle—the golden section. The arts of music
and painting become the mathematics of har-
monics and perspective, and the behavior of our
entire universe is revealed as a mathematieal
system.

This is a book for inquisitive minds—those of
voung readers—and bright adults also—whieh if
read and reread, cach new time with more eare-
ful thought and study, will pay rich dividends
in intellectual satistaction. Each topie is only an
initial episode that, if pursued by turther study
in school or other books. will reveal a knowledge
on which the world of tomorrow is being built.

Because 1 teach this subject and train teach-
ers to teach this subject; because 1 enjoy all
mathematies to the utmost; and because T know
the pleasure it gives—I welcone you to the pages
that follow.

—Howarp F. Fenr
Teachers College, Columbia University
Professor of Mathematics
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The Science of Numbers and Space

At work or at play, we often have to answer
questions like “ITow many?” “How big?” or
“How far?” To answer such questions we have
to use numbers. We have to know how numbers
are related and how different parts of space fit
together. To be sure our answers are correct.
we try to think carefully. When we do these
things, we are using mathematics.
Mathematics is the seienece in which we think

cavefully about numbers and space. 1t helps us
keep score at a baseball game, measure the area
of a floor, or decide which purchase is a better
buy. It helps the engineer design a machine. Tt
lhelps the scientist explore the secrets of nature.
Tt supplies us with useful facts. It shows us short
cuts for solving problems. It helps us under-
stand the world we live in. It also gives us games
and puzzles that we can do for fun.




Mathematics and Civilization

Mathematics grew up with civilization. 1t arose
out of practical problems. and it helps people
solve these problems.

In the days when men got their food by hunt-
ing, and gathering wild fruits, berries, and seeds,
they had to count to keep track of their supplies.
Counting, measuring, and caleulating became
more important when people became farmers
and shepherds. Then people had to measure
land and count their flocks.

When they built irrigation dams and eanals,
they had to figure out how much earth to re-
move, and how many stones and bricks they
would use. The overseers had to know in ad-
vance how much food to store up for the work-
ing force. Carpenters and masons had to meas-
ure and calculate as they built homes for the
people, palaces for their rulers, and great tombs
for their dead kings.

As trade grew, merchants measured and
weighed their wares, and counted their money.
Tax collectors figured the tax rate, and kept ac-

JJ

counts. To deal with all these activities, men
invented arithmetic, which studies numbers,
and geometry, which studies space.

To prediet the changes of the seasons, priests
studied the motions of the sun, moon and stars.
Navigators looked to the sky, too, for the stars
that guided them from place to place. To help
them in this work, men invented trigonometry,
which relates distances to directions.

Commeree spread over the world. The same
kinds of caleulations often had to be repeated.
To save time, some people worked out rules for
doing them, and ways of doing many problems
at once. This was the beginning of algebra.

As the centuries went by, men built machines
and workshops. Scientists studied the earth, the
sea, the air, and the sky. In these activities, peo-
ple worked with things that move or change.
To think accurately about motion and change,
they invented caleulus. New kinds of work cre-
ated new problems, and men invented new

branches of mathematics to solve them.
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Numbers and How We Write Them

In the scene above. a team of primitive hunters
has just killed some game with well-aimed ar-
rows. The hunters can see at a glance that the
set of animals killed doesn't match the set of
men in the team. A man is left without an ani-
mal. so the hunters conclude that there are
more men in the team than there are animals
in the catch. Matching sets of objects in this
way probably led to man's first matliematical
ideas, the ideas of more and less.

We have many words in our language that
grew out of our experience with trving to match
sets. We distinguish a single person from a
couple. A lone wolf is different from a pack. We
also talk about a pair of socks or a brace of
ducks. Words like single. couple. lone, pack,

pair, and brace answer the question “How

many?" At first this question used to get mixed
up with the question “What kind?" So separate
words like couple. pair. and brace were used to
describe different Kinds of objects.

But people soon learned that a couple of
people matches a pair of socks or a brace of
ducks. and that the matching has nothing to do
with the kinds of things that they are. They
realized that a couple. a pair. and a brace have
something in common that makes it possible
for them to match. This is how the idea of num-
ber arose. Today we use the number word tico
to answer the question "How many?” for any
set that matches a couple, no matter what kind
of objects are in the set.

Numbers were used long before there was
any need to write them. The earliest written
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An early form of the Arabic numerals
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numbers we know about are found in the temple
records of ancient Sumeria. Here priests kept
track of the amount of taxes paid or owed. and
of the supplies in the warehouses.

As time passed. men invented new and bet-
ter ways of writing numbers. At first, men wrote
them by making notches in a stick, or lines on
the ground. We still use this system when we
write the Roman numerals 1. 110 and 111, We
9

{ind it hidden, too, in our Arabic numerals
and 3. They began as sets of separated strokes.
Then, when the strokes were written in a hurry,
they were joined to each other.

The Arabic numbers use only ten symbols, the
digits 0, 1, 2,3, 4, 5,6, 7, 5, 9. But, with these
ten digits, we can write down any number we
like. We do this by breaking large numbers into
groups, just as we do with money. We can sepa-
rate thirteen pennies into groups of ten and
three. We can exchange the ten pemnies for a
dime. Then we have one dime and three pen-
nies. To write the number thirteen, we write 13.
The 1 written in the sccond space from the right
means one group of ten, just as one dime means
one group of ten pennies.

Ancient records written in clay

If we have only ten peunnies, they form a
group of ten, with no additional pennies left
over. To write the number ten. we put a 1 in the
second space from the right to represent one
group of ten. But to recognize this space as the
second space. we nist write something in the
first space. even though there are no additional
pennies heyvond the aroup of ten. We write the
digit 0 to represent “no pennies.” TF we didn't
use the symbol 0 in this way. the whole system
would not work.

The first people who recognized that they
needed a symbol for the number zero were the
people of ancient India. The Arabs learned it
from the Indians, and then built it into the svs-

tem of written numbers that we use today.
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Japanese merchants add and multi-
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Standards
and Measures

FOUR DIGITS
ONE PALM

In ancient Egypt, a carpenter couldn’t misplace
his ruler, because it was attached to his body. The
units of length that he used were on his arm. The
cubit was the distance from the tip of his elbow to
v the tip of his middle finger. The digit was the
SEVEN PALMS width of one finger. These units fit together like
this: Four digits equal one palm. Seven palms
equal one cubit.

The wmits of length we use in the United
States and England were once parts of the body,
too. The foot was the length of a man’s foot. The
inch was the width of a thumb. The yard was
the distance from a man’s nose to the tip of his
outstretehed arm. If a customer with long arms
bought cloth from a merchant with short arms,
there was an argument about who should meas-
ure out the cloth. To avoid such arguments peo-
ple began using standard units. The length of a
standard unit is fixed by the government.

THIMBLE

i Y Distance araund meridian = four quadrants

page 15 ’ / ; F One quadrant — ten millian meters



The Metric System mass in the metrie system is called a gram. 1t
was chosen to be the mass of 1 ce. of water. One

In most countries of the world today the  pound contains about 454 gras.
standard units of measurement are those of the
metrie systeni. The metrie system was first

. M~ Units of Time
adopted in France in 1795, and then spread to

other countries. In this system, the standard units We use many different units of time. Each of
are based on measurements of the carth and them is based on some rhythim in natore, n
reater. Theunitof lengthis called ameterandwas — which an interval of time is repeated over and
derived from the distance around the earth in - over again. The year is hased on the rhythm of
this way: A circle drawn on the surface of the  the earth’s motion around the sun. The month is
carth through the north and south poles is called based on the rhythin of the moon's motion
a meridian. One fourth of a meridian is called a = around the earth. The day is based on the
quadrant. A quadrant was divided into ten mil- rhythm of the carth’s rotation around its axis.
lion equal parts. The length of one of these parts  The smaller units that we call an hour, a minute, 75
was chosen to be a meter. and a second are obtained by subdividing the J;‘*}\)
After seientists made careful measurenments average length of a day. d .\3\ ! . 1]
to find out how long the meter is. they measured We used to think of the day and its sul)di\'i—“\\"id HNS
its length hetween two seratches on a platinum sions as the best standard units, because the X‘f\ \
bar. This bar, kept in a vault in Paris. is the rotation of the earth was the most regular - >
official standard of length. A meter is about  rhythm we knew about. We now have better =/ l',
39.37 inches long, For measuring small dis-  units, based on very rapid rhythms inside mole- !
tances, it is subdivided into one hundred equal cules or atoms. These are used in molecular or
parts. Each part is called a centinieter. There  atomice clocks. One, the ammonia clock, uses as
are about 2} centimeters in an inch. its unit of time the period of a vibration inside
The unit of volinne in the metric system is the an ammonia molecule. This period is so small
cubic centimeter (abbreviated as cc.). It is the that there are 23,570 million vibrations a sec-
volume of a cube that is one centimeter high, A ond. With a molecular clock we can measure
thimbleful is nearly equal to 1 ce. The unit of  irregularities in the spinning of the carth.

NITROGEN ATOM

Le——

Above ore three rhythms in noture on which we base vnits of time.
£ Ore year — lime of one round Irip of the earth oround the sun.
One month — time of one round trip of the moon around the eorth.
One day - time of one complete turn of the earth around its oxis

b
In the ammonio malecule, there ore

23,870 million vibrations per second
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You can make a “picture” of a whole number by
using a line of checkers. To form the picture, use
as many checkers as the number tells you to.

A line of four checkers can be split into two
lines with two checkers cach. If we put these
lines under each other. the checkers form a rec-
tangle. Rectangles can also be formed with 6, S,
9 or 10 checkers. So we call these numbers ree-
tancle numbers. The rectangle for the number
10 has 2 lines that have 5 checkers in each line.
Notice that 2

ber is the product of smaller numbers.

5 == 10. Every rectangle num-

There are some numbers that canmot be split

in this way. For example. we cannot arrange 7

Numbers We Cannot Split

There is a simple way of finding out whether
a number is a rectangle or prime number. This
method is called the sieve of Eratosthenes, after
the Greek seientist who devised the system, two
centuries before the birth of Christ. Imagine all
the whole numbers, starting with 2, arranged in
order in a line. The number 2, which stands at
the head of the line, is a prime number. Now
count by 2's, and cross out every number you
get. This removes the number 2. and all multi-
ples of 2. They are numbers like 4. 6. S. and so
on, that form rectangles with two lines. Among
the numbers that are left, the mmmber 3 now
stands at the head of the line. It is the next prime

checkers in a rectangle. We can arrange them in

seven lines. with one checker in each line. But
then they are still arranged in a single line. only
now the line runs up and down instead of going
from right to left. The number 7 is not a rec-
tangle number. Numbers that cannot be pic-
tured as rectangles are called prime numbers.
This is because they cannot be written as the

product of smaller numbers.

number. Now cross out the numbers vou get
when you count by 3's. They are numbers like 9
and 13, that form rectangles with three lines.
Among the numbers that are left. the number 5
now stands at the head of the line. It is the third
prime number.

Continue in this way. removing from the line
the number at the head of the line. and all mul-
tiples of that number. After each tamily of
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numbers is removed, the number that stands at
the head of the line is the next prime mnunher.

Every rectangle mimber can be written as the
product of prime mumbers. Thus, 6 2 - 3.
In some cases a prime may have to be used as
a multiplier or factor more than once. For ex-
ample, 12= 2 % 2 & 3.

To find the prime Lactors of a nmmber, first
try to divide it by the smallest prime nunber,
2. 1f the division comes out even. then try to
divide 2 into the quotient. Keep on dividing by
2 until you get a quotient that 2 does not divide
into. Then try dividing by 3. Continue in this
way. using larger and larger prime nmmmbers as
divisors, until vou get T as a quotient. The
divisors you used in those cases where the divi-
sions came out even will be the prime factors of
the number. The exammple on the blackboard
shows how to find the prime factors ol S10.

How many prime numbers are there? This
question was answered over two thousand years
ago by the Greek mathematician Euclid. He
proved that the number of primes is unlimited,
by showing that no matter how many primes
vou find by the sieve of Eratosthenes. there are
always some primes that are larger than those
vou have found. In fact, he said. multiply all the
prime numbers up to and including the last one

vou found, and then add 1. If the mmuber you

get is prime, then it is a larger prime than those
von had found before. 1 it is not prime. then it
has prime factors. But none of the primes yon
had found before are factors, because when you
divide any of them into the munber, there is a
remainder of 1 (the 1 that you added). So the
prime factors of this number must be larger than
the primes vou had already found.

For example, suppose vou have found the

first four prime mumbers. 2.3, 5. 7. Tuke 2+ 3
5 7= 1. This number is 211. 1t is not divis-

ible by 2 or 3 or 3 or 7, because dividing by
them gives a remainder of 1. So. it it is not itselt
a prime. its prime divisors must be larger than

7.1t happens that 211 is a prime number.

page 17
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The Shapes
of Numbers

Numbers, like people, come in many shapes.
Some numbers form rectangles. There are others

that form triangles. squares, or cubes.

Triangle Numbers

We find the numbers that form triangles by
placing lines of checkers under each other. Put 1
checker in the first line, 2 checkers in the second
line, 3 checkers in the third line. and so on. We
get larger and larger triangles in this way. The
number of checkers in a triangle is called a tri-
angle number. The first four triangle numbers
are 1, 3, 6, and 10. What is the seventh triangle
number? One way to find out is to make the sev-
enth triangle. Then count the number of check-
ers in it. But there is a short cut we can use. The
drawing on the side shows the seventh triangle,
with another one just like it placed next to it
upside down. The two triangles together form a
rectangle, so the triangle number is half of the

rectangle number. The rectangle has seven
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lines, and eight checkers in cach line. So the ree-

tangle numberis 7 - S or 36. Half of that is 28.

; To find a triangle number, nmltiply the number
‘ of lines in the triangle by the next higher num-
' ber, and then take half of the praduet. To find
the eighth triangle number, take half of S~ 9,
Most whole numbers are not triangle num-
bers. But even those that are not triangle num-

NN NN
NN N NN

bers are related to them in a simple way. Each of

them is the sum of two or three triangle num-
bers. For example, 11 — 1 +10:12 3 4 3 +
6;13 =3+ 10:14 -1 + 3 + 10. Find three
triangle numbers that add up to 4S.

Square Numbers

We form a square by making a rectangle in
which the number of lines is the same as the
number of checkers in cach line. The simallest
square has only one line, with one checker in the
line. So the smallest square number is 1. The

next square has two lines, with two checkers in

9D

each line. So the second square number is 2

SQUARE NUMBERS

MULTIPLICATION TABLE . 4%

The square numbers are
faund an the diagonal

or 4. The third square nmnber is 3 3. or 9. To
get a square number. mubtiply any number by
itsell. The seventh square number is 7+ 7. or
49. We call it “seven-squared”™ and sometimes
write it as 7°. The hittle two written in the upper
right hand corner is a way of showing that the
7 is to be used as a multiplier twice. “Eight-
squared”is written as S7, and means § S, or 64.

The square numbers are relatives of the odd
numbers (numbers that canmot {orm rectangles
with two lines). If vou list the odd numbers in

order, stop when you like, and add those yon

117

1 2}

1 -5 i

1 4

have listed. the sum is ahvays a square number.
The drawing above shows you why.

Square nmubers are also relatives of the tri-
angle numbers. Add any triangle number to the
next higher triangle number. You always get a

square number. The drawing below shows why.

1 3 L}
l 3 L6 10
l’im?ﬂ NG o) 16 or 42
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Cubic Numbers

If we use bloeks instead of checkers. we can
arrange them in lines to form a square, and
pile the squares on top of each other in layers.
When the number of lavers equals the number
of blocks in a line, we have a eube.

The number of blocks in a cube is called a
cubic number. The smallest cubic number is 1.
The second cubic nmmberis2 - 2 - 2 0rS. We
call it “two-cubed.” and sometimes write it as 2°,
The little three written in the upper right cor-
ner shows that the 2 is to be used as a multi-

X

-
r
>

plier three times. The fifth cubic number is “five-
cubed.” Itis written as 3" and means3 = 5 - 3.
or 123, What does 6 mean? Compare the mean-
ings of 2" and 3.

Two-squared, which is written as 27, is also
called “two raised to the second power.” Two-

cubed, which is written as 2°. is also ealled “two
raised to the third power.” In the same way, 2°
is used as a short way of writing 2~ 2+ 2 < 2
(2 used as a multiplier four times), and is called
“two raised to the fourth power.” Multiplying
out. we find that 2 = 16. We read 2% as "two

raised to the fifth power.” What does it mean?

{ \
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The Puzzle
of the Reward

A wealthy king was once saved from drown-
ing by a poor farm hoy. To reward the boy. the
king offered to pay him sums of money in thirty
daily installments. But he olfered the boy a
choice of two plans of payient.

Under plan number 1, the king would pay $1
the first day. $2 the second day. $3 the third day.
and so on, the payment increasing by S1 each
day. Under plan number 2. the King would pay
Le the first day, 2¢ the second day, 4¢ the third
day. and so on. the payment doubling cach day.
Which plan would give the boy the greatest
reward?

We can answer the question by simply writ-
ing down the thirty installments under each
plan, and then adding them up. But there is a
shorter way of getting the answer. too. Under
plan number 1. the total reward in dollars is
the sum of all the whole numbers from 1 to 30.
This is simply the thirticth triangle number.
According to the rule given on page 19, we can
calculate it by multiplying 30 by 31. and then
dividing by 2. The total reward under this plan
would be $465.

Under plan number 2. the second installment
in cents is 2: the third installment is 2 - 2 or 27
the fourth installment is 2 - 2+ 2 or 2': each
new installment is a higher power of 2. and the
fast installment is 27, A short cut for caleulating
the total sum is to write down what the reward
would be if it were doubled. and then take away
the single reward from the doubled reward:

Double reward:
I A

+ 2% 4 2% 4 2"
Single reward:
1+24+2°+2°4+2° + 9% 4 2%
When we subtract. those installments that are
equal to each other cancel. Then we see that the
difference is 2 — 1. We can caleulate this num-
ber quickly by noticing that 2° = 32; 2" =
32 3 32 = 1024; 2° = 1024 = 1024
1024 = 1.073.741.524. Now we subtract 1 to
find the total reward: 1.073.741.523 cents, or
$10,737 415.23.

We see that an amount grows fast when it is
doubled repeatedly. Keep this in mind when
vou try to answer the next puzzle: An amoeba
is placed in an empty jar. After one second. the
amoeba splits into two amoebas. each as big as
the mother amoeba. After another second. the
daughter amochas split in the same way. As
cach new generation splits, the number of amoe-
bas and their total hulk doubles each second. In
one hour the jar is full. When is it halt-tull?

Splitting in two, or doubling,
omoebos reproduce rapidly
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Turns and Spins

There are many things that turn or spin. A
wheel of a moving automobile tarns. So does a
phonograph turntable. The carth spins on its
axis, and the minnte hand of a clock rotates
around the face. Since so many things turn, we
often have to measure the amount of turning.
An amount of rotation is called an angle. The
unit we use for measuring an angle is called a
degree. There are 360 degrees in one complete
rotation.

To measure an angle we use a protractor.

In the drawing above, a protractor has been
placed over the face of a clock. When the min-
ute hand points to the 12 on the clock, it points
to the zero on the protractor. As it moves away
from the 12, it points out the number of degrees
through which it has turned. Tt turns 30 degrees
to reach the 1 on the clock. It turns 90 degrees
to reach the 3. It turns 180 degrees, or half
complete rotation, to reach the 6.

There are two Lunds on the face of a clock. At

cach monment of the day there is an angle be-

tween them. The angle is the amount of rotation
needed 1o turn one hand to the position of the
other. At one o'clock, the angle between the
hands of a clock is 30 degrees. At two o'clock,
the angle is 60 degrees. What will the angle
between the hands be at half-past two? The
answer is printed upside down at the bottom of
this page.

The face of a clock is like a eircular race track
around which the minute hand and the hour
hand race against cach other. They both start
from the same position at 12 o'clock. But the
minute hand moves faster than the hour hand,
and gets ahead of it. The gap between them
widens, until the hour hand is a full Lap behind
the minute hand. When this happens, the two
hands are together again. What is the first time
after twelve o'clock that this happens? It is not
hard to figure out the answer.

The face of the clock is divided into 60 spaces.
The honr hand moves around the face at a speed
of 5 spaces an hour. The minute hand moves at
a speed of 60 spaces an hour. The difference
between 60 and 35 is 53. So, as the hour hand
falls behind the minute hand, the gap between
them widens at the rate of 55 spaces an hour. A
full lap contains 60 spaces, so the gap becomes a
full lap atter £ of an hour, or 1 {; hours. One

cleventh of an hour is 4

o 5
60 minutes, or 5 3
minutes. So the first time the hands are together

again is 5 minutes after one o'clock.
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The Right Angle

The angle that we use most often is an angle of
90 degrees. We call it a right angle. We nake
bricks with right angles in cachi corner so they
will stack easily in vertical piles. Then walls
stand up straight instead of leaning over, and
floors are level.

One way of making a right angle is to measure
out 90 degrees with a protractor. There are
other ways of making a right angle without using
a protractor at all. A bricklayer makes a right
angle with strings. Ile muakes one string hori-
zontal with the help ol a level. He makes the
other string vertieal by hanging a weight from
its end. A draftsman makes a right angle by

drawing two circles that cross cach other. Ile

e} e e O ) » IS

then draws a straight line hetween the points
at which the circles eross. and another line he-
tween the centers of the cireles.

In ancient Egypt, survevors made a right
angle by “rope-stretehing.” They used a long
rope that was divided into twelve equal spaces
by knots. One man held the two ends of the
rope together. A second man held the knot that
was three spaces from one end. A third man
held the knot that was four spaces [rom the
other end. When the rope was stretched tight,
a right angle was formed.

The simplest way to make a right angle is
to fold a picce of paper. Fold it once. Then fold

it again, so the crease falls on the crease.




Triangles and the
Distance to the Moon

Triangles may have different sizes and shapes.
but the three angles of any triangle always add
up to the swae amount. To see this for vourself.
cut a triangle out of paper. Then tear off the
three angles. Place them side by side. corner to
corner. and edge to edge. You will see that they
add up to exactly 150 degrees.

This is a useful fact to know. because it gives
vou a short cut for finding the angles of a tri-
angle. You can find all three angles. even if you
measure onlv two of them. For example. if one
of the angles is 40 dearees. and the second one
is 60 degrees. vou can find the number of de-
arees in the third angle without measuring it.
Simply add 40 to 60 and then subtract the result
from 1S0.

This short cut is especially helpful if the third
angle is out of reach. For example. suppose
that two men. standing at separate places on
the earth. look at the moon. The two men and
the moon form a triangle. There is nobody on
the moon to measure the angle up there. But
we can calculate it from the angles we can
measure on the earth. Knowing this angle is
important to astronomers. because it helps them
calculate the distance to the moon. If the moon
were further away than it is. the angle would
be smaller. If the moon were closer, the angle
would be larger. The moon is approximately
240.000 miles away from the earth.

Once we know angles A and 8, we con caleulate angle C.
Angle A -~ angle x — angle y. Angle B — angle z —
angle w. Angle y and angle w can be calculoted from
the positions of the observers, 0, ond 0,, on earth.
Angle x = height of moon above horizon as seen by 0,
Angle z — height of moon obove horizon as seen by 02



Figures
with Many Sides

A closed figure with straight sides is called a

solycon. The number of angles in a polveon is
ye Vi

! _ A+ B+ C= 180°
the same as the number of sides. A polygon with

three sides is a triangle. One with four sides is

called a guadrilateral. The names for some poly-
gons with more than four sides are shown in
the table below:.

If we join opposite corners of a quadrilateral,
two triangles are formed. If we add the angles
of both triangles we have the sum of the angles
of the quadrilateral. Since the angles of each
triangle add up to 150 degrees, the angles of
the quadrilateral add up to 2+ 150 degrees.
or 360 degrees. A five-sided ficure can be divided

into three triangles. so its angles add up to
3 180 degrees. A sivssided figure can be
divided into four triangles, so its angles add up
to 4 180 degrees. To get the number of
degrees in the sum of the angles of any polyzon.
take two less than the number of sides. and
then multiply this number by 150.

SUM OF ANGLES

NAME NUMBER OF SIDES IN DEGREES
TRIANGLE 3 180°
E_(;;JVA]:%II:‘;{EAP;H 4 27 180° 350"‘

PENTAGON ) 5 3 .180° 540° 7
- :EX;GON 6 - 4 - 180° = 720°
[ OC’Y;\E-ON 7 8 6 180°
7 ADEcrAGON 10 8 . 180°

A polygon may be divided into triongles,
each of which contains 180°. To get the
number of degrees in the sum of the angles
of any polygon, toke two less thon the

: ) N page 25
number of sides, ond multiply by 180 -
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Cunrumference = = « diameter

Cucumference = 27 - radws

Area = radws - radwus

CHORD

We see circles everywhere. The wheels of auto-
mobiles, the rims of cups, and the faces of nick-
els and quarters are all circles. The sun and the
full moon look like circles in the sky.

The distance across a circle, through its cen-
ter, is called the diameter of the circle. The dis-
tance around the circle is called its circumfer-
ence. Measure the diameter of a quarter, and
you will find that it is about one inch long. You
can measure the circumference of the quarter,
too. First wind enough string around it to go
around once. Then unwind the string, and meas-
ure it with a ruler. You will find that it is about
three times as long as the diameter. Measure
the circumference and diameter of the rim of a
cup and you will get the same result. The cir-
cumference of any circle is a fixed number times
the diameter. This fixed number cannot be writ-
ten exactly as a fraction or decimal, so we use
the Greek letter = (pi) to stand for it. It is almost
equal to 3% or 3.14.

Strange as it may seem, there is a way of cal-

. Circles and Toothpicks

culating the value of = by dropping a stick on
the floor. The floor has to be made of planks of
the same width. Use a thin stick, such as a tooth-
pick, that is as long as the planks are wide.
Simply drop the stick many times. Keep count
of the number of times you drop it and the mum-
ber of times it falls on a crack. Double the num-
ber of times you drop the stick and then divide
by the number of times it fell on a crack. The
result is your value of 7.

For example, if you drop the stick 100 times,
and it falls on a crack only 62 times, divide 200
by 62. The result is about 3.2. This is not a very
accurate value of =, The more times you drop
the stick, the more accurate a value you will
get. When you drop the stick, whether or not it
crosses a crack depends on where its center falls,
and how it is turned around its center. When
a stick turns around its center, it moves around
a circle. That is why =, which is related to meas-
uring a circle, is also related to the chance that
the stick will cross a crack.




REGULAR %"'\‘ REGULAR POLYGONS
EQUILATERAL \ QUADRILATERAL 4 AND THEIR CONSTRUCTION
TRIANGLE (SQUARE)
SIZE OF
Lnleis EACH ANG
manole 3 180 60
H SOUARE 4 360 90
|\
REGULAR REGULAR 1 REGULAR
PENTAGON HEXAGON PENTAGON 5 540 108
REGULAR
N HE x::.f\on ° 720 20

Equal Sides and Equal Angles

The symbol of the Office of Civil Defense is a
triangle inside a circle. The sides of the triangle
are all equal, and the angles are all equal. There
are other polvgons, too, that have equal sides
and equal angles. We call them regular poly-
cons. We come across them very often in every-
day life. Some wall tiles are regular quadrilat-
erals, or squares. Some floor tiles are regular
hexagons.

A regular polygon may have any number of
sides, starting with three. One way of making
a regular polygon is to caleulate the number of
degrees each of its angles should have, and then
make these angles with a protractor, separating
them with equal sides. The rule on page 50
about the angles of a polygon helps us make
this calculation. If the figure has three sides, the
angles must add up to 180 degrees. So each of
the three angles must be 60 degrees. If the
figure has four sides, the angles add up to 360
degrees. So each of the four angles must be 90

Regular hexagons, equilateral triangles, ond squares are »-f

7
aften used os flaar tiles because they fit tagether well {3

degrees. The angles for other regular polygons
are shown in the table above.

However, there are short cuts for making the
first tew regular polygons. The regular polygon
of three sides is called an equilateral triangle.
You can make it with a ruler and compass by
the method shown in the drawing. To make a
square, first make a circle. Fold the paper so
that the crease passes through the center of the
circle. Now fold the paper again, in order to
make a right angle at the eenter. Open up the
paper, and join the points where the creases
eross the circle.

To make a regular pentagon, cut a long strip
of paper of uniform width. Then tie it into a
knot as shown in the drawing, and press the
knot flat. To make a regular hexagon, draw a
circle, and then mark off pieces on the eirele,
with your compass open the same width you
used to make the circle. There will be six equal
pieces. Join their ends to make the hexagon.
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TABLE OF

SQUARE ROOTS

TABLE OF TABLE OF
SQUARES SQUARE ROQTS
N N2 N N N
i 1 1 1
2 4 4 2 2
3 99 3
4 16 16 4 4
Sy 05 25 5 5
6 36 36 6 6
749 49 7 7
8 64 64 8 8
9 8l 81 9 9
10 100 100 10 10
\ 10

Right triongles ore used here to

_ "y construct in succession lines whose

\ 9 - ’,- lengths are 54 \ 6, and so on.
See rule of Pythogoros, poge 34

Square Root

When two people are related to cach other, we
can describe the relationship in two opposite
ways. If Mr. Smith is Peter's father, we can also
say that Peter is Mr. Smith's son. In the same
way, when numbers are related to each other,
we can describe the relationship in two opposite
ways. We show how 4 is related to 2 by saying
that “four is two-squared.” We can also say it
in the opposite direction by sayving that “two is

the square root of four.” Since nine is equal to

“three-squared,” we can also say that three is
the square root of nine. We use the special sym-
bol \/ to mean “the square root of.” So, \/16 is
read as “the square root of 16, and it stands
for 4, because £+ — 4 = 4 — 16.

In the multiplication table on page 19, the
square numbers are those that appear on the
diagonal. We can list them separately in a table
of squares like the one that is printed above.

In this table, the whole numbers are listed in

VN
1.00
1.41
1.73
2.00
2.24
2.45
2.65
2.83
3.00
3.16



the first colimm, and the square of each nmmber
appears in the second column. 1 we interchange
the columins, it hecomes a table of square roots.
Then, for eacl number that appears on the left,
its square root appears to the right of it. But in
this new table, we no longer find every whole
number in the first colunm. The numbers 1, 4,
and 9. for example, are listed. but the numbers
2.3, 5,6, 7. and S are not. They do not appear
because they are not the squares of whole num-
bers, or, to say it in the opposite direction, their
square roots are not whole numbers. These
numbers have square roots that can be written
approximately as decimal fractions. Since 2 is
between L and 4. v/2 lies hetween /T and \/4.
that is, hetween 1 and 2. Since 7 lies between
4 and 9. /7 lies between \/4 and /9, that is,
between 2 and 3.

There are many methods for finding these in-
between square roots. We shall use a method
that may be deseribed as “getting the right an-
swer from a wrong guess.” To show how it
works. let us try it out first on a number that
is the square of a whole number. Suppose we

want to find the square root of 625, We take a

cuess, and say it is 20. Now we cheek onr guess
by dividing 20 into 625, 11 onr guess is right.
the answer we get by dividing should come out
the same as the divisor. But it doesn't. Tt eomes
out about 31 instead. But this gives us a hint
on how we can correct our bad gness. Now we
know that the answer should be between 20
and 31. If we try the number 25, we find that
it really is the square root of 625, By multiplying
25 times 25, we get 625,

Now let us use the same method to get an
approximate value for the square root of 10. We
take a guess and say it is 3. Dividing 3 into 10.0,
we get 3.3. So a better guess is the average of
3 and 3.3. This number is 3.15. Now, to test how
good a guess 3.15 is, we divide it into 10.0000.
The quotient comes out 3.17, so a better guess
would be the average of 3.15 and 3.17, which
is 3.16. This is the best answer we can get with
two decimal places. 1f we want a more accurate
answer with more decimal places, we simply
continue the process, checking each new guess
by dividing it into 10. Approximate square roots
of the numbers from 1 to 10 are shown in the

third table on the preceding page.

r )
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ORIGINAL PAIR OF RABBITS

'Isv generation

47}-

Svh

o [aclo-l sl ]t Lavl ¥ lov Jl il oo Lo Tae Lot (o0

Rabbits, Plants and the Golden Section

A man bought a pair of rabbits, and bred themn. many new pairs of rubbits did he get cachmonth?
The pair produeed one pair of offspring after To answer this question, let us write down in
one month, and a second pair of offspring after a line the number of pairs in cach generation of
the second month. Then they stopped breeding. rabbits. First write the number 1 for the single
Each new pair also produced two more pairs in pair he started with. Next we write the number 1
the same way, and then stopped breeding. How for the pair they produced after a month. The

Pine canes have Fibonacci w. o

ratios of 82' % (&

] pair

1 sair

2 poir

3 sair

5 rair

8 rair

]3 pair

21 peir



next month, both pairs produced, so the next

l = &l ’ l . l . Starting with a leaf such as aumber 1 1 the diagram, count the
number is 2. We now have three numbers in a o number of turns around the stem token by higher leaves in succession
. N iy h the leof here le . . e the furs
line: 1, 1, 2. Each number represents a new gen- until yau reach the leof there leaf 9 which 15 directly above the first
eration. Now the first generation stopped pro-
ducing. The second generation (1 pair) produced 9
1 pair. The third generation (2 pairs) produced %ﬂ
2 pairs. So the next number we write is 1 + 2,

or 3. Now the second generation stopped pro- Sth turn

ducing. The third generation (2 pairs) produced
2 pairs. The fourth gencration (3 pairs) produced
3 pairs. So the next number we write is 2 + 3, 4th turn
or 5. Each month, only the last two generations 7
produced, so we can get the next number by

adding the last two numbers in the line. The

numbers we get in this way are called Fibonacci 3ed turn

numbers. The first twelve of them are:
1.1,2,3,5,8,13,21,34.55,89, 144

They have very interesting properties, and keep 4
popping up in many places in nature and art. 2nd turn
Here is one of the curious properties of these
numbers. Pick any three numbers that follow
each other in the line. Square the middle num-
ber and multiply the first number by the third
number. The results will always differ by 1. For
examnple, if we take the numbers 3.5, 8, we get
5 =35 X 5 = 25, while 3 X 8§ = 24,
If we divide each number by its right hand

st turn

neighbor, we get a series of fractions:

1235 8 13 21 34 55 &9
1273 5 8 13 21 34 55 89 14

These fractions are related to the growth of
plants. When new leaves grow from the stem of
a plant, they spiral around the stem. The spiral

Count the number of spoces

turns as it elimbs. The amount of turning from 1 ' o g T T

" o e o ) rotio is the number of furns
one leal to the next is a fraction of a complete ! dwided by number of spaces
rotation around the stem. This fraction is alicays
one of the Fibonacci fractions. Nature spaces In the example above there are five camplete turns and eight spaces

from leaf 1 ta leaf 9. The Fibanacci ratio for this plant is- .
Fibonacci was an lialion mathemotician of the thirteenth century

_...Normal daisies usually have

‘ _,'r}:'jlhe Fibonacci ratia ;—l
[ page 31
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=z, The construction of the "golden section,” with the rotios

48 K 2 — . The lines of the five-pointed stor are
broken up in rotios: 5 — % EE- .

Living things often show surprising relotionships to the
golden section. The dicgrem of the cthlete fo the right

Ag_ (8 AE _ m _ a_ FC . :
shows ratios: ¢f — 3 -5 2 o ot . Rec

tangles obcd and wxyz are “golden rectongles.” The
some ratios are evident in the spacing of the knuckles and
the wrist joint of the average hond -

=

the leaves in this way so that the higher leaves
do not shade the lower leaves too much.

The same fractions come up in art. For ex-
ample, not all rectangles are equally pleasing to
the eve. Some look too long and narrow. A
square looks too stubby and fat. There is a shape
between these extremes that looks the best. In
this best-looking of rectangles the ratio of the
width to the length is about the same as the
ratio of the length to the sum of the width and
length. It is called the colden section.

There is a formula that gives directions for cal-
culating the golden section. The directions are:
Subtract 1 from the square root of 5. and divide
by 2. The square root table on page 28 shows
that the square root of 5 is approximately 2.24.
Subtracting 1. and dividing by 2. we get .62 as
an approximate value of the golden section.

Fibonacci fractions are close to the golden

section. In fact, the further out t]u"\' are in the

series, the closer they get to it. The fraction 2 is
closer to the golden section than 2. The traction
5 s closer than 2. and so on. In the design be-
low. the colden section was used several times

either to divide lines or to form rectangles.

tesy of The Museum of Modern Art

Mondrion's Block, White ond Red hos these rotios equol to

: (14 A8 8¢ EF 14 B GH __ KL __EM
the goldensection: R = —F —=FH =B — T —w —av—n



1\ .
A
d Bl ]
N
i
\
of 5
.
Getting through the Doorway
| |l
Sandy was building a large model airplane way after I put the wings on. The wingspread
out in the little shed which was his workshop. is 53 feet across, and the shed doorway is 3 feet
As he was about to glue the wings to the body wide and 35 feet high.”
of the plane, Sandy thought, "1 wonder if Tl We can help Sandy solve his problem by find-
be able to get the plane through the shed door- ing out how the sides of a right triangle are

related to each other. On a sheet of graph paper,
make a right triangle four units wide (first leg)
and three units high (second leg). Measure the
hypotenuse (the lougest side). It will be five

units long. Now make two more right triangles
G as shown in the diagram. Measure the hypoten-
o use of each triangle:
Leg | Leg | Hypotenuse
© + | 3 | 5
@ s | 6 | 10
e 12 | 5 | 13

Look at the numbers for each triangle. There
o doesn't seem to be any obvious connection
between them. But there is a hidden connec-

o
(o]
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7 tion. It shows itself when we square each

number:

(first leg)* (second leg)®

4X 4= 16 3 X3= 9

) 8§ X 8= 64 6 < 6 =36
12 X 12 = 144 5 X5=25

(hypotenuse)*

B 5% 5= 25 and 16 + 9= 25
10 < 10 = 100 64 + 36 = 100
13 X 13 = 169 144 + 25 = 169

These are examples of a rule discovered about
2500 years ago by a Greek imathematician
named Pythagoras. The rule says that in every
right triangle, the square of one leg plus the
square of the other leg equals the square of the

hypotenuse, or, (legf + (leg) = (hypotenuse .

PYTHAGOREAN THEOREM

102

62

52

P

42 8?

32

page 34 ] 2

This rule helps us solve Sandy’s problem. The
width, the height, and the diagonal of the shed
doorway form a right triangle. Its legs are 3 feet
and 5 feet. 3 + 5° = 9 4 25 — 34. Because
34 is the square of the diagonal through which
the airplane must pass, we must square the wing-
spread of the plane in order to see whether it
is smaller than the diagonal of the doorway.
The wingspread is 53 feet. (51)* = 5} X 51 =
Wocdh = 2 — 301 This result is less than
34, so the airplane will go through.

Here are three sets of numbers. Only two
obey the rule of Pythagoras. Which are they?

9 12 |
8 15
2 |15

1182

PYTHAGORAS

122



The Short Cut

There is an empty lot next to Sandy’s house.
The lot is 300 feet long and 100 feet wide. When
Sandy comes home from school, he cuts across
the lot diagonally. How much distance does he
save this way?

The rule of Pythagoras helps us answer this
question. The width, the length, and the diag-
onal of the lot form a right triangle. Expressed
in hundreds of feet, the legs of the right tri-
angle are 1 and 3. Using the rule of Pythag-
oras, we find that (hypotenuse)® -~ 17 — 3 —
1 + 9 — 10. Then the number of hundred feet
in the diagonal is \/10. or 3.16. (See the table
of square roots on page 28.) So the diagonal has
a length of 316 feet. Along the sides of the lot,
the distance is 400 feet. By taking the short cut,
Sandy saves a distance of S4 feet.

The Trunk

Sandy is storing in an old trunk scraps of
wood and metal that he thinks he may find a
use for later. The trunk is 12 inches wide, 30
inches long, and 1S inches high. What is the

longest piece of metal that can fit into the closed
trunk? The answer to this question is the length
of the diagonal of the trunk. We ean find this
diagonal by using an extension of the rule of
(width) + (height)f —
(diagonal 7. In this case we have 30° | 12° +
- 900 +
136S. The number of inches in

Pythagoras: (leugth?

15 = (diagonal)®. Then (diagonal)®
144 + 324
the diagonal is \/1365, or almost 37 inches.
(37 = 37 1369.)

0 \ J{ page 35
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Salt and
Diamonds

Many minerals form beautiful crystals with
smooth flat faces and sharp edges. In some of
these crystals, the faces are regular polygons
that have the same size and shape. with the same
number of polygons at each corer. A solid that
is built in this way is called a regular solid. There
are exactly five regular solids. Their names show
the number of faces that they have.

The tetrahedron (four faces) is made of tri-
angles, with three triangles at each corner. The
hexahedron or cube (six faces) ismade of squares,
with three squares at each comer. The octa-
hedron (cight faces) is made of triangles, with
four triangles at each corner. The dodecahedron
(twelve faces) is made of pentagons, with three
pentagons at each corner. The icosahedron
(twenty faces) is made of triangles. with five tri-
angles at each corner.

An interesting characteristic of all solids with
flat faces is that if you add the number of cor-
ners to the number of faces of any one of these

RY
‘i % Salt crystals are actually cubes
o

TETRAHEDRCN

OCTAHEDRON

ICOSAHEDRON

b,

HEXAHEDRON CUBE

( % Patterns far making the five regular salids

[ S5

DODECAHEDRON




solids, you will get the number of edges in the
solid plus 2. Try it with the cube shown in the
picture. There are eight corners, and six faces,
so the sum of these numbers is 144 Now count
the number of edges.

1f you look at table salt under & magnifying
glass, you will see that cach erystal is a cube.
A diamond erystal is an octahedron.

The regular solids make interesting decora-
tions. Some are now made for sale as paper-
weights. There are calendars printed on a dodec-
ahedron, with each month on a separate face.
You can make a model for each of the regular
solids by using the patterns shown here. First
make an equilateral triangle, a square, and a

regular pentagon on cardboard, and cut them

out. Then yon can make caclh figure as many
times as you have to, and in the right position,
by tracing around the cardboard form. When a
pattern is complete, cut it out, and make creases
on the lines. After you fold it up, seal it by

binding the edges with adhesive tape.

Theories That Failed

There are exactly five regular solids, no more
and no less. This fact has fascinated people ever
since it became known. It led some to believe
that the regular solids must have a special mean-
ing in nature. In ancient Greece, the philos-
ophers who were followers of Pythagoras con-
nected it with the theory that the universe is
built of four elements, earth, air, fire, and water.

Pythagoros is depicted on an ancient coin of Somos

1
| S
An old print showing the ancient theory of the uni- :ff:‘ ’? ’w
b i ‘s Th hicol Gl 3 N 5
verse. From Cuninghom’s The Cosmogrophico! Glasse 7 = chmneterrant'éLun

Arlurig;
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They said that earth is made of cubes, air is
made of octahedrons, fire is made of tetrahe-
drons, and water is made of icosahedrons. The
dodecahedron was the symbol of the universe
as a whole. We know now that the structure of
the universe is far more complicated. There are
about ene hundred chemical elements, not only
four. It is interesting, though. that crystals
formed by some combinations ol the clements
do have the shapes of regular solids.

The regular solids appear, too, in one of the
theories ol Johannes Kepler, the great astron-
omer of the sixteenth century. Kepler knew of
the existence of six planets: Mercury, Venus,
Earth, Mars, Jupiter, and Satwrn. He thought
that there weren't any others, and wondered
why there should be exactly six of them. Since
there are five spaces separating the six planets
from cach other, and there are five regular
solids, he thought there must be a connection
between these two facts.

Hte advanced the theory that the solids are
related to the spacing of the planets in this way:
He pictured the earth on a sphere around the
sun. Around this sphere, with its faces touching
the sphere, is a dodecahiedron. A larger sphere
passes through the corners of the dodecahedron.
Mars, Kepler said, is on this second sphere. A

tetrahedron surrounds the second sphere, and a

%} JOHANNES KEPLER

Johonnes Kepler proved thot o plonet
travels olong on ellipse oround the ®
sun. This model shows his theory of 1£’
planet spocing, later proved wrong

third sphere surronnds thie tetrahedron. On this
third sphere lies Jupiter. A cube surrounds the
third sphere, and a fourth sphere surrounds the
cube. Saturn lies on the fourth sphere. Then he
started again [rom the sphere that has the earth
on it, and worked inwards toward the sun.
There is an icosahedron inside the sphere, with
a fifth sphere inside the icosahedron. The fifth
sphere marks the position of Venus. In this
sphere lies an octahedron, which in turn sur-
rounds a sixth sphere, on which the innermost
planet Mercury moves.

Kepler's neat little theory has been spoiled
by the fact that his spheres don't quite match the
actual distances of these six planets from the
s, Besides, we now know of three other
planets: Uranus, Neptune, and Pluto. But, while
this theory failed, his other theories about the
motion of the planets were very sueeessful. Kep-
ler was the first to show that the orbit of each
planet is an ovalshaped figure known as an

ellipse. (See the drawing on page 3-4.)

-



JAPANESE
NESTING DOLLS

The knotted cords, or quipu, have been used
since oncient times by the Peruvion shep
herd for recording the numbers of his flock

Five Number Systems

A popular toy made in many countries is a nest
of dolls of different sizes. Fach doll except the
smallest one is like a hollow box. When you open
it, you find another doll inside. Our number
system is like this nest of dolls. Tt cousists of five
number systems, one within the other. The
oldest of these systems is the smallest one. Tt
grew up into the larger systems in several jumps,

as new numbers were added to meet new needs.

Numbers for the Shepherd

A shepherd uses numbers to count his flock.
The numbers used for counting, like 0, 1,2, 3, 4,

SYSTEM OF NATURAL NUMBERS

and so on, are ealled natural numbers. They
make up the smallest and oldest of the number
systems we use. An important fact about this
system is that we can add or multiply any two
natural numbers, and the answer will also be
a natural number.

There is a way of picturing the natural num-
bers as points on a line. Start at any point on
the line and then mark off more points at equal
intervals to the right of it. Attach a number to
each of these points by counting spaces from
the starting point. H we imagine the line extend-
ing indefinitely to the right, then there is a point

2 spaces.. . .

i 3 spaces

5 spaces



on it for every natural number. We ean use this
picture for doing problems in addition.

To add 2 + 3, place your finger at the 2, and
move it 3 spaces to the right. Then your finger
0 1 2 < 4 ) 6

‘“ [ =

]
Tands at 5, which is the answer. To add 3 1 4,

start at the 3, and move your finger 4 spaces to
the right. Under this scheme. you add a number
2 3 4 5 6 7 8
l | | | ] i

[ =

by moving that number of spaces to the right.
You can do subtraction on the line, too, by
moving to the left instead. To do the problem

5 — 2, start at the 5 and move 2 spaces to the

1 2 3 4 S 6

. B I
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SYSTEM OF INTEGERS

NEGATIVE INTEGERS “‘:fi‘:dﬁ

left. You fand at the point marked 3, so 3 is the
answer. But vou have trouble if you try to do
2 — 5. Start at the 2, and move 5 spaces to the
left. You land at a point that has no number

L j
xS KRR/
ﬁi ﬁf:

attached to it. This shows that subtraction is not

? 0 1 2 3
|
{

always possible in the natural number system.
Trying to subtract 3 from 2 is not as silly as

i
| 11 1
K 1 1

it may sound. 1f you have only two sheep in a
pen, vou cannot remove five sheep. But if you
have only two dollars, vou can lose five dollars,
and end up with a debt of three dollars. So while
the problem 2 — 5 may not arise for a shepherd,
it may for his bookkeeper. To be able to do such

an example, we need a larger number system.

[
1&— POSITIVE INTEGERS
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Numbers for the Bookkeeper

Our picture of the natural number system
suggests an easy way to enlarge it. So far we
have counted off equal spaces only to the right
of 0. Now let's count off equal spaces to the left
of 0. We have a new set of points marked off,
with a number attached to cach point. To dis-
tingnish them from the old nimmbers, let us put
a plus sign before each number that lies to the
right of 0, and a minus sign before each number
that lies to the left ot 0. The new enlarged sys-
tem is called the system of integers. In this
systen, the old natural numbers acquire a new
name. We call them positiv e integers. The other
numbers, which lie to the left of 0, are called
negative integers.

To do addition in the enlarged system, we
extend the scheme in which we add a number
by moving along the line. To add a positive
integer, which is the same as a natural number,
follow the old rule of moving to the right. To
add a negative integer. move to the left instead.

The example (=2) (+3) means start at =2

+1 £2 &S

e

£ o

and move 5 spaces to the right. The answer is

+1

R |
¥ ¢

2 =

=
+3. The example (=2) (—3) means start at

—2 and move vour finger 3 spaces to the left.
The answer is =3.
We do subtraction examples with integers by

turning every subtraction example into an addi-
tion example, according to this rule: To subtract
a number, add the wmumber that has the opposite
sien. Let us try this rule out on the example we
could not do in the natural number system, 2 —
5. The natural number 2 is the same as the posi-

tive integer + 2, and 5 is the same as +5. So we

rewrite the problem in this way: (+2) — (1 5).
According to our rule, subtracting ( +3) is the

£3

+ 2, move

same as adding (=3). So. starting at

5 spaces to the left. You land at =3, and that is
the answer. In the system of integers, every
subtraction example has an answer.

To multiply two integers, we think of one of
them as a multiplier. and look at it for directions
telling us what to do with the other one. First
we disregard the signs, and multiply as it we
were working with natural numbers. Then we
pay attention to the signs in this way. If the sign
of the multiplier is . it tells us to keep the sign
of the other number for the answer. If the sign
of the multiplier is —, it tells us to change the
sign of the other number. and attach it to the
answer.

(—3). think

=

of the —2 as the multiplier. Since 2 - 3 — 6,

For example, to multiply (=2}

the answer will he cither 6 or —6. To find out
which it is, we look at the signs. The sign of the
multiplier is —. so it tells us to change the sign
of the =3 and attach it to the answer. Then the
answer is -+ 6. With this rule. every multiplica-
tion example in the svstem of integers has an
answer that is an integer,

Division is like multiplication done  back-
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wards. When we say (=6 = (=2), it is like
asking, "What number multiplied by —2 will
give you 677 We find an answer to this ques-
tion, (-+3), without any trouble. But when we
say (+=3) — (+2), we run into difficulty. This
problem asks, “What number multiplied by

(=2) will give you (+327 In the system of in-
tegers. there is no such number. So we see that

division is not always possible in this system.
Numbers for the Carpenter

The edge of a carpenter’s ruler is like the line
on which we have pictured the natural numbers

(or positive integers!. The numbers 0. 1. :
and so on are placed at intervals of one inch,
starting from the left end of the ruler. When the
carpenter measures the length of a board, he
puts the zero of his ruler at one end of the board,
and looks at the position of the other end. If it
lies next to the integer S. he knows that the
length of the board is S inches. But sometimes
the end of the board lies between two integers.
In that case. neither integer gives a very good
answer.

To give a better answer for the length, we
mark off points between the integers to divide
the space Detween them into equal parts. To
attach numbers to these points. we need a new

kind of number. We enlarge our number system

N o | &
e 5 8

h 1 8 i | 4 = 4y

e
e ) ex
=

3 5

by putting in fractions. Halfway between S and
9 we put S1. Halfway between S and S we put
S1, and so on. The enlarged system is called the
system of rational numbers. Every rational num-
ber can be written as a fraction in more than
one way. For example, 1 can also be written as

tor . The integers belong to the system of
rational numbers, and they. too. can be written
as fractions. The integer 2, for example, can be
written as § or%.

In the systern of integers, we could not find
an answer for the division problem 5 = 2. But
in the system of rational numbers we do find an
answer to this problem. It is the fraction2-. In
the system of rational numbers, division by a
number that is different from zero is always

possible.

A Number for Every Point

To picture the natural number system. we
chose a point on a line and called it 0. Then we
attached the other natural numbers at equal
intervals to the right of the 0. The system of
integers zave us more numbers, so that we could
attach some at equal intervals to the left of the
0. The system of rational numbers gave us still
more, so that we could plice numbers between

the integers. Now we have numbers distrib-

1
s,
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uted rather thickly along the number line, with
J each number attached to a point. Does the ra-
tional number system give us enough numbers
to assign a number to every point on the line?

Over two thousand years ago, the mathemati-

cians of ancient Greeee already understood that
it does not. It we make a square, each of whose
sides has length 1. we can figure out the length
of its diagonal by the rule of Pythagoras (see
page 34). We find that the length of the diagonal
is \/2. The diagram above shows how we can
locate a point on the unnber line whose distance
from 0 is equal to this length. But it can be
shown that there is no rational number that is
equal to /2. So. in the rational number system,

This symbol, meoning “one port of .. ., wos used

by Egyptians to express a froction. It was used
in combination with a number, os shown below:

there is no number we can attach to this point.
So. we have to expand onr number sy stem again. 3
The clue to this next extension ol the number
system is found in another way in which rational
numbers can be written. We can convert a coni-
mon fraction into a decimal fraction by means
of division, as shown in the drawing below. The
& }can

be written as .25, But to write the fraction }

fraction } can be written as 5. The fraction
we
need the decimal 33333 .. that has an endless
chain of 3's. We call a decimal like this one an
1

infinite decimal. The fraction § can be written
as an infinite decimal. too. by writing it as
500000, . .. The fraction -2 cun be written as
the infinite decimal (15151515, . ..

If we examine the infinite deeimals we get
from rational numbers by long division, we find
an interesting teature in them all. Each ends up
as a repeating decimal. For example, the deci-
mal 49999 . . repeats the Y over and over again.
But there are sone infinite decimals that do not
have a repeating pattern. We get a larger munuber
svstern by using oll infinite decimals. whether
they repeat or not. This expanded system, made
up of all infinite decimals, is called the real nuni-
Der systen. Tn this system, we finally get a num-

ber for every point on the number line.

SIS

— - 33[5.0000000
33

170
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Numbers for the Electrician

The electric current brought to vou in wires
by the electric company is produced in coils of
wire that are rotating in a magnetic field. To
study the changes in the current. electricians
find it convenient to use numbers to represent
otations. For example. a rotation of 360 degrees
on e represented by the number 1. A rotation
ol 180 degrees can be represented by the num-
ber - 1. Performing two rotations. one after the
other, is like multiplving their numbers. Thus,
(=1 (=1

that two rotations of 150 degrees are

1, which checks with the fact
like a
single rotation of 360 degrees.

In this scheme. what number can stand for
a rotation of Y0 degrees? Whatever it is. when
should

it is multiplied by itself. the product

come out —1, which is the number that repre-
sents a rotation of 150 degrees. But no real num-
ber, when nltiplied by itself, can give —1 as

a product. This is so because of the rules for

Rototion through 180° multi-
plies eoch number by —1

Two 90° rotations equol
one 180° rototion

multiplying real numbers. The number 0 times
itself gives O as a product. A positive number
times itself gives a positive number as a product.
A negative number times itself also gives a posi-
tive number as the product. So no real number
times itself can give the negative number —1 as
a product. This means that there is no real num-
ber that can represent a rotation of 90 degrees.
To be able to represent every rotation by a num-
ber we have to extend the number system once
more. The enlarged number system is called the
complex number system.

In this system. the number that stands for a
90 degree rotation is represented by the letter i,
and has the property that i - i = —1. Every
complex number is written as a real number
plus i times another real number. A rotation of
15 degrees is written as } 2 — i\ 2. When
we multiply this number by itselt. and make use
of the fact that \ 2
—1. we find that the product is i. This checks

V2 =2 whilei « i

with the fact that two rotations of 45 degrees
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combined are equal to one rotation of 90 decrecs.

To picture real numbers we used the points
on u line. To picture complex numbers, we need
all the points of a plane. The picture is formed
in this way. First draw a horizontal line in the
plane and put the real numbers on it. Call this
line the axis of reals. Now rotate the line 90 de-
grees counterclockwise. The rotation multiplies
every real number by the number i. In this way,
we attach to each point on the vertical line
through 0 a real number multiplied by i. These
products are called imaginary numbers. and the
vertical line is called the axis of imaginaries.

Now. in order to attach a number to any point
in the plane, draw a horizontal line and a ver-
tical line through that point. The vertical line
points out a real number on the axis of reals.
The horizontal line points out an imaginary
number on the axis of imaginaries. The sum of
these two numbers is the complex number at-
tached to the point,

Now we have the complete nest of five num-
ber systems. Listing them from smallest to larg-
est. with cach number svstem lving within the
next larger one, they are: natural numbers, in-
tegers. rational numbers, real numbers, and

complex numbers.

Two 45° rotations equal
one 90° rotation
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Miniature Number Systems

Now that we have seen five distinct number
svstems, it will not be surprising that there are
many more. Some of them are little toy number
systems, containing only a few numbers. We
shall find examples of them hidden within the
natural number system.

A System with Two Numbers

Some natural numbers, like 0, 2, 4. 6, S, and
so on, are divisible by 2. They make up the
family of even numbers. Those that are not
divisible by 2, like 1, 3, 5, 7. and so on, make

> ® © ® ® & @

page 16

up the family of odd munbers. We can use these
two families to build a number system that has
only two numbers in it. In this system, each
family is thought of as a single number, and we
have a way of adding two families. or multi-
plying two families. To add two familics, pick
any member of each family, and add them.
Then see what lamily the sum belongs to. For
example, to add the odd family to the odd fam-
ily, add an odd number to an odd number. The
result is an even number. So the odd family
plus the odd family equals the even family. In
the same way, we find that odd plus even equals
odd; even plus odd equals odd: and even plus
even equals even. These results can be sum-
marized in the following addition table.

even odd even j odd
even even | odd even | even i even
odd | odd | even odd even : odd

To multiply two families, pick a number from
each family and multiply them. Then see which
family the product belongs to. The results are
shown in the multiplication table above.

In these tables we use the words odd and
even as symbols for the odd family and the even
family. We can also use the numerals 1 and 0
as symbols for the families. When you divide
an odd number by 2, the remainder is ahvays
equal to 1. When you divide an even number
by 2, the remainder is always equal to 0. So we
can use the remainder that belongs to each fam-
ily as the symbol for the family. In this scheme,
0 stands for even. and 1 stands for odd. Using
these symbols, the addition and multiplication
tables for our little system look like this:

Number System with Only Tico Nwumbers

0|1 : (O I
0| 0] 1 0| 0} 0
1 110 1 0 1

A System with Three Numbers

To get a number system with three numbers,
we break the natural number system into three
families, which we shall call 0. 1 and 2. The 0
family this time consists of all natural numbers
that give a remainder of 0 when you divide by
3. The members of this tamily include 0, 3, 6,
9, 12, and so on. The 1 family consists of those
numbers, like 1, 4, 7, ete., that give a remainder



ol 1T when you divide by 3. The 2 family con-
sists of numbers like 2, 3, 8, ete., that give a
remainder of 2 when you divide by 3. We add
or multiply these fanilies by the same rules used
for the odd and even families: Add or multiply
any representatives of the families. and then
find the family the sum or product belongs to.
Following thiese rules, we get the tables below,

Number System with Only Three Numbers

[ o 1] 2 o 1] 2
ol o] 1] 2 ol ol oo
1] 1] 2] o 1o 1] 2
2| 2| o 1 2l o] 2|1

tf we divide the natural numbers by 4, the
possible remainders are 0, 1, 2, and 3. By put-
ting into a single family all the numbers that
have the same remainder when you divide by 4,
we now get four separate fumilies which we may
eall 0, 1, 2, and 3. If we divide by 5, the possible
remainders are 0. 1, 2.3, and 4, and we get five
different remainder families. So division by 4
leads to a number system with four numbers in
it; division by 5 to a number system with five

numbers. Here are tables for these systems:

Number System with Ouly Four Numbers

[o] 1] 2|3 of 1] 2] 3
ofo|1]|2}3 ololo oo
111 2]3]0 1] 0} 73 )&
2121301 2] o] 2}o0]2
3|3fofr]2 3fol3]2]1

Number Systen with Only Fice Numbers

loli1]2]3]4 of112|3(4
ofo]l1|213[4 olofolofo]fo
11 21t3f4fo 1joj1]2]3]4
212(3]4lofn 2lof2)l4(1]3
3f3al4alol1]2 3lof3]1] 2
4falofl1]2]s 410l4]3]2]

In each of these miniature number systems
made up of renainder families, the tables show
us how to do addition and multiplication. We
find from the addition tables. too. that subtrac-
tion is always possible i them. For example,
in the number system with only five numbers,
4 We in-
terpret this problem to mean “What nmnber

let us try the subtraction problem 1

added to 4 gives 1 as the suim?” The table shows
that 4 + 2 I,sol 4 =2
What is 1 - 3 equal to in the system with five

numbers? What is it equal to in the system with

in this system.

four numbers?

While subtraction is always possible in all the
number systems made up of remainder families,
division by « number different from zero is al-
ways possible only in some of them. In the
number system with five numbers, for example,
we can find an answer to the problem 1 - 2.
hiterpreting it to mean “What number times 2
equals 177 we find that the answer is 3. But,
in the number system with four numbers, there
is no answer to this problem, because. in this
system, no number times 2 gives 1 as a produet.
It turns out that division by a number different
from zero is always possible in a number system
built out of remainder tamilies only if the nuww-
ber of faniilies (which is the sane as the divisor
used to form the tumilies) is a prime nunber.

There is a way of picturing these small num-
ber systems by means of points. Just as the nat-
ural number system can be represented by
points on a straight line, each of these little sys-
tems can be represented by points on a cirele.
Addition ean be carried out in the pictures by
maoving clockwise. Multiplication ean be ear-
ried out by repeated addition. For example, to
multiply 3« 2, start at 0 and move clockwise
in three steps, moving two spaces in cach step.
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Mathematics in Nature

%

2, Snowflake crystal

)
5

Nature has made some beautiful models of the

curves and polyeons and solids that are studied
in mathematics. We find them in the sky, on
the carth, and in the sea. Some are living things:
others are dead matter.

At the top of this page we see a snowflake.
All snowflakes, when cryvstallized, are built
around the same form. the regular hexagon.

| Next to the snowflake we see the hexagon again.

W
({iﬂ Only squares, equilateral iriangles, or regular hexagans can be fitied together - a 11011("\‘(‘()11111 built I).\ bees. Each lloxugon
& . as tiles. In the bee’s cell, Nature has chasen the raamiest shape far starage in th(, comb is a (.(,]] in \\'llicl] t]](x ])(.(,5 store their

honey. The cells fit together like the tiles on a
bathroom floor.

It is no accident that the cells in the honey-
comb have the shape they do. The shape of the
cells must permit three or more of them to fit
together at a corner. The angles that lie at one
corner must add up to 360 degrees to fill the
space around it. So a regular polygon may serve
only if the number of degrees in one of its angles
is an exact divisor of 360.

An equilateral triangle might serve. because
cach of its angles contains 60 degrees. so six tri-
angles can fit together around a point. A square
might serve, because each of its angles contains
90 degrees, so four squares can fit together
around a point. A regular pentagon would not
do. because each of its angles contains 108
dearees. Three of these angles lving side by side
would not be enough to fill 360 degrees. Four
of them would be too much. A hexagon can do
the job. because each of its angles contains 120
degrees, so three hexagons fit together at one

— -

%»‘ The seeds of the sunflawer are arranged in o

« ;‘»:“ \ 4 pattern farmed by spirals winding fram its center
rage 45 %3 i —
pag v




corner. No regular polygon with more than six
sides would do, hecause then cach angle would
contain more than 120 degrees, and three or
more of them could not possibly fit together in
the 360 degrees around a point. So we see that
the only regular polygons that may serve as cells
are equilateral triangles, squares, or regular hex-
agons. Of these three possibilities, the regular
hiexagon is best, because it stores the most honey
between the walls of wax.

Beneath the honeyeonib is a shell of the nau-
tilus, an animal that lives in the sca. It has been
cut open to show the chambers inside. The
curve that winds out from the center is called a
spiral. At the bottom of the page we see many
spirals like it, winding out in two directions from
the center of the giant sunflower.

In 1943 the ground opened up in a cornfield
near Parieutin, Mexico. Hot lava rose up out of
the ground and spread over the field. Layer fell
on layer, and as the c¢inders rolled to the ground,
they tormed a perfect cone.

In the sky above, the moon. the sun, and the
stars are all spheres. We can see the spherieal
shape clearly in the moon, which is nearest to
the earth.

We have already seen some regular solids in
dead matter, like crystals of diwmond or salt.
There are more of them among living things,
too. The pictures on the side show the skeletons
of some radiolarians. They are tiny animals that
live in the sea. The floors of the Pacific and
Indian Oceans are covered with sueh skeletons,
left by animals that lived millions of years ago.
The skeleton at the left is an almost perfect
octahedron, or eight-faced solid. The one on the
right is a dodecahedron, with twelve faces. The
third is an icosaledron, with twenty faces.

Wiy
%4 Cinders from an erupting volcano
¢ roll to the ground to form a cone

\"7
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The sun, the moon ond the stors ore spheres
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4 These skeletons of rodiolarions, which are tiny
sea animols, ore shoped like regular solids
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We know that T+ 2 = 2 1,2 + 3 Instead of writing each statement separately.
3+ 2 and4 + 7 -7+ 4 We can make any we can write them all at once in this way. Let
number of true statements like this. Simply the letter ¢ stand for any number. Let the letter
write a first number plus a second number on b stand for any other number. Then we simply
one side of the equals sign. On the other side of write: @ - b = b — a. When we do this, we
the equals sign let the numbers change places. have taken the step from arithmetic to algebra.
N TH TRIANGLE NUMBER = ANGLES OF A TRIANGLE 3
B
A*B*"C 180
nin - 1)
2 /
L \
A C
ANGLES OF A POLYGON ANGLES OF A REGULAR POLYGON
1 =NUMBER OF SIDES IN A POLYGON 11 =NUMBER OF ANGLES
5=SUM OF ITS ANGLES /A =NUMBER OF DEGREES IN ONE ANGLE
n—2J 180
s={n-2 180 A -

P c/ C:CIRCUMFERENCE
AN Al ¢ /
N [ D D —ciamerer
al . i }
. \ , C-7D
N N //
- m“g’”””" ' S (7T — 3.1416)
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In algebra, we let letters stand lor nmumbers.
It is Jike using a code Tor saving many things in
a small space. In this code, we do not nse
to mean “tines,” because we may mix it up with
the letter x. We show multiplication by using
a dot instead. or by writing the multipliers side
by side with no symmbol between them. In this
code, @ + bcans: “the wnnber that o stands
for, multiplied by the number that b stands for.”
When the same multiplier is used over and over
again, we use the same short way of writing the
product that was used for square nmnbers and
cubic numbers on pages 19 to 20, When we
write x'. we mean xvxex. Some of the rules
described i earlier sections of this book are
shown in code on the preceding page.

[ere is a statement in code that is not always
true: x + 2 5. Itis not true it x stands for 7.
because T+ 2is not 5. It is true v stands lor
3. A statement like this is called an equation.
To solve the equation wieans to find the number
which makes it a true statement.

An equation resemibles a halance scale. The
¥+ 2s supposed to halance the 5 the way
equal weights balance on a scale. If we change
one weight on a scale, we can make the weizhts
balance again by changing the other weight in
the same way. This is a hint on how we can
solve an equation: Simply change both sides of
the equation in the same way. Since 5 is the
same as 3+ 2, the equation x 2 5 says:
x 2 =3+ 2. IF we take away 2 {rom both
sides, they will still hakinee cach other. Tn this
way we find that x — 3is the answer. To solve
the equation 3x = 12, we divide both sides by
3, and we get ¥ — 4 as the answer.

Can vou solve the equation 3x t = S? To
find the answer. add 4 to each side ol the equa-
tion. and then divide each side by 3.
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Your Number in Space

Many big cities are divided into blocks by
streets running in one direction. and avenues
crossing them at right angles. In these cities vou
can locate any street corner by mentioning two
nuntbers: the number of the street and the num-
ber of the avenue that cross there. In the map
on the right we can describe the corner marked
by the cross by using the pair of numbers (3.4),
it we acree that the first is the street number
and the second is the avenue number.

In the same way. we can locate any seat in a
classroom by mentioning two numbers: the row
number and the seat number. In the classroom
in the picture, the rows are numbered from
right to left., and the seats are numbered from
front to back. The teacher has just said to
the class, “Raise vour hand if vour row number
and seat number add up to 3.7 The locations of
the pupils who raised their hands are given by
2.3).(3.2), and (4.1),

the pairs of numbers. (141, (2.3). (3
where the first number in each pair is the row

number. If we let r stand for row number. and
s stand for seat number. we can hst these loca-
tions in the table shown on the blackboard. We
can also describe these locations by the equa-
tion: r + s = 5. Notice that the pupils whose
hands are up are arranged in a straight line. The
equation is a description of the locations on this
line. Also, the hne is a picture of the number
pairs described by the equation.

This is an example of an important discovery
made in the seventeenth century by the great
French mathematician and philosopher René
Descartes. An equation with two unknowns can

be pictured by means of a line (straight or
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curved), called a graph. Also, every line is de-
scribed by means of an equation. The hranch of
mathematics that grew ont of this discovery is
called analytic ceometry.

The connection between a line and its equa-
tion is usually shown in this way: The paper on
which the line is drawn is divided into squares
by two sets of lines that cross each other. like
streets and avenues. To number these lines, we
pick out one line in each set and call it the zero
line, or axis. Then we number the lines by count-
ing boxes away from cach axis, in both diree-
tions. In one direction we attach a plus sign to
each number. In the opposite direction we use
a minus sign, so we can tell them apart. Then
cach intersection is deseribed by a pair of num-
bers, telling you how far it is right or left and up
or down from the axes. We call the right or left
number the x number. We call the up or down
number the y number. Numbers with [ractions
describe points that are between the lines.

X NUMBER OF INCHES IN WIDTH
Y NUMBER OF INCHES IN LENGTH

LD S X
if x X 0
if X 1 if X
if < 7 Y | if X Y
if X 3 if X Y

The onswer to the puzzle is found ot the
point where the red and yellow lines cross

The graphs of eqnations give us a convenient
way of solving some problemis by means of a
picture. To show how this is done, let s solve
this puzzle: The length of a rectangle is two
inches more than the width, and the sum of
the length and width is 10 inches. Find the
length and width.

We begin by letting y stand for the number
of inches in the lenath. while x stands for the
number of inches in the width. The fact that the
length is two inches more than the width leads
to the equation y — v + 2. The graph of this
equation is shown in red in the diagram below.
The fact that the sum of the length and width
y = 10,
The graph of this equation is shown in vellow.

is 10 inches leads to the equation x +

The two graphs cross at a single point. At this
point, v = 4and y 6. This is the only pair of
numbers that satisfies both equations and gives
an answer to the puzzle, The width is 4 inches,

and the length is 6 inches.
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Bridges, Planets and Whispering Galleries

There are three graphs printed above. together
with their equations. The names of these curves
are ellipse. parabola. and lyperbola. We meet
them often in nature and in things we make.

An earth satellite, launched with a speed of
15.000 miles per hour. follows an ellipse around
the earth. The paths of the planets around the
sun are cllipses. The paths of some comets are
parabolas.

To make an ellipse quickly and accurately,
place two thumbtacks through your paper on a
drawing board. Put a closed loop of string
around the tacks and hold the poiit of your pen-
cil against the string, inside the loop. Then
nove vour pencil so that the string is always
pulled tight. The points where the tacks are, are
called the foci of the ellipse.

You can also nake an ellipse by folding paper.

First make a cirele on transparent paper. Then

Ellipse formed by tiiting o glass !

choose a point I inside the cirele. but not at
the center. Fold the paper over so that P falls
on the circle. and press the erease flat. Now
move I around the circle. a short distance cach
time. and make a new erease for cach position.
After P has cone around the cirele. vou will find
the creases surround an ellipse. You can also
make a hyperbola in the same way if vou choose
the point P outside the circle. and follow the
same procedure vou did to make the ellipse.

An ellipse that spins around the line throngh
its foci sweeps over a surface shaped like a foot-
ball. Some rooms. like the Mormon Tabernacle
in Salt Lake City. Utah. have domes with this
shape. In these rooms. if a person whispers
near one focus, he can be heard at the other
focus. although he canmot be heard at many
places in between.

This happens because the dome catches any
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The orbit of each planet is an ellipse.
The sun is at one focus of the ellipse
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In o seorchlight, a parabalic reflectar is
used to send out parallel rays. In a reflect-

parallel roys ond bring them to a focus

The b

t of an eorth aotellite—the mooun

cr man’s armficial satellites—i on ellipse

LIGHT

SCURCE

FOCUS

ing telescape, however, 1 is used to catch

sound coming from one foens and reflects it
back to the other. In this way. the sound that
was scattered and weokened as it spread out
from one foeus through the chamber is concen-
trated at the other focus and restored to almost
its original loudness.

Here are some more places where we find

these curves:
When you tilt a glass of water, the boundary {Sf The shadow on the wall made by a evlindrical
& ¥ Lunpshade is a hyperbola.

of the water surface is an ellipsc.

PARALLEL RAYS

PARALLEL RAYS F

REFLECTOR

The path of a ball thrown through the air is
a parabola. The cable supporting the roadway
of a suspension bridge is a parabola. The road-
way is a parabola, too. and a cross-section of a
searchlight reflector is a parabola. The same
tvpe ol parabolic reflector is used in solar fur-
naces to catch sunlight falling on a large area

and concentrate it in a small spot.
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per at F,, after being reflected
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cone of light fram the lamp shade is |
cut by the flat surface of the wall g

In many domes such os this ane, a whis-
twice

by the dome, can be heard clearly at F»
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Shadow Reckoning

o

units

3
units

If you stand out in the sunshine betore sunset,

vou cast a long shadow. Your shadow is like a

picture of vou. rolled flat. painted black, and

stretched out on the ground. If you look at the
shadows of other objects, vou see that they are
stretched in the same way. If you are 5 feet tall.
and your shadow at some moment is 10 feet
long, we compare these lengths by writing the
fraction & . We call this fraction a ratio. Since
the shadows of all objects are stretched in the
same way, you get the same ratio when you
compare the height of anything with the length
of the shadow it casts at the same time. This fact
leads to a way of measuring the height of a tall
object by measuring its shadow instead.

Let us note a simple fact about equal ratios.
The ratios ), and [ are equal. because they
both reduce to 3. If you multiply the 5 by the
14, vou get 70. If you multiply the 10 by the 7,
vou get 70, too. In equal ratios. you get equal
products when you multiply the munerator of
one ratio by the denominator of the other.

This rule kelps us do shadow reckoning. If a
tower casts a shadow 15 feet long at the same

15

units

time that a 2-foot stick casts a 3-foot shadow,
how high is the tower? Let us call the height of
the tower x. When we compare it to the length
of its shadow, we get the ratio & . For the stick,
the ratio of height to shadow is 3. To show that
they are equal we write ¥ = 3. The rule tells
us that 3.x — 2:15. or 3x == 30. Dividing both
sides by 3, we find that x = 10. So the height
of the tower is 10 feet.

Problem: 1f a flagpole casts a shadow that is
S feet long at the same time that a 3-foot stick
casts a 2-foot shadow, liow high is the flagpole?
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Vibrations, Wheels and Waves

The world is full of vibrations which create
disturbances in space. When these disturbancés
move, they move in the form of waves. When
a ship glides across a lake, it sends water waves
rolling away from its prow. When we speak, the
vibrations of our vocal cords send sound waves
out into the air. Light consists of waves sent out
by vibrations within the atom.

To study these different kinds of waves, scien-
tists compare them with a model wave that is
casily produced with the help of a turning
wheel. They find that the simplest of the waves
are just like the model wave. The more com-
plicated waves are often made up of several
simple waves that are combined.

Let us sce liow a turning wheel can produee
the model wave. First we pick out one spoke
of the wheel, and watch it as the wheel turns
with a steady speed. We shall pay special atten-
tion to the point on the spoke that is at the rim

of the wheel. In the diagram this point is called
P. As the wheel turns. this point is sometimes
above the level of the center of the wheel, and
sometimes below it. It Kkeeps moving up and
down with a steady rhythm. This up and down
motion is the vibration we shall use to form a
model wave.

Let us trace out the motion ol the point P
as the wheel makes one full turn. When the
spoke is horizontal, P is on the sume level as the
center of the wheel. So its height above this
level is 0. As the wheel turns, the height of P
at first increases. The height is greatest after the
wheel has turned 90 degrees, and the spoke is
vertical. Then the height decreases as the wheel
turns some more. When the amount of turning
reaches 150 degrees, the spoke is horizontal
again, and the height of P is 0 once mnore. Then
P begins to fall below the level of the center of

the wheel. 1t reaches its lowest position when
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the wheel has turned 270 degrees. Then it ris

S
again. After one complete turn of 360 degrees,
the rising-falling cyele starts again.

The greatest height that P ever reaches is the
length of the spoke of the wheel. In each posi-
tion, the heiglit it reaches may be described as
a fraction of the length of the spoke. This frac-
tion is obtained by dividing the height of P by
the length of the spoke. When P is above the
level of the center, we represent its height by
a positive number. When P is below the level
of the center, we represent its height by a nega-
tive number. So the fraction, too, may come out
positive or negative. The size of the fraction
depends on the angle through which the wheel
has turned, starting from the position in which
the spoke is horizontal.

To show that the fraction is related to the
angle, we mention the angle in the name that
is given to this fraction. It is called the sine of
the angle. When the angle is 0 degrees. the
height of P is 0, so the sine of 0 degrees is 0.
When the angle is 30 degrees. measurement
shows that the height of P is half the length of
the spoke. So the sine of 30 degrees is } (or .50).
When the angle is 60 degrees, the height of P
is about .87 times the length of the spoke, so
the sine of 60 degrees is about .S7. When the
angle is 90 degrees, the height of P is the same
as the length of the spoke, so the sine of 90
degrees is 1. The values of the sine for other
angles can be calculated the same way.

Now we use the motion of P to produce a

wave. First we drive a nail into the spoke at P.

We insert this nail in a long groove eut into a
horizontal bar that is free to slide up and down,
cuided by a vertieal post that supports it. As
the wheel turns, the nail moves to the left or
right in the groove, and pushes the bar up or
down. The up and down motion of the bar
simply copies the up and down motion of the
point P. Now we attach a pencil to one end of
the bar, and move a sheet of paper to the right
as the peneil point presses against it. As the
wheel turns, the pencil traces a wavy line on
the paper. This line is called a sine wave.

The drawing below shows some waves on the
face of an oscilloscope tube. A stream of clec-
trons is moving back and forth in the tube, pro-
dueing a glowing line on the face. The wave is
produced by making the stream move up and
down as it moves back and forth. Scientists
study different vibrations by converting them
into electrical signals that they can feed into an
oscilloscope tube. Then they examine the shape
of the wave formed on the face of the tube.

t'ae:wm R e — t".\:—‘
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Our Home the Earth

The carth is a sphere. We desceribe the position
of any point on its surface by means of two
numbers, called the latitude and longitude of
the point. They fix the position of a place on the
carth in the same way that the numbers of a
strect and avenue that cross each other fix the
position of a street corner in a big city. They
identify the place as the intersection of a lati-
tude civele and a weridian.

Latitude Circles: The earth is spinning like a
top. The North Pole and South Pole lie on the
axis around which it spins. A circle aroond the
carth. halfway hetween the poles, is called the
equator. The latitude circles girdle the earth
like hoops around a barrel. Points that are on
the sane latitude circle are the same distance
from the equator. The latitude of a point is the
number of degrees through which a radius of
the carth would have ta turn, north or south,
to move from the equator to the latitude circle.

Meridians: The meridians are half-cireles that
join the North Pole to the South Pole. The zero
meridian is the one that passes through Green-
wich, England, where a naval observatory is

ORTH POLE

—

y

Y
SOUTH POLE A

located. We can imagine the Greenwich merid-
ian turning cast or west to rcach the position
of any other meridian. The number of degrees
through which it would have to turn is called
the longitude of that meridian.

Through every point on the carth’s surface,
except the North and South Poles, there is only
one meridian. In one direction, it leads to the
North Pole. This is the direction we call North.
When you stand outdoors where you live, how
can vou tell which way is north? You may think
that a magnetic compass will answer this ques-
tion for you. but it won't.

A magnetic compass, even if it works without
iterterence, doesn’t point to the North Pole.
It points to the magnetic north pole, which is
somewhere in Hudson Bay. Besides, nearby
masses of iron, like the steel [rame of a building,
interfere with its operation. So the direction
pointed out as north by a compass is usually
wrong. The compass is usclul for finding true
north only if vou know what the error of the
compass is, so you can subtract the error.

To find the direction of true north, you have
to get help from the rotation of the earth. One
way of doing this is to use a shadow stick, driven
vertically into the ground. The rotation of the
earth makes the sun seem to rise in the east,

MERIDIAN

e
-

TRUE_NORTH
MAGNETIC Noryy
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cross the sky, and set in the west. As the sun
changes its position in the sky, the shadow of
the stick turns and also changes in length. When
the shadow is shortest, it points to true north.
This happens at about noon.

The noontime shadow changes in length very
slowly. So it is difficult to locate north accurately
by watching the noontime shadow. You can do
it more accurately by watching the shadow in
the moming and afternoon. when it changes
length more rapidly. With the help of a rope
tied to the shadow stick, make a circle on the
ground around the stick. Locate the positions
of the shadow. in the morning and in the after-
noon, when the end of the shadow lies on the
circle. True north is halfway between these posi-
tions, and can be located with a rope and stakes
as shown in the drawings.

A fairly accurate and quick way of locating
north uses a small shadow stick and a watch.
Hold the watch level, with a thin stick standing
vertically over the center of the watch. Turn
the watch until the hour hand is wnder the
shadow. Then the direction of north will he half-
way between the shadow and the twelve.

Locating north is easiest at the South Pole.
There every direction is north! At the North

Pole, every direction is south. This peculiar fact

B
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about the poles inspired this well-known puzzle:
A hunter leaves his tent and walks one mile
south and then one mile east. Lle shoots a bear
and then heads north with it. After traveling
one mile, he arrives back at his tent. What s
the color of the hear? The answer was supposed
to be "White,” hecause whoever invented the
puzzie thought the only place where a path that
goes one mile south, then one mile cast, and
then one mile north could torm a closed loop is
near the North Pole, where polar hears are
white. (See the diagram.) It could also happen
near the South Pole, as shown below. except

that there are no land mammals in Antarctica.
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Distances on the Earth

On a flat surface, the shortest path between
two points is a straight line. The earth is not
flat, so there are no straight paths on it. On the
carth, the shortest path hetween two points is

the one that curves the least. The larger a circle
is, the less it curves. So the shortest path be-
tween two points on the earth is along the
largest cirele that joins them. Such a circle is

called a great cirele. Meridians and the equator

are examples of such great circles on the eartl.

In the days before the airplane, the usual way
of going to BEurope from North America was by
ship across the Atlantic Ocean. Ship lanes ran
approximately cast and west, and we used maps
known as Mercator maps which were built
around this cast-west way of traveling. Now
that we have airplanes. it is possible to travel
shorter routes hetween Europe and North Amer-
ica by following great circle paths. Many of
these great cirele paths run more nearly north
and south than cast and west. They are demon-
strated by means of a circumpolar map  that
shows what the carth looks like from above the
North Pole. The circampolar map shows that
places that seemed to he far apart on the old

maps are really quite close to each other.
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Navigation

A navigator has two kinds of problems to solve.
One is to find out where he is on the carth.
The other is to figcure ont what course his ship
should take to go from one place to another. His
tools for solving these problems are a compass,
a sextant, a clock, and an almanac. s compass,
after hie corrects lor its error, tells him which
way is north, so he can measure directions cor-
rectly. With his sextant he can measure the
height of the sun. the moon, or a star above the
horizon. His elock tells him the time in Green-
wich, England. Tlis almanac tells him how the
sky Tooks at Greenwich any day of the year, any
time of the day. With all this information. he
can figure out the answer to his problems.
Let us see how he can loeate his position on
the carth. The earth is a sphere spinning on its
axis. The axis points almost direetly to Polaris,
the North Star. The diagram below shows men
in different positions on the carth looking at

NORTH POLE

POLARIS POLARIS

.

LATITUD
CIRCLE

Polaris. The man on the equator sees Polaris
on his horizon. For the others, the line to Polaris
makes an angle with the horizon. The further
north the man is, the larger the angle is. So.
measuring this angle tells him how lar north
he is above the equator. I the angle is 60
degrees. then he knows he is somewhere on the
latitude circle 60 degrees above the eqguator.
Now he has to find out where he is on that
circle. This circle is crossed by the meridian that
passes through Greenwich., England. His elock
tells him the time at Greenwich. His almanac
tells im what the sky looks like there. The sky
he sees above him looks different. Compared to
the sky as seen from Greenwich. it looks as
though it were turned through an angle. The

amount of this turning tells him Low far around

the carth he is from the place where the merid-

i through Greenwich crosses his  latitude

circle. This information fixes his position.
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Mathematics for
a Changing World

We Tive in a world of change. People and
things move about. Auimals and plants grow in
size and mumbers. When things change, we
often have to know the speed with which they
change. It is easy to calculate it if the speed is
steady. Suppose a car travels 120 wiles in 3
hours, moving at a steady speed. Then its speed
must be 40 niles an hour. We find it by using
the vule: Speed = Distance — Time. But speeds
are not always steady. A speed can change, too.
For example, when something falls from a great
height. the Tonger it falls, the faster it falls. How
do we find its speed in this case?

Suppose we drop a stone from a cliff and take
a movie of its fall. The wovie shows us where
the stone is at any time. After 1 second, the
stone has fallen 16 feet, After 2 seconds, it has
fallen 64 feet. 1ow far it gets in 3, 4 and 5 sec-
onds is shown in the table below. This table
(timeF.
From this rule we ean figure out how far the

gives us the rule: Distance = 16

stone {alls in any number of seconds. In 6 sec-
ouds, for example, the distance would be
16 X 6* = 16 > 6 - 6 = 576 feet.

1 16 =16 ~ 1°
2 64 =16 X 2*
3 144 =16 X 3°
4 256 = 16 X 4
5 400 =16 X 5°
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Distance the stone fell

During the Ist second the stone fell 16 feet.

During the 2nd second, the stone fell 64 — 16 = 48 feet.
During the 3rd second. the stone fell 144 — 64 = SO fect.
During the 4th second, the stone fell 256 — 144 = 112 feet.
During the 5th second, the stone fell 100 — 236 — 144 feet.

Now let us see how far the stone falls during
one second alone. During the first second, it
fell 16 feet. During the first two seconds it fell
64 feet. To find out how far it fell in the second
second alone, we take away the 16 feet it fell
in the first second: 64 - 16 — 4S. The table
shows the calculation for each of the other sec-
onds. So we see that the stone fell 16 feet during
the first second, 48 feet during the second sec-
ond, 80 feet during the third second, and so on.
Its speed increases as it falls.

How fast is the stone falling after three sec-
onds? We may use our table to get an estimate,
or rough answer. During the third second, the
stone fell 80O feet. So our estimate is that, after
three seconds, its speed was 80 feet per second.
But we know that our estimate is wrong, be-
cause the speed was changing all through that

Distance fallen in almost 3 seconds

Distance and average speed in last part of 3-second fall

second. Eighty feet per second is only an aver-
age speed. The stone actually moved more slow-
ly than that at the beginning of the second, and
it moved faster than that at the end of the sec-
ond. We can get a better estimate by getting its
average speed during a shorter period of time,
when the speed had less of a chance to change.
For example, during the first 23 seconds, the
stone fell 16 > 21 > 21 feet, or 100 feet. During
the first three seconds it fell 144 feet. So during
the last half-second of this three-second fall,
the stone fell 144 — 100 feet, or 44 feet. Now
our estimate of its speed after 3 seconds is 44
feet per half-second, or 88 feet per second. By
the same kind of calculation, we find that its
average speed during the last quarter-second
of its three-second fall is 92 feet per second. Its
average speed during the last eighth of a second

=

AVERAGE SPEED IN

TIME OF FALL DISTANCE
PART OF SECOND DISTANCE IN FEET
IN SECONDS IN FEET FEET PER SECOND
21 16 X 25 X 23 =100 Last 3 second 144 —100 =44 44 X 2 =88
23 16 X 2§ X 2} =121 Last} second 144 —121 =23 23 X 4=02
2% 16 X 28 x 2% =132} Last § second 144 —132}1 =113 113 X §=94
2% 16 < 242 < 243 — 1389 Last{s second 144 —138% = 51 51 X 16 =95
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Kepler discavered the laws af planetary motion.
Earth satellites abey similar laws. One aof them is
that the line jaining a satellite 1o the earth sweeps
aver equal areas in equal times. Newtan, using
calevlus, derived the law aof gravitatian fram Kep-
ler's laws. In the arbit shawn, the satellite travels ot
varying speeds. Distances A, ta B,, A; ta By, A; ta
By, and A, ta B, are all cavered in the same amaunt
af time

A g

is 94 feet per second. Its average speed during
the last sixteenth of a second is 95 feet per sec-
ond. Each new estimate is wrong, but it is less
wrong than the one before it. We gradually
sneak up on the correct answer. It turns out to
be 96 feet per second. During the seventeenth
century, the English scientist Newton and the
German philosopher Leibnitz invented an effi-
cientmethod of sneaking up on the right answer.
It shows that the speed of a falling body is 32
times the number of seconds it has fallen. This
checks with our result, because 32 > 3 — 96.

The branch of mathematics that uses the
method of Newton and Leibnitz is called dif-
ferential caleulus. \When Sputnik, the first earth
satellite, began flying around the earth, scien-
tists used calculus to figure out how fast it was
moving. They needed calculus to do it beeause
Sputnik’s speed was changing all the time. Cal-
culus is used every day by physieists, astron-
omers, and engineers whenever they study
changes in which the change itself is changing.

>
A racket launching a satellite {e
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Finite and Infinite

When we count the objects in a collection or
set, we say the natural numbers in order, assign-
ing each number in turn to an object in the set.
To count the set of vowels in the alphabet, we
say. TALU L EL 201035 O, 4 U, 5.7 Because we
run through the complete set of vowels in this
way, we say that the set is finite. This means
that counting it comes to an end. We can try to
count the set of even natural numbers by assign-
ing natural numbers to them, in this way: "2, 1;
£,2,6.3: 5,4,  and so on. 1n this case, the count-
ing never comes to an end, because no matter
how many even numbers we count. there are
always more left over. So we say that the set of
even numbers is infinite,

Liufinite sets differ from finite sets in an im-
portant way. If you remove a member of a finite
set, what is left will not match the original set.
For example, the set of vowels ¢, i, 0, u does not

match the complete set of vowels, a, e, i. 0, u.

Me--$ >
—<¢-—-$m
C -0

O¢-»—

If vou remove a member of an infinite set, how-

ever, what is left will still match the original set.

Rl T 2}
O
0O 4--» O~

The diagram below shows that the set of even
numbers left over when 2 is removed matches

the original set.

Infinite Series

If you have a finite collection of numbers,
vou can add them without any trouble. You
arrange them in a line, and then. as you run
down the line, you add each number into the
sum, until you reach the end of the line. For
example, toadd 3 + 5 + 12 + 4, youadd 5 to
3, to get S, then add 12 to the S to get 20, and
then add 4 to the 20 to get 24. The last result
is the sum. But vou run into trouble with an
infinite collection of numbers to add. because
you never come to the end of the line. Try to add
this infinite collection of ones: 1 — 1 — 1 + 1
....where the dots show the series does not end.

As vou run down the line, you get as partial
sums the numbers 1, 2, 3. 4, and so on. The par-
tial sums get larger and larger without any limit.
In this case, the series has no sum. But there are
some infinite series which do have a sum. In
fact. we met one before, on page 43. The in-
finite decimal 3333 . . . is really the infinite
series .3 — .03 — .003 + .0003 — ..

has the sum & We say § is the sumn because,

., and it

as we add in more and more terms of the series,
the partial sums come closer and closer to 4. We
say the partial sums approach 4 as a limit.
The number =, which is described on page
26. can be expressed in several different ways
as the sum of an infinite series. One of the series
relates = to the odd numbers in this way:

=4 S G S 11 JL L
- 1 3 5 T 9 11

The same number. = 4. can also be written as

the product of an infinite collection of fractions:

9, 5 CIN A ot wma
=g X F30d X 2 X E XN .
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Measuring
Areas and Volumes

To measure an arca, we divide it into squares
that are one unit wide, and then count the num-
ber of squares. For example, to measure the area
of a rectangle that is three units wide and five
units long, we divide it into squares. as shown
in the diagram. Counting the squares, we find
that the area of this rectangle is fitteen square
units. In this case, we could have used a short
cut for counting the squares. Since there are
three rows of squares, with five squares in cach
5. The

same short cut can be nsed for any rectangle.

row, the number of squares must he 3

Simply multiply the number of units in the
length by the number of units in the width. This
rule is usually written as the formula Area -
lenath - width.

How would you find an area enclosed by an

irregular curve? One way is to eover it with a

A

100 SQUARES WEIGH 6 OZS
THEN 1 SQUARE WEIGHS 006 OZS

\w{ (3] \ I~

A WEIGHS 19 ozs.

SQUARES

network of lines that divide it into unit squares,
and then count the squares. Where more than
half o square is inside the area, count it as a full
square, Where less than half a square is inside,
do not count it at all. In this way we get an
approximate value of the area. Here, too, we
can use a short cut., Using cardboard of uniform
thickness, cut out a square ten units long and
ten units wide. Then weigh it on a sensitive
scale. Suppose the weight turns out to be .6 of
an ounce. Since the square contains 100 unit
squares. each unit square weighs .006 of an
ounce. Now draw the irregular arca yvou want
to measure on cardboard of the same thickness.
Cut the arca out, and weigh it. The weight will
tell vou the arca, since cach 006 of an ounce
of weight represents one square unit of area.
Another \\'n)"oi' finding an_imegalar-arcg is
& [ : 4"y
) P

L
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to cross it with evenly spaced

them. The box contains four

parallel lines. Then. between
each pair of parallel lines,
draw the largest rectangle
that will fit inside the area.
The area of a rectangle can
be calculated by means of the
formula Arca length

width. After that. adding up
the arcas of the rectangles

givesanapproximatevalue for

the irregular area. To get a

layers. and each laver con-
tains three rows with five unit
cubes in each row. So the to-
tal number of unit cubes is
IS
expressed in the formula Vol-
width

5. This short cut is

ume = length
heiaht.
Measuring the volme of

an irregular solid is a more
J difficult problem. But there

better approximation. repeat
the process, using thinner rectangles. By taking
thinner and thinner rectangles. we can get an
infinite sequence of approximations, approach-
ing the actual area as a limit. A special branch
of mathematics called integral caleulus has the
job of finding out what the limit is.

To measure a volume, we divide it into unit
cubes. and then count them. For example. a
rectangular box three units wide. five nunits long.

and four nnits high, would vield sixty unit cubes.

There is a short cut that we can use for connting

are interesting short cuts that
are sometimes useful. For example. suppose you
wanted to measure the volume of a stone. First
measure out a volume of water in a measuring
cup. Then put the stone into the cup. The water
level rises in the cup. and the increase in volume
is the volume of the stone. To calculate the
volume in cubic inches. make use of the fact that
one fluid ounce equals 1.5 enbic inches. If the
water level rises from the S-ounce mark to the
12-ounce mark. then vou know the volume of
the stone is 7.2 cubic inches.
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Surface and Volume

in Nature

I o man falls from a height of three thousand
feet, and has no parachute, he will surely be
killed when he strikes the ground. But a mouse
can fall from the same height. and simply get
up and walk away, unhurt. Why?

A man can be well fed by eating about one
fifticth of his weight in food every day. A mouse

has to cat one halt of his weight in food each

MAN'S WEIGHT

=y

ﬁ 74 7y 4 ‘ MOUSE'S WEIGHT
'/’W[ » A e

day. just in order to stay alive. Why is this s0?

Larce animals can live through a cold Aretic
winter. Small animals cannot. Why?

We find a clue to the answer to these ques-
tions by first comparing the suwrface and volume
of large and small bodies. Examine a cube whose
edge is two inches long. Using the formula
Volume — length  width — height. we find
that its volume is 2 - 2~ 2, or S cubic inches.
Its surface is made up of six squares, each of
which contains 2 2 square inches. So the
total surface is 24 square inches. This cube has
three square inches of surface for every cubic

inch of volume. Now examine a cube whose

e 7
Y -
7
valume - 1 cubic unit surface — 6 square units

= /
B /
| ¥/

/ e

valume -~ 8 cubic units surface = 24 square units

RATIO IS &
SQUARE UNITS
PER CUBIC UN

RATIO IS 3
SQUARE UNITS
PER CUBIC UN
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edge is only one inch long. s volume is one
cubic inch; its surface is six square inches. So
this cube has six square inches of surface for
every cubic inch of volume. or twice as much
surface per cubic inch as the farger cube has.
Small bodies have more surface per unit vohone
than large bodies with the same shape.

The Built-in Parachute

H a man falls from a great hicight, he is pulled
down by a force equal to his weight. The size of
his weight depends on his volume. As he falls,
the air resists his fall. The size of this air resist-
ance depends on his surface. It is not strong
enough to balance his weight. so the man falls
faster and faster until he strikes the ground.
However, if he has a parachute, the open para-
chute exposes a large surface to the air. Then
there is a large air resistance which soon bal-
ances the man’s weight, and he floats down
gently. A mouse, because it is so small, lias much
more surface compared to its weight than a man
has. Tts body surface acts as a built-in parachute,

and it floats gently to the ground.

Heat Production and L.oss

A man and a mouse are hoth warm-blooded
animals whose bodies must remain warm to
stay alive. Heat is produced in each part of the
living body. The wmount of heat produced de-
pends on the volume of the hody. At the same
time, heat is constantly lost through the surface
of the body. The amount of heat that is lost
depends on the size ol the surface. Both the
man and the mouse eat tood partly as fuel for
the chemical fires inside them that replace the
heat that is lost. Because the mouse has wore

surface for each cubic inch of volume than the
man does, he loses his heat faster, and has to
replace it faster. That is why he has to eat so
much food every day.

Making up for lost heat is a greater problem
for animals living in a cold climate than it is for
animals that live in a warm climate. A bear
living in the Arctic regions has a large volume
producing heat. and a small surface. compared
to his volume, losing it. So he can manage to
keep himself both warm and alive. But a mouse
has only a small volume producing heat. and
a large surtace. compared to this volume. losing
it. In the Arctic regions. where the heat loss
would be greater than it is in warmer parts of
the earth. he wouldn't be able to keep up with
the loss at all. That is why mice and other small
mammals cannot stay alive through the cold
Arctic winter.

Having a large body is a heat-saving advan-
tage i a cold climate. For this reason, animals
that live in the far north tend to he larger than
their cousins that live near the equator. This

interesting faet of bhiology has its roots in the

mnthcmatics of Slll'fﬂ(‘(‘,\' ;md volumes.
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Fires, Coins
and Pinball Machines

When a house burns down, thousands of dol-
lars’” worth of property is destroyed. The loss is
too much for any one person to bear. So people
join together to share the loss. They do this
through insurance. Each person pays in to the
insurance company a small sum cach year.
Then, if somebody’s house burns down, the
money is there, ready to be paid out to him to
cover the loss. To know how much money each
person should pay in, the insurance company
must know first what the chance is that a fire
might break out.

Figuring out this chance is done with the
help of branches of mathematics called prob-
ability and statistics. A life insurance company
uses these branches of mathematies to calculate
the chance that a person will dic in any given
year. A pension fund uses them to figure out

how long pensions will probably be paid to
people who retire after a certain age.

Figuring out the chance that something will
happen is like looking into the future. 1t is done
by using common sense and a knowledge of
what happened in the pust. To see how it works
in a simple case, let us try to foresee what hap-
pens when you toss a coin. The coin has two
faces, head and tail. Common sense and ex-
perience join to tell us that, out of a large num-
ber of tosses, about half will come out heads,
and the rest will be tails. Saying.it another way:
on the average, one out of two tosses will come
out heads. So we say the chance of getting a
head is 1.

If we toss two coins, there are three possible
results. We may get two heads, or two tails, or
one head and one tail. What is the chance of
getting each of these results? It is not one out
of three. If we use two different coins (say a
penny and a dime), we see that there are really
four possible results. Throwing the penny first
and the dime second, we might get head-head,
or head-tail, or tail-head, or tail-tail. The chance
of getting two heads is one out of four, or . The
chance of getting two tails is also }. The chance
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of getting one head and one tail is two out of
four, or 1.

What is the chance of getting two heads and
a tail when you toss three coins? To answer this
question, we must first notice that there are
three ways of getting two heads and a tail. We
may get head-head-tail, or head-tail-head. or
tail-head-head. Compare this number with the
total number of ways three coins can fall. This
number is eight, since each coin can fall in two
8. So the chance of

getting two heads and a tail is {.

ways, and 2 X 2 < 2

There is a short cut for finding the chance of
getting any special combination. It is summed
up in the arrangement of numbers known as
Pascal's triangle. Paseal, a French philosopher
and mathematician of the 17th century, was
for a time interested in roulette and other games
of chance. This interest led him to discover cer-
tain important rules about the probabilities of
getting heads or tails on the toss of a coin. His
findings are described in a triangular formation
of numbers which shows easily the chance of
getting heads or tails, or any combination of




] COIN

2 COINS

3 COINS

4 COINS

5 COINS

6 COINS

them, on a given number of tosses of a ecoin.
Each line in the triangle is obtained from the
line above it in this way: Write a 1 at cach end;
and under ecach pair of numbers that are side
by side, write their sum. The first line is for
tossing one coin; the seeond line for two coins;
the third line for three eoins; and so on. The first
number in a line is for all heads. The next num-
ber is for one less head, and one more tail, and
so on down the line. To figure the probabilities
for tossing four eoins, use the fourth line. For
two heads and two tails, use the third number

If you toss one coin, the chance of getting heads is 1 out
of 2, 0r V2.

If you toss two coins, your chance of getting 2 heads is 1
out of 4; of getting 1 heod and 1 tail, 2 out of 4 or I2;
of getting 2 tails, 1 out of 4.

If you toss three coins, your chances are: all heods, 1 out
of 8; 2 heads ond 1 tail, 3 out of 8; 2 tails ond 1 head, 3
out of 8; all tails, 1 oul of 8.

If four coins are tossed, there is 1 chance in 16 of getting
all heads or all toils; 4 out of 16 of getting 3 heods ond 1
tail, or 3 tails and 1 heod; 6 out of 16 of getting 2 heads
and 2 toils.

In five tosses, chonces ore: 1 out of 32 for all heads or all
tails; 5 oul of 32 for 4 heads & 1 tail, or 4 toils & 1 heod;
10 out of 32 for 3 heads & 2 tails, or 3 toils & 2 heads.

In six tosses, the chances for all heods or all tails are 1
in 64; for 5 heads and 1 1ail, or the reverse, 6 out of 64;
4 heods ond 2 tails (or reverse), 15 out of 64; 3 and 3,
20 out of 64.

Eight bolls poured out of _ .
this con ore most likely t&c

to fall as indicoted below

in that lne. Compare this number to the sum

of all the numbers in that line. The chance of
getting two heads and two tails is six out of
sixteen, or 2.

A pinball machine can be made of nails ar-
ranged as shown in the drawing above. If small
metal balls are dropped into this machine at the
top, and allowed to collect in vertical eolumns
at the bottom. how many balls are likely to col-
lect in cach of the columns? Pascals triangle

gives the answer to this question.
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. A Twarulers can be used as a simple “adding machine

-2 A modern caleulating machine

Calculating Machines

When we solve a problem. we try to figure it
out in the shortest and easiest way. The easiest
way to solve a problem is not to work on it at all.
Let a machine do it for you, instead.

You can make your own adding machine out
of two ordinary rulers. Simply place one ruler
next to the other, edge to edge. Now your
machine is ready for use. If you want to add
2 and 3, place the zero-edge of the upper ruler
over the 2 on the lower ruler. Then locate the
3 on the upper ruler. Use the line that belongs

A Chinese abacus

to the 3 as a pointer. It points out the answer
on the lower ruler.

The Stick That Multiplies

By making a slight change in the rulers, we
can turn them into a machine that multiplies.
We get a hint on how to do it from one of the
things we learned on page 20. A short way of
writing 2:2:2:2 is 2!, But 2:2:2:2 16. So

2" is another way of writing 16. The 4. which

Napier's rods, invented in 1617, re==

(L were used to multiply numbers 1

-0 ——_. «Two methads of computing used during the Middle Ages:

A e ] -
p— Jnumerals and counters. Counter reckoning was really a
: farm of the abacus. John Napier, a Scotsman, made an

early mechanical device. (Drawing from print ¢. 1503)



A straight slide rule

A circular slide rule

tells ns how many two's to multiply to get 16,

is called the logarithm of 16, Tu the same way,
2" is another way of writing S, and the logarithm
of S is 3. To multiply 16 by S, we multiply 2¢
by 2'. That means take 2:2:2:2 times 2:2°2. Re-

placing the word “times™ by a ultiplication

DeDeDeDe DD D

sign, we get The short way of

writing this result is 27, This number, multiplied
out, is 128, and its logarithm is 7.

Notice that while the numbers 16 and 8 were
multiplied to get 128, their logarithms, 4 and 3,
were added to get 7. This is our hint. We know
already that two rulers can add the distances
that are measured on them. So we make up a
special pair of rulers in which the distance of
cach number from the end of the ruler is equal
to the logarithm of the number. The vulers will
add the logarithms. And adding the lozarithms
is like multiplving the numbers.

A pair of special rulers made up in this wayv

is called a slide rule. Shde rules are used by

people in many different kinds of work—engi-
neers, architeets, printers. and anyone else who

has to make many rapid caleulations,

Counting Wheel

Another simple calculating machine is the
odometer in a car. which tells you how many
miles the car has traveled. 1t is made up of a
series of wheels placed side by side. The num-
bers from 0 to Y are printed on the rim of each
wheel. One of these numbers on each wheel
shows through the little window on the dash-
board. The wheel on the right counts tenths of
amile. When the car travels one tenth of a mile,
the wheel turns aronnd just enongh to move
the next higher number into place at the win-
dow. After 9 tenths of a mile, the number 9
shows through the window. After the next tenth,
the wheel turns the 0 into place, and, at the

same time, turns the wheel nest to it one space.

ég' Line up the 2 of the lower A ) under the 3 of the upper scale,
scale with the 1 of the upper & jhe praduct of 2 X 3 can be
scale . .. found on the lower scale

i — e - —1
§ :
BT e Kt o] C O A M L~ 7200 0 L2 T
2 3 4 5 6) 7 8 91

{

The firsy calculating machine (1642) which by
automaticolly carried the tens was invented |
by Pascal, philasapher and mathemati-
cian. It could add figures up to six places

I

Natice that the numbers on the slide rule are nat equally spoced.
The slide rule multiplies numbers by adding their lagarithms
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An odometer recards the number of
miles o car has traveled. For eoch mile,
ihe units wheel advances 1 spoce. Ten
spaces make a complete turn. When o
turn is completed, the “fingers” on the
edge turn the geor above. This mokes
the tens wheel advance 1 space. Thus,
10 spaces on the units wheel are ex-
changed for 1 space on the tens wheel

ELECTRONIC CALCULATOR

000'S WHEEL tf
-

The effect is to exchange ten spaces on the first

e !

wheel for one space on the second wheel. In
the same way the second wheel, after com-
pleting a full turn, exchanges ten spaces for one
space on the third wheel. So. while the first
wheel counts tenths of a mile. the second wheel
counts whole miles, the third wheel counts tens
of miles, the fourth wheel counts hundreds of
miles, and so on,

Most desk ealculators work in the same way.
They are simply counting machines. They add
two nuimbers the way people add on their fin-
gers. They count out the first number, and then,
starting where the first number leaves off. they
count ont the second number. They multiply
by adding the same number many times. To
multiply 4 5. for example, a desk caleulator
adds 3, 3, 3, and 3.

The fastest calculators are the machines that
work electronically. They are counting ma-
chines. Instead of having a series of turning
wheels. they use a series of electrical circuits.
They keep count by tuming eurrents on and off

in these circuits. Just as in the odometer one

BASE BASE

OF .Qv, o O OF
SIS

10 I's 545 2

Electronic caleulators build up large
numbers by counting electrical pulses
in groups of two. The numbers can be
shown by o panel of lights. A single
pulse furns on the number 1 light on the
right. A second pulse turns off this light
and turns on the number 2 light. A third
pulse turns on the 1 light agoin. The
number of pulses is shown by odding
the numbers of the lights that are on

=

TOTAL ]

5

e L
wheel passes the count on to the next by turning
it, in electronic caleulators one circuit passes
the count on to the next by turning its current
on or ofl. Each wheel in an odometer has ten
positions, so the odometer huilds up large num-
bers in groups of ten. Each cirenit in an elec-
tronic calculator has just two positions. on and
off. So an electronic calenlator builds up large
numbers i groups of two. Althongh this is a
slower way of counting, electronic caleulators
work very rapidly. because electric currents
travel almost as fast as light.

The odometer, desk caleulator. and counting
machine are all called digital machines. hecause
they make all their calculations by simple steps
of comnting repeated over and over again, the
way a person would who counts on his fingers.
There is another type of caleutator which meas-
ures instead of counts. These maechines first con-
vert numbers into such quantities as length.
angle, and electric current. Then they combine
the quantities. and convert the result back into
a number. The slide rule is one example of this

tvpe of caleulating machine.

) \
100'S WHEEL tﬁi TENS WHEEL SLa UNITS WHEEL

EVERY NUMBER CAN BE SHOWN
IN THE BINARY SYSTEM, USING

S 3 & ° @ v & ~ | Awles A sHOWN seiow:
P o o @ 0o @ 0 1o m
iyo 2 108 1000
; N — > 8 3. 19 1001
g N »16 4—100 1o 1010
: +128 5 10125 11001
ey: current on 1 6 11050 — 110010
currentoff - 0O TOTAL ] 54



It was Pythagaras who found that when the length of @ &
vibrating string is halved, the tane an octave higher {.
is sounded. A 2 division produces the dominant tane

ﬁ Pythagoras and his followers made many dis
J,

coveries in music as well as in mathematics

Mathematics and Music

A musical tone is made by a vibration. For
example. if vou stretch a string tight. and then
pluck it. the string vibrates and produces a tone.
What the tone sounds like depends on the num-
ber of vibrations that the string makes in a sec-
ond. That is why tones are related to numbers.
and music and mathematics are partuers. The
number of vibrations per second is called the
frequency of the tone.

When a song is written. it is usually composed
out of a family of tones called a key. To see low
the tones in a key are related, let us actually
build one.

The most important tone in a key is the one
on which the song ends. It is called the tonic.
Let us choose as tonic the tone made by a string
that vibrates 256 times a second. We call this
tone C. If we cut the string in half, it vibrates
twice as fast. The tone made by this shorter

string is also called C. Tts frequency is 512 vibra-

tions per second. It we double the trequency
again. we get another tone called C, whose fre-
queney is 1024 We use the same name for tico
tones. when the frequency of one is double the
frequency of the other. The Irequency 236 is
double 128, and this in turn is double 64, and
SO 011, Sl) we Q:(’t more tones thdt are (‘il“('d (:
by dividing by two. We give these tones the
same nanme because we think of them as the
same tone played at different levels.

Now let us vibrate a string whose length is
two-thirds the.length of the original one. The
tone it produces is the tonics closest relative,
We call it the dominant. Its frequency is 1}
times as great as the frequency of the tonic. This
number 11 s the basis for building up a key.
A key is a family of tones inachich cael tone is
followed by its dominant. In order to find the
dominant of any tone in the chain, we simply

multiply its frequency by 11
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We began with the C whose frequency is 236.
Its dominant has a frequency of 384, and is
called G. G's dominant has a frequency of 576,
and is called D. D’s dominant has a frequency
of $64. and is called A. A’s dominant has a fre-
quency of 1296, and is called E. E's dominant
has a frequency of 1944, and is called B. Now
we start at C again, and go the other way. The
frequency 236 is 1} times as great as the fre-
quency 171, The tone with this last frequency is
called F. and C is the dominant of F. The seven
tones we have named make up the key of C.
They are listed in order in the first column of
the table.

We started with the tone C that has a fre-
quency of 236, The next higher C has a fre-
queney of 512, We can get all of the tones of
our key to lie between these limits. We can do
this. because, when the frequency of a tone is
too high or too low. we can replace it by a tone
with the same name whose frequency is half
as large or twice as large. Our G is not too high.
so we keep it. All the others except F are too
high, so we divide by 2 over and over again
until the frequency lies between 236 and 512

The frequeney of F is too low. so we donble it.

Chain of Dominants Key of C

FREQUENCY BETWEEN "
NAME FREQUENCY 256 AxD 312
F 171 342
C 256 256
G 384 384
D 76 288
A 864 132
E 1296 324
B 1944

The results are shown in the third column of
the table. Now, if we arrange the tones in order
of frequency. starting with C (256) and ending
with C (512), we have a ladder of tones climb-
ing from C to the next higher C. This ladder is
called a scale. We have them now in this order:
256), D(289), E(324), F(342), G(354), A(432),
B(486), C(512). This is the order of the white
keys on a piano keyboard

To build up a scale that starts with another
tonic or keynote instead of C, we have to bring
in the black keys on the piano. They are named
after the white keys that are near themn. When
a black key carries the name of a white key that
it follows, it is called sharp (#). When it carries
the name of a white key that comes after it,
it is called flat (»).

To find the scale that begins with any tone,
we can use the wheels that are printed on this
page. Copy them on cardboard. Punch a hole
through the center of cach copy, and fasten
them together with a snap fastener. Turn the
small wheel until the 1 lies next to the tone you
want to use as tonic. Then the numbers from
2 to 7 point out the other tones in the scale,

numbered in the correct order.

You can make your awn device for finding the scale beginning with any tone.
Trace these wheels on paper and cut out. Make hale in center far snap fastener

Place scale A over scale
B and jain with a snap
fastener
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Mathematics and Art

Compare the two pictures that are on this page.

The one at the left has been drawn to look

like an old Egyptian painting. Everything in it

looks flat, and each part looks as though it were

right on top of the next part. It is hard to tell

at a glance which elements are supposed to be
nearer to you.

The other picture is a painting by the Italian
artist Gentile Bellini. You can see that the people
are closer than the building. You can also see
that there is a feeling of distance between the
different parts of the painting. The space in .
Bellini’s painting looks much more real than
that in the Egyptian painting because he used Q

mathematics when he laid it out on his canvas.
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The great German artist Albrecht Diirer said,
“Geometry is the right foundation of paint-
ing.” To make a painting look real, the painter
thinks of his canvas as a “window” through
which he is looking at a scene that is beyvond it.
He reasons in this way: Each point of the scene
sends a ray of light to the eve of the person

A picture can be enlarged with the help of twa
sheets of tracing paper marked off in squares.
Make ane set af squares larger than the other
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looking at it. These rays of licht pass through
the “window” between the eve and the scene.
The place where a ray crosses the window is
the place where the point it comes from will
appear in the picture. The collection of rays
going from the scene to the eve is called a pro-
jeetion. The picture formed where the window
crosses the projection is called a section. To
figure out what the section will look like is a
problem of perspective. The rules of perspec-
tive were worked out with the help of geometry.

In Bellini's painting yvou see how he used
two of the rules of perspective: The further
away something is. the smaller it looks. Parallel
lines that go off into the distance, like straight
railroad tracks, look as thoueh they come to
a point.

Mathematics helped art through the science
of perspective. But then art repaid its debt. This
is because the study of perspective led to the
development of a new branch of mathematics
called projective geometry.




Mathematics for Fun

There are mathematical cards that seem to
perform amazing feats. You can make a set by
following these directions. Use four square
cards, cach six inehes wide. Make a margin of
one inch at cach edge, and divide the center
space into one-inch squares. Then copy the pat-
tern for cach card. Cut out the boxes that are
marked “Cut out.” Notice that one card has
numbers written on the back as well as the [ront.
Be sure to place them as shown.

Now that the cards are ready, ask someone
to think of a number [rom 1 to 15. Show him
the front of cach card, and ask him it his nu-
ber is on the card. 1f he says “yes,” put the card
down on the table with the word “ves” on top.
1f he says "no,” turn the card so that the "no”
will be on top. Stack the cards one over the
other, with the card that lias no hole in it put
down last, over the others. Pick up the cards
and turn the stack over. The correct number
will show through a window in the cards.

Magic Squares

The arrangement of numbers shown above
is called a five-by-five magic square. It uses
all the whole numbers from 1 to 25, The "magic”
property of the square is this: If you add the
numbers in any row, or any colunm, or either

17 8

13

10 2]

18

diagonal (joining opposite corners), you always
get the same sum. Try it.

Use the numbers from 1 to 9 to make a three-
by-three magic square. Arrange them in three
rows, with three numbers in cach row. Placed
properly, the rows, columns, and diagonals will
add up to the same sum. We can figure out this
sum in advance. Adding all the numbers from
1 to 9 is like finding the 9th triangle nmnber.
Using the rule on page 19, we multiply 9 by 10,
and then divide by 2. The result is 45, Since the
numbers are spread out in three rows. we ecan
find the sum of one row by dividing by 3. So

each row should add up to 15.

CARD NO. 1 CARD NO. 2 CARD NO. 3 CARD NO. 4 (FRONT} CARD NO. 4 (BACK)
s yes yes yes
=1

113 213 415 8 o glo o~
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A Card Trick

There are many caid tricks that are worked
mathematically. This one is easy to do, and looks
very mysterious. Use a deck of 52 cards, and
shuffle it well. Ask someone in your audience
to count out three stacks of cards from the deck,
while you turn your back. He should follow
these directions: “Put the first card face up.
and start counting with the number on the card.
Think of an Ace as 1, Jack as 11, Queen as 12,
and King as 13. Count out more cards on top
of it until you reach 13. I the first card is a 6,
for example, you will reach 13 when you have
put seven more cards on top of it. If the first
card is a King, you won't have to put any more
cards on top of it. Then turn the first stack over

52 CARD DECK

‘_r
13
12
n
10
9
8 13
7 12
6 1
13 s 10
12 v, 9
! B, » 8 9 ;
% »
5 LY »
€ - »
4 4 Y
S-:.'. [ == [ L=
STACK A STACK 8 STACK C

and start a new stack, until there are three stacks
on the table, face down.”

Now ask for the cards that are left over. Count
them, and remember the number. Ask someone
in the audience to turn up the top card in any
two of the stacks. Then you tell them. without
looking at it, what the top card on the other
stack is. You figure it out mentally in this way:
Add the numbers of the two cards turned up,
and add ten to the result. Then subtract the sum
from the number you got by counting the left-
over cards. For example, if the cards turned up
happen to be 3 and S, and the number of left-
over cards is 32, you would add 3 + § + 10,
giving vou 21. When you subtract 21 from 32,
you get 11. So you now know that the top card
of the third stack is a Jack.

STACK A REST OF DECK

STACK B STACK C
- [ =)

b

o
Turn up o top 32
cord from any ]
two of the n
three stacks =
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3 + 8=11 =
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21 from 32
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VALUE OF A JACK




Proving It

Many statements may be made about num-
bers or space. Some of the statements are true,
and some are false. We find out which ones are
true by following the rules of logic, or careful
thinking.

One type of proof often used in mathematies
is a kind of chain reasoning. In this type of proof
we move forward towards our result through a
series of steps, each of which leads to the next,
like links in a chain. We use this kind of reason-
ing, for example, when we solve an equation
like: 3x + 5 == 20. Our problem is to find out
what number x stands for if the equation is a
true statement. The equation says that the num-
ber which 3x + 5 stands for, and the number
20, are equal. This is the first link in the chain.

We join it to the second link with the help of
a rule that we know is true. This rule says that
if we subtract the same number from equal
numbers, we get equal results. So we subtract
5 from both numbers, and get the equation
3x == 15. This is the second link in the chain.
We join it to the third link hy using another

rule that we kuow is true. This rule savs that if

we divide equal numbers by the same number,

we get equal results. So we divide by 3, and get
5. This is the third link in the
chain. The three-link ehain tells us then, that
it 3v + 5

There is another kind of proof in which we

the eqnation x

20, then x must be equal to 5.

back into our result instead of moving forward
to it. We use a process of elimination. We first
list a series of statements, chosen so that we are
sure that one of them must he true. Next, we
eliminate all the statements except one by prov-
ing they are false. Then the statement that is
left must be true,

Here is an example of reasoning by elimina-
tion. Suppose there are more than twelve people
in a room. Then we shall prove that at least two
of them have their birthdays in the same month.
First we list two statements: (1} At least two of
the people in the room have birthdays in the
same month; (2) No two of the people in the
room have birthdays in the saime month. We are
sure one of these statements must be true. Now,
if statement (2) is true, it means that the people
in the room all have birthdays in different
months. But, il there are more than twelve
people in the room, and their birthdays are in
different months, it means there are mere than
twelve different months. But this is impossible.
So we climinate statement (2). Onee we have
eliminated the second statement. we are sure that
statement (1) must be true, hecause it is the only
one that is left.
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Three Great
Mathematicians

Mathematics is a growing science. New ques-
tions are always coming up. rising partly from
practical problems, and partly from problems
of pure theory. In cach generation, men have
developed new ideas and methods to answer
these questions. Thousands of men have shared
in this work. Among the greatest were Archi-
medes, Isaac Newton, and Carl Friedrich Gauss.

V\j

Moving the Earth

Archimedes was a citizen of Syracuse, a city
on the island now known as Sicily. He was born
in 257 B.C., and died at the age of 75. He made
great discoveries in both mathematics and
physics. He worked out a way of measuring the
area within a closed curve by using a method
almost like the method of modemn caleulus. He
sliced the area into thin strips, and added the
largest rectangles that could be drawn in these

The screw of Archimedes, a kind of
woter pump used in oncient times

weight of eorth #» o
132 x 1072 Ibs. M’

How Archimedes pictured the
job of moving the earth

strips. By taking thinuer and thinner strips, he
got better and better approximations of the area
within the curve. He made a careful study of
levers, by means of which a small force can be
used to balance a large weight. After his dis-
covery of how this can be done, he is reported
to have said, “Give me a place to stand on, and

I can move the carth.”

The King of Syracuse once ordered a crown
made of pure gold. When the crown was fin-
ished, the King suspected that some silver had




been mixed with the cold. He asked Archimedes
to figure out a way of cheeking whether the
crown was all gold, or not. One day . while Archi-
medes was at the public bath. he noticed how
the level of the water rose when he stepped into
it. He suddenly realized how he could solve the
problem ol the erown, and became so excited
about his discovery that he ran home, naked,
shouting, "Eureka!™ (I have found it"). His idea
was that hie could measure the volime of the
crown by putting it into a dish of water. (See
page 6S). If the crown contained any silver
the volume of the erown would be greater than

the volume of an equal weight of pure gold.

black of gold bal- 3 gald block makes 5 crawn made level
ancegdhe grown > water level rise rise mare than the

[ > E gald did

4 2 block af silver bal- 4 silver black is larger,
ances the crown "2 so level rises higher

At the Baitle of Syracuse, the machines af Archimedes created havac omang the !
Roman galleys. Abave, one af Archimedes' machines lifts a ship aut of the water.

was noi pure gold

L 'E # Therefore, the crawn

king's crawn was nat pure gald

Haw Archimedes praved that the I‘@

When Syracuse was attacked by Rome, its
soldiers defended the city with the help of great
machines invented by Archimedes. Aceording
to the stories told in Roman history books. they
used giant catapults to hurl great stones at the
Roman ships. They had giant claws that lifted
ships out of the water and smashed them against
the rocks on the shore. Ilowever, in spite of
these mechanical marvels. the Romans eventu-

ally won the war, When Syracuse was captured,

Archimedes was killed by a Roman soldier.

ot 1
Archimedes was captured by the Ramans while he
was warking an a prablem. The geometric design
depicted an the left was inscribed on his tomb
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Weighing the Sun

Isaac Newton was born in England in 1642,
and died in 1727. We remember him chiefly for
three great discoveries: He showed that white
light is a mixture of colors; he discovered the
law of gravitation and the Iaws of motion that
now bear his namme; and he invented calculus,
the mathematical tool for studying motion. He
made all three discoveries before he was 24
vears old.

Newton’s law of gravitation was the fourth

link in a chain of great discoveries in astronomy.

—

= ‘

What appears to be “white” light is actually a mixture of
colors. As shown here, a prism can separate the colors

NEWTON

_ Tycho Brahe's accurate observotions of the motions of the
planets helped lead to the formulation of Sir Isaac Newton's
law of gravitation. An old print depicts Tycho's Observatory

A
Qo it
b

Newton was the first man 10 weigh the sun. He did

it mathematically

using his law of gravitation



The ancient model of the solar system, and on » _
the right, the modern one proposed by Copernicus kﬂ:

COPERNICUS

Copernicus supplied the first link by proposing
the theory that the carth was a planet revolving
around the sun. Tycho Brahe supplied the see-
ond link by making very accurate observations
of the apparent motions of the sun and planets
in the sky. Kepler supplied the third link by
discovering, from Tycho's tables. the riles ac-
cording to which the planets move. He found
that the path of each planet is an ellipse, that
the speed of a planet increases as it comes closer
to the sun, and that the time it takes for a planet
to make a round trip around the sun is related
to its distance from the sun.

Newton supplied the fourth link when he
showed by mathematical reasoning that the
planets would move in this way only if the sun
were pulling on each of them, and found the
formula for caleulating the strength of this pull.
Using his formula, Newton was the first man to
weigh the sun.

Newton also las an important invention to
his credit. He invented the reflecting telescope,
which uses a eurved mirror instead of « lens.
The great 200-inch telescope in the observatory
on Mt. Palomar is a telescope of this type.

In October, 1957, our use of Newton's laws
of gravitation and motion took a new turn. For
ahmost three hundred years we had used them
to explain the movements of the sun, the moon,
the planets, and the stars. Now they help us
launch man-made moons and planets that take

their places alongside those found in nature.

The two-hundred-inch telescope on Mt. Palamar is a reflecting telescope
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A Mathematical Giant

The greatest mathematician of all time was
Carl Friedrich Gauss. He was born into a poor
family in Brunswick, Germany, in 1777. When
he died, in 1855, he was world-famous as a
mathematictan, astronomer and  physicist.

Gauss showed his talent for mathematics
when he was very young., Once, at the age of
three, young Carl listened attentively as his
father, foreman of a group of bricklayers, cal-
culated wages. Everyone was astounded when
the boy called out that one of his father’s figures
was wrong—and then gave the correct figure.
is father did the calculation over again, and
found that Carl was right.

In elementary school, Gauss™ teacher once
asked the class to add all the numbers from 1 to
100. As soon as the teacher finished stating the
problem, Gauss, who was then nine years old,
wrote the answer on his slate and put it on the
teacher’s desk. He had figured it out mentally,
using his own short cut. This short cut is the
method for finding triangle nummbers that is ex-
plained on page 19. Gauss’ outstanding ability
as a student led the Duke of Brunswick to spon-
sor his higher education.

Two of Gauss™ earliest discoveries are among
his best known. In 1796 he showed that a reg-
ular polygon of 17 sides can be constructed by
means of a straight edge and eompasses. In
1799, in his Ph.D. thesis, he gave the first flaw-
less proof of what is known as the Fundamenial
Theorem of Algebra, that every algebraic equa-
tion has a solution.

Gauss made great contributions in many
branches of mathematics. e did outstanding
work in the theory of numbers, the theory of
functions. probability and statistics, and the

When Ceres was lost behind the glore af the
sun, Gauss' calculatians enabled astronamers

Carl Friedrich Gouss and Wilhelm Eduard Weber, co-warkers in the study
of mognetism, were the first to construct an electromagnetic telegraph

In the field of optics, Gauss designed
a lens for correction af astigmatism

W
700
Genws
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to rediscaver the planet by tracing its arbit
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h -sph i d surf .
lh::e';i:;zne;e;:a:::geu:[?dre:e.,.—\ . geometry of curved surfaces. e was one of
On this surface, the sum of the tﬁ

angles of a triangle is less than 180°

the pioncers in constructing a new system of

geometry, now known as non-Euclidean geom-

2 etry, in whicli the sum of the angles of uw tri-

= ' angle is less than 180 degrees.

' At the same time that he was making dis-
coveries in pure mathematics, Gauss always
had a strong interest in practical applications.
He spent many years working as an astronomer.
He was active as a surveyor and map maker.
Working closely with Wilhelm Weber, the physi-
cist, he studied electricity and magnetism. He

A+B+C 180 also studied the structure of crystals.

In 1801, after the planetoid Ceres was dis-
covered, astronomers lost track of it when it
passed the sun. Gauss caleulated the orbit of the
planetoid, using a new method he had devised.
Guided by Gauss™ caleulations, the astronomers

= found Ceres again in 1802,
Gauss made a study of the magnetism of the
carth. From his observations and caleulations,

&g The curve of probability, diagramed

above, was of interest ta Gauss in his he predicted where the south magnetie pole
5 tudi f babilit tatisti . .
== studies of probabiliy ond staistics could be found. Navigators later found that this
An important advance in Euclidean constructions was l)rediction was correet,

Gauss' praof that a regular polygon of 17 sides could T&

R e e T g composs Gauss was an inventor as well as a theoretieal

scientist. He invented the heliotrope, a survey-
or’s instrument that uses a mirror for flashing
sunlight across a great distanee. Together with
Weber lie invented the telegraph at about the
same time that Samuel Morse, working inde-
pendently, developed the telegraph in America.
Later, he invented a kind of magnetometer, an
fnstrument that measures the strength of a mag-
netic field.

Gauss has been called “the prince of mathe-
matieians.” In honor of his great work, his name
has been made part of the international language
of science. The unit of magnetie field strength
is now known as a gauss.

Gauss invented the bifilar magnetometer, an instrument used for meas-

4| uring the strength of magnetic fields. The lines of force in the mag-
“netic field surrounding the earth are illustrated in this picture
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Mathematics
in Use Today

Mathematics is part of our daily lives.

A housewife uses mathematics when she goes
shopping: she compares prices, figures out her
bills, and counts her change.

A bookkeeper uses mathematics to keep track
of a company’s income and expenses.

A machinist uses mathematics when he plans
his work. He must measure and figure to know
how to set his tool, so that it will cut out parts
with the right size and shape.

An engineer uses mathematics when he de-
signs a new machine. He uses formulas to help
him pick the right parts. Equations help him
predict how they will work.

An airplane pilot uses mathematics to help
him chart his course. He must figure distances
and directions to know how to get from one
place to another.

A farmer uses mathematics to figure out how
much seed, feed. and fertilizer he needs. Like
any businessman. lie also has to reckon his
accounts.

An astronomer uses mathematies to ficure out
how far away the stars are. He uses equations
to help explain how stars are formed. what
makes them shine, and how they change as
they grow older.

The physicist uses mathematics to explore the
mysteries of the atom. His experiments give himn
facts. His equations show liow these facts are
related. Often his equations lead to new facts

that were never known before. New facts often

lead to new inventions. Then new inventions

produce new products for our use.

Equations That Built an Industry

The strange-looking symbols at the top of
this page are equations written in a mathe-
matical shorthand. They are known as Max-
well's equations. Because of these equations, you
can sit at home and hear a concert being played
a thousand miles away, or watch a baseball
game on your television screen.

During the 1870, James Clerk Maxwell, a
British scientist, was studying the behavior of
electricity and magnetism. Ile found that he
could sum up their properties in these four equa-
tions. After he discovered these equations, the
equations told him something that nobody had
suspected before. They told him that electrical
disturbances travel through space as waves,
moving with the speed of light. In 1883, the
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Maxwell's equations revealed the fact that electrical disturbances travel thraugh
space os waves. This discovery lead ta the invention of the radic. Today, radio
waves bounce between the ionosphere and the graund as they travel around the world

Irish scientist FitzGerald suggested that a rapid-
Iy changing electric current could send out such
a wave. Three years later. the German scientist
Hertz proved all these predictions in his labora-
tory by sending out waves at one end of the
room and receiving them at the other end. This
was the beginning of radio, because Hertz's

waves were the first radio waves produced by

man. Today, radio waves travel around the
world.

The Maxwell equations show how useful a
mathematical theory can be. A few equations
written on paper led to a great industry that
gives jobs to hundreds of thousands of people,
and serves millions of people who own radio
and television sets,

At home, or in the workshop, or in the lab-
oratory, mathematics is a tool that helps us

every day.

—_—
aﬁ JAMES CLERK MAXWELL

page 91



Index

4 {talic page numbcrs refer to illustrations. <
<
~3
Abacus, T4 N Even numbers, 16 Measures, 14-15 Radiolarians, 49
Algebra, 11,50 Mercator projection, A1 Ruational mimbers, 42
Ammonta clock, 15 Fibonacer numbers, 30-31 Meriduns, Ratios, 31, 56
Amochas, 21 Funte numbers, 66 Metric sy stem. 13 Real numbers, 43
Analvtic u'vmm tiv. 53 FitzGerald. G.E.. 91 Malecular clocks, 13 Reasoning by elimination, 83

Angles,

3
\n a, measurement, 67-65
Anthmetic, 11

Art, mathematics ot 79-50

.\\tmhﬂﬂl)‘: as navigation wid, 6.

basic discoveries
A ol imagmaries, 13
Ansofreals 43

Bellim, Gentile, 79
Binarv number system, 76
Body size and

Brahe. Tvcho, S6.87

(
[
(&
(
(
[o!

Salenlators, 7476

aleulus, 11.65.68

ard tricks. 82

tards, number gnessing, 81
‘entimeter. ]7

‘renmierence. 26030
fircnmpolar . 61
ompass, magnetic, 59
‘omple \n\lmlrt IS 4145

‘omputers,
Cone, 449
Copernicus, ST
Crystals, 36

Cubic centimeter, 15
Cubie numbers. 20

Decagon
Decimals, infinite, 13
Degr ]

Duvision, 4112
Dudecahedron, 36, 3719
Durer. Albrecht, S0

Earth. distances on 61
position on, 59
werglit, 54

Egvpt.units of length, 14

Ellipse, 54

Equations, 51
graphs, 53

E« juator, 549

Equilateradd tiangle, 27

Eratosthenes.

eve ol 16-17

Fractions,
Fibonacer,
Frequeney, 77

Gauss, Carl Fnedrich, $5-59
Geometry: i art, S0
non-Eaclidean 89
origin. 11
George Washington Bridge, 55
Golden section, 32
Gramn, 15 5
Graphs
Gravitation, 56
Great circle, 61
Greenwich menidian, 62

et and hody size. 70
Heliotrope. 89

ertz. Heinricli, 91
Hexagon, 23, 27,48
Henabedion, 36
oneveomh, 48
Hapediola, 54,

Hvpotenuse, -

Tcosahedron, 36, 19
Irnaginoy numbers, 45
Intimte decimals, 43
Infinite numbers. 66
Insurance. 71

Integers, £l

Japanese nesting dolls, 39

Kepler. Johannes, 35,87
planetary motion laws, 65
planetary space theory, 38

Kev, musical, 77

Latitude. 39

Leibnitz, Wilhelm, 65

Leonardo da Vined, 69

Leverage. 54

Light. colors, 86
waves, 57

Loga mﬂm\s 3

Logic

l,uxu:,muh'. 59

Magic squares, S|
Magnetic pole, 39
Magnetometer, 89
\l«ln 61

Moon: distance from earth, 24
phases, 8

Mormon Tabernacle, 54

Multiplication table., 19

Music, mathematics ot 77-78

Napier's rods, 74
Natural numbers. 39
Nautilus shell, 45
Navigation, 62
Newton, Fsad . S6-57
calculus
North Star,
North, true. 39
Number systems, 39-147, 66
Numbers, earliest written, 12-13

Octagon
Octahedron. 36, 49
Odd numbers, 16

Odometer, 75,
Oscilloscope. 38

Pating, mathematics of, 79-50

Palomar, Mt.. telescope, ST

Parabola.

Purabolic reflector. 55

Paraclintes, 69,70

Pancutin, Mt.. 49

Pascal’s calculating machme, 75

Pascal’s triangle, 72

Pentagon, 25,27

Perspective, 50

i, 26, 66

Pinball machine, 73

Planetary motion, 635

Planets, 38,57

Polv gon: 45
angles, fnnnu] Ltor. 50

Powers, 18-20

Prime numbe

Probability.

Projection, S0

Projective geometry, S0

Proot, mathematieal, 53

Pyvthagoras, 34,37
musical theories, 77
theorem, 34, 50

Quadiant, 15
Quadrilateral.
Quipn, 39

Rectangle number
Regular polygons, 27,48
angles, formula for, 50
Regnlar solids, 36-37
Right angles. 23
Right trangle
Roman nume

Satellite Liunching. 65
Satellite orbit, 74
Scales, musical, 74
Seatunt, 62
Shadow reckoning, 56
Shadow stick. 60
Sieve of Erathosenes, 16-17
Sme of anangle. 58
Sine wave
Slide rule,
Snowtl xlu
Solur system. ,\,

Salids, regular, 36-37
Saroban, 13

Speed, 63

Sphere, 49

Spiral. 44

Sipuare numbers, 19,28
Stuare roots, 25
Standard measnres, 14-13
Statistics, T1-73

Sun, weight, S6
Sunflower seed, 45

Surface, compared to volume, 69-70

Svracuse, Battle of, 55

Telegraph, 89

Telescopes, 55, 57

Tetrahedron, 36

Time, unitsol, 15

Triangle: angles, formula for, 50
equilateral
right, 33,34

Triangle numbers, 18, 50, S1

Triangulation, 24

Trigonometry, 11

Vibrations. 57

Volume: compared to surface, 69-70

measurement, 67
Waves, model, 57
Weber, Wilhelm, 88, 89
Weights. metric, 15

Zero, imvention of, 13

Enclid. 17 Manwelll James Clerk, 90-91 Radio, Y1
CREDITS Photocraphs Amencan Museum: of Natnral Hhstors. 61 I Mercator of the Eugene Dictzgen Co. Inc, 75 tarenlar shde 1 Guallerie alle Opere
projes tion fosenm ot Natural Hhistons =Yerhes Obsenvators. 38, Bot $"Arte, 79, Courtesy of the Mouroe Calenlating Muchine Co.. 74 imodern caleu-
ish Crown Copanight. Svience Musenn, London. 8 (curcular shde e, 65 (Leih- Lator), Courtesy of the Museum of Modern Art. 320 New York Publie Library, 10

strarght shde ruler, wapt. US. Air Force, 61 (circumpolar nuap . Courtesy of Yeshna University, 91

ntz), T4 N aprers rods, T
Keplert. Courtesy

Culver Service, 10 (slap . 53084 (Arcinmedes), 86 Newton),










N\

X em.%moom

o

)M



e

\$

a .
edurL 291 M

2 P

b

%
E s
L p- A5 P
o -
: D @ed
= - —
o o e
pe—
S - Pl . 4 ’
— = =T —
2 ) — — —_ 3 -
—
-..
=) © . a _ |
- e
fo = B - -
. : - o
- A - -
. - -
‘ -
g = -
_ - 1
. -
s » -
= o _
& S 4 - I
-~ — — ~—
.3
2 * e
= i~
- === \ ", L
- A
S Sl a8 S —re - .
A —— o - -
— =S e B = -



