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Preface

For the past three decades, many scientists have been jumping onto the bandwagon of applied science, thereby hampering
the development of basic science. If this emerging trend is permitted to persist over a long period of time, research in
applied science will find itself at a crossroad. Recent years have been characterized by debates at the international level
over attracting intelligent people to the basic sciences. During my entire professional career, which spans more than
40years in the field of theoretical solid state physics, I have found that textbooks on solid state physics greatly outnumber
books on theoretical solid state physics. This unfortunate trend motivated me to write an elementary textbook on theoretical
solid state physics. A major portion of this book has been derived from lectures I delivered on solid state physics at various
Indian universities over a period of three decades. I began writing this book in 2000 and it took me almost 17 years of
concentrated effort to accomplish a task of such magnitude. Needless to say, the collection of material commenced much
earlier.

Solid state physics is such a diverse field that it cannot be covered in a single book. Further, the theory of solids
is progressing at a very fast pace and is reaching an increased level of sophistication, greatly complicating the task of
providing up-to-date knowledge of the whole subject. Therefore, I have tried to concentrate on the fundamentals of the
theoretical aspects of those topics that are required in a first course for undergraduate students of physics, chemistry, mate-
rials science, and engineering at various universities across the globe. There are two approaches involved in the devel-
opment of a book on solid state physics. First is the phenomenological approach, which includes hypotheses and
models that are important in the development of the subject. Second is the fundamental approach, based on quantum
mechanics and statistical mechanics, which provides greater insight into the actual processes responsible for the various
properties of solids. I have tried to present a unified quantum mechanical treatment for the different properties of solids,
touching upon phenomenological models wherever necessary. Some of the salient features of the book are discussed later.

For the study of the various properties of solids, a general formalism for the fundamentals has been derived wherever
possible. Detailed mathematical steps are presented to make it comprehensible even to students with a minimal mathe-
matical background. The results for simple structures in one-, two-, and three-dimensional solids are derived for particular
cases. All of the chapters of the book are coherently interrelated. Elementary courses in quantum mechanics and statistical
mechanics may be considered prerequisites for understanding the subject matter.

Dirac’s notation has been used, which highlights the physics contained in the mathematics in a befitting and
compact manner.

More than 400 diagrams and geometrical constructions of the elementary processes present in solids have been used to
enable students to easily comprehend the subject matter.

A considerable number of problems have been inserted at appropriate places in all the chapters with the aim of providing
deeper insight into the subject. Throughout the text, bold letters represent vector quantities. Greek letters with arrows also
represent vector quantities.

The book contains an elementary account of some recent topics, such as the quantum Hall effect, high-T, supercon-
ductivity, and nanomaterials. The topics of elasticity in solids, dislocations, polymers, point defects, and nanomaterials
are of special interest for engineering students. The inclusion of abstract methods of quantum field theory, though important
in many-body problems, have been deliberately avoided as they may not be very relevant to the diverse student commu-
nities for whom this book was written.

At the end of the book, some elementary textbooks on solid state physics are listed for supplementary reading. Advanced
books on the topics covered in the present text are also included in the list, which may be helpful to advanced learners in
carrying out further work.

I am indebted to Professor K.N. Pathak, former Vice Chancellor of Panjab University, Chandigarh, for fostering and
nurturing my interest in the subject of solid state physics while I was a student. I am thankful to my daughters Amardeep
Galsin, Manveen Galsin, my son-in-law Dr. Nirjhar Hore, and my son Damanjit Singh Galsin, who have been a constant
source of encouragement and support for me during the completion of this work. I am very grateful to my wife, Professor

XV
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Surinder Kaur, for encouraging me to liberally devote time to the writing of this book and also for editing the technical
aspects of the English language. I am grateful to Mr. Rakesh Kumar (Somalya Printers, Ludhiana) for undertaking the
artwork for this book so diligently and efficiently. I am also thankful to all my loved ones, colleagues, and well-wishers
especially Dr. Jagtar Singh Dhiman, Dr. Nathi Singh and Dr. Paramjit Singh, who silently urged me to move on toward
the successful completion of this momentous project. Last but not least, my journey with the Elsevier team, from the
submission of the manuscript to the finished product, has been very pleasant. The book has not been read by any subject
expert, therefore, any omission or error is my sole responsibility. I would welcome and appreciate comments/suggestions/
feedback for the improvement of the book in the near future. A big thanks to Lord Almighty-our creator.

Joginder Singh Galsin
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Matter exists in three states: solid, liquid, and gas. At very low temperatures, all forms of matter condense to form a solid.
Matter consists of very small particles called atoms that can exist independently. The most remarkable property of the solid
state is that the atoms of most of the solids, in the pure form, arrange themselves in a periodic fashion. Such materials are
called crystalline solids. The word crystal comes from the Greek word meaning “clear ice.” This term was used for trans-
parent quartz material because for a long period in ancient times only quartz was known to be a crystalline material. The
modern theory of solids is founded on the science of crystallography, which is concerned with the enumeration and clas-
sification of the actual structures exhibited by various crystalline solids. There are 103 stable elements in the periodic table
and the majority of these exist in the solid state. Today metallic solids play an indispensable role in engineering, technology,
and industry. Tools and machines ranging from sewing needles to automobiles and aircraft are made of metallic solids with
required properties. Thus, the study of various physical properties of solids is very important. In this chapter we shall give
an introductory account of the various periodic arrangements of atoms in solids.

1.1 CLOSE PACKING OF ATOMS IN SOLIDS

There exist forces of attraction and repulsion among the atoms in a solid. But the net force between any two atoms must be
attractive for a solid to exist. In solids, each atom is attracted approximately equally and indiscriminately to all of its neigh-
boring atoms. As a result, in a crystalline solid the atoms have the tendency to settle in a close-packed structure. In an ideal
close-packed structure, atoms touch one another just like peas placed in a vessel. The packing of atoms into a minimum total
volume is called close packing. If the atoms are assumed to have a spherical shape, then a close-packed layer of atoms of an
element with centers at positions A appears as shown in Fig. 1.1A. Above this layer, there are two types of voids, labelled B
and C. Therefore, in the second layer, above the first one, the atoms can settle down with their centers at either of the
positions B or C. If the atoms in the second layer go over the B positions then there are two nonequivalent choices for
the third layer. The atoms in the third layer can have their centers at either the A or C positions and so on. Therefore,
the most common close-packed structures that are obtained have a layer stacking given by ABABA... (or BCBCB...
or CACAC...) and ABCABCA... The stacking of layers given by ABABA (or BCBCB or CACAC) gives a hexagonal
close-packed (hep) structure while the second type of stacking, ABCABCA, gives a face-centered cubic (fcc) structure.
Therefore, the most common close-packed structures exhibit either cubic or hexagonal symmetry: the basic symmetries
of crystal structure. The details of the geometry of these close-packed structures will be discussed in the coming sections.

Solid State Physics. https://doi.org/10.1016/B978-0-12-817103-5.00001-3
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FIG. 1.1 (A) A close-packed layer of atoms,
which are assumed to be hard spheres, with their
centers at the points marked A. Above this layer,
voids exist at points B and C. (B) The close
packing of atoms with centers at points marked
D in the bottom layer of the sc structure.

(B)

Another close-packed structure exhibited by some elements is a simple cubic (sc) structure. The bottom layer of an sc
structure is shown in Fig. 1.1B, in which the centers of the atoms are shown by the points D. If in all of the layers above
the first layer the atoms settle down with their centers at the positions D then an sc structure is formed.

There can also be other sequences of layer stacking that show either a lower order or no order. Such structures are called
faulted close-packed structures. For example, some rare-earth elements exhibit structures possessing layer stacking
ABACA. This corresponds to a stacking fault appearing in every fourth layer and leads to a doubling of the hexagonal
structure along the vertical axis (double hexagonal structure). Samarium has a unique structure, which has stacking
sequence ABABCBCAC.

A quantitative measurement of the degree of close packing is given by a parameter called the packing fraction, f,. It is
defined as the ratio of actual volume occupied by an atom V, to its average volume V,, in a crystalline structure,

\Y
f =2 1.1
p VO ( )
The value of f, will be calculated for some simple structures later in this chapter. Here we would like to mention two facts
about crystal structures. First, crystals with a higher value of fjare more likely to exist. Second, in real crystals, the atoms
may not necessarily touch each other but may instead settle down at some equilibrium distance that depends on the binding
force between them.

From the above discussion, it is evident that a crystalline solid is obtained by piling planes of atoms one above the other
at regular intervals with the different planes bound together by interplanar electrostatic forces. Each atomic plane consists
of periodic arrangement of atoms in two dimensions that are bound together by intraplanar electrostatic forces. A crystalline
solid may exhibit one-dimensional, two-dimensional, or three-dimensional behavior depending on the strength of the inter-
planar and intraplanar forces. If the interplanar forces are much weaker than the intraplanar forces, then each atomic plane
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can be considered to be independent of the other atomic planes. Such a situation can arise in a solid in which the distance
between the atoms of the same plane is much smaller than that of the atoms belonging to different planes. These crystalline
solids exhibit the behavior of a two-dimensional solid. Further, each atomic plane can be considered to be made of parallel
lines of atoms (atomic lines) and the atoms in the same and different atomic lines are bound together by electrostatic forces.
If the forces between the atoms belonging to different atomic lines are much weaker than those among the atoms belonging
to the same atomic line, then each atomic line becomes nearly independent of the other atomic lines and the solid behaves as
a one-dimensional solid. Such a situation may arise in a two-dimensional solid when the distance between the atoms in
the same atomic line is much smaller than the distance between atoms belonging to different atomic lines. Therefore, a
crystalline solid will behave as a one-dimensional solid if the interplanar forces and the forces between different atomic
lines in a plane are quite weak.

1.2 CRYSTAL LATTICE AND BASIS

An ideal crystal consists of a periodic arrangement of an infinite number of atoms in a three-dimensional space. In order to
express the periodicity of a crystal in mathematical language, it is convenient to define a crystal lattice (space lattice), or
more commonly a Bravais lattice. A Bravais lattice consists of an infinite array of points distributed periodically in three-
dimensional space in which each point has surroundings identical to those of every other point. A crystal lattice is an ide-
alized mathematical concept and does not exist in reality. Fig. 1.2 shows a one-dimensional lattice in which the lattice
vector is defined as

R, =na, (1.2a)
a, =ai, (1.2b)

o — —

R,= 4a,

* P o o ° e ® °
Primitive cell WS cell

(A)

«— a —>
® & i @ .+ @& .+ @ .+ @ .+ @ o+ o o+ ¢
(B)
a

@ & ® —e —e —e —e —e —e
(C)

w, 0

FIG. 1.2 Monatomic linear lattice with periodicity “a.” (A) One-dimensional solid with lattice points at the position of the atoms. Here each end of
the primitive cell contributes, on average, half a lattice point/atom, thus yielding one lattice point/atom in the primitive cell. (B) One-dimensional solid
with lattice point in the middle of the two atoms, that is, at a distance a/2 from the atom. The new primitive cell contains one lattice point/atom.
(C) One-dimensional solid with lattice point at a distance a/4 toward the left of the atom. The new primitive cell contains one lattice point/atom.
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FIG. 1.3 Monatomic square lattice with primitive vectors a; & L 4 \ 4 @ & &
and a,, where | a;|=| a,|. In part 1 of the figure, the atom is

assumed to be situated at the position of the lattice point and WS

the primitive cell has atoms at its corners. The lattice points/ 5

ator-m at Fhe corners COHIrllbl..]I'e, on average 'one.-founh of Fhe ® . e ® ® 2 ® ) ®
lattice point/atom to the primitive cell, thus yielding one lattice

point per primitive cell. In part 2 of the figure, the lattice point A

is situated in the middle of the two atoms on the horizontal lines a, a, -

of atoms. The primitive cell has one lattice point as each corner _—

contributes 1/4 of a lattice point to the primitive cell. Further, 4 a.‘ ° L . ® g

an atom at the middle of the side contributes %2 atom to the cell.
In part 3 of the figure, again the atom is assumed to be situated
at the position of the lattice point. It shows the Wigner-Seitz

(WS) cell of a monatomic square lattice with one lattice ® ®

point/atom at its center. Further, the area of the WS cell is

the same as in cases 1 and 2.
L] @
@ 9
@ P

where a; is a primitive translation vector and n is an integer: negative, positive, or zero. The vector R, is called the trans-
lation vector. Here i, is a unit vector in the o-Cartesian direction, that is, i, i,, and i, are unit vectors along the x-, y-, and z-
directions, respectively. Fig. 1.3 shows a two-dimensional square lattice in which the lattice vector is given by

R, =n;a, +n,a, (1.3)
with
alzail,azzai2 (1.4)

where n;and n, are integers: negative, positive, or zero. In general, in a two-dimensional lattice, the primitive lattice vectors
a; and a, may not be along the Cartesian directions and further their magnitudes may not be equal, that is, | a;| # | a5|. In
exactly the same manner, one can define a lattice vector for a three-dimensional Bravais lattice as

R, =n,a; +n,a, +n;a;, (1.5)

with ay, a,, and a3 as the primitive translation vectors (not necessarily in the Cartesian directions), and ny, n,, and nj as the
integers: negative, positive, or zero. Here, n represents n; n,, and n3 and is denoted as n = (n;,np,n3). Egs. (1.2a), (1.3), and
(1.5) can be written in the general form

R, = Zniai (1.6)

Here i is used as a subscript (not o) as a;, a,, and a3 may not always be in the Cartesian directions. The subscript i assumes a
value of 1 for a one-dimensional crystal, 1 and 2 for a two-dimensional crystal, and 1, 2, and 3 for a three-dimensional
crystal. If the origin of coordinates is taken at one of the lattice points, one can generate the whole of the lattice by giving
various possible values to ny, n,, and nj.

The crystal structure is obtained by associating with each lattice point a basis of atoms, which consists of either an atom
or a group of atoms. The basis of atoms associated with every lattice point must be identical, both in composition and
orientation. If there is only one atom in the basis, it is usually assumed to be situated at the lattice point itself. However,
if there is more than one atom in the basis, one of them can be assumed to be situated at the lattice point and the others can be
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a7 a7 ' ) ' o

(1/4 )ia
(A)

(B)
FIG.1.4 (A) A diatomic linear lattice with lattice constant a. The first atom (black sphere) of the crystal is at the origin and the basis atom (shaded) with

respect to it is at a distance of (1/4)a. (B) A square lattice with a basis of two atoms: the shaded and black spheres represent the two types of atoms in the
lattice. The lattice points are taken at the positions of the black spheres with the coordinates of the basis atoms given by R, = 0, (1/2)a; +(1/2)a,.

specified with respect to it. Fig. 1.4 shows a linear lattice and a square lattice with a basis of two atoms in which one of the
atoms is taken at the lattice point. So, in general, the position of the mth basis atom associated with the nth lattice point may
be written as

R,..=R,+R_ (1.7)
with
R, ,=m a, +m,a, +m;a, (1.8)

where m;, m,, and mj; are constants and usually 0 <mj,m,,m3; < 1. Here m denotes all three numbers m;,m,,m3 and is
usually written as m = (m;,m5,m3). Such a lattice is called a Bravais lattice with a basis. It is worth mentioning here that
the choice of the lattice point is not unique, but rather a number of choices are possible. Fig. 1.2A—C shows three possible
choices of lattice points in a one-dimensional crystal. Similarly, Fig. 1.3 shows two possible choices, namely, 1, 2, of lattice
points in a two-dimensional square lattice. It is evident from the figures that the magnitude and the orientation of the prim-
itive lattice vectors remain the same, although the positions of the basis atoms with respect to the lattice point change. In
other words, for all the choices of the lattice points, the crystal lattice exhibits the same periodicity.

1.3 PERIODICITIES IN CRYSTALLINE SOLIDS

In a pure crystalline solid there are basically two types of periodicities: structural and electrostatic. In this chapter, we shall
discuss only the structural periodicity, while the electrostatic periodicity will be discussed in Chapter 12.
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1.3.1 Structural Periodicity

The ordered arrangement of the faces and edges of a crystal is known as crystal symmetry. A sense of symmetry is a pow-
erful tool for the study of the internal structures of crystals. The symmetries of a crystal are described by certain mathe-
matical operations called symmetry operations. A symmetry operation is one that leaves the crystal and its environment
invariant. The structural periodicity comprises two types of symmetries: translational and rotational.

1.3.1.1 Translational Symmetry

In a three-dimensional crystal space, any position vector r can be written as

r= E r,=

a=1 o

(1.9)

1T
1

3
o

where r, or r, is the a-Cartesian component of r, that is, the subscripts 1,2, and 3 correspond to the X, y, and z components,
respectively, of the vector r. In a two-dimensional crystal lattice, a position vector is given by

2
r=> r,=>» ir, (1.10)
=1 o=1
In a one-dimensional crystal, the position vector is defined by
r=r, =ir (1.11)

In a crystalline solid, the translation of any vector r by a lattice vector R, takes it to a new position r’ in which the atomic
arrangement is exactly the same as before the translation (see Fig. 1.5). Therefore, the vector R, defines the translational

0
FIG. 1.5 A square lattice with lattice points at the positions of the atoms (solid spheres). The figure exhibits the same distribution of atoms around any
two points r and r' =r+R,.



Crystal Structure of Solids Chapter | 1 7

symmetry of the crystalline solid. Let the subscript n denote the nth unit cell and m the number of atoms in it. Then, in a
crystalline solid with s number of atoms in a unit cell (s atoms associated with a lattice point), the density of atoms, p*(r), is
defined as

. 1
P =5 > > s(r—R,,) (1.12)
n m
where the summation nm is over the crystal and V is the volume of the crystal. It can easily be proved that

p*(r)= p*(r+R,) (1.13)

Eq. (1.13) shows that the atomic arrangement at r and r + R, is the same and therefore defines the translational symmetry of
the crystal lattice mathematically.

1.3.1.2 Near Neighbors

It has already been noted that the distribution of lattice points and of atoms around any lattice point is the same. To be more
specific, the distribution of lattice points can be classified in terms of near neighbors (NNs) of different orders about a given
lattice point. In a Bravais lattice, the lattice points closest to a given lattice point are called first nearest neighbors (1NNs)
and the number of 1NNs is usually called the coordination number. The next closest lattice points to that particular lattice
point are called the second nearest neighbors (2NN5s). In this way, one can define third nearest neighbors (3NNs), fourth
nearest neighbors (4NNs) and, in general, the nth nearest neighbors (nNNs). As the lattice is periodic, each lattice point in a
given crystal structure has the same number of nNNs for all values of n. The number, position, and distance of 1NNs and
2NNs in some simple crystal structures are given in Table 1.1.

1.3.1.3 Primitive Unit Cell

The most important property of structural periodicity is that it allows us to divide the whole of the lattice into the smallest
identical cells, called primitive unit cells or simply primitive cells. Figs. 1.2 and 1.3 show the primitive cells of one- and
two-dimensional lattices, while Fig. 1.6 shows the primitive cell of an sc lattice. In a monatomic linear lattice, the primitive
cell is a line segment of length | a;| = a with one lattice point in it on average. One can say that each end contributes, on

TABLE 1.1 Positions, Distances, and Numbers of INNs and 2NNs in sc, fcc, and bcc Structures

nNN Position Number Distance
sc structure

TNN a(£1, 0, 0) 6 a
a0, £1, 0)
a0, 0, £1)

2NN a(+1, £1, 0) 12 V?2a
a0, +1, £1)
a(x1, 0, £1)

fcc structure

TNN a(£1/2, £1/2, 0) 12 a/Vv2
a(£1/2, 0, £1/2)
a0, £1/2, £1/2)

2NN a(£1, 0, 0) 6 a
a0, £1, 0)
a(0, 0, £1)

bcc structure

TNN a(£1/2, £1/2, £1/2) 8 V3a/2
2NN a(£1, 0, 0) 6 a

a(0, £1, 0)

a0, 0, £1)

Here a is the lattice parameter.
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M>‘\
|

FIG. 1.6 Conventional primitive cell (shaded region) in the sc structure.

average, a half lattice point to the primitive cell. Therefore, the number of lattice points per unit length, N, (linear density of
lattice points), is given by

1
Ny =— (1.14)
a
In a square lattice, the primitive cell is a square bounded by primitive vectors a; and a, with sides having length | a; | = | a; |

= a. There is one lattice point, on average, in a primitive cell: each corner of the square contributes, on average, one-fourth
of a lattice point to the primitive cell. In general, in a two-dimensional lattice, the primitive cells are parallelograms
bounded by vectors a; and a, and having area A, given by

Ag=la; xa,| (1.15)
Therefore, the number of lattice points per unit area, N (surface density of lattice points), is given by
1
Ny=— 1.16
0= A, (1.16)

In an sc lattice, the primitive cell is a cube bounded by the primitive vectors a;, a,, and a; with lattice points (atoms) at the
corners and with each corner contributing one-eighth of the lattice point (atom) to the primitive cell (Fig. 1.6). In general, in
a three-dimensional lattice, the primitive cell is a parallelepiped bounded by vectors a;, a,, a3 and having volume V, given
by

Vo=|a, -a, x a;| (1.17)
Hence the volume density of lattice points, Ny, in a three-dimensional lattice is given by

1

N0:V_O

(1.18)
One should note that in a monatomic crystal the density of lattice points Ny is equal to the atomic density p®. In many
crystals, a primitive cell contains one lattice point with a basis containing more than one atom. If the subscript n is assumed
to label the primitive cell, then R, gives the position of the mth atom in the nth cell. The translation of a primitive cell by
all possible R,, vectors just fills the crystal space without overlap or voids.
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The crystal space can also be filled up without any overlap by the translation of cells larger than the primitive cell, whose
volume is usually an integral multiple of the volume of the primitive cell. Such cells are called unit cells and their choice is
not unique. The shape of a unit cell may be different from that of a primitive cell and it may contain more than one lattice
point. For example, in an sc structure, a cube with side 2a (see Fig. 1.6) is one choice for a unit cell. It contains eight prim-
itive cells and hence eight lattice points. Therefore, a primitive cell can be defined as a unit cell with minimum volume.

The choice of a primitive cell is also not unique, but its volume is independent of the choice for a particular crystal
structure. Wigner and Seitz gave an alternative and elegant method to construct a primitive cell. In a Bravais lattice, a given
lattice point is joined by lines to its INN, 2NN, 3NN.... lattice points. The smallest polyhedron bounded by perpendicular
bisector planes of these lines is called the Wigner-Seitz (WS) cell. Figs. 1.2A and 1.3 show the WS cells for a monatomic
linear lattice and a square lattice, respectively. The WS cell for an sc structure is shown in Fig. 1.7. The WS cell in a mon-
atomic linear lattice is a line segment of length a with the lattice point (atom) at its center. Similarly, the WS cell in a square
lattice is a square with area a®, with a lattice point at the center. In an sc lattice, it is a cube with volume a®, again having a
lattice point at the center. It is evident that in these simple crystal structures both the shape and the volume of the conven-
tional primitive cell and the WS cell are the same. But, in general, the shape of the two types of cells may differ in other
crystals. The WS cell exhibits the following characteristic features. First, the WS cell is independent of the choice of prim-
itive lattice vectors. Second, the lattice point lies at the center of the WS cell as a result of which the WS cell is nearly
symmetrical about the lattice point, unlike the conventional primitive cell. This symmetry allows us to replace the actual
WS cell by a sphere whose volume is equal to that of the WS cell. It is usually called the WS sphere and simplifies many of
the theoretical calculations.

The translational symmetry of a lattice can be deduced from the concept of the WS cell. Fig. 1.8 shows one of the planes
of the WS cell, the equation for which can be written directly as

L
r'R,=5[R,| (1.19)

where ﬁn = R,/| R, | is a unit vector in the direction of R,,. Eq. (1.19) is equivalent to the relation

r=r+R, (1.20)

B

-
S
f 25 L3
| & i
[ i
1L
~f
- x

FIG. 1.7 The WS cell (shaded region) in the sc structure.
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y

0

FIG. 1.8 The perpendicular bisector plane of the translation vector R,,, where r is the position vector of a point in the plane.

where |1'| = |r|. Fig. 1.5 shows the points r and r’ defined by Eq. (1.20) and these are found to be equivalent. Therefore,
Eq. (1.20) describes the translational symmetry of a Bravais lattice. The translational symmetry allows us to generate the
whole lattice by making all possible translations of the WS cell. It can be easily proved that two successive translations are
equivalent to a single translation and, moreover, two successive translations commute with each other. Therefore, the col-
lection of lattice translations forms an Abelian group.

1.3.2 Rotational Symmetry

The second type of structural symmetry exhibited by crystalline solids is that for which at least one point of the lattice is
fixed. A Bravais lattice can be taken into itself by the following operations:

1. Rotation about an axis passing through a lattice point.

2. Reflection about a plane of atoms.

3. Inversion.

4. Different combinations of the above three symmetry operations.

In all of these operations at least one point of the lattice is fixed and therefore such operations are called point symmetries.
The rotations in a crystalline solid can be classified into two categories: proper rotations and improper rotations. The proper
rotations are the simple rotations and are usually expressed in terms of the angle 27/n, where n is an integer. The rotation
through 27/n is called an n-fold rotation. Detailed analysis shows that the proper rotations can only be through multiples of
7/3 and 7/2. The improper rotations consist of inversions, reflections, and combinations of them with rotations. It can be
easily proved that a reflection can be expressed as the product of a proper rotation and an inversion. An inversion can be
expressed as a 2-fold rotation followed by a reflection in the plane normal to the rotation axis.

Let S,,; be a symmetry operator (3 x 3 matrix) for the n-fold rotation about an axis O;. The position vector r after the n-
fold rotation becomes

r=S,r (1.21)
The inverse operator S,:il, which transforms r’ into r, is defined as

r=S_'r (1.22)
One can define the identity rotational transformation, which is a 3 x 3 unit matrix, as

r=Ir (1.23)
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The collection of all the rotational symmetry operations forms a group, usually known as a point group, because two suc-
cessive rotations are equivalent to a single rotation. The point group is non-Abelian because the two successive rotations do
not commute.

1.3.2.1 Space Group

The group of all the translational and rotational symmetry operations that transform a Bravais lattice into itself forms a
bigger group known as the space group of the Bravais lattice. The general symmetry transformation in a space group
is defined as

r=S,r+R, (1.24)

It means that first an n-fold rotation is performed, which is followed by a translation through R,. For convenience,
Eq. (1.24) is written as:

r'={S,[R,}r (1.25)

where {S,;| R} defines the operator corresponding to the transformation (1.24). The inverse transformation corresponding
to Eq. (1.25) is defined as

r={S,|R,} ' (1.26)

All of the pure lattice translations are given by the collection of symmetry operators {I|R,}, while all of the pure rotations
are given by the collection of symmetry operators {S,;|0}, and both of them form the subgroups of the space group.

Problem 1.1

If {Sni|Rn} and {Simi| Ry} are two transformations of a space group, prove that

{Sni|Rn}{Smi|Rn’}:{SnismilsniRn’ +Rn} (127)

Problem 1.2

Prove that the inverse transformation of {S,;|Rn} is given as

{SulR " ={Sy'[-S'R, } (1.28)

The important property of the space group is that the subgroup of pure translations {I|R,} is invariant. As a result, in three-
dimensional crystals, the only allowed rotations are those that satisfy this invariant property. Let {S,;| Ry} and {I|R,} be
the members of the space group of a lattice. The invariance demands that {S.,; | Ry }{I| Ry} {Smi| Ry V! must be a lattice
translation. Using Eqgs. (1.27), (1.28), it can be readily proved that

{Sml|Rn’}{I|Rn}{Sm1|Rn’}_l :{I|Sm1Rn} (129)

According to Eq. (1.29), the lattice translation vector after an m-fold rotation about an axis, that is, S.,;;R,,, must be a lattice
vector that restricts the allowed rotations. With the help of this property the allowed rotations can be found.

1.3.2.2 Allowed Rotations in a Crystal

Consider a row of lattice points in a crystalline solid represented by the line ABCD (see Fig. 1.9). Let a be the primitive
translation vector with magnitude a. The vectors BA and CD are rotated clockwise and counterclockwise, respectively,
through an angle 8, = 2r/n (n-fold rotation) with final positions given by the BE and CF vectors. The rotational symmetry
of Eq. (1.29) demands that the points E and F must correspond to lattice points if the crystal lattice is to possess an axis of n-
fold rotational symmetry. Clearly, EF must be parallel to AD and the magnitude of EF must be an integral multiple of a, that
is, EF = ma where m is an integer. From Fig. 1.9, it is evident that
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A B C D
FIG.1.9 The lattice points A, B, C, and D along a particular line in a crystal. E and F are the positions of the lattice points A and D after n-fold rotation 0,,
about the points B and C, respectively.

EG FH
COSGHZEZE

and it gives
EG=FH = acos0,
Hence, the rotational symmetry gives
EF=a+ 2acosf, = ma

which yields the value of cosf, given by

m—1 N

cosl, = =5 (1.30)
where N is an integer. The allowed values of N are obtained from the fact that cosf,, lies between +1 and —1. Table 1.2 gives
the possible values of N, 0,,, and n. It shows that all the allowed rotations are multiples of either 7/2 or 7t/3 and that the 5-fold
rotation is not allowed, that is, not allowed by the condition of Eq. (1.29). We want to mention here that the 7-fold rotation is
also not allowed as it is not a multiple of either 7/2 or 7/3 and therefore is not compatible with the translational symmetry of
the three-dimensional lattice. The geometric proof of the fact that 5- and 7-fold symmetries are not allowed is as follows.
Fig. 1.10 shows that primitive cells with five-fold rotational symmetry (pentagon) do not fill the space completely but leave
voids, which is not allowed. On the other hand, primitive cells with seven-fold symmetry (see Fig. 1.10) overlap when
translated to fill the space, which again is not allowed. Therefore, both the 5-fold and 7-fold rotational symmetries are
not allowed in a three-dimensional crystal lattice. Before we proceed further, we state a few theorems for the student
to prove.

e Theorem 1: If a Bravais lattice has a line of symmetry, it has a second line of symmetry at right angles to the first.

e Theorem 2: There is a two-fold axis passing through every lattice point of a Bravais lattice and every midpoint between
two lattice points.

e Theorem 3: If a Bravais lattice has a twofold axis, it also has a plane of symmetry at right angles to that axis, and
vice versa.

e Theorem 4: If a Bravais lattice has an axis of n-fold symmetry, it also has n-fold symmetry about any lattice point.

TABLE 1.2 Allowed Rotations in a Three-Dimensional Crystal

N cos 6, 0, n
-2 -1 T 2
-1 -1/2 27/3 3
0 0 /2 4
1 Vs /3 6

2 1 2n 1
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(B)
FIG.1.10 (A) Five-fold rotational symmetry cannot exist in a lattice as it is not possible to fill the whole of the space. Voids are created with a connected
array of pentagons. (B) A seven-fold rotational symmetry cannot exist in a lattice as the connected polygons with seven sides overlap with one another
(Kepler’s demonstration).

e Theorem 5: If a lattice has two lines of symmetry making an angle 0, it also has rotational symmetry about their inter-
section with an angle 26.

e Theorem 6: If a Bravais lattice has two planes of symmetry making an angle 0, the intersection of the two planes is a
rotational axis of period 20.

The consideration of a space group for a particular solid yields a number of crystallographic point groups. Once we know
the point group corresponding to a particular class of crystals, information can be obtained about the primitive translations
{I|R,}, which are invariant under the operations of its point group. It is sufficient to put restrictions on the basic primitive
vectors.

To discuss crystals with different dimensions, we first represent the primitive vectors a;, a,, and a; and the angles
between them a, f3, and y (see Fig. 1.11). The values of a;, a,, a3, o, ff, and 7 are chosen in such a way that the invariance
of the lattice under the point symmetry group is satisfied.

1.4 ONE-DIMENSIONAL CRYSTALS

In one-dimensional crystals, there is one primitive vector a; and the translation vector is given by Eq. (1.2). In these crystals,
there is one translational group and two point symmetry operations or groups. First, point symmetry operation is the identity
operation (equivalent to a rotation of 27 about a lattice point) and second is a reflection through a lattice point, which trans-
forms x into — x. The total number of space groups, n, is obtained by multiplying the number of translational groups nt and
point symmetry groups ng, that is, n=nt X ng. Therefore, in a one-dimensional monatomic crystal there are two space
groups and both satisfy the invariance property under point symmetry groups.
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a;

a

X
FIG. 1.11 The angles o, 8, and y between the primitive vectors a;, a,, and aj.

1. Rotation by 27 (identity operation) and by 7 about the center of any of the lattice points (or atoms).
2. Reflection about a plane passing through any lattice point (or atom) and perpendicular to the linear lattice.
3. Inversion about any of the lattice points (or atoms) of the linear monatomic lattice.

On the other hand, in a diatomic linear lattice, only a rotation by 27 radians about any lattice point is allowed and this
comprises the point group.

1.5 TWO-DIMENSIONAL CRYSTALS

In two-dimensional crystals there are two primitive vectors a; and a, with an angle y between them. In a two-dimensional
lattice, it has been found that there are 5 distinct translational groups (Bravais lattices) and 10 crystallographic point groups.
Further, it has been established that there are 17 permissible space groups in total. One should note that the total number of
permissible space groups is less than the total number of space groups n = 5 x 10 = 50. The five Bravais lattices in two-
dimensional crystals are shown in Fig. 1.12 and have the following relation between a;, a,, and angle 7.

1. |a;|=]|ay|, y=90° square lattice

2. |a;|=]ay|, y=120° hexagonal lattice

3. |a;|#]|ay|, y=90° rectangular lattice

4. |a;|#|a,], y=90° centered rectangular lattice
5. |aj|#|az], y£90° oblique lattice

1.6 THREE-DIMENSIONAL CRYSTALS

In a three-dimensional crystal, the invariance of the lattice under the point symmetry group yields 14 Bravais lattices (trans-
lational groups) and 32 crystallographic point groups. Further, it has been established that there are in all 230 permissible
space groups, which is less than the total number of space groups n=nt X ng = 14 x 32 = 448. Therefore, in general, each
translational group is compatible with a limited number of point groups. It is a common practice to divide the 14 Bravais
lattices into seven groups as stated below (see Fig. 1.13). In the seven classes of Bravais lattices, the unit cell may or may not
be primitive in nature. Let us discuss some features of these crystals.
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a
/ - y 2
a, ¥
Square lattice
lay| = [a,l: v = 90 ’ hd
e [ ] [ ]
(A)
a, =
a,
Hexagonal lattice
laj| = lag: y = 120 b
(B) [ ] ® [ ]
a,
. [ ]
Rectangular lattice a,
lasl = lagl: v = 90 a
® [ ] [ ]
(€)
a, a,
L
¥
a;
Centered rectangular lattice: a, ®
both the primitive cell and rectangular
unit cell are shown
a,| = |a,l: y=90 !
lal = 2 o '
(D) © ° °

FIG. 1.12 The possible primitive cells of the two-dimensional lattices permitted by the property of invariance under translational and rotational
symmetries.

Cubic Crystals In this class of crystals
|a,| =la,[= |a3{ &oa=p=y=90°

These are high-symmetry crystals in which the primitive vectors are orthogonal to each other and the repetitive interval is
the same along the three axes. The cubic lattices may have sc, bee, or fcc structures.
Trigonal Crystals In the trigonal symmetry

|la;|=la,| = |a3| & o= f=7(120°, #90°

There is only one type of trigonal crystal in which the unit cell is primitive in nature. Note that the three primitive vectors are
equally inclined to each other.
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Triclinic
Manoclinic P Monoclinic C
1 @
~ @ -
Orthorhombic P Orthorhombic C Orthorhombic | Orthorhombic F
Tetragonal P Tetragonal |
Cubic P Cubic | Cubic F
Trigonal R Trigonal and Hexagonal P

FIG. 1.13 The conventional unit cells of the possible fourteen Bravais lattices in a three-dimensional crystal.

Tetragonal Crystals In tetragonal symmetry
la,| = |ay] # ‘33‘&“:/3:3’:900

There are two crystal lattices. One is simple and the other is a body-centered tetragonal crystal. The simple tetragonal
crystal has a primitive unit cell.
Hexagonal Crystals In the hexagonal symmetry

|a,| = |a,| # |as| & o= p=90°y =120°
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In this class of crystals a; and a, make 2nt/3 = 120 degrees angles, and there is sixfold rotational symmetry: thus the name
hexagonal. The third primitive vector aj is perpendicular to both a; and a,. The hexagonal lattice is primitive in nature (see
Fig. 1.13).

Orthorhombic Crystals In this class of Bravais lattices

|31|7’é|32|7é|a3’&“:/3:?:900

There are four types of orthorhombic crystals. They are simple, base-centered, body-centered, and face-centered ortho-
rhombic crystals. The simple orthorhombic crystal has a primitive cell.
Monoclinic Crystals In this class

|a,| # |a,| # |a;| & x=7=90°#B

There are two lattices. One lattice has a primitive cell with lattice points (atoms) at its corners while the other has a non-
primitive cell with base-centered planes formed by a; and a,.
Triclinic Crystals In this class, there is only one lattice with

|al‘7é|az|?é’a3|&°‘7éﬁ7éy

The lattice has a primitive cell as there is one lattice point in it.

1.7 SIMPLE CRYSTAL STRUCTURES

Atoms in a crystal have the tendency to settle in close-packed structures. The simplest close-packed structures have either
cubic or hexagonal symmetry. Both the translational and the point groups of the full cubic group are of highest symmetry.
The operations of the cubic group are as follows:

The identity operation {I|0}.

The four-fold rotation {S4;]|0} about the edge of a cubic unit cell.

The two-fold rotation {S,;|0} about an edge of a cubic unit cell.

The three-fold rotation {S3;|0} about the diagonal of a cubic unit cell.

The inversion J with respect to the origin.

Any of the above-mentioned rotations followed by an inversion about the origin, that is,J{S4;|0}, J{S4|0}% J{S4|0},
3(Sx/0)

Note that {I|0}, {S4 |0}, {S4i|0}2, {S5i]0}, and {S5;]|0} form one subgroup while {I|0}, {S4i|0}2,J{S4i|0},J{Szi|0}, and
{S3;|0} form another subgroup. The compatibility considerations of the translational and point symmetries show that 10
space groups are associated with the full cubic point group. These include sc, bce, fcc, diamond lattices, and others.

SARAF A

1.7.1 Simple Cubic Structure

The simplest crystal structure is the sc structure in which the primitive translation vectors are given by
a, =ai,,a, = ai,,a, = ai, (1.31)

It is a monatomic crystal structure, that is, there is one atom per primitive cell. The volume of the primitive cell is given by
V,=|a, -a, xa;| = a’ (1.32)

and the density of lattice points (or atoms) in monatomic crystals is given by

1 sl

NO:V—OZ

(1.33)

In a close-packed sc structure the four atoms in the basal plane of the primitive cell touch each other to form a square. Exactly
above these atoms are another four atoms that form the top face of the primitive cell. Hence, in a close-packed sc structure

Vaz%n(%f (1.34)
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The packing fraction, f,,, in the sc structure is given by

4n(a)3

A\ 3 5 b

f =—2=2 % —_—(052 1.35
PV, a3 6 (1.35)

Therefore, in a crystal with sc structure only 52% of the space is occupied by the atoms.

1.7.2 Body-Centered Cubic Structure
The bece structure of a pure element is obtained by the penetration of two identical sc structures. Fig. 1.14 shows two iden-

tical sc unit cells in which one sc cell is shifted from the other sc cell by a vector.

r:%a(il+iz+i3) (1.36)

where a is the magnitude of a side of the cube. Fig. 1.15 shows one of the convenient choices of the primitive translation
vectors of the bcc structure. They are given by

1 7/~ 4 ~
a, =§a(il +i, —i3)

| P
a, :§a<*i1 +i2+i3> (1.37)

1 /~ PN
a, =§zjl(i1 —i2+i3)

Problem 1.3

Prove that the average volume per atom in a bcc structure is given by

Vo= a*/2

Problem 1.4

Prove that the angle between the primitive vectors of the bcc structure is 109 degrees, 28'.

. -
Z e ’ .//"'
L @
. )
- . ‘_‘,-" ’
@
r
./ >y

x
FIG. 1.14 The penetration of two cubic unit cells in the formation of the unit cell of a bce structure (shaded region).
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FIG. 1.15 The primitive translation vectors of a bcc structure.

Pure elements, such as V, Cr, Nb, Mo, Ta, and W, possess a bce structure and are monatomic (one atom per primitive
cell). The conventional unit cell and the WS cell for the bce structure are shown in Fig. 1.16. The WS cell for the bcc
structure is a truncated octahedron: the perpendicular bisector planes of the lines joining the 2NNs cut the corners of
the octahedron formed by the perpendicular bisector planes of the INNs. The WS cell is nearly symmetric about its center.
Some compounds, such as CsCl, RbCl, TIBr, and TII, also exhibit bce structure. Fig. 1.17 shows the unit cell of CsCl in
which two sc lattices of Cs and Cl penetrate into one another. The bcc structure of CsCl has a basis of two atoms and the unit
cell contains one molecule of CsCl.

109°-28'

(A) (B)

FIG.1.16 (A) The conventional primitive cell of a bce structure (dark lines). (B) The WS cell of a bec structure (shaded region enclosed by dark lines).
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FIG. 1.17 The primitive cell of the CsCl structure.

1.7.3 Face-Centered Cubic Structure

The fcc structure can be considered as a crystal structure obtained by the penetration of four sc structures as shown in
Fig. 1.18. Here the black cube shows the primitive cell of the fcc structure with primitive vectors defined by (see

Figs. 1.18 and 1.19)

o =i +h)
a, :%an +ig) (1.38)
1y =5 (i +i,)

FIG. 1.18 The penetration of four cubic structures in the formation of the unit cell of an fcc structure (shaded region).
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(A) (B)

FIG. 1.19 (A) The conventional primitive cell of an fcc structure (shaded region enclosed by dark lines). (B) The WS cell of an fcc structure (shaded
region enclosed by dark lines).

It is noteworthy that the sc unit cells with green, blue, and red colors are displaced from the black sc unit cell by vectors
—(1/2)[a;+a, ], (1/2)[a;—a3 ], and (1/2)[a, — a3 ], respectively.

Problem 1.5

Prove that the average volume per atom in an fcc structure is given by

Vo= a’/4 (1.39)

Problem 1.6

Prove that the angle between the primitive vectors in an fcc structure is 60 degrees.

Pure elements, such as Cu, Ag, Au, Ni, Pd, and Pt, possess fcc structure and are monatomic in nature. The conventional
unit cell and the WS cell for the fcc structure are shown in Fig. 1.19. The WS cell in the fcc structure is a regular 12-faced
polyhedron (dodecahedron) and is nearly symmetric about its center.

Many compounds also exhibit fcc structure and NaCl is a good example of this case. Fig. 1.20 shows the fcc
structure possessed by a NaCl crystal, which is a Bravais lattice with a basis: the basis consists of one Na atom
and one CI atom and these are separated by one-half of the body diagonal of the unit cube. There are four molecules
of NaCl in one unit cell.

The above discussion shows that the bce crystal structure is obtained by the penetration of two sc structures, while the
fce crystal structure is obtained by the penetration of four sc structures. Therefore, on physical grounds, one expects a
maximum packing fraction in the case of fcc crystal structure and a minimum in the sc structure, which is the case in
reality.

Problem 1.7

Prove that the packing fraction f, in
(@) bece crystal structure is 0.68.
(b) fcc crystal structure is 0.74.
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FIG. 1.20 The unit cell of the NaCl structure. The shaded region enclosed by the dark lines shows the primitive cell of the NaCl crystal.

1.7.4 Hexagonal Structure

One of the close-packed structures in crystalline solids is the hcp structure, which is represented by the stacking sequence
ABABA ... (see Fig. 1.1). We first describe simple hexagonal structure, which is possessed by only a few elements. It
exhibits 6-fold symmetry in the basal plane usually called hexagonal symmetry. Fig. 1.21 shows the unit and primitive

(A) (B)
FIG.1.21 (A) The unit cell and the primitive cell (shaded region) of a hexagonal structure with primitive vectors a;, a,, and a3. (B) The basal plane of the
hexagonal structure shown in Fig. 1.21A.
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cells of the simple hexagonal structure with a;, a,, and a5 as the primitive lattice vectors: | a;| =| ay| =aand | az| =c.Itisa
monatomic crystal structure. The mathematical forms of the primitive translation vectors vary for different choices of the
Cartesian coordinates. Consider the basal plane, shown in Fig. 1.21, with the x-axis along the a; primitive vector. In this set
of Cartesian coordinates, the primitive vectors are given by

a, =ai,
1 % 3 o
a, =7, +7a12 (1.40)
a; =i,
Another choice for the x- and y-axes in the basal plane of the simple hexagonal structure is shown in Fig. 1.22 for which the
primitive translation vectors acquire the form

1. V3.
3125311—78.12

1. V3. (1.41)
a, = Eall +A78.12

a; =i,

Problem 1.8

Prove that the volume of the primitive cell of the simple hexagonal structure in the crystal space, which is the average volume per
atom, obtained either from Eq. (1.40) or (1.41), is given by

3
V0:|a1-a2><a3|:\/7—a2c (1.42)

X

FIG. 1.22 The primitive vectors a; and a, are depicted with respect to another set of x and y Cartesian coordinates in the basal plane.
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1.7.5 Hexagonal Close-packed Structure

Hexagonal close-packed (hcp) structure is obtained by the penetration of one hexagonal structure into another hexagonal
structure. The basal plane of one hexagonal unit cell is at half the height of another hexagonal unit cell and is also laterally
displaced (see Fig. 1.23A). The unit and primitive cells of hcp structure are shown in Fig. 1.23B. The hcp structure is a
diatomic structure: one atom of the basis is taken at the origin while the other at position r is defined by
2 1 1

r=;a, +§aZ+Ea3 (1.43)
Hence, the average volume occupied by an atom in an hcp structure is (\/§ / 4) a’c. In an ideal close packing of the hcp
structure, the distance between the two basis atoms in a primitive cell must be equal to a, that is, |r|=a. So

2 1 :,
gal+§aZ+§a3 =a
The above equation can be written as
2 1 2 1 1
[531"'532} . {531 +§a2] +ZC2: a’ (1.44)
which on simplification gives
gz\/%zl.m (1.45)

>N

(A)
FIG. 1.23 (A) The penetration of two hexagonal structures in the formation of a unit cell of an hcp structure (shaded region). (B) The unit cell and
primitive cell (shaded region) of an hcp structure with primitive vectors a;, a,, and as.
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FIG. 1.24 The close packing of four atoms in the basal plane of the primitive cell of an hcp structure.

Eq. (1.45) gives the ideal value of the axial ratio c/a for the hcp structure. It is worth mentioning here that in the real crystals
the axial ratio c/a deviates significantly from its ideal value 1.633. It simply means that the atoms do not exhibit ideal close
packing in real crystals.

Alternate Method for c/a

Fig. 1.24 shows the close packing of four atoms in the bottom layer of the primitive cell in an hcp structure in which the
B and C points represent the centers of the two types of voids between them. The center of an atom in the second layer of the
hcp structure is at the point B, which is at a distance of ¢/2 above the bottom layer. Let a; and a, be the vectors in the basal
plane as shown in the figure, then | a; | = | a, | = a. Let the third vector a3 be in the vertical direction passing through O such
that | az| = c. Now to arrive at the center of the atom situated at the point B in the second layer, one has to travel a distance
OM (= | a;|/3) along the vector a; and then from M, a distance | a,|/3 parallel to the vector a,, and finally a vertical distance

of ¢/2 (|a3|/2) to reach the point B. Hence the position vector 3 of the atom at position B in the second layer with respect to
the point O is given by

5= Mta ’3*‘2 N 123 (1.46)

In the case of close packing of the atoms ‘ g ' = a, that is,

a +a, a,?
‘13 2+—3‘=a2

which on simplification gives

C— \/8/3= 1.633.
a

Problem 1.9

Prove that the packing fraction f, in an hcp structure is 0.74.

From the problems 1.7 and 1.9 it is evident that the packing fraction for both the fcc and hcp structures is the same.

1.8 MILLER INDICES

An actual crystal has a definite shape bounded by a set of planes. In 1669, Niels Stenson found that the angles between the
similar faces of a quartz crystal are always the same, no matter how the crystal is prepared. In 1772, Jean Baptiste Rome de
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I’Isle extended the law of consistency of plane angles to many other crystals and observed that their values depend on a
particular crystal and not on the size of the planes. It is a well-known fact in geometry that a plane can be specified uniquely
by three noncollinear points. Therefore, in 1839, William Hallowes Miller gave the law of rational numbers according to
which a plane can be specified by three integers, usually called Miller indices, and represented by (hkl) where h, k, and 1 are
integers, positive, negative, or zero. Miller indices of a plane are obtained by finding the reciprocals of the intercepts
(expressed in units of lattice parameter) on the axes of the primitive lattice vectors of the crystal structure and then reducing
them to the smallest integers. For example, consider an sc structure with lattice constant ‘a’ and Cartesian coordinates as
shown in Fig. 1.25a. Here the primitive lattice vectors a;, a,, and a3 of the sc structure are along the Cartesian coordinates.

z
Y

a,

a;

(A)

-a ‘_."

X

(B)

FIG. 1.25 (A) The (111) plane in an sc structure with primitive vectors a;, a,, and az. (B) The (TOO) plane in an sc structure.
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The magnitudes of the intercepts of the plane shown in the figure by the shaded area along a;, a,, and a; are equal to a and
the reciprocals of the intercepts are 1/a, 1/a, and 1/a. The reduction of these values to the smallest integers yields 1,1,1.
Hence the Miller indices of the plane are written as (111). If any of the intercepts of a plane are on the negative side
of the axes, then the corresponding smallest integer is also negative and is represented by putting a bar over the number,
for example, —1= 1. Thus, the Miller indices of a plane (the shaded area) in Fig. 1.25b are written as (100).

Therefore, in general, (hkl) represents a single plane. But in a crystal structure, there can exist a number of equivalent
planes corresponding to particular Miller indices (hkl). Such planes are collectively represented by the symbol {hkl}. For
example, the Miller indices of the six faces of an sc structure are represented by (100), (010), (001), (100), (010), and (001).
All of the six planes of a cubic crystal are equivalent by symmetry and are therefore denoted by {100}.

Problem 1.10
Draw the planes in an sc structure represented by the Miller indices (100), (200), and (110).

A direction in a crystal structure can also be represented by a set of the smallest three integers written in a square bracket
as [hkl]. In order to examine what these three integers represent, consider the sc structure shown in Fig. 1.26. In the direction
OA, the first lattice point from the origin is positioned at A. To move from 0 to A one has to move a distance a along the a;-
axis, that is, OC, and then a distance a parallel to the a,-axis, that is, CA. The coordinates of point A are (a,a,0) and the
indices of this direction are obtained by reducing the coordinates to smallest integers. Hence, the direction OA is repre-
sented by [110]. Similarly, the direction OB is represented by [111]. Note that in cubic crystals, the direction [hkI] is per-
pendicular to the plane (hkl) with the same indices. This fact can straightway be proved from Fig. 1.26. Here the x-axis with
[100] is perpendicular to the front face of the cubic cell represented by (100). Similarly, the lines [110] and [111] are per-
pendicular to the planes (110) and (111).

Let us examine the representation of planes in a hexagonal structure having lower symmetry. Fig. 1.27 shows the basal
plane of the hexagonal structure with primitive vectors a; and a, passing through the origin. The third primitive vector aj is
perpendicular to the basal plane and passes through the origin. The planes passing through AB, BC, CD, DE, EF, and FA,
and perpendicular to the basal plane, are called prism faces of the hexagon and comprise a set of similar planes possessing 6-
fold rotational symmetry about the origin. With respect to the primitive vectors a, and a,, the Miller indices of the prism

>N

[111]

100

FIG. 1.26 [100], [110], and [111] directions in an sc structure with primitive vectors a;, a,, and a;.
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FIG. 1.27 [100], [010], [110] directions in the basal plane of the hexagonal crystal structure.

faces passing through AB, BC, CD, DE, EF, and FA are (100), (010), (110), (100), (010), and (110), respectively. These
Miller indices form two groups: the first group consists of planes (100), (010), (100), and (010) and the second group con-
sists of the (110) and (110) planes. But one expects similar indices for the equivalent planes in a crystal structure. We find
the same thing in the situation of planes passing through AC, BD, CE, DF, EA, and FB, and perpendicular to the basal plane,
which have Miller indices (110), (120), (210), (110), (120), (210), respectively. These again form two groups, that is, (110),
(110) and (120), (210), (120), (210).

To obtain one group of Miller indices for all the equivalent planes, Bravais adopted a different coordinate system that
has four axes, with three being in the basal plane. Fig. 1.28 shows the coordinate axes a;, a,, and a4 in the basal plane, which
are inclined at an angle of 27/3 to one another. Now four indices will represent a plane, which are called Miller-Bravais
indices: finding the reciprocals of intercepts on the four axes and then reducing them to the smallest integers. Miller-Bravais
indices are represented as (hkil), where the index i corresponds to the a, axis. For all the planes, the intercept on the a, axis
has a definite relationship with the intercepts on the a; and a, axes. To find this relationship, consider a plane passing
through AC and perpendicular to the basal plane (Fig. 1.28). For this plane, the intercepts on the a; and a, axes are equal
to a in magnitude, while on the a, axis the intercept is — OB/2 = —a/2. For this plane it is straightforward to prove that

i=—(h+k) (1.47)

It can be proved that the above relation holds good for all the planes. Hence, the index i is completely determined by the first
two Miller indices. Now the Miller-Bravais indices for planes passing through AB, BC, CD, DE, EF, and FA become
(1010), (0110), (1100), (1010), (0110), and (1100), which evidently form one group in contrast to the Miller indices. Sim-
ilarly, the Miller-Bravais indices for planes passing through AC, BD, CE, DF, EA, and FB are (1120), (1210), (2110),
(1120), (1210), and (2110), respectively.

A direction can also be represented by four indices as [hkil]. A direction is defined by translations parallel to each of the
four axes that give motion in the required direction. These translations are then reduced to the smallest integers. In addition,
the first three indices must satisfy the condition given by Eq. (1.47). High-symmetry directions in the basal plane of a
hexagon are shown in Fig. 1.29.

Let us examine the direction of primitive vector a; represented by [100] in the system of three indices (old system). In the
system of four indices (new system) one can obtain the representation in the same way. If one moves directly from the origin O
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[7720] [T000]

[0100]

[1000] [1120]
FIG. 1.28 The primitive vectors a;, a,, and a, in the basal plane of the hexagonal structure. The figure also shows the directions [1000], [0100], [1 150] s
HOOO] , and FZO] , in terms of Miller-Bravais indices, in the basal plane.

5 [110]
i o

FIG. 1.29 The method for the conversion of Miller indices into Miller-Bravais indices along the different symmetry directions.
to point A, then the translations along the four directions are a, 0, 0, 0 and hence the direction of a; is represented by [1000].

Similarly, the direction of a3 becomes [0001] if the translation is performed directly from the origin to the atom at a distance ¢
perpendicular to the basal plane. But in the [1000] and [0001] representations the property given by Eq. (1.47) is not satisfied.
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In order to fulfill this requirement, one may have to choose a lattice atom different from the first atom in a particular direction.
Further, to reach this lattice point, translations parallel to the primitive vectors a;, a,, a3, and a4 have to be chosen such that
Eq. (1.47) is satisfied. For example, in Fig. 1.29, line OH represents the same direction as vector a;, that is, [ 100]. Starting from
the origin, to reach the point H we choose a path that consists of translations OF, then FG and GH; these are parallel to vectors
—a,, a;, and — a4, respectively. These translations have magnitudes of 2a, —a, —a, and 0, which give the indices of direction
as [2110]. Similarly, OQ represents the [010] direction and, to reach Q, we travel from O to D, then from D to P, and finally
from P to Q (Fig. 1.29). This path yields indices [1210] for the direction of vector a,. The four indices representation of the
direction satisfies Eq. (1.47). In Fig. 1.29 are shown four indices representations for some symmetry directions. Another
important property of the four indices representation is that the direction [hkil] is perpendicular to the plane (hkil). For
example, from Fig. 1.28, it is evident that the direction [1120] is perpendicular to the plane (1120).

1.9 OTHER STRUCTURES

There are a number of other crystal structures that are more involved than the simple structures described earlier. We shall
briefly describe some of the structures that are relevant to the present text.

1.9.1 Zinc Sulfide Structure

Zinc sulfide (ZnS) structure is obtained by the penetration of two fcc lattices: one fcc lattice composed of Zn atoms and the
other of S atoms (see Fig. 1.30). The two fcc lattices are oriented parallel to each other and the corner of one cube is placed
on the body diagonal of the other cube at a distance of one quarter of the length of the diagonal. Here the atoms of the two
kinds are connected tetrahedrally: four equidistant S atoms, which occupy the apexes of a tetrahedron, surround one
Zn atom.

The space lattice for the ZnS crystal structure can be considered as an fcc lattice with a basis of two atoms, one Zn atom
and the other an S atom. Let the lattice constant of the ZnS structure be a, that is, the length of the edge of the cube. Then, the
vector connecting the two basis atoms is given by

R, = Z (il +i2+i3) (1.48)

Note that an atom has twelve 1NN atoms of the same kind and a unit cell contains four ZnS molecules.

FIG. 1.30 The crystal structure of the ZnS compound.
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1.9.2 Diamond Structure

The crystal structure of diamond is exactly similar to that of cubic ZnS, in which both the interpenetrating fcc lattices are
made of carbon atoms (see Fig. 1.31). Hence the space lattice of diamond structure is an fcc lattice with a basis of two
identical carbon atoms situated at (0, 0, 0) and (a/4, a/4, a/4). Here, each C atom has four 1NNs, which are positioned
at the apexes of a tetrahedron, and twelve 2NNs. There are eight carbon atoms in a unit cube.

1.9.3 Waurtzite Structure

Wourtzite structure has basic hexagonal symmetry. It can be considered as being formed by the penetration of two hcp lat-
tices (see Fig. 1.32). The two hcp lattices have the same axis (as—axis) but one of them is displaced with respect to the other.
The wurtzite structure may be considered as an hcp structure with a basis of two atoms. The primitive vector along a; has a
length of 3/8 times the a; vector, that is, (3/8) a3. In the wurtzite structure, the atoms are also arranged with tetrahedral
symmetry, that is, an atom has four INN atoms of another kind and twelve 2NN atoms of the same kind. It is noteworthy
that the atomic arrangement along the aj axis in the wurtzite structure is similar to the atomic arrangement along the [111]
direction in the ZnS structure. In the wurtzite structure, there are four atoms per unit cell. Hence, the average volume per
atom in the wurtzite structure is given by (v/3/8)a’c. The wurtzite structure has uniaxial symmetry and a number of pie-
zoelectric and pyroelectric crystals possess this structure.

1.9.4 Perovskite Structure

Some naturally occurring minerals have cubic structure with the formula ABO;, where A and B are cations while O is an
oxygen anion, for example, BaTiO5; and CaTiOj3. This structure is generally called perovskite structure and is shown in
Fig. 1.33. Most of the materials having this structure exhibit ferroelectric behavior and are therefore important from a tech-
nological point of view.

In the perovskite structure A™ occupy the corners of the cubic unit cell and the centers of the faces of the cube are
occupied by O~ ions. The O~ ions form an octahedron at the center of which is located a small B™ ion. One of the
important compounds possessing perovskite structure is BaTiOs. In this compound Ba*? ions occupy the corners of the
cubic unit cell while Ti** is situated at the center of the oxygen octahedron. But the atomic arrangement is not restricted
only to divalent and quadrivalent ions as in BaTiO5, CaTiO3, or StNbOs. In fact, compounds such as KNbO; and LaAlO3
also possess the same structure: here the ions are K*' and Nb*” in KNbO; and La*> and AI*® in LaAlOs. It appears that the

FIG. 1.31 The crystal structure of diamond.
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FIG. 1.32 Waurtzite crystal structure.

2

A Cation

O Oxygen
[

B Cation
FIG. 1.33 ABO; perovskite structure.
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size of the atoms is a more important factor than the valency of the atoms in determining the arrangement of the atoms.
Hence, in general, perovskite structure can be assigned the formula A*™B*"O; with (m,n) = (2,4), (3,3), or (1,5). Almost all
the ABO; compounds are insulators except when A and B are both nontransitional elements. But these metallic compounds
generally have low carrier density.

There is an intimate relationship between the atomic arrangement and the ferroelectric properties of a material. For
example, in BaTiOs, the Ti** ion is considerably smaller than the space available inside the oxygen octahedron. As a result,
below a certain temperature called the Curie temperature, the structure is slightly deformed, with Ba** and Ti** ions dis-
placed relative to the O ions, thereby developing a dipole moment. The displacement of Ba*> and Ti** ions gives rise to
spontaneous polarization in BaTiOs3.

Another important property of ABO3; compounds is that A and/or B sites may be partially occupied by cations of a
different kind (say C) giving rise to A;_,CyxBO3 or AB;_,C,O3 compounds. The common examples of such compounds
are K, _Ba,BiO; SrGa; (Nb,O3, BaPb, (Bi,O3 etc. High-temperature superconductivity is observed in the pseudoternary
compound BaPb, ,Bi,O; with T, = 13K. The compound K, ,Ba,BiO; exhibit superconductivity with T, = 30K.
Replacing Ba*? by K*' is likely to generate oxygen vacancies. The deficiency of oxygen is responsible for enhanced
electron-phonon interactions, which may yield high-T. behavior. In these compounds, the conductivity depends on the
value of parameter x, which is very difficult to control. In this sense, such materials are sometimes called alloys.

1.9.5 High-T. Superconductors

In 1986, Bednorz and Muller discovered a new class of superconductors in which the transition temperature T is considerably
higher than in normal superconductors; thus, these are commonly known as high-T, superconductors. They discovered super-
conductivity in La, ,Ba,CuO4 compounds with T, > 30 K: La, ,Ba,CuO, with x = 0.15 exhibits bulk superconductivity
with T, ~ 35 K. Later, a large number of superconductors were found with different values of T, and it is interesting to note
that all of the superconductors contain layers of copper oxide in their crystal structures. Therefore, they are also sometimes
called oxide superconductors. Historically, one can say that the high-T, superconductive cuprates have evolved from materials
related to the perovskite family ABO3. All of the high-T. superconductors can be grouped into three categories.

1. The first group of high-T, superconductors is represented by the formula (La, M),CuQO,4, which means that some of the
positions of La atoms in La,CuQ,4 are occupied by atoms labeled as M. These superconductors have a K,NiOy4-type
structure, as shown in Fig. 1.34A. One should note that Fig. 1.34A shows a schematic ideal structure but the actual
structure exhibits some distortions. For a theoretical study, the ideal structure is more suitable as it makes mathematical
treatment simple. The highest T, achieved in these superconductors is 35 K for La, g5Srg.15CuO4_,, where y represents
the deficiency of oxygen atoms in the structure. The value of T, is very sensitive to the value of y, which is difficult to
control.

2. The second group can be represented by a general chemical formula MBa,Cu30;_,, where y ranges from 0.0 to 0.5.
Here, M can be one of the rare-earth elements Sc, Y, La, Nd, Sm, Gd, Tb, Dy, Ho, Er, etc., and binary combinations with
Lu, Sc, Y, and La are prototype rare-earth elements. This structure is usually called the 123 structure, as there is 1 atom
of M, 2 atoms of Ba, and 3 atoms of Cu. The ideal 123 structure is shown in Fig. 1.34B. In these superconductors, a
suitable choice for the rare-earth element M enhances T,; the highest value of T, that has been reached is 95 K in the
case of YBa,CuzO;_,.

3. The third group of high-T, superconductors can be represented by the chemical formula Bi,Sr,Ca,,Cuy, 1 Op6.4y. Forn =
0, that is, Bi»Sr,CuQg,., the highest T, that has been reached is less than 20 K for some suitable values of y. Forn = 1,
that is, Bi,Sr,CaCu,07., the highest T, is 85 K. Such superconductors are said to possess 2212 structure, which is
shown in Fig. 1.34C in the ideal case. For n = 2, that is, Bi,Sr,Ca;Cu30g,., the highest T, ~ 110 K. In the structure
of these compounds, perovskite and BiO layers alternate.

T1,Ca,Ba,Cuy,, 1 Opye.y Tepresents a similar group of superconductors. In these superconductors, for n = 1 (2212 structure),
the highest value of T, = 105 K, while for n = 2 the highest value of T, = 127 K.

1.10 QUASICRYSTALS

A solid can be obtained from the molten state of an element (or a mixture of elements) in three ways:

1. If the material in the molten state is cooled slowly, then a crystalline solid or crystal is obtained, which exhibits perfect
long-range periodicity. The different structures of crystalline solids have already been discussed.
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FIG. 1.34 The structure of high-T. superconductors is divided
into three categories: (A) (La,M),CuQy structure: In this class,
the high-T, superconductors have K,NiO,-type crystal structure.
Here Misametallicelement. (B) M(l1 ) M(lz) Cu; 0, (123) structure
for high-T, superconductors. Here M" and M® are mostly rare-
earth elements. An example of a 123 structure is MBa,Cuz0;.
(C) M,Sr,BaCu,0g (2212) structure for high-T,. supercon-
ductors with M as the metallic atom. An example of 2212
structure is Bi,Sr,BaCu,0g.
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2. If the material in the molten state is cooled very rapidly, then an amorphous solid is obtained in which periodicity is
absent. Glass is an example of an amorphous solid. Actually, there exists a short-range order in an amorphous solid. In
the very rapid cooling process the atoms (molecules) do not have time to arrange themselves in a periodic fashion.

3. If the molten state of the material is cooled rapidly (neither slowly nor very rapidly), then a quasicrystalline solid (qua-
sicrystal) is produced in some materials. This is because the atoms (molecules) do not have sufficient time to arrange
themselves in perfect order. A quasicrystalline solid consisting of small periodic structures, which are bound together in
an irregular manner, is obtained. For example, when a mixture of Al and Mn in the molten state is cooled rapidly, a
quasicrystalline alloy, AlgMn, is obtained. A diffraction study of AlgMn shows a sharp diffraction pattern corre-
sponding to icosahedral structure, which exhibits 5-fold (pentagonal) and 10-fold (decagonal) symmetries.

It is easy to study the structure of quasicrystals in two dimensions. In order to fill the two-dimensional space, Penrose con-
structed two small plane surfaces (usually called tiles) of different shapes from a unit pentagon (Fig. 1.35) and these form
rhombi with their areas forming an irrational number o = 1.618. He was able to cover the two-dimensional space perfectly
in an infinite number of aperiodic ways yielding infinite patterns called Penrose patterns. Each arrangement possesses a
long-ranged quasiperiodicity that is responsible for the discrete diffraction pattern. In the same way, one can study the
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(B)
FIG. 1.35 (A) The unit pentagon and the Penrose tiles (shown shaded) derived from it. AC is the irrational number ¢. (B) The Penrose tiles; they may
only be used if matching sides, as indicated by arrows, are placed together.

symmetry elements of quasicrystals in three dimensions. In analogy with the two-dimensional tiles, construct two types of
rhombohedra. Fill the three-dimensional space with different arrangements of rhombohedra without overlaps and gaps. The
rhombohedra produce an irregular but quasiperiodic arrangement of lattice points with icosahedral symmetry. In Fig. 1.36
an icosahedron is shown, which has twenty similar sides forming equilateral triangles. Further, the icosahedron has six
5-fold, ten 3-fold, and fifteen 2-fold axes of rotational symmetry. Just as pentagons cannot cover the two-dimensional space

FIG. 1.36 An icosahedron in a quasicrystal.
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perfectly, so the icosahedra cannot fill the three-dimensional space. We shall see in Chapter 25 that some clusters of atoms
(nanoparticles) possess icosahedral or truncated icosahedral structure.

A number of quasicrystals have been found since their discovery. Some of them, for example, AlgsCu,oFe ., do not even
require rapid cooling to form the quasicrystalline phase. Quasicrystals always contain two or more components and the
quasiperiodicity may arise over a range of compositions. Quasicrystals may be considered a link between the perfectly
periodic and amorphous states.
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In Chapter 1, we saw that atoms in a crystalline solid form a three-dimensional periodic array but nothing has been said
about the determination of the structure of a crystalline solid, which involves knowledge of the positions of the atoms. Two
types of studies are performed for the determination of crystal structure:

1. Direct imaging method
2. Diffraction method

With the help of high-resolution electron microscopes, such as field-ion microscopes, electron tunneling microscopes,
atomic force microscopes, and magnetic force microscopes, one can obtain a direct image of a real crystal structure. This
very useful technique is ideal for investigating point defects and dislocations and to study surfaces and interfaces. This
method will be discussed in some detail in the last chapter of the book. On the other hand, diffraction studies yield detailed
information about the crystal structure. To observe the diffraction pattern from a crystal, one requires a wave having a
wavelength comparable to the interatomic spacing, which is on the order of a few angstroms. Visible light cannot be used
for the determination of crystal structure because its wavelength is very large (on the order of few thousand angstroms)
compared with the interatomic spacing. X-rays, low-energy electrons, and thermal neutrons are best suited for diffraction
studies in crystalline solids.

2.1 X-RAY DIFFRACTION

In 1895, Wilhelm Roentgen accidentally discovered X-rays while studying electric discharge through gases at low pres-
sures but was not able to establish their nature. Because of the vast and diversified applications of X-rays, Roentgen was
awarded the first Nobel Prize in 1901. Max von Laue thought that the periodic arrangement of atoms in a crystalline solid
could satisfy the condition for diffraction of X-rays. On his suggestion, the most important discovery in solid state physics
was made by W. Friedrich and P. Knipping in 1912. They showed that interference among X-rays occurs on passing through
a crystal. This was the first proof of the wave nature of X-rays and also of the existence of a space lattice in a crystal. Thus,
the wave theory of X-rays and the atomic theory of crystals came into the light together. Max von Laue derived the scat-
tering expression, known as Laue scattering, which marked the beginning of scattering studies from crystals. In 1913,
William Henry Bragg and his son William Lawrence Bragg studied, for the first time, the structure of rock salt crystal
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with the help of X-ray diffraction experiments. They were able to obtain the value of the wavelength A of X-rays and the
lattice parameter of the crystal and found that these are on the order of a few angstroms. This study marked the beginning of
X-ray spectroscopy, which enabled the determination of the structure of a large number of crystalline solids.

2.1.1 Bragg’s Law of X-Ray Diffraction

In a crystalline solid, there are a number of sets of parallel planes of atoms and each set acts as a three-dimensional
diffraction grating rather than the plane grating used in optics. The beauty of Bragg’s study is that he gave a very simple
law for the X-ray diffraction from a particular set of parallel planes of a crystal. For simplicity we consider a square lattice as
shown in Fig. 2.1, in which a set of parallel planes with Miller indices (120) are shown. A parallel beam of X-rays falls on
the crystal and is reflected from the (120) set of parallel planes. At a particular angle of incidence, all the X-rays in a
reflected beam are parallel and interfere constructively to yield a bright spot on the photosensitive plate. According
to Bragg’s law, two incident rays undergoing reflection from the adjoining parallel planes of a particular set interfere
constructively if the path difference between them after reflection is an integral multiple of A, that is,

2dsinf =nAi 2.1

where n is an integer, d is the spacing between adjoining parallel planes of the crystal, and 0 is the angle made by incident
X-ray beam with one of the planes (see Fig. 2.1). Note that d may or may not be equal to the lattice parameter of the crystal.

2.2 ELECTRON DIFFRACTION

In 1898, Sir J. J. Thomson discovered the electron as one of the constituent particles of an atom and gave a physical model
of an atom. In 1924, Louis de Broglie gave the famous and revolutionary idea of the wave-particle duality in which the
wavelength A associated with a particle having momentum p=|p]| is given by

h
p

A= 2.2)

FIG. 2.1 Reflection of X-rays from a set of parallel atomic planes (120) of a crystal. The path difference between two parallel incident rays after
reflection from the adjacent planes is AB+BC=2d sinf.
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where h is Planck’s constant. The energy of a free electron E is given by

2

p
E=— 2.3
. 2.3)
where m, is the mass of an electron. From Egs. (2.2), (2.3) one gets
h
A= 2.4)

v/2m.E
Assuming the wave-particle duality to be true, Elsasser in 1925, thought that the waves associated with electrons might
interfere on passing through crystals as X-rays do. In 1927, Davison and Germer and G. P. Thomson, independently,
obtained the interference pattern produced by electrons passing through a crystal and also measured the wavelength of
electron waves. Electrons are light charged particles, so they interact strongly with matter and penetrate relatively short
distances into the crystal. Therefore, the low-energy electron diffraction (LEED) technique is very useful for studying
the structure of surfaces and thin films and in surface science in general. LEED is also a very important technique for
the study of surface structures formed by atoms or molecules adsorbed on metal or semiconductor surfaces.

2.3 NEUTRON DIFFRACTION

In 1932, J. Chadwick found a new particle called a neutron in radioactive processes. According to the wave-particle duality
principle, the wavelength of a neutron is also given by Eq. (2.4) by replacing the electron mass by the neutron mass M, that is,

1N 2.5)

V2M,E

The energy of a thermal neutron (energy at room temperature T) is given by

3
E= 3 kg T (2.6)
where kg is the Boltzmann constant. From Eqgs. (2.5), (2.6) the wavelength of a thermal neutron is given by
h
A=m=— 2.7

v/3M, kT
At T = 293K one gets L = 1.49A, which is of the order of atomic spacing in crystalline solids, a necessary condition for
interference from a crystal lattice. Therefore, a beam of thermal neutrons, having velocity on the order of 3 x 10> cm/sec,
suffers diffraction from the atoms of a crystalline solid and provides information about the crystal structure in the same way
as X-ray diffraction does.
An important property of neutrons is that they possess finite magnetic moment even though neutrons have no charge.
The magnetic moment of a neutron is —1.91307 £0.0006 pg, where

_ eh
Hop = 4n M¢

=5.05 x 107>* erg/gauss (2.8)

is the Bohr magnetron of a free proton having mass M, and c is the velocity of light. It is noteworthy that the magnetic
moment of a neutron is much different in magnitude and sign from that of a proton. In neutron diffraction, the magnetic
moments of neutrons interact with the magnetic moments of crystal atoms. Thus, neutron diffraction has an added
advantage over X-ray diffraction as it yields information about the magnetic structure (orientation of magnetic moments
of atoms of the crystal) in addition to the chemical structure of crystalline solids. Shull and Smart (1949) performed the first
neutron diffraction study to investigate the structure of antiferromagnetic MnO crystal. The early studies on neutron dif-
fraction from crystals are nicely reviewed by Becon (1975) and Shull (1995). In the early 1950s, experimental studies on
neutron diffraction from crystals received considerable impetus (Koehler & Wollan, 1955; Shull, Strauser, & Wollan, 1951;
Shull & Wilkinson, 1955; Shull & Wollan, 1956). Neutron diffraction studies give information about the ferromagnetic and
antiferromagnetic ordering of magnetic moments in crystalline solids (Izyumov & Ozerov, 1970). In the case of magnetic
binary alloys, neutron diffraction studies yield information about the magnetic moments of the two constituent atoms (Shull
& Wollan, 1956). Now it is generally accepted that thermal neutron diffraction is one of the most powerful experimental
techniques to study the properties of crystalline solids.
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2.4 LAUE SCATTERING THEORY

Consider a crystalline solid on which is incident a parallel beam of radiation. The amplitude of radiation at any point r
having frequency w is given by

A(r)= Age'® ey 2.9)

where Ay is the amplitude at r = 0 and K is the wave vector of the incident radiation. As the frequency  remains constant in
the scattering process so e " is constant and can be absorbed in amplitude A at a particular instant. Hence, the incident
radiation at a particular instant can be written as

Alr)= Aje'KT (2.10)

The radiation is scattered from the atoms in a solid and the geometry of the scattering process is shown in Fig. 2.2. In the
case of elastic scattering, | K'| = | K| = K and the amplitude of scattered waves depends on the amplitude of the incident
radiation at position R,. Hence, the amplitude of a scattered wave Ay(r) at the observation point P is given by

ezKr
A(r)=C(A,e®R) —— (2.11)
b r
which, in the case of elastic scattering, can be written as
eIK’ T
A(r)=CApe® R — (2.12)
r

Here C is the constant of proportionality and depends on the details of the scattering center. From the geometry of the
scattering process (Fig. 2.2)

r=R,—R, (2.13)
which in the asymptotic limit, with |R, |<<]| r|, |R,|<<|Ry/| is given by
r=R,—R,-R =R,
KR, ~Ki =K' (2.14)
where f{n, = R,/|Ry| is a unit vector in the direction of R,y and T is a unit vector in the direction of vector r. Here symbols

without a vector sign are moduli (absolute values) of their vector forms. Substituting Egs. (2.13), (2.14) into Eq. (2.12) we get

—1AK R
e n
Av

S

(r)=CAy—— (2.15)

n

FIG. 2.2 Electromagnetic waves with plane wave fronts
having wave vector K are incident on an atom at R, in the
crystal lattice. After scattering, radiation with a spherical
wave front having wave vector K’ is produced and travels
in the direction of the position vector r.
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where
AK=K —-K (2.16)

Here, the factor exp(1K'-R,y) = exp(iKR,) is nearly a constant quantity and is absorbed in A,. This is the case when |Ry
is very large compared with the dimensions of the crystal under consideration. The total scattering amplitude from all the
atoms of a crystalline material is obtained by summing over all the atoms, that is,

e—lAK~Rn

A(r)=CAy > = (2.17)

n n

Actually, the incident radiation interacts with the electrons of the atom at a particular site R, and is scattered. Therefore, the
strength of scattered radiation depends on the electron density n.(R,) at R,. So, the total scattering amplitude of radiation
becomes

R,

n n

A (r) = €4 JZne(Rn)e_’AK'R"d3Rn (2.18)

Here, the integral is over the volume of the nth atom. If the material under consideration is monatomic, then the atom can be
assumed to be at a lattice point and the scattering strength of all the atoms is the same. But if there is more than one atom in
the basis (s number of atoms), then the total scattering amplitude from the whole of the crystal is found to be

1 > —1AK -
As(r):R—sz:lfm(AK)e AR R
n m=

(2.19)
= 2 AL(AK) F5(AK)
where
A, (AK) = Ze*’AK'Rn (2.20)
Fy(AK) = me(AK)e’ZAK‘Rm (2.21)
m=1

Here A[(AK) gives the scattering amplitude from the lattice of a crystalline solid and depends on the periodicity of
the lattice. On the other hand, Fg(AK) gives the amplitude of scattering from a unit cell and depends upon the
distribution of atoms in the unit cell and hence is called the geometrical structure factor of the basis. The product
of A (AK) and Fg(AK) determines the total scattering amplitude from the crystalline structure. Here f,,, measures
the amplitude of scattered waves from the mth atom of the unit cell and its value depends on the electron distribution
of the mth atom in the nth unit cell. In terms of the electron density of the atom at the R, site, that is, n.(R,), f,, can be
written as

fm(AK) = Jne(Rm)elAK‘Rm dBRm
It can also be written as
f (AK)= Jne(r)e’AK‘rdSr (2.22)

where the volume integral is over the volume of the mth atom. The value of f,;, for the mth atom is the same for each lattice
point R,,. Thus, every lattice point R;, has associated with it a unit cell and every unit cell yields the same amplitude of
scattered radiation.

Further, f,,, also depends on the nature of the incident radiation. If X-ray diffraction is studied from a crystalline material,
then f,, = fi is called the X-ray scattering amplitude of the mth atom in the unit cell. In the case of a neutron diffraction
study, f,, = f is called the neutron scattering amplitude from the mth nonmagnetic atom of the unit cell. On the other
hand, in the case of neutron diffraction from a magnetic atom (magnetic material) f,,, = f% is called the magnetic scattering
amplitude.
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Problem 2.1

Substitute for R, from Eq. (1.5) in Eq. (2.20) and prove that the intensity of scattered waves is maximum when the following con-
ditions are satisfied:

a,-AK=27N,
a, - AK=27N, (2.23)
a,-AK=27N,

where N¢, N, and N3 are integers. The conditions given by Eq. (2.23) are called Laue’s diffraction conditions. Further, prove that the
intensity of the scattered beam is directly proportional to the number of atoms in the crystal.

2.5 RECIPROCAL LATTICE

An X-ray or neutron diffraction pattern is in a space that has dimensions of reciprocal length and such a space is called
reciprocal space. Therefore, to interpret the X-ray diffraction pattern and then relate it to the crystal (direct) space, one
has to define a reciprocal lattice. Ewald originally proposed the formal concept of the reciprocal lattice in 1921 and Bernal
studied its applications in 1927.

Consider a Bravais lattice in the reciprocal space with primitive translation vectors by, b,, and bs. One of the ways to
construct a reciprocal lattice is to make its primitive vectors orthogonal to the primitive vectors of the direct space, which
mathematically can be written as

a, by :21151[3 (2.24)
where o and f§ take values 1, 2, and 3. The factor 27 in Eq. (2.24) arises due to geometrical reasons. We have seen in
Chapter 1 that a;, a,, and a3 are not generally orthogonal to one another and so are the vectors by, b,, and b;. From

Eq. (2.24) it is evident that b, is perpendicular to a, and as, b, is perpendicular to a; and a;, and b3 is perpendicular to
a, and a,. Therefore, one can write

b,oc a, x a,

orb, =K,a, x a, (2.25)
where K is a constant of proportionality which can be determined from the condition
a b =2n (2.26)
Substituting b, from Eq. (2.25) into Eq. (2.26) we get
2
K=— " (2.27)
a; -a, X a,
Hence, the vector b, from Eq. (2.25), (2.27) becomes
b =2n2%% (2.282)
a -a, X a,
Similarly, expressions for b, and b; can be obtained and are given by
X
b, =273 8 (2.28b)
a;-a, X a,
a xa
b, =2n—1""2_ (2.28¢)
a, -a, X a,

Problem 2.2

If the primitive translation vectors a;, a,, and a; are constructed from by, by, and bs in the same way as by, b,, and b; are constructed
from ay, a,, and as [see Eq. (2.28)], prove that

b, x by

a4 b, x b,
b, b, xb," "2

i 4 b, x b,
b,-b, xb," 3

2 "b, -b, xb,

a,=2rn 2 (2.29)
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From Egs. (2.24) and (2.28), it is evident that vectors by, b,, and b3 have dimensions of reciprocal of length and are
therefore, called primitive reciprocal lattice vectors. The periodic repetition of by, b,, and b; generates a new lattice called
the reciprocal lattice in a space called the reciprocal space or the Fourier space. A general reciprocal lattice vector Gy, is
defined in the conventional way as

G, =p;b, +p,b, +p;b; (2.30)

where p1, p2, and p3 are integers: negative, positive, or zero. The set of integers py, p», and ps is, collectively, represented by
an integer p, that is, p = (py, p2, p3)- The important property of the reciprocal lattice is that

e'GrRu—1 (2.31)

The reciprocal lattice can also be constructed by making use of the periodicity of the electron and atomic densities.

2.5.1 Periodicity of Electron Density

The concept of reciprocal lattice can also be derived from the electronic band theory of solids (see Chapter 12). The general
wave function for an electron in a periodic crystalline solid is the Bloch wave function defined as

W (1)) =e* Ty (r) (2.32)
where K is the electron wave vector and uy(r) is a scalar complex function that satisfies the periodicity of the crystal, that is,
u (r)=u(r+R,) (2.33)

If T(R,) is the translation operator, then the Bloch wave function satisfies the following condition

T(R,) Y (1)) = [y (r+R,)) =™ % [y (r) (2.34)
Eq. (2.34) is usually called the Bloch condition [see Eq. (12.33)]. Let us consider some vector k=G, such that

RICHE (2.31)
then Eq. (2.34) reduces to

T(R,)

Ve, 1)) = e, (r+R,)) =|ve () (235)

Eq. (2.35) shows that the choice of k= G, makes | (r)) invariant under translation (translational periodicity). Eq. (2.31) is
satisfied if

G, R, =2np (2.36)
where p is an integer: negative, positive, or zero. Using Eq. (1.5) for R, in Eq. (2.36) we get
n,G,-a,+n,G, -2, +n;G, -a; =2np (2.37)

For each of the integers (n;, n,, n3), there exists some integer p for which the above equation holds. In other words, the value
of p depends on the set {n;, ny, n3}. As a simple case, consider n,=n3 =0, then Eq. (2.37) gives

G, a, :27zn£:27rp1 (2.38a)
1

where p/n; = p; is another integer. Similarly, one can get
G,-a,=2np, (2.38b)
G,-a;=27p; (2.38¢)
From Egs. (2.38a), (2.38b), and (2.38c) the general form of vector G, can be written as
G, =p,b, +p,b, +p;b; (2.39)

which is the same as Eq. (2.30). It is noteworthy that G, is defined by satisfying Eq. (2.31). Using Eq. (1.5) for R, and
Eq. (2.39) for G, in Eq. (2.31) one can prove the condition defined by Eq. (2.24). This shows that the factor of 27 comes
from the geometry of the crystal.
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2.5.2 Periodicity of Atomic Density

2.5.2.1 Monatomic Linear Lattice

In the direct crystal space, the atomic density is periodic [Eq. (1.13)]. For a monatomic linear lattice, the periodicity of the
atomic density p®(r;) can be written as

p'(r;) = p*(r;+R)) (2.40)
where
R, =na, (2.41)

Here n is an integer: negative, positive, or zero. A periodic function can always be expanded in the Fourier space. Therefore,
p*(ry) can be written as

2n s
pilr) = 3 ppe (3Ph) (2.42)
P
where p is an integer. Let us define a vector Gy, in the Fourier space by
2n s
G, = Ph =pb, (2.43)
then Eq. (2.42) becomes
prr)= D p e (244)
p

Here G, is called the reciprocal lattice vector in one dimension. The translation of Gy, by varying all possible values of p,
forms a periodic lattice called the reciprocal lattice, which in a one-dimensional crystal is also along the i, direction (see
Fig. 2.3). Here and hereafter the small dots represent the reciprocal lattice points. From Eq. (2.41) and Eq. (2.43) one can
write

G, ‘R, =2r x integer (2.45)
and therefore,
e'Crfa =1 (2.46)

is an important property of a reciprocal lattice.

2.5.2.2 Two-Dimensional Square Lattice
In a square lattice the periodic atomic density is given by Eq. (1.13), which for completeness is written again as
pi(r)= p*(r+R,) (2.47)

Here r and R,, for a two-dimensional crystal are given by Egs. (1.10) and (1.3), respectively. The expansion for p*(r) in the
Fourier space becomes

2n s 2 ~
prr)=> pd ¢ (Tri+ Tmais) - 0m) (2.48)
P],Pz
= Zpgpe'Gp o (2.49)
GP
b, 4— 2n/a —»
L ’ ) s . -—— >  x-axis

FIG. 2.3 Reciprocal lattice of a monatomic one-dimensional crystal having primitive lattice vector a; such that | a;|=a. Here, dots represent the
reciprocal lattice points and b, = (27/a)i, is the primitive reciprocal lattice vector.
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where
2m A A
Gp :? (pll1 +p212) =p;b,+p,b, (2.50)

Here we have used Eq. (1.10) for r. The reciprocal lattice of a square lattice is shown in Fig. 2.4.

2.5.2.3 Three-Dimensional Cubic Lattice

In a three-dimensional cubic crystal, the periodic atomic density is given by Eq. (1.13), where r and R,, are the position
vector and lattice vector given by Eqs. (1.9) and (1.5). Just as in the two-dimensional crystal, one can prove that in a three-
dimensional crystal the atomic density can be represented in the form

pir)=> p e%T (2.51)
G,
where
2n : : :
Gp:?<P1'1 +P2'2+P3l3) =p;b; +p,b, +p;b; (2.52)

In the reciprocal lattice, one can introduce physical concepts corresponding to those already defined in the direct space. For
simplicity consider a square lattice in the reciprocal space as shown in Fig. 2.4. Here K is any wave vector in the reciprocal
space, which is related to any other wave vector K’ through a reciprocal lattice vector Gy, that is,

K =K+G, (2.53)

(see Fig. 2.4). Note that the points corresponding to vectors K and K’ are equivalent in the reciprocal space. The equiv-
alence between K and K’ can be proved using the key property of the reciprocal lattice defined by Eq. (2.31). The phase

factor of K’ is given by
oK R, :ez(K+Gp) ‘R,

TURE, (2.54)

which is the phase factor for vector K. Eq. (2.54) shows that vectors K and K’ in Eq. (2.53) are equivalent. From Eq. (2.53)
one can generate an infinite number of points that are equivalent to vector K. Hence one can say that a reciprocal lattice is a

FIG. 2.4 Square lattice in the reciprocal space having prim-
itive reciprocal lattice vectors bjand b, (dots represent the
b, reciprocal lattice points). Let K be any vector in the reciprocal
space. The vectors K and K’ are related to one another through a
reciprocal lattice vector G,=b; +3b,, where | b;|=| by | =27/
b, a and a is the lattice constant of the square lattice. The shaded
square represents the conventional primitive cell of the lattice.
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mathematical abstraction and consists of an array of an infinite number of points in the reciprocal space in which each
point has identical surroundings. Further, Eq. (2.53) in the reciprocal space is equivalent to Eq. (1.20) in the direct space:
Eq. (1.20) defines periodicity of the lattice in the direct space while Eq. (2.53) defines the periodicity of the lattice in the
reciprocal space.

2.6 PRIMITIVE CELL IN RECIPROCAL SPACE

The primitive cell in the reciprocal space can be defined in the conventional way as a polyhedron bounded by the primitive
vectors by, by, and b; with volume given by

(2n)°
Qy=|b, by xby| ="~ (2.55)
Vo

In the conventional primitive cell, the reciprocal lattice points are at the corners of the polyhedron, which yield on average
one reciprocal lattice point per cell. However, the common practice is to define WS cells in the reciprocal lattice in exactly
the same way as in the crystal space. The WS cells in the reciprocal space are known as Brillouin zones (BZs). In con-
structing a BZ, we draw the perpendicular bisector planes to the lines joining the reciprocal lattice point under consideration
(assumed to be at the origin) to the reciprocal lattice points corresponding to 1NNs, 2NNs, 3NNs, and higher order NNs
from the origin. We start from the origin and proceed away from it until the first set of bisector planes is encountered. The
region inside these planes is called the first BZ (1BZ) with a reciprocal lattice point at its center. The surfaces of the inter-
secting planes define the surface of the 1BZ. We then start from the surface of the 1BZ and move away from it until we
encounter the next new bisector planes. The surface of these planes defines the surface of the second BZ (2BZ) and the
volume between the surfaces of the 1BZ and the 2BZ gives the volume of the 2BZ. In general, if we start from the surface of
the (n-1)™ BZ and move away from it until the next bisector planes are encountered, then the surface of these planes define
the surface of the n' BZ (nBZ). The volume between the surfaces of the (n-1)™ and n'™ BZs gives the volume of the nBZ. We
take some simple examples for obtaining the reciprocal lattices and constructing their BZs.

2.6.1 Linear Monatomic Lattice

Consider a linear monatomic lattice, along the x-axis, with lattice constant a (see Fig. 1.2A). The primitive translation
vector a; is given by Eq. (1.2b). The primitive vector b can be calculated in terms of a;. To do so, we introduce temporary

unit lattice vectors a, and a3 along y- and z-directions defined as
=i
=0 (2.56)
a; =l

The vectors a, and a3 are introduced so as to use Eq. (2.28). Using Eqs. (1.2b) and (2.56) one can immediately write
la,-a, xa;|=a (2.57)
Further substituting a;, a,, and a; in Eq. (2.282a) one obtains

27T~
b, :fiI (2.58)

Now, the reciprocal lattice vector in one dimension is given by

2n A
G,= ?pll (2.59)
Hence, the reciprocal lattice is also along the x-direction with periodicity of 2n/a (see Fig. 2.3). The different BZs in a one-
dimensional crystal can be shown in a simple but most instructive way. The shortest nonzero reciprocal lattice vectors from
Eq. (2.59) are for p = =1, that is,

27~
G, = igil (2.60)

The 1BZ is subtended by the perpendicular bisectors of G, around the origin and is shown in Fig. 2.5. The reciprocal lattice
vectors next to the shortest ones are obtained by putting p = £2 in Eq. (2.59), that is,
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i 382 | 2BZi+—1BZ—»} 282 | 382 | . cands
Fi iD (B O A{ Ci IE

-3n/a -2n/a -n/a nla 2n/a 3n/a
FIG. 2.5 The BZs of a monatomic one-dimensional lattice having lattice constant a. The dots represent the reciprocal lattice points.

A7
Gzzi?nil (2.61)

The 2BZ formed by the perpendicular bisectors of G, is shown in Fig. 2.5 and it has two segments: one on the left and the
other on the right of the 1BZ, but the total length of the 2BZ is the same as that of the 1BZ. Similarly, one can draw the 3BZ,
4BZ, ... in the reciprocal lattice and all will have the same length, that is, 2n/a.

2.6.2 Square Lattice

The square lattice in the crystal space is shown in Fig. 1.3 and the translation vector and the primitive translation vectors are
given by Eqgs. (1.3) and (1.4), respectively. The reciprocal lattice vector in two dimensions is given by

G,=pb; +p,b, (2.62)

The primitive vectors bjand b, can be evaluated from Eq. (2.28) by introducing a third temporary unit vector a; along the
z-direction defined as

a,= i3 (2.63)
Now, it is straightforward to prove that
a,-a, x a,| =a’ (2.64)
From Eqs (2.28) one can immediately write
2m, 2n,
b, =—i;, b,=—i 2.65
1= =k (2.65)

From Egs. (2.62), (2.65) the general reciprocal lattice vector becomes:

2n : :
G,= ’ (pll1 + p212) (2.66)

which is the same as Eq. (2.50). Here b, and b, are perpendicular to each other with the same magnitude. It is noteworthy
that the directions of b; and b, are the same as those of a; and a, but with different magnitude. Hence, the direct and recip-
rocal lattices of a square lattice exhibit the same symmetry. From Eq. (2.66) the shortest nonzero reciprocal lattice vectors
are given by

2, 2m,
G, =+, £+, (2.67)
a a

The perpendicular bisectors of four G, vectors form the 1BZ, which is a square having side 2n/a with a reciprocal lattice
point at its center (see Fig. 2.6). The construction of the 2BZ and 3BZ is also shown in Fig. 2.6. The 2BZ has four parts,
namely, 2a, 2b, 2c, and 2d while the 3BZ has eight parts, namely, 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h. When we fold back the
different parts of the 2BZ or 3BZ, they form squares with area equal to that of the 1BZ.

2.6.3 sc Lattice

Consider an sc lattice with primitive lattice vectors given by Eq. (1.31). It is straightforward to prove that

a, -a, xay|=a’ (2.68)
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N o o 3a|3b
. 2b % 2¢ 36 2h
3d 3g
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FIG. 2.6 The 1BZ, 2BZ, and 3BZ of a square lattice in the reciprocal space with dots representing the reciprocal lattice points.

and
2m,
bl = 2?11
b, =i, (2.69)
a
2m.
b, ==
3T
Hence, the general reciprocal lattice can be written as
2n ? : :
Gp = (pll] +p,i, + p3l3) 2.70)

which is the same as Eq. (2.52). From the above equation, the shortest nonzero reciprocal lattice vectors are six in number
and are given by

. 2. 2m.
G, =+=04,, +74, +-, Q.71)
a a a -

Hence, the reciprocal lattice of an sc crystal structure is also an sc lattice with primitive vectors given by Eq. (2.69). The
volume of the primitive cell is given by (27/a)*, which is consistent with Eq. (2.55). The 1BZ of the sc lattice, formed by the
perpendicular bisector planes of the G| vectors, is a cube with side 27/a in magnitude (see Fig. 2.7). It is noteworthy that the
reciprocal lattice point is situated at the center of the 1BZ, which is symmetrical about the lattice point. The 2BZ of the sc
reciprocal lattice is a dodecahedron and is shown in Fig. 2.8.

In all of the above examples, the direct and reciprocal primitive vectors lie along the same directions with the same
symmetry, but this may not be always true. We consider some examples below in which the direct and reciprocal lattices
exhibit different symmetries.



]

FIG. 2.7 The reciprocal lattice and 1BZ of sc crystal structure having lattice constant a.

(A)

/k

(B)
FIG. 2.8 (A) The 2BZ of an sc lattice (omitting the interior cube, which is the 1BZ). (B) Three typical segments of the 2BZ and the interior cube that
forms the 1BZ.
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2.6.4 fcc Crystal Structure

The fcc crystal structure is shown in Fig. 1.19a and its primitive vectors are given by Eq. (1.38). The volume of the primitive
cell from Eq. (1.39) is given by

23
4
Substituting Egs. (1.38) and (2.72) into Eq. (2.28), we can prove that
2m ry ¢ B
b, :2: ( 1 +12*‘3)
by == (i, +i,+1y) 2.73)
a
21/ s
b, = (11 —12+13>

Comparison of Eq. (2.73) with Eq. (1.37) shows that the reciprocal lattice of the fcc crystal structure exhibits bcc symmetry.
The reciprocal lattice vectors given by Eq. (2.73) are shown in Fig. 2.9. Here the origin is chosen to be at the center of the
cube while the x-, y-, and z-directions are parallel to the edges of the cube. So, the reciprocal lattice of the fcc crystal lattice
is a bec lattice with a primitive cell of volume 4(2 7t/a)3 , using Eq. (2.55). Substituting Egs. (2.73) into Eq. (2.30), the general
reciprocal lattice is given by

Vo=|a, -a, xa;| = (2.72)

2n : B 2
G, = e (p; =P +P3)i +(p; +Py —P3) + (—p, P, +p3)13} (2.74)
The above equation yields eight shortest nonzero reciprocal lattice vectors given by
2 PP
G, = = (H,, £, +i,) (2.75)
a

The next shortest reciprocal vectors G, are six in number and are given by

An,  Am.  4m,
L £, £, (2.76)
a a a -

G,==%
The perpendicular bisector planes to G, give an octahedron with a reciprocal lattice point at its center. However, it is found
that the perpendicular bisector planes of G, cut the corners of the regular octahedron formed above. Therefore, the 1BZ of
the fcc crystal structure is a truncated octahedron, as shown in Fig. 2.10A.

b,

4nla

4nla
FIG. 2.9 The primitive vectors by, b, and bs of the fcc crystal structure with lattice constant a [Eq. (2.73)]. The reciprocal lattice exhibits bcc symmetry.
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W e ®)

FIG. 2.10 The 1BZs for (A) fcc and (B) bec crystal structures. Each BZ is inscribed in a cube of edge 4 /a, where a is the edge of the cubic cell in the
crystal space.

Problem 2.3

Consider a crystal with bcc structure whose primitive vectors are given by Eq. (1.37). Prove that its reciprocal lattice has fcc sym-
metry with primitive vectors given by

(i,+1) (2.77)

Draw the primitive vectors by, b,, and b; in the reciprocal space.

The general reciprocal lattice vector obtained from Egs. (2.77) and (2.30) is given by

2n 3 3 2
G,= ’y [(P1+P3)11+ (P +p2)ir + (P2+P3)13] (2.78)
The above equation yields twelve shortest nonzero reciprocal lattice vectors given by
2 . s 2 s s 2 . .
G =" (iil, iiz), = (iiz, ii3), = <ii3, iil) 2.79)
a a a

The 1BZ is obtained by the perpendicular bisector planes of G, defined by Eq. (2.79), and is a regular rhombic dodeca-
hedron, as shown in Fig. 2.10B.

2.6.5 Hexagonal Crystal Structure

The primitive translation vectors of the hexagonal structure in direct space, as shown in the basal plane of Fig. 1.22, are
given by Eq. (1.41). Using Eq. (2.28), one can find the primitive lattice vectors in the reciprocal space that are given by

Y
1= a 1 \/§ 2
27 (& 1,

by =" (il + —i2> (2:80)

Here we have used Eq. (1.42) for the volume of the primitive cell of the hexagonal structure. Fig. 2.11 shows the unit cell
formed by vectors by, by, and b;. Hence, the reciprocal lattice of hexagonal crystal structure also exhibits hexagonal
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K;
r'y
2
by
2nlc
= K)’
. . | _—»
™ b, 2
4ni3a

KI
FIG. 2.11 The unit cell in the reciprocal space formed by primitive lattice vectors by, b,, and b; given by Eq. (2.80) for the hexagonal crystal structure.

symmetry. The general reciprocal lattice vector for the hexagonal structure can be written from Eqgs. (2.30), (2.80) and is
given by

2n : 1 : a5
Gy=—- (p1+pz)11*7(p1*p2)12+5p313 (2.81)

W

Problem 2.4

If the primitive lattice vectors in the crystal space in a hexagonal structure are given by

a—ai
as 3 2
a, = —5i + - ai, (2.82)
a, =ci,

(see Fig. 1.21), prove that the primitive lattice vectors in the reciprocal space are given by

by =2" (i, + i
1_a 1\/§2
_27‘(2?

N _:ﬁlz (2.83)
27‘(:
b, =?|3

The primitive vectors in the reciprocal space are shown in Fig. 2.12. Further, show that the general reciprocal lattice vector G,
from Eqs. (2.30), (2.83) is given by’

27 % 1 < a <
Gp:? p1|1+%(P1+2pz)'2+Ep3'3 (2.84)

1. If I = p1, L = p; + 2 pa, and I3 = p3, then [; +1, =2 (p; + p»). Because p;, p.and p; are integers, therefore I;+1, is always an even integer. While
generating reciprocal lattice vectors of hexagonal structure, one should incorporate the above condition (I, +1, is always even) in the variation of py,
p2andps.
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Kz
-~
b,
2nlc
‘.T:ﬁ
bl -"‘-\_ . bZ Ky
4n/\3a
Ky

4n/3a

Ky
FIG.2.12 The unit cell in the reciprocal space formed by primitive lattice vectors by, b,, and b given by Eq. (2.83) of the hexagonal structure. The figure
also shows separately the primitive vectors by and b, in the basal plane of the unit cell.

Problem 2.5
Consider a body-centered tetragonal (bct) structure (see Fig. 2.13A) with primitive vectors given by

a; a; Cy

ay =5l + 50, —5i;
ajs as Cs
a=—sh+oh+si (2.85)
a; a; C,
a3 :§I1 —§|2+5|3
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FIG. 2.13 (A) The unit cell of the bet structure in the crystal space. (B) The unit cell of the bet structure in the reciprocal space.

Prove that the reciprocal lattice of bct is a face-centered tetragonal (fct) lattice defined by primitive reciprocal lattice vectors
2m s
b'l :2? <|-| + |2>
T A
b, =" (1,+21,) (2.86)
2 3 2t ch
T A
b, =" (i + 3 )
3=\t

The primitive vectors by, by, and bs in reciprocal space are drawn in Fig. 2.13B.

2.7 IMPORTANCE OF RECIPROCAL SPACE AND BZs
2.7.1 Bragg Reflection

The importance of the BZ can be understood by considering the equation of the face of a BZ (see Fig. 2.14) given by
- 1
K-G,= |G, (2.87)

where K is any wave vector ending on the face of the BZ and Gp is a unit vector along G, If G, is the shortest reciprocal
lattice vector, then Eq. (2.87) gives the face of the 1BZ. Eq. (2.87) is equivalent to the equation

K'=K+G, (2.88)

with |K'| = |K|. Eq. (2.88) may be viewed as an expression for the conservation of momentum in a crystal. Note that
Egs. (2.87), (2.88) in the reciprocal space are equivalent to Eqs. (1.19) and (1.20), respectively, in the crystal space.
Eq. (2.88) is just the same as Eq. (2.53) and gives the Bragg reflection condition and can be represented by Ewald’s con-
struction (Fig. 2.15). Eq. (2.87) can also be written as

2K-G,+G;=0 (2.89)

It is noteworthy that the Egs. (2.87), (2.88), and (2.89) are all equivalent and represent the Bragg reflection condition.
According to Fig. 2.15, Bragg reflection occurs if the wave vectors before (K) and after (K') reflection end at the reciprocal
lattice points. Hence, the Bragg reflection condition is satisfied at all points on the surface of the BZ, which is an important
property of the reciprocal lattice.
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0

FIG. 2.14 A plane bisects perpendicularly the reciprocal vector G,, with P as the mid point. The vector K represent the position vector of any point on
the plane.

° ® . ° ° . . . ° ° . . .
FIG.2.15 Ewald’s construction for a square reciprocal lattice with dots representing the lattice points. The wave vectors K and K’ are such that they join
lattice points and |K|=|K'|.

Problem 2.6
Prove that Eq. (2.88) or Eq. (2.89) can be written as
2asin 0=nA (2.90)

for cubic crystals. Here a and 2 are the lattice parameter and the wavelength, n is an integer, and angle 0 is defined in the same way
asin Fig. 2.1.
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Note that Eq. (2.90) is the Bragg reflection condition, except that the distance between the two planes d [Eq. (2.1)] is
replaced by a.

2.7.2 Significant Wave Vectors

Egs. (2.53), (2.54) show that a wave vector K is not unique. An infinite number of equivalent wave vectors K’ can be
generated using Eq. (2.53). Let us denote the set of wave vectors that are equivalent to K by {K’}. Any wave vector in
{K'} is related to K by some reciprocal lattice vector G,. In other words, every K possesses an infinite number of equivalent
wave vectors in the reciprocal space. In a set of equivalent wave vectors {K'}, if K forms the smallest vector, it is called the
significant wave vector. Let us investigate if there exists any particular region in the reciprocal space that contains all the
significant wave vectors for a particular crystal.

Consider a one-dimensional lattice in reciprocal space (Fig. 2.16) in which AOB is the 1BZ. Now add the shortest
G,(=2n/a) to the portion DB of the 2BZ. It will occupy the position in the 1BZ shown in Fig. 2.16. Similarly, subtract
the shortest G, from the second portion AC of the 2BZ to bring it to the 1BZ (Fig. 2.16). Similarly, the 3BZ can also
be brought to the 1BZ and it will occupy the position shown in Fig. 2.16.

Consider a square lattice in the reciprocal space, as shown in Fig. 2.17. The wave vector K; lies inside, while K lies
outside the 1BZ. When even the shortest reciprocal lattice vector is subtracted from (or added to) K, the resultant wave
vector K’ lies outside the 1BZ. On the other hand, if the shortest reciprocal lattice vector is subtracted from K, the
resultant vector K,' lies inside the 1BZ. In both the cases, the smaller wave vector (significant wave vector) lies inside

F DiC E

A CiD B
Fi D {B {0 Al Cj E
-3nfa -2nfa -nla nla 2n/a 3n/a

FIG. 2.16 Schematic representation of the 2BZ and 3BZ in the reciprocal lattice of a monatomic linear lattice, when transferred to the 1BZ.

* L] [ 3 L ] L ] L]
. . . . . .
K, K,
R
° . \L—Gu . °
P
° @ . . . .
] K
K 2
2\4/
° L] —a-i. L] L]
P
. . . . . .

FIG.2.17 A square lattice in the reciprocal space in which the 1BZ is shown by the shaded region. The figure shows two cases: one with wave vector K
lying in the 1BZ and the second with wave vector K, outside the 1BZ.
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the 1BZ. One can generalize this fact by saying that a significant wave vector K, corresponding to a set of equivalent wave
vectors {K'}, always lies inside the 1BZ. In general, all the significant wave vectors for a particular reciprocal lattice lie
inside the 1BZ. Sometimes the significant wave vectors are called reduced wave vectors and are usually represented by
vector q. It is for this reason that the electronic properties, particularly the energy band structure, are calculated in the
1BZ and these get repeated in the higher BZs.

2.7.3 Construction of Reciprocal Lattice

The 1BZ of a crystal structure is a primitive unit cell in the reciprocal space. By translating the 1BZ by all possible recip-
rocal lattice vectors one can fill the whole of the reciprocal space and can generate the reciprocal lattice. From Fig. 2.10, it is
evident that the 1BZ is symmetrical about the lattice point situated at its center. Therefore, for convenience, in the theo-
retical investigations of the properties of a crystal, one can replace the actual 1BZ by a sphere of equal volume to that of the
1BZ, generally called the WS sphere. Hence, the reciprocal lattice is a very important concept in the study of crystalline
materials because:

1. The diffraction pattern of a crystal (Laue spots) is a picture of the reciprocal lattice of the crystal. In principle, the prim-
itive translation vectors and their orientation in the crystal space can be obtained by making a transformation from the
reciprocal to the crystal space with the help of Eq. (2.29).

2. The mathematical solution of many physical problems in solid state physics is very difficult in the crystal space. But if
one transforms the problem into reciprocal space, using Eq. (2.28), the mathematical solution becomes easy.

2.8 ATOMIC SCATTERING FACTOR

The atomic scattering factor measures the amplitude of the wave scattered from a particular atom of a unit cell. The scat-
tering of X-rays depends on the electron distribution in an atom. The atomic scattering factor of the m™ atom of a unit cell
from Eq. (2.22) is given by

f,,(AK) :Jne(r) e' AT gir (2.91)

The integral is over the electron density of the atom under consideration. Eq. (2.91) is nothing but the Fourier transform of
the atomic electron density. The plane wave can be expanded in terms of Legendre polynomials P,(cos0) as
e’AK'r:Z(2€+ 1)1'j,(AKr) P, (cos Ok , ) (2.92)
=0

je(AK 1) is a spherical Bessel function of order ¢ (orbital quantum number) and Ok . is the angle between AK and r.
Assuming the electron density of an atom to be spherically symmetric, only the /= 0 component contributes to
Eq. (2.92). Therefore,

AKor s sin (AKr)
= i (AKr) = ———~ 2.93
T jy(AKr) = P 293)
Hence, Eqgs. (2.93), (2.91) give
in (AK

£ (AK)= 4ane(r) % Pdr (2.94)

As the angle 0 between K and K’ goes to zero (see Fig. 2.18), AK also reduces to zero, which gives
f_(0)= 4ane (r)r*dr=2 (2.95)

where Z is the valence of atom under consideration. If AK is nonzero, then according to Bragg’s reflection AK= G, [see
Fig. (2.15)]. Therefore, Eq. (2.94) reduces to

£ (Gp> - 4ane(r)$r2 dr (2.96)
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FIG. 2.18 The change in wave vector AK after the scattering process. Here, K is the wave vector before scattering and K’ is the wave vector after
scattering.

If the whole of the electron distribution of an atom, situated at the origin, is concentrated at the origin, then the atom can be
treated as a point charge and Eq. (2.96) reduces to

£ (Gp> —4n Jne(r) Pdr=7 (2.97)
Therefore, in both the approximations of G,— 0 and r — 0, the total scattering amplitude reduces to the same value.

2.9 GEOMETRICAL STRUCTURE FACTOR

The geometrical structure factor from Eq. (2.21) is given by
Fg(AK) =) " f, (AK)e "4 Fn (2.98)
m=1

Fs(Gy) gives the amplitude of scattering from a unit cell of the crystal. Bragg reflection occurs at various atoms in the unit
cell when AK = G, which reduces Fs(AK) to

Fo(6,) = i_:lfm (6,)e Gk (2.99)

Substituting the values of G, and Ry, from Egs. (2.30) and (1.8), respectively, one gets
FS (Gp) :me (Gp)e—zn’(f’lml+P2m2+P3m3) (2100)
m=1

It is evident from Eq. (2.100) that Fg(Gp,) may not be real, but the scattered wave intensity, given by F;(GP)FS(GP), is real.
With the help of Eq. (2.100), one can find directions in which the Bragg’s reflection has a maximum and others in which it is
a minimum. Such a study will help us in the determination of the structure of a crystalline solid.

2.9.1 sc Crystal Structure

In a crystal with sc structure there is one basis atom, which is assumed to be situated at the lattice point. If this lattice point is
at the origin, then, m = (m;,m,,m3) = (0,0,0) = 0 and Eq. (2.100) reduces to

Fg (Gp) =f, (Gp) (2.101)
which is real. The intensity of scattered wave Ig becomes

I =F; <Gp) Fg (Gp) =12 (Gp) (2.102)
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2.9.2 fcc Crystal Structure

In the unit cell of the fcc structure, there are four atoms at the positions a(0,0,0), a('2,%2,0), a(%2,0, ¥2), and a(0, V2, 1), see
Fig. 1.19. Substituting these coordinates into Eq. (2.100) one gets

Fg (Gp) =f, (Gp> [1 +e P +p2) 4 o 17 (P2+P3) 4 o1 (P3+P1) (2.103)

Here, it is assumed that all of the four atoms are identical (pure crystalline solid), each having atomic form factor fo(Gyp).
The maximum value of Fs(Gp) from Eq. (2.103) becomes

Fq (Gp) —4f, (Gp) (2.104)

when the integers p;, pp, and p3 are all even or all odd. The maximum intensity of Bragg reflection then becomes
Iy =162 (Gp> (2.105)
On the other hand, if one of the integers py, p», and p3 is odd and the others are even, or if one integer is even and others odd,
then Fs(Gy,) goes to zero; in such directions, there is no Bragg reflection. All of the four atoms in a unit cell may not be

identical if the crystal is a compound or an alloy. In these materials, one obtains minima in the Bragg reflection instead of no
reflection because the atomic form factors f,,, have different values for different atoms.

2.9.3 bcc Crystal Structure

In a pure crystal with bcc structure, the basis consists of two identical atoms at a(0,0,0) and a(*2,'2,2) (see Fig. 1.14).
Substituting the coordinates of the basis atoms into Eq. (2.100), we obtain

FS (Gp) :fo (Gp) |:] +e_’n(P1+P2+P3):| (2.106)
If p; + p2 + p3 is an odd integer, then
Fs (Gp) =0 (2.107)
&
«
Qt}\ &
&
% o
&
" 4‘6‘
v
"
\ - 2 / 1st plane
2nd plane
3rd plane

FIG. 2.19 The X-ray reflection from the first three atomic planes in a bcc crystal structure.
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and yields zero for the value of the scattered amplitude. Therefore, the intensity of the Bragg reflection in these directions of
the unit cell is zero. If p; + p, + p3 is an even integer, then

Fg (Gp) =2f, (Gp) (2.108)
Eq. (2.108) yields the maximum value of the intensity of scattered waves in these directions and is given by
Is=413(G, ) (2.109)

Egs. (2.107), 2.108) show that the diffraction pattern does not contain lines such as [100], [111], [300], or [221], but does
contain lines such as [110], [200], [211], and [222].

One can explain physically why the [100] reflection is missing in the diffraction pattern from a bcce structure of a pure
element. The [100] reflection occurs when the reflections from the first and third planes differ in phase by 2n (see Fig. 2.19)
and these planes bind the unit cell. The reflection from the first and the intervening second plane are out of phase, thereby
canceling exactly the effect of each other due to the identical nature of the two planes. On the other hand, if the bce structure
is of a compound, such as CsCl (see Fig. 1.17), then the atoms in the first and second planes are of a different kind: the first
plane consists of CI atoms, while the second plane consists of Cs atoms and the atomic scattering factors of the two types of
atoms are different say f, and f;. From Eq. (2.100) one obtains

Fg (GP) =f, (GP) +f, (Gp) e~ (P +P2 +p3) (2.110)

In this case Fg(Gy,) will never be zero, but it will oscillate from a minimum f, — f; to a maximum value of f, + f;. Hence, the
intensities of lines will vary from a maximum value of |f, + f,|? to a minimum value |f, — f;|*
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Chapter 3

Approximations in the Study of Solids
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A pure crystalline solid consists of a periodic array of atoms in three dimensions and each atom consists of a nucleus with
electrons revolving around it. In a solid, one talks either about the electronic properties, such as electron states, electronic band
structure, and electrical conductivity, or about the lattice properties, such as phonons, lattice specific heat, and thermal con-
ductivity. Solids can be classified broadly as insulators, conductors, and semiconductors. In an insulator, there are no free
electrons and the atoms as such form the periodic array. But in a conducting solid, each atom provides some free electrons,
leaving an ion behind. Therefore, in a conductor there are free electrons with ions fixed at the lattice positions. An intrinsic
semiconductor behaves as an insulator at low temperatures, but at reasonably high temperatures some electrons are excited to
the conduction band to become free. On the other hand, in an extrinsic semiconductor, there are a few free electrons or holes
even at room temperature, which give rise to finite electrical conductivity. Therefore, in general, a crystalline solid consists of
a large number of electrons and ions, which give rise to a finite electrostatic field inside it, usually called the crystal field.
The crystal field plays a central role in the theoretical study of the various physical properties of crystalline solids but its exact
determination is very difficult due to the many-body nature of the problem. To simplify the theoretical study, some approx-
imations are made in the estimation of the crystal field of a crystalline solid and these are discussed in this chapter.

3.1 SEPARATION OF ION-CORE AND VALENCE ELECTRONS

In most solids, except the inert gas crystals, the outermost electron orbit of each atom is partially filled and the electrons
belonging to it are called valence electrons. Below the outermost electron orbit, there is the ion core in which all the electron
orbits are completely filled. The valence electrons play an important role in the study of various physical properties of solids.
In a metallic solid the valence electrons are loosely bound to the nucleus of an atom. The valence electrons experience the
crystal field as a result of which they get detached from the atom and become free to move anywhere in the solid. So, a metallic
solid can be considered to be a sea of free (conduction) electrons in which the ions are embedded at the lattice positions. It is
usually assumed that there is a sharp distinction between the valence electrons and the ion core and these can be dealt with
separately in a theoretical study. This approximation works well in most solids. If the ion core is small and spherical in shape,
which is the case in light elements, it can be treated as a point with charge Ze, where Z is the valency of the atom/ion.

3.2 RIGID ION-CORE APPROXIMATION

The electrons belonging to an ion core, called core electrons, are assumed to move rigidly along with the nucleus and cannot
be excited at available energies in a solid. This is called the rigid ion approximation. Further, the core states in a solid are
assumed to be the same as in an isolated atom, which means that the crystal field does not affect (distort) the core states. This
approximation works reasonably well in solids with small ion core size, such as simple metals. But in solids with large ion
core size, such as d- and f-band metals, this is not a very good approximation as the core states are affected significantly by
the crystal field.
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3.3 SELF-CONSISTENT POTENTIAL APPROXIMATION

The exact evaluation of the crystal potential V(r) is not possible. This is because V(r) depends on the electron states, which
in turn depend on V(r). Therefore, V(r) must be calculated self-consistently and such a potential is called a self-consistent
potential. This approximation is called the self-consistent approximation.

3.4 THE BORN-OPPENHEIMER APPROXIMATION

In a solid the electrons, being lighter particles, move much more quickly than ions. Further, calculations show that the
average speed of an electron in the hydrogen molecule-ion is approximately 1000 times that of a proton. This means that
an electron can complete an orbit before the nuclei of the molecule-ion have moved significantly. This fact enables the
electrons to adjust their orbitals almost instantaneously in response to any change in the positions of the two nuclei.
Therefore, the motion of the nuclei of the hydrogen molecule-ion (representing translation, vibration, and rotation) can
be separated from the electron motion. This fact can be generalized to all the crystalline solids in which the electron motion
can be considered to be independent from the motion of the ions. This is known as the Born-Oppenheimer approximation or
the adiabatic approximation because the electrons follow the motion of the ions adiabatically in a solid.

The adiabatic approximation can be explained further by considering the Hamiltonian of a crystalline solid given by

H= T, +T,+V,+V, +V, +V_+V, 3.1)
where
hZ
T,=-) 7 —V; 3.2
e i Zme v1 ( )
”o_,
T, —— _
1 e?
Va3 2 T (3.4)
L) [T —T;
1 Z 7 ,¢e*
Vi=s > ROR (3.5)
2 n,n’ (nsn’) ‘Rn _Rn’|
Vi=-Y 2 (3.6)
a4 n.i |ri_Rn| ’

Here r; and R,, are the positions of i electron and n'™ ion. M, is the mass of the n™ ion, having charge Z,e, while m, is the
mass of an electron having charge — e. T, and T; are the kinetic energies of all the electrons and ions, respectively. V.., Vi,
and V,; represent potentials due to electron-electron, ion-ion, and electron-ion interactions in a solid. The factor of ¥2in V.
(Vi) avoids the occurrence of a pair of electrons (ions) twice in the summation. V,. and V. represent the potentials arising
from the exchange interactions and correlation interactions among the electrons, respectively, and will be discussed in
detail later in this chapter.

The Schrodinger wave equation for a solid can be written as

H¥({r}, {R})) =E[¥({r}.{R})) 3.7

The coordinates of all the electrons are collectively written as {r}and those of ions as {R}. | ¥({r},{R})) is the wave
function of the solid, which is a function of the coordinates of all the ions and electrons. In the adiabatic approximation,
the total wave function of the solid can be written as the product of an electronic wave function |W({r})), which is a
function only of the electron coordinates for the fixed positions of ions, and an ionic wave function |®({R})), which is
a function only of the ionic coordinates, that is,

Y ({r}, {R})) =¥ ({r})|O({R})) (3.8)

In order to study separately the electronic and lattice properties of a solid, one should split the total Hamiltonian into two
parts: the electronic part H, and the ionic part H;. From Eq. (3.6), we see that V; involves the coordinates of all the electrons
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and ions, therefore, it should be included in both the electronic and ionic parts of the Hamiltonian. The electronic part of the
Hamiltonian is defined as

—~

H,=T.+V.({r}) (3.9)
where
Ve({r}) :Vee+Vei+ch+Vc (310)

It is noteworthy that V.({r}) is a function of the coordinates of all the electrons for fixed ion positions. The ionic part of the
Hamiltonian is defined as

H;=T,+V,({R}) (3.11)
where
Vi({R}) =V;+Vy (3.12)

Vi({R}) is a function of the positions of all the ions in the solid. One should note that V;({R}) also includes the direct ion-
ion overlap interaction, not written here, in addition to the ion-ion and electron-ion Coulomb interactions. Egs. (3.9), (3.11)
show that the solutions of H, and H; are many-body problems.

3.5 ONE-ELECTRON APPROXIMATION

In studying the electronic properties of a solid, one has to solve the electronic part of the Schrodinger wave equation defined
as

ﬁe(rl,rz, ...,rNc) "I’(rl,rz, -~~erc)> :E“I’(rl,rz, ...,rNc)> (3.13)

Here |\¥(ry,r,, ...,Ty ) is an orthonormal wave function, which is a function of the positions of all the electrons, and E is the
energy of the composite electron system. The exact solution of Eq. (3.13) is not possible as it is a many-body problem with a
large number of electrons in a solid and, therefore, one has to resort to some simplifying assumption. The one-electron
approximation is usually adopted in which an electron is assumed to move in some average potential V(r) due to all
the ions and the remaining electrons in a solid. In this approximation, one replaces the real system by a system of N, inde-
pendent electrons with the effective Hamiltonian of the i™ electron given by

~ 2

H, (r)=—>—Vi+V(r) (3.14)

2m,

—~

H, (r;) satisfies the one-electron Schrodinger equation defined by

H, (1) Wy (1)) = ;W (r,) (3.15)

where |;(r;)) and E; are the one-electron orthonormal wave function and energy of the i™ electron. The orthonormality
condition demands

<l//i(ri)|wj (rj)> =0y (3.16)
Now, the total energy of the composite system will be the sum of the energies of the individual electrons, that is,
Nc
E= Z E, (3.17)
i=1

and correspondingly the total Hamiltonian will be the sum of the Hamiltonians of the individual electrons, that is,

N
He(rl,rz, ...,rNe> :ZHe(ri) (3.18)
i=1

The wave function of the composite system can be proved, from Eqs. (3.14)—(3.18), to be the product of the individual
electron wave functions as
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‘T(rl’rz’ rN>> =¥y (ry)) |‘/’2(r2)>‘¢N (rNC)> (3.19)

Therefore, in the one-electron approximation, the solution of the one-electron Schrodinger equation (3.15) is employed to
find the wave function and energy of the composite system. From Eqgs. (3.15), (3.17) the total energy of the system is given
by

N

e

E= Z<Wi(ri)|He(ri)|‘//i(ri)> (3.20)
i=1
The solution of Egs. (3.15), (3.20) requires knowledge of the one-electron potential, which must be calculated self-
consistently. Hartree (1928) gave a self-consistent method for the determination of the ground state energy of a system.
It was extended by Fock (1930) by incorporating symmetry in the wave function and this is usually called the Hartree-Fock
self-consistent field theory.

3.6 ELECTRON EXCHANGE AND CORRELATION INTERACTIONS

In addition to the usual Coulomb interactions, which vary as 1/r, there are many-body electron interactions in a solid that
can be classified into two categories:

1. Electron exchange interactions
2. Electron correlation interactions

Pines (1963) has described in detail the physics of exchange and correlation effects.

3.6.1 Electron Exchange Interactions

In a system of two or more indistinguishable electrons, the exchange of any two electrons gives rise to an additional con-
tribution to the energy, usually called exchange energy, and the possible interactions are called exchange interactions.
Therefore, the exchange interactions are many-body interactions that play an important role in understanding the electronic
properties of solids. These interactions have purely quantum mechanical origin and have no classical analogue. The various
exchange interactions in a solid are described below.

3.6.1.1 Intra-Atomic Exchange Interactions

Intra-atomic exchange interactions are the interactions between the electrons in the same or different orbits of a particular
atom. These exchange interactions tend to align the spins of the electrons parallel to each other so as to give the maximum
value of spin permitted by the available states (Hund’s rule). In the transition metals (TMs), p-d and d-d exchange inter-
actions are important, while in the rare earth metals (REMs) the important exchange interactions are d-f and f-f interactions.

3.6.1.2 Interatomic Exchange Interactions

This is an exchange interaction between the electrons belonging to different atoms or ion cores in a solid. The most
important contributions are the s-d and d-d exchange interactions in TMs and the s-f and f-f exchange interactions in REMs.
One can further classify the interatomic exchange interactions into direct and indirect interatomic exchange interactions, as
discussed below.

Direct Interatomic Exchange Interaction

The electrons around different nuclei are more separated compared with those around the same nucleus. Therefore, the
strength of the direct interatomic exchange interaction is much less than for an intra-atomic exchange interaction. But
at the same time, the strength of the attractive electron-ion interaction is quite large. In the interatomic exchange interaction,
the antiparallel arrangement of the spins is more probable (preferred). The most important of such exchange interactions are
the d-d (f-f) interactions in the TMs (REMs).

Indirect Interatomic Exchange Interaction

In the indirect interatomic exchange interaction, the spins of the two electrons belonging to two different ions interact with
one another via the conduction electrons, favoring a parallel alignment of the spins. Zener (1951a, 1951b) proposed the s-d
interaction in TMs for the first time.
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In a TM, the s-conduction electrons around a d-shell ion get polarized due to the ionic magnetic moment. These spin-
polarized s-electrons interact with the spin of any other neighboring magnetic d-shell ion. This is called the s-d interaction,
which favors a parallel alignment of the spins of the d-electrons. The s-d interaction, therefore, is responsible for the exis-
tence of ferromagnetism in solids. In the TMs, d-electrons are quasilocalized and possess an itinerant character to a sig-
nificant extent. Therefore, it cannot be said with certainty that only the s-d interaction is responsible for the origin of
ferromagnetism in TMs. On the other hand, in the REMs, the f-electrons are highly localized and therefore the s-f exchange
interaction is mainly responsible for ferromagnetism in many of these metals. But some of the REMs exhibit spiral mag-
netic ordering of various complexities, which cannot be understood in terms of the s-f interaction as it favors ferromagnetic
ordering. The spiral ordering can be accounted for in terms of the competition between the ferromagnetic and antiferro-
magnetic interactions between the adjacent spins.

A quantitative analysis shows that the s-d (s-f) interaction between the spins is independent of their separation, which is
physically an unreasonable result because an interaction cannot have an infinite extent. Therefore, the higher-order terms
must be included in the Zener’s s-d interaction. Ruderman and Kittel (1954), Kasuya (1956), and Yosida (1957) proposed
another interaction, usually called the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which includes the higher-
order terms in the s-d (s-f) interaction. In the RKKY interaction, the s-conduction electrons around a magnetic ion are spin
polarized (yielding finite magnetization) and the spin polarization is oscillatory in nature. The spin polarization of the con-
duction electrons tends to align more and more of the s-conduction electrons in a particular direction. One can therefore talk
about the spin density ng(r), defined as

ng(r) =n;(r) —n (r) (3.21)

where n;(r) and n(r) are the densities of the s-conduction electrons with up and down spins. The quantity ng(r) is related to
the magnetization M(r) as

M(r) = pigng(r) (3.22)

where pg is the Bohr magnetron. It has been shown that ng(r) and hence M(r) varies as 1/r® where r is the distance from the
magnetic ion. Fig. 3.1 shows M(r), produced by the spin polarization of the s-electrons, as a function of r. Such an oscil-
latory spin polarization can couple the ionic spins in a pure ferromagnetic arrangement, pure antiferromagnetic
arrangement, or a partially ferromagnetic and partially antiferromagnetic arrangement depending on the ionic separation.
Therefore, the RKKY interaction is capable of explaining the various types of spiral orderings at suitable distances.

FIG. 3.1 Magnetization M(r) as a function of r around an ion at the
origin with finite spin. The solid spheres represent ions.

M(r) —»
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Further, the rapid decrease in the amplitude of the spin polarization or magnetization means that the interionic spin coupling
is a localized effect and falls off rapidly with an increase in the separation between the ions.

In some materials, such as MnO, MnSe, and MnTe, the spins of the Mn ions exhibit antiferromagnetic order even though
they are well separated by the nonmagnetic ions O, Se, and Te, respectively. Interatomic exchange is a highly localized
effect and, therefore, is unable to explain the spin-spin interaction in these materials that have a large separation between the
magnetic ions. To explain the antiferromagnetic behavior of such materials, another interaction, usually called the super-
exchange interaction, has been proposed. It has been suggested that a superexchange involves the transfer of an electron
from a nonmagnetic ion to a vacancy in the orbit of a magnetic ion. As a result, the nonmagnetic ion with an unbalanced spin
will become paramagnetic and then its spin will be able to interact with the spin of another nearby magnetic ion through
direct interatomic coupling. It is this indirect interaction of two magnetic ions via a nonmagnetic ion that produces anti-
ferromagnetic order among the spins of the magnetic ions. It must be emphasized that the superexchange mechanism relates
to nonmetallic systems.

3.6.1.3 Conduction Electron-Conduction Electron Exchange Interaction

There exists a spin-spin exchange interaction between the conduction electrons in a metal. In all of the SMs, TMs, and
REMs it is named the s-s exchange interaction as the s-electrons in the outermost orbit of the atoms behave as itinerant
electrons. Many authors (Hubbard, 1963, 1964a, 1964b; Kohn & Sham, 1965; Lindgren & Schwarz, 1972; Sham,
1961; Singwi, Sjolander, Tosi, & Land, 1970; Toigo & Woodruff, 1970) have put forward the exchange interaction in
a free electron gas. Many of these authors gave a parameterized form of the exchange interactions for a paramagnetic
electron gas.

3.6.2 Electron Correlation Interactions

In a free electron system, the electrons move independently of each other, but no real system exhibits the ideal free-electron
behavior. There always exists a finite repulsion between the electrons, which causes them to avoid each other. In other
words, the motions of the electrons are correlated in the presence of repulsive interactions. Such effects are called corre-
lation effects and affect the energy of an electron system. The neglect of electron correlations causes the total energy of a
typical atom to be overestimated by an amount ~ 100 kJ mol~'. This energy is known as the correlation energy, and it is
very difficult to make proper allowance for it in calculations. There are different types of correlation effects in a
crystalline solid.

3.6.2.1 Coulomb Correlations

The motion of one electron is affected by the motion of other electrons due to the Coulomb repulsion between them. Such
correlations are called Coulomb correlations. The effect of the Coulomb correlations is to reduce the probability that two
electrons approach closely to one other. The change in energy of a system due to these effects is called the Coulomb cor-
relation energy. In the Hartree theory, the Coulomb correlations are completely ignored as each electron is supposed to
move in the average charge distribution of all the other electrons.

3.6.2.2 Parallel-Spin Correlations

The motion of two electrons with parallel spins is governed by the Pauli exclusion principle according to which no two
electrons with parallel spins can occupy the same position. Therefore, the motions of electrons with parallel spins are
coupled together and these are called parallel-spin correlations. The parallel-spin correlations appear in the Hartree-Fock
theory and they affect the energy in the same way as the Coulomb correlations.

According to the Pauli exclusion principle, there is a very small probability of finding an electron close to another
electron with parallel spin. As a result, there is a finite region around each electron in which there is no electron distribution
with parallel spin. In other words, one can say that each electron is surrounded by a hole in the electron distribution with
parallel spin. This is usually called the Fermi hole or exchange hole and can be regarded roughly as a sphere in a spherically
symmetric system.
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3.6.2.3 Antiparallel-Spin Correlations

There are finite antiparallel-spin correlation effects. Each electron might be expected to be surrounded by a hole, similar to
the exchange hole, in the electron distribution with antiparallel-spin also. Such a hole is called a correlation hole in the
electron distribution.
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To understand the formation of a crystalline solid in the form of a three-dimensional periodic array, one has to consider
interactions between the various atoms. Any two atoms in a solid interact with each other via the repulsive and attractive
interactions that oppose each other (Chapter 3) but the net interaction between them is attractive. The attractive interaction
should be sufficiently strong to form a stable aggregate of atoms at temperatures of interest. The phenomenon of holding the
atoms together is known as bonding or, more appropriately, chemical bonding. Further, the different elements crystallize in
different structures as explained in Chapter 1. A particular arrangement of atoms in a crystalline solid is determined by the
character, strength, and directionality of the chemical bonding and cohesive forces. As regards the nature of chemical
bonding, the crystalline solids can be classified as follows:

Inert gas crystals
Ionic crystals

Covalent crystals
Metallic crystals

Ll

In addition to these, there are hydrogen-bonded crystals. In this chapter we shall briefly describe the various types of
bonding and the related properties in crystalline solids.

4.1 INTERACTIONS BETWEEN ATOMS

Consider two atoms labeled 1 and 2, separated by an infinitely large distance. There will be no interaction between the
atoms and they will behave as free particles. As the atoms are brought closer, they start interacting with each other via
electrostatic forces. The net interaction energy U(R) between the atoms may be attractive or repulsive, as is shown in
Fig. 4.1. If the interaction is attractive, the two atoms bind together and such a state is called a bonding state. On the other
hand, if the interaction is repulsive, the atoms do not bind together and the state is called an antibonding state.
Suppose two atoms interact via attractive forces. When the atoms come very close to each other, their electron clouds
begin to overlap (Fig. 4.2), which gives rise to an additional repulsive interaction due to the Pauli exclusion principle. As a
result, the electron states split up causing promotion of electrons to higher unoccupied states of the atom. The repulsive
contribution to the interaction potential increases the energy of the system. The repulsive interaction comes into existence
only when the distance is on the order of atomic dimensions and increases very quickly as the distance decreases, ultimately
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Antibonding state

U(R) —»

Bonding state

FIG. 4.1 The interaction potential U(R) as a function of the distance R between two atoms for the bonding and antibonding states. Here the repulsive
interaction due to the direct overlap of electron distributions of two atoms is not taken into account.
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FIG. 4.2 The electron clouds of the two atoms begin to overlap as the atoms approach very closely to each other. The figure also depicts the overlapping
of the electronic wave functions of the two atoms.

overpowering the attractive interaction. One should note that the attractive interaction is a long-ranged one, while the
repulsive interaction operates over short range. The net interaction energy in a stable state of two atoms, which exhibits
a minimum at a particular distance Ry, is shown in Fig. 4.3. Here R, represents the equilibrium distance between the two
atoms. In a solid, there are a large number (N) of atoms and the above description can be generalized to all of the atoms in it.
In a bonding state, all of the atoms of a solid attract each other and the total energy of the solid is the sum of the energies of
the individual atoms in addition to their interaction energy.
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FIG. 4.3 The repulsive and attractive interaction potentials
between the two atoms are shown separately as a function of
distance R between the two atoms. The net interaction potential

U(R)

i Ry gives the equilibrium distance.

Bonding state

Atfractive interaction

i

The general form of the interaction potential energy between two atoms can be written as

A B
UR)=———+— 4.1
where R is the distance between the atoms. Here A and B are constants and m and n are integers to be determined. The first

term in Eq. (4.1) gives the attractive interaction, while the second term gives the repulsive interaction. The equilibrium
distance R, between two atoms can be evaluated by minimizing U(R) as

dU
— =0 “4.2)
dR R-R,
Substitute Eq. (4.1) in Eq. (4.2) to get
n B\ _1
R.=—=)n—m 4.3
0 (m A) @3
For the energy to be minimum, the double derivative of U(R) must be positive, that is,
d’U
—3| )0 (4.4)
dR? | _g,
Eqgs. (4.1), (4.4) yield

n(n+1)B m(m+1)A
R8+2 - Rr0n+2 >O

Simplifying the above equation, one gets

n)m

4.5)

U(R) obtained by adding the two contributions is plotted, where
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Here we have used Eq. (4.3) for Ry. Now the minimum value of interaction potential between the two atoms is given by

A B

URy)=—=x+— .
Substituting the value of Ry from Eq. (4.3) in Eq. (4.6), one gets
A m
U(Ry) = [1-7] 47
( 0) Rz)n n ( )

Eq. (4.7) represents the interaction potential energy when one atom is brought closer to another atom. The total potential
energy in a solid is obtained by summing over all the N atoms. Considering the i atom as the reference atom, the position of
the j™ atom is given by

R; =R, —R; (4.8)

where R; and R; are the positions of the i™ and j™ atoms. In a solid with one atom per primitive cell, all the atoms are at the
lattice positions; therefore, R;; can be represented in terms of the INN distance R as

R; =p;R 4.9)
where pj; is a number whose value depends on the crystal structure. From Eqs. (4.1) and (4.9) the total potential energy of

the i"™ atom is given by

UR)=> |- AP (4.10)

i) (pij R)m (pij R)n

The potential energy of the i™ atom in the equilibrium state is given by substituting R=R,, in Eq. (4.10), that is,

A B
URy)=>_ |- ot " @.11)
i (i) (pij Ro) <pij Ro)
The total interaction potential of a solid with N atoms, in the equilibrium state, is given by
1 A B
U(R()) = ZUi (RO) =5 Z - m T n
i i, (i) PijRo PijRo
1 A B
=-NY |- + (4.12)

j(#) (pij Ro) ) (pij Ro) '

The factor of one-half appears in order to avoid double counting a pair of atoms. Here we have used the fact that every atom
yields the same amount of potential energy due to the periodicity of the crystal structure. Another form of the interaction
potential of a solid that appears in the literature assumes

A=4kn",B=4kn" 4.13)

where k and 7 are new constants. From Eqs. (4.12), (4.13) one can write

n n
U(Ry) = 2Nk H ) ( )
j(%;ﬁ Pjj Ry Pjj R,

Eqgs. (4.12), (4.14) are the two forms of potential energy of a solid that appear in the literature.

(4.14)
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4.2 COHESIVE ENERGY

Let Er be the total energy of N free atoms. When the atoms are brought closer they start interacting with one another and in
doing so some of the energy is used in binding the atoms together. Let E be the energy of the N atoms when bound together
to form a solid. Naturally, Er is the sum of the kinetic and potential energies of the atoms of the solid and EIT< Er for a stable
solid. The cohesive energy Ec of a solid is the difference between Et and Er and is usually defined per atom as

1 /
Be=r (Er—Ey) (4.15)

The cohesive energy is usually defined for one kilomole (Kmol) of the solid. Therefore, the cohesive energy or binding
energy is defined as the energy of formation of one Kmol of a solid from its atoms or ions. It is equal, but opposite in sign, to
the energy of dissociation of a solid. The cohesive energy can be obtained from a knowledge of the thermodynamics and
spectroscopic data. Inert gas crystals are weakly bound, while alkali metal crystals have intermediate values of cohesive
energy. On the other hand, TMs exhibit strong binding, yielding high values of cohesive energy. Ionic solids also exhibit
large values of cohesive energy.

4.3 EQUILIBRIUM DISTANCE

The total interaction potential of a solid composed of N atoms is given by Eq. (4.14). Let us define the following parameters
" 1\’
> <—> =pp and > (—) =P (4.16)
i) \Pii i3 \Pi

Substituting Eq. (4.16) in Eq. (4.14), we can write

U(R) = 2N« [pm (g)n P (g) m} (4.17)

The equilibrium distance, from Eqs. (4.2), (4.17), is given by

R n—m )
<—°> = 2Pni 4.18)
n mp,,;

From Eqgs. (4.17), (4.18) the interaction potential in the equilibrium position is given by

mp,,; m_ rm
U(R,) =2N | —=)om |[——1 4.19
( 0) K Pmi (Il ni) m|:1’1 :| ( )

Eq. (4.19) gives the cohesive energy of a solid and is always negative as n ) m.

Problem 4.1
From Eq. (4.12) prove that the equilibrium distance is given by

n-m_ " B Py
Ry = A (4.20)

Further, the total interaction potential in the equilibrium state is given by

1 A
URy) =N = [0 1] @.21)
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4.4 BULK MODULUS AND COMPRESSIBILITY
The bulk modulus By, is defined as the ratio of stress to strain in three dimensions and can be written as

dp dp
==V 422
M™av)/v dv (4:22)

Here dP is the change in pressure and dV is the corresponding change in volume. The negative sign represents the fact that
the increase in pressure decreases the volume. According to the first law of thermodynamics

dQ =dU +dW (4.23)

where dQ is the change in heat energy, dU is the change in internal energy, and dW is the work done. At constant pressure
the work done is given by

dW=PdV (4.24)
We know that
dQ=TdS 4.25)
where T and S are temperature and entropy, respectively. From Egs. (4.23)—(4.25) one can write
dU =TdS —-PdV (4.26)
At constant entropy, the pressure from Eq. (4.26) becomes
du
P=—(— 4.27
(&), w2
Substituting Eq. (4.27) in Eq. (4.22), the bulk modulus is given by
1 d*u
By=—=V|(— 4.28
M Ke (dV2> (*28)

Here K¢ denotes the compressibility, which is the reciprocal of the bulk modulus.
Let us evaluate the bulk modulus for a solid with an fcc structure. If a is the lattice constant, the average volume per atom
is given by (1/4)a’. The volume of a solid with N atoms becomes

1
V=2 Na’ (4.29)
The 1NN distance R in an fcc structure is given by
R— \% (4.30)
From Egs. (4.29), (4.30) one can write
1 3
V = 7§ NR (4.31)
From the above equation one can write
1 N3
R 21/6yi/3 (4.32)
Substituting Eq. (4.32) into Eq. (4.17) allows us to write
Pni Pmi
U(V)=2N«k [V““ — Vm/3] (4.33)
where
Nn/3 ph Nm/3 _ppm

n 2n/6 mi 2m/6
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In the equilibrium state the interaction potential must be minimum, that is,

dU

—| = 4,
| =0 (4.35)

Vo

From Egs. (4.33), (4.35) one can find the equilibrium volume V,, which is given by

P.\_3
V= (;Pm‘)nm (4.36)

From Egs. (4.33), (4.36) the double derivative of the interaction potential U(V) in the equilibrium state is given by

d’U P, n—
SO Nk i n—m 4.37)
dV-ly_y, Vg+ 9
Substituting Eq. (4.37) into Eq. (4.28), the bulk modulus in the equilibrium state is given by
1 P. —
By == 2Nk —gni 110 (4.38)
c 5+1 9
Vv
0

By, is a positive quantity as n is always greater than m.

4.5 INERT GAS CRYSTALS

The inert gas crystals constitute the 8" column of the periodic table and their outermost electron orbit is completely filled
with a nearly spherical distribution of electronic charge. Such atoms exhibit maximum stability compared with others
having incomplete outermost electron orbits and, therefore, have large values of ionization energy. The inert gas solids
crystallize at low temperatures, forming transparent insulators. As the inert gas atoms are nearly spherical in shape, their
crystals exhibit fcc structure: a close-packed structure with cubic symmetry. A schematic diagram of the arrangement of
atoms in an inert gas crystal is shown in Fig. 4.4. The inert gas crystals are weakly bound with a low melting point.
Therefore, the electron distribution in an inert gas atom in a crystal is not much different from that of the free atom except
for some distortion. Two types of interactions are present between the atoms in an inert gas crystal.

1. Van der Waals-London interaction
2. Repulsive interaction

FIG. 4.4 A schematic diagram for the arrangement of atoms of the inert gas element Ar in a plane.
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Both the interactions are discussed in Appendix A. The total interaction potential between two inert gas atoms is obtained
from Eq. (4.1) by substituting m = 6 and n = 12 and is written as

A B
The constants A and B from Eq. (4.13) are given as
A=4K’I76,B=4K7712 (4.40)

Therefore, the interaction potential (4.39) becomes

UR)=4 AN 441
= —_ — + _— .
®) K[ (R) (R) ] (441)
This is known as the Lennard-Jones potential, which is attractive at large distances but repulsive in nature at small

distances.

4.5.1 Equilibrium Lattice Constant

Neglecting the kinetic energy, the cohesive energy of an inert gas crystal is obtained by summing over all the pairs of atoms
in the crystal. The total potential of a solid containing N atoms can be obtained from Eq. (4.14) by substituting m =6 and
n=12 to write

6 12
U n
U(R)= 2Nk Y _ —(—) + (—) (4.42)
o[ \PR PiR

The summation in Eq. (4.42) is to be evaluated assuming fcc structure for the inert gas crystal. It can be shown that

6 12
Z <i> = 14.454 and Z <i> =12.131 (4.43)

iGZ) \Pii i) \Pii

p]_]

One should note that there are twelve 1NN in the fcc structure and the above summations yield values near twelve. This
shows that the 1NNs contribute the most to the interaction potential. So, Eq. (4.42) gives

U(R) =2N« {12.131 (7) ¥ 14454 (%)6} (4.44)

The equilibrium distance Ry is obtained by substituting Eq. (4.44) into Eq. (4.2), which, after simplification, gives

Ro_ 100 (4.45)
7

The above derivation gives the same value of Ry/7 for all of the inert gas crystals with fcc structure. But the actual values of
Ro/n vary a little from the above value and these are listed in Table 4.1. The agreement between the calculated and the
experimental values is quite good. The slight departure of the experimental values from 1.09 can be attributed to quantum
mechanical effects.

TABLE 4.1 Equilibrium Distance for the Inert Gas Crystals

Element Ne Ar Kr Xe

Ry 1.14 1.1 1.10 1.09
1
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4.5.2 Cohesive Energy of Inert Gas Crystals
The cohesive energy of a solid with N atoms is given by Eq. (4.44) by replacing R by Ry, that is,

12 6
U(Ry) =2Nx |12.131 <i) —14.454 (i> (4.46)
Ry Ry
Substituting the value of 1/Ry from Eq. (4.45) into Eq. (4.46), one gets
U(R,) =—4.30(2N«k) (4.47)

The cohesive energy also comes out to be the same for all of the inert gas elements. In the above derivation, the cohesive
energy is calculated assuming zero kinetic energy. But the kinetic energy is always finite and its inclusion reduces the
cohesive energy. Further, the value of the kinetic energy is different for different elements, which makes the cohesive
energy different also. For example, in heavier elements the kinetic energy is small and hence the reduction in cohesive
energy is small.

Problem 4.2
Prove that the result given by Eq. (4.47) can be obtained from Eq. (4.19) by substituting m = 6 and n = 12.

4.5.3 Bulk Modulus

The bulk modulus for inert gas crystals can be calculated from the general expression given by Eq. (4.38) by substituting
m = 6 and n = 12 to write

1 12P,. 2
B, =— =2N 12i = 4.48
MR TV 3 (445)
1
where Py =7 N'n'py,,; (4.49)
Here we have used Eq. (4.34) for P,;. Substituting Eq. (4.49) into Eq. (4.48), one gets
1 N47712
By=—-—=4N — 4.50
M Kc KPi2i V(S) ( )
Substituting the value of V from Eq. (4.36) allows us to write
1 4x (pg)"?
By=—=—3 (Pei)” — 4.51)
c T (prai)
From the above equation it is evident that By is on the order of x/n° in inert gas crystals.
Problem 4.3
From Eq. (4.33) the total interaction potential for m = 6 and n = 12 can be written in terms of volume as
b, b
vy (4.52)

Here b and by, are new constants that can be expressed in terms of k and 7. Prove that for the interaction potential given by
Eqg. (4.52) the bulk modulus is given by

b/
1.3/2
b3,

By=V2 (4.53)

Further, show that By, is on the order of /7.
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4.6 IONIC BONDING

An element that acquires a positive charge by giving an electron is called an electropositive element, while one that acquires
negative charge by receiving an electron is called an electronegative element. In other words, an electronegative element
has an affinity for negative charge. The electropositive elements lie on the left side of the periodic table, while the elec-
tronegative elements lie on the right side. Electronegativity is a measure of the tendency of an atom or a radical to attract
electrons in the formation of an ionic bond. Pauling gave the most commonly used scale, called the Pauling scale of elec-
tronegativity. The higher the associated electronegativity number, the more attracted is an element or compound toward an
electron (negative charge). For example, fluorine (F) is the most electronegative element and is assigned the value 4.0,
while cesium (Cs) and francium (Fr) are the least electronegative elements with values of 0.7. Ionic bonding is the simplest
type of bonding between the electropositive and electronegative elements. For this reason, the ionic bond is also called the
heteropolar bond. Crystalline solids in which the atoms exhibit ionic bonds are called ionic crystals. The ionic crystals are
made of positive and negative ions and these are arranged in such a way that the Coulomb attraction between the oppositely
charged ions is stronger than the Coulomb repulsion between the ions of the same charge. Therefore, the ionic bond is
purely electrostatic in nature. NaCl and CsCl are common examples of ionic crystals and their crystal structures are shown
in Figs. 1.20 and 1.17.
Let us study the formation of an ionic solid. Consider a NaCl crystal in which the Na and CI atoms have the following
electronic configuration:
Na: 1522522p®3s!
(4.54)
Cl: 1s22522p®3s23p°

In an atom of Na, there is one electron in the outermost electron orbit that is loosely bound to the nucleus. So, an atom of Na
can easily lose this electron to the surroundings so as to acquire the most stable inert gas configuration with all of the
electron orbits completely filled. On the other hand, an atom of Cl has one electron deficit in its outermost orbit and,
therefore, can easily accept an electron to acquire the most stable inert gas electron configuration. This process leads
to the formation of positively and negatively charged ions with the following configurations:

Na*!':1s2s%2p®

(4.55)
Cl7!: 15%2s%2p®3523p®

Na*! and C1™ ' ions attract each other to form a molecule that is electrically neutral. The formation of a NaCl molecule can
be described by the following equation

Na+Cl —Na*!'+Cl~! — NaCl (4.56)
Because chlorine is a gas with Cl, as its molecule, the above equation is modified as
2Na+Cl, —2Na*' +2Cl™! — 2NaCl (4.57)

Some energy is required to carry out the above reaction. But once the reaction starts it proceeds vigorously with the evo-
lution of light and heat from the ionic bond formation causing a sizable decrease in energy.

4.6.1 lonic-Bond Energy

Let us estimate the ionic-bond energy of a NaCl crystal. The ionization energy of an atom of Na (= 5.1 eV) is required to
remove an electron from the Na atom, yielding a Na*' ion and an electron. Mathematically one can write

Na+5.1eV =Na*! ¢! (4.58)
The electron affinity of Cl is 3.6 eV, so in the formation of a chlorine ion one can write
Cl+e'=ClI"'+3.6eV (4.59)
Adding Egs. (4.58), (4.59) allows us to write
Na+Cl+1.5eV=Na*'+Cl"! (4.60)
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Thus, an energy of 1.5 eV is needed to create Na*' and C1™ ' ions from the corresponding atoms. The Na*' and C1~" ions join
together by attractive forces to form a NaCl molecule with minimum potential energy. In the formation of a molecule from
the Na*™' and C1™' ions, some energy is released, usually called the bond energy. It can be calculated as follows.

The equilibrium distance between the Na*™' and C1™" ions is Ry=2.4 x 10 ®cm. So the potential energy of the NaCl
molecule becomes

2 4.8x10710)?
V(Ro) = _12_0: T 24 ><(1o—8 % 1.6 >2 oz 00V
Thus, in the formation of a sodium chloride molecule one can write
Na*'+Cl7! =NaCl + 6eV (4.61)
From Egs. (4.60), (4.61) one can write
Na+ Cl=NaCl +4.5eV (4.62)

Eq. (4.62) shows that in the formation of a NaCl molecule from the Na and CI atoms, an energy of 4.5 eV is released. In
other words, when a molecule of NaCl dissociates into Na and Cl atoms it requires an energy of 4.5 eV.

4.6.2 Lattice Energy

Lattice energy is defined as the energy released when the constituent atoms are placed in their respective positions on the
crystal lattice. It can also be defined as the amount of energy that is spent to separate an ionic crystal into its constituent ions.
It can be evaluated considering different contributions to the potential energy. In an ionic solid there are present three types
of interactions:

1. The electrostatic interactions between the ions, which yield the overall very strong attractive interaction.

2. Van der Waals interactions, which fall off as the 6™ power of the distance. These are attractive but very weak and are
usually neglected in comparison with the electrostatic interactions.

3. The ion-ion overlap interactions, which are repulsive in nature and fall off as the 12™ power of the distance. These
interactions are significant at very small distances.

Therefore, the interaction energy between the i™ and j™ ions Uji(Ryj) is given by

B 7%

U, (R..) - (4.63)
VYRR

Here Ze is the charge on the ion and the charge on both types of ions is assumed to be equal and opposite. The first term

represents the repulsive overlap interaction between the ions, while the second term represents the electrostatic interaction

between them. In the above equation, the plus sign is for ions with like charges, while the negative sign is for ions with

unlike charges. With the help of Eq. (4.9), Eq. (4.63) can be written in terms of the 1NN distance R as
B 7%

- 4=

(pij R) PR

The net interaction energy of the i™ ion in the lattice becomes

U;(R) = (4.64)

2.2
UR)=> U;R)=>_ B+ ZZ ; (4.65)
iGA) i) (pij R) i (7 Pi

The total interaction energy of a crystal with N ions, which gives the lattice energy, becomes

L)niN Z Zte? (4.66)

UR)=NU;(R)=N » —
i) Pi

i) (pij R

In writing the above equation, it is assumed that the interaction energy of all the ions is the same. This is true because the
surroundings of all the ions are similar due to the symmetry of the lattice. The calculation of U(R) is difficult as it involves a
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sum over the whole of the lattice. The problem is simplified if one assumes that the repulsive interaction, being very short-
ranged, is appreciable only up to the 1NNs of an ion. In this approximation, Eq. (4.66) is simplified to

B 7%e?
U(R)=N {n(, R Oy R ] (4.67)
where ng is the number of 1NNs and oy, is the Madelung constant defined as
1
oy =+ Z — (4.68)

i) Pi
In Eq. (4.67) we have taken the negative sign before the electrostatic term as it yields a positive value of oy;. In oy, the

positive sign is for charges of opposite sign, while the negative sign is for charges of the same sign. From Eqgs. (4.2), (4.67)
one gets, in the equilibrium state, the constant B as

7%e?

Ry (4.69)
nno

B =0y

So, the total interaction potential in the equilibrium state is obtained by substituting the value of constant B from Eq. (4.69)
in Eq. (4.67), that is,
Nay, Z?e? 1
UR))=——"DM" " |1 —— 4.70
(Ro) Ry { n} 70
The term —N o Z%€*/Ry, is called the Madelung energy. Being very short ranged, the repulsive interaction is very small at
the equilibrium distance Ry. Therefore, the lattice energy U(Ry) is mainly electrostatic in nature.

4.6.3 Difference Between Bond Energy, Cohesive Energy, and Lattice Energy

The bond energy is the energy by which the ions/atoms of a molecule are held together and, therefore, it involves the ions/
atoms of a single molecule. The lattice energy of an ionic crystal is the energy released when a crystal is formed by placing
the ions on the lattice and, therefore, involves all the ions of the crystal. The cohesive energy of an ionic solid is the energy
that would be liberated in the formation of the ionic solid from the individual neutral atoms. The cohesive energy is also
called the binding energy of the solid and involves the interaction of all the atoms present in the solid.

4.6.4 Bulk Modulus of lonic Crystals

From Eq. (4.28) it is evident that the bulk modulus depends on the double derivative of potential with respect to volume,
which can be calculated from the interaction potential as follows:

dU dU dR
= 4.71
dv dR dV 4.71)
Differentiating Eq. (4.71) again allows us to write
U d’U (dR\® dU &R
=) === (4.72)
dv? dr? \dv/) ~ dR dv?
In the equilibrium state, dU/dR = 0. Therefore, Eq. (4.72) reduces to
U d*U [dR\’
— == (4.73)
dv® drR” \dVv
V=V,
Substituting Eq. (4.73) into Eq. (4.28), the bulk modulus is given by
d?U (dr\’
By=V—|-— 4.74
Mo T aR? (dV) 4.74)
V=V,

Let us evaluate the bulk modulus for a NaCl crystal having fcc structure. If a is the lattice parameter, then (1/4)a’ is the
volume per molecule. The total volume of a NaCl crystal with N number of molecules becomes (see Fig. 1.20)
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1 1
V:ZNa3 :ZN(ZR)3 =2NR? (4.75)
From the above equation
dv
—— —6NR? 4,
R 6 (4.76)
Substituting Egs. (4.75), (4.76) into Eq. (4.74), the bulk modulus becomes
1 dU
By=—-—— 4.77)
M I8NR, dR? [g_g,
From Egs. (4.67), (4.69) one can write
d*U Noy, Z2e?
ol =TS o) 4.78)
dR” g, Rj
Substituting Eq. (4.78) into Eq. (4.77), one gets
NV Al
= n—1 4.79
M 18Rg ( ) ( )

Problem 4.4

Assuming the interaction potential to be of the form given by Eq. (4.67), prove that the bulk modulus for the CsCl structure (Fig. 1.17)
is given by

oyZ%e?

M7 8V3ERY

(n=1) (4.80)

One of the requirements of a reliable theory of cohesion is that it should be able to predict the correct structure of the solid
that yields the minimum value of the interaction energy given by Eq. (4.70). It has been found that the energy given by
Eq. (4.70) is not adequate for this purpose and the reason may be two-fold. First, the repulsive interaction may not be
reliable, and second, the small but nevertheless finite Van der Waals interaction must be considered. The improved inter-
action potential suggested by Born and Mayer is given by

B 7% A
U,(R) = Z) (pin>nfocM e > (pin>m+ (4.81)

Dij
J(#A iG#) iG#0)

The third term on the right side of the above equation is the Van der Waals interaction and the last term contains other
corrective interactions.

The expressions derived for the bulk modulus of a solid can be used to find the value of n, the exponent in the repulsive
potential. The equilibrium distance R can be determined from X-ray studies, the bulk modulus By, can be measured exper-
imentally, and the values of Ze, a;, and ng can be calculated from the structure of the solid. Knowing these quantities, one
can determine the value of n from Eq. (4.79). Let us take the case of KCl, in which

By, = 1.97 x 10'! dynes/cm’
R,=3.14x10"* cm
Z=1
o = 1.75

1. It should be noted that the difference in the bulk modulus arises due to the different unit cell volume for different structures. One can attempt the general
case in which the volume of the crystal can be assumed to be V=CNR? where C is a constant whose value depends on the structure of the solid.



82 Solid State Physics

From Eq. (4.79) one can calculate the value of the exponent n, which is given by

18R'B
n=—w=>""41=94
o Z7e?

Hence, in KCl, the power of the repulsive interaction n~9 — 10.

4.6.5 Exponential Repulsive Potential

The interaction potential U;j(R;;), representing the repulsive potential in exponential form, can be written as

_ 72e?
U, (RU) = ige R £ 2 4.82)
ij
where the parameter Ay gives the strength of the repulsive potential and p is the decay factor. Considering only the INN
interactions in the repulsive potential, the total interaction potential of the crystal is given by

Z%e?
R

UR)=NU;(R)=N [no dge P — oy, (4.83)

The improved form of the interaction potential given by Eq. (4.83) must include the Van der Waals interactions and the
residual interactions that are included in the potential given by Eq. (4.81).

Problem 4.5
Using Eq. (4.83) prove that the total interaction potential in the equilibrium state is given by
U(Ry) = —Nay, %:2 [1 7%} (4.84)
where the TNN equilibrium distance R is given by
Z2e?

- (4.85)
AR No

Rée*Ro/P =poy

Problem 4.6
Using the interaction potential given by Eq. (4.83), show that the bulk modulus for the NaCl structure (see Fig. 1.20) is given by

Z?e? [R
By =M= |To_, (4.86)
18Ry Lp

One can calculate the values of p and Ag for the exponential form of the repulsive potential using Egs. (4.85), (4.86).
Substituting the values of By, Ry, Z, and oy for KCl, given above, into Eq. (4.86) yields

R, 18R!B
—=—20 M +2-104
P ayle

The above equation yields

R, 3.14x107® s
=0 2T —030x10
P=104~ " 104 AT em
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Knowing the value of p one can calculate the value of /g from Eq. (4.85), that is,
-10)2
i = aMzzzez SRyl LT3 X (4.8x10 2)
nyRg 6% (3.14x107%)
=0.67x 10 "% cm

0.30x 1078 x 104

With these values of Ry and p the cohesive energy from Eq. (4.84) is given by
U(R)) =—1.16 x 10~ erg
=-7.26 eV

The observed value of the cohesive energy for KCl is —7.397 eV. Therefore, the theoretical value agrees reasonably well
with the observed value.

4.6.6 Calculation of the Madelung Constant
The Madelung constant was defined in Eq. (4.68), which, when divided by R, gives

o 1
Moy — (4.87)
4 piR
JGA) T
Eq. (4.87) shows that the Madelung constant depends on the crystal structure and, therefore, has different values for dif-
ferent ionic solids. Further, the value of ay, for a particular structure depends on the way it is defined: whether it is defined in
terms of the 1NN distance R or the lattice parameter a, or in some other way. In the calculation of oy, if one takes the
negative ion as the reference ion, then a positive sign will be used for positive ions and a negative sign for negative ions.

4.6.6.1 First Method

To illustrate the evaluation of oy, consider the simplest case of a monatomic linear lattice of ions (see Fig. 4.5). Let us
consider a negatively charged ion as the reference ion, then Eq. (4.87) yields

oy 20 2 2 2
L=t — ——+

R R 2R 3R 4R
Here the factor of 2 in the first term is due to the fact that there are two 1NN, one on the left and the other on the right, and
the same is true for all other NNs. Simplifying the above equation, we get

........ (4.88)

oy 2

—==—1n2 4.89

R R (4.59)
Therefore, the Madelung constant for a linear chain of ions becomes

oy =2 In2 (4.90)

4.6.6.2 Second Method

The interaction potential of a negatively charged reference ion with its two 1NN is —2e%/R, with its 2NN, 2¢*/2R, and so
on. Here each ion is assumed to be monovalent. Hence the total interaction potential seen by the reference ion due to whole
of the linear chain of ions is given by

Reference
ion
& & ) & & &) &

FIG. 4.5 One-dimensional ionic solid with lattice parameter a. The negatively and positively charged ions occur alternately.
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22 2er 2er 2¢?
UR)=——+————+—— ...
R) R 2R 3R 4R

4.91)
e2
=——1[2 In2]
R
Eq. (4.91) can be written more conveniently as (Appendix B)
e2
U(R) = —oy R (4.92)

where oy, is given by Eq. (4.90).

4.6.6.3 Madelung Constant for NaCl Structure

It is much more difficult to perform the summation in a three-dimensional crystal. Let us consider the case of NaCl crystal
shown in Fig. 1.20. The Na*' ion at position O is taken as the reference ion. The Na*' ion has six CI"' ions as its NN at a
distance R, so the interaction potential seen by the reference ion due to all its INNs becomes —6e/R. There are twelve 2NN
Na*! ions each at a distance of /2R which contribute potential energy of 12e?/+/2R and there are eight 3NNs CI"' ions
each at a distance of v/3R with potential energy contribution of —8e? / v/3R. Further, there are six 4NNs, each at a distance
of 2R, which gives a potential energy of 6e%/2R and so on. Summing over all the NNs, the total potential energy becomes

6e> 12e* 8e* 6¢?

UR)=—— 4=y =
TR R VR TR (4.93)
62 .
:7O(ME
where

o —6—1—2+i—i+
v V2 V3 VAT (4.94)
=1.75

Therefore, the Madelung constant for NaCl structure is 1.75.

4.7 COVALENT BOND

A covalent bond is a homopolar bond that is formed by the sharing of an even number of electrons between atoms. A single
covalent bond involves the sharing of two electrons, one from each atom. Two bonds involve the sharing of four electrons,
and so on. In general, a multiple covalent bond involves the sharing of 2n electrons where n is the number of bonds. Familiar
examples of covalently bonded crystals are found among the group IV semiconductors, which comprise the elements C, Si,
Ge, and Sn. Covalent bonding also exists in crystals of the form ANB®* ™™ made of elements A and B with N and 8§ —N
valence electrons per atom, respectively. This gives eight s or p valence electrons per pair of atoms.

To understand covalent bonding, let us take the case of the element carbon (C). A C atom possesses the electronic con-
figuration given below:

C:1s%2s%2p° (4.95)

Consider the covalent bond between two C atoms. The first C atom shares its electron with the second C atom and the
second C atom in turn shares its electron with the first C atom (see Fig. 4.6A). In this process of sharing, both the C atoms
possess 5 electrons in their outermost orbit. The electrons forming the bond tend to localize partially in the region between
the two atoms joined by the bond. The spins of the two electrons participating in the bond should be antiparallel. If the two
atoms are equally electronegative, then both have the tendency to attract the bonding pair of electrons equally. Therefore,
the bonding pair of electrons will be, on average, partially localized exactly in the middle of the two atoms or in the middle
of the covalent bond. Such a pair of atoms is said to form a pure covalent bond. It is important to note that this is an average
picture because the electrons are actually moving all the time in the molecular orbitals. Actually, a single C atom can share
its valence electrons with four adjoining C atoms (see Fig. 4.6B), thus forming four covalent bonds. In this process, each C
atom acquires 8 electrons in its outermost electron orbit, attaining the inert gas configuration and thus forming the most
stable state.
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FIG. 4.6 (A) Covalent bond between two carbon (C) atoms. The two electrons in the middle of the C atoms are shared by them. The covalent bond is

represented by the electron charge in the shaded region between the two C atoms. (B) Covalent bond of an atom of C, in the center, with four C atoms
forming the 1NNs. The description of the figure is the same as in part (A).

The covalent bond is a strong bond, which is evident from the unusual hardness of diamond. The bond strength of a
covalent crystal is comparable with that of an ionic crystal. A typical value of the binding energy of a covalent bond is a few
electron volts per bond. The most striking feature of a covalent bond is its highly directional properties. One should note that
C, Si, and Ge all have the diamond structure in which each atom makes covalent bonds with four atoms at tetrahedral angles
to one another (see Fig. 4.7). In the pure elements mentioned above, identical atoms form covalent bonds. The binding
energy (Eg) of a covalent bond arises mainly from the following three contributions:

1. The formation of tetragonal bonds gives a negative contribution to Eg as some energy is required to form tetragonal sp*
hybrid orbits from the s- and p- quantum orbits in a free atom.

2. The Coulomb repulsion between the ions or between the inner orbit electrons, such as 1322322p6 orbits.

3. Exchange interaction potential.

In general, the covalent bonds repel each other for the simple reason that the clouds of negatively charged electrons have a
repulsive interaction. Therefore, it has been observed that, in an element, the covalent bonds formed by the same atoms

FIG. 4.7 Four covalent bonds around an atom in a pure crystal with the diamond structure.
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arrange themselves symmetrically around the atom. For example, one atom will form two covalent bonds in a straight line.
If the atom forms three covalent bonds, these will most likely arrange themselves in a plane at an angle of 120° to each other.
If the atom forms four covalent bonds, these will most likely arrange themselves in such a way that the four atoms form the
corners of a tetrahedron. The tetrahedral bonds in a covalent crystal are shown in Fig. 4.7. The tetrahedral bonds naturally fit
into cubic symmetry because the four nonadjacent corners of a cube correspond to the corners of a tetrahedron.

This plausible account still does not explain why a double-electron arrangement produces a bond, that is, an attractive
interatomic interaction. The explanation of a covalent bond can be given only through quantum mechanics. The simplest
known example is that of a hydrogen molecule, H,, in which two atoms are held together by covalent bonds by sharing their
electrons (Heitler-London theory of H, molecule). Let us now examine the wave functions of the tetragonal covalent bonds
formed in a crystal of carbon. The electronic configuration of the neutral C atom is given by Eq. (4.95). In this configu-
ration, one has the following orbitals:

) =7 (4.96)

Y
I A\ 12
p.) = \ﬁ (Yl +y;) = ( ; ) sinfcosp (4.97)
1 | . 3n\'?
’Py> = —\/;1 (Y1 -Y; ) = (T) sin0 sin (4.98)

37\ /2
Ip,) = (T) cosf (4.99)
But the electronic configuration of an atom of C in the valence state having the tetragonal bonding angles is known to be

C: 15%2s2p° (4.100)

This is usually called the sp® configuration. The four wave functions that determine the sp® configuration are the linear
combinations of the orbitals given by Eqgs. (4.96)—(4.99) and are given below:

V1) = Wor) =19)+[p) +|py) +Ip.) (.101)
V2= Worr) =15 +1p) = [py )~ Ip,) (4.102)
V3) = [Wori) =15) = [po) + py>—lpz> (4.103)
V4= o) =1s) = Ip,) = [py ) +Ip,) (4.104)

The above four orbitals are called hybrid sp® orbitals and are nearly degenerate. These are also sometimes called tetrahedral
orbits. In exactly the same manner one can define sp> hybridization. The wave functions for the sp” configuration consist of
the superposition of |s), |px), and |py) orbitals (leaving |p,) as it is) and are given as

1) = o) =1s) +1py) (4.105)
V2= Wor) = I9) = Ipo) +[py) (4.106)
W2) = Worr) =19) = Ip) = [py) (4.107)

The above three wave functions are called hybrid sp2 orbitals. The sp2 bonds are three degenerate bonds 120 degrees apart in a
plane, with the leftover p-orbital sticking out perpendicular to the plane in the z-direction (commonly known as the c-direction).
The sp> bonds give a hexagonal structure. It is noteworthy that sp® hybridization is relevant to the formation of graphene planes
and carbon nanotubes. One can also define sp' hybridization, which is the linear combination of |s) and |py) orbitals.

4.8 MIXED BOND

In the above discussion, we have considered only the pure bonds: either purely ionic or purely covalent in nature. There are,
however, many crystals that exhibit mixed bonds, that is, the mixture of ionic and covalent bonds. Let us understand the
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formation of a mixed bond from the concept of sharing of electrons in a chemical bond between two atoms A and B. We
have seen that if two atoms forming a bond are equally electronegative, a pure covalent bond is formed. But in general, the
two atoms forming the bond may possess different electronegativities, for example, atom B may be more electronegative
than atom A. In this case, the bonding pair of electrons, on average, will be partially localized near the atom B as compared
with atom A. One can interpret this by saying that some electronic charge is transferred from A (cation) to B (anion). In
other words, one can say that the bond exhibits a mixed character: it is partially ionic (A* —B™) and partially covalent (A :
B). Depending on the difference in electronegativities, the extent of the covalent and ionic nature of the bond may vary: the
greater the difference, the greater the ionic nature of the bond. In the extreme case in which the electronegativity of atom B
is very large as compared with that of atom A, the bonding pair of electrons is dragged very near atom B. So, for all practical
purposes, the atom A has lost control on its electron while the atom B has complete control over both the bonding electrons.
In other words, one can say that ions are formed that give rise to pure ionic bonding. GaAs presents a good example of a
mixed bond. In GaAs charge transfer does take place but it is not complete: only 0.46 of an electron is transferred on average
from the Ga to the As atom. This transfer accounts for a part of the binding force in GaAs but the major part comes from the
electron sharing (covalent bond) between Ga and its neighboring As atoms. Other examples that exhibit the mixed bond
character are InP, InAs, GaSb and, SiC.

The extent (in percent) of the ionic and covalent characters is described quantum mechanically. The valence electron
would, then, probabilistically speaking, spend a part of its time in an ionic state and a part in a covalent state. Such alter-
nation is often called a resonance in analogy with the harmonic oscillator, which alternately stores its energy in kinetic and
potential forms.

The simplest example of covalent bonding is between two hydrogen atoms in the H, molecule. When two hydrogen
atoms are far apart their wave functions do not overlap (Fig. 4.8A). On coming closer, their electronic wave functions
overlap and the net wave function is the linear combination of the two wave functions given by

We=

(B)

W >=ly> - [ye>

(C)

FIG.4.8 (A) The wave functions of two atoms separated by a large distance. Here |/ 5(r)) and | p(r)) are the wave functions of the individual atoms. (B)
Overlapping of the wave functions of two atoms having antiparallel spins that form a bonding state defined by |/.(r)) =|a(r)) + | 5(r)). (C) Overlapping
of the wave functions of two atoms having parallel spins that form an antibonding state defined by |y _(r)) =| ¥ A(r)) — | ¥p(1r)).
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FIG. 4.9 The charge densities of the bonding and antibonding states defined by e | y,(r)|* and e [Y_(r) |2, respectively, as a function of distance.

W (0) = [ (r)) + [P (r)) (4.108)

Here |/ A(r)) and |yp(r)) are the electronic wave functions for the hydrogen atoms A and B. The electrons in both the wave
functions are in the 1s state, that is, in the ground state. Fig. 4.8B and C shows the electronic wave functions |y, (r)) and
| (r)). The electronic charge distribution is given by the square of the wave function and the charge distributions for the
two wave functions given by Eq. (4.108) are shown in Fig. 4.9A and B. It is evident that |/, (r)) deposits the electrons
primarily in the region between the protons, giving rise to a lower energy state (bonding state), while | _(r)) deposits
electrons around the individual protons (away from the intermediate region), giving rise to a higher energy state (anti-
bonding state). The wave function |,(r)) corresponds to two atoms having opposite spins, while the wave function |y _(-
r)) corresponds to two atoms having parallel spins. It is worthwhile mentioning here that the similarity of the bonding
between carbon atoms and between silicon atoms should not be overemphasized as carbon gives biology while silicon gives
geology and semiconductor technology.

4.9 METALLIC BOND

Metals are perhaps the first elements to have been utilized by humans. These elements constitute more than half of the
elements in the periodic table. Metals possess a number of distinct physical properties. The most important are high values
for the electrical and thermal conductivities, as a result of which metallic solids behave as good conductors of electricity.
This fact indicates that in metallic solids, there must be a fraction of electrons that are mobile and conduct electricity. Such
electrons are usually called conduction electrons.

The electronic structure of metals gives information about the bonding in metallic solids, which is central in under-
standing the various physical properties of these solids. As an example, consider Al metal composed of N atoms in which
the electronic structure of each Al atom is given as

Al: 1522522p®3523p! (4.109)

The ionization potential of 3s and 3p electrons (valence electrons) is much lower than that of 2p electrons and, therefore,
they are loosely bound to the nucleus. Each atom (and hence all the electrons in it) experiences the electrostatic potential
due to all of the other atoms, as a result of which the 3s and 3p electrons are detached from the atom. These electrons roam
about more or less freely in the whole of the crystal and are thus called free electrons. As these are the electrons largely
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FIG. 4.10 Model representation of a simple metal or free-electron metal. Spheres represent the ion cores, which are assumed to be hard.

responsible for the conduction of charge in a metal, they are also called conduction electrons. The ion cores left behind are
somewhat distorted by the crystal field of the metallic solid and have the electronic structure

Al 1522522p° (4.110)

Metallic crystals in which the conduction electrons are of type s or p are usually called simple metals. In Al metal with N
atoms, there will be 3N conduction electrons and N positively charged AI™ jons at the lattice positions. As the simplest
approximation, a simple metal can be represented as a sea of conduction electrons in which are embedded the ions at the
lattice positions. Such a representation is shown in Fig. 4.10. The electrostatic potential seen by an electron due to all the
ions and the rest of the electrons is called the crystal potential V(r). In a metallic solid, the different contributions to V(r), in
the one-electron approximation, have already been discussed in Chapter 3 and it should be calculated self-consistently. For
a metallic crystal to form, the attractive interaction potential V,; must dominate the sum of the repulsive interaction poten-
tials Vj; and V.. Three main terms contribute to the binding energy Eg of a metallic solid:

1. Kinetic energy: It gives a positive contribution to the binding energy. But in metallic solids the interatomic distance is
comparatively large, which gives rise to lower values of kinetic energy for the conduction electrons.”

2. Exchange interaction potential: The exchange interaction potential V,. is negative in a free-electron gas.

3. Coulomb interaction potential: The Coulomb repulsion and attraction both increase in metals and contribute toward Eg.
The attractive interaction potential Vy; is large for large electron-ion distances, but the kinetic energy decreases.”

Pure metallic bonds are not strong chemical bonds. The binding energy in metallic solids ranges from 0.7eV for Hg to 8.8
eV for W. The alkali metals Li, Na, K, Rb, and Cs fall in the lower limit of binding energy and hence have relatively low
melting and boiling points due to the presence of pure metallic bonds. On the other hand, TMs, such as W, fall in the upper
limit and exhibit extremely high melting and boiling points. In the TMs, the conduction electrons possess both s- and
d-characters. The s-conduction electrons are nearly free and form metallic bonds. The d-conduction electrons are below
the s-conduction electrons and are quasilocalized. The d-electrons form covalent bonds and make an additional contribution
to the binding energy.

2. The uncertainty principle states that

AxAp>h/2n
Or Ap>h/2nAx

So, the kinetic energy K.E. is given by

@2
KE. =5, ~2m(Ax)?

So, for larger interatomic distance Ax, the value of K.E. is smaller.
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Thus, the TMs exhibit high values for the binding energy due to the mixed bonding character: the bonds are partly
metallic and partly covalent. One of the characteristic properties of the metallic bond is that it is isotropic in nature, which
gives rise to the ductility and machinability of metals. Further, most of the metallic elements crystallize into fcc, bee, or hep
structures, which are basically the close-packed structures. It is also because the metallic bonds are isotropic in nature and
the ions are hard spherical balls. Another interesting property is that metallic alloys can be easily formed by mixing two or
more metals. This is because the valence electrons from the different metals mix easily together to form a sea of conduction
electrons and participate in the formation of metallic bonds. It is noteworthy to see that the binding energy of alkali metals is
considerably less than that of the alkali halides. This is because of the fact that the alkali halides are ionic crystals and the
ionic bond is much stronger than the metallic bond.

4.10 HYDROGEN BOND

A neutral hydrogen atom consists of a proton with one electron revolving around it. Therefore, one hydrogen atom is
expected to form a covalent bond with another hydrogen atom, forming a hydrogen molecule (H,). But, under certain con-
ditions, a hydrogen atom is found to form bonds with two other atoms. Such bonds are usually called hydrogen bonds with a
bond energy on the order of 0.1 eV. In the hydrogen bond, the hydrogen atom loses one electron to either of the two
adjoining atoms and there is equal probability of finding the electron on either ion. The hydrogen bond is largely ionic
in nature and is formed with the most electronegative elements, such as F, O, and N. Fig. 4.11 shows a hydrogen bond
with F atoms in which hydrogen difluoride (HF5 ') is formed. Here a proton forms a hydrogen bond with the two F~ ions.
The proton tends to draw the two anions more closely together than their normal spacing so that the shortening of their
interatomic spacing serves to indicate the presence of a hydrogen bond. The proton, being very small in size, can accom-
modate only two F atoms on either side.

Water molecules (H,O) interact with each other via hydrogen bonds, which is responsible for the electrostatic attraction
between the electric dipole moments of water molecules. This fact gives rise to the remarkable physical properties of water
and ice. The hydrogen bond is also important in some ferroelectric crystals.

In the above discussion and also in most of books, the bulk modulus is evaluated from Eq. (4.14). But one can derive the
expression for the bulk modulus from Eq. (4.12) in exactly the same manner. Here we give this as a problem for the students.

Problem 4.7
With the help of Eq. (4.32), the interaction potential given by Eq. (4.12) can be written as

1. [BP. AP
U(v):—N[—Vn/”;—ijg'} (4.111)

NIn/3pni P/ — Nm/3pmi
2n/6 /o mi T 2m/6

where Pl = (4.112)

In Eq. (4.12) Ry has been replaced by R. From Eq. (4.111), prove that the equilibrium volume is given by

n BP/.\_3_
V)= — —D )n= 4.113
0 (m AP;ni)n " ( )

Further, the bulk modulus in terms of volume, from Eq. (4.111), is given by

1 nP,. n—m
Bu=yNB 2 o

(4.114)

FIG. 4.11 Hydrogen difluoride ion HF; ' represents a stable hydrogen bond. It is a schematic representation of the ion as proton is shown to be a base
particle.
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It is easy to prove that the expressions for V and By, given by Eqgs. (4.113), (4.114) are precisely the same as given in
Eqgs. (4.36), (4.38).
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The theoretical study of the various properties of crystalline solids requires a knowledge of the crystal potential, the reliable
determination of which is difficult. One of the oldest and simplest methods is to view the crystal as an isotropic continuous
elastic material with uniform density instead of as a discrete periodic array of atoms. The various properties of the solids,
such as elastic constants, lattice vibrations, and thermal properties, can be studied using the continuum elasticity theory of
solids. The study of elastic constants is of immense importance because they give information about the nature of binding
forces in solids: a central physical quantity in studying various properties of solids. The continuum elasticity theory is valid
for low-frequency waves, such as elastic waves with wavelength /4 > 107% cm or frequency v < 10! Hz, as these waves are
not able to see the atomic structure of a crystalline solid. The present chapter presents the calculation of elastic constants in
the isotropic linear elasticity approximation in which Hooke’s law is valid.

5.1 STRAIN TENSOR

Consider a solid with Cartesian coordinate axes having unit vectors iz with o = 1,2,and 3. The position vector of a point or a
particle in the solid (Fig. 5.1) is defined as
r= Z ir, (5.1
o

where r, are the Cartesian components of the vector r. The application of a weak external force produces a small defor-
mation in the solid that changes the orientation and magnitude of both the position vector and the unit vectors. The strain
produced in the body can be studied in two approaches. In the first approach the unit vectors are kept unchanged and the
orientation and magnitude of the Cartesian components of the position vector are changed. In the second approach the
Cartesian components of the position vector are kept unchanged and the orientation and magnitude of the unit vectors
are changed. It is more convenient to adopt the second approach as is done here. In a strained body, a particle at point
r moves to r’ (Fig. 5.1) given by

r =r+u(r) (5.2)

where u(r) is the displacement produced. If u, is the Cartesian component of u(r) along the unit vector fx, then

u(r) = Zuaia (5.3)
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FIG. 5.1 Coordinate axes in perfect and strained crystals. The position vector r goes to r’ after producing strain in the crystal.

Note that u(r) is not a constant quantity but is a function of the position vector. Therefore, u(r) varies continuously
throughout the solid and forms a vector field 1llsually called the strain field or displacement field. The components of
the unit vector after displacement, denoted as i, are given as

I 0 0 2 :
i, :a—ra(r+u) = E; [rﬁllf + u/}lﬂ}

5.4)
=> (% + eaﬁ)iﬂ
B
where
e,5 =0ug/or, (5.5)
The position vector 1’ can be written, in terms of i;, as
/ I
r= ri, (5.6)

o
In the above equation the Cartesian components of r’ remain unchanged after deformation. To make the measurement of
deformation free from the orientation of the coordinate axes, it is convenient to define a scalar product between the new unit
vectors as

o
ga/jzla.lﬂzéaﬂ+euﬂ+eﬂa+Zew/em, (5.7)
p
From the above equation the angle between the two deformed axes is

0,5 = cos™" (/[ I 111 ]) (5:8)
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In terms of g, the strain components &, are defined as

1 1
&up = ) (ga/)’ - 5a/f> =3 (eot/)’ + e/m)
_1|duy oy, 69
~2|or, o

In defining the above equation, the second order terms in e, are neglected (the linear elasticity approximation). Eq. (5.9)
shows that the strain tensor ¢ is symmetric, that is, €43 = &g, The diagonal components of the strain tensor from Eq. (5.9) are
given as

L (5.10)

When the direction of the axes is reversed, that is, o goes to — «, then under the reversal of the coordinate axes one can write

r_,=-T, u_,=-—u, (5.11)
From Egs. (5.9), (5.10) one can write
au—fl
baa=  —fm (5.12)
1 aU,/g Ju
tp=75 l = + ar_“ﬁ =—t, (5.13)

Egs. (5.12), (5.13) show that with the reversal of direction of one of the Cartesian coordinates, the nondiagonal components
of the strain tensor change their sign while the diagonal components remain unchanged.

Ideally speaking, two types of strain can exist in a solid. The first is hydrostatic pressure in which the volume of the solid
changes without any change in its shape and is represented by the diagonal components of the strain tensor ¢ . The second is
pure shear in which the volume of the body remains unchanged by the deformation and only the shape changes. Pure shear is
represented by the nondiagonal components of ¢. But in an actual strain, both the volume and shape of the solid may
change. Therefore, the general strain may be represented as the linear combination of pure hydrostatic pressure and pure
shear. To do so, the strain components are defined as

1 1
bup = leaﬂ - §50</3 ng} + §5aﬁ Z Ep (5.14)
y y

The first term on the right side is evidently a pure shear as the sum of its diagonal terms is zero, while the second term is a
pure hydrostatic pressure. Hydrostatic pressure acts perpendicular to the surface of the solid, while pure shear acts along the
surface. Therefore, these two scalar components are independent of each other and the square of the strain component ¢,
can be obtained by the addition of the squares of these two components, that is,

2 2
[8“/5] 2 = |f°fﬁ - %501/5' ZS}'}’] + % lz 8“,M/‘| (5.15)

The strain field, from Egs. (5.1), (5.2), (5.4), and (5.6), can be written as

u(r):r’—rzz [r“eaﬁ}fﬁ (5.16)
% f

From Eqgs. (5.3), (5.16) the components of the strain field are given by

=S e, (5.17)
5.2 DILATION

Dilation is defined as the fractional change in volume of a solid due to the deformation produced by the application of an
external force. It can be expressed in terms of the strain field components &, 5. Consider a solid in the form of a cube with unit
edges i, i,, and i;. The volume of the solid V is given by

V=i i, xi;=1 (5.18)
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After deformation the cube becomes a parallelepiped with edges i/l, 1/2, and i;, having volume V'’ given by

V=i hxi=1+) s, (5.19)

in the linear elasticity approximation. The dilation produced by the deformation becomes

V-V AV
5D :T:7: ;Saa (5.20)

The symmetric strain tensor has six independent elements. For simplicity of notation, it is very convenient to use the Voigt
notation for the strain components, according to which the subscripts are defined as

1 =1l=xx; 2=22=yy; 3=33=2zz

(5.21)
4=23=yz; 5=31=zx; 6=12=xy

In the Voigt notation ¢, can be written as &, where m takes the values 1, 2, 3, 4, 5, and 6.

5.3 STRESS TENSOR

There are two types of forces acting on a solid body. The first type is called the body force, which acts throughout the body
and exerts influence on the whole of the mass distribution. The inertial and gravitational forces are examples of the
body force. The body force is expressed per unit mass or per unit volume. If f(r) is the body force per unit volume, it
can be written as

f(r)=> f,i, (5.22)

Here £, is the a-component of the body force density. The second type is the surface force, which acts on the surface of the
body. A surface force is expressed in units of force per unit area and is called stress. The stress is further divided into two
categories: stress acting normal to the surface (normal stress) and stress acting along the surface (shear stress). As the
normal stress and the shear stress act perpendicularly to each other, therefore, they are orthogonal stresses. Stress is repre-
sented by a tensor ¢ with components 0.5 Where the first subscript indicates the direction of the stress and the second
subscript the direction of the normal to the surface on which the stress is acting. Fig. 5.2 shows the different components
of stress acting on a cubic solid. It can be easily shown that the stress tensor is symmetric, that is,

Oup = 0py (5.23)

which is a consequence of the fact that shear stress does not cause angular rotation. The symmetric stress tensor ¢ has six
independent elements, which, in the Voigt notation, can be written as ¢,,, where m can take values 1, 2, 3,4, 5, and 6. If a
body under stress is in the equilibrium state, its equation of motion is

00,4
Z—()r +f,=0 (5.24)
B B

The first term gives the body force per unit volume applied externally on the body and the second term is the internal body
force per unit volume.

5.4 ELASTIC CONSTANTS OF SOLIDS

In the linear elasticity approximation, valid for very small deformations only, the strain is linearly proportional to stress and
vice versa. In mathematical language, we can write

5= Copnlon (5.252)
1V

e = Copn0iu (5.25b)

sV
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FIG. 5.2 Components o, of the stress tensor in a cubic crystal.

where C,p,,, and C;p,, are called the elastic stiffness constants and elastic compliance constants. The quantity C,p,,, has
dimensions of energy/volume, while C;,, has dimensions of volume/energy. In the Voigt notation Egs. (5.25a), (5.25b)
become

6n= Conty (5.262)
n
£, = Ec;m o, (5.26b)

where m and n have integral values from 1 to 6. The constants C,,, are usually called the elastic constants of the
crystalline solid.

5.5 ELASTIC ENERGY DENSITY
If U is the elastic energy density per unit volume, the stress components in terms of it are given by
ouU

Oup=— aaaﬁ (5.27a)
or
dU=—0,,de,g (5.27b)
The minus sign indicates that U is the work done on the system. In Voigt notation one can write (magnitude)
dU = o,de, (5.28)
From the above equation the stress components can be written in terms of energy density as
o, = L (5.29)

"de,



98 Solid State Physics

The total change in energy density due to all the stress components becomes

dU= Z o de, (5.30)
Substituting for g,, from Eq. (5.26a), one can write
dU=>"C,pépde, (5.31)
n,m
Therefore, the total energy density becomes
1
U= JdU:EZCnmsmsn (5.32)
n,m
From Egs. (5.29), (5.32) one can write
du 1
7, :d—gl:c1181+5;(c,n+cnl)en (5.33)

Hence, in the stress-strain relations, the combination 1/2(C,,,,+C,,) appears in all the stress components. It follows that the
elastic stiffness constants C,,,, are symmetrical, that is,

Con =Cam (5.34)

Eq. (5.34) reduces the independent elastic constants from 36 to 21.

5.6 ELASTIC CONSTANTS IN CUBIC SOLIDS

In the linear elasticity approximation, the stress-strain relation given by Eq. (5.26a) allows us to write the different com-
ponents of stress as

Oxx = Cllgxx + C12£yy + C138ZZ + C14‘8yz + C158ZX + C168xy
Uyy = C21 Ex T C228yy + C23gzz + C248yz + CZSSZX + C26gxy

Oy = C318xx + C326yy + C33szz + C348yz + C358ZX + C368xy

5.35
Gyz = C41 Ex T C42'gyy + C43 &, t C448yz + C45 Ext C468xy ( )
O = CSlgxx + C528yy + C53 &t C548yz + CSSSZX + C568xy
ny = C618xx + C628yy + C638zz + C648yz + C6581x + C668xy
The above equation can be written in matrix form as
Oxx Cii Cp G35 Cy G5 Cyg Exx
Oyy Gy Gy Cy3 Gy Cy5 Gy Eyy
T2z | _ Gy Gy Gz Gy G5 Gy € (5.36)
Oyz Cy Cpy Cy3 Cyy Cys Cyg &y, .
Ox Cs; Csp Cs3 G5y Cs5 Csg €2x
Oxy Coi Cer Co3 Cou Cgs Ces xy

Consider an isotropic solid in which the physical properties do not alter under the symmetry operations of a cubic solid. The
number of elastic constants can be reduced by considering the different symmetry relations of the cubic solid. Following are
the important symmetry operations in a cubic solid.

Fourfold (27 /4) rotation about one of the edges of a cube (Fig. 5.3), which changes the sign of the coordinates as follows
(anticlockwise rotation)

Aboutz —axis: Xx—y, y— —X
Abouty —axis: z—X, X— —Z (5.37)
Aboutx —axis: y—z, z— —y
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FIG. 5.3 Twofold and fourfold rotations about the edges of a cube.

Twofold (27/2) rotation about one of the edges of a cube, which changes the axes as follows (anticlockwise rotation):

Aboutz —axis: X — —X, y— —y
Abouty —axis: z— —z, X — —X (5.38)
Aboutx —axis: y— -y, z— —zZ

Threefold (2 /3) rotation about the diagonals of a cube (Fig. 5.4). There are four diagonals about which the transformation
of the axes is as follows:
X—y—Z—X
—X—Z——-y— —X

(5.39)

X—Z——y—X

—X—=y—Z——X

We see from the above symmetry relations that the rotations either interchange the axes or reverse their sign. Let us apply
the operation of a twofold rotation to the cubic solids in which the signs of the axes change. If the sign of the y-axis is
reversed, then the left-hand side of the first expression of Eq. (5.35) is given as
Oxx = Cllsxx + Cl2‘gfy7y + CISSZZ + C1487yz + CISSZX + C168x7y (5 40)
= Cll'gxx + C128yy + C13SZZ - C14'gyz + CISSZX - C168xy

In the above equation we have used the properties (5.12), (5.13) of ¢,3 and we see that all the terms remain unchanged
except the 4th and 6th terms of Eq. (5.40). Therefore, o, is invariant under the transformation y — —y only if

Cy=C;=0 (5.41)
The symmetry property of the elastic constants yields
Cy=C4 =0 (5.42)
Similarly, if we make the transformation z— —z in the first expression of Eq. (5.35), we get
C,=Cy=C;5=C5 =0 (5.43)
Applying the transformation x — — X in the second expression of Eq. (5.35), we find

Oyy = C21 Ex T C228yy + C23 &, t C248yz - C25 Epx — C268xy (5.44)
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FIG. 5.4 Threefold rotation about the diagonal of a cubic structure.

and the transformation z— —z in the second expression of Eq. (5.35) yields
Tyy = Core t Coatyy + Gzt — Gy, — Cose + Cogiyy (5.45)
The property of invariance yields, from Egs. (5.44), (5.45),
Cuy=Cps=Cy =Cpp=C5, =C, =0 (5.46)

The transformations x — —x and y — —y, when applied to the third expression of Eq. (5.35), reduce the following elastic
constants to zero

C3y=Cy5=C3=Cp3 =C53=C3 =0 (5.47)

In the above description we have considered the invariance of only the normal stress components oy, 6y, and 7, in cubic
crystals. Using Egs. (5.41)—(5.43), (5.46), and (5.47) in Eq. (5.35), one can write

Oxx = Cll'gxx + C128yy + C138ZZ

O-yy = C21 Ex T C228yy + C23gzz

Oy = C318xx + C328yy + C33SZZ (548)

O-yz = C448yz + C4582x + C468xy

O = C548yz + CSSSZX + C568xy

O-xy = C648yz + C65 €2x + C668xy
Let us now consider the shear stress defined by the last three expressions of Eq. (5.48). If we apply the transformation
x — —X to the fourth expression of Eq. (5.48), the invariance property yields

Cus=Cue=Cs,=Cg, =0 (5.49)

We have used the fact that ¢, does not change under the transformation x — —x as it does not involve the x-coordinate.
Similarly, the application of transformation y — —y to the fifth expression and of z— —z to the sixth expression of
Eq. (5.48) give

Cyy=Cy=C,us=Ces =0 (5.50)
Cgy =Cgs =Cue=Css=0 (5.51)
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Substituting Egs. (5.49)—(5.51) into Eq. (5.48), one gets

Oxx = Cll Exx + C128yy + C13 €
O-yy = C21 €xx + C22 Syy + C23 €12
Oy = C31 €xx + C32 Syy + C33 12
ayz = C44 Syz
Ox = CSS €2x
ny - C66 Sxy

(5.52)

In the above discussion we have applied a twofold rotation about one of the edges of the cubic structure. Let us apply a
fourfold rotation about one of the edges of the cube. In a fourfold rotation either the transformation x —y,y—z,z—Xx or
X — —Yy,y— —z,z— —Xx can take place. In both of these transformations, invariance is required. When fourfold rotation is
applied about the x-axis, then the allowed transformations are y —z and z— —y and in these transformations the first

expression of Eq. (5.52) changes to
O = Cl1 8+ Cp8,, +C38y, (5.53)

The first expression of Egs. (5.52), (5.53) must be the same (invariance property) under the transformation, which gives
C=Cp (5.54)

Similarly, when fourfold rotation is applied to the second expression of Eq. (5.52) about the y-axis and to the third
expression of Eq. (5.52) about the z-axis, one gets

G, =Cy=C;5,=C3, (5.55)
Egs. (5.54), (5.55) collectively can be written as
C=Cy =G5 =C3p=C3=Cy3 (5.56)
Use of Eq. (5.56) in Eq. (5.52) yields
Oxx = Cll Exx T C12 (Syy + 822)
ny - C22 syy + C12 (Ezz + gxx)
0z = C33 e + C12 (Sxx + 8yy> (557)
Gyz = C44 8yz
O = CSS €2x
axy = C66 8xy
Let us apply a threefold rotation to Eq. (5.57) in which X —y — z — x. The application of the transformation x —y to the
first expression of Eq. (5.57) yields
0y, =Cjy8,,+Cpy (64x T £5,) (5.58)
Comparing Eq. (5.58) with the second expression of Eq. (5.57), the invariance of g, demands
C,=Cy (5.59)

Similarly, when the transformations y — z and z — x are applied to the second and third terms, respectively, of Eq. (5.57)
these give

Cp=0Cy, C3=Cyy (5.60)
The application of the transformation x —y —z — x to the last three expressions of Eq. (5.57) yields
Cyy =Cs5=Cq (5.61)
Using Egs. (5.59)—(5.61) in Eq. (5.57) one gets
O =Ci18x+Cy (Syy + 822)
gy =Crityy +Cpp (e, +84)

02 = Cll &nt C12 <8xx + 8yy> (562)
ayz = C44 8yz
O = C44 €2x
ny = C44 6xy
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Eq. (5.62) can be written in matrix form as

Txx Gy Cp Gy 0 0 0 Exx
Tyy Cp G Gy 0 00 Eyy
O | _|C2 Cp Gy 0 0 0 b2
(o 0 0 0 0 C44 0 €2x
Oy 000 0 0 0 Cu/\ey

Eq. (5.62) or Eq. (5.63) shows that in a solid with a cubic structure there are three independent elastic constants, Cy;, Cy»,
and Cg4, the determination of which explains all of the elastic properties of these solids. From Eq. (5.63) one can derive the
relation between the elastic stiffness and the elastic compliance constants for a cubic crystal. Table 5.1 presents the elastic
stiffness constants for Al, Cu, Ag, and Au metals.

5.7 ELASTIC ENERGY DENSITY IN CUBIC SOLIDS

The elastic energy density, given by Eq. (5.32), is a quadratic function of the elastic strain. In cubic crystals there are only
three nonzero elastic constants, C;q, Cq,, and Cy4. Therefore, the nonzero terms in Eq. (5.32), with the help of Eq. (5.63),
can be written as

1 1
UZE Ci (8%+8% +$§) + 7 Cu (83+8§+8§)
+Cpy (818, +E183+8,8;) (5.64)

The above equation can be written in terms of the x, y, and z axes as

1 1
— 2 L2 2 2 .2 L2
Ufz Ch (’Sxx +eyy +3zz> +3 Cy (gyz +&5, +axy)

+Cy, (sxx &y +EyE, TE, sxx> (5.65)

5.8 BULK MODULUS IN CUBIC SOLIDS

The bulk modulus By, is defined, in terms of the energy density U, as

1
U=3 By 05, (5.66)
where 0p is the dilation. From Eq. (5.65), U can be calculated in terms of dp. For uniform dilation
1
Exx = Eyy =&,y = 550 (5.67)
and
by, =&, =&, =0 (5.68)

TABLE 5.1 Adiabatic Elastic Stiffness Constants (10" dyne/cm?) at Room Temperature (300K) for Al, Cu, Ag, and Au®

Metal C11 Cq2 Cua Ass

Al 1.068 0.607 0.282 0.611
Cu 1.684 1.214 0.754 1.604
Ag 1.240 0.937 0.461 1.521
Au 1.923 1.631 0.420 1.438

“Kittel, C. (1971). Introduction to solid state physics (4th ed.). New York: J. Wiley & Sons.
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Substituting Egs. (5.67), (5.68) into Eq. (5.65), one can write
1
U=¢(Cy, +2C,,)55 (5.69)

Comparing Eqgs.(5.66), (5.69), the bulk modulus becomes
1

By :g(C11 +2C),) (5.70)
and the compressibility K¢ can be written as
Ke= L 3 (5.71)
€ By C;+2C, .

With the knowledge of the elastic constants, the bulk modulus and compressibility of a cubic solid can be estimated.

5.9 ELASTIC WAVES IN CUBIC SOLIDS

The propagation of elastic waves in a solid can be understood by considering the mechanical system shown in Fig. 5.5. Here
P, Q, and R are wooden blocks joined together with springs A and B along the x-direction. Elastic waves are produced by
stretching the springs along the x-direction. If the springs A and B are stretched equally in opposite directions, the force acting
on the block Q is zero. Further, if uniform stress o, is applied, the force acting on the blocks is again zero. If spring B is
stretched more than spring A, nonuniform stress is produced in the system and the net stress acting on the block Q becomes

Ao, =0,,(B)—0,(A) (5.72)

XX VXX

Aoy, will make the block Q move in the x-direction, thereby producing an elastic wave. Let us now consider a small
cubic solid with sides Ax, Ay, and Az (Fig. 5.6). The application of a nonuniform stress ,,(x) in the x-direction produces
a nonuniform strain in the cube. Let g, (x+Ax) and o,,(x) be the stress applied to the opposite faces of the cube (see
Fig. 5.6), then

o, (X+Ax) =0, (x)+ % Ax (5.73)
X

The net stress acting on the face ABCD is given by
do

Ao, (AX) =0, (X +AX) — 0, (X) = a—xx Ax (5.74)
X
Therefore, the force AF(Ax) acting on the face ABCD becomes
do
AF(Ax) = Ao, AyAz= 0))(0( AxAyAz (5.75)

The application of stress Aog,,(Ax) makes the cube move along the x-direction, thereby producing an elastic wave in the
same direction. The stress Ao, will also produce strain (deformation) in the y- (in the faces BCGF and ADHE) and z- (in
the faces DCGH and ABFE) directions. The forces acting along the y- and z-directions are given by

P
AE(Ay) = F(y+Ay) — F(y) = ;;y AxAyAz (5.76)

AF(Az) =F(z+Az) —F(z) :% AxAyAz (5.77)
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C

FIG.5.6 A small cubic solid with sides Ax, Ay, and Az along the three Cartesian directions. A nonuniform stress o,,(x) is applied along the x-direction.

Hence the total force acting on the cube due to the stress applied in the x-direction becomes
AF = AF(Ax) + AF(Ay) + AF(Az)
0 do Jdo (5.78)
( gx + a;y > AxAyAz
Let p.,, be the mass density of the homogeneous isotropic material, then according to Newton’s second law

d2u
(p AxAyAz) dt =AF (5.79)

where u; is the displacement in the x-direction. From Egs. (5.78), (5.79) one can write
d?y, _ 00y, 90y L 9%
™42 ox  dy oz

The solution of Eq. (5.80) requires knowledge of the elements of the stress tensor of a cubic solid. Differentiating the

expressions for oy, 0y, and oy, given by Eq. (5.62), and using Egs. (5.9), (5.10) for the elements of the strain tensor,
one gets

(5.80)

00, e, asyy de, oy, 0uy 02u3
xSl Clz(ax ax) Ciige +Cn oy | oxz (58D)
aO-xy agxy 1 62u1 02u2
_ _ 82
ay 4oy 2w [ayz axay] 52

(5.83)

do de,, 1 [(32u1 02u3]

x2 v o 2
0z ¥ ooz 2 0z2  0x0z
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Substituting Egs. (5.81)—(5.83) into Eq. (5.80), one can write

o*u, u, 1 *u, u 1 u, du

— L =C =2 +-Cpy |+ = |+ [Cp+5Cyy | |2+ 2 5.84
Pm gz =g Tt G0 T 2F7%4 ) oxay " azox (5.84)
Eq. (5.84) gives the equation of motion of the elastic wave produced in a cubic solid when stress is applied externally in the

x-direction. In exactly the same manner, one can apply the nonhomogeneous stress in the y- and z-directions and can obtain
the corresponding equations of motion for u, and u;, which are given by

0*u, d*u Ll 02u2 0*u, 1 *u, d%u,
e —cu 58 ay 3 Cu {a 2 Y5 2] (C‘2+ 2 C44> L)xay " 6ydz} (5.85)
o*u, 0 P uy 0*u, 62u3 1 u,
Pm =7 6t2 =Cy— o2 C44 [a 2 F} <C12 t5 C44) [dxaz + ayaz] (5.86)
Egs. (5.84)—(5.86) can be written in a general form as
azuz dzua 1 62u azuﬁ
P =Cii—s +5Cu Z - C12+ Cyy Z (5.87)
x W 2T iz O 2 i OO

To examine the actual elastic waves produced in a cubic solid, let us apply Eq. (5.87) in different directions.

5.9.1 Elastic Waves in the [100] Direction

The elastic waves along the [100] direction may be longitudinal or transverse in nature. The displacement of longitudinal
(L) elastic waves in the x-direction u, is given by

uy; =uy exp[—1(Kr; — o t)] =ug exp[—1(Kx — o t)] (5.88)
Here ug; and K are the amplitude and propagation wave vector along the x-direction and wy_is the frequency of the L elastic
wave. Substituting Eq. (5.88) into Eq. (5.84), the frequency of the elastic wave is given by

o, = Cug (5.89)

m

Eq. (5.89) is called the dispersion relation because it relates the frequency to the wave vector. It immediately gives the
linear velocity as

C
=%, /=u (5.90)

Here the group velocity and the phase velocity are the same.
There are two transverse (T) elastic waves with displacements along the y- and z-directions but with K along the x-
direction and they are defined as

Uyp, = Uy €Xp {—1 (Kr1 — o, t)} (5.91)

Usp, = U3 eXp {—1 (Kr1 — o, t)} (5.92)

where wr, and wr, are the frequencies of the T elastic waves. Substituting Eq. (5.91) into Eq. (5.85) and Eq. (5.92) into
Eqg. (5.86), one can solve for the velocities of the waves vt and vr, to get

vr, :? = / C44 (5.93a)
\ / (5.93b)

Egs. (5.93a), (5.93b) show that the velocities of the two T elastic waves are the same, but differ from that of the L elastic
wave. The experimental measurement of the velocities of the L and T elastic waves in a cubic crystal allows us to find the
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X
FIG. 5.7 Longitudinal and transverse polarizations of the elastic wave traveling along the x-direction.

elastic constants C; and Cy44 using Egs. (5.90), (5.93a), (5.93b). Fig. 5.7 shows the L and T polarizations of the elastic wave
with propagation wave vector K along the x-direction.

5.9.2 Elastic Waves in the [110] Direction

The propagation of elastic waves in the [100] direction gives information only about the elastic constants C;; and C44, but
the elastic constant C;, remains undetermined. Let us consider the propagation of elastic waves along the [110] symmetry
direction as shown in Fig. 5.8. The propagation wavevector K in the [110] direction is given by

~ ~ K /. =
K=iK, +5L,K, =~ (i1 +i2) (5.94)
V2
z
3
AT,
T?
Q)
>y
L
K

X
FIG. 5.8 Longitudinal and transverse polarizations of an elastic wave traveling along the [110] direction.
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The components K; =K, and K, =K, have the same magnitude. Fig. 5.8 shows the different polarizations (modes) of the
elastic wave. It is evident from the figure that one of the transverse elastic waves T; propagates in the xy-plane with particle
displacement along the z-direction defined as

K
Uzp, = Ug3 €XP [—l {ﬁ (x+y)—or, tH (5.95)
Substituting Eq. (5.95) into Eq. (5.86), one gets
Cuy
=4/5—K 5.96
or, 20 (5.96)

Therefore, the velocity of the T; elastic wave becomes

|C
Vp, = ﬁ (5.97)

The second transverse elastic wave T, and the L elastic wave propagate in the xy-plane with particle displacement also in
the xy-plane and they are defined as

K
U, =Uy exp|—19—=(x+y)—ot 5.98
1 = Up; €Xp [ {\/5( y) H ( )
[ { K (x+y) tH (5.99)
u, =Uuy, exp |—19 —(x —w .
2 = Ugp €Xp NG y
Substituting u; and u, into Egs. (5.84), (5.85), one gets
1 K? 1 K?
w*p u, = <C“+2C44>2u1+ <C12+2C44> 5 U (5.100)
1 K? 1 K?
@ p, Uy = <C11+§C44)7u2+ (C12+§C44> 5 U (5.101)
Egs. (5.100), (5.101) have nontrivial solutions only if the determinant of the coefficients of u; and u, is zero, that is,
5 1 K? 1 K?
—0 P, + C11+§C44 23 C12+§C44 5
1 K2 i K2 =0 (5.102)
<C12+§C44> 23 —0’p,+ (C11+§C44> 2l
The above determinant gives a quadratic equation in w? with the following solutions
1
wlip., =5 (C+Cp+Cyy) K? (5.103)
1
@3p,, =5(C=Cp) K? (5.104)

So, the velocities of these elastic waves are given by

MY S TRaSERas (5.105)
2P

Cll _C12

(5.106)
20

Let us examine the nature of the two waves described by Egs. (5.103), (5.104). Substituting Eq. (5.103) into Eq. (5.100) for
the frequency @ =w;, one can prove that

u =u, (5.107)
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Thus, corresponding to the frequency w;, the displacement of the particle is in the [110] direction, which gives the L elastic
wave. Similarly, substituting Eq. (5.104) into Eq. (5.100) for the frequency @ = m,, one can get

U =-u, (5.108)

According to Eq. (5.108) the displacement of the particle is along the [ITO] direction, which is perpendicular to the
direction of propagation [110]. Hence Eq. (5.104) gives the frequency of the T, elastic wave. Now, the velocities of

the L and T, elastic waves are given by
|C;y+C,+C
v = % (5.109)
C,—-C
Ve, = li“zpm 12 (5.110)

Hence, from the experimental measurements of the velocities of the L and T elastic waves, given by Eqgs. (5.97), (5.109),
and (5.110), one can determine all of the elastic constants C;;, Cj;and Cy4 of a cubic crystal.

5.9.3 Elastic Waves in the [111] Direction

Another high-symmetry direction of interest in cubic crystals is the [111] direction. Consider an elastic wave propagating in
the [111] direction with wave vector K (Fig. 5.9) defined as

K=i K, +i,K, +i;K; = i, K, +,K, +i;K,
K (é +: +:)
=—=1\1 1 1
\/§ 1 2 3

Here we have used the fact that, in the [111] direction, the magnitude of all the Cartesian components of K is equal.
Therefore, the Cartesian components of displacement are given by

(5.111)

u, (r) =ug, exp [—z{%(x+y+z)—th (5.112)

rd

&

K[‘l‘l‘l]

FIG. 5.9 Longitudinal and transverse polarizations of an elastic wave traveling along the [111] direction.
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U, (1) = Uy, exp {—1{ (x+y+z)—th (5.113)

SR S

u;(r) =uy; exp {—1{ (x+y+z)—th (5.114)

The total displacement u(r) becomes
< < < K
u(r)= (u01 i +ug, iy +uy; 13) exp |:—l {% (x+y+z)— a)tH (5.115)

One is interested in finding the velocities of the different modes of the elastic wave propagating in the [111] direction.
Substituting Eqgs. (5.112)—(5.114) into Eq. (5.84) and simplifying, we obtain

1 1
(C;1+Cyy —3A)uy + <C12 +5 C44> u, + (C12 +5 C44> u; =0 (5.116)
where
2
o}
A:pmﬁ (5.117)
Similarly, substituting Egs. (5.112)—(5.114) into Eqs. (5.85), (5.86), one can write
1 1
<C12 + > C44> u, +(C;+Cyy —3A)u, + <C12 + > C44> u; =0 (5.118)
1 1
(C12 +5 C44> u, + <C12 +5 C44) u,+(C;; +Cyy —3A)u; =0 (5.119)

Egs. (5.116), (5.118), and (5.119) have nontrivial solutions only if the determinant of the coefficient of u;, u,, and us is zero,
that is,

A B B
BAB|=0 (5.120)
BB A
where
A=C;+Cy, —3A (5.121)
and
B=C12+%C44 (5.122)
Expanding the determinant of Eq. (5.120), we get
(A—B)*(A+2B)=0 (5.123)
The above equation gives three solutions (out of which one solution is doubly degenerate) given by
A=B (5.124)
A=-2B (5.125)

Egs. (5.124), (5.125), with the help of Egs. (5.121), (5.122), yield

1
Ci—Cpp+ 5 Cuy
=2 K (5.126)
30m

wzz\/MK (5.127)
3Pm
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Let us determine the nature of the polarization of the elastic waves with frequencies w; and w,. Eq. (5.125) can be written as
3A,=C,; +2C, +2C,, (5.128)
Substituting Eq. (5.128) into Eq. (5.116), one gets
2u; =u, +uy (5.129)
Similarly, substituting Eq. (5.128) into Eqgs. (5.118), (5.119), we obtain

2u, =uz+u, (5.130)

2u; =u; +u, (5.131)
From Egs. (5.129)—(5.131) one can immediately write

U =u,=u, (5.132)

Hence, for the eigenvalue A,, the three components of displacement are equal, which yields the displacement u along the
[111] direction. Therefore, the elastic wave corresponding to the eigenvalue A, or w, represents the L elastic wave. If oy,
represents the frequency of the L wave, then from Eq. (5.127) its velocity is given by

VL&\/C11+2C12+2C44 5.133)

K 3pm
Let us now consider the wave with frequency w;, which from Egs. (5.124), (5.121), and (5.122) gives
1
SAI:CH—C12+§C44 (5.134)

Substituting Eq. (5.134) into Eq. (5.116), one immediately gets
u; +u,+u;=0 (5.135)

If we substitute Eq. (5.134) into Egs. (5.118), (5.119) we obtain the same expression as given by Eq. (5.135). Therefore,
Eq. (5.134) represents two degenerate T modes of the elastic wave propagating in the [111] direction and these must be
orthogonal to each other and also to the L elastic wave. Let us take [ITO] as the direction of displacement of one of the
transverse waves (say T;). Then the third displacement vector X3, representing the second transverse wave (say T,), must
be perpendicular to both X; =[111] and X, = [110], that is,

X. =X, xX :(i +i +i)><(i _i +0i)
3 1 2 A lA 2 A3 1 2 3 (5136)
=i, +1, - 2i,

Hence the displacement vector X3 of the T, elastic wave is in the [1 15] direction. The polarizations of three elastic waves
are shown in Fig. 5.9. From Eq. (5.126) the velocities of both the T elastic waves are the same and are given by

1
Cj—Cp+ §C44

VTl = VT2 = Vg :f: T (5137)

An alternate method for determining the eigenvectors of the elastic wave is given in Appendix C.

The above discussion yields only two velocity equations, that is, Egs. (5.133), (5.137), but there are three elastic con-
stants. Therefore, one cannot determine all the elastic constants of a cubic solid in this case. It is worthwhile to note that, in
general, the elastic waves in an isotropic medium are mixtures of both the L and T polarizations, depending on the direction
of propagation of the wave: only in high-symmetry directions do these possess pure L or T polarization. Further, the two T
elastic waves may not, in general, have the same velocity.

5.10 ISOTROPIC ELASTICITY
The substitution

Cj—Cpp=Cy (5.138)
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into Egs. (5.90), (5.109), and (5.133) gives the same velocity of the L elastic waves in the different symmetry directions
[100], [110], and [111]. Further, the velocities of the T elastic waves, given by Egs. (5.93a), (5.93b), (5.97), (5.110), and
(5.137) along the different directions [100], [110], and [111], also become the same, although different from that of the L
elastic waves. In other words, regardless of the direction of propagation, the velocity of an elastic wave with a particular
polarization becomes the same, subject to the condition (5.138). Therefore, this is known as the elastic isotropy condition.
The anisotropy factor A, in cubic crystals is defined as the square of the ratio of the velocities of the T elastic waves prop-
agating in the [100] and [110] directions, that is,

Cyy

A, =—M
. C117C12

(5.139)
A, 1s also equal to the ratio of the squares of the velocities of the two T elastic waves propagating in the [110] direction. A,

is unity for elastic isotropy. The departure of the values of A, from unity is a measure of the anisotropy in cubic crystals (see
Table 5.1).

5.11 EXPERIMENTAL MEASUREMENT OF ELASTIC CONSTANTS

Ultrasonic waves are elastic waves whose velocity in solids can be measured experimentally. The elastic constants can be
evaluated from the experimentally measured velocities of ultrasonic waves with different polarizations propagating in dif-
ferent symmetry directions in cubic solids. One of the most commonly used methods to measure the velocities is the ultra-
sonic pulse method, a schematic setup of which is shown in Fig. 5.10. In this method, ultrasonic pulses at regular intervals
are produced by a quartz crystal fixed at one end of the specimen crystal and these are allowed to travel through it, as shown.
The pulses are reflected back at the opposite end of the specimen, which ultimately reach the quartz crystal again. The time t
taken by an ultrasonic pulse to travel the forward and backward journey in the crystal is measured experimentally. If d is the
length of the specimen, then the velocity of the ultrasonic waves is given by

2d
Tt

v (5.140)
Actually, the ultrasonic waves are allowed to travel along one of the symmetry directions, say [110], and the velocity of the
waves with different polarizations is measured. Then the elastic constants of the cubic solid are evaluated using Eqgs. (5.97),
(5.109), and (5.110).

In the above discussion we have defined the second-order elastic constants assuming Hooke’s law to be valid. In this
approximation, the elastic energy density is a quadratic function of the strain. But for large stresses and strains, the Hooke’s
law is not valid and one has to consider higher-order terms in strain and stress-strain relations (Egs. 5.26a, 5.26b) and the
energy density expression (Eq. 5.32). The elastic energy density involving cubic terms of the strain elements should be
considered and these are manifestations of nonlinear effects, such as the interaction of phonons and thermal expansion.
Therefore, one can define the third-order elastic constants from the energy density involving cubic terms of the strain
elements.

Piezoelectric crystal
\3: Crystal
Pulse
Piezoelectric crystal Crystal
\ | !.

FIG. 5.10 Schematic diagram for the ultrasonic pulse method used for determining velocities of ultrasonic waves in solids.
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Problem 5.1

If the factor of one-half is neglected in Eq. (5.9) and the strain components are defined as

oug o 9
€d/i: —ﬂ+ um/gaoc: U (5141)
or,  org or,
prove that the equation of motion for any component u, of the displacement field is given by
d*u d*u %u 62uﬂ
Pm—7 =Cii—57 +Cu Z —7+ (G +Cyy) Z (5.142)
n o, siz O i) 0" O
In some books, the equation of motion given by Eq. (5.142) is used.
Problem 5.2
Assume the running wave-like solution for the displacement u(r) defined as
u(r) :uoe—t(K-r—m) (5.143)

where K is the propagation wave vector for the elastic wave.
(@) If the elastic wave is traveling in the [100] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse

waves are given by
C C
V= v = vy, = (5.144)
pm pl'ﬂ

(b) If the elastic wave is traveling in the [110] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse
waves are given by

v = G +§12 +2Cy, (5.145)
Pm
v =[Sy = [C1=Cn (5.146)
' Pm 7 2pm

(c) Ifthe elastic wave is traveling in the [111] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse
waves are given by

C,, +2C,,+4C
v = 11 12 44 (5.147)
3Pm

v =V = m (5.148)
1 2 3Pm




Elastic Properties of Solids Chapter | 5 113

Problem 5.3
Using the Newton second law of force in equation
Jo
f,= 28 (5.149)
’ % oy
prove that for a wave-like solution, the equation of motion is given by
3 [CaﬁuvKﬁK‘,fwzpméw] ul =0 (5.150)

v, B
Here uy is the amplitude of the elastic wave and the other symbols have their usual meanings. Eq. (5.150) is called the Christoffel
equation.

Problem 5.4
The free energy of a deformed body is defined as

2
1
F:F0+§AL {za:sm] +,uL£§ﬂ (5.151)

where Fy is a constant quantity and A and y_are called the Lame’s coefficients. Express the free energy as a sum of the pure shear
strain and pure hydrostatic compression. Further, find the stress components from the free energy.
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Chapter 6

Lattice Vibrations-1
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The study of the thermal properties of solids is an important field in the subject of solid-state physics. There are a number of
thermal properties, such as lattice vibrations, specific heat, thermal conductivity, and thermal expansion. The temperature
variation of lattice vibrations, magnetism, and superconductivity form another class of thermal properties. At absolute zero,
all of the atoms in insulators and dielectrics are at rest at the lattice positions. With an increase in temperature, the atoms
acquire thermal energy given by

Epy =k T (6.1)

where kg is the Boltzmann constant and T is the temperature in degrees Kelvin. By gaining finite thermal energy, each atom
starts vibrating about its equilibrium position with finite frequency. The amplitude and frequency of atomic vibrations
increase with an increase in temperature. As the atoms in a solid are bound together, the vibrations of one atom are handed
over to the next atom and so on. Therefore, all of the atoms vibrate collectively in the form of an elastic wave. Such a
collective motion is called the normal mode of vibration of the lattice. The total number of normal modes of vibration
is equal to the number of degrees of freedom, which is 3N if there are N atoms in a solid. In a metal, there are ions at
the lattice positions and the conduction electrons are free to move in it. Therefore, in a metal at finite temperature, the
ions vibrate about the lattice positions as in insulators, while the conduction electrons move with some finite velocity.
In this chapter and Chapter 7, we study the lattice vibrations at finite temperatures, which play a central role in the study
of a number of lattice properties, such as lattice specific heat, lattice conduction, and thermal expansion. In this chapter, the
lattice vibrations in one-dimensional solids will be studied using the classical approach.

6.1 VIBRATIONS IN A HOMOGENEOUS ELASTIC MEDIUM

For simplicity, consider a one-dimensional homogeneous elastic solid along the x-direction, having great length but a small
uniform area of cross section (Fig. 6.1). Let p,, be the mass per unit length (linear mass density) of the solid, then

_daM
T dx

where M denotes the mass. When opposing external forces F; and F, are applied at the points x and x+Ax along the x-
direction, the net force acting on the small element Ax is

AF=F,—F, 6.3)

P (6.2)

The force AF produces strain in the elemental length Ax. Let &,,(x) and &,,(x+Ax) represent the x-component of strain
produced at the points x and x+Ax. The strain component &,,(x) is defined as

du
ey (X) = g (6.4)
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FIG. 6.1 One-dimensional homogeneous line with strain produced —  Ax  le—
between x and x+Ax.

X X+HAX

where u(x) is the displacement at point x due to the strain. In a one-dimensional solid, the stress cannot be defined in the
same way as in a three-dimensional solid. But one can talk about the force acting at a point, which is assumed to be linearly
proportional to the strain at that point. Therefore, one can write

F, = Cj 64(X) (6.5)
F, = Cj 6, (x+Ax) (6.6)
where Cy; is the proportionality constant and is the modulus of elasticity. From Egs. (6.5), (6.6) it is easy to write
AF = Cy| e (X +AX) — &, (X)] 6.7)
If the strain &, (x+Ax) is varying slowly, it can be expanded as
a{‘:XX
£ (X+AX) =g, (x) + =2 Ax (6.8)
ox
Substituting Eq. (6.4) into Eq. (6.8), the net strain acting on the element Ax is given by
o*u
£y (X +AX) — g, (x) = pwe Ax (6.9)
with the help of which Eq. (6.7) becomes
u
AF=C WAX (6.10)
From Newton’s second law of motion, AF can immediately be written as
u
From Egs. (6.10), (6.11) one gets
du 1 du
7 6.12
x> v2 ot (0.12)
where
C
v, = et 0 (6.13)
Prm

Here v, gives the velocity of the elastic wave. Eq. (6.12) is the well-known Newton’s formula for the velocity of sound
waves. For Eq. (6.12) we are seeking a wave solution of the form

u(x) = uye' Kx—ev (6.14)

where u is the amplitude, K is the propagation wave vector, and o is the frequency of the wave. Substituting Eq. (6.14) into
Eq. (6.12), one obtains

w=v,K (6.15)

This is called the dispersion relation as it relates the frequency to the wave vector K. Eq. (6.15) shows that w is linearly
proportional to K, which implies that velocity vy is independent of the wavelength. Further, there is no upper limit to the
frequency of vibration in a homogeneous medium. For an infinitely long one-dimensional solid, the values of K vary con-
tinuously and so does the frequency. Fig. 6.2 shows the dispersion relation for an infinite homogeneous line. If the
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FIG. 6.2 Dispersion curve for a homogeneous line. The
slope of the curve gives v, or v,.

o(K) —

one-dimensional solid has a finite length L, then the solution must satisfy the boundary conditions: the displacement must
be zero at the fixed boundaries, that is,

u(0)=u(L)=0 (6.16)
Substituting Eq. (6.14) into Eq. (6.16), one obtains discrete values of K given by
271n
K=—- 1
L (6.17)

where n is an integer: negative, positive, or zero. The different values of K give different modes of vibration. The dispersion
relation gives the phase velocity v;, as

0}
Vp:K:VX (6.18)
while the group velocity v, is given as
dw
vgzﬁzvx (619)

Hence the phase and group velocities of the elastic wave in a homogeneous medium are the same.

6.2 INTERATOMIC POTENTIAL IN SOLIDS

The interaction potential V(r) between two atoms, denoted by the numerals 1 and 2, of a crystalline solid is shown by the
curve PQR in Fig. 6.3. At absolute zero the equilibrium distance between the atoms is Ry, which corresponds to the inter-
action potential

V(Ry)) = -V, (6.20)

In the equilibrium position, atom 2 occupies the position O. It is evident from Fig. 6.3 that the interaction potential energy
curve PQR is asymmetrical about the point Q (or O) and can be evaluated in the following manner.

Let atom 2 be displaced by a distance u(t) at the time t from its equilibrium position Ry. So, the displaced position of
atom 2, keeping atom 1 fixed, becomes

r=R;+u(t) (6.21)
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FIG. 6.3 Interatomic potential V(r) between the two atoms 1 and 2 as a function of r.

If the displacement is small as compared with the interatomic distance, then V(r) can be expanded about the mean position

Ry as

PV
V(r Zu Zu uﬁdrdr Zuu/}uyararar
xrRO ﬁrRO 715,r ’rRo
(6.22)
L > v .\
-— uu,uUs————
oo
24 NN ' ar%ar/jaryard l‘:RU

If the solid is isotropic, the potential becomes independent of direction, at least in the high-symmetry directions (e.g., solid

with cubic structure). In such a solid, u,=ug=u,=us=u and Eq. (6.22) reduces to

oV 1,0V 1 .0’V
V(r)=V(R,) +u— +out—— +—u3—3
arr R, 2 al‘ r=R, 6 al‘ r=R,
(6.23)
1 ,0'V
+—u"—
247 ot g,

In the equilibrium position the force acting on atom 2 vanishes, thereby reducing the term with the first derivative of V(r) to

zero. So, Eq. (6.23) becomes

oy TP (6.24)

1 1 1
V(r) = V(RO) + 5 OCFll2 —g yFu3 —Z 5FU.
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where
*V
Oy = —— (6.25)
F 61‘2 r:R0
10°V 1 o'V
o=t R T (6.26)
F 2 o =R, 6 ot R,

Here o is called the force constant and is a measure of the rigidity of the bond between the two atoms. yg and O are the
derivatives of the force constants and represent higher-order force constants. For simplicity, o, yg, and dg can be taken as
proportionality constants. Corresponding to V(r), and given by Eq. (6.24), the force between atoms 1 and 2 is given by

oV(r)
o

Egs. (6.24), (6.27) form an infinite series and are exact expressions for the potential and force. The exact evaluation of V(r)
is very difficult but it can be estimated in various approximations.

F= :—ocFu+yFu2+5Fu3+~~ (6.27)

6.2.1 Square-Well Potential

V(r) is, sometimes, approximated by a square-well potential centered on the point O (see Fig. 6.4) and is defined as

V(r)=-V, for|r|<a,

=0  for |r| >a, (6.28)

V(r)——

+—— 3 —pie—a—>

FIG. 6.4 Approximation of the interatomic potential V(r) by a square-well potential with depth —V, and width 2 a,.
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But the square-well potential is in no way close to the exact interaction potential, except that its value corresponds to the

actual value at Ry,.

6.2.2 Harmonic Interaction Potential

As the lowest-order approximation, one can retain terms up to the second power of displacement in Eq. (6.24), which gives

1
V()= =Vo+ S u? (6.29)
In defining the above equation, the reference level of potential is assumed to be at V(Rg) = — V. Therefore, the force from
Eq. (6.27) is given by
F=—apu (6.30)

In this approximation, the force acting on atom 2 is proportional to its displacement and is directed toward its equilibrium
position. It is wellknown that an atom acted upon by such a force oscillates harmonically about its equilibrium position and
hence the name harmonic force. Therefore, Eq. (6.29) defines the harmonic potential, which is parabolic in nature. It is
evident from Fig. 6.5 that atom 2 oscillates with equal amplitude on both sides of its equilibrium position. The third-,
fourth-, and higher-order terms in Eq. (6.24) give an anharmonic contribution to the interaction potential, which is assumed

to be negligible here.

V(r) —
w

FIG. 6.5 Approximation of the interatomic potential V(r) by a harmonic potential (dashed line) that is parabolic in nature. Here the amplitude of atom 2 is

the same on both sides, that is, | u; |=| uy|= u.
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6.3 LATTICE VIBRATIONS IN A DISCRETE ONE-DIMENSIONAL LATTICE

It has already been discussed in Chapter 1 that a one-dimensional solid consists of a periodic arrangement of atoms (mol-
ecules) in a particular direction and that its primitive cell may contain one or more atoms. In this section, we shall study
lattice vibrations in monatomic and diatomic linear lattices.

6.3.1 Monatomic Linear Lattice

Fig. 6.6 shows a monatomic linear lattice along the x-direction with distance “a” between the consecutive atoms (lattice
points). At finite temperature, the atoms start vibrating about their mean positions along the x-direction. The position of the
nth atom at time t is given by

R(n,t)=R, +u(n,t) =na+u(n,t) (6.31)

R, is the lattice vector and u(n, t) is the displacement of the nth atom at time t and both are along the same direction, that is,
the x-direction. To find the frequencies of vibration of the atoms we make the approximations described below.

First, the force F acting on a vibrating atom is assumed to obey Hooke’s law, according to which F is linearly propor-
tional to the displacement u of the atom (harmonic force), that is,

F=—opu (6.32)

The parameter o is the force constant. Because a vibrating spring executes a simple harmonic motion about its mean
position, the atoms can be assumed to be connected via massless springs. It is for this reason that o is sometimes called
the spring constant. Thus, a linear solid can be replaced by a mechanical system of the form shown in Fig. 6.6.

Let us consider the equation of motion of the nth atom of the lattice. The force F,,  acting on the nth atom due to (n+s)th
atom depends on the relative displacement of these two atoms and is written as

F, .= —og[u(n) —u(n+s)] (6.33)

n,s

where u(n) and u(n+s) are the displacements of the nth and (n+s)th atoms from their mean positions and their time depen-
dence is assumed to be understood. The parameter o represents the force constant for the sNN of the nth atom under
consideration. In general, an atom interacts with all of the other atoms of the solid, therefore, the total force acting on
the nth atom is given by

FH:ZFH’S:—ZaFS[u(n)—u(n+s)} (6.34)

wheres=0, £ 1, +2,... Secondly, we assume that an atom interacts with its INNs only. The force constant o, for both the
INNSs is the same (say o). In this case, the subscript s takes the values 1 and —1 in Eq. (6.34) to give

F,= op[u(n+1)+u(n—1)—2u(n)] (6.35)

According to Newton’s second law of motion
d*u(n)
F,=M 3 (6.36)
where M is the mass of an atom. From Eqs. (6.35), (6.36), the equation of motion for the nth atom becomes
02

M ;t(;‘) = o [un+1)+u(n—1)—2u(n)] (6.37)

u(n-1)

u(n) u(n+1)

je—a—H ®-{TOT000 ™ @ TN ®
i i i i i
000000 000000 000000 000000 000000 000000 000000 000000 000000

n-1 n n+1

FIG. 6.6 Monatomic linear lattice with distance “a” between the consecutive atoms. At finite temperature, u(n — 1), u(n), and u(n+1) are the instan-
taneous displacements of the (n— 1)th, nth, and (n+ 1)th atoms, respectively, from their mean positions.
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The wave-like solution of Eq. (6.37) can be written as

u(n) = uye! KR=0) —y g (Kna—oy (6.38)
Similarly, we can write
u(n+1) = y,e'KO+Daet (6.39)
u(n—1)= y,e'Kn-ha-ot] (6.40)
Substituting Eqgs. (6.38)—(6.40) into Eq. (6.37) and simplifying, we get
Ma? = 4oy sin? <%> (6.41)

Therefore, the frequency of vibration of atoms is given by

4o . (Ka
w== Vsm (7> (6.42)

Because the frequency of vibration is always positive for a stable lattice, therefore, in Eq. (6.42), we should take the positive
square root and modulus of the sine function to write
K
sin (73‘) ‘ (6.43)

4o
*=\M

Eq. (6.43) shows that w depends nonlinearly on the wave vector K and gives the dispersion relation. The sine function is a
periodic function and its modulus varies from 0 to 1, therefore, the value of K varies from 0 to /a (see Fig. 6.7). Beyond
this value the sine function is repeated, therefore, the independent values of K range from 0 to 7/a on the positive side. The

wave can propagate either to the right or to the left, therefore, K can have both positive and negative values. Hence the range
of independent values of K is

T
——<K<
a

o

(6.44)

This range of independent values of K is called the 1BZ (see Chapter 2) of the one-dimensional lattice. Fig. 6.8 shows the
frequencies of vibration of atoms (phonon frequencies) as a function of K in the 1BZ. Eq. (6.43) can also be written in terms
of the elastic constant C;; and the density per unit length p,,. One can easily write

Cu

Op = and M=ap,, (6.45)

FIG. 6.7 Plot of | sin(Ka/2)| as a function of K. 4

|sin (Ka/2)|—

-nfa 0 ala 2nla 4nfa 6rla 8nla

K—
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FIG. 6.8 Vibrational frequencies ® as a function of the
wave vector K for a linear monatomic lattice in the 1BZ.
Vo /M N4a/M
)
1
-mla 0 nla
K—

Using Eq. (6.45) in Eq. (6.43), one can write

o= % v, sin <Ka) (6.46)
a 2
where
v, = Cu (6.47)
Pm

Eq. (6.47) is the same as Eq. (6.13). Let us calculate the phase and group velocities for a linear monatomic lattice. The phase
velocity, from Eq. (6.46), is given by

o 2v, . (Ka
Vp = E = Ka N (7) (648)
and the group velocity is given by
dw Ka
Vg = & =V, COS (7) (649)

It is evident that v, and v, are different for a linear monatomic lattice. At the 1BZ boundary with K =m/a, the phase and
group velocities are given as

2v
Vv, = nx’ vg:0 (6.50)

The group velocity represents the transfer of signal or energy, therefore, at the 1BZ there is no transfer of energy and the
wave is a standing wave. At low frequencies, that is, in the limit of K — 0, Eq. (6.46) reduces to

w=v,K (6.51)

which is the same dispersion relation as that obtained for a homogeneous line (see Eq. 6.15). Such behavior is expected
because long wavelengths would not be sensitive to the discreteness of the lattice. Further, at long wavelengths (low fre-
quencies), the group and phase velocities become the same (=vy).

Let us calculate the values of the wave vector K in a discrete monatomic linear lattice. If the crystal is finite with a
number N of atoms in it, the periodic boundary condition demands

u(n) =u(n+N) (6.52)
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Substituting the value of displacement from Eq. (6.38), the above expression yields
et =1 (6.53)
which is satisfied if

K727rm

~Na (6.54)

Here m=0, =1, £2,... From Egs. (6.38), (6.54), it is trivial to prove that there are N allowed values K for a monatomic
linear lattice with N atoms. As the value of N increases, the difference between the consecutive values of K decreases, and
finally, in the limit of very large N, the vector K becomes a continuous parameter. Hence, in an infinite linear monatomic
crystal, the wave vector K varies continuously within the range specified by Eq. (6.44).

An estimation of the specific heat of solids involves knowledge of the frequency distribution function g(w), which is
defined as the number of modes per unit frequency range. The number of modes lying between frequencies w and w+dw is
given by g(w)dw. Therefore, the number of modes lying between w and w +dw is equal to the number of modes between K
and K+dK. From Eq. (6.54) one K state (mode) lies in a length 2 n/Na, therefore, the number of modes between K and K
+dK is given by (Na/27)dK. The total number of modes is given by the equation

Na
Jg(w)dw:J2EdK:N (6.55)

According to Eq. (6.44) or Eq. (6.54) every positive value of K has a corresponding negative value. The factor of two takes
into account both the positive and negative values of K. The above equation allows us to write

Na dK
= — 6.56
g(@) n dw ( )
From Eq. (6.43) it is straightforward to write
dK 1
— (6.57)
do a wrznax —?
where
4o
=4/ —=E 6.58
(’Omdx M ( 5 )
Substituting Eq. (6.57) into Eq. (6.56), one gets
2N/=m
g(o) :% (6.59)
[} w

max

The function g(w) is shown in Fig. 6.9 and has the maximum frequency w,,.x. The figure shows that most of the modes of
vibration lie near .. In the above treatment, only the interactions with the 1NNs have been included, but in an exact
treatment one should include the interactions with all the NNs.

Problem 6.1

With the help of Eq. (6.59) prove that the total number of modes in a one-dimensional monatomic solid is equal to the total number
of atoms.

6.3.2 Diatomic Linear Lattice

Consider a one-dimensional solid with two different types of atoms in the basis (see Fig. 6.10) with masses M; and M,
where M; > M,. Note that the masses of the two types of atoms may not necessarily be different. If “a” is the distance
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FIG. 6.9 Frequency distribution function g(w) as a function of  for a one-
dimensional monatomic lattice.
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FIG. 6.10 Linear diatomic lattice with even-numbered atoms having mass M; and the odd-numbered atoms having mass M,. Here, a is the distance
between two consecutive atoms.

between consecutive atoms, then the repeat distance is 2a. The position of the nth atom at time t is given by Eq. (6.31).
Considering the harmonic forces, the equations of motion for the 2nth and (2n+ 1)th atoms are given by

M, ii(2n) = ZaR (2n) —u(2n+s)] (6.60)
M,ii(2n+1) ZaF (2n+1)—u(2n+1+s)] (6.61)

where s =0, = 1, £2,... For further simplification of the equations of motion of the atoms, only the 1NN interactions are
retained. The force constants between an atom and its 1NN are the same (say o) as the forces are identical. Therefore, the
equations of motion of the 2nth and (2n+ 1)th atoms become

M,ti(2n) =op[u(2n+1)+u(2n—1) —2u(2n)] (6.62)
M,ii(2n+1)=op[u(2n+2)+u(2n) —2u(2n+1)] (6.63)
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Let us consider a longitudinal wave in which the atoms vibrate along the direction of the wave vector K. In this case the
wave-like solutions of Egs. (6.62), (6.63) are given by

u(zn) =u, e! [2Kna—wt] (664)
u(2n+1) =u,e' K+ Ha—od (6.65)

where u; and u, are the amplitudes of the waves for the 2nth and (2n+ 1)th atoms. Substituting Egs. (6.64), (6.65) into
Egs. (6.62), (6.63), one gets

(M, ©* —20) u; + (20 cosKa) u, =0 (6.66)
(20 cosKa) u; + (My* —20) u, =0 (6.67)

The above equations have nontrivial solution only if the determinant of the coefficients of u; and u, is zero, that is,

M, w? — 20, 20pcosKa |
20p cosKa M,0? — 20| 0 (6.68)
The expansion of the above determinant yields the expression
1 1 5 dod 2
ot =20 (E-FE)G) +M11\1j[2 (1— cos’Ka) =0 (6.69)

Eq. (6.69) is quadratic in »? and yields the solutions

11 11\ 4
=gt | o | [t | — sin’Ka
M, M, M, M, MM,
Fig. 6.11 shows a plot of sinKa as a function of K and this is a periodic function. The independent values of K lie in the
range from —n/2a to m/2a, that is,

1/2

(6.70)

T i
——<K<— 6.71
2a- T 2a ( )

which defines the 1BZ for a diatomic linear lattice. The frequencies of atomic vibrations are calculated in the 1BZ only as
these are repeated in higher BZs.
The frequencies of atomic vibrations can be calculated in the limiting cases. At K =0, Eq. (6.70) yields two frequencies

o (L 1\ (6.72a)
w,= |20 M, T, .72a

w_=0 (6.72b)

FIG. 6.11 Plot of sin*Ka as a function of K for a diatomic linear
lattice with a as the distance between two consecutive atoms.
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o, and w_ are the atomic vibration frequencies corresponding to the plus and minus signs in Eq. (6.70). For very small
values of K, sinKa =XKa, therefore, the atomic vibration frequencies from Eq. (6.70) are given by

1/2
B 11 20 (Ka)?
w, = lZuF (M1 + Mz) (M, +M,) (6.73a)
1/2
205 (Ka)?
= e (6.73b)
(M, +M,)

At the 1BZ boundary, that is, at K=m/2a, sin Ka =1, therefore, Eq. (6.70) gives the frequency of atomic vibrations as

20\ /2
w,= <W2F> (6.74a)
and
20, 1/2
=(==£ 6.74b
o~ (G2) o

With the help of Egs. (6.70), (6.72a), (6.72b)—(6.74a), (6.74b), w can be plotted as a function of K, which is shown in
Fig. 6.12. The curve for w_ as a function of K is called the acoustical branch and that for w, is called the optical branch
of the dispersion relations for the longitudinal waves. Fig. 6.12 shows that wave-like solutions do not exist for frequencies
between (20:/M5)"? and (20/M;)"? at the 1BZ boundary. This frequency gap is a characteristic feature of the elastic
waves in a diatomic lattice. If one looks for a solution with real w in this gap, then the wave vector K will be complex,
which means that the wave is damped in space.

To study the nature of acoustical and optical waves, let us find the amplitudes of these waves. Substituting the value of
w_ from Eq. (6.73b) into Eq. (6.66), we find

M, (Ka)?
201, <Mll+Mz_1 +20pu, cosKa=0 (6.75)
For very small values of K (Ka<1) the above expression yields

u; =u, (6.76)

Hence, for very small values of K or for very large values of wavelength, the amplitudes of the two types of atoms are the
same. The corresponding wave is shown in Fig. 6.13A. Such a wave can be stimulated by some kind of force that makes all
of the atoms move in the same direction, such as a compressional wave or a sound wave; that is why it is called the

FIG. 6.12 Dispersion relations for longitudinal waves in a
(201 (1/M,+1/M,)] "2 linear diatomic lattice with a as the distance between two

/ consecutive atoms.
(20:/M,)"

(20:M,)"™*

@(K)——

Acoustical

—nl2a 0 x/2a
K—
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(B)

FIG. 6.13 (A) Acoustic wave in a diatomic linear lattice with a as the distance between two consecutive atoms. (B) Optical wave in a diatomic linear
lattice with a as the distance between two consecutive atoms.

acoustical branch. A monatomic lattice can respond only to this kind of excitation. Substituting the value of w, from
Eq. (6.73a) into Eq. (6.66), we find

u, 1 cosKa
A (6.77)
u, M] 1 (Ka)
M, M,+M,
For very small values of K(Ka<« 1), we obtain
Uy M,
a__ 6.78
0 M, (6.78)

Therefore, in the optical branch, the ratio of the amplitudes of the two types of atoms is in the inverse ratio of their
masses. Further, the atoms vibrate against each other but their center of mass is fixed. If the atoms carry opposite
charges, a motion of this type can be excited by the electromagnetic field of an optical wave and this explains its
name. Fig. 6.13B shows a schematic diagram for the optical wave of a diatomic linear lattice. If M; =M, then u;/
u,= — 1. In this case the frequency range is the same for both the monatomic and diatomic linear lattices and there
will be no forbidden gap. It is noteworthy that the optical vibrations do not depend on the mass difference. Further, if
the diatomic linear lattice consists of ions, the optical vibrations do not depend on their opposite charges. These
depend only on the fact that there are two or more atoms per primitive cell so that they can vibrate in and out from
the center of mass. In general, if there are s atoms per primitive cell, then there will be 3s branches in all: 3 acoustical
branches and the remaining 3s — 3 optical branches.
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From the discussion of lattice vibrations of discrete monatomic and diatomic linear lattices, the following features

emerge:

1. The frequency w is no longer linearly proportional to the wave vector K but is a periodic function. This fact imposes an
upper limit on w in contrast with the wave propagation in a homogeneous medium.

2. There exist allowed frequency (energy) bands separated by a forbidden frequency (energy) band. The forbidden band is
related to Bragg’s reflection in crystalline solids.

Problem 6.2

Consider a diatomic linear lattice as shown in Fig. 6.14 where the unit cell, having length a, contains two atoms named 1 and 2 with
masses M; and M,, respectively. Assuming a wave-like solution for the two atoms of the form

u(nm) =u(m)e' & Ru-0Y (6.79)
prove that the phonon frequency of the lattice is given by
172
101 T 1\ 4 ,(Ka
o° = o <M—]+M—2):I:ocF [(M_1+M_2> _M1M2 smz(?)} (6.80)
Further prove that
U, M,
M, M, i
° Z ° ° “ ® % . 7
1 2 1 2 1 2 1 2 1

a

FIG. 6.14 Linear diatomic lattice with repeat distance a. The figure shows that each unit cell contains two atoms of type 1 and 2.

The expressions for the phonon frequencies obtained in Section 6.3.2 and in the above problem are the same except for
the different values of the repeat distance (the repeat distance in Section 6.3.2 is 2a, while in Problem 6.1 it is a). A plot of
the vibrational frequencies as a function of K obtained from Eq. (6.80) is shown in Fig. 6.15. The only difference in
Figs. 6.12 and 6.15 is due to the different boundaries of the 1BZ arising from the different values of the repeat distance.

I [20(1/M,+1/M,)]"?
L /

o

2 Optical
(20t:/M,)?
(20/M,)"”

Acoustical
-nla 0 wla

FIG. 6.15 Vibrational frequencies w as a function of the
wave vector K in the 1BZ of the linear diatomic lattice with
repeat distance a and for M; > M,.
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u(2n—1) u(2n) u(2n+1)

@~ 0000000000 (=) 1

M, M, M,
- (- TRy = - TN ™-(2)- WUy - @———— x-axis
2n-2 2n—1 2n 2n+1 2n+2

FIG. 6.16 One-dimensional ionic lattice with charges +e on alternate ions. The negative ions occupy even-numbered positions, while the positive ions
occupy odd-numbered positions.

6.4 EXCITATION OF IONIC LATTICE IN INFRARED REGION

Consider a one-dimensional ionic lattice with charges 4-e on the ions. Let the negative ions occupy even-numbered posi-
tions and the positive ions the odd-numbered positions (see Fig. 6.16). A field of electromagnetic waves can affect the
optical branches of a vibrating ionic lattice. To examine this, allow infrared radiation to fall on an ionic crystal for which
the electric field can be defined as

E=E,e'(Kx—1 (6.81)
In the presence of infrared radiation, Eqgs. (6.62), (6.63) become
M, ii(2n) = o [u(2n+1) +u(2n— 1) —2u(2n)] — eE,e' (2Kna-ev (6.82)
M,i(2n+1) = og [u(2n+2) +u(2n) —2u(2n+1)] +eE e K2+ Da-oy (6.83)
Substituting Egs. (6.64), (6.65) into the above expressions, we get
(=M, @ +20) u; — (20 cosKa) u, +eE; =0 (6.84)
— (20 cosKa) u; + (—M,yw® + 205 ) uy —eE; =0 (6.85)

Multiplying Eq. (6.84) by (=M, w*+2ag) and Eq. (6.85) by 20 cosKa and adding, we get

eE 4o Ka
-0 (—w2 +—F sin? —)

M M 2
u = L 42“2 (6.86)
w? (w? — wd) + —E—sin’Ka
M, M,
where
1 1
=20 [+ — (6.87)
M, M,

Similarly, one can get

E 4 K
M (‘ 2*%“‘12?)
U= —2 llocz (6.88)
2
w? (w* — w3) + Mll\ljlz sin’Ka
Hence the ratio of two amplitudes is given by
—w?+ L s1n2E
u, M, M, 2
—=——= 7 K (6.89)
unoo M 24 20F 222
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In the long wavelength limit (Ka< 1), the individual amplitudes from Egs. (6.86), (6.88) are given by

CE
M, °
=1 6.90
t w?—w} (6.90)
°E
M, °
=——= 6.91
Y »? —w} 6.91)

Therefore, the amplitudes u; and u, exhibit resonance behavior at w,. From Egs. (6.90), (6.91) the ratio of amplitudes
become

ol M,

12 6.92

wo M, (6.92)
which is the same result as that given by Eq. (6.78) for the optical branch of the diatomic lattice. The general Eq. (6.89) also
reduces to Eq. (6.92) for Ka< 1. Comparing Egs. (6.77), (6.89), it is evident that the infrared radiation affects the ampli-
tudes of the two types of ions forming the optical wave in an ionic lattice. In other words, one can say that the infrared
radiation can excite optical vibrations in an ionic lattice.

Problem 6.3

In the harmonic force approximation, the equation of motion for a lattice is given by

Mii(n;, n,, ny) = —Z ap[u(ng, Ny, ny) —u(ng +5;, Ny +5,, N3 +55)] (6.93)
S

where n=(nq,n,, n3) represents the nth atom in a lattice and s=(sq,s,53) represents the sth nearest neighbor of the nth atom.
Further, M is the mass of an atom and o is the force constant for the sth nearest neighbor of the nth atom. Assuming 1NN inter-
actions with force constant ag, show that the dispersion relation for the square lattice is given by

@*M=20; (2 — cosK,a— cos Kya) (6.94)

Problem 6.4

The general equation of motion of the lattice in the harmonic approximation is given by Eq. (6.93). Assuming 1NN interactions with
force constant a, derive the expression for the dispersion relation for an sc lattice.
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In the last chapter, we found that the frequency of atomic vibrations is determined by the force constant, which is the deriv-
ative of the force acting on an atom or the double derivative of the lattice potential. A determination of the exact lattice
potential is undoubtedly very difficult (see Eq. 3.12) but can be estimated within some simplifying assumptions described in
Chapter 3. In the adiabatic approximation, electrons are considered to move in a field of ions regarded as instantaneously
stationary. The electronic energy eigenvalue so determined serves as the potential energy for ionic motion. To study the
lattice properties, one needs to consider only the lattice part of the Hamiltonian as the motion of the ions can be separated
from that of the electrons.

In this chapter, we present the general theory of lattice vibrations in a three-dimensional metallic solid, usually called the
lattice dynamics of metals. Consider a crystal composed of an infinite number of unit cells, each of which is a parallelepiped
bounded by three noncoplanar vectors ay, a,, and a;. Here we consider Bravais crystals with a basis in which each unit cell

contains “s” ions. Such crystals are also called nonprimitive crystals. If there is only one ion in the unit cell, the crystals are
called primitive crystals or Bravais crystals.

7.1 EQUATION OF MOTION OF THE LATTICE

We restrict our attention to stable crystals in which, as a result of thermal energy, each ion is displaced from its equilibrium
position by an amount u(nm) at a specific point of time. So, the instantaneous position of the ion can be written as

R(nm)= R, +u(nm) (7.1)
where R, is the equilibrium position vector. Now, the total Hamiltonian of the lattice becomes
~ 1 )
Hy = 2D M, i(nm) +V,(R) (72)

where M, is the mass of the mth type of ion. V;(R) is the total lattice potential energy given by Eq. (3.12) and is a function of
the instantaneous position-coordinates of all the ions denoted by R. Note that V;(R) also includes the direct overlap inter-
action between the electron distributions of the ions. It is convenient to expand V;(R) in powers of displacements u(nm) of
the ions about their equilibrium positions (Taylor expansion) as
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R)=V,+ ZVG( (nm) u,(nm)

!/ !
22 ZV nm, n'm’) u, (nm) u,(n'm’) (7.3)
nmo n'm’f
F e S SV ), )y (o, )

nmoc n'm’f n"m”y
where

OV,(R)

V,(nm) = B0, (nm)

bl

#V,(R)
w0 Vap(nm, n'm’) = du,(nm) du,;(n'm’)

(7.4)
PVi(R)
du, (nm)dug(n'm’) u, (n"m”)

[y NN
V,p,(nm, n'm’, n"m") =

Vy is the potential energy of a perfect crystal. The subscript u = 0 indicates that the derivatives are evaluated in the equi-
librium configuration of the crystal. Let us first interpret physically all the quantities occurring in Eq. (7.3). The coefficient
V,(nm) is the negative of the force acting in the o-direction on the atom at R,,,. The coefficient V,z(nm,n"m’), in the first
approximation, is the negative of the force exerted in the a-direction on the atom (nm) when the atom (n'm’) is displaced by
a unit distance in the f-direction, all other atoms being kept fixed at their equilibrium positions: it is just the force constant
as defined in Chapter 6. In exactly the same way, one can interpret the coefficients V,g,(nm,n’m’,n” m”), which gives us
the bond-bending forces.

The motion of ions is described by Egs. (7.2), (7.3), which can be regarded as a set of coupled anharmonic oscillators.
The potential energy expansion up to the second order gives harmonic terms, while the higher-order terms are anharmonic
in nature. If the ionic displacements are small compared with the interatomic spacing, the series (7.3) is expected to con-
verge rapidly. Therefore, to a good approximation, one can retain terms up to the second order only and neglect the higher-
order terms, treating them as small. This is called the harmonic approximation in which the forces obey Hooke’s law. In the
equilibrium position, the net force acting on an ion is zero, that is, V,(nm) = 0. Therefore, the potential in the harmonic
approximation becomes

l 1/ 1/
V.R)=V,+ 3 Z Z V,s(nm,n'm’)u, (nm)u,(n'm’) (7.5)

From Egs. (7.2), (7.5), the lattice Hamiltonian in the equilibrium position is given as

ﬁ = ZM (nm)+V,

nlmaz (7.6)
+= Z Z V,s(nm,n'm’)u, (nm)u,(n'm’)

nmao n’' m’f

The equations of motion of the lattice are then easily found to be

.. oV, (R)
"_.1n n_.n
F},(n m ):Mm,,u},(n m ) = — W (77)
Substituting V;(R) from Eq. (7.5) into Eq. (7.7), one gets
1
E (n"m") = ) Z V. s(n"m”, n'm")ug(n'm’) — fZV nm, n"m”)u,(nm) (7.8)
n'm’f nmo
As the force constants V,g(n m,n’m’) are the second-order partial derivatives of V;(R), therefore,
V,s(nm,n'm’) = V4 (n'm’, nm) (7.9)
Using the above relation in Eq. (7.8), one can write
.. 1 1
M, i, (n"m") = ) Z V.5 (n"m”, n'm")uy(n'm’) — EZV},x(n"m”,nm)ua(nm)

n'm’f nmo
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The two terms on the right side of the above equation are the same, therefore,

M, ( ZVW n”"m”, nm)u,(nm)
nmo
which can also be written as
M, i, (nm)= — Z V,5(nm, n'm’)ug(n'm’) (7.10)
n'm’f

7.1.1 Restrictions on Atomic Force Constants

The atomic force constants satisfy several conditions due to the infinitesimal translational and rotational invariance.
However, we shall prove only the translational invariance conditions, which are of use here. Let us replace each dis-
placement vector u(nm) by an arbitrary constant vector u’, which is independent of n and m. Such a displacement field
describes the rigid body translation of the whole of the crystal by an amount u® and, therefore, the potential energy of
the lattice should remain unchanged. For rigid body displacement, the potential from Eq. (7.3), in the harmonic approx-
imation, becomes

=V, + ZV nm)u’ + - ZZV (nm, n'm’) ujuf (7.11)

nm o, nmot nm’f

The apparent change in V;(R), described by the last two terms on the right-hand side of Eq. (7.11), must vanish. Because u’
is an arbitrary vector, we must equate the coefficients of each power of uj to zero. In this way, we obtain

> V,(nm)=0 (7.12a)
> > Vy(nm,n'm’) =0 (7.12b)

According to the first equation the net force on the whole of the lattice vanishes. This condition is automatically satisfied if
all of the atoms of the crystal are in their equilibrium positions as the net force on each atom vanishes. If the atoms are not in
the equilibrium positions, then the net force on each atom is finite, but still the net force acting on whole of the lattice
vanishes.

A more restrictive condition on V,z(nm, n’ m’) follows from the behavior of the force on each atom F,(nm) under rigid
body translation of the crystal by u’. The force in general from Eq. (7.7) is given as

IVi(R)
F, (nm) = ~ ou,(nm)
1./ 1!
=-V,(nm)— Z V,5(nm, n'm’) uy(n'm’) + -
n'm’f

using Eq. (7.3). When the rigid body translation is performed, the force becomes

F,(nm)= -V ( vaﬁ nm, nm)u2+---

n'm'f

Under rigid body translation, there should be no change in the force acting on an atom, which is so only if the coefficient of
u% is zero, that is,

> "V, s(nm,n'm') =0 (7.12¢)

n’'m’

It is evident that Eq. (7.12b) implies Eq. (7.12c) but not vice versa as Eq. (7.12c) is more restrictive than Eq. (7.12b).
In a pure crystalline solid, there is perfect periodicity as a result of which the environments of each lattice point are the
same in the crystal. Therefore, if we change the origin of the coordinate system from one lattice point to another, it does not
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affect the physical properties, such as V,g(n m,n’m’). This is equivalent to the fact that Vyp(nm, n’m’) depends on R,, and
R, only through their vector difference R, — R,,. Mathematically, we can write

V,s(nm,n'm’) =V, 4(n —n'm,0m’) = V_(0m, n’ —nm’) (7.124d)
V,(nm)=V,_(0m)=V_(m) (7.12¢)

o

Eq. (7.12e) says that the force acting on an atom does not depend on the value of n or the unit cell as explained above.

7.2  NORMAL COORDINATE TRANSFORMATION

To study the lattice vibrations, one has to solve Eq. (7.10), which represents a set of an infinite number of coupled linear
differential equations. The problem may be solved by making a transformation to new coordinates called normal coordi-
nates, which diagonalizes the Hamiltonian and reduces the problem to that of uncoupled oscillators. Making use of the
periodicity of the lattice, the wave solution can be written in the form

u,(nm) = u, (m) el Rm =t (7.13)

where
K=q-G (7.14)

Here u,(m) is the «-component of amplitude u(m). The wave vector q of the vibrational wave is restricted to the 1BZ with
| q | =27/) where 1 is the wavelength. Because the vibrational frequencies are calculated in the 1BZ, only the reduced wave
vector q is introduced. Substituting Eq. (7.13) into Eq. (7.10), we write

o’ u,(m) = "D,;(q, mm)uy(m’) (7.15)
m' B

where

nm n m —-1q- [an /) m’] (7.16)

Da/}(q’ mm/) \/‘““‘I Z V

Da/;(q,mm/) are the elements of a dynamical matrix. One can write Eq. (7.15) in the following form
Z {wzéaﬁémm, —D,(q, mm')} ug(m’) =0 (7.17)
m'f
As ug(m’) is an arbitrary amplitude, therefore, the above equation has a nontrivial solution only if the determinant of the
coefficients of ug(m’) is zero, that is,
det ‘ 028,58 — D@, mm') ‘ ~0 (7.18)
For a given value of q, Eq. (7.15) constitutes a set of 3s linear homogeneous algebraic equations. The frequency w is a
function of both q and j where j is called the branch index. Therefore, one can write
o=o(qj), j=1,2,3,..3s (7.19)

The relation given by Eq. (7.19) is known as the dispersion relation and w(qj) is the frequency of the normal mode of
vibrations of the lattice. For a stable crystal it is necessary that w>(qj) be positive for every normal mode, otherwise
w(qj) will be imaginary, which is not allowed. For each of the 3s values of w(qj) for a given q, there are eigenvectors
of the dynamical matrix Da,g(q,mm’ ) denoted as e(qj,m) such that

o’ (dj)e,(aj, m) =) D,(q, mm’) e,(qj, m') (7.20)
m'f
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The eigenvectors e,(qj,m) are in fact elements of a unitary matrix, which diagonalize D, (q, mm’). As a result, the eigen-
vectors satisfy the following orthonormality and completeness relations

> ei(gm)e,(qim) = 5, (7.212)

Z »(qj.m)eg(qjm’) =6, 9, (7.21b)
j

7.3 PROPERTIES OF DYNAMICAL MATRIX AND EIGENVECTORS

The dynamical matrix defined by Eq. (7.16) depends on both n and n’. Because of the periodicity of the lattice, the force
constants depend only on the vector difference R, — R, (Eq. 7.12d). Assuming the nth cell to be at the origin of the coor-
dinate axes, the expression for the dynamical matrix (Eq. 7.16) becomes

D,;(q, mm’) = \/7 ZVW (Om, n'm’) e ~'9" [Ru~Ru Ry (7.22)
The dynamical matrix can be separated into two parts as:
(i) For m # m/, the dynamical matrix (7.22) is given by
—1q- R, —R,y—R,] (7.23a)

D,;(q, mm’) = \/7 z:VC{/j (Om,nm")

(ii) Form = m’, R, — R,y = 0 and therefore, in the equilibrium position, Eq. (7.22) becomes

D,;(q, mm) = ZV (Om,nm)e'4 R
| (7.23b)
=— 1) V,5(0m,nm)e'd® +V,,(0m, 0m)
Mm n#0

The rigid displacement of the lattice as a whole does not change the force acting on an atom, which gives condition (7.12c).
If we take n = 0, then Eq. (7.12¢c) becomes

ZVQﬁ(Om, nm’)=0

nm’

which on expansion can be written as

5(0m, Om) = ZV (Om, nm) Z Z V,;(0m, nm’) (7.23¢)

n#0 n m'(m'#m)
Substituting Eq. (7.23c¢) into Eq. (7.23b), we get
1 .
D,4(q, mm):Mi gV“ﬁ(Om, nm)e'd R —%:Vxﬂ(Om,nm Z Z 5(0m, nm’)
m | n£Q n#0 N m’(m'#m)

Adding and subtracting a term V,3(0m,0m), that is, the term for n = 0, and absorbing these in the first and second terms of
the above equation, we have

1 -
D,;(q, mm) =M ZVW(Om, nm)e'd R ZVWS(Om, nm) Z Z 5(0m, nm’) (7.23d)
m n n n  m/(m’'#m)
Now, the general expression for the dynamical matrix can be written as

D,;(q,mm’) = D,4(q, mm’) —Lim 0,/ Zﬁaﬁ(q, mm”) (7.24)

m”
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where

D,;(q, mm’) ZV (0m, nm’) ¢'d" RaRu+Ryy] (7.25)

\/7

The dynamical matrix is fully known from Eqs. (7.24), (7.25) if V(0 m,nm’) are known. Therefore, the basic problem is
reduced to the determination of the atomic force constants. From Eq. (7.16) it is straightforward to prove the following
properties of the dynamical matrix

D,;(—q,mm’) =D, (g, mm’) (7.26)
D;;(g, mm’) =Dy, (g, m'm) (1.27)

Here we have assumed the force constants to be real. Substituting —q for q in Eq. (7.20), we get

@*(—qj)e,(—qj, m) = "D, ;(—q, mm’) e4(—qj, m) (7.28)
m'f

Taking the complex conjugate of the above equation and using Eq. (7.26), we have

»’(—qj) e} (—qi,m) =Y D, ;(q, mm’) ej(—qj, m') (7.29)
m'f

As Daﬁ(q,mm’ ) is Hermitian, its eigenvalues wz(—qj) must be real. Further, we note that e*(—qj,m) are also the eigen-
functions of the same dynamical matrix, therefore, if q is not in the 1BZ at which D, 4(q,mm’) has degenerate values, we
can write

w*(—qj) = v’ (q)) (7.30)

We see from Egs. (7.20), (7.29) that both e,(qj, m) and en(— qj, m) are the eigenfunctions of the dynamical matrix with the
same eigenvalue. Therefore, the two eigenfunctions differ only by a constant factor whose modulus is unity and one can
write

e,(—qj,m)=Ce,(qj,m) (7.31)
Sometimes, the constant C is written as a phase factor ¢'®. There are two common choices of C, 1 or —1. As the choice of the

constant does not affect any physical property, it is chosen to be unity, giving

e,(—qj,m) = e,(qj,m) (7.32)

Now we are in a position to make a normal coordinate transformation. The transformation from the original displacements
u,(nm) to the normal coordinates Q(qj,t) is given by

\/ﬁze qj, m)Q(qj, t)e'd R (7.33)
m q)

In defining the above equation, q is assumed to possess discrete values. Because the displacement is always real, therefore

u,(nm) =

uy(nm) =u,(nm) (7.34)
Substituting Eq. (7.33) into Eq. (7.34) and using Eq. (7.32), one gets
Q*(qj,t) =Q(—qj, t) (7.35)
Using Eq. (7.33), the expression for kinetic energy becomes
1 .
=3 Z M,, a%(nm)
nmo ' . (7.36)
2ZZe qj, m) m)Q(gj, )Q (g7, 1)

mo gjj'
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Here we have used Dirac’s delta function defined as
1 § 1q-R;

along with the properties given by Eqgs. (7.32), (7.35). Further, using the orthogonality relation defined by Eq. (7.21a) in
Eq. (7.36), we get

ZQ qj,t) Q' (qj, ) (7.38)

In the crystal potential, defined by Eq. (7.5), V is a constant potential of a perfectly periodic crystal so one can take the
reference point such that Vo = 0. Therefore, the lattice potential from Eq. (7.5) can be written as

Z > V,p(nm,n'm’) u, (nm)ug(n'm’) (7.39)

nmo n'm’f

Substituting the value of u,(nm) in terms of normal coordinates from Eq. (7.33) and simplifying, we write
Vi3 Yo Qe 0y 740

Eq. (7.20), along with the properties of e,(qj, m), have been used in obtaining the above expression. Further, in obtaining
Eq. (7.40) the dynamical matrix is defined as

1
V Mm Mm’ r;

Knowing the kinetic and potential energies, the Hamiltonian and Lagrangian of the lattice can be written as

D,s(q, mm’) = V,s(n—n'm,0m’)e "4 R Rl (7.41)

- 1 . k. . . .
Hi=T+V;= 5 [Q(a).)Q (a).) +*(4) Q(gj. ) Q"(aj. 1] (7.42)
qj
L=T-V,= Z "(qj. 1) — »*(qj) Qgj. ) Q" (qi. V)] (7.43)
The momentum conjugate to Q (qj, t) is defined as
oL .
P(qj,t) = ————= j 44
(qj. 1) Q@0 Q(qj. t) (7.44)
Hamilton’s equations give
S/ o aﬁl 2 .
P(qj.t)= — FORC T (i) Q(aj, 1) (7.45)

Substituting the value of P(qj,t) from Eq. (7.44) into Eq. (7.45), we get

Q(qj, t) + w*(qj) Q(qj.t) =0 (7.46)

which is the equation of motion of a simple harmonic oscillator. We see that each of the new coordinates is simply a periodic
function that involves only one of the frequencies w(qj). In the theory of dynamical systems, such coordinates are custom-
arily called normal coordinates. Each normal coordinate describes an independent mode of vibration of the crystal with
only one frequency and such vibration modes are referred to as normal modes. Every atom in each normal mode vibrates
with the same frequency and with the same phase and we see that there are as many normal modes as there are degrees of
freedom (3sN) in the crystal. From Eq. (7.33) we see that the general motion of the crystal as a whole is a superposition of
the normal mode motions, each weighted appropriately by the coefficients e,(qj,m) exp(1q-R,).
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7.4 QUANTIZATION OF LATTICE HAMILTONIAN

In the previous sections our discussion has been classical. A transition to quantum mechanics is made by regarding Q(qj, t)
and P(qj,t) as equal time operators, which will be discussed below. From the displacement u,(nm), given by Eq. (7.33), one
can define the momentum p,(nm) as

poz (1’11’1’1 -

M,, 0, (nm)
M . . . 7.47
=\ D (i m)P(qj) et (747
qj

The lattice field is quantized if the displacement u,(nm) and momentum p,(nm) are replaced by the corresponding operators
that satisfy the following commutation relations

[ua(nm),u[}*(n’m’)} = {pa(nm),pg(n’m’)} =0
[ua(nm),pﬁ (n'm ’)} = 1716, Oy O

Here uj(nm) denotes the transpose conjugate of uz(nm) and so on. Substituting the values of the displacement u,(nm) in
terms of the normal coordinates from Eq. (7.33) and the momentum p,(nm) from Eq. (7.47), one can show that

[Q"(qi). P(q7)] = [Q(ai). P*(q])] = th 4y 6 (7.492)
[Q(qj). Q*(q')] = [P(ai). P*(q]")] = [Q(aj). P(q'})] =0 (7.49b)

Let us define Q(qj) and P(qj) in terms of the creation and destruction operators denoted by ag; and aqj, respectively, as
follows

(7.48)

0(qj) = Lw}ij)} . [aqj +ajqj} (7.50a)
P(qj)=—1 r’wz(qj)} . [aqj - aiqj} (7.50b)

Substituting Egs. (7.50a), (7.50b) into Egs. (7.49a), (7.49b) one can further show that the annihilation and creation operators
satisfy the following commutation relations

+ _
[aqj’ aq’j’} - 51111’ 5jj’

{aqj,aq,j/} = {a;'j,a;,jr} =0 (7.51)
Substituting the values of Q(qj) and P(qj) from Egs. (7.50a), (7.50b) in the Hamiltonian given by Eq. (7.42), we can write
Zhw [a gt a_y; aqu} (7.52)

Using the first commutation relation of Eq. (7.51) in Eq. (7.52), we can get
1
H = 7 7.53
- Stota) s a5

Here we have used the fact that w(qj) = w*(—qj). Eq. (7.53) is the standard form of the Hamiltonian for a collection of
independent harmonic oscillators. To obtain the eigenvalues of H;, let us first describe the properties of the creation and
destruction operators. Let |n) denote the state having n particles in it. When the operator a* acts on the state | n) it increases
the number of particles by one (or creates a particle) and its eigenvalue equation is given by

a*ln)=vn+1|n+1) (7.54)
Similarly, the operator a annihilates one particle and satisfies the equation

aln)=+nn—1) (7.55)
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Using the above two equations, it is easy to prove that
a*aln)=n|n) (7.56)

The above equation shows that when the operator a*a acts on a state, it gives the total number of particles in that state and
therefore a*a is called the number operator. Now when the Hamiltonian defined by Eq. (7.53) acts on the state |n), it gives
the energy, that is

H;[n) = E|n) (7.57)

where!
E= ) {nqj + %] ho(qj) (7.58)
qj

Here ng; takes any integral value from zero to infinity. Eq. (7.58) says that the energy eigenvalues are quantized and the
quantum of excitation energy of the lattice vibrations is called a phonon having energy hw(qj). The frequency w(qj) is
called the phonon frequency and the plot of w(qj) as a function of q is called the phonon dispersion relation.

7.5 SIMPLE APPLICATIONS

7.5.1 Linear Monatomic Lattice

Let us consider a one-dimensional array of atoms, each having the same mass M as shown in Fig. 6.6. Further, assume that
the atoms interact with one another through the 1NN harmonic forces. The general expression for the equation of motion of
a lattice is

M, ii,(nm) = — Y "V, ,(nm, n'm’) uy(n'm’) (7.59)
nm'f

which is the same as Eq. (7.10) and is written here for completeness. Here the labels m and m’ have no meaning and become
redundant as the lattice is monatomic. Further, in a one-dimensional lattice (say along the x-axis), o = =x. Under these
approximations Eq. (7.59) reduces to

Mi, (n) = -V, (n.n')u,(n) (7.60)

As the interactions are assumed to be finite with the 1NNs only, therefore, the force constants V,,(n,n), V,(n,n+1) and
V.x(n,n— 1) are finite, with the others being zero. Further, as the atoms are identical, the interactions of the nth atom with
the (n— 1)th and (n + 1)th atoms are the same and hence so are the force constants, that is,

V., (n,n+1)=V_(n,n—1)= V) = —ap (7.61)

V,” is the second derivative of the lattice potential V;(R). As the nth atom is attracted by both the (n— 1)th and (n + 1)th
atoms, so the potential V;(R), and hence the force constant o, are attractive. From Eq. (7.12c¢), the force constants of a one-
dimensional monatomic crystal satisfy the relation

vax(n, n)=0 (7.62)

Considering only the 1NN interactions, the above expression gives V,,(n,n) as
Vumn)=—=[V (n,n+1)+V,(n,n—1)] =20 (7.63)
Substituting Egs. (7.61), (7.63) into Eq. (7.60), we get

Mii,(n) = o [u, (n+1) +u,(n — 1) ~ 2u, (n)] (7.64)

1. In obtaining Eq. (7.57) we have taken the state |n) as

[n) = [ng,j, Ny > Ngyjps Nty N+« Mg -+ > Ny M-+ Nt
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The displacement u,(n) satisfies the periodicity of the lattice, so it can be written as
u (n) = ug, e (4Rt (7.65)

Uoyx is the amplitude of vibration in the x-direction. In one dimension, R,=na, so the above equation becomes

u (n) = ug e' (4= (7.66)
Substituting Eq. (7.66) into Eq. (7.64), we get
4
w= % sin (%) (7.67)

From the periodic boundary condition the allowed values of the wave vector are given as q=2nn/Na, where n is an integer
and N is the number of cells in the crystal. In the limit N — oo, the wave vector q, and hence the frequencies of the normal
modes, form a quasicontinuum. Eq. (7.67) is the same as Eq. (6.43) with q replaced by K and hence the plot of phonon
frequencies is the same as that shown in Fig. 6.8. At small values of q, Eq. (7.67) yields

4opqa
=\/——= 7.68
“=V™M 2 (7.65)

Therefore, at small wave vectors there is a linear relationship between w and q with a slope /og/M a.

7.5.2 Linear Diatomic Lattice

Let us now consider a linear lattice with two different kinds of atoms, named 1 and 2, per primitive cell, having masses M,
and M, (M, ) M,) (see Fig. 7.1). The figure shows three consecutive cells of the diatomic lattice. Here again we assume that
the atoms interact with one another through the INN harmonic forces. So atom 1 in the nth cell interacts with atom 2 in the
nth and (n — 1)th cells with the same interaction. Similarly, atom 2 in the nth cell interacts with atom 1 in the nth and (n+ 1)th
cells with the same interaction potential as in the case of the interaction of atom 1 with atom 2. Therefore, one can write

V,0l,n2)=V_(nl,n—12)=V_(n2,nl)=V_(n2,n+11)

V= o, (7.69)
Considering only the 1NN interactions, Eq. (7.12c) for 1 and 2 types of atoms of the nth cell can be written as
V,(nl,nl)+V,_ (nl,n2)+V,, (nl,n—12)=0 (7.702)
V,.,.(02,n2)+V,_ (n2,n+11)+V, (n2,nl)=0 (7.70b)
Using Eq. (7.69) in Egs. (7.70a), (7.70b), one can write
V. (nl,nl) =V, (n2,n2) =205 (7.71)
The equations of motion for the atoms 1 and 2 in the nth cell can straightway be written from Eq. (7.59) as
M, i, (nl) = o [u, (n2) +u, (n — 12) —2u,(n1)] (7.72a)
M, i, (n2) = op [u, (nl) +u, (n+11) —2u, (n2)] (7.72b)

M : M"’ - , o .
. % ® Z < % ° % . %
2 . 2 ¢ 2 e 2 . 2 .
n-1 n n+1

- 5
+ Lt

W

FIG. 7.1 Linear diatomic lattice with repeat distance a. The figure shows the (n— 1)th, nth, and (n+ 1)th unit cells and each cell contains two atoms of
types 1 and 2.
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In writing the above equations, Eqgs. (7.69), (7.71) have been used. Assume the solution to be a running plane wave defined by

u(nm) =u(m)e' 4 RV (7.73)

Substituting Eq. (7.73) into Egs. (7.72a), (7.72b) and using the fact that R,=na, we get
(0*M; —2a) u (1) +op(1+e7'9%) u, (2) =0 (7.74a)
op (L +e' ) u (1) + (0*M, —20) u (2) =0 (7.74b)

Eqgs. (7.74a), (7.74b) possess nontrivial solutions only if the determinant of the coefficients of u,(1) and u,(2) is zero, that is,

* M, =20 o (1+e719%)

=0
ap(1+€'9%) @M, — 20y
Expanding the determinant one can write

M, M, 0" — 20 (M, +M,)»” + 20 (1 — cosqa) =0 (7.75)

The above equation can be solved for w” to get

1/2
11 1 1\* 4 qa
2 2

= —+— |+ —+—) — (—) 7.76
© <M1 Mz) r <M1 Mz) MM, 2 ] (770

which is the same equation as given by Eq. (6.80). From the periodic boundary conditions the wave vector is given by
q=2nn/Na, where the integer n lies in the range —N/2 <n <N/2 and N is assumed to be an even integer. As N approaches
infinity, q becomes quasicontinuous. At q = 0, Eq. (7.76) gives two values of w as

w_=0

1 1\ (7.77)
P4 = [Z“F (W@ﬂ

Here , and w_ are the values of o for the plus and minus signs in Eq. (7.76). The values of @? at the 1BZ boundary are
obtained by putting q = £n/a in Eq. (7.76), giving

o\ 172 Do\ 172
w, = <°‘F> — (“F) (7.78)
Ml MZ

The plot of phonon frequencies w as a function of q in the 1BZ is the same as that shown in Fig. 6.15 (replacing K by q).
Fig. 7.2 shows the phonon frequency curves in both the 1BZ and 2BZ, that is, in the extended zone scheme. The same
diagram can be extended to the higher BZs. The phonon frequencies exhibit periodic behavior due to the periodicity of
the lattice.

[206(1/M+1/M,)]*
Q ’\ (ZaF;‘MZ)-’J /
T )
(2a:/M,)"
—2mla —n/a 0 nla 2mla

K——
FIG. 7.2 Phonon frequencies as a function of wave vector K for the normal modes of a diatomic linear lattice in the extended zone scheme. The wave
vector K can have any value ranging from zero to infinity. The phonon dispersion relations of the 2BZ can be brought to the 1BZ by adding or subtracting
the smallest lattice vector G to K, that is, q=K = G/, thus obtaining the dispersion relations shown in Fig. 6.15. It is for this reason that q is called the
reduced wave vector.
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7.5.3 Simple Cubic Lattice

The general formalism developed in this chapter can be applied to study the phonon frequencies in three-dimensional
crystals having different structures. Here we consider an sc lattice, which is the simplest among the three-dimensional
crystals. To further simplify the equations of motion, we assume central forces between the 1NN and 2NN atoms only
(see Fig. 7.3). The equation of motion along the x-direction, for an sc lattice is given by

Mi, (R,) = o Z [uy (ny +0}, 05, 15) —uy (0}, 05,04)]
n| ==+l

+otpy Z Z [u, (n; +10},n, +05,ny) —u,(n;,n,, ny)
nj=+1n)==+1

+njn, {uy (n; +n},n,+n),n;) — u(ny, ny, ny) H (7.79)

oy Z Z [uy (n; +n}, 05,05 +15) —u, (n;,n,,n5)

nl’::tlng::tl
+n|nj {uZ (n1 +1n),n,, 0,4 +n’3) —u,(n,,n,, n3)}]

where o and o, are the INN and 2NN force constants. To make the representation explicit, the lattice sites, which are also
the atomic sites in this case, are specified by three integers nj, n,, nz, and these are collectively written as n in R;, (see
Chapter 1). The equations of motion along the y- and z-directions can also be written by the cyclic permutations of x,
y, z and the increments of n;, n,, n;. We are interested in the plane wave solutions of the form

u,(R,) =ule! (@ Rmet) (7.80)

Substituting Eq. (7.80) into Eq. (7.79), one can immediately write the equation of motion along the x-direction as

oM = [2aﬂ (1-C,)+4up (2—(1,((:y —cxcz)] W +42,S, S, 0 + 4o, S, S, u! (7.81)

n-1,n, n,+1

n+1,n~-1,n,

n="1,n+1,n,

n,, n,+1, n,—1

FIG. 7.3 The INNs and 2NNs of an atom (n;,n,,n3) in an sc structure.
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where
C,=cos(q,a), S,=sin(q,a) (7.82)

Similarly, the equations of motion along the y- and z-directions can be written as

MUl =42, S, S, ul + [2aFl (1 - Cy) +dag, (2 ~C,C, - cycz)} ) +405,8, S, u? (7.83)
MU =42, S, S,u’ + 4o, S, S,ul + [2aﬂ (1-C,)+40p (2 —C.C,— cycz)} u! (7.84)

The nontrivial solution of Egs. (7.81), (7.83), (7.84) is obtained by equating to zero the determinant of the coefficients of ug,
0 0 .
uy, Uz, that is,

20, (1—C,) + 4oty (2 ~C.C, - CXCZ) —0M 45,8 S, 4%,S,S,
4018, S, 20, (1 - cy) +dag, (2 ~C,C, - cycz) ~0™™  49,8,S,| = 0 (7.85)
401)S,S, 495,88, 20, (1 C,) +dop, (2 —C,.C,— cycz) — o™

Eq. (7.85) is a cubic equation in »” and in a general direction its solution is difficult. But in high-symmetry directions, such

as [100], [110], and [111], its solution becomes quite simple. Consider the case of a wave propagating in the [100] direction
in which the wave vector q = [q00], for which

S,=S5,=0, C,=C,=1

y~ Vz y z
So Eq. (7.85) reduces to
20 (1=C,) +8ap(1—C,)—?*M 0 0
0 4o, (1-C,) —*M 0 =0 (7.86)
0 0 4o, (1-C,) —0*M
The solutions of the above equation are given as
2 _4og %F2 ) ..298
wj=——(1+4—= ) sin" — (7.87)
M o 2
8
w? =202 292 (7.88)

M 2

Eq. (7.87) gives a single solution, while Eq. (7.88) gives two equal solutions. Using the standard technique, it is straight-
forward to find the eigenvectors corresponding to the frequencies given by Eqgs. (7.87), (7.88). Eq. (7.87) corresponds to
longitudinal waves in which the displacements are parallel to the x-axis, that is, in the direction of propagation. The two
solutions given by Eq. (7.88) correspond to degenerate transverse waves in which the displacement is perpendicular to the
direction of propagation, that is, in the y- and z-directions. Therefore, Eqgs. (7.87), (7.88) yield

4o, ( O‘Fz) . qa
o = |—EL (14472 ) gin — (7.89)
L M oy 2
= [0 g 98 (7.90)
TV ™M 2 '

The dispersion curves for longitudinal and transverse waves with q along the [100] direction are shown in Fig. 7.4. In
exactly the same manner the phonon frequencies can be evaluated for wave vector q along the [110], [111] directions.
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FIG.7.4 Schematic representation of phonon frequencies as a function of q along
the [100] direction for the normal modes of an sc solid. Here q is the reduced
wave vector.

w(q) —>

q—>

It is noteworthy that purely longitudinal and purely transverse waves can be obtained only in the high-symmetry directions.
In a general direction of propagation, the normal modes of vibration are mixtures of the two types of wave and it is quite
cumbersome to obtain the solution.

7.6 EXPERIMENTAL DETERMINATION OF PHONON FREQUENCIES

Scattering phenomena play a vital role in the determination of different properties of crystalline solids and these can be
divided into two broad categories.

1. Elastic scattering is scattering in which the energy of the incident particles (radiation) remains unchanged during the
scattering process, with a familiar example being Bragg reflection.

2. Inelastic scattering is scattering in which the incident particles (radiation) either gain or lose energy during the scat-
tering process. For example, when incident radiation interacts with a lattice, the energy of the radiation changes either by
the emission or absorption of a phonon.

The elastic and inelastic scattering phenomena are further divided into two categories: coherent and incoherent scat-
tering processes. In coherent scattering from a lattice, the scattering of radiation takes place collectively from the ions,
which thus interfere with one another. Elastic coherent scattering provides information about the structure of crystalline
solids and has been discussed in Chapter 2. Inelastic coherent scattering provides information about the phonon frequencies
of a crystalline solid. In incoherent scattering, the ions on the lattice scatter the radiation independently and, therefore, do
not interfere with one another. Elastic incoherent scattering does not give any useful information, but inelastic incoherent
scattering determines the frequency distribution function directly.

The phonon frequencies are determined either by using the X-ray diffraction or neutron diffraction techniques. The
neutron diffraction technique is more powerful as it also provides information about the magnetic state of a crystalline
solid. In the present text we shall briefly describe the neutron diffraction technique.

7.6.1 Neutron Diffraction Technique

Two methods are used to determine the phonon frequencies in crystalline solids.

7.6.1.1 Time-of-Flight Method

Neutrons are produced in a nuclear reactor with an average energy of 2 MeV. They are slowed down by passing through a
material (moderator) to acquire thermal energy (= 0.025 eV for T = 300 K). The thermal neutrons are then Bragg reflected
from a single large crystal, for example of Al or Pb, to produce a monochromatic beam of neutrons. In the time-of-flight
method a monochromatic beam of neutrons is allowed to fall on the specimen crystal. The beam after reflection through an
angle ¢ is collected by a counter and the time of flight is measured. In this method neutrons scattered at two or more than
two angles can be analyzed. The main disadvantage of this method is that the phonon wave vector q is chosen randomly.
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7.6.1.2 Constant Momentum Method

Brockhouse (1995) provided a constant q method for neutron diffraction, which is now widely used for measuring the
phonon frequencies in crystalline solids. Let K be the wave vector of incident neutrons and K’ the wave vector after scat-
tering. The conservation of momentum demands

K -K=AK=+q+G (7.91)

where q is the reduced wave vector. The plus (minus) sign on the right side of the above equation gives the absorption
(creation) of a phonon during the neutron scattering process. The conservation of energy of the neutrons gives

R (K’2 —K2> = +ho(q) (7.92)

M, —=eu '
M, is the mass of the neutron and w(q) is the frequency of vibration of the lattice with wave vector q. Again, the plus
(minus) sign on the right side of Eq. (7.92) gives the absorption (creation) of a phonon. Thus, accurate measurements
of K and K’ and the energy loss of the neutron beam provide the relation between w(q) and q, that is, the phonon dispersion
relation.

The experimental set up used to measure the phonon frequencies, which is usually called triple axis spectrometer, is
shown in Fig. 7.5. A parallel beam of thermal neutrons from a nuclear reactor is allowed to fall on a single crystal Xy,
usually called the monochromating crystal. The Bragg reflected neutrons from Xy, constitute a monochromatic beam
of thermal neutrons, which is allowed to pass through a collimator. By changing the angle ), it is possible to obtain
the desired value of K or the momentum of incident neutrons. The monochromatic narrow beam of neutrons with the
desired value of the wave vector K is allowed to fall on the specimen crystal S whose phonon frequencies are to be studied.
The direction of incidence of the neutrons on the specimen crystal plane corresponding to a particular reciprocal lattice
vector can be varied by changing the value of the angle fg. The neutron beam scattered through an angle ¢ is allowed
to fall on the crystal X,, called the analyzing crystal. By rotating the second arm, the angle ¢ between K and K’ can
be varied. The scattered neutron beam is Bragg reflected from the crystal X, in the direction 0, and analyzed by the
detector D. Knowing the values of 0; and 04, and using Bragg’s law, one can determine the wave vector of the incident
neutron, K, and that of the scattered neutron, K'. Hence the main advantage of the triple axis spectrometer is that one can
choose the desired values of wave vector q in a particular symmetry direction.

The triple axis spectrometer allows us to measure the energy of scattered neutrons by varying 6, but keeping ¢ constant.
In this way one obtains a peak in the scattered neutron beam for a particular wave vector q. The same experiment is repeated
for different values of the scattering angle ¢. The frequency w(q) can be calculated from the energy conservation condition
(Eq. 7.92). The measured values of the phonon frequencies of Al metal along the high-symmetry directions are shown in

Thermal & o
; neutron rystal X,,
Nuclear |—ohield beam 77
reactor ” /7//,,
Shield y

_ Crystal X,

'}

K‘;

Specimen S y
" Collimator

",

Detector D

FIG. 7.5 Schematic diagram of a triple axis spectrometer. The angle 0y is made by the incident direction with the vertical direction. (Modified from
Ghatak, A. K., & Kothari, L. S. (1972). An introduction to lattice dynamics. New York: Addison-Wesley.)
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FIG. 7.6 The phonon frequencies of Al metal. Dots represent the experimental values of the phonon frequencies due to Yarnell et al. (1965), while the
curves represent the theoretical results obtained by using the Harrison model potential. The points at which the pseudopotential was fit to the experiment are
indicated by squares. (Modified from Harrison, W. A. (1966). Pseudopotentials in the theory of metals and alloys 300. New York: W. A. Benjamin)

Fig. 7.6 (Yarnell, Warren, & Koenig, 1965). In the [100] symmetry direction one obtains phonon frequencies of a longi-
tudinal (L) wave, usually called the L branch, and one transverse (T) wave called the T branch. But actually, there are two T
branches that overlap each other as these travel with the same velocity. In the [110] direction there is an L branch and two

distinct T branches, namely T, and T,.
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Specific heat is the most extensively studied thermal property of solids and is a measure of the capacity to store heat energy
in a solid. Because of this it is sometimes called the heat capacity and is usually expressed per unit mass of the solid.
Therefore, the specific heat of a solid is the heat energy required to raise the temperature of one gram (gram mole) of
the solid by one degree centigrade. It is usually measured in cal/gramK (cal/moleK) of solid unless otherwise stated.
The specific heat comprises two contributions:

1. Lattice specific heat
It is the contribution to the specific heat from the lattice of a solid.
2. Electronic specific heat

It is the contribution to the specific heat arising from the conduction electron distribution and is finite in conductors and
semiconductors.

In this chapter we shall describe the lattice specific heat, which can be defined in two ways. First is the lattice specific
heat at constant pressure Cp, which can be measured experimentally. Second is the lattice specific heat at constant volume
Cy, which is easy to deal with theoretically. Cy quantitatively measures the ability of a system to absorb energy into its
internal degrees of freedom, which, in turn, are related to the atomic and molecular characteristics of the system. Thus, the
specific heat can provide an important link between the observed macroscopic behavior of a solid and its detailed atomic
and molecular structure. The two types of specific heat are related to one another through the relation

Cp—Cy=9T3;B, VT (8.1)

where I’y is the coefficient of linear expansion. By, V, and T represent the bulk modulus, volume, and temperature (in
degrees Kelvin), respectively. One can also write

C—Cy=R 8.2)
where R is the gas constant.
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8.1 EXPERIMENTAL FACTS

For the first time in 1819, Dulong and Petit measured the specific heat of a solid at room temperature experimentally and
found it to be 3R (= 6 calories per mole). This value is below the melting point of a solid. At and above the melting point, the
specific heat starts increasing due to the change in phase. Actually, the specific heat is a function of temperature: at very low
temperatures, it varies as T° and approaches zero at absolute zero (see Fig. 8.1). At intermediate temperatures, the specific
heat varies linearly with T and approaches the Dulong and Petit’s value at reasonably large temperatures (= room tem-
perature). In a superconducting solid, the specific heat decreases exponentially below the superconducting transition tem-
perature and goes to zero as the temperature approaches absolute zero. Further, in magnetic substances, the specific heat
becomes large over the temperature range in which magnetic moments are ordered. This may be because the ordering of the
magnetic moments decreases the entropy of the solid faster, thereby increasing the specific heat. Below 0.1K the ordering of
magnetic (nuclear) moments may give very large values of specific heat.

8.2 THERMODYNAMICAL DEFINITION
The specific heat C in mathematical language can be written as

dQ
dT
where Q is the heat energy. When a solid is heated by imparting a small amount of energy dQ, then, a part of it is used in
increasing the internal energy of the solid dE and the rest is used in doing work. So, one can write

C= (8.3)

dQ=dE+PdV (8.4)
where P is pressure and dV is the volume change in a solid. Dividing Eq. (8.4) by dT we get
dQ dE _dV
dT dT dT ®-5)
The energy E depends on both T and V. The specific heat at constant volume V, from Eq. (8.5), becomes
dQ dE
CGy=|—=) =|—= 8.6
o= (ar), = (&), 59
From the second law of thermodynamics, for reversible processes,
dQ=TdS (8.7)
6 e 25
o @ L] #
L,
- 20 I
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FIG.8.1 Temperature dependence of experimentally measured values of specific heat for some elements. The solid line represents the theoretical values
obtained for Cy from the Debye theory. (Modified from Epifanov, G. 1. (1979). Solid state physics (p. 119). Moscow: Mir Publishers.)



Specific Heat of Solids Chapter | 8 151

where S is entropy of the system. So dS
Cv= (dT) . (8.8)

In theoretical investigations, we usually consider Cy as it can easily be obtained from E and S of a thermodynamic system.
Therefore, in this chapter, we discuss the evaluation of Cy from which Cp can be obtained by using Eq. (8.2).

8.3 PHASE SPACE

A space that gives both the position and velocity of a particle, as a function of time, is known as phase space (or config-
uration space). Consider a physical system with a large number of particles in the phase space. The state of the system at a
given instant of time may be defined by specifying the position and velocity of each particle at that time. The simplest
example of phase space is one with a one-dimensional velocity distribution, say along the x-direction. Let x and v, represent
the position and velocity of a particle in the x-direction. Such a phase space is two-dimensional and the elemental volume
reduces to an elemental area (see Fig. 8.2) given by

dr, = dxdv, (8.9)

In a realistic system the velocity distribution is three dimensional and the position and velocity of a particle at a particular
time t is specified by the corresponding coordinates as

r= > ir, (8.10)

v= Zi“va (8.11)

The phase space for a single particle is six dimensional: three components for position and three components for velocity.
The volume element in this space is given by

drg=d’rd’v (8.12)

v+ dv,

vV, —»

X x+dx
X —»
FIG. 8.2 Two-dimensional phase space with one-dimensional velocity distribution function f(x, v4,t). The shaded region shows the elemental area for
particles having positions between x and x+dx and velocity between v, and v, +dvy.
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dr=d’r
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FIG. 8.3 Six-dimensional phase space with three-dimensional velocity distribution function f(r, v, t). The shaded region shows the elemental volume for
particles having positions between r and r+dr and velocity between v and v+dv .

where
d*r = dr,dr,dr; = dxdydz (8.13)
d*v=dv,dv,dvs =dv,dv,dv, (8.14)

Here d’r is the volume element around the terminal point r in the position space and d’v is the volume element around the
terminal point v in the velocity space. Fig. 8.3 shows the volume element for a particle in six-dimensional phase space. Here
it is assumed that the volume element d°r is large enough to contain a great many particles but small enough compared with
the dimensions of the system.

Consider a system of N particles in phase space. The total number of coordinates (degrees of freedom) of the system is
6N: 3N for position and 3N for velocity. The state of a particle in this system is defined by six coordinates as mentioned
above. But the state of the system, as a whole, is defined in terms of the 6N coordinates defining a 6N-dimensional space.
Let r; and v; be the coordinates of the ith particle. The elemental volume of the 6N-dimensional space with coordinates
ranging from r; to r;+dr; and v; to v;+dyv;, for all the particles is given by

drgy = d&’r, v, Er,dv,.. . dv,. . dPrydivy (8.15)

The above equation can also be written as

N N
drgy = [ [drid®v; =[] d} (8.16)
i=1 i=1

where dr is the volume element for the ith particle in the six-dimensional phase space.

8.4 CLASSICAL THEORIES OF LATTICE SPECIFIC HEAT

In the classical treatment of the lattice specific heat of solids, the simplest approximation is to treat atoms as free particles
and apply the kinetic theory of gases. For further simplification of the theoretical treatment we consider an ideal
monatomic gas.
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8.4.1 Free Atom Model

8.4.1.1 One-Dimensional Solid

Consider a one-dimensional ideal gas of atoms in which the atoms move freely along the x-direction. The energy of a free
atom is given by

2

Py
E = 1
DY ®.17)

where M and p, are the mass and momentum of an atom along the x-direction. If f(E, T) is the distribution function for the
atoms, the average energy of an atom can be written as

JEf(E, T)de
B (8.18)
Jf(E, T)dr

Here dr is the volume element in the phase space, given in one dimension by dz = dxdp,. The Maxwell-Boltzmann dis-
tribution, usually called the classical distribution of atoms, is given by
_E
f(E,T)=e kT (8.19)
where kg is the Boltzmann constant. Using Eqgs. (8.17), (8.19) in Eq. (8.18), the average energy of an atom in a one-
dimensional solid is given by

p? —pz/2M
P Tl dxdp
= 2M *

E= (8.20)

—p/2M
Je kT dx dp,

The integral over x gives L,, the length of the one-dimensional solid, while the integral over p, will be from —oo to co.
Hence Eq. (8.20) reduces to

T P; Bop2/2M
X a7PoPx d
[ B mmivgp,

E= *oooo (8.21)
J efﬁopf/ZMde

where

1

Bo= K, T (8.22)

The integrands of the integrals in Eq. (8.21) are an even function of py so the integration can be performed from 0 to co and
multiplied by a factor of two. Therefore

T P2 Bop2/2M
X a7 PoPx d
BT P,

0

E=

e hori/2M gy

[SY S—
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With the help of Eq. (8.17) the above integral can be written as

JE’I‘/Z e MEdE,

E=_ (8.23)
JE;l/ze*ﬁoEx dEX
0

Integrating by parts, one finally gets
= 1
E= szT (8.24)

Eq. (8.24) gives the energy associated with one degree of freedom. The average energy of a one-dimensional solid with N
atoms becomes

E:NE:%NkBT (8.25)
From Egs. (8.6), (8.25) Cy is given by
Cy :lNkB :lR (8.26)
2 2
where the gas constant R is given by
R =Nk, (8.27)

8.4.1.2 Two-Dimensional Solid

Consider a two-dimensional solid with atoms moving freely in the xy-plane (two-dimensional ideal gas of atoms). The
energy of a free atom can be written as

E=— (8.28)
with
P’ =pi+p) (8.29)
Substituting Egs. (8.19), (8.28) into Eq. (8.18), the average energy of an atom becomes
2
J 2P_M o~ hop*/2M g
E="F——— (8.30)
[e-hrmiar
In two dimensions
dr= d*rd*p= (2nrdr)(27pdp) (8.31)
Substituting Eq. (8.31) into Eq. (8.30), one can write

o0 p2 ,
Jme*ﬁop /2Mpdp
E=2 (8.32)

[ty
0

The integral over r gives the area A of the two-dimensional solid. Converting momentum into energy with the help of
Eq. (8.28), we get
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JEe*ﬁoEdE
E= Ooo (8.33)
J e MEQE
0
Solving the integral by parts, one gets
= 1
E:ﬁ—:kBT (8.34)

E is the energy associated with two degrees of freedom and therefore is double the energy of an atom in a one-dimensional
solid. Hence the average energy of a two-dimensional solid with N atoms becomes

E=NE= NkT (8.35)
The specific heat at constant volume Cy is given by
Cy=Nkz=R (8.36)
which is twice of the value obtained in a one-dimensional solid.

8.4.1.3 Three-Dimensional Solid

Consider a three-dimensional solid in the form of a cube of edge L. The atoms move freely in all possible directions and the
energy of a free atom is given by

E=— (8.37)
with

p’ :p§+p§+p§ (8.38)

The average energy of an atom in the phase space is given by

2
JP_ &P /2M g3y g3
E-2M (8.39)
Je—/s0p2/2Md3rd3p

The integration over the direct space gives the volume of the solid V=L, Using spherical coordinates, the integral over
momentum becomes

2M
E= (8.40)

e hop?/2M

(s8] p2 ,
[ 2wy
0

p>dp

o3

Substituting Eq. (8.37) for the energy E into Eq. (8.40), one can write

E32eFEGR
(8.41)
E!/2¢FEGR

i
Il
ot glow—3g
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Solving the above integral by parts, we get

- 31 3
E== —=2k,T 8.42
2B, 2°° (842
which is the sum of energies of the three degrees of freedom of an atom. If there are N atoms in the solid, the total energy
becomes

- 3
E:NE:ENkBT (8.43)
The specific heat Cy, therefore, is given by
3 3
Cy=zNkg == 8.44
v=5Nky =3 (8.44)

Eq. (8.44) gives only half the value observed by Dulong and Petit. From the above discussion it is evident that the average
energy of an atom is equal to the energy associated with one degree of freedom multiplied by the number of degrees of
freedom n of the atom. So, in general, one can write the average energy of an atom as

- 1
EZEHkBT (8.45)
Note that n is also equal to the dimensionality of the solid. The specific heat Cy, then, becomes
1 1
Cy :EnNkB :EnR (8.46)

8.4.2 Fixed Classical Harmonic Oscillator Model

In a solid, the atoms cannot move from one place to another but can oscillate about their mean positions. So, the first
improvement over the free-atom model is to assume each atom as a harmonic oscillator with a fixed equilibrium position.

8.4.2.1 One-Dimensional Solid
In a one-dimensional solid, an atom will execute simple harmonic motion along the x-direction. So, the energy of an atom is
given by

2 2

px 1 2 by 1 2.2
E= + - = +-M 8.47

oM T 2HF Tom T X (8.47)

= \/% (8.48)

Here o is the force constant, M is the mass, and o is the natural frequency of vibration of the atom. The average energy of
an atom, from Eq. (8.18), becomes

where

2

n 2 1 _ (P_x lezxz)
J (Px +—Mw2x2>e folani*2 dxdp,

2M 2
E=""2 (8.49)

T B <ZPEA+%M(/)ZXZ)
J e dxdp,

—00

The above integral can be simplified to write

T p2 i T 2 g Mwx?
_Xe_ﬁo 2Mdpx X e—zﬁo X gy
2M 1
E=—% +§Mw2 — (8.50)

o 2
v} i
J e foaMdp, J e 2foM* N gy
—0o0

—0o0
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Putting E, =p2/2M and q:%ﬁOszxz into Eq. (8.50), we get

q1/2e7qdq

—38

E!/2e hEdE,

—3

o]
I

1
+ —
0

E;1/2e*ﬁoEx dE, q*l/ze*qdq

oc—38|o
o—38|s

The first integral is exactly the same as in the case of the one-dimensional free atom model and the second integral can be
solved by integrating it by parts to give

— 1 1

If there are N atoms in the one-dimensional solid, then the total energy E becomes
E=NE=Nk,T (8.52)

Therefore, the specific heat Cy is given by
Cy=Nkz=R (8.53)

Problem 8.1 Two-Dimensional Solid

Consider a two-dimensional solid with N atoms in which each atom is considered to be a fixed harmonic oscillator. The energy of
an atom is given by

2
1
E= Z'O—M+EMF r (8.54)

where
2_ 2,2
p 7px+py
P =x?+y?
and

%F
=4/— 8.55
® v (8.55)

Here M is the mass of an atom. Prove that the total energy of the solid and the specific heat are given by
E=2NkgT (8.56)
Cy = 2Nkz =2R (8.57)

8.4.2.2 Three-Dimensional Solid

Consider a three-dimensional solid with N atoms in which each atom is considered to be a fixed harmonic oscillator with
energy

E= —— +_opr’ (8.58)

where

P=x>+y*+7° (8.59)
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The average energy of an atom is found by substituting Eq. (8.58) into Eq. (8.18), that is,

it 2 1 _ (Ll L2 z)
J <2PM+2Ma)2r2>e folam*2 ' d3rd3p

E="" — - (8.60)
1
J e_ljo (ZP_M+ Eszrz) d3rd3p

T o2 N 1
J 2p—Me’20_d3p 1 J e 2fMo g3y
B4 Mo? 2 (8.61)
J e—@“{j{ &*p J e—%/fonzrz Pr

(s8]

Using spherical coordinates, the above equation reduces to

szl\z/[e_%pzdp Jr4e_%ﬂ°M“’2r2dr
E=°m—2 +%Mw2 ¢ (8.62)
Jel;o—l\ljlpzdp Jrzef%ﬁoM”Zrzdr
0 0
The first integral is the same as in Eq. (8.40). The second integral can be solved by parts, finally yielding
E:%kBT+§kBT:3kBT (8.63)
Hence the total energy of the three-dimensional solid becomes
E= NE=3NkzT (8.64)
The specific heat is given by
Cy =3Nky =3R = 6calories/degree/mole (8.65)

This model reproduces the Dulong and Petit’s value but does not explain the temperature variation of Cy at low
temperatures.

8.5 QUANTUM MECHANICAL THEORIES
8.5.1 Einstein Theory of Specific Heat

The classical theory yields a constant value of specific heat, but the experimental results exhibit temperature variation at
low temperatures. To explain the temperature variation of specific heat, Einstein assumed that the atoms in a solid are
identical independent quantum harmonic oscillators vibrating with the same natural frequency ®g, usually called the Ein-
stein frequency. The energy of a quantum harmonic oscillator is given by

E = <n+ ;) hoyg (8.66)

where n = 0, 1, 2, ... As the temperature decreases, the amplitude and energy of a harmonic oscillator decrease and, at
absolute zero, the energy becomes (1/2)hwg, the zero-point energy. Einstein assumed that the oscillators obey the
Maxwell-Boltzmann distribution and, therefore, the average energy of an oscillator is given by
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Z <n+ %) ha)Ee—ﬁO(n+ 1/2) oy ZnhwEe—ﬁonhwE
1

E(wg) =2~ == _ + S hog (8.67)
Ze_ﬂO(n+ 1/2) horg Z e_ﬂonh‘”}:
n=0 n=0
Solving Eq. (8.67) the average energy of a mode of vibration is given by
= howyg 1
E(wg) = fop Y5 hog (8.68)
eksT — 1

Consider a solid comprising N atoms. Let D, denotes the total number of degrees of freedom (total number of modes of
vibration) of all the atoms in the solid: it has a value of 1N, 2N, and 3N for one-, two-, and three-dimensional solids,
respectively. Therefore, the total energy of the solid is given by

ho 1
N s 5 Do (8.69)

eksT — 1

Er(wg) =D,E(wg) =D

The specific heat at constant volume is given by

0E; oE
—(=T) —p (= 8.70
o= (5),~>(@), 579

Substituting Eq. (8.68) into Eq. (8.70), Cy is given by

0 /1)
Cy= Dnﬁ o E (8.71)
eksT — 1

The above expression shows that the zero-point energy of the solid does not contribute toward Cy, and therefore may be
disregarded in the forthcoming discussion on the specific heat. Let us define the Einstein temperature 0 by

0 = hog (8.72)
kg
In terms of 0g, Eq. (8.71) can be written as
0.\* el%/T
Cy=D ks =] — 8.73
A\ n B<T> (e()E/T—l)Z ( )

This is the general expression for Cy and one can study its limiting cases. At high temperatures T >> 6 or 0g/T < 1,
Eq. (8.73) reduces to

Cy =D, kge’/T~D ki, (8.74)

Eq. (8.74) gives values 1Nkg, 2Nkg, and 3Nkg for one-, two-, and three-dimensional solids, respectively, and this
agrees with the Dulong-Petit’s value at high temperatures. At very low temperatures T << 6g or Og/T > 1, Eq. (8.73)
reduces to

0 2
Cy =D, kg (TE> e 0e/T (8.75)

Eq. (8.75) shows that the temperature variation of Cy; in one-, two-, and three-dimensional solids is the same and approaches
zero exponentially as the temperature goes to absolute zero. Fig. 8.4 shows the temperature variation of Cy for a three-
dimensional solid obtained in the Einstein model. Experimentally it has been observed that Cy varies as T° at very low
temperatures. Therefore, although the Einstein theory exhibits the temperature variation of specific heat, the decrease
is much faster than that observed experimentally.
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FIG. 8.4 The specific heat Cy as a function of temperature
T due to the Einstein and Debye theories.

3Nk,

B

/e ———Einstein theory

8.5.2 Debye Theory of Specific Heat

Debye pointed out a possible reason for the discrepancy in the Einstein theory of specific heat. He said that all of the atoms
in a solid do not vibrate with the same frequency. Rather, there must be some spread in the allowed frequencies of vibration
of the atoms. He assumed that the frequencies of atomic vibrations vary from zero to some maximum frequency wp, usually
called the Debye frequency.

From Eq. (8.68) it is evident that, at low temperatures, the average energy per mode E(w) becomes small for large values
of frequency w. Therefore, at low temperatures, a significant contribution to the internal energy comes from the long wave-
length (small @) modes of vibration. For long wavelengths, it is reasonable to assume that the solid is a homogeneous
continuous medium in which the dispersion relation is given by

o(K)=vK (8.76)
where v is the phase velocity, which is also equal to the group velocity.

8.5.2.1 Linear Monatomic Lattice

In a one-dimensional solid the number of modes of vibration in a wave vector K is given by

n=—K ®.77)
Therefore, the number of vibration modes in the range from K to K+dK is given by

dn— % dK (8.78)

It is well known that every positive value of the wave vector K has the corresponding negative value —K.
Therefore, in Eq. (8.78), we have multiplied by a factor of 2 to get the total number of vibration modes. From Eq.
(8.76) one can write

do=vdK (8.79)
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Substituting the value of dK from Eq. (8.79) into Eq. (8.78), one gets the number of vibration modes in the frequency range
o and w+dw as

L
g(w)dwz;dw:Adw (8.80)

where A =g(w)=L/nv is a constant. The function g(w) gives the phonon density of states and should be defined in such a
way that the total number of modes of vibration given by it must be equal to the total number of degrees of freedom N, that
is,

Dp
J g(w)do=N (8.81)
0

Substituting Eq. (8.80) into Eq. (8.81), one can immediately write

N
g(w) = A:w—D (8.82)

Assuming g(w) to be a continuous function of w, the total energy of the solid becomes

_ T oh
ET:JEg(a})dw: J 2% g(w)do (8.83)
0 ekBT -1

In writing the above expression, the zero-point energy has been neglected, as it does not contribute toward the lattice spe-
cific heat. Substituting

hw hw
=—— and 0,=—2 8.84
X K, T and 0 K, (8.84)
along with Eq. (8.82) into Eq. (8.83), we obtain
, 0o/T
T xdx
Er=Nkg — .
v =Nk 5 Jex_] (8.85)
0

Here 0y is the Debye temperature. Eq. (8.85) gives the general expression for the total energy of a one-dimensional solid,
which gives analytical expressions only in the limiting cases. At high temperatures, x < 1, Eq. (8.85) reduces to

E; =NkgT (8.86)
Therefore, at high temperatures, one obtains the classical value of Cy, that is,
Cy =Nkg (8.87)

At low temperatures, x > 1 and 6p/T — oo, Eq. (8.85) yields

(8.88)

The integral in the above expression is a standard one and has a value of /6, therefore, the total energy is given by

72 T2
E.= —Nk, — 8.89
v= 5 Nks g (8.89)
From the above expression, Cy is immediately written as
72 T
Cy =—Nkp,— 8.90
Y4 3 B HD ( )

Therefore, in a one-dimensional solid, Cy varies linearly with temperature.
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The lattice specific heat can also be estimated using the frequency distribution function of the lattice vibrations for a
one-dimensional solid given by Eq. (6.59). Substituting the value of g(w) from Eq. (6.59) into Eq. (8.83), one gets

Dpax

_2Nh wdw

T l (eho/ksT — 1) (w%m _ C02)1/2

T (8.91)

At low temperatures, the states with small energy (low frequency) are occupied or one can say that the high-frequency
modes are effectively frozen. Therefore, at low temperatures, /Wy« (( 1, in this approximation, Eq. (8.91) becomes

(0]

'max

2NAa 1 wdw
Br= o J e (8.92)
0
Making the substitution
hw ho
= and 6. ———max 8.93
X KT and 0 K (8.93)
Eq. (8.92) becomes
, 0o/T
2Nkp T xdx
E,="—-2 8.94
= e @99
The integral in the above expression is the same as in Eq. (8.85), so it gives
i T?
E;==Nkg — 8.95
r=3Nks 5 (8.95)
The heat capacity at constant volume is given by
2 T
Cy=""Nig (8.96)
3 0p

Eq. (8.96) is similar to Eq. (8.90) except for the constant factor. At high temperature, how <«<kgT, Eq. (8.91) reduces to

(’)max

E;=kgT J g(w)dow =NkgT (8.97)
0
which is the same result as Eq. (8.86). The value of Cy from the above equation is given by
Cy =Nkg (8.98)

which is the Dulong and Petit’s value for a one-dimensional solid.

8.5.2.2 Two-Dimensional Lattice

The phonon density of states in a two-dimensional solid can be calculated from the periodicity of the lattice. Consider a two-
dimensional solid in the form of a square of side L. The number of phonon states n in a circle of radius K is given by

L\2
n= nK? () (8.99)
2n
So, the number of phonon states in a ring of radius K and thickness dK is obtained by differentiating Eq. (8.99) to obtain
A
dn=-""KdK (8.100)
2w

Here A is the area of the two-dimensional solid. If we change the wave vector K into the frequency w using the Debye
approximation given by Eq. (8.76), we get

A
dn= 2n32 o dw (8.101)
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The above expression gives the number of phonon states between two circles of constant energy w and w+dw, that is, g(w)
dw. Therefore, one can write

A,
= = .1 2
g(w) 72 @ Co (8.102)
where C is a constant given by
A,
= 8.103
2mv? ( )

Eq. (8.102) can also be obtained from the general expression for the density of phonon states in two-dimensional solids
(Appendix E). The total number of modes of vibration must be equal to the total number of degrees of freedom, that is,

wp wp
Jg(w)dw:2N:C dew (8.104)
0 0
The above equation gives C as
4N
C=—y (8.105)
@p

4N
=— 8.106
(o) =0 (8.106)
The total energy of the solid is given by
Wp
E;= J E(w)g(w)dw (8.107)
0

Substituting the values of E(w) from Eq. (8.68) and neglecting the zero-point energy and substituting g(w) from Eq. (8.106)
into Eq. (8.107), we write

@p

4N o*dw
E; :w—zh J i (8.108)

D 0 ekBT -1

Making the substitution given by Eq. (8.84) into Eq. (8.108), one gets

0p/T
T x2dx

E. =4Nk; — 8.109
1= 4Nk g J S (8.109)

It is the general expression for the total energy of a two-dimensional solid with N atoms. At high temperatures x <1,
Eq. (8.109) reduces to

X 0p/T
T;
Er =4Nkg — J xdx = 2NkgT (8.110)
05
0
Eq. (8.110) yields the classical value of Cy as
Cy =2Nkg (8.111)

It gives the Dulong and Petit’s value for a two-dimensional solid. At low temperatures, x>> 1, Eq. (8.109) reduces to

T3 T3
E; =4Nkg 7 Je”‘dex:SNkBe—z (8.112)
D 0 D
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Hence Cy from Eq. (8.112) becomes

T 2
Cy = 24Nk (0—> (8.113)
D

Eq. (8.113) shows that in a two-dimensional solid Cy varies as T? at very low temperatures.

8.5.2.3 Three-Dimensional Lattice

The phonon density of states can be calculated from the periodicity of the lattice as in the two-dimensional solid. If the solid
is in the form of a cube with edges of length L, then the number of states per unit volume in the K-space is (L/27)*. The
number of phonon states n in a sphere of radius K is given by

4 L\?
n:?nK3 (ﬂ) (8.114)

Therefore, the number of phonon states in a spherical shell of radius K and thickness dK is obtained by differentiating the
above equation, that is,

dn= 47K*dK

o 8.115)

where V is the volume of the solid. The number of modes of vibration between K and K+dK, given by Eq. (8.115), cor-
responds to the number of modes between frequency w and w+dow, that is,

_ 2
Every atom possesses three modes of vibration, therefore, g(w) from the above equation can be written as
3v. 5
where
3V
A= 8.118
272v3 ( )

Eq. (8.117) can be obtained from the general expression for the density of phonon states for the three-dimensional solid as
given in Appendix E. Fig. 8.5 shows the frequency distribution function for a three-dimensional solid in the Debye approx-
imation. The figure also shows the Einstein frequency wg, which is greater than the Debye frequency wp. The function g(w)
must satisfy the relation

Jg(a))dw = 3N (8.119)
0

Substituting Eq. (8.117) into Eq. (8.119), the constant A is given by

9N
A=— (8.120)
Wp
From the above equation the Debye frequency is given by
oN\'?  remN\'"?
wp = (X) —v ( 7; ) = vK, (8.121)

Eq. (8.121) allows us to write the Debye wave vector K, as

RE
Kp= (6n2 V) (8.122)
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FIG. 8.5 The density of phonon states g(w) as a function of @. The
Einstein frequency wg is greater than the Debye frequency wp.

glew) —

() ———p

The total energy of the lattice is given by
Wp
E;= J E(w)g(w)dw (8.123)
0

Substituting Eq. (8.117) for g(w) and Eq. (8.68) for the average energy (neglecting the zero-point energy) into the above
equation, we get

wp

3
d

E,=Al J% (8.124)

0 ekBT —1

Making the substitution given by Eq. (8.84), the above equation can be written as
bp/T
A 4 X
E; == (kgT) J e dx (8.125)
0

The integral in Eq. (8.125) cannot be solved analytically but one can study the special cases for Er. At very high temper-
atures, that is, (T>0p) x< 1, Eq. (8.125) reduces to

Op/T
E; :% (kBT)4 J x2dx (8.126)
=3Nkg TO
Hence the specific heat at constant volume becomes
Cy =3Nky4 (8.127)

which is the Dulong and Petit’s value for Cy (classical result). At low temperatures, that is, (T << 6p) x> 1, Eq. (8.125) can
be written as

A 4 T X3
By =5 (kyT) J o dx (8.128)
0
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The above integral can be evaluated by using the standard integral defined as

T x5! 1
dx = (s—1)! - 12
Jex—l x=(s=1) L (8.129)
0 —
For s = 4 the above equation gives
T x3 © 1 g
dx=3'Y —=— 8.130
Je" -1 ;rﬁ 15 (8.130)
5 —
Substituting Eq. (8.130) into Eq. (8.128), one gets
ATC4 4 3 T4
Er=—— (kg T)* ==n*Nk, — 8.131
T 155 (kg T) 3 B 0?) ( )
Hence the specific heat at constant volume becomes
12 T\? T\?
Cy :—n4NkB — | =234 Nkg | — (8.132)
5 0p 0p

The above expression shows that at very low temperatures, the lattice specific heat varies as T°, which agrees with the
experimental observations (see Fig. 8.1). It is usually known as the Debye T? law. Fig. 8.6 shows Cy for one-, two-,
and three-dimensional solids. It is evident from the figure that the temperature variation of Cy in the three types of solids
is different at very low temperatures in contrast with that found in the Einstein model. The theoretical results obtained in the
Einstein and Debye models are compared in Fig. 8.4. It is noteworthy that the Debye approximation works well at suffi-
ciently low temperatures because at these temperatures only long-wavelength acoustic modes are excited. The energy of
short-wavelength modes (e.g., the optical modes) is too high to allow these to be populated at low temperatures. Further,
according to the dispersion relation (8.76), =0 at K=0, but for the optical modes the frequency of vibration is finite at

FIG. 8.6 Schematic representation of specific heat Cy
as a function of temperature T for one-, two-, and three-
dimensional solids in the Debye theory.

3Nk,
3D
I 2Nk,
&
2D
Nk,




Specific Heat of Solids Chapter | 8 167

K =0 (see Chapter 6). Therefore, the Debye theory does not account for the optical modes. We want to mention here that the
Debye approximation includes only the linear term in the dispersion relation (Eq. 8.76), which is the lowest order approx-
imation. In fact, one should consider the dispersion relations calculated from the experimentally measured phonon fre-
quencies and then calculate the lattice specific heat.

8.6 EFFECT OF ELECTRONS ON SPECIFIC HEAT

One distinctive property of metals (also of semiconductors) is their electrical conductivity. It might be expected that the
conduction electrons make a significant contribution to the specific heat of a metal. It will be shown in Chapter 9 that the
electronic contribution to the specific heat varies linearly with temperature. Therefore, the total specific heat in a metal
becomes

Crnewas = BT+, T (8.133)

Here 3, and y. are constants. At room temperature the electronic contribution is very small compared with the lattice con-
tribution to the specific heat (see Fig. 8.7A). But at low temperatures the electrons make an appreciable contribution to the
specific heat, as is evident from Fig. 8.7B.

8.7 IDEAL PHONON GAS

Consider a crystal containing N atoms that are vibrating about their equilibrium positions at finite temperature. It has been
shown in Chapter 7 that the energy of a crystal, in the harmonic approximation, is equivalent to the energy of 3N inde-
pendent harmonic oscillators. The energy of each harmonic oscillator is quantized and is given from Eq. (7.58) by

E, = (nq + ;) ho(q) (8.134)

withng =0, 1,2 ... and w(q) is the angular frequency of the normal mode. In the above equation we have omitted the index
of polarization. Hence the difference in the energies of two consecutive states ngq and ng+1 is given by

Ep, :Enq+1 —Enq =hw(q)=hv(q) 6135,

| © e
i . '.
¥ 5 Cia < s %
E g
E =
a4t - 5 4
g [
8 =

3 S

T 2

1 - 1

0 .--.-----In-----.--_.-r-.-...-.--.l.-.-- . | I

0 0.4 0.8 1.2 16 0 0.004 0.012 0.020 0.028

(A) T/6,—> ®) 2

FIG. 8.7 (A) Temperature dependence of the lattice contribution Cy,, and the electronic contribution C, to the specific heat for Cry gV alloy. (B) Cja
and C, for Cry 3V alloy at very low temperatures. C. > Cy, up to T~ 8.5 K. Here 0, =500 K. (Modified from Epifanov, G.1. (1979). Solid state physics.
(p. 122). Moscow: Mir Publishers.)
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Here v(q) is the frequency of thermal vibrations propagating through the crystal in the form of elastic waves. Eq. (8.135)

gives the quantum of energy of elastic waves, called a phonon. The field of elastic waves may be treated as a gas of phonons

(or a gas of quanta of normal modes of the lattice), having energy given by Eq. (8.135) and momentum p,;, given by
ho(q) h

where q = 27/4 is the phonon wave vector restricted to the 1 BZ. Here v is the velocity and A is the wavelength of the elastic

waves. The phonon density n,;, is defined as the number of phonons excited per unit volume of the crystal and is equal to the

lattice energy per unit volume E,;.. divided by the energy of a phonon, that is,

Elanice
N, = fo(q) (8.137)
In the harmonic approximation, the atomic vibrations are strictly noninteracting harmonic elastic waves, and therefore,
travel through the lattice without scattering and without meeting any resistance. So, in the harmonic approximation,
phonons make up an ideal phonon gas. Because the waves do not meet any resistance, considerable heat flux flows, even
for an infinitesimally small temperature difference, yielding an infinitely large thermal conductivity for a solid.
The behavior of n,j, can be studied in the limiting cases. In the Debye approximation at low temperatures, the lattice
energy is given by (see Eq. 8.131)

E;

4
Epice =5, T (8.138)
and the phonon energy hw(q)~kg T~T. Hence from Eq. (8.137)
n,,oc T (8.139)
On the other hand, in the high-temperature limit, the Debye approximation gives (see Eq. 8.126)
E
Epice =~ T (8.140)

But at high temperatures the phonon energy attains the maximum value of h wp~kg 0p and is independent of temperature.
Therefore, in the high-temperature limit, from Eq. (8.137), one gets

Ny o< T (8.141)

8.8 INTERACTING PHONON GAS

The actual interaction potential in a crystalline solid is not harmonic in nature but contains anharmonic terms [see
Eq. (6.24)]. The anharmonic part of the interaction potential causes the normal modes of vibration to interact with each
other. In the interaction process, the normal modes exchange energy and may change the direction of propagation. In other
words, it can be said that the scattering of normal modes of vibration takes place in the presence of an anharmonic inter-
action potential, yielding anharmonic modes of vibration.

The process of mutual interaction of anharmonic modes of vibration can be conveniently described in terms of phonons.
The anharmonic part of the potential introduces an interaction between the phonons, usually called the phonon-phonon
interaction. Phonon-phonon scattering may result in the splitting of a phonon into two or more phonons or the formation
of a phonon from two or more phonons. As usual, the probability of scattering may be described in terms of the effective
phonon scattering cross section Gpy. If a phonon is represented by a sphere of radius rpp,, then

Tpn =TTy (8.142)

Phonon-phonon scattering can take place only if two phonons approach within a distance (equal to the diameter of a
phonon) at which their effective cross sections begin to overlap. As phonon-phonon scattering is due to the anharmonic
potential whose strength is given by the coefficient yr (considering only the lowest term), therefore, it is reasonable to
assume that

S (8.143)
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Knowing oy, one can calculate the phonon’s mean free path /,,, which is the average distance traveled by a phonon
between two consecutive scattering events. Calculations show that

1 1

l = oC
ph 2
NphOpn D VE

(8.144)

8.9 THERMAL EXPANSION OF SOLIDS

In the harmonic approximation the interaction potential is parabolic in nature, which is symmetric about its axis, that is,
about the line QS at a distance Ry from atom 1 (see Fig. 6.5). Therefore, the displacements u; and u, are equal, yielding the
mean position of atom 2 as Ry. Assuming atom 1 to be fixed at its position, the increase in temperature excites atom 2 to the
higher energy state, thereby increasing its amplitude of vibration. But the vibration remains symmetric, yielding the same
mean position O for atom 2. Hence the harmonic interaction potential is unable to explain thermal expansion in solids. The
anharmonic potential from Eq. (6.24) is written as

V(u) = V(R0)+1aFu2—1yFu3—léFu4+--- (8.145)
2 3 4
The first term in the above equation is constant. If the reference level of the potential is taken as V(Rg) and only the first
anharmonic term is retained in Eq. (8.145), then one can write
1 PR
V(u) = 5 oF U 3 pY (8.146)

When atom 2 is displaced to the positive u values (toward the right of O) or to increasing values of r, the second term in
Eq. (8.146) is subtracted from the first term, thereby decreasing the slope of part QR of the interaction potential curve (see
Fig. 8.8). On the other hand, for negative u values (toward the left of O) or for decreasing values of r, the second term in
Eq. (8.146) is positive and is added to the first term, thereby increasing the slope of part PQ of the interaction potential
curve. Thus, anharmonicity in the potential makes the interaction potential asymmetric about the line QS, as shown in
Fig. 8.8. Because of the asymmetric nature of the potential, the amplitudes of vibration of atom 2 toward left and right
are different; the amplitude in the former direction being less than that in the latter direction. As a result, the mean position
of atom 2 no longer coincides with the previous equilibrium position O but shifts by a distance u toward the right to the
position O;. Let E be the energy of atom 2 at temperature T. Then, thermal vibrations of atom 2 increase the distance
between the two atoms 1 and 2 by U on average and this causes thermal expansion of the solid. The above explanation
shows that the cause of thermal expansion is the anharmonic nature of atomic vibrations in a solid. Heating to higher tem-
perature T' increases the energy of atom 2 further to E’. With the increase in energy, the mean position of atom 2 shifts more
to the right to Oy, thereby further increasing the mean distance between the atoms (Fig 8.8). The above explanation can be
extended to a solid in which the equilibrium distance between all the adjoining atoms increases with an increase in the
temperature. Hence thermal expansion increases with an increase in the temperature of a solid.

Let us estimate the coefficient of linear thermal expansion of a solid. The force acting on an atom from Eq. (8.146)
becomes

F=—opu+ypu’ (8.147)
The average value of the force F caused by the displacement of atom 2 from its equilibrium position is
F=—opu+ypu’ (8.148)

In the equilibrium position of the particle, the average force vanishes to give

g=1F 2 (8.149)
R
The average value of the potential from Eq. (8.146) is
— 1 2
V(u) =50pu (8.150)

In addition to the potential energy, an atom also possesses finite kinetic energy. It is well known that the average kinetic
energy of a vibrating atom is equal to its average potential energy. Therefore, the total average energy E of atom 2 becomes
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FIG. 8.8 Interatomic potential V(r) as a
function of r between two atoms 1 and 2. Here P
u; and u, represent the displacements of atom 2,
at finite temperature T, to the left and right of
the mean position R and is asymmetrical about
Ry. The new mean position of atom 2 becomes
R, +u where u is the average shift in the mean
position.
=
je— U, > u >
Ala — U e— B B r—»
b ACIE
1 O| R
E!
E
Q
< R, >
E=2V(u) = u? (8.151)
From Eqgs. (8.149), (8.151), the average displacement U in terms of average total energy becomes
u='tE (8.152)
oF

An alternate method for the calculation of average displacement is described in Appendix G. The coefficient of linear
thermal expansion 'ty is defined as the increase in length per unit original length per degree rise in temperature. In
the present case of two atoms it can be written as

1 du
_ 1
™R, dT (8.153)
Substituting u from Eq. (8.152) into Eq. (8.153), we get
I'ip=K;Cy (8.154)
where
VE
Kp= 8.155
PR, ( )
dE
_ 1
Cy T (8.156)

Fig. 8.9 shows the temperature dependence of both I'ry; and Cy. It is evident that both are interrelated (proportional to each
other). In the high-temperature limit, the average energy of an atom E =k T and therefore Cy =kg, which is temperature
independent. Hence in the high-temperature limit,
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84 I— 238 FIG. 8.9 Temperature dependence of the specific heat Cy
! ] 2 and the coefficient of linear expansion I'ry. (Modified from
Epifanov, G. 1. (1979). Solid state physics (p. 126). Moscow:
T2 — — 204 Mir Publishers.)
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Substituting the values of g, kg, o, and Ry for various solids, I'ty is found to be on the order of 107* =107, which is in
agreement with experiment. In the low-temperature limit, I'ty; behaves in a way similar to that of Cy, that is, I'ty oc T3
In the case of metals, Gruneisen proposed a formula for I'ty, which is given by

76 Ku
I'y=—=--—-°¢C 8.158
T3y, Y ( )
where Ky, is the metal compressibility, Vj is the atomic volume, and v is the Gruneisen constant whose value is equal to
1.5-2.5 depending on the metal. It is noteworthy that both Egs. (8.154), (8.158) are similar as for as the temperature depen-
dence is concerned.

8.10 THERMAL CONDUCTIVITY OF SOLIDS

Consider a solid with length L, along the x-direction and rectangular opposite faces having area A perpendicular to the
length (see Fig. 8.10). Let T; and T, (T >T5,) be the temperatures on the opposite faces. The gradient of temperature along
the length of the solid dT/dx is

dT T,-T,

—_—=— 8.159

dx L, ( )

Let E be the heat energy, which flows from the face PQRS to the face UVWY in time t. The flux of heat energy Q (heat
energy transmitted per unit area per unit time) is given by

Q i FIG.8.10 A solid with length L, along the x-
direction. The opposite faces PQRS and
UVWY are rectangular in shape, each having
3 Y area of cross section A and at temperatures
¢ Lx » T, and T, with T >T,.
—_—X
R W
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Q= E (8.160)
= .
The flow of heat flux is directly proportional to the temperature gradient along the length of the solid, that is,
dT
Qoc ax
This gives
dT
=—0Op— 8.161
Q=-or (8.161)

The negative sign shows that the temperature decreases in the direction of increasing x (negative temperature gradient).
Here o is a constant of proportionality and is called the thermal (heat) conductivity of the solid. The unit of thermal con-
ductivity is J/scm K or W/cm K. The reciprocal of o1 gives thermal resistivity pr. We explain the thermal conductivity in
what follows.

If the atomic vibrations are harmonic in nature, then the corresponding elastic waves propagate through the solid
without experiencing any resistance. In such a situation, if a temperature difference is set up across a crystalline solid,
the atoms at the hot end will start vibrating with larger amplitude and transfer their energy to the neighboring atoms.
As aresult, a heat wave will travel along the length of the solid with the velocity of sound. In the absence of any resistance,
a considerable amount of heat flux will flow through the solid even at an infinitesimally small temperature difference.
Hence, in the harmonic approximation, the thermal conductivity of the solid will be infinitely large. But the real potential
in a solid is anharmonic in nature, which produces anharmonic modes of vibration. These modes cause phonon-phonon
interactions and offer finite resistance to the flow of the heat wave along the solid. Hence anharmonic waves are responsible
for the finite thermal conductivity in a solid.

8.10.1 Thermal Conductivity for an Ideal Gas of Atoms

The expression for thermal conductivity can be derived assuming the solid to consist of free atoms forming an ideal gas of
atoms. Let n, be the density of free atoms per unit volume in a rectangular-shaped rod of a solid along the x-direction (see
Fig. 8.11). Further, assume that the temperature gradient is produced along the length of the rod. The flow of heat from the
end at higher temperature to the other at lower temperature is due to the motion of atoms along the x-direction. The atoms
move with equal probability in both the positive and negative x-directions, so on average half of the atoms, that is, (1/2)n,
atoms, move in the positive x-direction with average velocity (v, ), while the other half move along the negative x-direction
with the same average velocity. Hence the flux of atoms in both the positive and negative x-directions is (1/2)n, (v,) in
magnitude. Let cy be the specific heat of an atom at constant volume. Then in moving from region x with temperature T
+AT to region x+Ax with temperature T (see Fig. 8.11), the energy given up by an atom is cyAT. The temperature dif-
ference between the two ends of the mean free path /,=(v,) 7, of an atom is given by

dT
AT=—— ; 8.162

v, (8.162)
where 7, is the time between two consecutive scatterings of atoms, usually called the relaxation time. The net flux of energy

from atoms moving in both the positive and negative directions is given by

T+ AT T
000000000000 0000:00000000
0O0O000D0DO0,{00000000! 00000000 Lower
Higher 0000000000000 0O00O0 ooooooootemperature
temperature| o o0 00000 : 00000000 : 00000000 ®
000000000000 0000!00000000O0
00000000 !00000000!00000000O0
X X+AX

FIG. 8.11 A rectangular-shaped rod of a solid along the x-direction with finite temperature gradient along its length. The small circles represent the
atoms in the solid.
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Q= n,(v,)cyAT
dT (8.163)
& dx

If the velocity is constant and equal in all three Cartesian directions, then

2
=N, <Vx> CyT

vi=(v})=3(v,)’ (8.164)
Therefore,

ar 1,  dT
a&:—gnav CVTa&

If Cy is the specific heat per unit volume, then Cy = n,cy. Further, the mean free path of an atom is /, =V 7,, therefore, one
can straightway write

Q=—§na (V)eyr (8.165)

1 dT
Q=—3CVl (8.166)
Comparing Egs. (8.161), (8.166) we get
1
o =§val£l (8.167)

8.10.2 Thermal Conductivity in Insulators and Dielectrics

In insulators atoms vibrate about their equilibrium positions at finite temperature. Therefore, the atoms can be considered to
be anharmonic oscillators, which give rise to an interacting phonon gas. Eq. (8.167) for an ideal gas of atoms can also be
applied to a phonon gas by replacing /, by the mean free path of phonons /,;,, v by the velocity of sound, and Cy by the
specific heat of the solid. Therefore, the lattice thermal conductivity is given by

1
=75 Cv ¥ lpn (8.168)
Substituting the value of [y, from Eq. (8.144) into the above equation, we find
C
Ol s (8.169)
nph YF

In the above expression, yg and v determine the magnitude of the thermal conductivity, while Cy and n,;, determine its
temperature dependence. The parameters v and )¢ depend strongly on the rigidity of the bonds between the atoms in a
solid: bonds of higher rigidity yield higher values of v and lower values of yg because the strengthening of bonds reduces
both anharmonicity and the thermal vibration amplitude of atoms. Therefore, g1, increases with an increase in the rigidity
of the bonds. This conclusion is supported by the experimental results. Further, a detailed analysis shows that gy, also
depends strongly on the mass M of the atoms: oy, is larger for smaller values of M. Experimentally it is found that for
light elements, such as B, C, and Si, g}, is on the order of a few tens or hundreds of W/cmK. For elements in the middle
of the periodic table, gy, is on the order of several W/cm K, but for heavy elements, ay,, is on the order of several tenths of
W/cmK. This trend may be due to the fact that with an increase in M, the value of the rigidity of the bonds decreases as the
bond length increases.

The temperature dependence of 7y, depends on Cy and n,p, (or /). In the high-temperature limit, Cy is independent of
temperature (Dulong and Petit’s law) but npy, is proportional to T (see Eq. 8.141). Therefore, Eq. (8.169) gives

1
o — (8.170)

Olart * T
which is consistent with the experimental findings. For T values below the Debye temperature 0p, n,, decreases strongly
with a decrease in T, leading to a sharp increase in the mean free path /,;,. At sufficiently low temperatures, [, becomes
comparable with the dimensions of the solid, therefore, any further decrease in temperature does not lead to any increase in
Ion. Hence at very low T values, the temperature variation of ¢, is determined by the behavior of Cy only. It has already
been seen that, at very low temperatures, Cy o T? (Debye law), therefore,
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FIG. 8.12 Temperature dependence of thermal conductivity o of synthetic sapphire (Al,O3). (Modified from Berman, R. (1958). Z. f. Phys. Chem.
(Neue Folge) 16, 10.)

Ol - T (8.171)

The behavior of oy, predicted by Eq. (8.171) is also in qualitative agreement with the experimental results. From the dis-
cussion above it is evident that, with an increase in temperature, gy, increases at very low temperatures (Eq. 8.171), while at
high temperatures, gy, decreases (Eq. 8.170). Hence at some temperature in between, oy, should exhibit a peak
(maximum). Fig. 8.12 shows the experimental results for the temperature dependence of the thermal conductivity ot

for synthetic sapphire.

8.10.3 Thermal Conductivity of Metals

In metals there are ions at the lattice positions and electrons move freely in the crystal. Therefore, heat is conducted by both
the vibrating ions (phonons) and the free electrons and the total thermal conductivity o is the sum of the two contributions,
that is,

Op =0yt 0¢ (8.172)
where o is the electronic contribution to the thermal conductivity. The main contribution to ¢.; comes from the electrons at

the Fermi surface having velocity vg. g, can be estimated from Eq. (8.167) where Cy is replaced by the electronic specific
heat C., v is replaced by vg, and /, is replaced by the mean free path of electrons /.. Therefore, g can be written as

1
0 =3 Cevl, (8.173)

The mean free path of electrons depends on the following scattering processes:

1. . depends on the scattering of electrons from the ions (e-p scattering) and is inversely proportional to the phonon
density npp, that is,

[..oc.— (8.174)
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2. [. depends on the scattering of electrons from the impurities present in the crystal and is inversely proportional to the
impurity concentration n;, that is,

1
l,-oc— (8.175)
0
The electronic specific heat C. is given by (see Eq. 9.107)
1 kg T
Ce=3 N, kg ELF (8.176)
N, is the total number of free electrons in the metal. Substituting Eq. (8.176) into Eq. (8.173), we obtain
1 , Nk
Oy=5m" BT (8.177)

473" mvp

Here m, is the mass of a free electron. In Eq. (8.177), only /. depends on the temperature. It is interesting to study the
behavior of g, in the limiting cases.

At very low temperatures, n,;, in a metal becomes very small, therefore, the electrons are scattered mainly from the
impurities present in the metal. As the electron scattering from the impurities is temperature independent, so is /.. Hence,
at very low temperatures, Eq. (8.177) yields

Gy -T (8.178)

But at very low temperatures, o4 is proportional to T> (see Eq. 8.171). Hence, at very low temperatures, the main con-
tribution to o comes from o, and is proportional to T, an experimental fact. At low temperatures, n,, and hence /. is finite
and therefore contributes significantly toward o.;. Substituting the value of /. from Eq. (8.174) into Eq. (8.177), we get

Nkg T
Gyroc o8 (8.179)
3 mgVvg ny
At low temperatures, ny, is given by Eq. (8.139), which when substituted in Eq. (8.179) gives
Gy T2 (8.180)

Hence in the low temperature range, o, in metals is inversely proportional to the square of the absolute temperature. In the
high-temperature limit, np, is proportional to T (Eq. 8.141), which when substituted in Eq. (8.179) yields

0 = Constant (8.181)

Hence o, becomes constant in pure metals at very high temperatures.
It is interesting to compare the lattice and electronic contributions to the thermal conductivity of metals. From
Egs. (8.168), (8.173) one can write
o _ CeVele (8.182)
Olatt CVleh
In pure metals, C./Cy~0.01, vg= 108 cm/s,v= 5X 10° cm/s, .~ 10_6cm, and [p, ~ 10~ cm. Substituting these values in
Eq. (8.182) we get

Tl 0.2 x 102 (8.183)
Olatt
This shows that ot in metals is determined mainly by ., with o1, being negligible. The magnitude of g, can also be found
by substituting the values of various quantities in Eq. (8.173). Fig. 8.13 shows the experimental results for the temperature
variation of the thermal conductivity of Cu metal. It is found that the behavior of the experimental results is the same as that
of o, in the whole of the range. Table 8.1 gives the values of ot for some particular metals at room temperature.

In the case of alloys, the situation may be entirely different as the impurities form strong scattering centers for the con-
duction electrons. Therefore, the mean free path /. is mainly determined by the impurity scattering processes. In metallic
alloys, /. and [, may come out to be of the same order of magnitude, making both the lattice and electronic contributions to
the thermal conductivity equally important.
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FIG. 8.13 Experimental values of thermal conductivity 60
or as a function of temperature T for Cu metal. or
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TABLE 8.1 Experimental Values of Thermal Conductivity ot of Some Selected Metals

Metal o1 (W/cmK)
Cu 3.84
Ag 4.03
Au 2.96
Al 2.10
Ni 0.60
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A metallic solid consists of a periodic array of atoms and each atom consists of a nucleus with electrons revolving around it.
The electrons in the outermost orbit of an atom are called valence electrons and are loosely bound to the nucleus. Each atom
(and hence the electrons in it) experiences the crystal potential V(r), as a result of which the valence electrons get detached
from the atom and are able to move more or less freely anywhere in the crystal. These electrons determine the conduction
properties of metallic solids and thus the name conduction electrons. Therefore, a metal can be represented by a sea of
conduction electrons in which the ions are embedded at the lattice positions (Fig. 4.10). In simple metals the conduction
electrons are s- or p-electrons, which are nearly free, yielding a nearly uniform electron charge density. In a more simplified
representation of a simple metal, the discrete positive ionic charge is assumed to be smeared out to form a uniform positive
background. In this approximation a simple metal consists of a nearly uniform conduction electron gas moving in a uniform
positive background. It is usually called the jellium model of metal.

9.1 FREE-ELECTRON APPROXIMATION

In Chapter 3, it has been discussed that the electronic properties of crystalline solids are studied in the one-electron approx-
imation in which an electron experiences a self-consistent potential. The self-consistent potential contains both the
repulsive part due to the electron-electron and the ion-ion interactions and the attractive part due to the electron-ion inter-
actions. In simple metals it is usually assumed that the average repulsive part of the potential cancels exactly the attractive
part, giving rise to a net zero potential. Therefore, the conduction electrons experience zero potential and are free to move
anywhere in the metal. This is called the free-electron approximation. In this approximation the conduction electrons in
a metal form a free-electron gas. We offer no detailed justification for this approximation except to say that it yields
reasonably good results for some simple metals, such as Na, K, and Al. We want to mention here that in the jellium model
the negative charge density due to the electrons is equal and opposite to the positive charge density of the background, thus
yielding net zero charge density. Therefore, the net potential is zero due the vanishing charge density in the jellium model.

9.2 THREE-DIMENSIONAL FREE-ELECTRON GAS

Consider a three-dimensional free-electron gas, having N, electrons, confined to a cube with sides of length L. The
Schrodinger wave equation for a free electron is given by

H, [ (1)) =Ey [ty () ©.1)
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where H,, is the Hamiltonian of an electron. |(r)) and Ey, are the wave function and energy of a state with wave vectork. In
the free-electron approximation, the potential energy is zero so the Hamiltonian H, contains only the kinetic energy p*/2m,
where m, is the mass of an electron. Therefore, the Schrodinger wave equation for a free electron becomes

h2

2m,

V2 Y (1)) =By [ (r)) 9.2)

Here V7 is the three-dimensional Laplacian operator and k and r are given by
k=i k, + ik, + isk, 9.3)
r:ilx+i2y+i3z (9.4)

The probability of finding a free electron at any point in the system is the same, therefore, the wave function can be written
in the exponential form as

Yy (r)) =Ce'* ™ (9.5)

where C is a constant and its value can be obtained by normalizing the wave function to unity. The normalization condition
for the wave function is defined as

(Y ()| (1)) =11 9.6)

112
C= <V) 9.7

where V =L? is the volume of the free-electron gas. Hence the normalized wave function for the three-dimensional free-
electron gas is given by

Substituting Eq. (9.5) into Eq. (9.6), one gets

1/2
= (y) = ©9)

Here |k) or |yy(r)) represents a normalized plane wave and these form a complete orthonormal set of wave
functions. For a finite system of the free-electron gas the wave function satisfies the cyclic boundary condition according
to which

Wi (r)) = Yy (r + L)) 9.9)
Substituting Eq. (9.8) into Eq. (9.9), one can write
ekl —1 (9.10)
which is equivalent to
el =ebl =gkl =1 ©.11)

x=TL y="1 - k,= LZ 9.12)
where n,=ny,=n,=0,£1,£2, .... Substituting Eq. (9.8) into Eq. (9.2) and operating on the equation by (k| from the left
side, the energy of the k-state is given by

W n’K?

Ek=<k|—mv2 k) = o 9.13)

€

The above equation gives a parabolic energy band, as shown in Fig. 9.1. The linear momentum of an electron can be
obtained from the wave function as

P [V (1)) = =1tV [y (r)) = Ak [y (r)) 9.14)
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0

FIG. 9.1 Ey as a function of k=| k | for a three-dimensional free-electron gas.

k—s

Therefore, the velocity v of an electron with momentum p is given by

ik

me

v (9.15)
Points in the k-space represented by each set of ky, ky, k, values from Eq. (9.12) represent the allowed states. N, electrons
can be accommodated in different k-states. As the electrons obey the Pauli exclusion principle, two electrons possessing
opposite spins can be accommodated in each k-state (spin degeneracy) until all the electrons are exhausted (see Fig. 9.2).
The highest filled state is the Fermi state with wave vector kg, called the Fermi wave vector. The energy of the highest filled
state Eg is called the Fermi energy and is given by

_ Pk

=T (9.16)
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FIG. 9.2 Distribution of electrons, represented by dots, in up- and downspin electron states in accordance with the Pauli exclusion principle.
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FIG. 9.3 The Fermi sphere in a three-dimensional free-electron gas. The bigger dots represent the filled electron states and lie within the Fermi sphere.
Outside the Fermi sphere all the electron states (represented by smaller dots) are empty.

If the three-dimensional free-electron gas has large dimensions, then the k-points lie very close to each other and become
quasicontinuous. The occupied states lie approximately in a sphere called the Fermi sphere (see Fig. 9.3). The k-states
outside the Fermi sphere are all empty. The radius kg of this sphere is called the Fermi radius or Fermi wave vector.
The velocity of electrons on the surface of the Fermi sphere is called the Fermi velocity and is given by

_ hikg

Ve 9.17)

m,

From Eq. (9.12) it is evident that there is one k-state in a volume of (2 7/L)? of the k-space. Therefore, the number of states
in the Fermi sphere is given by

4n_ 4
3

2-—3 =N 9.18
(2mn/L)* ¢ ©-18)

The factor of 2 takes into account the spin degeneracy of a k-state. The above equation yields the Fermi wave vector as

ke = (3n2n,)" = (3#5)]/3 9.19)
F— e - .
VO

where n. = N./V=7Z/V, gives the volume density of free electrons. Let n.(k) be the number of electron states with wave
vector less than or equal to k=| k |. It is given by

4n 4
Tk v o,
k (9.20)
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The density of electron states per unit energy N.(Ey) in three dimensions is given by

dn,(k
N (g, = el 9.21)
k
Substituting Egs. (9.13), (9.20) into Eq. (9.21), we get
vV (2m\*?
Ne(B) =55 ( h;) E/? (9.22)
The density of electron states per unit energy per unit volume becomes
1 2m 3/2 2
g(B) =5 ( h;) Ey/ 9.23)

The general expression for the density of electron states g.(Ey) is given in Appendix F. A plot of g.(Ey) as a function of Ej is
shown in Fig. 9.4 for the ground state of the free-electron gas. At absolute zero all the states below Er are filled, while those
above are completely empty. The total energy of the system is given by

EF
Er= JEk N, (Ey) dEy
0 (9.24)
B \Y% 2me / 5/2
- 5 7[2 h2 F
The above equation can also be written as
3
E; :gNeEF (9.25)

Hence the average energy of an electron in a three-dimensional free-electron gas is (3/5) Eg.
The physical quantities of the free-electron gas can also be expressed in terms of the interelectronic distance r.. In the
free-electron gas under consideration, the average volume per electron is

1 V 4mn,
= 9.26
n, N, 3" (©-26)
1D

@ /

>

2D
3D
0 Ek—. EF

FIG.9.4 The density of electron states per unit volume per unit energy g.(Ej) as a function of energy Ej for a one- (1D), two- (2D), and three-dimensional
(3D) free-electron gas at absolute zero.
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From the above equation the interelectronic distance r. is given by

3\ 13
T, = <4nne> (9.27)
The Fermi wave vector kg is obtained by substituting the value of n. from Eq. (9.26) into Eq. (9.19) to write
1/3
K= (9;”) / rl% (9.28)
where
I, =T,2, (9.29)

Here a0:h2/me e = 0.529 A is the Bohr radius. The Fermi energy, in terms of rg, is obtained from Eqgs. (9.16), (9.28) as
B M et (om\ 7?1
o \4) 1

231 368
_(2r —="—Ryd
4 2 12

(9.30)

which is the Fermi energy for the free-electron gas at absolute zero in the ground state. From Egs. (9.25), (9.30) the average
energy per electron becomes

E, 221
—=—— Ryd 31
N R 9.31)

The value of 1, is different for different metals (in the range of 1.8-5.8 A approximately) and is maximum in the case of
monovalent metals. The Fermi energy is basically the kinetic energy (KE) of the electrons, so from Eq. (9.30) we can write

1
KE o — (9.32)
r§
The potential energy (PE) of an electron is given by
2
e
V(ir)= —
m="1
From the above equation one can write that
1
PEoc — (9.33)
ri
Therefore, the ratio of PE and KE is given by
PE
@ = rs (934)

Hence 1, is a measure of the ratio of the potential and kinetic energies of an electron. In other words, 1, is a measure of the
interaction between the electrons: the smaller the value of ry, the weaker the electron-electron interaction. This is equivalent
to saying that the kinetic energy of an electron is large compared with its potential energy for ry < 1.

9.3 TWO-DIMENSIONAL FREE-ELECTRON GAS

Consider a two-dimensional free-electron gas containing N, electrons, in the form of a square of side L. Here the Schro-
dinger wave equation is the same as Eq. (9.2) but with a two-dimensional Laplacian operator V. In the two-dimensional
space the position vectors in the direct and reciprocal space are defined as

r=ix+iy (9.35)

k=ik +ik

v (9.36)
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The normalized wave function for the two-dimensional free-electron gas is given as

() = —— e " = [K) ©9.37)

VA

where Ag=L? is the area of the free-electron gas. The cyclic boundary condition defined by Eq. (9.9) gives discrete values
of ky and ky as

P S (9.38)

where n, =n,=0,%1,£2, ... The points in the k-space represented by each set of k, and k, give the allowed states. In a
two-dimensional free-electron gas the Fermi surface is circular, having radius kg and area 7kg. All the k-states within the
Fermi circle are occupied but are empty outside. From Eq. (9.38) it is evident that there is one electron state in an area of
(27/L)? in the k-space. The total number of occupied states in the Fermi circle is given by

k2
n—Fzz . (9.39)
(2m/L)
which gives the value of kg as
kp= (27n,)"/? (9.40)

where n, =N./A( gives the number of electrons per unit area, that is, the surface density of the electrons. The Fermi energy
is obtained by substituting Eq. (9.40) into Eq. (9.16) to give

Ep=—"n, (9.41)

m,

The Fermi velocity vg can be obtained by substituting kg from Eq. (9.40) into Eq. (9.17) giving

Vi _n (27n,)'? (9.42)

€

Let n.(k) be the number of electron states with a wave vector less than or equal to k, then

_ae (LY
n, (k) =nk (2n> (9.43)

One can calculate N.(Ey) and g.(Ey) in exactly the same manner as for the three-dimensional electron gas. They are
given by

m_A,
N (E,) =—" (9.44)
nh
m
E )=—2% 9.45
ge( k) nh2 ( )

It is evident that N.(Ey) and g.(Ex) for the two-dimensional gas are independent of energy. Fig. 9.4 shows g.(Ey) as
a function of energy for a two-dimensional free-electron gas. The total energy of the system can be written as
Ep
Er= JNe<Ek)EkdEk
0 (9.46)
1
- E Ne EF

Hence the average energy of an electron in a two-dimensional free-electron gas is half of the Fermi energy of the system.
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Problem 9.1

In a one-dimensional free-electron gas with N, electrons, and having length L, the Schrodinger wave equation is defined as

nod
~2m. g V00 =Bdv(x)) (9.47)
e
where the normalized wave function |(x)) is given by
1 kx
X)) =—e"™* =1k (9.48)
(X)) Vi lk)
Prove that the Fermi wavevector, Fermi energy, and the density of electron states are given by
ke :nTe = 7n, (9.49)
2).2 252 02
[ ik _mhn (9.50)
2m, 2m,
L 2m 1/2 -1/2
Ne(Ek):ﬁ( hze) E; (9.51)
1 2m 1/2 -1/2
ge(Ek):E< hze) B (9.52)

Further prove that the total energy of the free-electron gas is given by

1
Er =5 Nk (9.53)

The function g.(Ey) as a function of energy for a one-dimensional free-electron gas is shown in Fig. 9.4.

9.4 COHESIVE ENERGY AND INTERATOMIC SPACING OF IDEAL METAL

In a simple metal there are two contributions to the Coulomb energy: the repulsive part of the energy is given by the kinetic
energy of the free electron gas and the attractive part is given by the interaction of electrons with the positive ions situated
atthe lattice positions. Consider ametal with valence Z and interatomic distance R. The electronic charge —Z e on an atom can
be considered to be distributed uniformly in a sphere of radius R. Therefore, the electronic charge density —en, is given by

_Ze (9.54)

where n, is the electron density. Let the nucleus be assumed to be a point with positive charge Ze and situated at a distance r
from the center of the sphere of electronic charge (see Fig. 9.5). If we draw a concentric sphere with radius r, then the
electronic charge inside this sphere q is given by

G = —Ze (3)3 9.55)

FIG. 9.5 Schematic representation of an atom: electronic charge is uniformly distributed in a sphere of radius R. The nucleus with positive charge Ze,
represented by a dot, is situated at a distance r from the center of the electronic charge distribution.
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So, the net charge inside the sphere of radius r, which also contains positive charge of magnitude Ze, becomes

q(r)= Ze—Ze (%)3

The Coulomb potential at a distance r from the center of the sphere becomes

ot =221 ()]

T T

The electronic charge dq(r) in a spherical shell of radius r and thickness dr is given by

Ze

_ 2
dq(r) = i, 4nr-dr
—R
3
The contribution to potential energy by this spherical shell is given by
37°%¢? r\3
Hence the Coulomb potential energy per atom becomes
R 9 2.2
Ze
Ec= |dE=——
¢ J c 10 R
0

Now the average kinetic energy per electron Ex in a free electron gas is given by

3. 3rk 3K

B R, L2 2 \2/3
=55 =5 2m, "5 2m, CT )

Eg

where we have used Eq. (9.19). Substituting the value of n, from Eq. (9.54), one gets
38 (9 \*1
Bx=co— (2] =
52m, \ 4 R
Therefore, the kinetic energy per atom, which contains Z electrons, becomes
g 32 1 (9m N\ 1
K5 2m, \ 4 R?

The total energy per atom is the sum of the potential and kinetic energies given by Eqs. (9.60), (9.63), that is,
E(R)=E-+Eg

9 72¢? 3Zh_2<9n >2/3 1

"10R Tsam\4°) R

The equilibrium value of interatomic distance Ry is obtained by minimizing the total energy per atom, that is,

dE(R)

= =0
dR

R=R,

Substituting Eq. (9.64) into Eq. (9.65), the value of Ry is given by
2/3
Ry=2 (7)1 7o
073\ 4 m,e?

=1.30Z"'7A

185

(9.56)

(9.57)

(9.58)

(9.59)

(9.60)

9.61)

(9.62)

(9.63)

(9.64)

(9.65)

(9.66)
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The value of energy per atom in the equilibrium state is obtained by substituting R, from Eq. (9.66) for R, into Eq. (9.64)
to obtain

9 722
E(R))=——
Ro)==3 R, 9.67)
=—0.3Z’Ryd~ —5.0Z%V

We know that the binding energy of the hydrogen atom (Z = 1) is —13.6 eV. Therefore, the above model gives only the
order of energy per atom.

9.5 THE FERMI-DIRAC DISTRIBUTION FUNCTION

The description of the free-electron theory presented so far has been temperature independent, but a number of elec-
tronic properties depend on temperature. The effect of temperature on various electronic properties of solids can be
studied with the help of the Fermi-Dirac distribution function. It has been seen that at absolute zero all of the electron
states are filled up to the Fermi energy Eg, which represents the ground state of the system. When the temperature is
increased, the kinetic energy of the electrons increases and the electrons in the vicinity of Eg cross the Fermi energy. As
a result, some of the electron states close to but above Eg are occupied. In other words, some energy levels above Er are
occupied that were vacant at absolute zero, and some levels below Er become partially vacant that were fully occupied
at absolute zero.

The Fermi-Dirac distribution function f(Ey — u) correctly describes the distribution of electrons at finite temperatures
and is defined as

1
fEy—p) =5 =— (9.68)

eksT +1

Here p(T) is the chemical potential and is chosen in such a way that the total number of electrons N, is conserved. It is
noteworthy that x(T) is equal to the Fermi energy Er at absolute zero. The Fermi-Dirac distribution function f(Ey — ) gives
the probability of occupation of an electron state with energy Ej in thermal equilibrium. At absolute zero we know that
Ex < u(T), so from Eq. (9.68), f(Ex — ) is unity at absolute zero. But for Ey > u(T), Ex — u(T) is positive and therefore
f(Ex — p) is zero at absolute zero. On the whole, one can say that at absolute zero the probability of occupation of all
the states below Er is one (occupied) and for states above Er is zero (unoccupied). The dashed line in Fig. 9.6A shows
f(Ex — 1) as a function of Ey at absolute zero, which changes discontinuously from the value 1 to O at Ef.

To have an idea about the variation of the Fermi-Dirac distribution function at finite temperature, let us calculate it at
some points of interest. Here we take u = Eg (the value at absolute zero). If E, = Ex—kgT, then from Eq. (9.68) we get

f(E, — ) = =073

e !+
At Ex = Eg, Eq. (9.68) gives

f(Ex — 1) = 0.50
At Ex = Eg+kgT, one gets
f(Ex—w) = 0.27

The dark line in Fig. 9.6A shows the variation of f(Ey — i) as a function of Ey at a finite T value. It shows that as the
temperature is raised from absolute zero, only a few electrons having energy close to Er (within a range ~kgT) are raised to
higher states to give free electrons and all other electrons are tightly bound. At Ey = Ep, f(Ey — p) has the value one-half at
all temperatures. Hence the Fermi energy can also be defined as the electron state whose probability of occupation is always
one-half. From Fig. 9.6A it is evident that the slope of the Fermi-Distribution function, at finite temperature, is finite only
around Ef (approximately within an energy range of kgT) and is zero at all other values of energy. Fig. 9.6B shows the
derivative of f(Ex — i) as a function of Ej. At finite temperature, it is a peaked function around Ey=Er whose width
increases with an increase in temperature. But at absolute zero it becomes the Dirac delta function.

If Ex—u >> kgT, then the exponential term in Eq. (9.68) dominates and, hence, the distribution function can be
written as

(=)
f(E, —pn)=e *T (9.69)

This is essentially the Maxwell-Boltzmann distribution.
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FIG. 9.6 (A) The Fermi distribution function f(Eyx — p) as a function of
energy Ey. The dashed line represents f(Ex — u) at absolute zero, while
the dark line represents f(Eyx — ) at a finite temperature T. (B) The energy
2kgT derivative of the Fermi-Dirac distribution function, that is, —0f/0Ey as a
. - & function of energy Ej at absolute zero (dashed line) and at finite temperature
T=0 K\ T (dark line).
I 1.0
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9.6 SPECIFIC HEAT OF ELECTRON GAS

The early development of the theory of specific heat of electrons, which was based on classical mechanics, caused great
difficulty. For example, consider a solid with N atoms, each contributing one conduction electron. If the conduction elec-
trons are considered to be free electrons, then the solid has a free electron gas with N, (=N) electrons. It has already been
proved in Chapter 8 that each free electron possesses thermal energy of (3/2) kgT, giving rise to a contribution of (3/2) kg to
the specific heat. Hence the total electronic contribution to the specific heat at constant volume C, becomes (3/2) N.kg. But
at room temperature, the observed value of C, is not more than 0.01 times the value predicted above. This happened because
all the free electrons contributed only to the electrical conduction and not to the specific heat.

The fact that electrons obey the Fermi-Dirac distribution solved this problem. In the previous section, it was found that,
as the temperature is increased from absolute zero to T, not every electron gains thermal energy (=kgT) as expected clas-
sically. Rather, only those electrons that lie in states around Eg, within an energy range of kgT, gain energy, and, hence,
participate in the thermal properties. Therefore, only a fraction on the order of T/TE of the total number of electrons N, can
be excited thermally at temperature T because only these electrons lie within an energy range on the order of kgT. The N(T/
Tg) electrons, each having thermal energy kgT, give a total electronic energy E as

E=N, (T) kT (9.70)
TF
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Therefore, the electronic contribution to the specific heat becomes
oE T
C.= (—) ~N.kp — 9.71)
v Tk

which is very small compared with the classical value, but comparable with the experimental results.

9.6.1 One-Dimensional Free-Electron Gas

At finite temperature some of the electrons are excited to states above Er but the total number of electrons remains the same.
Therefore, the total number of electrons at finite temperature is given by

N, = JNe(Ek)f(Ek —u)dE, 9.72)
0
Substituting the value of N.(Eyx) from Eq. (9.51) into Eq. (9.72), we get
L 2me 1/2 T ~1/2
Ne_ﬂ( . > JEk 2§ (E, — 1)dE, 9.73)
Making the substitution
Ey M
=—= and y=—r1 74
X K and y KT 9.74)
in the above integral, one can write
L 2m\"? T 1
N.=—|(=% kgT [f(x—y)—=d 75
€ 2n<h2> BJ(X Y)ﬁx (9 )
0
The integral in Eq. (9.75) is the Fermi distribution function integral (see Appendix I) with
1
h(x)= — 9.76
(x) 7 9.76)
Therefore, H(x), from Egs. (9.76), (I.5) of Appendix I, is given by
H(x) = JL dx =2x'/2 (9.77)
v .
0
Using Eq. (I.17) of Appendix I, the integral in Eq. (9.75) can be solved, giving
L (2m,\"? &
N.=— (== VkgT |1+ ——+-+|H 9.78

Substituting H(y) from Eq. (9.77) into Eq. (9.78) and simplifying, we obtain

L /2m.\ '/ 72 (kyT\>
Ne:n(hze) W2 [1_24<Z> . (9.79)

At absolute zero, N, can be obtained from Eq. (9.49) by substituting the value of kg from Eq. (9.50) and is given by

L 2me 12 1/2
Ne;(7> EY (9.80)
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Equating Egs. (9.79), (9.80) one obtains the chemical potential u(T) as

2 (k T>2
T+ (2= +-- 9.81)
12 \ Ep

In writing the above expression, we have substituted Er (at absolute zero) in place of u(T) in the denominator of the second
term in the square brackets on the right side of Eq. (9.81): an approximate expression. It shows that the Fermi energy
increases with an increase in temperature. The total energy of the free-electron gas at temperature T is given by

Ep(T) = u(T) =Eg

E; = JEkNe(Ek)f(Ek — u)dE, (9.82)
0

Substituting the value of N.(Ey) from Eq. (9.51) and making the substitution given by Eq. (9.74), one can write

L /2m, 12 3/2oo 1/2
ET:E - (kgT) f(x—y)x /“dx (9.83)
Here
T 2
H(x) = Jxl/zdx: §x3/2 (9.84)
0

The total energy can be calculated by solving the Fermi distribution function integral in Eq. (9.83) and is given by

L /2m)\ "> 3 n 2
_ (2 /2 22 L [2y32
E; P < P > (kgT) {1+ 5 0y + } <3y > (9.85)

Solving the above equation, one gets, at low temperatures,

N

[

2EY?

T 3 T T

2 2
2 5, ™ (kgT) ] 9.86)

In writing the above expression, the terms with the lowest powers of T are retained. Substituting the value of u(T)=
EgR(T) from Eq.(9.81) into Eq. (9.86), we finally obtain
2 (kg T\’
1+ (B—) (9.87)

1
E;=-N,E;

3 4 \E;

retaining the terms up to T2. The electronic specific heat at constant volume C, can be calculated from Eq. (9.87) and is

given by
JE 72 T
C.= (=L) =—N/kg|— 9.88
= (5, o (s,) o

This shows that C. depends linearly on the temperature.

9.6.2 Two-Dimensional Free-Electron Gas

Substituting N (Ey) for a two-dimensional electron gas from Eq. (9.44) into Eq. (9.72) and making the substitution given by
Eq. (9.74), we obtain

kgT Jf(x—y)dx (9.89)
0
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Here h(x) = 1 in the above integral, so
H(x) = de =X (9.90)
0

N, can be evaluated by solving the Fermi distribution function integral in Eq. (9.89) and is given as

m_A n? o
N, =—OkT|l+——+
T [ 6 9y’ ]y
(9.91)
m, A m_A
= u(T) =D VB (T)
At T = 0 K, N, can also be obtained by integrating N.(Ey), given by Eq. (9.44), from zero to the Fermi energy, yielding
A

N, = “:;hzo Ep 9.92)

The total number of electrons in the free-electron gas is constant at all temperatures, therefore, equating Eqs. (9.91), (9.92),
we obtain

Ep(T) =Eg 9.93)

This shows that the Fermi energy in a two-dimensional free-electron gas is independent of temperature. The
total energy of the two-dimensional free-electron gas is obtained by substituting N.(Ey) from Eq. (9.44) into Eq. (9.82)
to get

A o)
E, :me—hZO(kBT)2 : fo(x—y)dx (9.94)
" 0
Here
)
H(x) = > (9.95)
The Fermi distribution integral in Eq. (9.94) can be solved easily to get
1 (T’
E; = ENCEF 1+? (T—F> ] (9.96)

The electronic specific heat at constant volume becomes

JE n? T
C,=|52)] =%Nkg|=— 9.97
= (), () 69

From Eqs. (9.88), (9.97) it is evident that C, in a two-dimensional free-electron gas is double the value in a one-dimensional
free-electron gas.

9.6.3 Three-Dimensional Free-Electron Gas

The total number of electrons in a three-dimensional free-electron gas at finite temperature is obtained by substituting the
value of N.(Ey) from Eq. (9.22) into Eq. (9.72), which gives

\Y 2m 3/2 T 1/2
Ne=5 <7) : JEk/ f(E, — ) dE, (9.98)
0



Free-Electron Theory of Metals Chapter | 9 191

With the help of Eq. (9.74), the above equation can be written as

vV [/2m\*? T
=5 (h—“;> (kgT)*?- Jxl/zf(x—y)dx (9.99)
T

The Fermi distribution function integral above can be solved easily to get

v (2m)\*? 7 (kgT\’
N = e AP+ (B . 9.100
e 3.2 ( hz ) I 3 1 ( )
At absolute zero the total number of electrons in the three-dimensional gas, from Egs. (9.16), (9.19) is given by
\" 2m 3/2 3/2
ezm< h;) E; (9.101)

Equating Egs. (9.100), (9.101), the temperature dependence of the Fermi energy becomes

2 (k T>2
- (B2) +... (9.102)
12\ E;

This shows that Eg decreases with an increase in temperature. Fig. 9.7 shows the behavior of Eg as a function of temperature
for one-, two-, and three-dimensional solids. Now the total energy of the three-dimensional gas is obtained by substituting
the value of N (Ey) from Eq. (9.22) into Eq. (9.82) and further using the substitution (Eq. 9.74) to get

Eg(T) = pu(T) =Eg

V. (2m, 32 5/200 3/2
=52 (5 (KgT) X2 f(x —y)dx (9.103)
0
I_‘ 1D
=
LL
w
2D
Er(0) = E¢
3D
0 T—

FIG. 9.7 Schematic representation of the temperature variation of the Fermi energy Eg(T) for one-, two-, and three-dimensional free-electron gases.
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From the above integral
32 2 5
H(x)= |[x dx:gx (9.104)
0

The Fermi distribution function integral in Eq. (9.103) can be easily solved to write

v (2m\"? 572 (kT
E,=—s [ ==° 2+ —(B2) +.. 9.105
T 57_[2 ( hz > 2 ] < L ( )
Substituting u(T) from Eq. (9.102) into the above expression and retaining terms only up to T we get
3 572 (kgT\’
E-=>NE. |1+ (B2} +... 9.106
To5 e F 12 ( E; ) ] ¢ )

In writing the above expression we have used Egs. (9.24), (9.25). With the help of the above expression, the electronic
specific heat at constant volume becomes

JE 1 T
C.= (a—T) =57 Nk (T_)
| v F (9.107)
:§n2Ne(EF)k2BT

It is noteworthy, from Eqgs. (9.88), (9.97), (9.107) that the magnitude of the electronic specific heat is in the ratio of 1:2:3 for
one-, two-, and three-dimensional solids. The temperature variation of C, is the same regardless of the dimensionality of the
solid, which is due to the same temperature variation of the total energy in these solids. In the above derivation the electron-
electron and electron-ion interactions, which are finite in a solid, have been neglected. If these interactions are included in
the derivation of C,, then the form of the expression will remain the same except that the density of electron states N.(Ej) is
modified.

9.7 PARAMAGNETIC SUSCEPTIBILITY OF FREE-ELECTRON GAS

Paramagnetic susceptibility is measured experimentally at a finite temperature and, therefore, temperature effects should be
included in the theory. In the free-electron gas the electrons with up (mg= %2) and down (mg= — %2) spins are distributed in
parabolic bands. At absolute zero, the densities of electron states per unit volume per unit energy for up g;(Ex) and down
g, (Ex) spins are equal and each is equal to half of the total density of electron states g.(Ey) (see Fig. 9.8A). Therefore, one
can write

1
gT(Ek) :gl(Ek) :Ege(Ek) (9.108)

Let the magnetic field H be applied parallel to the upspin electrons. The spin magnetic moment is given as i, = — gy /g S
(see Chapter 18) where s is the spin, ug is the Bohr magnetron, and g is Lande’s splitting factor for spin (g, =2). Therefore,
the magnetic moment of the upspin electrons is opposite to the direction of H, while that of the downspin electrons is par-
allel to H. The magnetic interaction energy of each electron is given by

E= —yu,-H=gus-H (9.109)

Therefore, after the application of a magnetic field, the magnetic energy for upspin electrons is raised by ugH and that for
downspin electrons is lowered by the same amount. Therefore, the densities of electron states per unit volume per unit
energy for up- and downspin electrons become

1
g (Ey) =5 g.(Ex —ugH) 9.110)

1
gl(Ek)ZEge(Ek"_uBH) 9.111)
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E, FIG. 9.8 (A) The parabolic energy bands for up- and downspin electrons in
the absence of a magnetic field. The Fermi energy E is the same for both the
spin states. (B) The parabolic energy bands for up- and downspin electrons in
the presence of magnetic field H applied in the vertical direction.
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To obtain the equilibrium state, the upspin electrons from the higher energy states will shift to the lower energy states with
spin down until the Fermi level of the two distributions become the same (Fig. 9.8B). Hence the densities of electrons per
unit volume with up n; and down spins n; become

(o9

1
n =3 J f(Ey — 1) g, (B, — g H)AE, 9.112)
ugH

(s

1
=3 J f(Ey — 1) g (Ey + ug H)dEy ©.113)

—ugH

For a weak magnetic field, ugH is small and, therefore, the lower limit in the above integrals can be taken to be zero,
allowing us to write

N =

n, = Jf(Ek — 1) g, (By — ug H)AE, (9.114)
0

| =

n = Jf(Ek — 1) g, (By + g H)dE, (9.115)
0
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The magnetization is defined as the magnetic moment per unit volume and is given by

M=ty (n, —n,) 9.116)

Substituting Egs. (9.114), (9.115) into Eq. (9.116), we get
1 [s9)
M= 5 HB Jf(Ek — 1) (& (B + g H) — g, (Ey — g H)|dE, 9.117)
0

Further, for a weak H field, the functions for the density of electron states in the above expression can be expanded around
Ej to write (retaining terms linear in H)

T 9
M= uéHJf(Ek—M)aée dE, 9.118)
k
0

Now the magnetic susceptibility per unit volume of the free-electron gas becomes

M
XM:ﬁ

i 9

- Jf(Ek — ) 2L gE, (9.119)

OF,
0

This is the general expression for the paramagnetic susceptibility for a free-electron gas at a finite temperature and is also
called the Pauli spin susceptibility. Eq. (9.119), with the help of the substitution from Eq. (9.74), can be written as

T d
v = M def(x—y) o % (By) (9.120)
0

The density of electron states g.(Ey) for a free-electron gas can be written as

g.(Ey) =Cg.(x) 9.121)

where the constant C depends on the dimensionality of the free-electron gas under consideration. Eq. (9.120) becomes

T P
=1 C [axt(x=y) 2-e.(x) 9.122)
0

Eq. (9.122) is the Fermi distribution function integral which allows us to write

h(x) =—_&.(x) (9.123)
and hence
Hpp (x) = Jh(x) dx =g.(x) (9.124)
0
After solving the integral in Eq. (9.122), y is given by
2 P
im =3 C {1 te ay? + } Hep (y)

(9.125)

nz "
- ca e T EY
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where

s

gy = & (y) (9.126)

Eq. (9.125) is the general expression and shows that the temperature dependence of y); depends on the density of electron
states. Let us calculate y); at absolute zero. Integrating Eq. (9.119) by parts, one gets

i of
XM:XPZHZB Jge(Ek) —— | dE; ©.127)
OE,
0

At absolute zero, the slope of f(Ey — p) is finite only at Er and is the Dirac delta function (see Fig. 9.6B), that is,

of
—| =) =d(E,—E 12
( aEk> (Ex—Er) (9.128)
Substituting Eq. (9.128) into Eq. (9.127), one gets the familiar expression for y as

I = 1p = K & (Eg) (9.129)
The same expression can be obtained by putting f(Ex — p)=1 in Eq. (9.119).

9.7.1 One-Dimensional Free-Electron Gas

In a one-dimensional free-electron gas, g.(Ey) is given by Eq. (9.52), which can be written as

g.(Ex) =Cg.(x) (9.130)
where
C=(kgT) '/? 9.131)
and
1 (2m, 2 -1/2
ge(x):ﬂ ( e ) xV (9.132)
Substituting the values of C and g.(y) from Egs. (9.131), (9.132) into Eq. (9.125), one gets
1 /2m\"? m? (kT ?
=1 — [ =S e () 4 9.133
e () (30 o
Substituting u(T) from Eq. (9.81) into the above expression and retaining terms up to the second power of T, one gets
2 (kgT\?
XP:ﬂlzage(EF) [1 +E (EB—F) + .- (9.134)

According to Eq. (9.134), at low temperatures, Pauli’s spin susceptibility increases with an increase in temperature. At
absolute zero it gives the same expression as Eq. (9.129).
9.7.2 Two-Dimensional Free-Electron Gas

In a two-dimensional free-electron gas, g.(Ey) is given by Eq. (9.45) and is a constant quantity. Therefore,

me B
g.(Ey) == g.(y) (9.135)

and

gl(y)=0, C=1 (9.136)
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Substituting Egs. (9.135), (9.136) into Eq. (9.125), one immediately writes

7p = 5 8 (Ep) (9.137)

Therefore, in a two-dimensional free-electron gas, Pauli’s paramagnetic spin susceptibility is independent of temperature.

9.7.3 Three-Dimensional Free-Electron Gas

In a three-dimensional free-electron gas, g.(Ey) is given by Eq. (9.23), which can also be written as

ge(B) = (k1) g, (%) (9.138)
where
1 2m\*"? ,,
g.(x) :ﬁ( h;) x'/ (9.139)
From Eq. (9.138) we can write
C=(kgT)"/? (9.140)
Now it is straight forward to prove (from Eq. 9.139) that
ge(y)_ 1
=——y (9.141)
g(y) 4
Substituting Egs. (9.139), (9.141) into Eq. (9.125) and simplifying, we get
1 (2m,\*? 7 (kT
L _ 2 L (2m, CN PR G L N 9.142
)CP /“thnz(hz) u 24< 1 ) ( )
Substituting u(T) from Eq. (9.102) into the above equation and simplifying, we get
2 2
) n° (kT
— E)|l1——(ZB=) +... 9.143
Tp = M & ( F)[ IZ(EF) ] (9.143)

The above expression shows that Pauli’s spin susceptibility decreases with an increase in temperature. The temperature
dependences of the paramagnetic susceptibilities for one-, two-, and three-dimensional free-electron gases are shown in
Fig. 9.9 and they exhibit different trends for different dimensionalities. Further, comparing Egs. (9.81), (9.93), (9.102)
for Ex(T) with Egs. (9.134), (9.137), (9.143) for yp, it is evident that the temperature variation of yp is the same as that
of the corresponding Ex(T). It is also evident from Figs. 9.7 and 9.9.

A —»
-
=]

17 9a(Ef)

0 T—
FIG. 9.9 Schematic representation of the temperature variation of paramagnetic susceptibility (the Pauli spin susceptibility) of one-, two-, and three-
dimensional free-electron gases.



Free-Electron Theory of Metals Chapter | 9 197

9.8 CLASSICAL SPIN SUSCEPTIBILITY

The classical expression for spin susceptibility can be derived from the general expression in the limit of very high
temperatures. In the very high temperature limit, the Fermi-Dirac distribution function, defined by Eq. (9.68),
becomes

#—Ey
(B —p) =e keT (9.144)

So, in the very high temperature limit, the magnetic susceptibility of the free-electron gas, given by Eq. (9.119),
becomes

Bk gg
I = L esT JekBT —=dE, (9.145)
OE,
0
Integrating the above equation by parts, one gets
B T B
I = ﬁekBT J ekl g, (Ey )dE, (9.146)
B

In writing the above expression we have used the fact that g.(Ex) — 0 as Ex, — 0. From Egs. (9.114), (9.115) the total number
of electrons per unit volume can be written as

n,=n,+n = Jf(Ek—u) g.(E,) dE, (9.147)
0
which, in the very high temperature limit, becomes
T B
n, =ekeT J ekeTg (E, ) dE, (9.148)
0

Substituting Eq. (9.148) into Eq. (9.146), one can immediately obtain

2
Hp 1D

T kT

M (9.149)
which is the classical expression for the spin magnetic susceptibility per unit volume.

In this chapter we have concentrated on simple metals that are characterized by free conduction electrons contained in
broad s- (p-) bands. But in the periodic table of the elements, there exist a large number of d- and f-band metals in which the
d-band and f-band are localized. In a d-band metal each atom possesses s- or p-electrons in the outermost shell, which are
loosely bound to the nucleus and can be regarded as free electrons. Just below the outermost shell is the d-shell containing
electrons that are neither tightly bound to the nucleus nor free like the s-electrons. Therefore, a d-band metal can
be regarded as a sea of s-conduction electrons, with nearly uniform density, in which the ions with a quasilocalized
(or deformable) shell are embedded at the lattice positions. The study of the electronic structure and electronic properties
of these metals is more involved and is not within the scope of this book, but interested readers may consult Galsin (2002)
for further study.
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A number of properties of solids, such as the electrical properties, dielectric properties, and magnetic properties, depend on
the electric and magnetic fields. Therefore, it is of great interest to study, in general, the effects of electric and magnetic
fields on crystalline solids. In this Chapter we consider simple metals in which the ions are situated at the lattice positions,
while the conduction electrons interact with each other.

10.1 EQUATION OF MOTION

Consider a system of interacting electrons confined to a cubical box of finite size. An electron, during its motion, interacts
with other electrons and gets scattered. Therefore, one can define a relaxation time 7., which is some sort of average time
between two consecutive scattering processes (collisions) of an electron. The equation of motion of an interacting electron
in the presence of an applied force F is given by

dp p
—+L=F 10.1
dt +T ( )

where p=m,v is the momentum of an electron moving with velocity v. The first term is due to Newton’s second law of
motion and the second due to the collision processes. The above equation can be written in terms of v as

d 1
e {dt TJ v (10.2)
From wave mechanics we know that
p=m,v=7k (10.3)
where K is the electron wave vector in the reciprocal space. Therefore, Eq. (10.1) can also be written as
d 1
h|—+—|k=F 10.4
{dt Tj ( )
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If F is the Lorentz force experienced by an electron due to the application of an electromagnetic field, it is given by
1
F=—c¢ |:E+—V><H:| (10.5)
c

Here E and H are electric and magnetic fields and —e is the electronic charge. Substituting Eq. (10.5) into Egs. (10.2),
(10.4), the general equation of motion becomes

d 1 1
m, |:§+T—e:|V=—e|:E+EVXH:| (10.6)
h[d+1}k_—e [Eﬂvxn} (10.7)
dt 7, [¢

For free electrons the relaxation time goes to infinity, that is, 7. — oo. Therefore, the equation of motion for a free electron
becomes

dv 1

mea:—e[E+vaH} (10.8)
k 1

hd—:—e |:E+—V><H:| (10.9)
dt c

10.2 FREE ELECTRONS IN A STATIC ELECTRIC FIELD

Let a static electric field E be applied to the free electron gas with electron density n.. The equation of motion of an electron
from Eq. (10.8) reduces to

dv

mea:—eE (10.10)

In the presence of an electric field, the electrons move in the direction opposite to that of the electric field. From Eq. (10.10),
a small change in velocity ov(dt) in time ot is given by

eE
ov(dt) =— —ot (10.11)
me
The free electrons move continuously without any hindrance in the presence of the applied field E. But in the presence of
collisions, the electrons acquire new equilibrium positions after the relaxation time z.. The change in velocity in time 7, is
given by

E
ov(r,)=— 1, (10.12)
me
The electric current density J becomes
J =-n.edv(z,)=0,E (10.13)
where
2
oo =D %o (10.14)
m,

Here we have substituted the value of dv(z.) from Eq. (10.12). Eq. (10.13) is nothing but the Ohm’s law and o, gives the
Drude’s conductivity for an electron gas. The resistivity of the electron gas p is given by

1
Po=— = (10.15)

T el
oy N.€°T,

One can also derive the expression for J in terms of the wave vector k. For a free electron, Eq. (10.9) in the presence of E
reduces to
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dk

h—=—eE 10.16
T ( )
In the presence of electron collisions, the change in wave vector Jk in time 7, is given by
eE
5k(7:e):—71'e (10.17)

After time 7, the electrons acquire their new equilibrium positions, as a result of which the Fermi sphere is displaced by
ok(z.) (see Fig. 10.1). From Egs. (10.3), (10.13) the current density in terms of dk(z.) can be written as

J— _neeh Sk

m,

(10.18)

Substituting the value of ok from Eq. (10.17) into Eq. (10.18), one can immediately get the expression for o given by
Eq. (10.14).

10.3 FREE ELECTRONS IN A STATIC MAGNETIC FIELD

If a free electron moves in the presence of an applied static magnetic field H, then Eq. (10.8) reduces to

mei—::fzva (10.19)
If H is in the z-direction, that is, H= §3 H, then the Cartesian components of Eq. (10.19) become
m, d;’tx =— ?vy (10.20)
me%:?vx (10.21)
ddvtz =0 (10.22)

Eq. (10.22) shows that the velocity v, in the direction of the applied magnetic field is constant in time. On the other hand,
Eqgs. (10.20), (10.21) show that v, and v,, are functions of time and their solution can be obtained as described below. Dif-
ferentiating Eq. (10.20) with respect to time and using Eq. (10.21), we get

d*v
F+wiv, =0 (10.23)
dt
where
eH
0, =— (10.24)
m,c
E FIG.10.1 (A) The Fermi sphere of a free-electron gas in

the ground state (at absolute zero) in the absence of an

Ak

Fermi sphere

Fermi sphere

(B)

electric field at zero time. The dots inside the Fermi sphere
represent the filled electronic states. (B) The Fermi sphere
of the electron gas in the presence of an electric field E. It
is displaced by a wave vector 0k in time ot after the appli-
cation of the electric field. Here the shape of the Fermi
surface is assumed to be unaffected in the presence of
the electric field.
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Here . is called the cyclotron frequency. In exactly the same manner, the differential equation for v, can also be obtained,
given by

d2Vy )

oty =0 (10.25)

The applied magnetic field does not change the energy of an electron. Therefore, the solution of Eqgs. (10.22), (10.23),
(10.25) should be such that the energy of the electron remains unchanged. But v, is already constant, therefore, the velocity
of the electron in the xy-plane should also be constant. If v, is the magnitude of constant velocity in the xy-plane, then

vievi=vd (10.26)

Eq. (10.26) shows that the electron moves in a circular path with frequency @, in the xy-plane, that is, perpendicular to the
direction of magnetic field (see Fig. 10.2). Therefore, v, and v, from Egs. (10.23), (10.25) are given by
v, = —Vysinw,t (10.27)

X

Vy =V, COS 0t (10.28)

10.4 ELECTRONS IN STATIC ELECTRIC AND MAGNETIC FIELDS

From Eqgs. (10.6) one can write

1
v=—" {E+va}V (10.29)
m, c T,
If the magnetic field H is in the z-direction, then the components of Eq. (10.29) are given by
V= —— B ———v H- (10.30)
m, m.C (A
e e v
vV — " FE - % (vH - 10.31
vy m, ” mec( V) 7, ( )
\,=——F,—2 (10.32)
me Te
y
Vo
------ 1 =V cosayt
—Voslinmct

gt

FIG. 10.2 The circular motion of an electron in the xy-plane when a magnetic field H is applied in the z-direction.
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Multiplying Egs. (10.30), (10.31), (10.32) by n.e 7., we obtain

—J,=—0,E, + o], +] (10.33)
—tJ, = =0 B, — 0] +], (10.34)
—7,J0,=—0,E, +], (10.35)

Here Eqgs. (10.13), (10.14) for J and o, respectively, have been used. In the equilibrium condition

J,=J,=1,=0 (10.36)
Therefore, for a system in the equilibrium state, Eqs. (10.33), (10.34), (10.35) reduce to
JitorJ,=0E, (10.37)
—(w.7) ) +], = 0oE, (10.38)
J,=0,E, (10.39)
Egs. (10.37), (10.38), (10.39) can be written in matrix form as
E, 010 “;—: 0\ /1,
E, | = _% 010 o |7 (10.40)
E, 0 0 1 J,
09
which can also be written as
E“:Zpa/}Jﬁ (10.41)
B

Here p,; are the Cartesian components of the magnetoresistivity tensor p . From Egs. (10.40), (10.41) it is evident that the
diagonal and nondiagonal components of p are given by

1
pXX = pyy = pZZ = — (10.42)
Oo
.7
Pry = —Pyx = ;Oe, Pxz =P =Py, =Py =0 (10.43)

The diagonal components p,, are called the magnetoresistivity and are scalar quantities independent of the magnetic field.
0., 1s called the longitudinal magnetoresistivity as the applied magnetic field is parallel to the current. The nondiagonal
component py, (or py) depends on the magnetic field and gives the Hall resistivity. These are also called the transverse
magnetoresistivity as the magnetic field is perpendicular to the current or electric field. In the presence of electric and
magnetic fields perpendicular to each other, the electron executes a helical path, as shown in Fig. 10.3. One should note
that if the magnetic field or the relaxation time is zero, then py, and p,x go to zero. The diagonal and nondiagonal com-
ponents of resistivity in a cubical solid with side L are related to the resistance R as follows:

E, V,/L
P =y 1 2 Ru (10.44)
X X
E, V,/L
— Y _ ¥y
P =7 = Rel (10.45)

Vx and V, are the components of voltage along the x- and y-directions and I and Iy are the corresponding current com-
ponents. Egs. (10.44), (10.45) show that the resistance in three dimensions depends on the size of the solid. Egs. (10.37),
(10.38), (10.39) can be solved for the components of the current density to write

0 (760018) 0y

J =
1+ (0,)’ o

X

10.46
I+ () (1040
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i y
yi‘
0 z

X
FIG.10.3 Spiral motion of an electron about the direction of a magnetic field, that is, about the z-axis. The inset diagram shows the circular motion of the
electron perpendicular to the magnetic field, that is, in the xy-plane.

W10 o

0
= E + E (10.47)
Yol (oa) T 1+ (o)
J,=0,E, (10.48)
The above equations can be written in matrix form as
Jx % _(wcTe)UO 0 EX
I+ (0.7.) 1+(o7.)
1= (o:1.)0 oy o | E, (10.49)
I+ (@7) 1+(07)
J, 0 0 60 E,
which can also be written as
I,=Y o,E, (10.50)
B
0. are the components of magnetoconductivity tensor o. It is evident from Eq. (10.49) that
Oxx = Oyy (# O-zz)’ Oxy = 70y
Oy, =0, =0,=0,,=0 (10.51)

The diagonal components o, and oy, give the magnetoconductivity, while the nondiagonal components oy, and o, give
the Hall conductivity. Further, if the relaxation time or the magnetic field is zero, then o, = oy = 0 and the diagonal
components give the Drude conductivity.

10.5 THE HALL EFFECT IN METALS

Consider a slab of metallic material subjected to a uniform magnetic field H along the z-direction, that is, H =zH, and with
a current density J, passed through the material along the x-direction (see Fig. 10.4). Due to the magnetic force acting on the
charge carriers (Fleming’s left-hand rule), they will be deflected and a current in the y-direction is set up. Soon after, an
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¥ FIG. 10.4 The Hall voltage Ey in a rectangular slab of a
4 metallic solid when a magnetic field H is applied in the z-
direction. The applied electric field E and the velocity of
the charge carriers v, are in the x-direction.
—
Jx’Ex'Vx
AFFFERFF R PR F R R R R R
A+ ++++++++H+f++
O e +++ ++++++H+74+
A+ PR A
AAF++ S+ ++++ PRt
+++y4++++++++++++ % i
H

equilibrium state is achieved, which makes the current in the y-direction zero, but develops an electric field E, called the
Hall field. In a metallic solid the current is due to the flow of electrons; therefore, the bottom surface will become positively
charged as the electrons collect on the top surface. But if the current in a solid is due to the positive charges, then the bottom
surface will become negative relative to the top surface. The Hall coefficient Ry is defined as the electric field E,
developed per unit magnetic field H per unit current density J,, that is,

Ey
Ric =74 (10.52)

The coefficient Ryc can be calculated for a general charge carrier q. The Lorenz force acting on a charge q is given by
1

F=q (E + —vXx H)
c

where v is the velocity of the charge carrier. For the magnetic field in the z-direction, the force acting on the charge carrier
along the y-direction is given by

(10.53)

1
F =q [Ey + < (—VXH):| (10.54)
In the equilibrium position, the force Fy, must be zero, which gives E, as
1
Ey:EVXH (10.55)
But the current density J, is given by
J, =nqv, (10.56)
Substituting Egs. (10.55), (10.56) into Eq. (10.52), Ry is given by
1
Ryc=— 10.57
HC = e ( )

One noteworthy feature of the Hall effect is that Ry is negative if the charge carriers are negatively charged (say electrons
with charge —e) and positive if the charge carriers are positively charged (say holes with charge e). Therefore, the nature of
charge carriers in a solid can be inferred from the sign of Ry determined from the experimental study of the Hall effect.



206 Solid State Physics

10.6 FREE ELECTRONS IN AN ALTERNATING ELECTRIC FIELD
Consider an electron gas with electron density n,, which is subjected to an alternating electric field E defined by
E=Ey e ' (10.58)
where o is the frequency of the field. The electric force acting on an electron is given by
F=—¢eEj e " (10.59)

In this situation the velocity of the electron and, hence, the current density will also depend on time with a variation similar
to that of E, that is,

v(t) =vye " (10.60)
J=J,e ' (10.61)
where
Jo=-ncevy (10.62)
Substituting Egs. (10.59), (10.60) into Eq. (10.2), we get
1
m, (—la)+—) vy =—¢E, (10.63)
TC
From the above equation vy is given by
er,/m,
—_"el e g 10.64
Yo -7, ° ¢ )

Using Eq. (10.64), the amplitude of the current density J,, defined by Eq. (10.62), becomes

Jy=—20 g, (10.65)

I -7,

The frequency-dependent electrical conductivity a(w) is defined as

Jo=0(0)E, (10.66)
From Egs. (10.65), (10.66) one can write
g,
— _ 10.67
7() -7, ( )

It is evident that o(w) is a complex quantity having both real and imaginary parts, denoted by ¢(w) and o,(w), respectively.
Therefore, one can write

o(w)=0,(w)+1 0,y(®) (10.68)
%
= 10.69
)= wny (e
(O‘)Te)go
=" 0 10.70
7y () L+ (0r,)’ (10.70)

From Eq. (10.69), it is clear that ¢;(®) has a maximum value g at w7, = 0 and thereafter decreases continuously with an
increase in w 7. On the other hand, g,(w) shows resonant behavior with a resonance at wz, = 1 having maximum value of
(1/2)0¢. 1t is interesting to study the behavior of o(w) at high frequencies. For wz. >> 1, Egs. (10.69), (10.70) reduce to

o ()= — (10.71)
1( ) ((,U‘L'e)z mewzfe
2
0 n.c
,(w) :ﬁ:—me — (10.72)
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It is evident from Eqgs. (10.71), (10.72) that o,(w) is independent of the relaxation time and dominates over ¢ (®).
It is always convenient to express the results in terms of a complex dielectric function &(w) that is defined as

e(w)=1+4ny(w) (10.73)
where
P,
=0 10.74
x(@) E, (10.74)
where P, is the complex amplitude of the polarization P defined as
P=Py e ' (10.75)
To calculate the polarization Py, Eq. (10.2) can be written as
& 1d
— 4+—_—\r=F 10.76
e (dt2 7, dt) ' ( )
Here r is the position vector and v=dr/dz. The time dependence of r is the same as that of v, that is,
r=rye ' (10.77)
Substituting Eq. (10.77) into Eq. (10.76), we get
(e/me) EO
= 10.78
T /7. ( )

The dipole moment of an electron is given by —er,. Therefore, P for the electron gas is given by

2 E
P, = —n,er,= —% (10.79)
w’+i1w/7,
Py is a complex quantity and its real and imaginary parts can be separated to write
P,= P6 + ng (10.80)
where
P/ _ (noez/me)EO (10 81)
0= .
w? [1 + 1/(me)2}
2
E
6’ = M (10.82)

w? ot +1/07,]

Substituting Py from Egs. (10.80)—(10.82) in Eq. (10.74) and then in Eq. (10.73), the complex dielectric matrix &(w)
becomes

s(w)=¢;(w)+1 & (w) (10.83)
where
@ ! 10.84
& ()= ] m (10.34)
2
& (w) :% [wfi/ 1T ;12} (10.85)
and

(10.86)



208 Solid State Physics

wp is a constant frequency and is usually called the plasma frequency for reasons to be described below. The wavelength Ap
associated with wp is given by Jp = 27 c/wp. Egs. (10.83)—(10.85) give the general expression for the dielectric function.

The limiting cases of &(w) are of more interest. For example, when 7. — 0, &(w) reduces to zero, while &(®) is finite.
Therefore, in the free-electron approximation, &(w) reduces to &;(w) given by

glw)=¢(w)=1—— (10.87)

The dielectric function &(w) is negative for w? < w3. The waves satisfying this condition (with wavelength / greater than Ap)
possess an imaginary wave vector and decay exponentially. Therefore, waves with w* < w? are totally reflected from the
free-electron gas. On the other side, ¢(w) is positive for »>> wp and such high-frequency waves (with 4 less than Ap) can
pass through the free-electron gas. For w = wp, ¢(w) is zero and, therefore, wp acts as a cutoff frequency. The above dis-
cussion shows that the free-electron gas acts as a high-pass filter with a cutoff frequency wp (or wavelength Ap) that depends
on the electron density. It has been found that the alkali metals are transparent to ultraviolet light.

10.7 QUANTUM MECHANICAL THEORY OF ELECTRONS IN STATIC ELECTRIC AND
MAGNETIC FIELDS

Consider an electron gas in which an electron experiences an electric field E in the x-direction. The force experienced by

an electron is F(x) = —eEg. As a result, an electron is subject to the potential V(x) given by
V(x)=— JF(x)dx = eE)x (10.88)
The Schrodinger equation for an electron is given by
p?
(£ +v00 ) wir) =B lwin) (1089
me
The momentum operator p = — 1% V. To introduce the spin, we consider
2
p’=p-p=(S"-p)(S"-p)=(S"p) (10.90)

Here S*=(SE, Sly), St) denotes the Pauli spin matrices and S” =2s where s denotes the spin matrices. In writing the above
equation, the following identity has been used

(S”-a)(S"-b)=a-b+:S"-(axbh) (10.91)
Here a and b are any two vectors. Using Eq. (10.90) in Eq. (10.89), we write

L (s p) V| ) =Elp ) (10.92)

2m,

If a magnetic field H is applied on the electron gas, then the momentum changes as follows:

p—>p—§A (10.93)
Here A is the vector potential defined as follows
H= VxA (10.94)
Hence the Schrodinger equation in the presence of electric and magnetic fields is given by
o {7 (p=S4) Y+ veo | wio) v (1095)
2m, c

Using the identity (10.91)
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57 (o)) = [7 (- Ca)] 5 (p-C)

=(pga) +8" (p=gA) < (p-5A)

:(p SA)Z—rSP (pxA+Axp) (10.96)
~(p- SA)Z °S" - (~ihH)

(oA e

Substituting Eq. (10.96) into Eq. (10.95), one gets

1 e 2,
[Zm (p——A) +MS-H+V(X)}Il//(r)>:E|‘//(l')> (10.97)
where i, = —(e/i/m.c) s is the operator for the spin magnetic moment. To evaluate the stationary states for the electron

system, the magnetic field is assumed to be in the z-direction, that is, H = ZH. The vector potential A is chosen by using the
gauge transformation

A=(0,Hx,0) (10.98)
Eq. (10.97) can be expanded to write
1 , 2e er ,
2, \P — AP+ AT () +eEox|y(r)) = [E — (us H)]Y (r)) (10.99)

Here we have substituted s, = 4 1/2. Using Eq. (10.98) for A and the operator form of p, the above equation becomes
1 ,(# & )\ 2heH o eH? ,
|:2—rne{—h (@4-0_}72-'_@ + c Xa—y + 2 X +CEOX \lﬁ(r» (10100)
=[E — (tug H)J¥(r)

W (0* 2ieHx 0 12e?H?
S W) 5 (=2 e e ) 10100
e (1) = [E — (105 ) 1))

Eq. (10.101) obviously has a solution of the form

[ (r)) =e™Ye'M2u(x) (10.102)
Substituting Eq. (10.102) into Eq. (10.101) and rearranging the terms, we get

Bodr o1 1 E
[ + M0 2(x— X)? +eE0X+2m (C 0>

K <02 &

72me o0x2 012

u(x)

2m dx2 H

(10.103)

=[E P eyt

(53

where

chk E
X — y _ Eo (10.104)

eH m w?
The electron has linear velocity v, in the z-direction due to the applied electric field, but it executes a circular motion in the
xy-plane due to the application of the magnetic field along the z-direction. Therefore, according to Eq. (10.103), an
electron, in the presence of both electric and magnetic fields, executes a spiral motion about the center X. If only the mag-
netic field H is acting on the system (Ey = 0), then Eq. (10.103) yields
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”od o1
—K@+§mewg(x—xo)2] U(X): |:E—

K2
2m

€

— (£pgH) | u(x) (10.105)

Eq. (10.105) is the equation of motion of a harmonic oscillator having natural frequency w, and centered at

chk 1 hk, v
eH o, m, o,

The electron moves in a spiral motion about the center xy. Thus, the energy eigenvalues of Eq. (10.105) are

1
E = (ns+§> ho, (10.107)
where ng is an integer. Therefore,
K2
E-— 2m: — (pgH) =E; (10.108)
which gives
h2 2
E= L+E +pugH (10.109)
2m,

In Eq. (10.109) the first term corresponds to the free motion of electrons along the direction of the magnetic field H and
yields parabolic bands due to the continuous values of k, in a solid. The second term gives a discrete set of eigenvalues due
to the harmonic oscillations of electrons in a plane perpendicular to H and the last term gives the spin splitting of the energy
states. Fig. 10.5A shows the energy bands in the presence of a magnetic field, neglecting the effect of spin splitting. It shows
that the motion of the electrons gets quantized in the crystal plane perpendicular to H. If the electric field is also finite, then
from Eq. (10.103) the energy eigenvalues are given by

R K2 1 [cE,\°
E:Zme +E £ pgH+eBg X+ 2m, (f’) (10.110)
The last two terms give the effect of the electric field E,.

Let us investigate the degeneracy of the energy given by Eq. (10.109). From Eq. (10.102) it is evident that the allowed
values of k, are given as

(A) ; . >k,

m|;|,
[
L

(B)
FIG.10.5 (A) The quantized parabolic energy bands in the presence of a magnetic field neglecting the spin splitting of the energy bands. (B) The quan-
tized Landau cylindrical levels within the Fermi sphere in the presence of the magnetic field.
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kK, =—2 (10.111)

where ny=0,41,42, ... This means k, is quantized in units of 2 7t/L,. But the energy is independent of k, [Eq. (10.103)].
Therefore, for a particular value of ny, one may think that k, has any value out of the infinite series of its allowed values. But
actually, it is not so as will be clear from the following arguments. As Eq. (10.105) represents a linear oscillator centered
about x (dependent on ky), therefore, the function u(x) also depends on k,. This means that if an electron starts off in the y-
direction with velocity v, it will move in a circular path in the magnetic field, with center at x, (see Fig. 10.6). This path
must not be too big and lies inside the xy-plane with

0<xq<L, (10.112)
In terms of x, the values of k, are given by (see Eq. 10.106)
m,
ky = 7

The restriction on the allowed values of X also restricts the values of ky, which are given by

€ X (10.113)

0 <k, <Dy (=01 10.114
SNSTR (m) (10.114

There is one value of k, in distance 2n/Ly, so the maximum number of its values is

n oy Me®e

v 2 b %
Hence, for a particular value of ny, there are ny_states corresponding to each value of ky. In other words, an energy state for a
particular value of ny is ny -fold degenerate. As k, has continuous values for a bulk solld the k-states lie on Landau cylinders
(see Fig. 10.5B) in which the limit of occupancy is set by the original Fermi surface. Fig. 10.5B shows that the electron
energy varies with k, up to Eg on each cylinder, which is a one-dimensional magnetic subband, called a Landau level, rather
than a constant energy surface. Each circle around any cylinder, with both k, and n, fixed, is a line of constant energy,
generally called a Landau circle or Landau level. Fig. 10.7 shows the Landau circles for different values of ng in the presence
of a magnetic field.

One should note that in the absence of a magnetic field, k, and k, are also quantized, having values

(10.115)

2
k, = Enx (10.116)
27mn
k,=— (10.117)
LY

where n, = ny, = 0, 1,42, ... With the application of a magnetic field, the quantization described by Egs. (10.116),
(10.117) is broken. The wave function (Eq. 10.102) gives states with energy defined by Eq. (10.109) and these are nky-fold

X
FIG. 10.6 The solution of the Schrodinger wave equation in the xy-plane in the presence of a magnetic field H. The electron moves in a circular path
(dashed line) perpendicular to the z-direction.



212 Solid State Physics

(4
=
e

cccccc .. he.s 8 8 o8 s s
----- T T L S SR

. o0 aTe . . . stus CRSC I I
- s = ”o L. e e e ;'. - .
.. ole 8w o w e .. oae o.'~lo.'-_- ..
CRCRE s s owee H I T R
. ule . s -_.'; . .. M she /

A ' eie ek vk

4
N7

(A) (B)
FIG. 10.7 (A) Quantization of the free electron states, shown by dots, in the absence of a magnetic field. The circles (dashed lines) show the Landau

levels, which appear only in the presence of a magnetic field, as shown in part (B) of the figure. (B) Quantization of the electron states, represented by dots,
in the Landau orbits in the presence of a magnetic field.

degenerate. Consider two energy surfaces with energies E and E + JE. The area between the two energy surfaces separated
by energy JE can be written as [see Appendix J, Eq. (J.10)]

0A = < OE (10.118)

Here the electronic mass m, is replaced by the cyclotron mass m.. Let us assume that JE is the quantum of energy due to the
cyclotron frequency, that is, 0E = hw.. We know that in the free electron case the density of allowed states per unit area is
given as L,L,/(2 7) in the (kx,ky) space. Therefore, the number of electron states in area JA is

L,.L 2nm. L,L
E )YZ(SA: ;TL(MC)(Z )y2 (10.119)
b b
which, after simplification, gives
L.L L.L m.o
T R 0120

Eq. (10.120) gives the number of allowed states between two quantized orbits. Therefore, the effect of the magnetic field is
to create these quantized states (orbits) in k-space (see Fig. 10.7) and to cause the free electron states to “condense’ onto the
nearest such orbit. The number of states in each orbit is exactly the number of allowed states in the annulus in which it lies.
The new states are not really fixed at any point on the circle, but rotate around it with frequency w,. In the magnetic field we
can classify the various levels by naming the circles on which they lie. The quantized circular orbits, with energy given by
Eq. (10.107), are called Landau orbits (Landau levels). The degeneracy of the Landau orbits depends upon the applied
magnetic field (see Eq. 10.115). In other words, the number of electrons that occupy Landau orbits is proportional to
the magnetic field.

10.8 QUANTUM HALL EFFECT

The Quantum Hall Effect (QHE) was observed by Von Klitzing, a German scientist (Von Klitzing, Dorda, & Pepper, 1980).
The most interesting aspect of the QHE is that it is observed in two-dimensional (2D) electron systems only, for example, in
an inversion layer of a metal-oxide-semiconductor field-effect transistor (MOSFET). It has been observed that for certain
combinations of the magnetic field and the surface (areal) density of electrons, the Hall conductance has plateaus at values
that are integral multiples of e*/h: e is the electronic charge and h is Planck’s constant. These plateaus extend over a range of
the electron density. The QHE is observed under special conditions quite different from those of the ordinary Hall effect: the
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sample is kept at liquid He temperature (= 4 K) and subjected to very high magnetic fields (= 10 Tesla). Actually, Ando,
Matsumoto, and Uemura (1975) were the first to observe this effect, but the results lacked sufficient precision to make
sound conclusions. But now the results are of high precision (at least a few parts in 10%).

10.8.1 Two-Dimensional Electron System

A 2D system consists of electrons confined to a thin layer, of about 100 A thickness, near an interface between two dis-
similar materials. An important question is how a layer of electrons with a finite thickness behaves as a 2D system. One can
argue that if the thickness of the layer is smaller than the thermal wavelength of electrons at low temperatures, the motion of
the electrons perpendicular to the layer becomes quantized. The excitation energies of electrons in the perpendicular
direction are then much larger than the excitation energies in the plane of the layer and also much larger than the thermal
energy. Under such conditions, the motion of electrons in the perpendicular direction is frozen, but they can move easily in
the plane of the layer and hence it behaves like a 2D system. This fact has been confirmed experimentally, which shows that
the density of states is indeed two dimensional. According to Ohm’s law

E=pJ (10.121)

In a two-dimensional crystal, J is the current per unit width and E is the voltage per unit length. Hence, in a two-dimensional
crystal, from Eq. (10.121),

It
_ voltage o

p= = (10.122)
current

where R is the resistance. Hence, in a two-dimensional crystal, the resistivity is equal to the resistance of the system, in
contrast to a 3D system. In Ohm’s law, J and E are in the same direction, yielding scalar resistivity. But when magnetic a
field H is applied perpendicular to the surface of a two-dimensional system (and hence perpendicular to the current), an
electric field perpendicular to both H and J is generated, which is called the Hall field. For a 2D system, the resistivity

matrix can be written as
E J
(Ex> _ (pxx pxy) (Jx) (10123)
y Pyx Pyy y

The off-diagonal components p,g (¢ 7 f8) yield the Hall resistivity. In order to make measurements of the Hall effect, one
has to specify the direction of the current when a magnetic field H is applied perpendicular to the plane of the 2D electron
system having length L, and breadth L, (Fig. 10.8). Let the current flow along the x-direction (J, = 0), then from
Eq. (10.123) one can write

E, =p,J, (10.124)
E, = pyJy (10.125)

FIG.10.8 Schematic diagram of a 2D system for measuring the quantum Hall effect. The length of the crystal is L, and the breadth is L. The magnetic
field H is applied in the z-direction.
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We can relate the resistivity components with the components of resistance. From Eqs. (10.124), (10.125)

E, V,/L V. L, L,
—x o W Ix Y _p Y 10.126
PoT T TIL L LML (10.126)
and
E, V,/L, V
¥y YR 10.127
pyx JX Ix/Ly Ix yx ( )

Here L is the distance between two points, along the direction of I, between which the potential difference V, is measured.
L, is the distance, perpendicular to both I, and H, across which the potential difference V, is measured (see Fig. 10.9). Itis
noteworthy that py, and Ry, are equal, without any geometric factor, in contrast with the 3D crystal. Hence, a measurement
of the Hall resistivity py of a 2D system is independent of the dimensions of the crystal. It is this fact that makes possible the
measurement of the Quantum Hall resistivity with a high degree of accuracy. In general, the conductivity matrix & in two

dimensions can be written as
J E
(Jx> _ (O'xx O'Xy> <Ex) (10.128)
y Oyx Oyy y

10.8.2 Classical Theory of Conductivity in a Magnetic Field

The motion of an electron in the presence of electric and magnetic fields was described in Section 10.4. From Eq. (10.40)
one can straightway write the expression for resistivity in two dimensions as

Gate
Source T Drain
[ Al 1
N sio, [0
b:—el ------------------- il |
p-Si
p=e
(A) Substrate
Inversion
layer
"Z' Conduction
band
Ee
'y @ GO‘O“O‘O“O‘O
eV : e Valence
8 Sio, band
A 4
Al < +
Depletion
region
p-Si

(B)
FIG. 10.9 (A) Schematic diagram of Si-MOSFET. (B) The energy band diagram of Si-MOSFET when positive gate voltage Vg is applied.
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E, ey [k
- %9 9
= .z, 1 (10.129)
E, 99 %9 Iy
Comparing Eq. (10.129) with Eq. (10.123), one can write
1 w.T
=p. =—ip.,=—p, =—22¢ 10.130
Prx=Pyy = Py = P = ( )
From Eq. (10.49), the conductivity of a two-dimensional solid can be written as
Jx 0o _((’UcTe) 0y Ex
2 2
— 1+(wcTe) 1+(wcTe) (10131)
(wcTe) Oy %9
I 1+ (w.7,)" 1+ (0.12,) E,
Comparing Egs. (10.131), (10.128), one immediately gets
onmoy = g =g =% (10.132)
1+ (w,7,) 1+ (w.7,)

The relation between the components of the conductivity and resistivity matrices in a two-dimensional crystal can be
obtained by dividing both the numerator and denominator on the right side of Eq. (10.132) by (1/60)?, which gives
Pxx p Xy

_ P I 10.133
Ry Oy =—0 ( )

0,=0 -
X 2 4 2
¥ Pix + Piy

XX

In studying the Hall effect, we are mainly interested in the calculation of gy, which from Eq. (10.132) can be written as

_nec (o)’
YOH 1+ (o)

(10.134)

In writing the above expression we have used Eqs. (10.14), (10.24) for o and ., respectively. Further manipulation of the
above equation will yield

n.ec o
-0, =————2 10.135
T Th W, T, ( )
If o, vanishes, the Hall resistivity oy, is given by
n.ec
Opy =— "H (10.136)

Eq. (10.136) is purely a classical result.

10.8.3 Quantum Theory of a 2D Free-Electron Gas in a Magnetic Field
Consider a two-dimensional free-electron gas in the xy-plane in which a magnetic field H is applied along the z-direction.
The free electrons in a magnetic field will satisfy the Schrodinger wave equation
1 e \?2
s—(p—2A) W) =El) (10.137)

2m,

where A is the vector potential and |(x,y)) is the wave function. We want to evaluate stationary states of the two-
dimensional free-electron gas. Let us choose the vector potential using the gauze transformation as

A = (0,Hx, 0) (10.138)

which gives H along the z-direction. Using the two-dimensional Laplacian operator and the vector potential A from
Eq. (10.138) and simplifying in exactly the same manner as we did in Section 10.7, we find
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0 0 1eH \? 2m_E
_ = 10.1
Eq. (10.139) obviously has a solution of the form
W (x.y)) =€V u(x) (10.140)

Substituting Eq. (10.140) into Eq. (10.139) and simplifying, we write

n d*u 1
—m@+§mewg(x—x0)2u(x):Eu(x) (10.141)

where X, is given by Eq. (10.106). Eq. (10.105) reduces to Eq. (10.141) if one substitutes

KK?
2m

(]

= ugH=0 (10.142)

The energy in the z-direction is zero because the system is a two-dimensional free-electron gas and the magnetic interaction
between the electron magnetic moment and the magnetic field is neglected. Eq. (10.141) is the equation of motion of a one-
dimensional harmonic oscillator, having natural frequency o,, and centered at x. The electron makes a spiral motion about
the center Xx,. Thus, the energy eigenvalues of Eq. (10.141) are given by

1
E= <n5 + E) ha, (10.143)

where ng is an integer. This shows that the motion of electrons gets quantized in the plane of a two-dimensional free-
electron gas.

The degeneracy in energy E, given by Eq. (10.143), can be calculated in exactly the same way as was done in
Section 10.7. For a particular value of s, there are ny states corresponding to each value of k, given by

n :LXLY mewc: ﬁ m, w,
K7 2n ok 2n  h

(10.144)

where Ag=LyLy is the area of the 2D system. ny_gives the number of allowed states between two quantized orbits. The
quantized circular orbits with energy given by Eq. (10.143) are called Landau orbits. The degeneracy of the Landau orbits
depends upon the applied magnetic field (see Eq. 10.144). In other words, the number of electrons that occupy Landau
levels is proportional to the magnetic field.

For the QHE to be observed, the temperature has to be low and the magnetic field has to be high enough so that the
separation between the Landau levels (equal to magnetic energy hw,) is much larger than the thermal energy kgT. With
these conditions, the lower lying Landau levels will be completely filled with electrons and the higher levels completely
empty. Under these circumstances, it is found that the Hall resistance R,y is quantized and is given as

h
= (10.145)

Xy sp€?
where s is the number of completely filled Landau levels, generally called the filling factor of the Landau levels. The filling
factor can be changed either by changing the charge carrier density or by adjusting the magnetic field H. In either case, the
position of the Fermi level is shifted relative to the position of the Landau levels. The plateaus in the Hall resistance are
observed for integral values of the filling factor sy, as mentioned above, and, therefore, it is usually called the integral QHE.
The quantized Hall resistance can also be written in terms of the fine structure constant ag as

e

= 10.146
M 2spag ( )

where [l is the permeability of vacuum and has a value of 4 x 1077 H/m. From Egs. (10.145), (10.146) we have

2
afsz“o;ilc (10.147)
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Problem 10.1

The vector potential A, yielding a magnetic field in the z-direction, can also be given by the gauze
A=(-yH,0,0) (10.148)

Prove that the Schrodinger wave equation for a two-dimensional system with A given by Eq. (10.148) becomes

ooty R (0 eH \?
___l/;_ﬁ <&+,ay) W) =E ) (10.149)

Solve the Schrodinger wave equation to obtain the energy eigenvalues.

Problem 10.2

The general gauze for the vector potential, which yields a magnetic field along the z-direction, is written as

1,1
A= (—EyH,ixH,O) (10.150)

Show that the Schrodinger wave equation, for the two-dimensional system with A given by Eq. (10.150) becomes

oo eH \ # o/a  eH \?
2m, (&“Ey) M_Tme (@—’EX) ) =Elp) (10.151)

10.8.4 Experimental Setup for QHE

There are two types of 2D systems used for observing the QHE:

1. Silicon MOSFETs (Si-MOSFETs)
2. Semiconductor heterojunctions

Both of these devices create 2D electron systems with very small thickness.

10.8.4.1 Silicon MOSFETs

A systematic diagram of a Si-MOSFET is shown in Fig. 10.9A. It consists of a Si base doped with a p-type material. An
Si0, layer of about 1000 A'thickness is grown over the substrate. Above the SiO, layer is an Al metal layer for making
good electrical contacts. A positive gate voltage is applied to the Al layer, which generates an electric field on the order
of 10° volts/cm across the oxide layer. This field separates the electron-hole pairs in p-Si. The electrons move toward
the Si0O, interface, while the holes move away into the bulk p-Si substrate. The band picture of Si-MOSFET is shown
in Fig. 10.9B. The gate voltage bends the energy bands of p-Si near the oxide interface. At sufficiently high gate
voltage, the conduction band in Si bends so much near the interface that it crosses the Fermi energy. The electrons
of the acceptor level and conduction band are, therefore, held by the energy barrier between the conduction band of Si
and the oxide layer. Thus, the surface layer near the interface contains more electrons than holes even though the
material is doped with acceptors and, therefore, is called an inversion layer. The electrons are confined to a narrow
region of about 50 A near the interface. The energies of excitation in a direction perpendicular to the interface are on
the order of 20 meV, which are much larger than the excitation energy in the plane of the interface.

A very useful feature of the Si-MOSFET is that the carrier density is directly proportional to the gate voltage and can be
adjusted continuously. The source and the drain provide contacts to the 2D system of electrons and a current source can be
connected across these contacts.
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10.8.4.2 Semiconductor Heterojunctions

A 2D electron system can be created with the help of a differentially doped semiconductor heterojunction interface. The
most commonly used devices use a GaAs — (Al,Ga;_,) As interface, as shown in Fig. 10.10. It consists of a substrate of
GaAs doped with Cr*. Above this is a GaAs layer of 1 pm thickness and then layers of (AlGa)As and (AlGaAs): Si(doped
with Si). At the top again, we have a layer of GaAs. These heterojunctions are synthesized with the help of sophisticated
techniques, such as Molecular Beam Epitaxy (MBE), which ensure abrupt steps in the conduction band at the interface. The
experimental setup for the QHE with heterojunctions is also shown in Fig. 10.10.

The conduction band of GaAs is lower than the conduction band of (AlGa)As by about 300 meV. To maintain a constant
Fermi level throughout the junction, the Si donors of the (AlGa)As side of the interface get ionized and transfer electrons to
the GaAs side of the interface. The charge transfer produces strong electric fields and band bending near the interface, as a
result of which a 2D electron system is formed, which is analogous to that formed in Si-MOSFET. Ohmic contacts can be
made in the 2D system by alloying indium (IN) with the epilayer.

The mobility of the charge carriers in these devices is extremely high (/& 2 x 10°® cm?/V s.). This corresponds to a mean
free path as large as 10 pm for an elastic event. In general, the low-temperature mobility is limited by the scattering of
charge carriers from the ionized impurities. But in heterojunctions, such a scattering is small as the spatial separation
between the charge carriers and the parent donors is sufficiently large. The introduction of a thin layer of undoped
(AlGa)As (=100 A) between doped (AlGaAs): Si and pure GaAs layers further separates the charge carriers and the donors
and hence enhances the mobility.

It is interesting to compare the merits and demerits of the two devices. In heterojunctions the charge carrier density is
fixed and depends upon the Si donor concentration and the thickness of the undoped (AlGa)As layer. Hence, to change the
position of the Fermi level relative to the position of the Landau levels, as is required in the QHE, the magnetic field has to
be adjusted. This is a disadvantage because it is relatively more difficult to change the magnetic field than to change the
charge carrier density by adjusting the gate voltage in MOSFETS. An important advantage of heterojunctions is that in them
the effective mass of electrons is small (=0.068 m,) as compared with that in MOSFETsSs in which it is on the order of 0.2 m,,
for Si. The smaller effective mass leads to a larger characteristic magnetic energy (=hw,.), which allows one to work at
smaller magnetic fields (= 8 Tesla versus 13 Tesla for Si) and at comparatively higher temperatures.

X
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FIG. 10.10 (A) Experimental setup for measurements of the integral QHE with heterojunctions. (B) Magnified view of the edge of the heterojunction
shown by a small square (dashed line) in part (A) of the figure.
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10.8.5 Integral Quantum Hall Effect

When an integral numbers of Landau levels are completely filled, it is usually called the integral QHE. The experimental
setup for measuring the Hall effect is shown in Fig. 10.9. A current of 1-10 pA is passed through the sample at the He
temperature in the presence of a magnetic field H. The linear voltage V,, and the Hall voltage Vi are measured. The linear
resistance Ry, and the Hall resistance R,y are given by the ratio of the respective voltages to the current I,.

Typical measurements of Von Klitzing et al. (1980) on Si-MOSFET are shown in Fig. 10.11 in which the Hall voltage
and the linear voltage are plotted as a function of the gate voltage V¢ for a given source-drain current of 1 pA. A series of
plateaus referred to as “Hall steps” are observed in which R, appears to be essentially constant and independent of V. The
value of R, (Ry) at these steps is given by Eq. (10.145) to a high degree of accuracy. The resistance R, appears to vanish in
the region of these plateaus: p,, as low as 5 x 107’ Q cm has been measured. This value is almost an order of magnitude
lower than the resistivity of any nonsuperconducting material at any temperature: p,, further decreases with temperature.

There are two main features of the QHE that require a physical understanding: one is the existence of Hall steps and the
dissipationless current flow in the regions of Hall steps and the second is the high precision to which the Hall steps are
quantized. A simple explanation is as follows: In a high magnetic field, the electrons occupy Landau levels having discrete
energy. The Landau levels are highly degenerate with degeneracy given by Eq. (10.144). Therefore, the number of electrons
per unit area n, in a Landau level from Eq. (10.144) is given by

I m,ow, eH

= — =— 10.152
"= 27 " h hc ( )
If 59 is the number of completely filled Landau levels, the total carrier density n. due to all these levels is
cf (10.153)
n,= sy, — .
e 0 he
In the Hall effect, the Hall constant is given as
1
Ryc=—— 10.154
HC " hec ( )
and the Hall resistivity is given as
H
=RycH=—+ 10.155
pxy HC n ec ( )
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FIG.10.11 The measurements of the Hall voltage Vy and linear voltage V,, as a function of gate voltage Vg in a Si-MOSFET at T =1.5K and H =18
Tesla. Here the source-drain current is kept fixed at 1 pA. (Modified from Von Klitzing, K., Dorda, G., & Pepper, M. (1980). New method for high-accuracy
determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 45, 494.)
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Substituting the value of n. from Eq. (10.153) into Eq. (10.155), we get

h

v (10.156)
0

Ry =py=
which gives Eq. (10.145) for the QHE. The QHE is observed at very low temperatures and high magnetic fields so that the
thermal excitation of electrons from the last full Landau level sq to the next higher Landau level can be neglected.

In reality the above explanation does not hold. The probability that s, Landau levels will be completely filled in a real
physical system is zero because the charge carrier density is specified. As soon as an extra electron is added to a 2D system
with sg Landau levels completely full, the extra electron goes to the (so+ 1)th Landau level and the Fermi level jumps dis-
continuously. What is required, then, is a reservoir of electrons, which would keep sy Landau levels completely full by
transferring electrons to and from the 2D system when the electron density is varied over a limited range. Note that the
above explanation ignores any impurities present in the system.

The integral QHE has been measured (especially the Hall resistance R,,) with an accuracy on the order of 0.1 ppm. The
integral QHE can be used in defining a primary resistance standard similar to using the Josephson effect in defining a
primary voltage standard. This is because of the fact that Ry, is expressed in terms of universal constants (Eq. 10.156).
This would make the international comparison of resistance easier and more reliable. The integral QHE can also be used
to find the universal constant h or e if one measures R,y.

10.8.6 Fractional Quantum Hall Effect

Soon after the discovery of the integral QHE, Tsui, Stormer, and Gossard (1982) found that the Hall conductance has pla-
teaus at fractional filling of the Landau levels also. They found that plateaus exist at filling factors with 1/3 and 2/3 values.
Later on, plateaus were found at values of filling factors equal to simple fractions of the type p/q where q is an odd integer
(Stormer et al., 1983).

The fractional QHE is observed in the extreme quantum limit (at very high magnetic fields) and only in samples with a
very high mobility of charge carriers. This is in contrast to the case of the integral QHE in which the width of the plateaus
increases with an increase in impurity concentration, which decreases the charge carrier mobility. This observation shows
that the origins of the integral and fractional QHE are different. The two effects actually compete with each other. Many
explanations have been put forward for the fractional QHE based on the ideas of Wigner crystallization of electrons into a
solid, condensation of electrons into a quantum liquid, and others. The most appealing explanation is due to Laughlin
(1983). According to this explanation, the Coulomb interactions between the electrons cause the electron system to con-
dense into a highly correlated incompressible quantum liquid. Laughlin has given a variational wave function for such a
quantum state. An energy gap separates the ground state from the excited state. The quasiparticles of this quantum liquid,
which carry the current, behave as particles having a fractional charge of 1/q where q is an odd integer. These fractional
charges lead to the plateaus at fractional quantum numbers. On changing the filling factor from the exact fractional quantum
number, excess quasiparticles are created. These excess quasiparticles are trapped by the impurities, which lead to the
plateaus.

10.9 WIEDEMANN-FRANZ-LORENTZ LAW
It has already been proved that the electrical conductivity oy is given by

2
n.e’7,

Gy = (10.157)

m,

The corresponding electronic contribution to the thermal conductivity per unit volume o) in metals is given by (see
Eq. 8.177)

1 ,nk>
o= aﬂ:§nzﬁzg (10.158)
It may be noted that in the above equation g, has been defined for unit volume. The mean free path at the Fermi energy is

given as

l,=vgpT (10.159)

e e
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From Egs. (10.158), (10.159) one gets

1 K3
P— :§n2%T (10.160)
Dividing Eq. (10.160) by Eq. (10.157), we find
T LT (10.161)
0y
where
2 k 2
LN:% <;> (10.162)

Ly is called the Lorentz number and is independent of the particular metal under consideration. Eq. (10.161) is the
Wiedemann-Franz-Lorentz law, which states that the ratio of the thermal conductivity to the electrical conductivity is pro-
portional to the temperature and the constant of proportionality (Lorentz number) is independent of the metal. In the der-
ivation of Eq. (10.161) it is assumed that the relaxation times for the electrical and thermal processes are the same. If these
are different, then the Lorentz number gets modified.

Problem 10.3

Magnetoresistance is defined as the fractional change in resistivity in the presence of a magnetic field. Prove that the magnetore-
sistance is proportional to the square of the magnetic field intensity.
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The most important phenomena are the motion of particles and the flow of energy in solids, liquids, and gases. For example,
in metallic solids electric current is produced by the motion of conduction electrons in the presence of an externally applied
electric field. On the other hand, heat current arises due to the flow of thermal energy, which is handed over from one atom
(or electron) to another in a solid. In liquids electric current is produced by the motion of both the electrons and ions and the
heat current arises from the convection currents set up by the actual motion of the atoms or ions. Further, plasma consists of
a gas of moving electrons, ions, or neutral particles and it flows in a particular direction. In all of these examples there is
transport of either charge or energy. In Chapter 10, we discussed the motion of electrons in the presence of electric and
magnetic fields using the Newton laws of motion and some related properties were explained. In the present chapter, we
shall describe the motion of electrons and, in general, of charged particles in the presence of electric and magnetic fields
using the Boltzmann transport equation, which is an entirely different approach from the previous one. Some basic prop-
erties, such as the conduction of electricity and heat in solids, will be presented.

11.1  VELOCITY DISTRIBUTION FUNCTION

In a crystalline solid there are large numbers of particles (electrons or ions) that are distributed in space and possess velocity
ranging from zero to some maximum value. The state of a moving particle at a particular time is precisely defined if both the
position and velocity are known at that time. Hence it is useful to define a distribution function f(r,v,t) that gives the
number of particles per unit volume at position r that have velocity v at time t in phase space. Hence f(r,v,t)d*rd’v gives
the number of particles in a volume element d’rd’v of phase space at time t.

11.2 ELECTRIC CURRENT AND ELECTRICAL CONDUCTIVITY

In a metallic solid, electric current is produced by the motion of conduction electrons and is given by
J:—erf(r, v,t)dv (11.1)

The motion of conduction electrons in a crystalline solid originates from two types of interactions.
1. Electrostatic interactions

2. Collision interactions
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11.2.1 Electrostatic Interactions
Two types of electrostatic fields are responsible for the motion of conduction electrons in a crystalline solid:

1. Crystal field
2. External electric field

The crystal potential is the sum of the atomic potentials of the lattice atoms and exhibits the periodicity of the lattice. The
interaction of electrons with the crystal potential produces a uniform motion of electrons throughout the crystal. Hence, in
the equilibrium state, the motion of an electron in any particular direction is equally probable. In other words, for each
electron moving with velocity v there is a corresponding electron with velocity —v. Mathematically, one can write

£o(r, v, t) =f,(r, — v, 1) (11.2)

Here fy(r, v,t) is the distribution function in the equilibrium state and is an even function of velocity. Therefore, the electric
current in the equilibrium state J is given by

Joz—ejvfo(r,v,t)d3v:0 (11.3)

Jo is zero because v fy(r, v,t) is an odd function of velocity. According to the Bloch theorem, in a crystal with periodic
crystal potential, no spontaneous current is possible, which is equivalent to the uniform motion of conduction electrons
in all directions in a solid. When an external electric field is applied, the conduction electrons tend to move along the
direction of the field. Hence, the application of the field produces changes in both the position and velocity of the electrons,
thus causing a change in the distribution function f(r,v,t). Hence, in the presence of an external electric field, the current
density J becomes finite and is given by Eq. (11.1). Bloch has proved that in a periodic potential there is no hindrance to the
flow of conduction electrons in a crystalline solid in the presence of an electric field, yielding zero resistance.

11.2.2 Collision Interactions

In a metallic crystal the ions start vibrating about their mean positions by gaining thermal energy kgT, thereby breaking the
periodicity of the lattice and hence of the crystal potential. Because of the breaking of the periodicity of the crystal potential,
the conduction electrons are scattered from the ions by exchanging energy in the form of phonons [electron-phonon (e-p)
interactions]. The e-p interactions offer hindrance to the flow of conduction electrons in the presence of an external field,
giving rise to finite electrical resistance. From the above argument, it is evident that the external electric field and the col-
lision interactions oppose each other. Hence, to calculate the electric current density or conductivity, we must study the
combined effect of both the collision interactions and the external electric field. Note that the lattice periodicity is also
destroyed by the presence of impurities (lattice defects), thus making an additional contribution to the resistivity or con-
ductivity, especially in alloys.

For weak electric fields, the current density in a metallic solid is linearly proportional to the applied electric field, that is,

3
Jf%%p% (11.4)

In a nonhomogeneous and anisotropic solid, an electric field Ez applied in the f-Cartesian direction produces a current
density J, in the a-Cartesian direction. In this situation the conductivity becomes a tensor and its elements are represented
by 0,4. In a homogeneous and isotropic solid, the current density and the applied field are in the same direction and,
therefore, the conductivity becomes a scalar, that is,

Substituting Eq. (11.5) into Eq. (11.4), we get
J=oE (11.6)

In cubic crystals all three Cartesian directions are equivalent and thus the solid behaves as an isotropic medium. It is note-
worthy that Eq. (11.4) does not hold for strong electric fields because then one has to include higher-order terms in E, which
incorporate nonlinearity in the conduction phenomenon. In metallic crystals the electrons are responsible for the electrical
conduction, while in semiconductors both the electrons and holes are responsible for it.
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11.3 HEAT CURRENT AND THERMAL CONDUCTIVITY

Consider a solid in the form of a rod with one end at a higher temperature than the other (see Fig. 8.10). It is well known that
heat flows from the higher temperature end to the lower temperature end of the rod. It is reasonable to assume that the heat
current density Q is linearly proportional to the temperature gradient. Mathematically, one can write

Q=-06.V,T (11.7)

where o is a constant of proportionality and is called the thermal conductivity. The negative sign indicates that heat current
flows in the direction of negative temperature gradient. The heat current originates from the transfer of kinetic energy of
electrons in a finite temperature gradient. Let Ey be the band energy and u(T) denote the chemical potential of a solid with
finite temperature gradient, then the difference E, — u(T) appears as kinetic energy and is responsible for the flow of heat
current density.

11.4 THE BOLTZMANN TRANSPORT EQUATION

11.4.1 Classical Formulation

Consider a system of electrons in a solid having a one-dimensional velocity distribution function f(x, v, t) with position and
velocity in the x-direction. The electrons are assumed to be point charges and, upon moving closer, interact with one another
over a finite time.' The average time of interaction “dt” between two electrons, or between an electron and an ion, is
assumed to be very small compared with the average time 7z, between two consecutive interactions. The number of electrons
at any time t in a small elemental area dxdv, of the phase space (see Fig. 8.2) is given by

dN, =f(x, v, t) dxdv, (11.8)

The application of an electric field to the solid changes the distribution for two reasons:

1. The function f(x, vy, t) changes due to the drift velocity produced by the application of the electric field.
2. The function f(x,vy,t) changes due to the collision interactions.

Hence the total rate of change in the distribution function 0f/ot is given by

of(x,v,,t)  of(x,v,,t)
o ot

of(x,v,,t
RS

drift ot

(11.9)

coll

In the equilibrium state of the system the distribution function becomes constant with respect to time. Therefore, Eq. (11.9)
reduces to

of(x, v, t)

s Vxo

at

+6f(x v, t)

s Vxo

=0 (11.10)

drift ot coll

This is the basic form of the Boltzmann equation. Eq. (11.10) can be written as

of(x, v, t) of(x, v, t)

ot ot

drift

(11.11)

coll

Eq. (11.11) shows that the rates of change of the distribution function due to the electric field and the collision processes are
equal and opposite. In other words, the collision processes oppose the effect of an external electric field.

To start with, let us assume that the collision processes are absent. The application of an electric field produces drift in
the position and velocity of the electrons. The number of electrons dN,’ at time t+dt, in the cell dxdvy, at position and
velocity coordinates x+dx and v, +dvy, respectively, is given by

dN, =f(x +dx, v, +dv,, t+dt) dxdv, (11.12)

1. If the particles are not charged, then they are assumed to be elastic and impenetrable spheres and the interaction between them takes place
instantaneously.
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In the equilibrium state, the number of electrons in the elemental volume dx dv, must be constant with time, that is,

dN, = dN’e (11.13)
Hence from Eqgs. (11.8), (11.12), and (11.13) one can write
f(x+dx, v, +dv,, t+dt) =f(x, v,, 1) (11.14)
Expanding the left side of Eq. (11.14) around X, v,, and t, we find.
of(x, v,,t) dx+df(x, Ve, t) dVX+0f(x,vx,t) dt—0
ox vy ot drift
which can also be written as
of(x, v,, 1) :7Vde(x, Vx’t)fax of(x, v,, 1) (11.15)
ot drift 0x ovy

where a, = dv,/dt gives the acceleration in the x-direction produced by the applied electric field. If F, is the force produced
by the electric field in the x-direction, then the acceleration can also be written as a, =F,/m,. Substituting Eq. (11.15) into
Eq. (11.9), the total change in the distribution function becomes

6f(x,vx,t):_ &f(x,vx,t)_a of(x, v, t) +6f(x,vx,t) (11.16)
ot ) 4 *oovy ot coll
In the equilibrium state of the system we get
of(x,v,,t of(x,v,,t of(x,v,,t of(x, v, t
RN (RN R (RGN () .
ot eon N PR ox vy

Eq. (11.17) gives the Boltzmann transport equation in one dimension. One can derive similar equations for the velocity
distributions along the y- and z-directions separately. Therefore, the Boltzmann transport equation in three dimensions
is given by
of(r, v, t)
ot

of(v,r,t)
ot

F
=V V,f4 U f (11.18)

drift e

coll

where V, and V, are gradient operators with respect to r and v, respectively.

Appendix K describes an alternate method for the derivation of the Boltzmann transport equation.

Let us now suppose that collision processes are also present in the system. The rate of change of the distribution function
due to collision processes is given by

of
ot

f—f
=——0 (11.19)
T

coll e

where 7. is the electron relaxation time. The negative sign ensures the decay of the distribution function to its equilibrium
form fy(r,v,t). Because fy(r, v,t) is constant in time, Eq. (11.19) can be written as

o(f —£,) f—f,
- == 11.20
ot T ( )

coll e

The solution of the above equation gives
(f—f), = (f —fp),_oe /" (11.21)

which gives an exponential decay of the change in the distribution function from its equilibrium value. From Eq. (11.21) the
relaxation time is defined as the time in which the perturbed distribution function f—f, decreases by a factor of e.
Substituting Eq. (11.19) into Eq. (11.18), the distribution function f(r, v,t) becomes

F
f(r,v,t) = fy(r,v,t) — 7, V'Vrf"'m_ -V, f (11.22)

€

The concept of relaxation time in the collision process has been introduced in an arbitrary fashion. The different relaxation
times are defined for different physical phenomena and they reduce to the ordinary differential equation given by
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Eq. (11.22). For example, any type of current decays to its equilibrium value in elastic scattering processes. In an inho-
mogeneous system, the density of electrons is different at different points and, therefore, one should define different dis-
tribution functions at different points. In such systems, one should define the equilibrium function as a function of the local
density n(r), that is, f[n(r)].

11.4.2 Quantum Formulation

Electrons in a crystalline solid form a quantum mechanical system in which the wave vector of an electron is a good
quantum number. Therefore, the state of an electron is characterized by its wave vector k and energy Eg. The quantum
mechanical expressions for the velocity and force on an electron are given by

1
V=2 Vi Ex (11.23)
F =/k (11.24)
Treating the electrons as free, the energy can be approximated by a parabolic band, that is,
'S
E. — 11.25
k 2m, ( )
Substituting Eq. (11.25) into Eq. (11.23), we get
nk
v= — (11.26)
m,

(83
Further, substituting Eq. (11.24), (11.26) into Eq. (11.18), we get.

of(v,r,t)| _6f(v, r,t)

F
" = - = V-Vl Vif (11.27)

coll drift

Eq. (11.27) gives the quantum mechanical expression for the Boltzmann transport equation.

The solution of the Boltzmann equation is not simple because it is an integro-differential equation on account of the
collision processes. To solve for the distribution function arising from the collision processes, it is convenient to make the
relaxation time approximation. Consider a system of electrons in a crystalline solid with equilibrium distribution function
fo(r, Kk, t). The application of an external electric field shifts the distribution of electrons by Jk (say) because the electrons
collide with the lattice ions, thereby producing finite drift. After some time z., usually called the electron relaxation time,
the system comes a steady state with distribution function f(r, k, t) in the presence of the external field. If the external field is
switched off, the system will again come to the original state, in time z., with distribution function fy(r, Kk, t).

11.5 LINEARIZATION OF BOLTZMANN EQUATION

The Boltzmann transport equation is a nonlinear equation and its solution is thus a difficult problem. Therefore, one has to
resort to some simplification and one of the obvious simplifications is to linearize the Boltzmann transport equation. Con-
sider a system of free electrons in the equilibrium state with distribution function fo(r, v,t). A weak electric field E is applied
to the system, which changes the distribution function to f(r,v,t) defined as

f(r,v,t)= f,(r,v,t) + Af(r,v,t) (11.28)

Af(r,v,t) is the small change in the distribution function caused by the application of the E field. Hence Af(r,v,t) can be
treated as a perturbation in the solution of the Boltzmann equation for any physical property. The linear Boltzmann equation
is obtained by substituting Eq. (11.28) into Eq. (11.27) and retaining terms only up to the first order. It gives

of of eE
—| =—= =v-V_ f,(r,v,t) —— - V., (r, v, 1) (11.29)
ot coll ot drift ro h ko
where it is assumed that
v VL AL(r, v, 1) |[<|v- V£, (r, v, 1)] (11.30)

|E - Vi Af(r, v, 1) |<|E - V, £y (r, v, 1) | (11.31)
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The linear Boltzmann equation can be solved for a system of free electrons in which the equilibrium distribution function
can be taken to be the Fermi-Dirac distribution function given by

fo(Bi 1. T) = gt o1 (11.32)
Now it is straightforward to prove that.
of of
Vifo(By) = > Vi Ey=—"1 11.33
kfo(Ex) OB, kT F, v ( )
of
vrfO(Ek) == vrT
or (11.34)
__ O (Ee—u() | o\ o g '
JE, T aT) "

In writing Eq. (11.33) we have used Eq. (11.23). Substituting Egs. (11.33), (11.34) into Eq. (11.29), the linear Boltzmann
equation for a system of electrons becomes
of
=—v- <0A> (11.35)
drift JEy

of

of of
ot

a

coll

where

T ar/) "

—eE+ Ek_tu“(T)

A=cE+ (M+a—”>v T
(11.36)
V. T+V, u

Here A is the vector field, which combines the actions of electric and thermal fields.

11.6 ELECTRICAL CONDUCTIVITY

Lorentz investigated the problem of electrical conductivity with the Boltzmann transport equation, treating electrons as
classical particles and using a simplified model for the collision process between the electrons and ions in the lattice.
His treatment led to some serious difficulties. Later, Sommerfeld calculated the electrical conductivity of metals using
the Boltzmann transport equation and treating the electrons as quantum particles. He, further, assumed that the relaxation
time is a function of energy without investigating the actual mechanism of interaction between the electrons and ions.

Consider a crystalline solid to which an electric field E is applied in the x-direction, that is, E = il E, . The force acting on
an electron in the direction of the field is given by

F = —¢E i, (11.37)
and the acceleration produced by this force is
F E
a= — =X, (11.38)
me me

Substituting Eq. (11.38) into Eq. (11.18), one gets the one-dimensional Boltzmann equation as

off  off o eE, of

— =V, —
X
ot Ot | 4rist 0x m, ov,

(11.39)

coll

Substituting Eq. (11.19) for the rate of change of the distribution function arising from the collision interactions into
Eq. (11.39), we obtain

of ek, ﬁ} (11.40)

f(x, v, t) =f(x, vy, 1) — 7, |:an o

According to Eq. (11.40), f(x,vy,t) depends on itself through its derivatives and, therefore, its solution can be obtained
through the successive approximation method (iteration method). If the applied electric field is weak, the deviation of
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f(x, vy, t) from its equilibrium value fo(x, vy, t) is small. Hence, in the lowest order approximation, one can substitute
f(X, vy, t) = (X, vk, t) on the right side of Eq. (11.40) to write

of, eE_ odf
£ —f _ Z0_ =70 11.41
(X, v,, 1) =fy(x, v, 1) — 7, |:Vx x m, dvj ( )
In the equilibrium state, fo(X, v, t) for an electron is nothing but the Fermi-Dirac distribution function fy(E, 1, T) defined by
Eq. (11.32). In the equilibrium state, the energy E is constant and, therefore, one can write
of (E,u, T) of, ou 0T of, oT

0B, T) _ofy ou oT  of, T (11.42)

ox ou dT ox  dT ox

We are interested in the electrical conductivity of a crystalline solid at a particular temperature yielding 0 T/ox =0, which
gives dfy/0x =0. Therefore, Eq. (11.41) yields

eE 7z, of
f(x, vy, 1) =Fo(x, vy, 1) + —22 2 11.43
(X Vx ) O(X Vx ) m, aVX ( )
If the conduction electrons in a solid are assumed to be free, they possess only kinetic energy, that is,
1
E = Emev2 (11.44)
The velocity derivative of the distribution function can be written as
of of, oE of
2 =0 _= 0 (11.45)

v,  OEov, eVx9E

Therefore, the distribution function in the free-electron approximation is given by substituting Eq. (11.45) into Eq. (11.43)
to obtain

of
f(x, v, t) =1f5(x, Vx,t)+erevxEXa—]§ (11.46)
With the knowledge of the distribution function, the current density in the x-direction (see Eq. 11.1) is given by
J = —erxf(x, v, t)d*v (11.47)
Substituting f(x,vy,t) from Eq. (11.43) into Eq. (11.47), we get
’E of
J = — erX £o(x, v, t) dPv — eme* va WiTe(V) d’v (11.48)

Here the relaxation time is assumed to be a function of the velocity or energy of the electron. The first integral in Eq. (11.48)
is zero in the equilibrium state (see Eq. 11.3), therefore, one can write

e’E, of
J = — o vay‘;re(v) d*v (11.49)
Comparing Eqgs. (11.6), (11.49), the expression for electrical conductivity can be written as
2
e of
o= — Eejvxize(v) d’v (11.50)

This is the general expression for conductivity when the current density is in the x-direction. If the conduction electrons in a
crystalline solid are assumed to be free, then from Eqgs. (11.45), (11.50), ¢ becomes

of
o= _ezjvﬁa—ére(v)d% (11.51)

In the derivation of Eq. (11.51), it is assumed that the applied electric field is in the x-direction, as a result of which
the electrons move with velocity v. Similar expressions for ¢ can also be obtained for electron motions along the
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y- and z-directions. The general expression for ¢ is obtained by substituting the average of the square of velocities in the
Cartesian directions, which are related as

(V) =(v2) = (v2) =v*/3 (11.52)
where v is the velocity of an electron in a general direction. Substitution of Eq. (11.52) into Eq. (11.51) yields
2 of
o= — %Jvza—gfe(v) By (11.53)

11.6.1 Classical Theory

Consider a finite system containing N, conduction electrons and having volume V. In the equilibrium state one can write

(11.54)

e

Jfo(r, v, t)d3rd3v =N

If, in the equilibrium state, the electrons are distributed uniformly, say with density n., then fo(r, v, t) becomes independent
of position r. Therefore, Eq. (11.54) reduces to

Jfo(v, t)d*v :%:ne (11.55)
Lorentz treated the electrons as classical particles obeying the Maxwell-Boltzmann distribution defined by
m 3/2
fo(E, T) =n, (m; T) e E/ksT (11.56)
where E is the energy of the electron state. From Eq. (11.56) one can write
%:_I(BLT% (11.57)

Lorentz, further, assumed the relaxation time of the conduction electrons to be a constant. Substituting Eqgs. (11.56), (11.57)
into Eq. (11.53), the electrical conductivity in polar coordinates becomes

_47Tneez m, 32 Joo e—E/kBTV4dV (11 58)
T3k T ©\2nksT) o ’

If the conduction electrons are treated as free, then their energies are given by Eq. (11.44). Therefore, substituting
Eq. (11.44) into Eq. (11.58), one gets

47n_e? m 32 (oo _mev? 4
= = = 2kgT y*d 11.59
7T BT <2nkBT> L eTmvae (11.59)
Making the substitution
2
m,v
- 11.60
* T 2k, T (11.60)
in Eq. (11.59) and simplifying, one gets
4nee2 (A J"" 32—
= === *d 11.61
o 37 m. ) X’/ “e " dx ( )
The integral in the above equation is a standard gamma integral, so
4 2 2
o= % Tep(s5/p)= el 4 (11.62)

37 m, m,
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which is nothing but the Drude conductivity. Here I'(5/2) is a gamma function given by

5\ 31
r(§> SN (11.63)

11.6.2 Quantum Theory

Sommerfeld treated electrons as quantum particles (fermions) with the Fermi-Dirac function fy(E, u, T), defined by
Eq. (11.32), as the distribution function. We know that the number of electron states per unit volume in k-space is given
by V/(27r)3 . Hence the number of states in an elemental volume d°k becomes V/(27r)3 d’k. Taking account of the spin degen-
eracy, the total number of electrons is given by

_ 2V 5, 2V 1 s
N, = (2n)3jfo(E, 1 T)dk = (271;)3Je(E/‘)/kBT+1 &’k (11.64)
We know that d°p =74’ d’k =m( d’v. Changing the variable of integration from k to v, Eq. (11.64) reduces to
N me 3 1 ;
=y~ 2(2nh) de v (11.65)

Comparing Eq. (11.65) with Eq. (11.55) the distribution function in the equilibrium state is given by

m, \3 1
ﬁ) BN /T 41 (11.66)
Substituting (v, T) from Eq. (11.66) into Eq. (11.53), we get

fy(v,t) =Fo(v, T) = 2(

2¢2 ym,\3( , 0 1 3
0= (2nh) Jv E (73(Eu)/kBT+1> 7 (v) d’v (11.67)
Changing the variable from v to E using Eq. (11.44) and simplifying, we obtain
8me? /2 \** /m 3 0 1
=-— — — ) |BE¥? — (7| 7.(E) dE 11.68
4 3m, <me> <2nh) J oE <e<E“)/kBT+1) w(E) ( )

The conductivity is usually measured at quite low temperatures. At such temperatures the Fermi-Dirac distribution function
can be approximated by its value at absolute zero, that is, fo(E, i, T) is one for E <Eg and zero for E > Eg. At absolute zero
the energy derivative of fo(E, i, T) is zero everywhere except at E=Eg where it is minus infinity, that is,

2 1
TOE (e<E—;>/kT+1) = o(E—Ey) (11.69)

Substituting Eq. (11.69) into Eq. (11.68), we get

e [2m, 3/2 32 2e2
o= 3am \ 2 ) BF elBr) =3 e (Br) Bpre (By) (11.70)
where
1 /2m\*? 15 3n

=5 (50) B =% 1171
ge( F) 27'[2 ( hz ) F 2EF ( )

Hence the conductivity can finally be written as

2
E

s=gy = "o =B (11.72)

It is noteworthy that Eqs. (11.62), (11.72) are the same, except that in Sommerfeld theory the relaxation time is evaluated at
Eg, while in the Lorentz theory it is constant and independent of energy. In the derivation of electrical conductivity, 0f,/0E
has been taken to be a Dirac delta function, which is true only at absolute zero. Actually, the electrical conductivity is
measured at a finite temperature at which 0fy/0E is a sharply peaked function with some spread in energy, which is on



232 Solid State Physics

the order of kgT around Eg (see Fig. 9.6B). Hence only those electrons that occupy states in the range of kgT around Eg
contribute to conduction and are the actual conduction electrons. Hence, the Sommerfeld theory gives a clear-cut definition
of the conduction electrons. The expression for ¢ can be improved by including the actual peaked function dfy/dE with
finite spread (it will yield an additional contribution to the value given by Eq. 11.72).

11.7 THERMAL CONDUCTIVITY

It has already been discussed that the heat current arises due to the flow of energy (kinetic energy) from one end of a solid to
the other in the presence of a finite temperature gradient. From Eq. (11.7) it is evident that the thermal conductivity o is a
measure of the flow of heat and is a property of the solid under consideration. In a metallic solid most of the heat is carried
by the conduction electrons and a very little by the lattice vibrations. In a semiconductor, both the electrons and lattice
vibrations transport heat. But in dielectrics, it is only the lattice vibrations that carry heat. The flow of heat can be studied
by solving the Boltzmann transport equation in the presence of a finite temperature gradient.

Let an electric field E be applied to a crystalline solid in the x-direction, that is, E = fl E = il E,, in the presence of a
finite temperature gradient dT/dx, again along the x-direction. Then the electric current and heat current densities flow in
the x-direction and are given by

X

J = —erxf(x, v, t)d’v (11.73)

Q.= vaEf(x, v, t)dv (11.74)

Substituting the value of f(x, v4,t) from Eq. (11.41) into Egs. (11.73), (11.74), we write

of eE, of
201 x ol 3
I, = CJTe(V) [VX % Vx ) j v (11.75)
of eE, of
Q,=- E[v?20—y X0} 43 11.76
N er(v) {vx x vy i avj v ( )

In writing the above expressions for J, and Qy, the equilibrium condition given by Eq. (11.3) is used.

11.7.1 Classical Theory

If the electrons are treated as classical particles, they obey the Maxwell-Boltzmann distribution fy(E,T), given by
Eq. (11.56). The derivatives of fo(E,T) are given by
of, of,dT
ox dT dx
ofy, ofy dE of,

o oty dE _ - o 11.78
ov, OEdv, 0B (11.78)

(11.77)

In writing Eq. (11.78) the electrons are assumed to be free particles with energy given by Eq. (11.44). Substituting
Eq. (11.56) for fy(E,T) in the above equations, we get

of, 3 1dT
O—(BE—=)f,(E,T)=— 11.
o0x <ﬁ0 2) o(E, )de (1.79)
of
aTO: —Bom,v fy(E,T) (11.80)
where
Bo= ! (11.81)
07 kgT '
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Substituting Egs. (11.79), (11.80) into Egs. (11.75), (11.76), we get

3\ 1dT
), = ejfe(v) v2 [(/SOE—§> T&H‘,Exﬂo} f,(E, T)d’v (11.82)
3\ 1dT
Q, = _er(v)Evz [(ﬂOE—§> Td—x+eEx[§O} f,(E, T)d’v (11.83)

The expressions for J, and Q, are simplified to a great extent if one assumes the relaxation time to be independent of
velocity, that is, a constant parameter. Then

J = ere%j—z Gmeﬁolz—%ll) +e’7,E, B,I, (11.84)
Q.= — % [%%(meTﬁog—;lz) +eEx[>’012] (11.85)
where
I :Jvifo(E, T)dv (11.86)
L= Jv§v2f0(E, T)d*v (11.87)
L= Jv§v4f0(E, T)d*v (11.88)

The integrals I;, I, and I; can be solved analytically for the Maxwell-Boltzmann distribution in polar coordinates assuming

vf:vi:vf:vz/i% and they are given by
n
I, = © 1189
: me ﬁO ( )
5n,
L= < (11.90)
m? 3
35
L= 3“3 (11.91)
mg fiy
Substituting the values of the integrals from Eqs. (11.89)—(11.91) into Eqgs. (11.84), (11.85), we find
n.e’r ner, 1dT
J = ¢ €& 11.92
* m, * m.f, Tdx ( )
Sn, 7, 1dT
= — E fy+2—=— 11.93
QX 2m, f35 [e «Po T dx} ( )

The thermal conductivity is measured when no electric current passes through the solid, that is, J, =0. So, for J, =0,
Eq. (11.92) gives

1dT
Efy= — =— 11.94
€ xﬂO T dX ( 9 )
Substituting Eq. (11.94) into Eq. (11.93), the heat current density becomes
Q dT (11.95)
= —0r+— .
X T dx
5
Gp= —lele (11.96)

- 2me/3(2)T
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Here o gives the thermal conductivity of a solid. In metallic solids Lorentz defined a parameter, usually called the Lorentz
number, as

(o2
L,= —L 11.97
N O'OT ( )

Substituting the values of o and ot from Egs. (11.62), (11.96), the classical theory yields the value as

5 (kp\2
Ly=3 (f) (11.98)

Eq. (11.98) shows that the electrical and thermal conductivities, determined by using the Boltzmann transport equation,
satisfy the Wiedemann-Franz-Lorentz law. But the Lorentz number Ly given by Eq. (11.98) is not in agreement with
the experimental results, which shows that the electrons cannot be assumed to be classical particles, but rather that they
should be treated as quantum particles.

11.7.2 Quantum Theory

Sommerfeld treated electrons as quantum particles obeying the Fermi-Dirac distribution function defined by Eq. (11.66).
Therefore, the general expression for J, and Q, given by Egs. (11.75), (11.76) involve the Fermi-Dirac distribution function
fo(E, u, T) and its derivatives. In the equilibrium state of the system, the energy is constant in space, that is, dE/dx =0. Hence
the derivatives of fy(E, 1, T) can be written as

oy _ oy du _ of, dT

11.99
ox dudx OT dx ( )
of, of, oE of,
Z0_ 07" _ i} 11.100
v,  OE v, eVxGE (11.100)
Eq. (11.100) is the same as Eq. (11.78). From Eq. (11.66) the derivatives of fo(E, u, T) are given by
of 3 by (E-n)
o _ _2ﬁ0<me) e . (11.101)
OE 27‘[71 [eﬁo (E*/,l) + 1]
of, of,
—S0__-0 (11.102)
ou JE
of, E—pu of,
0 = 770 11.1
aT T OE ( 03)
Substituting Egs. (11.102), (11.103) into Eq. (11.99), we get
ofy,  of, d /v EdT
- {de(T)’Lde (11.104)
Substituting the values of dfy/dx and 0fy/dv, from Eqgs. (11.104), (11.100) into Egs. (11.75), (11.76), we can write
of, d E dT
JX:feJd‘%vre(v)Via—Ig [eEX+T&(%)+Td—J (11.105)
of, d s EdT
QX:Jd3VTe(V)V§Ea—]§ {eEX+T&(T> +T&] (11.106)

Changing the variable of integration from v to Eusing Eq. (11.44), we can write Egs. (11.105), (11.106) in polar coordinates as

gr [ 2\ of, d E dT
Jx:_i il dEE*?7,(E) 20 ezEX+eT—(E)+e—— (11.107)

3m2 \m, 0 7] dx\T/ T dx

8 [ 2\ of d /uy EdT
L el dEE>27,(E) 20 |eE T—(—) il 11.108
%= 3m (m) JO =B 5 B TR 1) T o (11.108)
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To solve for J, and Q4 we define an integral

8m [ 2\* [ 1 of
[=——— (= dEE"* 27 (E) =2 11.109
" 3mg (me> Jo el )OE ( )
where n is an integer. Therefore, in terms of I,,, we can write expressions for J, and Qy as follows:
d /u e dT
I = {ezEx+erX (T)} Lzl (11.110)
d /u 1dT
—_ |eE T—(—) L~ 1 11.111
Q {eXJ’de}ZTd;N (1110

To calculate the values of J, and Q, we have to evaluate the integral I,. Substituting fy(v, T) from Eq. (11.66) into
Eq. (11.109) and integrating by parts, we obtain

e d 1
IH:CJ dEf,(E, pr, T) — |E" " 27,(E) (11.112)
0 dE
where
167 ( 2\ /m, \3
c=5 (=) () 11113
3m? (me) 2nh ( )
Here fo(E, i, T) is given by Eq. (11.32). If we make the substitution
hx) = L [x* 3z (x) (11.114)
= i 7, .
then
E 1
H(E):J h(x)dx =E"* 27, (E) (11.115)
0
Now the integral I, can be written as
E
In:CJ dEf,(E, u, T) h(E) (11.116)
0
I, is the Fermi distribution function integral (see Appendix I) and its solution is given by
n? &
n:C[l‘*gﬁ"‘"} H(u) (11.117)
where
y="L"—p (11.118)
kgT 0
So Egs. (11.115), (11.117), and (11.118) give
r1+l (77:1(BT)2 d2 r1+l
I=C [u 27, (1) + 6 i Whaz (p) p+ - (11.119)

From Eq. (11.119) the integrals I;, I, and I5 are given by

16m [ 2\"? m,\3 | 5 (nk, T)?
= 3m \mo Py () + -0 L
b 3m? <m) (2nh) W)+ 42 {ﬂ Te(u)}+ (11.120)

(<

167 [ 2 1/2 m. \3 5 (TEk T)2 42
= — | — —° /2 B 5/2
b= 3 (m) <2nh> l“ e+ —— gz {ﬂ Te(u)}+ (11.121)

e
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37 3m2 \m, 27h dp2

1/2 2
L— 167 (i) (me )3 [ﬂ7/276(ﬂ)+ (nkgT) d {Mﬂzfe(/‘)}"'"'] (11.122)

The electrical conductivity is measured at a particular temperature; therefore, dT/dx=du/dx=0. Hence from
Eq. (11.110) J is given by

J,=e’1,E, (11.123)
which gives the electrical conductivity as
16me? (2 \'"? /m_\3 (nkyT)? d?
_ a27 — e 3/2 B 3/2
— 1, = = (—) +7—{ }+ 11.124
= 3m? (m) 2nn) | () 6 dy? ) ( )

Substituting u= Ef and considering 7.(Eg) to be a constant, one can solve the second term of Eq. (11.124), which, after
simplification gives

2, (E 1, [k, T\
oo e 7e(Ep) [1+—n2 <L> o (11.125)
m, 8 Eg

It should be noted that the first term of Eq. (11.125) gives the same value as in Eq. (11.72) and the second term is a cor-
rection to it. But at room temperature, kgT << Eg and hence the correction term is very small and can be neglected in com-
parison with the first term to give

o= 0,= —— (11.126)

The thermal conductivity is measured in the absence of electric current. Hence, by putting J, =0, Eq. (11.110) yields the
condition

d /u 1 dT 1
E +T—(—):————2 11.127
BT\ T T Tax ( )

Substituting Eq. (11.127) into Eq. (11.111), the thermal current becomes

dT

—or g (11.128)

Q=
with

1 L1L,-15

11.129
oL (11.129)

op=
The value of o't can be obtained by substituting the values of I, I, and I; from Egs. (11.120), (11.121), and (11.122). If one
retains only the first terms in I, I,, and I, then the term (I, 15 — I%)[Il vanishes. The finite value of (I, 13 — I%)/Il is obtained
by retaining at least the first two terms in each of the integrals I;, I, and I3, which gives
LL-1  nn?

3 =3 7, (1) (kgT)? (11.130)

Substituting Eq. (11.130) into Eq. (11.129), the thermal conductivity becomes

2

n,7m
op= 3eme 7, (W k5T (11.131)
Hence, the thermal conductivity at u= Ef is given by
2
op= 2" ¢ (Ep)KAT (11.132)

T 3m

(3
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The value of the Lorentz number, in the quantum theory of Sommerfeld, is obtained by substituting the values of o and o1
from Eqgs. (11.126), (11.132) into Eq. (11.97), giving

2 2
LN:n—<k—B) (11.133)

Eq. (11.133) gives the value of Ly that agrees with the experimental results of the Wiedemann-Franz-Lorentz law.

11.8 HALL EFFECT

The conductivity measurements do not give any information about the sign of the charges responsible for conduction in
solids. To study the nature of the charge carriers responsible for the electric current and hence the conductivity, one has to
study the Hall effect. Consider a metallic solid in the form of a slab (see Fig. 10.4) with electric and magnetic fields applied
in the x- and z-directions, that is,

E=iE, (11.134)
H = i3Hz (11.135)

If g and m are the charge and mass of the charge carriers responsible for conduction, then the Lorentz force acting on them
is given by Eq. (10.53). The charge carriers, in a metallic material, are electrons, but in a semiconductor the charge carriers
consist of both electrons and holes.
In the equilibrium state, the distribution function is independent of position, that is, V f =0, therefore, the Boltzmann
transport equation, given by Eq. (11.18), becomes
of F
—| = —" V., (11.136)
ot coll mq
The Lorentz force produces a perturbation f; in the distribution function and hence the perturbed distribution function f
becomes

f=f,+f, (11.137)
Substituting Eq. (11.137) into Eq. (11.136), we find
of F
—| = — f f 11.138
ot coll mq (vv 0+vv 1) ( )

In the relaxation time approximation, the rate of change of the distribution function due to collisions is given by Eq. (11.19),
which, when substituted in Eq. (11.138), can be written as

F T
f=fy—1,—  V,f,——F -V f, (11.139)
mq mq

where 7, is the relaxation time for the charge carriers. But
; ofy ; ofy oE of
Vb =1 5 IR B ™Y R

Here 1, is the unit vector in the direction of velocity v. Therefore, the distribution function in the presence of the Lorentz
force is given by

(11.140)

of, 74
F-V.f 11.141
JE  m, vl ( )

f=f,—7,(v-F)

Substituting Eq. (10.53) into Eq. (11.141), we obtain the distribution function up to the first order,

of T
f=fy—qr,(v-E) 2 — h(v><H)-va1 (11.142)
JoE qC
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Here the term containing E - V.f; is neglected, as it is a second-order term. Comparing Eqs. (11.137), (11.142), the change
in distribution function due to the Lorentz force is given by
ofy 4%

f, =—qrq(V-E) E E(VXH)'VVfI (11.143)
q

We want to find the current density due to the distribution function given by Eq. (11.142). To use our previous knowledge
for calculating the current density due to an electric field (see Section 11.6), we reduce the distribution function to a form
similar to that given by Eq. (11.46). To do so we define an effective electric field E.¢ such that f;, given by Eq. (11.143),
reduces to

of
fi=—qzg(V-Egp) o2 (11.144)

and hence the distribution function f can be written as

of,

f="fy+1f =1, - qTq(V'Eeff)E

(11.145)

To find the relationship between E and E.; we calculate the velocity derivative of f; from Eq. (11.144) given by

o*f of
V.t = —qz, {mqv(v ‘Eu) Eg +E a}ﬂ (11.146)
Substituting Eq. (11.146) into Eq. (11.142), we get
2
of (qfq) of
f:fo—qrq(V~E)a—£+ e (va)-Eeffa—é) (11.147)

The last two terms of Eq. (11.147) give the perturbation f; in the distribution function, which, when equated to f; given by
Eq. (11.144), yields

qr7,
E= Eeff+m—;(Herff) (11.148)

This equation gives the relationship between E and E.
The current density due to the charge carriers with charge q and distribution function f(v,E) is given by

J= quf(v, E)d’v (11.149)
Substituting Eq. (11.145) into Eq. (11.149) and using the equilibrium state condition given by Eq. (11.3), we get
of
J= - qZJV(V'Eeff)Tq(V) a—]gd3v (11.150)

If the electric field is applied in the x-direction, then the charged particles move along the x-direction with velocity v = il V.
Therefore, Eq. (11.150) can be written as

OE
> (11.151)

_ 9.2 ofy 3
77?‘[\, Eefqu(v)a_Ed v

of
J=—¢ JviEeff Tq(v) =0 @3y

Here E.¢r is the component of E.¢ along the x-direction. In writing Eq. (11.151) we have substituted the average of the
square of velocities in the Cartesian directions (see Eq. 11.52). Now one can solve Eq. (11.151) in the same way as in
Section 11.6 and can straightway obtain the relation

J = 0,E (11.152)
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with

n q?z (E
0y= nd"%q(Er) (11.153)

My

Substituting the value of E.¢ from Eq. (11.152) into Eq. (11.148), we get

E=J 4+ T gy
70 % (11.154)
X .
:i+ Hx]J
oy Dngqc

If the magnetic field is zero the second term in Eq. (11.154) goes to zero yielding the familiar expression for conductivity.
The second term gives the component of the electric field perpendicular to both J and H, that is, the transverse electric field
usually called the Hall field, which is produced by the combined effect of the electric and magnetic fields. The coefficient of
the second term is called the Hall constant and is given by

1
R — 11.155
He= oo (11.155)
(see Eq. 10.57). In metals the conductivity is due to the flow of electrons (q = — e), which yields a negative value of the Hall
coefficient, that is,
Ry = ! (11.156)
He ™ n.ec )

In n-type semiconductors the Hall coefficient is also negative as the majority carriers are electrons. But in p-type semi-
conductors the Hall coefficient is positive as the majority carriers are holes with positive charge, that is, q=e, and

1
Ryr=—— 11.1
HC hec (11.157)

Here ny, is the density of holes.

11.9 MOBILITY OF CHARGE CARRIERS IN SOLIDS

In a crystalline solid the conduction is due to the motion of free charges. Suppose that the magnitude of the charges is q. If an
electric field E is applied to the solid, the charges experience a force, which produces an acceleration in their motion.
During the accelerated motion charges suffer collisions with the lattice ions and impurities that are present in the solid
and continuously lose kinetic energy. Ultimately, the charges acquire some constant average velocity v, usually called
the drift velocity. The expression for v4 can be obtained from simple arguments. When a particle with charge q and mass
my moves in an electric field E, the acceleration produced is given by

F E
- & _9® (11.158)
My My
If a constant average velocity vq4 is achieved in the relaxation time 7, for the charge q, then one can write
T
v, = aTq:uE (11.159)
My
The above expression can be written as
Vo= u,E (11.160)
where
T
1y = 4% (11.161)

My
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Eq. (11.160) shows that the drift velocity is linearly proportional to the electric field and the constant of proportionality t is
called the mobility of the charge carriers. According to Eq. (11.160) the mobility of a charge carrier is defined as the average
drift velocity per unit field.

The expression for ji4 can also be obtained from the Boltzmann transport equation. The current density J produced by
the charges is given by

J=n,qv, (11.162)
where ng is the density of charges. From Egs. (11.160), (11.162) we get
J
U, = (11.163)
4 n,qE
With the help of Eq. (11.53), the current density is given by
2E [, of
J=cE= —qTJvza—grq(v)d% (11.164)
Therefore, from Eqgs. (11.163), (11.164), the general expression for the mobility of charge q becomes
of
1 Jvz 0_13 74(V) dv
Ho=—39"F (11.165)

Jfo(v, t)d’v

In the above expression the density of charges ng has been taken from Eq. (11.55). The integrals in Eq. (11.165) can be
evaluated using the Maxwell-Boltzmann or the Fermi-Dirac distributions in the same way as was done earlier. Using the
Maxwell-Boltzmann distribution given by Eq. (11.56), u4 reduces to

_ 9%

My

Hq (11.166)
In the above derivation, the relaxation time 74 is assumed to be a constant, but actually it is a function of the velocity or energy.
Assuming the charges to be quantum particles (e.g., electrons or positrons), the Fermi-Dirac distribution given by Eq. (11.66)
should be used. Solving the integrals in Eq. (11.165) using the Fermi-Dirac distribution (see Section 11.6), one obtains

_ qTq(EF)

q
l’l’lq

(11.167)

which is the familiar result. Note that Eqs. (11.166), (11.167) involve the magnitude of the charge, that is, q=|q|.

Problem 11.1
Let the relaxation time be a function of the energy E:
74(E) =70 EP (11.168)

where p is a rational number. Assuming the Maxwell-Boltzmann distribution for fo(v, t) in Eq. (11.165), prove that the mobility is
given by

4 qr, 5
_ p 9% 2
‘uq—3\/ﬁ(kBT) m, F(p+2) (11.169)
where T'(p+5/2) is the gamma function.
To estimate the average relaxation time and mobility, consider a physical example with p =— 1. Then, from Eq. (11.169),

we get

3mq

4 1 qfor<3) _ 247,(E) (11.170)

=3 m kT m, 2
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with
T T
E)=—0 20 11.171
WB=p7 =% (11.171)
If we write the mobility as
q <Tq (E)>
Hy= ——= (11.172)
m
q
then the average relaxation time (z4(E)) can be written as
2
<Tq(E)> = 7,(B) (11.173)

Thus, the Boltzmann equation gives the same result as given by Eqgs. (11.166) or (11.167), but here the average relaxation
time is used. Further, the numerical factor 2/3 is not much different from unity and the deviation from unity is comparable
with the experimental error due to the inhomogeneity of the sample material used.

In metallic solids, conduction occurs because of the motion of free electrons. Hence the mobility of the electrons is given
by

(11.174)

But in semiconductors, there are both electrons and holes and they both contribute to the mobility. One can easily obtain the
mobility contribution of the holes along similar lines to what was done above to obtain

e7,(Ep)
= (11.175)
h m,

Assuming the relaxation times for both electrons and holes to be the same, that is, 7.(Eg) = 7,,(Eg), the net mobility u in a
semiconductor is given by

1 1
U=+, = et (Ep) [;-Fm_} (11.176)
e h

In n-type semiconductors the majority carriers are electrons, while in p-type semiconductors they are holes. Substituting the
value of 7.(Eg) from Eq. (11.174) into Eq. (11.72), one gets the expression for conductivity due to electrons as

. =n.eu, (11.177)
Similarly, one can obtain the expression for the conductivity due to the holes as
o, =Ny e Uy (11.178)

where ny, is the density of holes. Therefore, the total electrical conductivity ¢ in a semiconductor is the sum of the electron
and hole contributions, that is,

0=0,+0,= n.ep, +n,ep, (11.179)

In an intrinsic semiconductor the density of electrons and holes is the same, that is, n, =ny,, but in an extrinsic semiconductor
the two are unequal.

Problem 11.2

The resistivity, electron density, and effective mass of the electrons in Cu metal are given as:
mg;=1.01 m,
n,=8.5x10%/m?
p=17%x10"2Qm

Find the relaxation time at the Fermi surface z.(Fg). If the Fermi velocity of the electrons is v; = 1.55 x 10° m/s, find the mean free
path of the electrons in Cu metal at the Fermi surface.
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Chapter 12

Energy Bands in Crystalline Solids
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The free-electron theory of metals was developed in Chapter 9. It explained, in a satisfactory manner, a number of elec-
tronic properties, such as electrical and thermal conductivities, specific heat, thermionic emission, and paramagnetic sus-
ceptibility. The most important achievement of the free-electron approximation is the precise definition of conduction
electrons. Unlike the classical theory, it shows that only those free electrons in the vicinity of the Fermi energy participate
in conduction. But the free-electron theory could not explain why some solids behave as metals, others as insulators, and
still others as semiconductors. It also could not explain other properties, such as the transport properties. The free-electron
theory yields only negative values of the Hall coefficient as the charge carriers are simply the electrons. Further, exper-
imental studies show that the Fermi surface is nonspherical in most of the metals, which contradicts the free-electron
approximation.

In solids there are electrons (core or valence electrons) and nuclei, which interact among themselves. As a result, a finite
crystal potential arises that obeys the periodicity of the lattice (Chapter 1). Therefore, in explaining the various properties of
crystalline solids, the crystal potential must be incorporated in the theory. As mentioned earlier in Chapter 3, an exact
calculation of the crystal potential is not possible due to the many-body nature of the problem. Therefore, to study the
electronic properties, particularly the electronic energy bands in crystalline solids, some simplifying approximations
are made: the one-electron approximation is made for the wave function and energy and the crystal potential is estimated
in the self-consistent approximation. Let us first examine the nature of the electron wave function in a crystalline solid.

12.1 BLOCH THEOREM

12.1.1 One-Dimensional Solid

Consider a one-dimensional monatomic crystalline solid with “a” as the periodicity and length L=Na (see Fig. 12.1).
Let V(x) be the self-consistent crystal potential in the one-electron approximation that satisfies the periodicity of the crystal,
that is,

V(x+a)=V(x) (12.1)
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FIG. 12.1 The attractive atomic potential V¥(x) and the
crystal potential V(x) for a monatomic linear lattice with
“a” as the periodicity. Here V(x), for simplicity, is obtained
by the linear combination of atomic potentials.

VA(x)

«—3a—
The Schrodinger wave equation for a one-dimensional solid is written as

H, Yy (x)) =B ¥ (x)) (12.2)

where |(x)) and Ey represent the one-electron wave function and energy, respectively, for the electron state with wave
vector k. H, represents the one-electron Hamiltonian defined as

-~ n &
He = _2—1’1’16@ +V<X) (123)

The Bloch theorem states that the wave functions for a wave equation with periodic potential V(x) are of the form

(%)) =™ e (x) (12.4)
Here u(x) is a scalar function that satisfies the periodicity of the lattice, that is,
u, (x+a) =u, (x) (12.5)

The wave function given by Eq. (12.4) is generally called the Bloch function. It is evident from Eq. (12.4) that the Bloch
function is a plane wave modified by the periodic potential of the lattice. It is noteworthy that the Bloch functions are the
general one-electron wave functions for an ideal crystalline solid.

Consider a translation operator T(a)={I|a} (see Chapter 1), which, when it acts on the wave function, translates it by
the distance a so that

T(a) [ (x)) = [y (x +a)) (12.6)
Applying the translation operator on the left side of the Schrodinger wave equation given by Eq. (12.2), we write
~ /e =
T(aH, [V (x)) = | -5 ————— +V(x+a) [y (x +a)) =H, T(a) [y, (x)) (12.7)
2m.d(x +a)

Eq. (12.7) shows that T(a) commutes with ﬁe, that is,
{ﬁe,T(a)} —0 (12.8)

where [ ] represent the commutation brackets. From elementary quantum mechanics we know that the commutating oper-
ators T(a) and H, possess simultaneous eigenfunctions. Because H, is a constant of motion, T(a) is also a constant of
motion. So, one can write

T(a) [ (x)) = Col¥i (x)) (12.9)

where Cy is a constant. From Eqs. (12.6), (12.9) one can write

Y (x +2)) =Cy ¢, (x)) (12.10)
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Similarly, one can show that

[ (x +2a)) = Cilyi (x)) (12.11)
and so on. In general, one can show that
i (x+L)) = Wy (x + Na)) = Cg i (x)) (12.12)
The cyclic boundary condition of the finite crystal demands
W (x+L)) = [, (x)) (12.13)
From Egs. (12.12), (12.13) one gets
Cl=1=e"™ (12.14)

where n=0,4+1,£2, ... Eq. (12.14) gives the value of Cg as

Cy=e>™'N (12.15)
Substituting the value of Cy in Eq. (12.10), we write
[ (x +a)) =N (x)) (12.16)
The above equation immediately yields
W (x+a) [P = [ () (12.17)

Eq. (12.17) shows that the probability density also satisfies the periodicity of the lattice. But we know that k has got discrete
values given by (see Eq. 9.12)

27n
k:ﬂ (12.18)
From Egs. (12.16), (12.18) one gets
e (x +a)) = ey (x)) (12.19)

Eq. (12.19) is usually called the Bloch condition. It can be easily shown that Egs. (12.4), (12.19) are equivalent if the
function ui(x) satisfies the periodicity of the lattice. From Eq. (12.4) one can write

[V (x+a))= e’k<"+a)uk(x+ a)

or
W (x+a)) =e™ |y (x)) (12.20)

which is nothing but the Bloch condition. Hence the general wave functions for a one-dimensional crystal with periodic
potential are the Bloch wave functions defined by Eq. (12.4).

12.1.2 Three-dimensional Solid

Consider a three-dimensional lattice with a;, a,, and a3 as the primitive translation vectors. Let the dimensions of the crystal
along the three Cartesian directions be given by L; =N;a;, L,=N,a,, and L; =N3a; where Ny, N,, and N; are integers.
The general lattice vector R, in the direct space is given by Eq. (1.5). In a perfect crystalline solid the crystal potential
exhibits the periodicity of the lattice, that is,

V(r)=V(r+R)) (12.21)

In the presence of the periodic potential, all the physical properties of a solid remain the same when a translation in made
through a direct lattice vector. The Schrodinger wave equation in three dimensions is given by

H Y (1)) =B (r)) (12.22)



246 Solid State Physics

where the Hamiltonian is given by

. h2 5 hZ d2
H =— - - 12.2
- V*+V(r) 2. dr? +V(r) (12.23)
Let us define the translation operator as T(R,)={I|R,}, then one can show that

{T(Rn),ﬁe} -0 (12.24)

Therefore, T(R,) is a constant of motion and both T(R,) and ﬁe possess simultaneous eigenfunctions. Operating T(R,,) on
Eq. (12.22) from left-hand side and using Eq. (12.24), we get

H, T(R,) ¥ (r)) =E, T(R,) [, () (12.25)

From Egs. (12.22), (12.25) it is evident that both | ¥/,(r)) and T(R,) | ¥x(r)) are eigenfunctions of ﬁe with the same energy
eigenvalue. Therefore, these eigenfunctions differ only by a constant and can be written as

T(R,) [ (r)) = Co |y (r)) (12.26)

or

[t +R,)) = Co [y (1)) (12.27)

According to the translational symmetry of the crystal, the translation of a position vector by a direct translation vector
changes only the origin, but the environment of the new position vector remains the same. Therefore, the probability density
must be the same at both the position vectors, that is,

W (r+ R = [y () (12.28)
By using Eq. (12.27) the above equation yields
o =1 (12.29)
To find the parameter Cy let us use the following properties of the translation operator:
T(R,) T(R,) [Yy(r)) = Yy (r + R, + R, )) = T(R, + R, ) [ty (r)) (12.30)
T(R,) T(Ry,) [Yi (r)) = Co Co i (r)) (12.31)
The properties given by Egs. (12.30), (12.31) are satisfied if one assumes
C,=e'kR (12.32)
Substituting the value of C, into Eq. (12.27), one gets
[ (r+R,)) = e R [y (r)) (12.33)
which is nothing but the Bloch condition. Eq. (12.33) is satisfied by the Bloch functions, defined as
() =™ Tuy (r) (12.34)
Here uy(r) is a scalar function that satisfies the periodicity of the lattice, that is,
u (r+R,) =u(r) (12.35)

The Bloch functions define the general wave functions for the electrons in a crystalline solid. The possible values of the
electron wave vector k in the Bloch functions are obtained from the cyclic boundary condition on the wave function, which
is given as

[ (1)) = [y (r+ L)) = |lpk(r+N1 a, +N,a, +N3a3)> (12.36)

Using Eq. (12.34) for the wave function in Eq. (12.36), we write

ezk-(N]a]+N2a2+N3a3) =1 (12.37)
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Here we have used the fact that uy(r) satisfies the periodicity of the crystal. As the primitive vectors a;, a,, and a3 are
independent, so the exponential terms involving these vectors will separately be unity, that is,

1k-N; a, 127n;

e =1=e

e’k'Nzaz =1 :eIZnn2

elk~N3a3 -1 :elZnn3
From the above equations one gets
27n
k-a = L 12.38
1=, (12.38)
27n
k-a,="—2 12.39
2=, (12.39)
2
k-a, =3 (12.40)
N;
For an sc structure a; = ail, a,= afz, and a; = ai3, therefore, one can write the wave vector Kk as
27‘[ Ill s n2 ° n3 N
k=" 1i, +2i,+ i, (12.41)
a \N;, N, N,

In the same way, one can find the expression for k in different structures.

12.2 THE KRONIG-PENNEY MODEL

With knowledge of the electron wave function, one can study the behavior of conduction electrons in a crystalline solid in
the presence of a periodic crystal potential. The one-dimensional Kronig-Penney model is a very simple mathematical
exercise, which explains beautifully the nature of the energy bands in a crystalline solid. In this model, the periodic potential
is assumed to be an array of square-well potentials (see Fig. 12.2) defined as follows:

V(x) = V, for —b<x<0

= 0 for O0<x<a (12.42)

Here, as a rough approximation, the potential in the vicinity of an atom is approximated by the potential energy well. The
Schrodinger wave equation for the electron state with wave vector K in the two regions is given by

d? 2m_E
Sz lvie)+ H;;Z E|yd(x)) =0 for0<x<a (12.43)
d? 2m
@|¢E(x)>+h—2e(Ek—V0)|¢E(x)>:0 for —b<x<0 (12.44)
Vo FIG. 12.2 Schematic representation of the

periodic square-well potential with periodicity a+b
for a monatomic lattice.

+—bhb—>
—— g —
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If the energy Ejy of the electrons is smaller than the potential V, then one can define real quantities as

o= 2“;;Ek, B =% (Vo—Ey) (12.45)
Substituting Eq. (12.45) into Eqgs. (12.43), (12.44), one can write
A 20 a
@|¢k>+ak|¢k>=o for0<x<a (12.46)
&2
@W/@—ﬁﬂd/@:o for —b<x<0 (12.47)
Let us suppose that the solutions of the above equations are the Bloch functions defined as
Wi (x)) =e™ ul(x) (12.48)
[Wp(x)) =e™ ud(x) (12.49)
Substituting Egs. (12.48), (12.49) into Eqgs. (12.46), (12.47), one can write
[D?+2:1kD+ (o —k*)] u (x) =0 for0<x<a (12.50)
[D? +2:kD — (B +k*)] up(x) =0 for —b<x<0 (12.51)
where
d
= (12.52)

Eq. (12.50) has a nontrivial solution if the coefficient of ui(x) is zero, which gives
D=1(u —k) and —1(oy +k)
Hence the solution of Eq. (12.50) for uj(x) becomes
w(x) =Ae' XL Be !N for 0<x <a (12.53)
Similarly, the solution of Eq. (12.51) can be obtained and is given by
ud(x) =CelAx 1 pe(ArX for _b<x<0 (12.54)

To find the solutions for ug(x) and uE(x), one needs to know the constants A, B, C, and D appearing in Egs. (12.53), (12.54).
These constants can be determined by using the continuity conditions given below:

ug (0) =up(0), uj(a)=up(—b) (12.55)

(49,8 (¢
dx x=0 dx x=0 dx x=a dx x=—b

The conditions on the left side of Eqs. (12.55), (12.56) represent the requirement of continuity of the wave functions at the
origin, while those on the right side represent the periodicity of the wave functions and their derivatives. Substituting
Egs. (12.53), (12.54) into Eqgs. (12.55), (12.56), one can write

A+B=C+D (12.57)

1(oy —K)A— 1 (o +k)B=(p, —1k)C— (f+1k)D (12.58)
Ael(cckfk)a+Befl<Dtk+k)a :C67<kalk)b+De(/3k+lk)b (1259)

At (o —k)e' 08By (o +k)e”! B8 = C (B, —1k) e BmOP _D (B, +1k) et Kb (12.60)

These are homogeneous equations in A, B, C, and D and have nontrivial solutions if and only if the determinant of the
coefficients of A, B, C, and D is zero, that is,
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1 1 —1 -1
1(oy —k) —1(oy +k) —(B— 1K) (By + 1K) —0 (12.61)
el (4 —k)a ey +k)a _e—(B—1k)b _elB+1K)b - '
1oy —k)e! 0 (g +k)e 0 (g —1k)e B0b (B 4 1k)elft b
Solving the above determinant, one gets
- :
T sinh 3, b sino, a+ cosh f, b cos o a = cosk(a+Db) (12.62)
% Px

To obtain the energy band structure one has to solve Eq. (12.62), which is complex in nature. Kronig and Penney simplified
the problem by assuming the potential barrier to be a delta function potential, that is, Vo approaches infinity as b approaches
zero such that Vb is finite and much less than unity. In this approximation

’ 12
/3k:<;nzevo> , Bb<l, b<a, and o <pB, (12.63)

Using Eq. (12.63) to simplify Eq. (12.62), one can write

P S %ca + cos oy.a= coska (12.64)
o a
where
m.aV,b
P= h—20 (12.65)

Therefore, P is proportional to the area under the potential barrier, that is, Vb, and is the measure of the strength of the
barrier potential. In other words, P gives the binding of an electron to the potential well: the greater the value of P, the
greater the binding of the electron to the potential well.

Fig. 12.3 shows the plot of the left side of Eq. (12.64) as a function of oy a for P=37/2. As oy is proportional to Ey, the
abscissa is the measure of energy. Now the right side of Eq. (12.64) has values ranging from —1 to +1. Therefore, only those
values of energy that satisfy Eq. (12.64) are allowed. The values of energy corresponding to the shaded regions in Fig. 12.3
are allowed. From Fig. 12.3 the following interesting conclusions can be drawn:

1. The energy spectrum of the electrons consists of a number of allowed energy bands separated by forbidden energy gaps.
2. According to Eq. (12.64) the energies are allowed if cos ka ranges from —1 to +1. Therefore, the range of k values is as

follows:

nm nmw
k=———
a a

for the nth band. Hence for the 1BZ, the k values range from — n/a to m/a and for the
2BZ these range from —m/a to —2m/a and from 7/a to 2 t/a and so on.

P sin aala,a + cos a,a
E 3

+1

FIG.12.3 A graph of P sinoya/oa+cosoya as a function of oa with P=3n/2 for a linear monatomic lattice. The shaded regions represent the allowed
energy bands, while the white spaces between the shaded regions represent the forbidden energy gaps.

-1
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3. The width of the allowed energy band increases while that of the forbidden energy gap decreases with an increase in the
value of oya, that is, with an increase in the value of energy. This is a consequence of the fact that the first term of

Eq. (12.64) decreases on average with an increase in the value of oy a.

4. The width of a particular allowed energy band decreases with increasing P value, that is, with increasing binding energy
of the electrons. One can study Eq. (12.64) in the limiting cases. If the electrons are not bound (free electron case), then

P=0 and Eq. (12.64) reduces to
cosoy a= cos ka

or
o a=ka

Substituting the value of oy from Eq. (12.45) into Eq. (12.66), one gets
K2

K" om,

(12.66)

(12.67)

which is nothing but the energy of a free electron. On the other hand, if the electrons are tightly bound, then P = co. In this

case the first term of Eq. (12.64) becomes finite only if
sinoga=0
which gives
o a=nmn
Substituting the value of oy in the above equation, one gets
n’ 7 i?

E,—=E =" "
k 2m,a?

n

(12.68)

(12.69)

These are the energy levels of a particle in a box of atomic dimensions and with finite potential. When the potential becomes
infinite (P=o0), the tunneling of an electron through the barrier becomes impossible and the allowed energy spectrum
becomes a line spectrum. Fig. 12.4 shows a plot of the energy as a function of P (binding) and we see that for P=0 there

are no bands, that is, the energy is quasicontinuous. Also, for P= o0, there are no bands but the line spectrum.

FIG.12.4 A plot of energy E as a function of parameter P, which gives the strength of +E
the barrier potential. On the left side of 1, the value of P decreases, while it increases on
the right side.

0 +— PlAr 1 4P —» 0O
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12.3 NEARLY FREE-ELECTRON THEORY

The Kronig-Penney model does not represent a physical system, except that the electron wave functions are assumed to be
the Bloch functions in the presence of a periodic square-well potential. In this section we study the nature of energy bands in
a crystalline solid with self-consistent periodic crystal potential V(r). The crystal potential V(r) can be taken to be the linear
combination of self-consistent atomic potentials V*(r) as

V(r)=) V(r—R,) (12.70)
The Schrodinger wave equation for a three-dimensional solid is given by
hZ
A Gl A NTAC) (1271)

As the simplest approximation, one can assume V(r) to be a weak potential. In this approximation, the conduction electrons
in the crystalline solid behave as nearly free electrons and, therefore, this approximation is called the nearly free-electron
approximation. One can use perturbation theory to evaluate Ey and |y(r)) in the presence of a weak periodic potential. In
the absence of a potential, Eq. (12.71) reduces to

hZ
[—sz] (1)) =Ef [y (r)) (12.72)
which is the wave equation for the free electrons. The unperturbed wave function is a plane wave |k) defined as
1
0 ik-r
r)=—=e" " "=k (12.73)
Yam) = e T = 1K)
where
V=NV, (12.74)

Here Vjand V are the atomic volume and crystal volume and N is the total number of atoms. Operating on Eq. (12.72) with
(Y°(r)| from the left side and simplifying, one can write
i 'S
El= (k| —=—V’|k)= — 12.75
L= K= V=5 (12.75)

(<

In the presence of a weak potential the plane waves are no longer independent of each other. Therefore, the perturbed wave
function up to the first order |y (r)) is obtained by taking a linear combination of plane waves as

W) = [UR()) + D A (r)) (12.76)
K (#k)
where the constants Ay are given by
Vik
App= B0 Eﬁ 12.77)
Vi are the matrix elements of V(r) between the electron states with wave vectors Kk and k and they are given by
Nt _ 1 —tk' -1 k-t 43
Vi = (K| V(r) k) =v|e V(r)e™ rd’r (12.78)
The perturbed energy, correct up to the second order, is given by
2
By =Ep+ Vi + > Vil (12.79)
k= Pk T Vi E0_ O .
K (#k) Tk K

To calculate | (r)) and Ey for a solid, one has to evaluate the matrix elements V. The diagonal matrix element Vi
gives the average crystal potential in the electron state |k) and, as a suitable reference of energy, it can be taken as zero,
that is,
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1
Vie= (V) ) = [V(r) =0 (12:80)
Therefore, the perturbed energy from Eq. (12.79) becomes
View [’
E, =E)+ Z Eokk (12.81)
K (#K)

Substituting the Eq. (12.70) for the crystal potential in Eq. (12.78) and rearranging the terms, one can write
1 / ,
Vik=y zﬂ:e*’“‘ —W)-R, Je*"‘ (RO yar—R)e'® R P (r—R)) (12.82)

Here we have used the fact that d>r=d>(r—R,,). As V¥(r) is the atomic potential, so its normalization constant will be the
atomic volume. Therefore, Eq. (12.82) can be written as

Vier = Sk Vv (12.83)
where
1 ,
Su=x D et KR, (12.84)
n
1 ,
. :V—Ojel“‘ K rva(r) dir (12.85)

Vi is nothing but the Fourier transform of the atomic potential, generally called the atomic form factor. Sy describes the
structure of the solid in the reciprocal space and it can be shown that

Swx=1 if K=k—-G,

. (12.86)
=0 otherwise

Here Gy, is the reciprocal lattice vector (see Eq. 2.30). Therefore, Syy is called the structure factor of the crystal. From
Egs. (12.83), (12.86) one can write

Vik :Vk—ka :V?;p (12.87)
where
1

a 1G,-rysa 3
Vi = Voje P TV (r) dr (12.88)

Substituting Eq. (12.87) into Eqgs. (12.76), (12.81), we can write

Ve,
W (r) = |yp(r)) + Z 7]30 = ’wkc > (12.89)
( 0) k— G
2
Ve
Be=El+ 3 P (12.90)
Gp(#)) kap

Egs. (12.89), (12.90) are valid under the following conditions:

1. VGPa rapidly approaches zero as G, increases.
2. The states k and k — G, are nondegenerate because, for degenerate states, the wave function and energy both blow up
and hence perturbation theory is not valid. For degenerate states

Eﬁ :ngcp
which gives ,
k= ‘k—Gp‘ (12.91)
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The above equation is equivalent to
2
6, ~2k-6,=0 (12.92)

Eq. (12.92) is the Bragg reflection condition (Ewald’s construction). Therefore, Egs. (12.89), (12.90) are not valid at or near
the BZ boundary.

At the BZ boundary, one has to use degenerate perturbation theory in which the wave function is represented as a linear
combination of wave functions |R(r)) and |t//g,(~,(r)>, that is,

V) = Ao W) + Ag, Vi, ) (12.93)
Substituting Eq. (12.93) into Eq. (12.71), one gets
AOEg Wﬁ(r» + AGp Eﬁ—cp "pﬁ—cp (1')> +V(r) {Ao "/fﬁ(r» + AGP “/fﬁ—(;pﬂ =E, {Ao N’ﬁ(r» + AGp “/’Q—Gp(r)ﬂ (12.94)
Operating (Y(r)| on Eq. (12.94) from the left side and simplifying, we get
Ao[EL—EJ+Ag [ Ve | =0 (12.95)
Similarly, operating (l/jk_GpO(r)| on Eq. (12.94) from the left side and simplifying, we get
AGVE, + [Efq, ~Ei] Ag, =0 (12.96)

Egs. (12.95), (12.96) have a nontrivial solution if and only if the determinant of the coefficients of Agand AGp is zero, that is,

*

BoR (V)

\ 0 =0 (12.97)
VGP Ek—Gp - Ek

Solving the above determinant, the energy is given by

2y 1/2
} ] (12.98)

If [Ek—Ek,Gp]2>>4 | VGPa |, then one is quite far away from the BZ boundary and Eq. (12.98) yields

1 2
Bi= [(Eﬁ+EﬁGp> i{ (B2 —Epq,) +4’V§‘;p

E, =E; (12.99)
E.=E; ¢ (12.100)

which are nothing but the free-electron energy bands. But if [ Ey — Ek,(;p]2<<4 |V(;pal |2, one is very near the BZ boundary
and Eq. (12.98) reduces to

1
B=3 (Ev+EL g, )+ ‘Vgp (12.101)
At the BZ boundary with k=(1/2) | G|, the energies from Eq. (12.101) are given by

EI‘G ’:E?‘G F’vgp (12.102)

2|V 2|7p

- _ 1o _ a

El.G ‘_El’G ‘ ‘VGP (12.103)

2|p 2|Vp

Egs. (12.102), (12.103) show that the two bands are separated by an energy gap of magnitude E,=2 | VGpa| at the BZ
boundary, corresponding to the vector G,. Itis noteworthy that the magnitude of the band gap at the boundary of a particular
BZ depends on the atomic potential. Further, its magnitude is different at the boundaries of different BZs, even for the same
atomic potential.
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To study the nature of the waveform at the BZ boundary, one has to calculate the coefficients Ag and Ag . From
Eq. (12.95) one can write

A [V'E‘; }
= P (12.104)
AGp Ek - Ek
At the BZ boundary the ratio of coefficients for E* and E~ becomes
A0 [VEJ
— ] = 12.105
() e
+
el sle)
Ao ) [VaGJ (12.106)
Ao,)  Ej1oE |
el el
If the potential is real, then
Ve, | =ve, =V, (12.107)

Ao (A _
5)-(3) -

From Egs. (12.93), (12.108) the wave functions at the BZ boundary are given by

¥o, )=~

Substituting |lpﬁ(r)> for the required wave vector, from Eq. (12.73), into the above equation, we obtain

w;Gp(r)>i‘w°%Gp(r)>} (12.109)

A zlG- ﬂlG T
Wi (r)> =0 {e 26 T4 2% } (12.110)
~G vV

2°p

Therefore, the two wave functions are given by

Vo, 0)= o 36 )
p

o) = (%) a2
p

Egs. (12.111), (12.112) represent standing waves at the BZ boundary, as two plane waves that are exactly the same are
moving in opposite directions. The corresponding probability densities at the BZ boundary are given by

2 4A2 1
Pl (r)z‘lﬂG (r) 270 c0s2(§Gp-r) (12.113)
P 2%
2 2
_ _ 4A;5 . 1
pig (1= l/I%G (r) :70 sin? (EGp-r> (12.114)
2% P

We know that G,-R, =27 n’, where n’ is an integer, therefore,

1
5G, R,= 'z (12.115)
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From Egs. (12.113), (12.114) it is evident that p{ G (r) is maximum while p G (r) is minimum at the lattice positions
defined by R,,. In order to study the behavior of p; G (r) and py G (r) in detail, one can apply the general expressions to
2 2

one-, two-, and three-dimensional crystalline solids.

12.3.1 Application to One-Dimensional Solid

Consider a monatomic linear lattice along the x-direction with periodicity “a” and length L=Na (see Fig. 12.1). The
position vector can be written as

r=xi (12.116)
The reciprocal lattice vector of the linear lattice is given by
2 o
G, =P (12.117)
a
Therefore,
2
G, r="Px (12.118)
a

So, the unperturbed wave function is a one-dimensional plane wave defined as

1
0 1kx
X))= —=¢ 12.119
Substituting Eq. (12.117) into Egs. (12.102), (12.103), we get
E;n/a Epn/a+V?;p (12.120)
Ep e =Epra— Ve, (12.121)

where VG;l is the Fourier transform of the real atomic potential V*(x) in one dimension and is given by

6 :% Lva(x) e TIPX/2 gx (12.122)
Hence, at the boundary of the pBZ, there are two energy eigenvalues, namely E/, and E/,, which are separated by the
forbidden energy having value E;= 2| V¢ |
In the free-electron approximation, the energy bands, shown by dashed lines in Fig. 12.5, are parabolic and are degen-
erate at the BZ boundary. With the introduction of a weak periodic potential, the parabolic distribution of electrons is
modified to remove the degeneracy and the energy bands at the BZ boundary are separated by an energy gap of the order
E,=2| Vg, *|. Fig. 12.5 shows the energy bands in the first three BZs in the nearly free-electron approximation.
Substltutlng Eq. (12.119) into Eq. (12.109), one gets

’lﬁp*n/a(X)> = % cos (%n x) (12.123)
[Zmesy =2f° sin (22x) (12.124)

The wave functions | tpgm) and | Y,/) represent standing waves. If the atomic potential V*(x) is attractive (Fig. 12.1), that
is, the matrix elements VG are negative, then, from Eqs. (12.120), (12.121), it is evident that Epﬂ/al has a lower value than
Ep /.. Hence, the wave function | Wpnsa) corresponds to the lower energy state. The above fact can also be explained with the
help of the electron probability densities, which, for the states | /) and | Yp.a), are given by

4A7 5 (PT
Praja(X) =2 cos ( ; x) (12.125)
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FIG. 12.5 The band energy Ey as a function of wave vector k in Ek
various BZs of a linear lattice (extended zone scheme) in the nearly \ /
free-electron approximation. p

.

-3xla -2nla -rla 0 la 2rla 3x/a i
~ 4A3 . ,/pm
ppn/a(x):T sin (—x> (12.126)
a

Fig. 12.6 shows that pp/,(x) is maximum at the atomic positions and minimum midway between the atoms. Therefore, the
electronic screening of the atoms is maximum in the case of | /5,,), thereby lowering the potential energy in comparison
with the average potential energy. On the other hand, pp,/,(x) has its minimum value at the atomic sites but is maximum
midway between the atoms. In this case the potential energy is maximum due to the minimum electronic screening. The
wave function |,/.(x)) corresponds to the higher energy eigenvalue.

The standing waves are formed only if the travelling wave is reflected back in the opposite direction. It can be shown
that the reflection at the BZ boundary is nothing but the Bragg’s reflection. The wave will be Bragg reflected only if the
Bragg reflection condition is satisfied, that is,

2dsinf=pi (12.127)

Here p is the order of reflection. For normal incidence the above equation reduces to

2d=p (12.128)

In the case of a linear monatomic lattice, d=a and, therefore, the above equation gives

s +
'Opm’ a 'Op:,'.l'a

'Op:n"a (X)_’

of \ «——a—» X

Atom

FIG. 12.6 The electron probability densities pp/ and p;, 7 for the two types of standing waves formed in a linear lattice in the nearly free-electron
approximation.
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A=— (12.129)
P
From the definition of wave vector k (=27/1) one gets
k= p?” (12.130)

which defines the boundary of the pBZ. Therefore, a travelling plane wave with wave vector k= 4 pn/a is reflected back at
the BZ boundary forming the standing wave. In other words, one can say that in a linear lattice the waves, corresponding to
k= +pmn/a, reflected from one atom interfere constructively with those reflected from the adjacent atoms. The energies of
the two standing waves are different, causing a finite energy gap at the BZ boundary (see Fig. 12.5). The first energy gap
occurs at k= +n/a, corresponding to the 1BZ boundary, while the others occur at the boundaries of the higher-order BZs.
The number of electron states in a band can be found using the plane wave function. From the periodicity of the wave
function defined by Eq. (12.119), the allowed values of k in a one-dimensional solid are given by
k:O,j:%,iél—n,...,j:M (12.131)
L L L
The series has been cut at N /L as it gives the boundary of the 1BZ. According to Eq. (12.131), in a wave vector of length of
27w/L in k-space, there is one energy state. Hence the total number of electron states in one band is given by

n/a
J L= 2" N (12.132)

,n/aﬁ N 21 a

Therefore, the total number of states in one band is equal to the number of primitive cells or the number of lattice points in
the solid, which is also equal to the number of k-points in one BZ. One should note that each primitive cell contributes one
independent value of k to one energy band. If account is also taken of the spin orientation, then there are 2N independent
states in a band. We can remark here that if in a linear solid the atoms are monovalent, then the valence band will be half
filled with a total of N electrons at absolute zero. But if the atoms are divalent, then the valence band will be completely
filled with 2N electrons.

Problem 12.1
Let the atomic potential V(r) seen by an electron be represented by a Coulomb potential of the form
7 2
Va(r) = —Te

Find the Fourier transform V¢ ° of the atomic potential.

12.4 DIFFERENT ENERGY ZONE SCHEMES

The electronic energy bands in a crystalline solid calculated either in the Kronig-Penney model or in the nearly free-electron
approximation possess the same main features as shown in Figs. 12.3 and 12.5. The energy bands are represented in three
zone schemes as described below.

12.4.1 Extended Zone Scheme

The representation of the nondegenerate energy bands in different BZs, as shown in Fig. 12.5, is usually called the extended
zone scheme. It is an actual representation of the energy bands in which the first band lies in the 1BZ, the second band lies in
the 2BZ, and so on. Further, the value of the energy increases with an increase in the order of the band or the order of the BZ.

12.4.2 Periodic Zone Scheme

The various physical properties of crystalline solids, especially the electronic energy bands, show periodic behavior due to
the periodic nature of the Bloch wave functions. The Bloch wave function is defined as
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W (1)) =e'® Ty, (r)
If we substitute k’ =k+G;, into the equation above, then
() = [ Ty (1)
=™ Ty (r) = | (r))

(12.133)

where
uk(r):e'Gp'ruk+Gp(r) (12.134)

is a periodic function. Eq. (12.134) shows that the values of k are not uniquely defined. According to Eq. (12.133) the Bloch
wave function gets repeated after every reciprocal lattice vector, as is Ey: an energy band is periodic with G, as the peri-
odicity, that is,

Ex=Ey.q, (12.135)

The above physical property has also been proved in the nearly free-electron theory. Therefore, every energy band in the
extended zone scheme can be repeated in all the BZs. Such a representation of the energy bands in a one-dimensional solid
is shown in Fig. 12.7 and is usually called the periodic zone scheme.

12.4.3 Reduced Zone Scheme

In the periodic zone scheme, the representation of each energy band is translated to different BZs by adding suitable recip-
rocal lattice vectors. The reverse can also be done, that is, one can bring all of the energy bands to the 1BZ by adding or
subtracting suitable reciprocal lattice vectors. Such a representation of the bands is called the reduced zone scheme.
Fig. 12.8 shows the energy bands of Fig. 12.5 in the reduced zone scheme. This scheme is widely used in the literature
as one can represent a number of bands in a compact way.

From Egs. (12.89), (12.90) it is evident that the electron energy bands depend on two physical quantities, the crystal
potential V(r) and the electron wave function | ¥ (r)). Therefore, the use of different wave functions and crystal potentials
yield different methods for determining the energy bands, such as the orthogonalized plane wave method and the aug-
mented plane wave method. Another extreme state occurs when the electrons are considered tightly bound to the nucleus.
The determination of energy bands in the tight-binding approximation is of interest here as the Schrodinger wave equation
in this approximation can be solved analytically.

FIG.12.7 The band energy Ej as a function of wave vector k EX
for the first three bands, labeled as 1, 2, and 3, in all of the BZs

of the linear lattice (periodic zone scheme) in the nearly free-

electron theory.

3
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FIG. 12.8 The band energy Ey as a function of wave vector k for the first three bands, labeled as 1, 2, and 3, in the 1BZ of a linear lattice (reduced zone
scheme) in the nearly free-electron theory.

Problem 12.2

Let the atomic potential V(r) be represented by a screened Coulomb potential of the type

Ze?
Vi(r) =— —
(r) o
where ¢ is the dielectric screening constant. Prove that the Fourier transform Vg ° of this potential is given by
. AnZe?
G, — 2
p eVo Gy

Problem 12.3

Draw the free-electron energy bands in the reduced band scheme.

12.5 TIGHT-BINDING THEORY

An atom is associated with a localized wave function, which has maximum amplitude and, hence, maximum probability
density, at the atomic position. The wave functions of two neutral hydrogen (H) atoms separated by a large distance do not
overlap (Fig. 4.8A). As the H atoms are brought closer, their wave functions start to overlap and so do their charge dis-
tributions. The overlap can be described by a linear combination of the wave functions as follows:

W) =1[Va)+p) (12.136)
W) =1a)—¥g) (12.137)

The wave functions for the above combinations are shown in Fig. 4.8B and C. Each combination shares electrons equally
between the two protons. An electron in the state [4)+|yg) will possess somewhat lower energy than in the state
[Wa)—|¥g) for the following reason: In the state |y 4) + | ), an electron spends part of its time in the region midway
between the protons and is under the influence of the finite attractive potential of both protons, thereby increasing the
binding energy of the state. But in the state |/ 4) — | g), the potential is zero midway between the protons and, hence, the
extra contribution to the binding energy does not appear. We know that for greater binding, the energy eigenvalue is
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FIG.12.9 The electronic band structure of a sLi’ atom. The left-hand side of the figure shows the sharp energy states of a ;Li” atom, while the right side
shows the energy bands in a solid made of ;Li’ atoms.

lower and, hence, the state is more stable. So |}5)+|/5) represents a more stable state as compared with the state
[Wa) — |Wg). It is for this reason that | ,) +|¥p) is called the bonding state, while |y 5) — |g) is called the antibond-
ing state. Thus, as the two atoms are brought closer, the single energy state is split up into two states |¥A)+|yg) and
|Wa) — | ¥g) with different energies. In general, when N atoms are brought closer to form a solid, each energy level of an
isolated atom is split into N closely spaced levels, which collectively form an energy band. Thus, all of the energy levels
of an atom become energy bands in a solid. In other words, a state with quantum number n of a free atom is spread out into
a band of energies in a solid. The s-, p-, d-, and higher states of an atom form energy bands and the width of these bands is
proportional to the strength of the overlap interaction between the neighboring atoms.

Consider the case of a lithium (sLi’) atom in the ground state. The sharp energy levels of a free 5Li’ atom are shown in
the left part of Fig. 12.9. In the 1s® state of a 5Li’ atom, there are two electrons with opposite spins. Therefore, the 1s” state
forms a degenerate state and the degeneracy can be broken if a magnetic field is applied. The 2s’ state contains only a single
electron. Let there be a number N of 3Li7 atoms with no interaction between them. In this case, the 1s” state each inde-
pendent 5Li’ atom has the same energy and, hence, is N-fold degenerate. Similarly, the 2s' state of the independent atoms
is also N-fold degenerate. As the atoms are brought closer, their charge distributions start to overlap and the interaction
energy comes into play. The N-fold degeneracy is broken in each of the 1s* and 2s' states due to the Pauli exclusion prin-
ciple and they get split into N states. The 1s> band will have 2N electrons (each atom contributes two electrons) and will be
completely filled, while the 2s' band has only got N electrons and is half filled (see Fig. 12.9).

The nature of the energy bands of electrons tightly bound to the nuclei of atoms in a solid form another limiting case. The
wave function of an electron in a free atom is usually called an atomic orbital and the atomic orbitals with different energies
and belonging to different atoms are orthonormal. The Bloch wave function, which fully describes an electron in the
periodic field of the crystal, can be constructed by taking the linear combination of atomic orbitals (LCAO) belonging
to different atoms. This is called the LCAO method and is more suitable for electrons in the inner shells of an atom.

Let V¥(r) be the self-consistent atomic potential experienced by an atomic electron at a distance r from the nucleus of
the atom to which it belongs (dashed line in Fig. 12.1). Let the wave function of the electron in a free atom be represented by
the atomic orbital |*(r)) with energy Eq. The Schrodinger wave equation for the atomic electron is given by

H, [*(r)) =E, [y*(r)) (12.138)
where ﬁa is the Hamiltonian of an atomic electron and is given by

~ 72 )

Ha:—EV +Vi(r) (12.139)

€

Suppose a number N of similar atoms are brought together to form a crystal. The crystal potential is obtained by the super-
position of the atomic potentials and is shown by the continuous curve in Fig. 12.1. Assume that the origin is at the position
of a particular atom, then R, gives the position of the nth atom. In the tight-binding approximation, it is assumed that an
electron belonging to the nth atom is only slightly influenced by the presence of other atoms. In this approximation, the
wave function of the electron with position vector r and belonging to the nth atom (Fig. 12.10) is given by the atomic orbital
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FIG. 12.10 Showing the position vector r of an electron belonging to an atom at position R,,.

[*(r —R,)). The energy of the electron is very close to Eq and, ideally speaking, it is taken to be Eq. Now the electronic
wave function with wave vector k in the crystal is the linear combination of the form

Y, () ZC )Y (r—R,)) (12.140)

Here r lies very close to Ry, therefore, all the contributions to the sum will be small except for that from |}y*(r — R,))) with
the smallest value of r — R,,. In a crystalline solid an electron experiences a periodic potential, so the wave function must be
of the form of the Bloch function, which restricts the value of C,(k) to e"®. Therefore, the wave function given by
Eq. (12.140) becomes

Y () Z €

Eq. (12.141) satisfies the properties of the Bloch functions. This can be realized by translating the above wave function by a
lattice vector R,,, that is,

“(r—R,)) (12.141)

Wi(r+R,) =D e Byt (r+R, ~R,))

which, after simplification, can be written as

[ (r+Ry,)) = k(r)) (12.142)

Eq. (12.142) is nothing but the Bloch condition. The wave function given by Eq. (12.141) can be normalized to unity. Let C
be the normalizing factor, then

| () CZe"‘R W (r—R,)) (12.143)

The normalization condition demands that

W@ () =1=C2 | 3 e B R (2 (r —R,) | ¥ (r —R,))

n,m

e [2<wa<r—Rn>|wa<r ~R,)

n

(12.144)

+C Y e RRI AR )|y (r—R,)
n,m (n#m)
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As the electrons are assumed to be tightly bound to the nucleus, their wave functions are highly localized about the nucleus.
Therefore, the overlap of wave functions of electrons belonging to different nuclei is negligible. To the lowest order approx-
imation, neglecting the overlap of electronic wave functions, the second term on the right-hand side in Eq. (12.144)
becomes zero and each integral of first term of Eq. (12.144) gives unity. With these approximations, Eq. (12.144) gives

C:L (12.145)

VN

Hence the normalized wave function from Eq. (12.143) becomes
1
r))=——)» e*Rapyir— 12.146

The expectation value of energy of an electron with wave vector k is given by

Ey = (¥ ()| H, ¥, (r)) (12.147)

Here, ﬁe is the Hamiltonian of an electron in a crystal. Substituting Eq. (12.146) into Eq. (12.147), one can write
1 ~
Bi=g 2o T 0 Ry H (= Ry) (12.148)

The Hamiltonian H, can be written as

~ ®o_,
Ho= =5V +V(r)
v R 4 V(R R
2m, n n
where
V(r—R,)=V(r)—V*(r—R,) (12.150)

Vi —R,) is the potential seen by an electron at position r due to the atom at position R,,. Vir— R,) is the difference of self-
consistent potential seen by an electron when all atoms are present and the atomic potential due to the single atom at
position R,,. In other words, V' (r—R,) represents the potential seen by the electron at r resulting from all of the atoms
except the one located at position R,. Therefore, V'(r—R,) is a weak potential as the overlap is negligible in the
LCAO approximation and can be treated as a perturbation. Further, V(r—R,)isa negative quantity as the crystal
potential is smaller than the atomic potential (see Fig. 12.1). Substituting Eq. (12.149) into Eq. (12.148) and using
Eq. (12.138), we get

_ 1 k- (R,—R,)
Ex=Ey— nzn;e - (12.151)
where
Pmn = — (W' (r =Ry, [V (r =R, [)*(r—R,)) (12.152)

The summation in Eq. (12.151) can be split into two parts as

1 1 R
Ex=Eg—g D g D &y, (12.153)

n,m (n#m)

In order to solve the above equation, we make some simplifying approximations. First, we assume that only the 1NN inter-
actions are significant and so we sum over the 1NNs in the last term of Eq. (12.153). Second, it is assumed that the atomic
orbitals are spherically symmetric, that is, that they depend on the magnitude of r — R,,. In this approximation, all the inte-
grals in the last term of Eq. (12.153) become equal and so this term is equal to the magnitude of the single integral multiplied
by the number of the 1NNs. To simplify the notation, we write

Yo="Ym and y.. =7, (12.154)



Energy Bands in Crystalline Solids Chapter | 12 263

which allows us to write Eq. (12.153) as

E,=E,—7, -7, Ze'kerRm) (12.155)

The quantities 7o and y, are positive because V(r—R,)is always negative. From Eq. (12.155) it is evident that the energy of
an electron in a crystal differs from its energy in a free atom by a constant factor ), plus a term that depends on the wave
vector and the crystal structure. It is the last contribution in Eq. (12.155) that transforms the discrete energy levels into
energy bands in a solid. Eq. (12.155) gives the general expression for energy in the tight-binding approximation and
one can apply it to different structures.

12.5.1 Linear Monatomic Lattice

Consider a linear monatomic lattice along the x-direction with “a” as its periodicity. Therefore, an atom at R,, (assumed to
be the origin) has two 1NNs with coordinates given by

R, —R, =(%£4,0,0) (12.156)
Substituting the coordinates of the 1NNs in Eq. (12.155), we get
Ek — EO —Y0— 71 (elkxa +e—1kxa)

which can be written as

E, =Ej—7,—2y,cosk,a (12.157)
The parameters o and 7, are given by
vo=—W* ()| V'(x) [¥* (x)) (12.158)
7 == (x£a)| V' (x)[y*(x)) (12.159)
The slope of the energy band is given by
P 5, asink 12.160
d—kx_ y,asink a (12.160)

The value of y; depends on both the magnitude and sign of |{/*(x)) and |*(x L a)). First, we consider the case when both
[Y*(x)) and |y*(x £ a)) have the same sign, which yields a positive value of y,. The energy band given by Eq. (12.157) is
plotted in Fig. 12.11A in the 1BZ. In this band, the energy is minimum at k, = 0 and maximum at k, =/a. As the value of

3 Ekx .Ekx
—E 2 n B2
4y,
4y,
YE v 42 v,
~ Eqy—2 1 B2
-nla 0 nl2a nla -nla 0 nl2a nla
kx—r k—»
(A) (B)

FIG. 12.11 The energy band Ey as a function of k, for a monatomic linear lattice with periodicity “a” in the tight-binding approximation. In (A) the
parameter Y, is positive, but in (B) y; is negative.



264 Solid State Physics

cos kyaranges from —1 to 1, therefore, the width of the energy band is 4 y,. In this case the energy is lower so it corresponds
to the state given by Eq. (12.136). The details of the energy band can be investigated from Eqs. (12.157), (12.160). At small
values of k,, the cosine term of Eq. (12.157) can be expanded in a series to write

(kya)?
E, =E;—7,—2 1 ——2 ..
K, 0~ 70 Vl( ) (12.161)

=E)—7o—27, +y1a2ki

At small values of k, the band is a parabola with a positive slope, which increases with an increase in k,, but becomes
maximum at k, =n/2a. After this, the slope becomes negative and decreases, going to zero at the BZ boundary with
ky=m/a (see Fig. 12.11A). This shows that there is a point of inflection in the energy curve at the midpoint of the 1BZ
with k, =mn/2a. Further, the energy Ey is periodic with a periodicity of 2n/a. Hence the unique values of k, are defined
only in the 1BZ. It is noteworthy that apart from the position of zero of energy, Eq. (12.161) is similar to the free electron
energy. To point out the similarity we sometimes write

ylaZ:h—z* (12.162)
2me

where m¢ is the effective mass of the electron near k, =0.

In the second case, |}*(x)) and |}*(x £a)) have opposite signs, so y; becomes negative. In this case the parabola is
inverted, that is, the energy is maximum at k, = 0 and minimum at the BZ boundary with k, =m/a (see Fig. 12.11B). Here
the energy band corresponds to the state given by Eq. (12.137), which has an energy a little more than that of the state
described by Eq. (12.136). There is an important difference between the bands obtained in the nearly free-electron and
tight-binding approximations. In the nearly free-electron approximation, the band is almost a parabola except near the
BZ boundary where it is an inverted parabola. But in the tight-binding approximation, the band has the same symmetry
around the midpoint, at which it exhibits a point of inflection.

12.5.2 Two-Dimensional Square Lattice

In a square lattice the atoms are arranged on a square matrix with “a” as the periodicity. The 1NNs along the x- and y-
direction are (+a,0,0) and (0, +a,0), respectively. So, one can write

R,— R, =(%£42,0,0),(0, £a,0) (12.163)
Substituting Eq. (12.163) into Eq. (12.155) and simplifying, one gets
Ey=E;—79—27, | cosk,a+ coskya (12.164)
From Eq. (12.164), the bottom of the energy band is given by
By =E;—7— 47 (12.165)
and the top of the energy band is given by
Ey =E;—7+47, (12.166)

Therefore, the width of the energy band in a two-dimensional solid is 8 y;. The reciprocal lattice of the square lattice is again
a square lattice but with periodicity 2 n/a. Therefore, the 1BZ is a square with side 2 nr/a. From Eq. (12.164) it is evident that
the energy is a periodic function of k. The unique values of the Cartesian components of k in the 1BZ are given as

(12.167)

Let us examine the nature of the constant energy surfaces in the tight-binding approximation. For very small values of
k the cosine terms in Eq. (12.164) can be expanded in terms of series and, retaining only the lowest order terms in k,
one can write

E, =E,—7,— 47, +7,2°K (12.168)
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Again, near the bottom of the band, the energy bands are parabolic, as in the case of free electrons. Therefore, for small k
values the constant energy surfaces are circular in nature. In this region the electrons can be assumed to be free with an
effective mass m3 From Eq. (12.168) one can write
h2
P 12.169

=y (12.169)
which is the same result as in the case of a one-dimensional solid. In the tight-binding approximation, the value of m; is
large because of the small value of 7y, which is a measure of the overlap of the wave functions of the 1NNs. In other words,
the electrons cannot move freely in the bands with small bandwidths. At the top of the first band (1BZ boundary),
kx=ky= £m/a and this gives

cosk,a= cos kya: —1 (12.170)

In the reduced zone scheme, the corners correspond to the states at the top of the band. In the vicinity of these corners one
can expand the cosine term in a series. The expansion of the cosk,a term around a corner can be written as

cosk,a= cos {n— (E—kx) a} = cos (m—kja) = —cosk,a (12.171)
a
where
K="k, (12.172)
a

Here k,’ is measured relative to the corner. Therefore, for small values of k,’, one can expand the cosine term as

Coskxa:—cosk;a:—l+(k;Ta)2+m (12.173)
Similarly, one can expand coskya. Substituting these expansions into Eq. (12.164), one can write
Ey =B, — 7, +47, —7,2°K” (12.174)
where
K* =K} +K (12.175)

Eq. (12.174) shows that the energy bands near the top are also parabolic in shape, giving rise to circular constant energy
surfaces. The nature of the bands away from the bottom and top of the band can also be studied. Suppose we are interested in
the constant energy bands having energy

E,=E;—7, (12.176)
Then, from Eq. (12.164), we have
cosk, a+ cos kya:O

From the above equation ky can be written in terms of k, and vice versa as follows:

cosk,a=—cos kya:cos{j:(n—kya)} (12.177)
cosk,a= cos{x(m—k,a)} (12.178)
Egs. (12.177), (12.178) yield

ko= +oFk, (12.179)

a

n
k, =+ Fk, (12.180)

a

Note that Eq. (12.179) represents a straight line passing through the points (n/a,0) and (0, /a) and the second set of points are
(—mn/a,0) and (0, /a). Similarly, Eq. (12.180) represents straight lines passing through the two sets of points (0, 7/a), (n/a,0)
and (0, — m/a), (n/a,0). With the knowledge of these points, one can draw constant energy straight lines having value Ey — y,.
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FIG.12.12 The constant energy surfaces in the (ky,ky) plane for a square lattice in (A) the tight-binding approximation; and (B) the nearly free-electron
approximation. (Modified from Dekker, A. J. (1971). Solid state physics (p. 262). London: Macmillan Press.)

The constant energy curves in the 1BZ of the square lattice are shown in Fig. 12.12A in the tight-binding approximation. This
clearly shows that the energy bands are circular near the bottom and top of the band, but become flat as we move toward the
center of the band. Fig. 12.12B shows the constant energy curves obtained in the nearly free-electron theory. It is noteworthy
that in the nearly free-electron approximation, the k> dependence of the bands (and hence the circular constant energy lines)
extend to much larger values of the wave vector than in the tight-binding approximation. The circular constant energy lines
near the top of the band (near the corners of the BZ) extend to only small values of the wave vectors.

12.5.3 Three-Dimensional sc Lattice
In a solid with sc structure, there are six 1NNs with coordinates given by

R,— R, =(%a,0,0),(0, £a,0),(0,0, £a) (12.181)
Substituting the coordinates of 1NNs from Eq. (12.181) into Eq. (12.155), one can write

Ey=E;—7y—2y, |cosk,a+coska+ coskza] (12.182)

The width of the energy band in a three-dimensional solid is 12y, and all the energy levels are contained in it. In the tight-
binding approximation, the value of y; is small due to the small overlap of the wave functions, which yields narrow bands
(bands with small bandwidths). The inner electron energy levels give rise to very narrow bands in a solid because of further
decreases in the overlap. The reciprocal lattice of an sc structure with periodicity “a” is again an sc lattice but with peri-
odicity 2 /a. Therefore, the 1BZ is a cube of edge 2 /a. The energy is a periodic function of k (Eq. 12.182) and its values

are uniquely defined in the 1BZ as

I ckk, k<8 (12.183)
a a
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The nature of the constant energy surfaces in a three-dimensional solid can be examined in the same way as in a two-
dimensional solid. For very small values of k, one can expand the cosine terms in series and can retain only the lowest
order terms in k to write

Ey =Ej— 79— 67, +7,2°K (12.184)

So, near the bottom of the band, the energy bands are parabolic, as in the case of free electrons, and the constant energy
surfaces are spherical. In this region electrons can be assumed to be free with an effective mass mg given by (Eq. 12.184)

72
m; = Tﬂz (12.185)
The value of m{ is large because of the small value of y,. At the top of the first band, k, =k, =k, = +n/a, giving
coskya=cosk,a=cosk,a=—1 (12.186)

By defining the Cartesian components of the wave vector relative to the corners of the 1BZ, it can easily be proved that

Ey =E,—7,+67, —7,2°K” (12.187)
where
K2 =K 4K} +K; (12.188)
and
k;zg—kx (12.189)
K==k, (12.190)
K :g—kz (12.191)

Eq. (12.187) shows that near the top the energy bands are also parabolic in shape, giving rise to spherical constant energy
surfaces. The nature of all of the bands and the constant energy surfaces in an sc solid can be calculated in the xy-, yz-, and
zx-planes of the 1BZ in exactly the same manner as in the two-dimensional solid. It is found that the energy bands are
parabolic near the bottom and top of the band, but become flat as we move toward the midpoint of the band. In other words,
one can say that the constant energy surfaces are spherical near the center and the corners of the 1BZ and become flat as one
moves away from them.

Problem 12.4

Show that in the tight-binding approximation, the energy E for
(@) a bec lattice is given by

E, =E,—7, — 87, cos(k,a) cos <kya> cos (k,a) (12.192)
(b) an fcc lattice is given by
E, =E,—7vo—47y, | cos(k,a) cos <kya) + cos (kya> cos (k,a) + cos (k,a) cos (k,a) (12.193)

Here 2a is the cube edge. Also show that for small values of k the energy is proportional to k2. Further, discuss the shape of the
constant energy surfaces in the k-space.

The real wave function in a crystalline solid is shown in Fig. 12.13. It is evident from the figure that the real wave function is
oscillatory in nature near an atom (more precisely within the ion core) due to the localized core states, but behaves like a
plane wave midway between the atoms. This shows that an electron is neither free nor tightly bound. Further, Fig. 12.13
suggests that the conduction electron wave function can be obtained by taking a linear combination of the plane waves and
core states. There are different ways to have a linear combination of the plane waves and the core states, thus yielding
different methods for the determination of the energy bands in solids.
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FIG. 12.13 The Bloch wave function |/(r)) oscillates near the [yo(r)>
atomic sites due to the presence of localized core states, while,
between the atomic sites, the wave function behaves like a plane

wave. Near the atomic sites the crystal potential V(r) is strong . =

and attractive, but between the atomic sites the potential is weak r
and flat in nature. The dashed line shows the pseudowave function U \/ i
().

V()

12.6 ORTHOGONALIZED PLANE WAVE (OPW) METHOD

In a metallic solid there are conduction states, represented by plane waves |K) and core states | ¢p.(r)). The subscript ¢
denotes the quantum numbers along with the position of the ion. The core states are orthogonal to each other, which is
represented mathematically as

(@ (r)[ ¢ (T)) = e (12.194)

Both the conduction and core states are eigenfunctions of the same one-electron Hamiltonian ﬁe, SO
H, k) =E, [K) (12.195)
H,[¢.(r)) =E. | (r)) (12.196)

where E is the energy of a core state in the crystalline solid, which is different from the core energy in an isolated ion. The
real conduction electron wave function is constructed by taking a linear combination of the plane waves and core states in
such a way that it is orthogonal to the core states. Such a conduction state is called an orthogonalized plane wave (OPW) and
is defined as

Kopw) = 1K) = |¢(r)) (§(r) [K) (12.197)
Eq. (12.197) can be written as
Kopw) = (1—P) k) (12.198)
where
P=>"|¢.(r)) (¢(r)| (12.199)

P is the projection operator onto the core states. Now it is straightforward to prove the orthogonality of the OPWs and the
core states, that is,

(Kopw | (r)) =0 (12.200)
But the OPWs are not orthogonal to each other. One can easily prove that
<k6Pw|k0Pw> = Ok — Z (K| (r)) (¢ (r)[ k) (12.201)
In a crystalline solid the general conduction electron wave function |/(r)) is taken as a linear combination of OPWs, that is,
|1//(1')>=Zak|kopw>: (1=P)[y*(r)) (12.202)
K
where
W) = a k) (12.203)
Kk

|°(r)) is a linear combination of plane waves and is called a pseudowave function. Due to the presence of core states, an
OPW decreases much faster with an increase in the value of k and, therefore, gives a significant contribution only at small
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values of k. [/°(r)) is a smooth wave function and is shown in Fig. 12.13 by a dashed line. Note that |¢°(r)) is equal
in magnitude to the true wave function (except possibly for normalization) outside the core because the operator P is
zero there. So, the real wave function may be obtained simply by orthogonalizing the pseudowave function to the core
states with the operator 1 —P and then renormalizing it. The one-electron Schrodinger wave equation satisfied by |¥/(r))
1s written as

hZ
[—2me V4 vm] W () =E [y (r)) (12.204)
Substituting Eq. (12.202) into Eq. (12.204) and rearranging the terms, we get
hz
[—2 V24 wm} W) =E I (r) (12.205)
me
where
W) =V(r)+ Y (B—E.) ¢, (1)) (¢ (1)) = V(r)+ (E— H, ) P (12.206)

C

W(r) is called the pseudopotential, which is nonlocal in nature, and Eq. (12.205) is called the pseudowave equation, with
[°(r)) as the pseudowave function. In writing Eq. (12.205) the effect of orthogonality has been transferred from the wave
function to the crystal potential. The energy of the core states E. is always negative; therefore, the second term of W(r) is
always positive and represents the repulsive contribution to the potential. The repulsive term originates from the orthog-
onality condition, which is frequently ascribed to the Pauli exclusion principle. Therefore, the pseudopotential W(r), which
is the sum of attractive and repulsive contributions, is a weak potential. The noteworthy feature here is that Eq. (12.205) is
the Schrodinger wave equation with a weak potential as in the nearly free-electron theory. Hence, perturbation theory can
be applied to study the electronic properties of solids.

Problem 12.5: Nonuniqueness in Pseudowave Function

The pseudowave function [§°(r), given by Eq. (12.203), is the eigenfunction of the pseudowave equation given by Eq. (12.205).
Add a linear combination of core states | $.) to [*(r)) to obtain a new pseudowave function |y° (r)) written as

V) =)+ Y ac ) (12.207)

where a¢ is a constant. Prove that W'(r)) is also the eigenfunction of Eq. (12.205) with the same energy.

Problem 12.6
Operate (kopy| from the left side on Eq. (12.205) and show that

21,2
Z ay Kznlq(_ E) {5“ - Z (K[ (1) (o (r)]k) } + (K| W(r) |k)} -0 (12.208)
k e I

From Eq. (12.206) it is evident that the pseudopotential W(r) depends on energy E and vice versa. Therefore, W(r) must be
obtained self-consistently. Solving Eq. (12.205) or Eq. (12.208) one can obtain the energy bands in the OPW method. It has
already been pointed out that the OPWs decay much faster with an increase in k value. Therefore, in this method, one uses
either one OPW or two OPWs for the evaluation of the electronic energy bands.

Because of nonuniqueness in the pseudowave function there can be many forms of the pseudopotential. If
in Eq. (12.206) the positive quantity E —E_ is replaced by any function f(E,c), then the pseudopotential W(r) can be
written as

W(r)=V(r)+ ) f(E,c)|¢.(r)) (d.(r)] (12.209)

C

With this new pseudopotential, the pseudowave equation (12.205) becomes
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2
[_% Ve V(T)] W)+ Y £(E.c) [ (1) (. (X)|Y*(r)) =E' [y (r)) (12.210)

where Eis the energy eigenvalue of the new pseudopotential equation. Operating the true wave function (i/(r)| from the left
side on Eq. (12.210), one can easily prove that

E' (Y (r)[y*(r)) = EQp(r)[*(r)) (12.211)

In order for Eq. (12.211) to hold, either the true wave function should be orthogonal to the pseudowave function,
which is not true, or their energies should be equal, which is the case here. It is important to note that all forms
of the repulsive part f(E,c) give the correct energy eigenvalues and eigenfunctions if the pseudowave equation is
solved exactly. In other words, it means that there is no correct pseudopotential, but there are many valid forms
of it. This leads to the formulation of a number of self-consistent pseudopotentials, which are used to study the elec-
tronic properties of the crystalline solids. Another class of pseudopotentials comprises model potentials in which the
fact that the repulsive part f(E,c) can have any form is exploited. There exist a number of model potentials for metals
with different forms of the repulsive contribution and the reader is referred to Harrison (1966) and Galsin (2002) for
further study.

12.7 AUGMENTED PLANE WAVE (APW) METHOD

The actual crystal potential V(r) shown in Fig. 12.13 can be accurately described by a screened Coulomb potential near an
ion, which can be assumed to be spherically symmetric in nature. But, between the ions, V(r) is flat and weak. It should be
noted that V(r) is consistent with the nature of the real wave function, which is oscillatory within the ion core and a plane
wave outside. It has already been pointed out in Chapter 3 that the exact evaluation of V(r) in a crystalline solid is difficult;
therefore, it is usually estimated in some justifiable approximation.

It was discussed in Chapter | that a crystalline solid can be divided into identical WS cells with an atom (ion) at the
center. One can draw a sphere of radius Ry, with its center at the center of the WS cell, so that it lies well within the WS
cell (see Fig. 12.14A). Such a sphere is called a muffin-tin (MT) sphere. The radius Ryt is such that, within the MT sphere,
the potential can be approximated by a screened Coulomb potential V;,,(r) of an ion. But outside the MT sphere, V(r) is
assumed to be constant and preferably zero (by shifting the zero of the energy scale). Such a potential is called an MT
potential. Mathematically, one can write

V(r)=V,,(r) forr <Ry

12.212
=0  for r)Ryr ( )

The MT potential is shown in Fig. 12.14B. In the literature there exist more refined and sophisticated forms of the MT
potential. The wave function | (r)) is assumed to be spherically symmetric inside the MT sphere, but outside it is in
the form of a plane wave. Both of these wave functions must be continuous on the surface of the MT sphere, that is,
the wave functions and their derivatives must be the same at r=Ry;r. In the muffin-tin approximation for the potential,
the wave function is given by

W (r)) = ZAlmR[(kr) Y7'(0, ¢) forr <Ry
£,m (12.213)
=e'kr for r) Ry
Here R,(kr) is the radial wave function and Y7'(0, ¢) are spherical harmonics. The wave function defined by Eq. (12.213) is
usually called the augmented plane wave (APW) function and the method of determining the energy eigenvalues using this
wave function is called the APW method. The constants A, can be obtained from the expansion of a plane wave in terms of
spherical harmonics Y7'(0, ¢) given as

e T =dn Y (k) YP(0.4) YP (0. ) (12219
{,m

where j,(kr) is the spherical Bessel function for orbital quantum number ¢. The continuity condition of the wave functions,
given by Eqgs. (12.213), (2.214), at r=Ryt gives
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FIG.12.14 (A) The square lattice is divided into WS cells having an atom at their centers. The MT sphere is shown in each WS cell with the center of the
MT sphere coinciding with the center of the WS cell. (B) The MT potential for a crystalline solid.

io(k
A, =4ni ljé((krr)) Y70, ¢') (12.215)

The radial wave function R,(kr) is obtained by solving the radial part of the Schrodinger wave equation given by

1d/,dR, ((l+1) 2m, ~ 2m.E
r2dr<r dr)+ { S+ e V) [ Ry(ke) = TR (k) (12.216)

for a given energy E. The electron wave function is obtained by taking a linear combination of | (r)), that is,

() =Y Cy [ (r)) (12.217)
k

The coefficients Cy are chosen to minimize the energy of [/(r)). The energy eigenvalues can be obtained by solving the
Schrodinger wave equation

H[Y(r)) =E[y(r)) (12.218)
Substituting Eq. (12.217) into Eq. (12.218), we obtain

>y [He v (1) = By i () | =0 (12.219)
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FIG. 12.15 Energy bands in Cu metal along the symmetry directions [100] and [111], calculated using the APW method. The dashed line denotes the
Fermi energy Ef. (After Snow, E. C. (1968). Self-consistent energy bands of metallic copper by the augmented plane wave method I1. Physical Review, 171,
785-789.)

Operating (Y (r)| on Eq. (12.219) from the left side, we get

hKeN [ﬁk,k—Eka,k} =0 (12.220)
k
where
Hyw = (Yo (0) [ H, [ (r)) (12.221)
Ik = (Y (1) [P () (12.222)

The energy eigenvalues for each value of k can be obtained by solving the determinant equation
det |Hyy —E Loy | =0 (12.223)

Knowing the values of the energy eigenvalues Ej, the coefficients Cy can be determined from Eq. (12.220). Note that the
matrix elements H,,, and Iy depend on Ey and vice versa. Therefore, one has to start with some trial energy eigenvalue Ep
and then determine the energy self-consistently. Fig. 12.15 shows energy bands in Cu metal obtained using the APW
method (Snow 1968). It is evident from the figure that the shape of the energy bands is very much different from those
obtained in the nearly free-electron and tight-binding theories. Further, the energy bands along the two symmetry directions
have different values and different shapes.

There are a number of other methods for determining the energy eigenvalues in crystalline solids. One method worth
mentioning here is the Korringa-Kohn-Rostoker (KKR) method. The KKR method makes use of the Green’s function tech-
nique for determining the energy bands in a solid, but it is not in the scope of this book. The interested reader may consult
Galsin (2002) and Callaway (1974) for a brief account of this method.

12.8 DYNAMICS OF ELECTRONS IN ENERGY BANDS

An electron in a band may not be free to move, but rather its motion depends on the energy state occupied by it in a particular
energy band. In other words, the velocity and effective mass of the electron may not remain constant throughout the energy
band. In the previous sections, the band energy Ey has been calculated using different methods, but here we calculate the
effective mass of an electron using a simple form of energy band, as shown in Fig. 12.16. For simplicity it is assumed that
the BZ under consideration contains only one electron. From the wave mechanical theory, the velocity of an electron is
equal to the group velocity of the wave packet that is given by the standard relation as
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FIG. 12.16 Schematic representation of energy Ey, velocity vy, effective mass my, and the parameter fy as a function of wave vector k. Here kg, is the
wave vector at the point of inflection in the Ex curves and kg is the wave vector at the 1BZ boundary.

do(k) 1dE;

K =T0C T dk (12.224)
where w(Kk) is the angular frequency for the wave vector k. From Eq. (12.224) it is evident that v depends on the first
derivative of the energy curve and acceleration, therefore, on the second derivative. Fig. 12.16 shows vy as a function
of k for a one-dimensional solid. The velocity v, of an electron increases with an increase in the value of E, and becomes
maximum at the point of inflection occurring at k =k,. With a further increase in the k value, the velocity decreases and
goes to zero at the BZ boundary. It is evident that vy is zero either at the center of the band or at the BZ boundaries.

The effective mass of the electron mi can be calculated as a function of k from an energy band. If an electric field E is
applied to the material, then the energy gained by an electron in an energy band is given by

dE, =F-dS=—eE(v,dt) (12.225)
where F = —eE. Using Eq. (12.224) for vy in Eq. (12.225), one obtains
dk eE
o 12.226
dt 7 ( )

Now the acceleration a;; can be written as
. dv, 1d°E, dk
Qh =—= — —_—
Kdt nodk® dt

(12.227)
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Substituting Eq. (12.226) into Eq. (12.227), one gets

. eEd’E,
A =—— —- 12.228
k hZ dk2 ( )
With the knowledge of aj;, mi; of an electron can be estimated from Newton’s law as

. F W

m == 12.229
K ap  d’E, /dk? ( )

Egs. (12.228), (12.229) show the importance of the energy eigenvalue curves derived from band theory. Fig. 12.16
shows that the electron at the center of an energy band (k =0) has mass equal to the mass of a free electron m,, that is,
mg=m,. With an increase in the value of k, the effective mass mf increases and becomes infinity at the point
of inflection at wave vector ky. With an increase in the value of k compared with k, the effective mass becomes
very large but negative in sign. With a further increase in k, the mass decreases and reaches the mass of a free elec-
tron but with negative sign at the BZ boundary (Fig. 12.16). These results can be interpreted according to the
discussion below.

From the foregoing, it is evident that an electron behaves as a free particle at the center of a band and that the degree of
freeness decreases with an increase in the value of k. At k =Xk the electron becomes tightly bound to the nucleus. With a
further increase in the value of k, the degree of freeness of the electron increases again and it becomes completely free at the
BZ boundary. A factor of f, which measures the degree of freeness of an electron in an energy state with wave vector k in a
three-dimensional solid, can be introduced and is defined as
m, m, d2Ek

— €
£ =—e

=< "k 12.230
m, A dk? ( )

For a free electron mj; =m,, which gives fy =1, but in the case of a tightly bound electron mj; = oo and fx =0. For a one-
dimensional solid, the value of fy as a function of k is plotted in Fig. 12.16 for the given energy band. It is evident from the
figure that fy is positive for the lower part of the band, that is, from k =0 to k =k, and becomes negative in the upper part of
the band.

12.8.1 Behavior of Electrons in Free-Electron Theory

In the free-electron theory the energy is given by

#K?
- 12.231
o (12.231)
Using Eq. (12.231) in Egs. (12.224), (12.229), one gets
hk
v = =P (12.232)
me me
m, =m, (12.233)

Therefore, in the free-electron approximation, an electron behaves as a free particle for all values of k, but the velocity
increases linearly with wave vector k. In this approximation

fo=1 (12.234)

12.8.2 Behavior of Electrons in Tight-Binding Approximation

In the tight-binding approximation (one-dimensional case), the energy is given by
E,=E,—7,—2y, coska (12.235)

Now the velocity in this approximation becomes

2
v = “2 3 sinka (12.236)
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FIG. 12.17 Variation of the velocity vy and effective mass my, in the tight-binding approximation (one-dimensional case).

So, the velocity varies sinusoidally as shown in Fig. 12.17. The effective mass is given by

hz

- I 12.237
K72y, a%coska ( )

Eq. (12.237) gives the variation of mj as a function of k, which is similar to that shown in Fig. 12.16 with the value of mj at
k=0 as
hZ

The variation of v, and mg in the tight-binding approximation is shown in Fig. 12.17. The only difference in the Figs. 12.16
and 12.17 is that the mass at k = 0 is different in the two cases. It is noteworthy that in a realistic energy band structure the
point of inflection may not be exactly in the middle of the BZ as it is in the tight-binding approximation. The factor fy, in the
tight-binding approximation, is given as

m
f, = — coska (12.239)
my,
Here we have used Egs. (12.230), (12.237), and (12.238). If m§=m,, then
fy, = coska (12.240)

Eq. (12.240) gives the variation of fy with k, which is similar to that shown in Fig. 12.16. The above treatment of effective
mass can be extended to the three-dimensional case in which my is given by (see Eq. 12.229)
1 1
m_;:?Vk'vkEk (12.241)

Eq. (12.241) gives a tensor with nine components of the general form 62Ek/0k10k[;.

12.9 DISTINCTION BETWEEN METALS, INSULATORS, AND SEMICONDUCTORS

The classification of elements as metals, insulators, and semiconductors is done on the basis of electrical conductivity,
which in turn depends on the number of free electrons present. The energy band theory employing the periodic potential
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FIG. 12.18 Schematic representation of E, as a function of k for a parabolic energy band filled up to the wave vector k; in the 1BZ.

of the lattice allows us to distinguish between metals, insulators, and intrinsic semiconductors. The factor fi, which gives
the degree of freeness of an electron in the k state, plays an important role in making this distinction.

We demonstrate the classification of elements, considering only a single band in one dimension, in Fig. 12.18. Let this
energy band be partially filled with electrons up to the wave vector k; and let it contain a number N, of electrons, which may
be partially free. The number of free electrons, Ny, in the band can be expressed in terms of fi as follows:

Niree = kank = J
K

where the summation is over all the occupied states in the band and ny is the density of electron states with wave vector k.
The number of k-states per unit length in the reciprocal space is ny =L/2 . So, the number of k-states lying between k and k
+dk is given by

f,n, dk (12.242)

kI
7k1

L
nkdk:Zﬁdk (12.243)

Here the factor of 2 takes care of the spin degeneracy of the electron states. Hence, the number of free electrons is obtained
by substituting Egs. (12.230), (12.243) in Eq. (12.242), that is,

L ki d’E
oo == 2 J < kgk (12.244)
T h -k, dk
The above integral is even; therefore, one can write
2m,L (% d%E, 2m,L dE,
i i il 3| F e -k 12.245
free = 2 Jo dk? nh? dk K, ( )

From Eq. (12.245) it is evident that Ny, depends on the first derivative of Ey at the topmost filled state in the band. This
result allows us to draw the following conclusions:

1. There are no free electrons in a completely filled (completely empty) band because dE,/dk vanishes at the top (bottom)
of the band. Consider a solid in which some energy bands are completely filled while others are completely empty. The
topmost filled band is called the valence band as it contains the valence electrons. The next higher band is empty and
represents the first excited state, usually called the conduction band. In such a solid the conduction and valence bands
are separated by an energy gap E,, as shown in Fig. 12.19. There are two equivalent representations of the energy bands,
the choice of which is based on convenience. In Fig. 12.19A the energy E, of the parabolic bands is plotted as a function
of k. Such a representation is useful when the maximum of the valence band and the minimum of the conduction band
occur at different values of k in the BZ. But Fig. 12.19B shows only the energy E; of the bands and does not give
information about the positions of the maximum and minimum of the bands in the BZ. One should note that the situation
shown in Fig. 12.19 is true only at 0K. At finite temperature, some electrons from the valence band may get excited to
the conduction band, resulting in finite conductivity. If the forbidden energy gap E, is of the order of several electron
volts (e.g., in diamond E,27.0 eV), then the electrons cannot jump from the valence to the conduction band, yielding
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B Ek FIG. 12.19 (A) The energy Ey is plotted as a function of k for
parabolic valence and conduction bands in a solid separated by a
band gap E,. The valence band is completely full, while the con-
duction band is completely empty. (B) The valence band with
energy E, at its top and the conduction band with energy E. at
its bottom. The valence band is completely full (shown by the
shaded region), while the conduction band is empty. E, is the
energy band gap between them.

Conduction band

E,—

Valence band

(A)
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zero conductivity. Such a solid is an insulator for all practical purposes. But for small values of the energy gap, the
number of thermally excited electrons may become appreciable, which is the case in intrinsic semiconductors, such
as Ge (E;=0.7 eV) and Si (E;=1.1 eV). Therefore, the distinction between insulators and semiconductors is only
a quantitative one. In fact, all of the semiconductors are insulators at T=0K, whereas all the insulators may behave
as semiconductors at finite temperatures.

The value of N, increases with an increase in k-value and acquires a maximum value for a band filled up to the point of
inflection, as dE;/dk has its maximum value at this point. Therefore, a solid with a partially filled band exhibits metallic
character. In such solids the electrons may get excited to the higher energy states in the same partially filled band at
finite temperatures (see Fig. 12.20). Alkali metals, such as Na and K, in which the valence band is half filled, are
examples of such solids. It is well known that Ca, Ba, and Sr are also good conductors in which the energy bands
are completely filled. It is because the valence and conduction bands overlap in such solids (see Fig. 12.21) and that
the electrons can move without any hindrance from the valence to the conduction band by receiving even a very small
thermal energy. The overlap of the valence and conduction bands may occur in one or more directions, which will
become clear only by studying from ab initio the energy band structure of a solid in three dimensions. Hence, there
is a possibility that a solid that is an insulator in a one-dimensional study may turn out to be a metal in a three-
dimensional energy band study. It is interesting to note that the conductivity of semiconductors increases with an
increase in temperature, whereas that of metals decreases with an increase in temperature.

Ey FIG.12.20 (A) The energy Ey is plotted as a function of k for
parabolic valence and conduction bands in a solid separated by
a band gap E,. Here the valence band is partially filled, while
the conduction band is empty. (B) E, and E,. are the energies at

the top and bottom of the valence and conduction bands, respec-

I Conduction band tively, with band gap E, between them. The electrons in the par-

’. tially filled valence band make transitions from the filled states
w

to the empty states. The occupancy of the states in the valence
band is given by the tone of the shade (occupancy increases
with an increase in the tone of the shade). The conduction band
is completely empty.

(A)
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Ek
‘I Conduction band
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b Overlapping region

Ec

0

(A) = (8)

FIG. 12.21 (A) The energy Ey is plotted as a function of k for overlapping parabolic valence and conduction bands in a solid. Here the valence band is
completely full. (B) The overlapping valence and conduction bands in a solid. Here the energy E, crosses the energy E.. The extent of occupation of the
electron states in the valence and conduction bands is given by the tone of the shade, as in Fig. 12.20.
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13.1 CONSTANT ENERGY SURFACES

The locus of all the points at which the energy Ey has a constant value is called a constant energy surface. The shape of the
constant energy surface depends on the nature of the energy bands. One can define any number of constant energy surfaces
for different values of Ej. In a one-dimensional free-electron gas the energy bands are parabolic in nature and are given by
'S
E, =— 13.1

k 2m, ( )
In this case one can define points with constant energy and Fig. 13.1A shows two equidistant points with constant energy
Ek. In a two-dimensional solid, one can define constant energy contours. Fig. 13.1B shows circles as the constant energy
contours in a two-dimensional free-electron gas. But in a three-dimensional solid one can define constant energy surfaces.
In a three-dimensional free-electron gas, the energy bands are parabolic, just as defined by Eq. (13.1), and they yield
spherical constant energy surfaces (see Fig. 13.1C).

13.2 THE FERMI SURFACES

The Fermi surface (FS) is a special constant energy surface and is defined as the locus of all of the points at which the value
of energy is Ep. In the preceding chapters, we have discussed the fact that it is the electron states very near the FS that
determine most of the electronic properties of crystalline solids. This is because the electrons in these states can be easily
excited to the vacant states above the FS by the application of a small external field. Hence the nature of energy bands in the
neighborhood of the FS is of primary importance and requires our special attention.

13.3 THE FERMI SURFACE IN THE FREE-ELECTRON APPROXIMATION

In a one-dimensional free-electron gas, the Fermi energy is given by (Eq. 9.50)

212 252 2
kg mhng

= = 13.2
2m, 2m ( )

F
e

where n. is the linear density of electrons. The points at which energy has value Er are equidistant from the center of the

1BZ and are symmetrically spaced on both sides of it (see Fig. 13.1A). In a two-dimensional free-electron gas the Fermi
energy is given by (see Eq. 9.41)
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FIG. 13.1 (A) Two points having constant energy Ej in a one-dimensional E. E E, E;

free-electron gas. The figure also shows two points having Fermi energy Ep L 1 l ! 1 > K,
lying within the 1BZ. (B) The constant energy circular contours with different

values of energy Ey in the square lattice of a two-dimensional free-electron gas. (A)

The figure also shows the circular contour having Fermi energy Eg. (C) The

spherical Fermi surface with constant energy Er in a three-dimensional

free-electron gas. v

E:
> K,

(B)

k,

{Er
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2m, m,

where n, is the surface electron density. The Fermi circle with its center as the center of the 1BZ and radius kg is shown in
Fig. 13.1B. In the three-dimensional free-electron gas the Fermi energy, from Egs. (9.16), (9.19), is given by

72 7\ 2/3
E. = — (372 = 13.4
F 2me ( i V0> ( )

The components of the wave vector k at the 1BZ boundary are given by
T
kx:ky:kz:ig (13.5)

The FS is a sphere with radius kg having center at the center of the 1BZ of the lattice and is shown in Fig. 13.1C. In the free-
electron approximation, three distinct classes of the Fermi surface are observed.

13.3.1 Type | Fermi Surface

It is evident from Eq. (13.4) that in the free-electron approximation, the value of kg depends upon the electron concen-
tration. In solids with a low electron concentration, the entire FS may lie in the 1BZ. In this case, only the first band (which
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k, FIG. 13.2 The Fermi circle of a gas of low-electron-density
free electrons in a square lattice. The dots represent the lattice
points in the reciprocal lattice of a square lattice with periodicity

e ® a. The 1BZ is a square with side 2 7/a.
wla
(&
—nla nla >k
~nla
L] L]

lies in the 1BZ) is partially filled, the others are empty. Fig. 13.2 shows, for simplicity, a circular FS for a two-dimensional
square lattice with low electron density.

13.3.2 Type Il Fermi Surface

In crystalline solids with a reasonably large concentration of electrons, the FS may extend to the higher order BZs.
Fig. 13.3A shows the FS of a square lattice, which extends to the 2BZ. Here the FS exhibits two partially filled bands:
the first band lies in the 1BZ and the second in the 2BZ. It has already been discussed that all of the significant values
of k lie in the 1BZ. Therefore, it is the usual practice to reduce the FS to the 1BZ (reduced zone scheme).

Fig. 13.3B and C shows the first and second bands in the reduced zone scheme, that is, in the 1BZ. Fig. 13.4A and B
shows the first and second bands of the square lattice in the periodic zone scheme, which are repeated periodically. From
Fig. 13.4A it is evident that the FS for the first band consists of pockets of holes at the corners of the 1BZ, while the FS of the
second band (Fig. 13.4B) exhibits electron pockets at the middle of the sides of the 1BZ. It should be noted that both the
bands in Fig. 13.4 are plotted in the 1BZ and the pieces of the FS that stick out of the zone must be interpreted in the periodic
zone scheme.

13.3.2.1 Electron Orbits

For a changing electron state, the k point with a particular energy changes its position with time. The closed path of the k
point in the reciprocal space is called an orbit and the periodic zone scheme is more suitable (not essential) for its repre-
sentation. It is of particular interest to consider orbits along which the energy is constant and has a value equal to Er. These
orbits provide very useful information about the shape of the FS as they lie on the FS. Moreover, such orbits are exper-
imentally accessible. In two-dimensional crystals such orbits just coincide with the FS itself. Fig. 13.5A shows the part of
the FS for the first energy band in the 1BZ of a two-dimensional electron gas. The orbit corresponding to the hole pockets of
the first band in the reduced zone scheme is a discontinuous one. The motion of an electron in this orbit can be described as
follows:

1. Let an electron start from the state represented by point A and go from state A to state B. The electron is then Bragg
reflected at B and goes to state C. The state C is identical to the state B as it differs from state B by a reciprocal lattice
vector, k=G.
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FIG.13.3 (A) The Fermi surface extending to the 2BZ in the square K,
lattice of a two-dimensional free-electron gas with reasonably large
electron density. (B) The Fermi surface of the first energy band in
the 1BZ of a two-dimensional free-electron gas. (C) The Fermi
surface of the second energy band reduced to the 1BZ in a two-
dimensional free-electron gas.
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2. The electron goes from state C to state D and is then Bragg reflected at D and goes to state E.
3. The electron from state E goes to state F and is then Bragg reflected at F and goes to state G.
4. Finally, the electron moves from state G to state H and is then Bragg reflected from here to state A.

The same process can be shown in the periodic zone scheme in which the hole orbit is a continuous one (see Fig. 13.5B).
The reader is also referred to Fig. 13.4A. It is evident that the continuous orbits in the periodic zone scheme are more
appealing and easier to understand than the discontinuous orbits in the reduced zone scheme.

Fig. 13.6A and B shows the electron orbits for the second band in the reduced zone and periodic zone schemes. Again,
the discontinuous orbit in the reduced zone scheme can be visualized as a continuous electron orbit in the periodic zone
scheme. Further, the representation of the electron pockets (situated at the midpoint of each side of the 1BZ) is more
appealing in the periodic zone scheme (also see Fig. 13.4B).

13.3.3 Type Ill Fermi Surface

In crystalline solids with higher electron concentration, the FS may extend to the higher order BZs. Fig. 13.7A shows a
square lattice in k-space with its FS extending to the 4BZ. The portions of the FS in the 1BZ, 2BZ, 3BZ, and 4BZ, which
show, respectively, the FS sections due to the first, second, third, and fourth bands, can be reduced to the 1BZ (Fig. 13.7B).
It is evident that the FS due to the second band exhibits the orbit of a hole pocket around the center of the 1BZ. The FS
corresponding to the third and fourth bands is disconnected in the reduced zone scheme. The discontinuous electron orbits
for the third and fourth energy bands, in the reduced zone scheme, are shown in Fig. 13.8.

Any band can be plotted in the periodic zone scheme by translating its plot in the reduced zone scheme by all possible
reciprocal lattice vectors. The plot of the second band and its hole orbit in the periodic zone scheme remain the same, as
shown in Fig. 13.7B. Plots of the third and fourth bands are shown in Fig. 13.9, in which the discontinuous electron orbits
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(B)
FIG. 13.4 The Fermi surface of the (A) first and (B) second energy bands in the periodic zone scheme in a two-dimensional free-electron gas having a
square lattice.

are represented by continuous electron orbits. The third and fourth band Fermi surfaces exhibit electron pockets centered at
the corners of the 1BZ. It is noteworthy that the hole orbit corresponding to the second band FS is continuous, even in the
reduced band scheme, in contrast to the third and fourth band FS sections.

13.4 HARRISON’S CONSTRUCTION OF THE FERMI SURFACE

Harrison (1960) gave an elegant method for the construction of an FS corresponding to different bands of a crystalline solid
in the periodic zone scheme. In this method, the reciprocal lattice corresponding to the crystal structure is determined and
the free electron Fermi sphere is drawn around each lattice point. The problem is how to assign the various segments to the
bands. Within each Fermi sphere all the states are occupied, while the states are empty outside. Now if some point, in the
reduced zone scheme, lies within n spheres, then there are n occupied energy bands at that point in the reduced zone scheme
and these bands are ordered in increasing energy. Therefore, the spherical segments, which separate regions of the reduced
zone within n spheres from regions within (n+ 1) spheres are segments of the FS arising from the nth band, that is, these
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FIG. 13.5 (A) The discontinuous hole orbit of the first band in the 1BZ of a A D
square lattice in a two-dimensional free-electron gas. (B) The continuous hole

orbit of the first band in the periodic zone scheme of a square lattice in a two-
dimensional free-electron gas.
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segments separate occupied regions from unoccupied ones in the nth band. For example, points in the reciprocal space that
lie within at least one sphere correspond to occupied states in the first zone (1st band). Points within at least two spheres
correspond to occupied states in the second zone (2nd band), with similar results for points in three or more spheres. Hence,
the construction of the FS arising from the various bands is reduced to the construction of Fermi spheres and counting them
at a particular point or region.

Fig. 13.10 shows Harrison’s construction of the FS for a square lattice in the free-electron approximation when the
Fermi sphere extends to the 4BZ. It shows the second, third, and fourth bands in the periodic zone scheme. Here the
1BZ has been constructed in two ways. The first is the usual 1BZ, which contains one lattice point at its center and is called
the 1BZ of type (a) for convenience. The second construction of the 1BZ has lattice points at the corners and is called the
1BZ of type (b). The first band fills the whole of the 1BZ. The FS of the second band in the 1BZ of type (a) represents a hole
pocket with a lattice point at its center, while in the 1BZ of type (b) it consists of hole pockets at the corners of the 1BZ (see
Fig. 13.10). The FS of the third band consists of four electron pockets, each at the corner of the 1BZ of type (a), but forming
arosette at the center of the 1BZ of type (b). The FS of the fourth band consists of four electron pockets at the corners of the
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B A FIG. 13.6 (A) The discontinuous electron orbit of the second band, in the reduced
zone scheme, of a square lattice in a two-dimensional free-electron gas. (B) The con-
tinuous electron orbit of the second band, in the periodic zone scheme, of a square
lattice in a two-dimensional free-electron gas.

H > E
k=G
o
I A
=y
G < F
C D
(A)

(B)

1BZ of type (a) but forms a single electron pocket at the center of the 1BZ of type (b). Fig. 13.11 shows the FS of the first
four bands drawn in the 1BZ of type (a), while Fig. 13.12 shows the FS of the third and fourth bands drawn in the 1BZ of
type (b). It is evident from Fig. 13.11 that one gets the same FS as shown in Fig. 13.7.

13.5 NEARLY FREE-ELECTRON APPROXIMATION

In the previous section the effect of the periodic lattice potential on the motion of an electron and on the FS has been
neglected. In reality, an electron experiences the periodic potential of the lattice, which modifies its motion significantly,
and hence modifies the electron energy bands and the Fermi surface in a crystalline solid. In Chapter 12, the nearly free-
electron approximation, which yielded the lowest order improvement in the energy bands, was discussed. Therefore, it is
worthwhile to construct the FS in this approximation and compare the results with those obtained in the free-electron
approximation. In the nearly free-electron approximation the energy bands are modified as the zone boundary is reached
in the following fashion:

1. The energy bands cut the BZ boundary in a perpendicular direction.
2. The bands exhibit an energy band gap at the zone boundary due to the rounding off of the energy bands.
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FIG.13.7 (A) The Fermi surface extending up to the 4BZ of the square lattice in a two-dimensional free-electron gas. (B) The Fermi surfaces of the first
four bands, in the reduced zone scheme, of a square lattice in a two-dimensional free-electron gas.

The FS in the nearly free-electron approximation, which extends to the 2BZ, is shown in Fig. 13.13. The FS in the reduced
zone scheme is shown in Fig. 13.14 and in the periodic zone scheme in Fig. 13.15. A comparison of Figs. 13.4 and 13.15
shows that the Fermi surfaces for both the first and second bands, in the nearly free-electron approximation, are rounded off
at the corners. Further, the FS intersects the BZ boundary in the perpendicular direction. It is noteworthy that the total
volume enclosed by the FS depends only on the electron concentration and is independent of the details of the periodic
potential.
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C F FIG. 13.8 The discontinuous electron orbits for the (A) third and (B) fourth
bands, in the reduced zone scheme, of a square lattice in a free-electron gas.
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13.6 THE ACTUAL FERMI SURFACES

Metal is a three-dimensional crystalline solid in which there can be more than one electron energy band lying on or crossing
the FS. Each of these bands will yield a part of the FS, which separates the occupied states from the unoccupied ones. Here
we shall consider only simple metals, which exhibit simple Fermi surfaces.

13.6.1 Monovalent Metals

Monovalent free-electron metals with conduction electrons possessing the s-character constitute the simplest of the metals:
the alkali metals, such as Na and K, constitute such a category. Na metal has a bcc crystal structure with the 1NN distance as
v/3a/2 and the volume per atom V= a*/2. The reciprocal lattice of Na metal has fcc symmetry with the shortest reciprocal
lattice vectors given by (2n/a)(£1,£1,0), (2n/a) (£1,0,£1), (2n/a) (0,4 1,£1). The boundary of the 1BZ is at a distance
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FIG. 13.9 The continuous electron orbits for the (A) third and (B) fourth
bands, in the periodic zone scheme, of a square lattice in the free-electron
approximation.
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d=+/27/a, which is half of the distance of the INN in the reciprocal lattice. For a monovalent metal one can get from
Eq. (9.19)
37'52 1/3
kp= | — 13.6
= (%) a9
For Na metal with a bce structure one can write, from Eq. (13.6),
6 2\1/3
Ky — % (13.7)

Hence,
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Second band FIG.13.10 Harrison’s construction for the Fermi surface of the
second, third, and fourth bands of a square lattice in a two-

. . o . dimensional free-electron metal (the periodic zone scheme).

Fourth band

(b)

First band Second band Third band Fourth band

FIG.13.11 The Fermi surfaces for the first four bands in the 1BZ of type (a) of the square lattice obtained from Harrison’s construction in a free-electron
metal (the reduced zone scheme).
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FIG. 13.12 The Fermi surfaces for the third and fourth bands in the 1BZ of type (b), obtained from Harrison’s construction, which lie at the center of
the 1BZ.

FIG. 13.13 The Fermi surface for a two-dimensional nearly free-electron metal with a square lattice that extends to the 2BZ.

First band Second band
FIG.13.14 The Fermi surface of the first and second energy bands in a square lattice for a two-dimensional nearly free-electron metal (the reduced zone
scheme).
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First band Second band
FIG. 13.15 The Fermi surface of the first and second energy bands in a square lattice for a two-dimensional nearly free-electron metal (in the periodic
zone scheme).

ke 3\
) (ﬁn) 0.876 (13.8)
From Eq. (13.8), it is evident that kg < d. Hence, if the Na metal is treated as a free-electron metal, then the whole of the
Fermi sphere will be well within the 1BZ as in Fig. 13.2. But, if Na is assumed to be a nearly free-electron metal, then there
are zone boundary effects, that is, the bands bulge in the outward direction near the zone boundary and intersect it perpen-
dicularly. Because of zone boundary effects, the FS of Na exhibits necks at the centers of the BZ faces (the points at which
the FS reaches out to the zone boundary).

Consider nearly free-electron monovalent metals with fcc crystal structure, such as Cu, Ag, and others. Here the 1NN
distance is v/2a and the atomic volume is Vo= a’/4. The reciprocal lattice of fcc is bee and, therefore, the shortest reciprocal
lattice vectors of Cu metal are (27/a) (41,2 1,=£ 1) and the faces of the 1BZ lie midway to the points (2 n/a) (=1,£1,£1),
etc. The distance of the zone face from the center of the 1BZ becomes d = v/37/a. Hence for monovalent Cu metal

ke [ 4\
SFo () =091 13.9
d (\/§7I> (139

Again in Cu, kg < d and the FS exhibits necks at the center of the BZ hexagonal faces due to the zone boundary effects. The
FS for Cu in the reduced zone scheme is shown in Fig. 13.16. The figure shows two constant energy orbits: the first one is a
belly orbit labeled as H; ¢, which should appear in the de Haas-van Alphen effect when a magnetic field H is applied along
the [100] direction, and the second is a neck orbit labeled as N, which should appear with H along the [111] direction. Note
that in Cu, d-electrons are well below Ep except for one d-subband. Therefore, the effect of the d-electrons on the FS is
negligible. But, in general, the d-electrons give rise to strong and anisotropic localized potentials, which make the periodic
lattice potential strong and anisotropic. As a result, the FS suffers large deviations from the nearly free-electron shape.

Problem 13.1

Show that in a monovalent metal with sc structure

ke 3\
ke (;) (13.10)

Discuss the FS for such a metal.

13.6.2 Polyvalent Metals

Consider a divalent metal in the free-electron approximation. Using Eq. (9.19), the ratio kg/d is given by

ke 1672\
i 13.11

Therefore, for divalent metals with different structures, one can write
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FIG.13.16 The Fermi surface of the nearly free-electron metal Cu showing necks at the center of the zone faces. X and L are the symmetry points at the
centers of the square and hexagonal faces, respectively, and W is the symmetry point at the corner of the face. (After Burdick, G. A. (1963). Energy band
structure of copper. Physical Review, 129, 138-150.)

= (ﬂ) for bee structure (13.12)

Similarly, one can find the ratio kg/d for trivalent metals in the free-electron approximation:

1/3
k 43
FF = <—\/_> for fcc structure

T
k 9 \'?
HF = <\/§> for bec structure (13.13)
T

ke [(9\'?
HF = (n) for sc structure

From Egs. (13.12), (13.13) it is evident that kg > d; therefore, in the polyvalent metals, the occupied bands extend to the
higher-order BZs. As a result, the FS of polyvalent metals extends to the higher-order BZs. For example, Al, which is tri-
valent, is a nearly free-electron metal as is evident from its electron energy bands. The lower band exhibits 3s character,
while the upper valence bands exhibit 3p character. Further, in Al, the lower 3s band is completely filled with 2N electrons,
while the rest of the N valence electrons are distributed in the 3p bands.
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FIG. 13.17 The Fermi surface of Al metal in the free-electron model (Harrison, 1960). The first (I) band is completely full. In the second band (II) the
region around the faces is full. In the third band (III) a complex region around the edges with many narrow areas is full. These narrow regions may be
translated and put together to form a monster. In the fourth band there are small pockets around the W points that are full.

Harrison (1960) studied the FS of Al in the free-electron approximation, which extends to the 4BZ in the extended zone
scheme (Fig. 13.17). It is evident that the first band is completely full with 2N electrons in it. The rest of the N valence
electrons are distributed in the second, third, and fourth bands: in the second band the region around the zone faces is full,
while in the third and fourth bands small electron pockets are formed around the edges and corners, respectively. The
occupied region of the third band, when reduced to the 1BZ, forms a monster-like shape (see Fig. 13.17). The three-
dimensional view of the FS of metals is complex and is still more complex for metals with geometry of low symmetry.

13.7 EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES

A number of powerful experimental techniques have been developed for the study of the FS of metallic solids. Some of
these methods are:

de Haas-van Alphen effect

Cyclotron resonance

Anomalous skin effect
Magnetoresistance

Ultrasonic propagation in magnetic fields

Sk wh=

The de Haas-van Alphen effect and cyclotron resonance exhibit quantization of electronic states in the presence of a mag-
netic field. In these methods the effect of a uniform magnetic field on the electronic motion in k-space can be visualized. It
is from this insight that the shape of the FS in k-space can be determined.

13.7.1 de Haas-van Alphen Effect

De Haas and Van Alphen, in 1931, discovered that, at low temperatures, the diamagnetic susceptibility yy; of pure Bi shows
periodic oscillations when plotted against the high values of an applied magnetic field H. These oscillations display a
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remarkable periodicity when susceptibility is plotted against the inverse of magnetic field (Fig. 13.18). This effect has been
used successfully in determining the extremal cross-sectional areas of the FS. It is a quantum mechanical effect arising from
the quantization of the electron orbits in the magnetic field. It is noteworthy that more precise measurements exhibit similar
oscillatory behavior in other properties also, such as conductivity and magnetic resistance. Very weak oscillations have also
been observed in the high-field Hall effect.

We begin by considering the motion of electrons in a uniform magnetic field H, which according to Newton’s second
law of motion gives

dk e
h T CV><H (13.14)

According to Eq. (13.14) the electron will travel in an orbit with a shape determined by v and H in real space and the rate of
change of k is a vector normal to H. Therefore, in k-space, the electron wave vector moves in an orbit with its plane normal
to H. Integrating Eq. (13.14) one gets

k=——rxH (13.15)
ch
This implies that the orbits in k-space and in real space are identical: k-space is obtained from real space by a rotation
through 7/2 about the axis of H and multiplication by a numerical factor e H/ch.

The orbits may be closed or open, but here we consider only the properties of the closed orbits. In a closed orbit, the
electron wave vector k will execute a periodic motion in k-space and the frequency of this motion is called the cyclotron
frequency. A convenient expression for the cyclotron frequency may be obtained by constructing two orbits in k-space in a
plane perpendicular to H and having slightly different energies. Two such adjacent orbits are shown in Fig. J2 of Appendix
J. The time period T of an electron orbit in a magnetic field is given by

Tz%dtzﬂ;ﬁ (13.16)

v
where v is the velocity of the electron in a band with energy E in k-space and is given by

d| 1dE 1 dE

where dk | is the normal distance in k-space between constant energy surfaces of energy E and E+dE. Substituting v from
Eq. (13.17) into Eq. (13.16), we find

FIG. 13.18 The diamagnetic susceptibility of Bi as a function of 1/H at high magnetic field H.

X ——>

1H —
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dr x dk A% (|dk x dk K dA
T:h{ rx L:C_{| xdk,|_ch” da, (13.18)

dE eH dE eH dE

Here dk is an infinitesimal change in the wave vector along the orbit in an infinitesimal time dt. Therefore, the term
$ldk x dk | is simply the area dA. between the two orbits in wave vector space. The cyclotron frequency is given by
2n 2meH dE
== 13.19
=g = A (13.19)
The derivative of the orbital area with respect to energy is taken at a constant component of k parallel to the magnetic field.
The cyclotron frequency from Eq. (10.24) can be written as
H
w, =2 (13.20)

- *
¢ mic

where m.* is the effective cyclotron mass. Comparing Egs. (13.19), (13.20), m.* can be written as
. WP dA,
m;=—
¢ 2n dE

So far, the discussion of electron motion has been classical. Even under such conditions, the Bohr correspondence principle
provides the quantization condition as

(13.21)

}p-drzZnh <n+%> (13.22)
The momentum of a free electron in the presence of a magnetic field changes as
pﬁp_zA (13.23)
where A is the vector potential defined as
H=VxA (13.24)

Substituting for k from Eq. (13.15) in Eq. (13.23) and then p in Eq. (13.22), we get

%H-(rxdr)— EFA~dr = Zzhc <n+%>

Here the integral $r x dr gives twice the area of the orbit, so that § H- (r x dr) is twice the magnetic flux ®. The term §A - dr
also gives magnetic flux ®@. Therefore, the above equation, in terms of the magnetic flux @, can be written as

o= 2The (n+l) (13.25)
e 2

Eq. (13.25) implies that the magnetic flux through an electron orbit in real space is quantized in units of 2w/ c/e. The mag-
netic flux is given by ® =H A, where A, is the area of the orbit in real space. We have seen before, in this section itself, that
the radius of the orbit in k-space is e H/c 7 larger than that of the orbit in r-space. Therefore

2
A, = (‘?;) A, (13.26)

One should note that A, represents the extremal cross-sectional area of the FS in a plane normal to the magnetic field H. The
extremal area is either a maximum or minimum area of the cross section of the FS; therefore, the derivative of A, with
respect to k must be zero at that point. Substituting the value of A,, one gets the magnetic flux as

c2i? 27hc 1
=T, (“*5)

From the above expression one gets
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K, k,
(A) (B) (C)
FIG. 13.19 The extremal areas of cross section in spherical, ellipsoidal, and dumbbell shaped Fermi surfaces.

2neH 1
A = 7 (n+§) (13.27)

This is known as the Onsager-Lifshitz quantization condition and this is the basis of the de Haas-van Alphen effect. Thus,
the quantum condition allows only a certain discrete set of orbital areas in k-space. The size of these orbits is directly pro-
portional to the magnetic field. The effect of a magnetic field has already been described in Chapter 10. In the absence of a
magnetic field, the allowed states in two dimensions are shown in Fig. 10.7A, while they are shown in Fig. 10.7B in the
presence of a magnetic field. Evidently the effect of the magnetic field is to create quantized circles in the k-space and cause
the free electron states to condense into the nearest circle. These are the familiar Landau levels, as discussed in Chapter 10.
The successive Landau levels correspond to successive values for the quantum number n. The reciprocal of the magnetic
field, from Eq. (13.27), is given by

1 2me 1

Ho Ahc <n+2) (13.28)
The reciprocal of the magnetic field induces fluctuations in the magnetic susceptibility. The period of oscillation is
inversely proportional to the cross-sectional area of the FS. In three dimensions the allowed states lie in tubes in k-space
each of which has constant cross section in the planes perpendicular to the magnetic field. Such sets of tubes or cylinders are
shown in Fig. 10.5B. Each tube has been cut off at a constant energy surface corresponding to the FS.

In the determination of the FS, a magnetic field is applied at different angles to the axis of the single crystal and time
period T is measured as a function of H. It then becomes possible to measure the extremal area of the FS normal to the
direction of H using Eq. (13.28). The extremal areas for simple shapes of the Fermi surface are shown in Fig. 13.19. In a
spherical Fermi surface there is only one extremal (maximum) area for all the directions of the H field and that is a circle
having area ki (Fig. 13.19A). In the case of an ellipsoidal Fermi surface with k. and k.,;, as the major and minor axes,
the magnitude and shape of the extremal area depends on the direction of the H field. If the H field is applied along the z-
direction, then the extremal area is a circle with area nk,znin (see Fig. 13.19B). But if the H field is along the y-direction, the
extremal area is an ellipse with area wk, ., Kmi,. For a dumbbell-shaped Fermi surface, the extremal areas are shown in
Fig. 13.19C. If the H field is applied in the z-direction, then there are three extremal areas: two circular orbits with
maximum area (labeled as 1 and 2) and one circular orbit (labeled as 3) with minimum area. But if the H field is in
the y-direction, then there is one extremal area having a dumbbell shape.

The oscillatory behavior of the magnetic susceptibility and other related properties can be explained as follows. The
quantum condition produces a sharp oscillatory structure in the electron density of states, with its peak occurring at the
energy corresponding to the extremal orbit satisfying the quantum condition. At the extremal orbit, the area of the portion
of the tube is enormously enhanced as a result of the slow variation of the energy along the tube near the given orbit.

13.7.2 Cyclotron Resonance

The cyclotron resonance method makes use of the fact that, if an rf electric field is applied to a metallic solid, it penetrates at
the surface by a small distance (skin depth). The Azbel-Kaner geometry is often employed for the study of cyclotron
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FIG. 13.20 The Azbel-Kaner geometry for cyclotron resonance
in a metallic slab with H and E fields parallel to each other and in
the same direction (longitudinal geometry). The circular motion of
the electrons is shown in the front face of the metallic slab, which is
perpendicular to H field. The shaded region shows the extent of
penetration of the field inside the slab.

resonances in metals: here an rf electric field E and static magnetic field H are applied parallel to the surface of a metallic
slab. In this geometry two types of studies are performed: first when E and H are perpendicular to each other (transverse
geometry) and second when E and H are parallel to each other (longitudinal geometry). Fig. 13.20 shows the longitudinal
geometry in which E and H are in the same direction. Note that if E and H are parallel but in opposite directions, then the
direction of motion of the electrons is reversed. The shading in the figure near the surface of the solid indicates the pen-
etration depth of the rf field. Under the combined effect of both the E and H fields, the electron moves in a helical path.
Fig. 13.20 also shows the circular path of the electrons perpendicular to the direction of H in the front face of the metallic
slab. The frequency of circular motion, called the cyclotron frequency, is given by Eq. (13.20). The time period T of the
electron orbit is defined by

T:2_n:27rch

. eH

(13.29)

The radius of the orbit of an electron in a magnetic field of 10kilogauss is on the order of 10~> cm, which is much larger
than the skin depth at radio frequencies in a pure metal at low temperatures. Electrons in orbits, such as those shown in
Fig. 13.20, will see the rf field only for a small part (near the top) of each cycle of their motion. The electrons are accelerated
in each cycle if the phase of the electrons when they arrive in the skin depth part of each cycle is the same as that of the rf
field. This will happen only when the frequency of the rf field w is equal to an integral multiple of the cyclotron frequency,
that is,

W=nw, (13.30)

Here n is an integer 1, 2, 3, ... and it defines the harmonics of the cyclotron frequency. This is called the Azbel-Kaner
resonance or cyclotron resonance and in this condition the electrons absorb the maximum energy. Substituting the value
of w, from Eq. (13.20) into Eq. (13.30), we find

H
w="% (13.31)
mqC
which gives
= “meC (13.32)
ne

One can express this resonance condition in terms of the extremal areas of cross section by substituting m; from Eq. (13.21)
into Eq. (13.32) to get
1 2znne dE
e T (13.33)
H ch”w dA,
Fig. 13.21 represents the Azbel-Kaner cyclotron resonance spectrum for Cu metal at 4.2 K. The ordinate of the curve rep-
resents the derivative of the surface resistivity with respect to the field. In general, the electrons in different regions of the
surface have different cyclotron frequencies. But the frequency that is most pronounced in absorption is the frequency
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FIG. 13.21 Azbel-Kaner cyclotron resonance
spectrum for Cu metal at 4K. The upper crystal
surface is cut along the (100) plane. (After
Haussler, P. & Welles, S. J. (1966). Determination 10
of relaxation times in cyclotron resonance in
copper. Physical Review, 152, 675.) 15

H along [100]

| | | |
0 1 2 3 4 5
H (kg) —

appropriate to the extremal orbit in which the FS cross section perpendicular to H is maximum or minimum. Therefore, by
varying the orientation of H, one can measure the extremal sections in various directions and reconstruct the FS. One can
determine the various electronic properties and their oscillatory behavior in the same way as described in the de Haas-van
Alphen effect.

REFERENCES

Harrison, W. A. (1960). Electronic structure of polyvalent metals. Physical Review, 118, 1190-1208.

SUGGESTED READING

Altmann, S. L. (1970). Band theory of metals. New York: Pergamon Press.

Callaway, J. (1958). Electron energy bands in solids. F. Seitz, & D. Turnbull (Eds.), Solid state physics (pp. 100-212). Vol. 7(pp. 100-212). New York:
Academic Press.

Cornwell, J. F. (1969). Selected topics in solid state physics: Group theory and electronic energy bands in solids. Amsterdam: North-Holland Publ. Co.

Cracknell, A. P., & Wong, K. C. (1973). The Fermi surface: Its concept, determination and use in the physics of metals. London: Clarendon Press.

FURTHER READING
Burdick, G. A. (1963). Energy band structure of copper. Physical Review, 129, 138—150.


http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0010
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0015
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0020
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0020
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0025
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0030
http://refhub.elsevier.com/B978-0-12-817103-5.00013-X/rf0035

Chapter 14

Semiconductors

Chapter Outline

14.1 Intrinsic Semiconductors 299 14.7 Effect of Temperature on Carrier Density 311

14.2 Extrinsic Semiconductors 301 14.8 Temperature Dependence of Mobility 312
14.2.1 n-Type Semiconductors 302 14.9 The Hall Effect 313
14.2.2 p-Type Semiconductors 302  14.10 Electrical Conductivity in Semiconductors 317

14.3 lonization Energy of Impurity 303 14.10.1 Intrinsic Semiconductors 317

14.4 Carrier Mobility 304 14.10.2 Extrinsic Semiconductors 317

14.5 Theory of Intrinsic Semiconductors 306  14.11 Nondegenerate Semiconductors 318
14.5.1 Concentration of Charge Carriers 306  14.12 Degenerate Semiconductors 318

14.6 Model for Extrinsic Semiconductors 309  14.13 Compensated Semiconductors 319
14.6.1 n-Type Semiconductors 309  Suggested Reading 319
14.6.2 p-Type Semiconductors 310

Semiconductors are of immense value from both the technological and industrial point of view and the band gap in them is
usually less than 2eV. They can be classified into two categories. The first category comprises pure semiconductors called
intrinsic semiconductors. In these semiconductors most of the properties are structure dependent. At absolute zero the
intrinsic semiconductors behave as insulators and their conductivity increases with an increase in temperature. But these
semiconductors remain poor conductors of electricity at temperatures of interest. The most common examples of intrinsic
semiconductors are Si and Ge, which possess energy band gaps of the order of 1.1 and 0.72 eV, respectively. The properties
of semiconductors change drastically with the presence of even very small amounts of impurities and other imperfections
(~100-1000 ppm). For example, the electrical conductivity of Si and Ge increases many-fold with the addition of a very
small As impurity. The second category constitutes semiconductors with impurities, which are called extrinsic semicon-
ductors, and these have brought a revolution in electronics and condensed matter physics. Common examples of extrinsic
semiconductors are SiAs, Siln, GeAs, and Geln, in which the first element represents the host semiconductor and the second
element the impurity. In this chapter, we will present the basics of semiconductors and their properties in terms of the
energy band theory.

14.1 INTRINSIC SEMICONDUCTORS

The intrinsic semiconductor Si possesses the following electronic structure:
Si: 1s22s*2p%3s23p?

A Si atom exhibits valency 4 and forms pure covalent bonds by sharing its four valence electrons with its four neighboring
Si atoms. Fig. 14.1A presents a schematic representation for the formation of four covalent bonds. One should note that the
four neighboring Si atoms are not coplanar with the given Si atom, as shown in Fig. 14.1A. In reality the Si atom forms four
hybrid sp® orbitals with its four neighboring Si atoms situated at the corners of a tetrahedron, as shown in Fig. 14.1B. With
the formation of the covalent bonds, the valence band of each Si atom becomes full with 8 electrons in it. The binding
energy of each electron in Si is 1.1eV. The energy band diagram of Si is shown in Fig. 14.2. At absolute zero the valence
band is completely full, while the conduction band is completely empty, and both are separated by an energy band gap E, of
1.1eV. Further, at absolute zero, the Fermi energy Ep lies exactly in the middle of E,. With an increase in temperature, a
small fraction of the electrons in the valence band gets excited to the conduction band, giving rise to finite conductivity. At
room temperature (300 K), the thermal energy Er has a value of 0.026 eV, which is very small compared with the band gap.
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(A) (B)
FIG. 14.1 (A) A schematic representation of the covalent bond formation of a Si atom with its four 1NN Si atoms in an intrinsic semiconductor. The two
dots between the two Si atoms represent the shared electrons forming a covalent bond. (B) The four sp*-hybrid bonding orbitals in a crystalline solid of Si.

Conduction band

E—

Electron

FIG.14.2 Schematic energy band model of a crystalline solid of Si. The valence band is completely filled, with E, as the energy of its topmost filled state.
The conduction band is completely empty, with E. as its lowest state.

So, at room temperature an intrinsic Si semiconductor behaves nearly as an insulator. With a further increase in temper-
ature, more and more electrons go to the conduction band, thereby increasing the conductivity of the intrinsic semicon-
ductor. The excitation of an electron from the valence to conduction band leaves behind a hole (absence of an
electron) in the valence band (Fig. 14.2). For all practical purposes the hole acts as a particle with negative mass and having
a charge equal and opposite to that of an electron. Therefore, in an intrinsic semiconductor, the number density of free
electrons n, in the conduction band is equal to the number density of holes ny, in the valence, that is,

n,=n, (14.1)

In the presence of an external electric field, the electrons move in the conduction band, while the holes move in the valence
band but in the opposite direction, and both contribute toward the conductivity.

There are two categories of intrinsic semiconductors: direct band gap and indirect band gap semiconductors. A semi-
conductor with a valence band maximum and conduction band minimum at the center of the BZ (see Fig. 14.3A) is called a
direct band gap semiconductor. Fig. 14.3B shows explicitly that the motion of the hole in the valence band is equivalent to
the motion of the valence electron in the reverse direction. But there is no physical reason why both the valence band
maximum and the conduction band minimum should lie at the center of the BZ. The minimum of the conduction band
could lie at any point inside the BZ (even at the boundary of the BZ), as shown in Fig. 14.4. A semiconductor with valence
band maximum and conduction band minimum situated at different values of the wave vector in the 1BZ is called an
indirect band gap semiconductor. In this class of semiconductors an electron can jump from the valence band to the con-
duction band in two ways. First, an electron can follow the path PQR (path 1) in which both the momentum and energy of
the electron change: the momentum of the electron in the valence band increases by Ak’ in going from P to Q and then it
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Ey E, FIG. 14.3 Schematic representation of the band structure of a
semiconductor near the zone center. (A) The electron at position
1 makes a jump from the completely full valence band to the con-
duction band leaving behind a hole (empty space) (B) In the
valence band the motion of a hole in the k-space in one direction
is equivalent to the motion of an electron in the opposite direction.
Electron Here an electron from position 2 moves to position 1, thereby
filling the hole in position 1. It is equivalent to the motion of
the hole from position 1 to position 2.

Hole k— 1 k—
1 Hole

(A) (B)

Conduction band

E,—

Valence band

L r X

k—»
FIG. 14.4 Schematic representation of the band structure of an indirect gap semiconductor. Two paths are shown, labeled 1 and 2, for the excitation of an
electron from the valence band to the conduction band.

gains energy (=E,) in going from Q to R. Second, an electron in the valence band can be promoted directly upward to a
higher energy state at the same momentum along the path PS, then the excited electron falls down into the conduction band
minimum along the path SR by gaining momentum but losing energy (path 2), as seen in Fig. 14.4.

14.2 EXTRINSIC SEMICONDUCTORS

One of the methods to increase conductivity is to introduce a substitutional impurity in small amounts in the lattice of an
intrinsic semiconductor. The introduction of a substitutional impurity in an otherwise pure semiconductor is called doping.
It has been observed that even a very small level of impurity (100—1000ppm) drastically changes the conductivity of a
semiconductor. Either a pentavalent or a trivalent impurity is introduced in a semiconductor, which creates an imbalance
between electrons in the conduction band and holes in the valence band. The extrinsic semiconductors are of two types:

1. Semiconductors with pentavalent impurities are called n-type semiconductors. Common examples are SiAs and GeAs.
2. Semiconductors with trivalent impurities are called p-type semiconductors. Common examples are Siln and Geln.
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FIG. 14.5 (A) The bond model of the n-type crystalline semiconductor Si with pentavalent impurity As. (B) The band model of the n-type crystalline
semiconductor Si with pentavalent impurity As.

14.2.1 n-Type Semiconductors

Consider a Si crystal with the pentavalent substitutional impurity As making SiAs semiconductor. The valence bond model
of SiAs is shown in Fig. 14.5A. Four electrons of As impurity participate in the formation of covalent bonds with the neigh-
boring Si atoms, while the fifth electron does not participate in covalent bonding and is loosely bound to the As atom. As a
result of weak binding, this electron moves away from the impurity, making it a positively charged ion, that is, As*'. The
force of attraction between the electron and the impurity ion As*' makes the electron orbit around the As*' ion. The distance
of the fifth electron from the As*' impurity is such that its ground state energy is below but very close to the conduction
band of Si (see Fig. 14.5B). Such an impurity band is called a donor band and the electrons in it are called the donor elec-
trons. The energy difference between the bottom of the conduction band and the donor band is AE~0.01 eV, which is
smaller than the thermal energy at room temperature. On the other hand, the energy difference between the donor band
and the top of the valence band is on the order of 1.09eV, which is quite large. Therefore, at room temperature, the electrons
in the donor band jump to the conduction band, yielding appreciable electrical conductivity. Such a semiconductor is called
an n-type semiconductor, in which the number of electrons in the conduction band is greater than the number of holes in the
valence band, that is, n. >n;. Therefore, the electrons constitute the majority charge carriers and the holes the minority
charge carriers in n-type semiconductors.

14.2.2 p-Type Semiconductors

Trivalent impurities, such as B, Al, Ga, and In, can also be substituted in a semiconductor. Fig. 14.6A shows the bond model
of an In impurity in a Si semiconductor. The three valence electrons of an In atom form three covalent bonds with three Si
atoms, while the fourth bond contains one electron and one hole forming an unsaturated bond. The hole moves away from
the In impurity when the neighboring electron occupies its position. In this process the fourth bond also becomes saturated
and the In impurity acquires negative charge, that is, In"', thereby attracting the hole toward it. The force of attraction
between the hole and the In~" impurity ion makes the hole move around the In~" in an orbit. The distance of the hole from
the In~" ion is such that its energy band lies above, but very near, the valence band. The band model of Siln semiconductor
is shown in Fig. 14.6B. At room temperature the electrons from the top of the valence band jump to fill the empty states of
the impurity band, thereby creating holes in the valence band. The impurity band, therefore, is called the accepter band.
Such a semiconductor is called a p-type semiconductor as the number of holes in the valence band is greater than the number
of electrons in the conduction band, that is, n, > n.. Therefore, the holes constitute the majority carriers and the electrons the
minority carriers in a p-type semiconductor. Both the electrons in the conduction band and the holes in the valence band
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FIG. 14.6 (A) The bond model of the p-type crystalline semiconductor Si with trivalent impurity In. (B) The band model of the p-type crystalline semi-
conductor Si with trivalent impurity In.

contribute toward the conduction properties, such as the electrical conductivity, of the extrinsic semiconductors. From the
above discussion we conclude that the extrinsic semiconductors are materials with mixed bonding: partly ionic and partly
covalent.

It is important to note that donor impurities, such as P, Sb, and As, are used in doping because the donor bands formed by
these impurities are close to the conduction band and, therefore, yield a significant carrier concentration at room temper-
ature. Similarly, B, Al, Ga, and In are used as acceptor impurities as the acceptor bands formed by these impurities lie close
to the valence band. It is noteworthy that transition metals, such as Fe, Ni, Co, and Cu, if added to Si or Ge, form impurity
bands far removed from the edges of the valence and conduction bands and, therefore, are not suitable doping materials.

14.3 IONIZATION ENERGY OF IMPURITY

In Section 14.2.1 it was assumed that the donor electron orbits in a circle around the donor ion embedded in a semicon-
ductor. The energy of the donor electron depends on the radius of the orbit. The energy required to raise the donor electron
to the conduction band is usually called the ionization energy of the donor atom or impurity. As the simplest approximation,
one can make use of the Bohr model to estimate the ionization energy of the donor atom. One should keep in mind that the
use of the Bohr model is reasonably justified if the radius of the orbit of the donor electron is on the order of the Bohr radius
ap.

If the donor electron is assumed to move in a circular orbit of radius r, around the donor ion, then its electrostatic
attractive force must be balanced by the centripetal force, that is,

*
e mev?

2 (14.2)
era T,

where m,, and v are the effective mass and velocity of the donor electron. As the donor atom is embedded in a semiconductor

with dielectric constant ¢, the electrostatic force is decreased by a factor of ¢. In the Bohr model the angular momentum of
the donor electron is quantized and is given as

m,vr, =nh (14.3)
where n is a positive integer. Substituting the value of v from Eq. (14.3) into Eq. (14.2) and simplifying, one gets
2 h2
A s (14.4)
mee
The Bohr radius for a free electron in a hydrogen atom is given by
hZ
8 =——3 (14.5)

e
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Here m, is the mass of a free electron. From Eqs. (14.4), (14.5) one gets

o (mg> (14.6)
a() me

For Si, e=11.7 and m:/me:0.26, therefore, for a Si-based semiconductor the radius r; of the first orbit is given by

h_ys (14.7)
Q
The above equation gives r{ =23.9 A. This radius is roughly on the order of the lattice constant of Si. One unit cell of Si
contains effectively eight atoms, so the radius of the orbiting donor electron encompasses many Si atoms. The total energy
of the donor electron E is given by

E=T+V (14.8)
where T is the kinetic energy and V is the potential energy given by the relations
1
T=-m:v? (14.9)
2
2
v=_% (14.10)
er,

Substituting the value of v from Eq. (14.3) into Eq. (14.9), one can write

x4
mee
= 14.11
262n2 i ( )
Similarly, substituting the value of r,, from Eq. (14.4) into Eq. (14.10), we get
x4
mee
From Egs. (14.8), (14.11), and (14.12), the total energy of the donor electron is given by
* 4
mee
E=— 14.13
222k ( )

For a hydrogen atom, one can write m, =m, and ¢= 1 for vacuum. The energy of the lowest orbit of the hydrogen atom is
given by

4
m_e
E,j=——5-=-13.6 ¢V 14.14
0 202 (14.14)
The energy of the lowest state of Si is obtained by substituting its values for ¢ and m, to give
E,(Si) = —0.0258 eV (14.15)

which is much less than the energy gap E, in Si. So, a small energy of 0.0258 eV is required by the electron in the donor band
to make the transition to the conduction band. This simple calculation based on the Bohr model shows two facts:

1. The donor energy band is very close to the conduction band.
2. The donor electron can be excited to the conduction band at room temperature (300K)

The Bohr model can also be applied to evaluate the ionization energy for the acceptor impurities in Si and Ge. The exper-
imental values of the ionization energies of some of the donor and acceptor impurities in Si and Ge are given in Table 14.1.

14.4 CARRIER MOBILITY

In an intrinsic or extrinsic semiconductor, there are two types of charge carriers: electrons in the conduction band and holes
in the valence band. When an electric field E is applied, both the charge carriers move in opposite directions. Both the
electrons and holes lose energy through collisions among themselves and acquire some constant velocity, usually called
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TABLE 14.1 Impurity lonization Energies in Semiconductors Si and Ge

Impurity lonization Energy (eV)
Si Ge

Donors

P 0.045 0.012

As 0.050 0.0127

Acceptors

B 0.045 0.0104

Al 0.060 0.0102

the drift velocity. In Chapter 11, expressions were derived for the drift velocity and mobility of both the electrons and holes.
The total conductivity in a semiconductor is the sum of electronic and hole contributions and is given by (see Eq. 11.179)

0=0,+0,=n.eU, +n,eu, (14.16)

where . and uy, are the mobilities of the electrons and holes, respectively. The reciprocal of conductivity is resistivity p,
that is,

poto U (14.17)

o (ne:ue-'-nh:uh)e
and is measured in Q cm. It is evident from Eqs. (14.16), (14.17) that knowledge of n., p., ny,, and p, is required to evaluate
the conductivity or resistivity of a semiconductor. It has been observed experimentally that resistivity p is not a linear
function of the impurity concentration in extrinsic semiconductors.
In the laboratory we measure current I and voltage V; therefore, one should express Eqgs. (14.16), (14.17) in terms of I
and V. Consider a bar of semiconducting material (Fig. 14.7) with A as the area of cross section and L as the length, then

J=—, E=— (14.18)
A L
FIG. 14.7 A bar of a semiconducting material,
| having length L and area of cross section A, acts
as aresistor. The current I flows through the material
when a voltage V is applied across it.
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The expression for the current density is given by

J=0E (14.19)
Substituting Eq. (14.18) into Eq. (14.19), one can write
V=IR (14.20)
where
L L
R=p—=— 14.21
PR~ Ag ( )

Eq. (14.20) is the famous Ohm’s law. Eq. (14.21) shows that the resistance is a function of resistivity (conductivity) as well
as the geometry of the sample of the semiconductor.

14.5 THEORY OF INTRINSIC SEMICONDUCTORS

Consider a semiconductor with a number N electron states per unit volume. At absolute zero, in an intrinsic semiconductor,
the conduction band is completely empty and the valence band is completely filled (see Fig. 14.2). At finite temperature,
some electrons from the valence band get excited to the conduction band and the number of electrons in the conduction band
is equal to the number of holes in the valence band in an intrinsic semiconductor. Further, the holes are created near the top
of the valence band in a small energy range, while the electrons accumulate near the bottom of the conduction band and their
energy range is considered to be much smaller than the energy gap E,. Let E, be the energy at the bottom of the conduction
band and E, the energy at the top of the valence band. The Fermi energy Er lies somewhere in the middle of E. and E,.The
probability of occupation of an electron state with energy Ey is given by the Fermi distribution function defined as

1

fe(B) = Bt (14.22)

The Fermi-Dirac distribution function for the holes becomes f;,(Ex) =1 —f.(Ex). The density of electrons n, at E. and of
holes ny, at E, are given by

N
ne:Nfe(EC) :m (1423)
=Nf,(E,) = N 14.24
n, =Nf,(E,) T B R T 1] (14.24)
Substituting Egs. (14.23), (14.24) into Eq. (14.1), we find
(Bt B, 2Ep)/ky T _ |
Taking the logarithm of both sides of the above equation, one gets
E.+E

Eg=—= 5 Y (14.25)

Eq. (14.25) shows that in an intrinsic semiconductor the Fermi energy lies exactly in the middle of the conduction and
valence bands. If zero energy is taken as the energy at the top of the valence band, then E,=0 and E.=E, (Fig. 14.2);
therefore, one can write

E.— % (14.26)

14.5.1 Concentration of Charge Carriers

In the preceding section it was assumed that the valence and conduction bands are narrow compared with the energy gap E,,.
If they are not narrow, then one has to use an improved model. Consider an intrinsic semiconductor in which the electrons
and holes are distributed over an appreciable energy range in the conduction and the valence bands, respectively. At tem-
peratures of interest (say room temperature), one can easily suppose that Ex — Eg>kg T and, therefore, Eq. (14.22) yields

f (E,) = e B/l T (14.27)
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Near the bottom of the conduction band the energy of the electrons is a quadratic function of the wave vector k and is
therefore given by

k>
E,=E_+ T (14.28)
me

where m, is the effective mass of an electron. The density of electron states per unit energy per unit volume at absolute zero
is given by (Eq. 9.23)

1 2m* 3/2
_ e 1/2
g.(Ey) = 2 (7> (Ex—E,) (14.29)

Therefore, the density of electrons per unit volume in the conduction band at finite temperature T is given by

ne:jopdEkfe<Ek>ge<Ek> (14.30)

c

Substituting Eq. (14.27), (14.29) into Eq. (14.30), one gets

1 [2m; 3/2E/kT °° 1/2 —E, /ks T
ne=5a (o) T dB (BB e (14.31)

c

Here we have used the fact that f.(Ej) decreases very quickly with an increase in Ey; therefore, in Eq. (14.30) the upper limit
can safely be taken as infinity. Now substituting

E,—E.=x (14.32)
one can write Eq. (14.31) as
*\ 3/2 0
n :L (2m6> e(EF—EC)/kBTJ dxxl/Zefx/kBT (14.33)
e 27'[2 h2 0
Again substituting
X
= 14.34
y KT ( )
in Eq. (14.33), one can write
*\ 3/2 )
1 /2m, _ 3 -
n=57 ( o ) elEr EJ/kBT(kBT)*/ZL dyy'/?e™ (14.35)

The integral in Eq. (14.35) is a standard integral whose value is \/7/2. Therefore, Eq. (14.35) finally gives the density of
electrons in the conduction band as

n, =N, e(BrEJ/ka T (14.36)
where
* 3/2
mek, T
N, =2(—=2E 14.37
¢ ( 2mh? ) ( )

Here N, gives the density of the electron states in the conduction band.
One can also calculate the density of holes in a similar way. The probability of occupation of a hole state with energy Ey,
at the temperatures of interest, is given by

f,(E,) =1—f,(E,) =B E)/ksT (14.38)

The holes near the top of the valence band behave as particles with effective mass my,. The density of hole states per unit
energy per unit volume near the top of the valence band is given by

1 /2mi\Y?
_ h 1/2
B =73 ( 2 ) (E, —Ey) (14.39)
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The density of holes per unit volume in the valence band, therefore, is given by

EV
n, = J £, (By) g, (Ey) dEy (14.40)

bottom

Further, f,(Ey) decreases rapidly as one goes down below the top of the valence band and, therefore, the lower limit in
Eq. (14.40) can safely be taken as —oo, that is,

EV
n, :j £, (Ey) g0 (By) dEy

(o)

32 . (14.41)
1 (2m, —Ep/kpT | 1/2 E, /ky T
A € . (E,—E,) e dEy
Putting E, — Ei=x, the integral becomes
*\ 3/2 0
oo L (2my e(ErEa/kBTJ 23/ T gy
h 271:2 h2 0
which can be solved to write
n, =N, eBvEr)/keT (14.42)
where
* 3/2
m, kg T
N,=2 (22 ) 14.43
h ( 2nh? ( )
Here Nj, gives the density of hole states in the valence band. Now multiplying Eqgs. (14.36), (14.42), one can write
3
o322 (kg T\ (5 _E)/k,T
nen, =4 (m¢m?) (mz) o (B E ) (14.44)
The above equation can also be written as
n,n, =N, N, e (Bc—E)/kp T (14.45)

Note that Eq. (14.45) does not involve the Fermi energy, which means that it does not depend on the particular substance.
This expression is sometimes called the law of mass action. The only assumption that we have made here is that the Fermi
energy is well away from the conduction and valence bands, which is true in an intrinsic semiconductor. In an intrinsic
semiconductor n, =ny, therefore, the density of conduction electrons and holes is given from Eq. (14.44) as

kg T 3/2 34 _E-E,
ne:nh:2<ﬁ) (m:mh) e ZksT (14.46)

The position of Eg can be evaluated from the values of n, and n;,. Dividing Eq. (14.36) by Eq. (14.42) and taking the log-
arithm of both sides, one gets

E +E, 1 3 my n
Ep=—""4+_k,T|= In—+ In—= 14.47
P T {2 et nJ (14.47)
In an intrinsic semiconductor n. =ny, so the last term in Eq. (14.47) goes to zero reducing it to
E.+E, 3 m,
Ep= 5 +ZkBT In o (14.48)

If the masses of an electron in the conduction band and a hole in the valence band are also equal, that is, m: :m;, then
Eq. (14.48) reduces to

Ep=——1 (14.49)
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In this case the Fermi energy lies exactly in the middle of the conduction and valence bands. As a special case, if the zero of
energy is taken at the top of the valence band, that is, E, =0, then Eqgs. (14.44), (14.46), and (14.48) become

n.n, =4 (m:m;)** KT Se*Eg/ka (14.50)
e h e h 27‘Eh2 .
T\ 32 i} B
ne=nh=2<thz> (mimy) e T (14.51)
s
E 3 *
Ep=—f+ kT n (%) (14.52)

14.6 MODEL FOR EXTRINSIC SEMICONDUCTORS
14.6.1 n-Type Semiconductors

The band model for an n-type semiconductor is shown in Fig. 14.5B, in which the donor band having energy Ej4 lies close to
the conduction band. Let Ny be the density of donor states per unit volume in the donor band. At absolute zero the donor
band is assumed to be full while the conduction band is completely empty. But at low temperatures a fraction of the elec-
trons from the donor band jumps to the conduction band. At such temperatures the Fermi energy Eg lies about halfway
between the donor band and the bottom of the conduction band. We further assume that Eg of the n-type semiconductor
lies below the bottom of the conduction band and above the donor band by about an energy of a few kg T. In this approx-
imation, the density of electrons in the conduction band of an n-type semiconductor is given by Eq. (14.36), that is,

n, =N, (B E) kT (14.53)

Eq. (14.53) also gives the number of holes in the donor band ny,, which is equal to the number of ionized donors. Now the
number of holes in the donor band is given by

n, =N, f, (Eg) = Ny[1 - f,(E,)] = N,eBaEe)/ks T (14.54)

[

In writing the above equation we have used Eq. (14.38). If no electron is excited from the valence to the conduction band,
which is possible only at low temperatures, then the number of electrons in the conduction band must be equal to the number
of holes in the donor band, that is, n.=ny,. So

Nde(Ed*EF)/kBT :Ne e<EF*Ec)/kBT (1455)
Rearranging the terms, we get
2B —E—Eg)/ky T _ % (14.56)

(S

Taking the logarithm of the above equation and solving for Eg, we get

E.+E kgT N,
Ep= < 44+ B Jp| ¢ 14.57
FT T 2 [Ne (14.57)
The above equation describes the variation of Er with temperature. At T=0, Eq. (14.57) gives
E.+E
p=—c 5 d (14.58)

which is exactly in the middle of the bottom of the conduction band and the donor band. As the temperature increases, Eg
falls and approaches the donor band. With a further increase in temperature, the Fermi energy continuously goes down and
at very high temperatures it approaches the middle of the valence and conduction bands (Fig. 4.8).
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From Eq. (14.53) it is evident that the density of electrons in the conduction band depends on Eg, which in turn depends
on the temperature and density of the donor states (Eq. 14.57). To evaluate n,, in an extrinsic semiconductor, we substitute
Er from Eq. (14.57) into Eq. (14.53) and simplify to get

n, = /NyN e AEa/ks T (14.59)
where
AE,,=E_—E, (14.60)

Here AE, 4 represents the ionization energy (excitation energy) of the donor electron from the donor band to the conduction
band. We see that the number of electrons in the conduction band depends on the square root of the density of donor states in
the impurity band. Therefore, ny, is also proportional to the square root of the donor concentration.

14.6.2 p-Type Semiconductors

In a p-type semiconductor the acceptor band is empty and lies close to the completely filled valence band (see Fig. 14.6B).
At low temperatures some of the electrons from the valence band jump to the acceptor band, thereby creating holes in the
valence band. At low temperatures the Fermi energy lies between the valence band and the acceptor band. Further, we
assume that Er lies below the acceptor band and above the valence band by an energy of a few kgT. In this approximation
the number of holes in the valence band is given by Eq. (14.42) and is written as

n, = N, e(FEe)/kaT (14.61)

This number must be equal to the number of electrons in the acceptor band. If N, is the density of acceptor states per unit
volume, then the number of electrons in the acceptor band is given by

n, =N, f,(E,) 2N, e EJ/kT (14.62)

where E, is the energy of the acceptor band. If no electron is excited from the valence band to the conduction band, which is
possible only at low temperatures, then the number of electrons in the accepter band must be equal to the number of holes in
the valence band. Therefore, from Eqgs. (14.61), (14.62), one can write

N, eB Bk T N, (B E)/ks T (14.63)

Solving the above equation for Eg, we get

E,+E, kgT N
Ep=—2_—~_-8_p |2 14.64
; 2 2 " |:Nh] ( )
At absolute zero, Eq. (14.64) gives
E,+E
Ep= az Y (14.65)

Therefore, at absolute zero, E lies exactly in the middle between the top of the valence band and the acceptor band. With an
increase in temperature, Er increases and ultimately, at very high temperatures, it approaches the middle of the valence and
conduction bands. The variation of Eg with temperature for n- and p-type semiconductors is shown in Fig. 14.8.

At a particular temperature, the number of holes in the valence band is obtained by substituting Eq. (14.64) into
Eq. (14.61) and simplifying to get

n, = /N, N, e 2Ex/ks T (14.66)
where
AE,, =E, —E, (14.67)

AE,, represents the excitation energy of an electron from the valence band to the acceptor band. It is evident that the number
of holes in the valence band depends on the square root of the density of acceptor states in the acceptor band. In other words,
ny, is proportional to the square root of the acceptor concentration.

It is noteworthy that, within the model considered above, the expressions for electrons in n-type semiconductors and
holes in p-type semiconductors are similar and depend on the concentration of the doping.
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FIG. 14.8 Schematic representation of the vari-
Conduction band ation of Er with temperature T in intrinsic, n-type

t  and p-type semiconductors. The dashed lines in
E. the left part of the figure show the Fermi energy
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e —— at 0 K. The right part of the figure shows the vari-
Donor band ation of the Fermi energy with temperature in the
T E. Intrinsic three types of semiconductors.
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14.7 EFFECT OF TEMPERATURE ON CARRIER DENSITY

At absolute zero the extrinsic semiconductors behave as insulators as there are no free charge carriers in the conduction
band. In an n-type semiconductor, with an increase in temperature some electrons get excited from the donor to the con-
duction band, yielding a finite electron density n.. At room temperature the thermal energy is sufficient to excite most of the
electrons from the donor band to the conduction band. In this temperature range the charge carriers are extrinsic in nature
and this is usually called the extrinsic range or impurity range (Fig. 14.9). For example, in Ge the upper limit of the extrinsic
range is 100°C, while in Si it is about 200°C. Ultimately, the donor band gets exhausted and remains exhausted for a certain
range of temperature (exhaustion range). In the exhaustion range the direct excitation of an electron from the valence band
to the conduction band is almost zero and the value of n. becomes independent of temperature. It is noteworthy that in the
extrinsic and exhaustion ranges the concentration of majority carriers is far greater than that of minority carriers. With a
further increase in temperature, the electrons start getting excited from the valence to the conduction band in large numbers.
At these temperatures an equal number of electrons and holes are liberated, which ultimately exceed the number of extrinsic
carriers. The carrier density n. increases much faster and, therefore, the conduction becomes intrinsic in nature. This is

Intrinsic
range Exhaustion
range

Impurity range
or
Extrinsic range

E
£
2
® Y E 8/‘90{
o o i iy I
% Slope - ok, Ong

: Intrinsic line

E,

'E S[Ope '_'TE

Holes !
T —>

FIG. 14.9 Variation of the density of electrons (holes) as a function of temperature showing the extrinsic, exhaustion, and intrinsic ranges in an n- (p-)
type semiconductor.
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called the intrinsic range. The temperature for the onset of intrinsic conduction depends on the energy band gap of the
semiconductor. Note that in the intrinsic range the density of majority and minority carriers becomes nearly equal. A similar
variation of hole density n,, with temperature is obtained in a p-type semiconductor.

Let us examine what happens when a semiconductor is irradiated. Consider an n-type semiconductor in which the elec-
trons from the donor band go to the conduction band and the charge carriers are basically extrinsic in nature: majority
charge carriers. Let an n-type semiconductor be irradiated with radiation having energy E,=hv. The radiation energy
is absorbed by the electrons in the valence band as a result of which they get excited to the conduction band. These intrinsic
charge carriers are called the excess charge carriers and contain an equal number of electrons in the conduction band and
holes in the valence band. When the radiation is stopped, the excess conduction electrons return to the valence band and
combine with the excess holes. This process is called recombination. If the incident radiation is weak, then the excess
charge carriers will be much fewer in number than the majority charge carriers in thermal equilibrium. In this sense
the extrinsic charge carriers become the majority charge carriers, while the excess charge carriers become the minority
charge carriers. For weak incident radiation, it is reasonable to assume that the rate of recombination is proportional to
the number of excess charge carriers (excess electrons or holes) N, present. In mathematical language, one can write

dN N
2. 2. 14.68
dt T ( )

m

The factor 1/z,,, is the proportionality constant and 7, is called the minority carrier lifetime. If the radiation stops at t=0, the

above equation gives
dN, 1
J—“ = ——Jdt
NCX Tm

Solving the above integral, one gets
N,, () =N, (0)e /™ (14.69)

Eq. (14.69) describes the exponential decay of the excess minority carrier density. In time z,,, the density is reduced by a

factor e .

14.8 TEMPERATURE DEPENDENCE OF MOBILITY

The mobility u is a measure of the drift velocity vq4 of electrons or holes in a semiconductor and depends on the scattering
processes. In a semiconductor two scattering processes take place: the first is the lattice scattering (or the scattering of
charge carriers due to phonons) and the second is scattering from the ionized impurity atoms (donors or acceptors). Other
imperfections, such as dislocations and surface effects, also contribute toward the mobility but to a much lesser extent. The
scattering processes and hence the mobility exhibit temperature dependence. The mobility due to lattice scattering y;. and
due to the scattering from ionized impurity atoms y; exhibit the following temperature dependence:

u =A, T2 (14.70)
;= B, T2 (14.71)

where A and By are constants for a given material. The resistivity p offered to the flow of electrons in an n-type semi-
conductor due to the phonons and impurities can be defined as

1 1
=—= 14.72
oL oL el ( )
1 1
pp=—= (14.73)
01 Dy
The total resistivity is the sum of the two contributions and is given by
p = pL +pI = (14.74)

n.eu
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where u is the total mobility in a semiconductor. Substituting Eqs. (14.72), (14.73) into Eq. (14.74), one gets

1 1 1
—=—t+— (14.75)
LS T
From Eqgs. (14.70), (14.71), and (14.75) one can immediately write
1
p=7 1 (14.76)
Bl T TP
B, AL

At low values of T the term T~*? dominates in the denominator of Eq. (14.76) and, therefore, reduces the mobility to
u=B,T? (14.77)

Therefore, at low temperatures, the impurity scattering dominates due to the fact that the number of phonons is very small at
low temperatures. But at high values of T, the term T*? dominates in the denominator of Eq. (14.76), which gives

u=A, T2 (14.78)

Hence, phonon scattering is mainly responsible for the mobility at high temperatures due to the presence of a large number
of phonons. In an intrinsic semiconductor, impurity scattering is absent; therefore, Eq. (14.70) applies directly. Fig. 14.10
shows the variation of mobility u as a function of T.

14.9 THE HALL EFFECT

The Hall effect in semiconductors describes the effect of a magnetic field on moving charge carriers. As an example, let us
consider a p-type semiconducting slab in which the current density J is passed along the x-direction (Fig. 14.11A). The
current density J, is constituted by the motion of holes in the positive x-direction. Let a magnetic field H be applied along
the z-direction, then the magnetic force acting on the hole is given by

Fr—SvxH (14.79)
C

Intrinsic semiconductor
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FIG. 14.10 The variation of mobility y as a function of temperature T in an extrinsic semiconductor is shown by the continuous line. The dashed line
shows the variation of mobility with T in an intrinsic semiconductor.
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FIG. 14.11 (A) Geometry for measuring the Hall effect in a p-type H
semiconductor. (B) Geometry for measuring the Hall effect in an n- 4
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The above equation gives the magnetic force in the y-direction as
m__ €
F'=—-v H (14.80)

y c

As a result of the magnetic force the holes move along the negative y-direction and accumulate on the front face of the slab
(Fig. 14.11A). Due to the shifting of the holes, an electric field E, develops in the positive y-direction, generally called the
Hall field Ey. In order to evaluate Ey, consider the total force acting on the hole, which is given by

F:eE+§v><H (14.81)

The above equation gives the total force in the y-direction as
1
F,=e [EY_EVXH] (14.82)
In the equilibrium state the net force acting on the hole due to both the electric and magnetic fields must vanish and,
therefore, the Hall voltage from Eq. (14.82) is given by

Ey=E,=-v,H (14.83)

The current density J, due to the holes is defined as

J,=nyevy (14.84)
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The drift velocity v4 of the holes is equal to v, in the present situation. So,

J
Vy=Vyg=—> (14.85)
n,e
From Egs. (14.83), (14.85) the Hall field becomes
JH
E,; =2 (14.86)
n,ec
Hence, the density of holes from the above equation becomes
JJH
=x 14.87
ecEy ( )

The Hall coefficient is defined as the Hall field per unit current density and per unit magnetic field and is given by

Ey 1
__—H _ 14.88
HJ H ngec ( )
The mobility of charge carriers can be estimated from the geometry of the Hall effect setup for a p-type semiconductor. The
drift velocity is given by

vy = i, By (14.89)
Substituting Eq. (14.89) into Eq. (14.84), the mobility of the holes is given by
K (14.90)
o= n,eE, '

The mobility of charge carriers can also be calculated if one knows the conductivity and the Hall coefficient of a semi-
conductor. Consider a semiconductor with one type of charge carrier, say a p-type semiconductor with holes as the majority
charge carriers. The conductivity of the semiconductor is given as

op =Nye (14.91)

The measurement of oy, of the semiconductor gives information about the product ny, uy,, but it does not allow the separate
determination of ny, and py,. From Eqgs. (14.88), (14.91) one can write

u, =co, Ry (14.92)

If 6}, and Ry of a semiconductor are measured experimentally, one can find 1, and, knowing u;,, one can calculate n;, from
Eq. (14.91). The above discussion shows that for the individual determination of n;, and g, in a semiconductor, the exper-
imental measurement of both ¢}, and Ry is required.

From Egs. (14.86), (14.88) we see that the Hall field and the Hall coefficient are positive for a p-type semiconductor. It is
important to note that in an actual experiment the Hall voltage Vi and current I, are measured instead of the Hall field and
current density. Therefore, one should express the results in terms of these measurable physical quantities. Let A be the area
of the face at which the current enters the semiconducting slab (see Fig. 14.11A), then

v I I v
Ey=-1 J =2=_2X E =% 14.93
How? A wd ™ L (14.53)
Substituting the values of J, and Ey, in terms of I, and Vg, in Egs. (14.86), (14.87) one can write

1 LH
Vy = 2 14.94
H  nec d ( )
1 I.H
=— 14.95
M ec Vyd ( )

In order to calculate the mobility in terms of the measurable quantities, we substitute E; and J; from Eq. (14.93) in
Eq. (14.90) to get

ILL

=" 14.96
n,eV,Wd ( )

Hy
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One can also study the Hall effect in an n-type semiconductor. Proceeding in exactly the same manner, one can write the
Lorentz force as

1
F=-—¢ |:E+—V><H:| (14.97)
c
In the equilibrium state one gets
1
E=——vxH (14.98)
c

The geometry of the setup for studying the Hall effect is shown in Fig. 14.11B. The electrons accumulate on the front face of
the slab and the Hall field is set up in the negative y-direction. From Eq. (14.98) one can write

1
Ey=E,=_vH (14.99)

Now the current density J, due to the flow of electrons is given as

J,=—-n.ev, (14.100)
The drift velocity of the electrons is equal to v, and is given by
JX
V, =V =— (14.101)
n.e
Substituting Eq. (14.101) into Eq. (14.99), the Hall field is given by
JLH
E,=—->2 (14.102)
n.ec

From this equation the electron density can be written as

JLH
n,=——2X (14.103)
ecEy

The Hall coefficient for an n-type semiconductor is given by

E 1
Ry=—H = 14.104
H7J H n.ec ( )
From Eqgs. (14.102), (14.104) it is evident that the Hall field and Hall coefficient are negative for an n-type semiconductor in
which the majority carriers are the electrons. Use Eq. (14.93) in Egs. (14.102), (14.103), one gets

v, - LH (14.105)
H™ neec d '
1 LH
_ 1 14.106
¢ ec Vyd ( )

One can calculate the mobility . for an n-type semiconductor in exactly the same way as for a p-type semiconductor. It is
given by
LL
- 14.107
Fe hev, wWd ( )

Here we have neglected the negative sign. The mobility of charge carriers can also be calculated if one knows the con-
ductivity and the Hall coefficient of a semiconductor. In an n-type semiconductor, the conductivity is given as

O, =1,€, (14.108)

If one measures o, it gives information about the product n, .. Eqs. (14.104), (14.108) allow us to write (neglecting the
negative sign)

U =co Ry (14.109)

If 0. and Ry of a semiconductor are measured experimentally, one can find p. and n. from Eqs. (14.108), (14.109).
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14.10 ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

After describing the temperature dependence of the mobility of charge carriers, one can obtain explicit expressions for the
electrical conductivity of semiconductors.

14.10.1 Intrinsic Semiconductors

The general expression for the conductivity of a semiconductor is given by Eq. (14.16). In an intrinsic semiconductor
n. =ny, therefore, Eq. (14.16) reduces to

o=n. (U, +u,) (14.110)
Substituting for n, from Eq. (14.51), we find
Be_
c=0,e kT (14.111)
where
ky T\ >/ 3/4
o,=2e(u, + —B_ mm; 14.112
0 (/’te :uh) (271?12) ( e h) ( )
From Eq. (14.76) it is evident that in an intrinsic semiconductor the mobility u decreases with an increase in temperature as
(=, + ) = A T32 (14.113)
Substituting Eq. (14.113) into Eq. (14.112), one gets
kB 02 x . x\3/4
0, =2eA; (ﬁ) (me mh) (14.114)

Therefore, oy is independent of temperature. Taking the logarithm of Eq. (14.111), one gets

Inc= Ino,— (14.115)

g
2kgT
Taking the reciprocal of Eq. (14.111) one can straightway write the expression for resistivity p of an intrinsic
semiconductor as

Eg

p=pye?ksT (14.116)

where p=1/0 and py=1/5. The logarithm of Eq. (14.116) yields

Inp= Inp,+ (14.117)

8
2kgT
The plot of Ing or Inp as a function of T is a straight line whose slope gives the energy band gap E,. Therefore, if one

measures the conductivity ¢ or resistivity p as a function of temperature T, the band gap E, of the intrinsic semiconductor
can be determined.

14.10.2 Extrinsic Semiconductors

The derivation of the general expression for conductivity o of an extrinsic semiconductor is difficult, but one can calculate &
in limiting cases. At low temperatures the electrons from the valence band cannot be excited to the conduction band. On the
other hand, the electrons from the donor band get excited to the conduction band and behave as the charge carriers. Hence,
at low temperatures, the conductivity is given as

o=n.el, (14.118)
where n, is given by Eq. (14.59). From Egs. (14.59), (14.118) one can write

o =ep\/NyN e ABa/ksT (14.119)
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Substituting the value of N, from Eq. (14.37) into the above equation, we get
0 =0 e ABa/ksT (14.120)

where

* 3/4
kT
MeXp ) (14.121)

Toe =€ \/2Ng <W
The mobility i is here due to the impurity ions, which exhibit T
dependent.
At high temperatures, most of the electrons in the conduction band are excited from the valence band as the impurity
concentration in a semiconductor is low. Therefore, at such temperatures, an n-type semiconductor behaves like an intrinsic
semiconductor with n.=n;, given by Eq. (14.51) and conductivity given by Eq. (14.111).

dependence (Eq. 14.77); therefore, G, is temperature

Problem 14.1

Show that at low temperatures, the electrical conductivity of a p-type semiconductor is given by

0 =0 e A/keT (14.122)
where
* 3/4
m, kg T
Gon =€ty /2N, (ﬁ) (14.123)

Problem 14.2

A Ge crystal has the dimensions of L=1.0cm, W=0.12cm, and d=0.2cm (see Fig. 14.11A). In the Hall effect measurements, a
current of I, =2.4mA flows when voltage V, = 1.0V and magnetic field H, = 5000 gauss is applied. The Hall voltage developed in
the crystal is V=10mV. Calculate the conductivity of the crystal and the mobility of the charge carriers.

14.11 NONDEGENERATE SEMICONDUCTORS

In an extrinsic semiconductor the concentration of impurity (trivalent or pentavalent) is generally very small. Therefore, in
a conventional extrinsic semiconductor, the separation between the impurity atoms is large, as a result of which the
impurity-impurity interaction is negligible. Therefore, in an ordinary n- or p-type semiconductor, the impurity (donor
or acceptor) states are discrete and one can talk about impurity levels instead of bands. Such types of extrinsic semicon-
ductors are called nondegenerate semiconductors.

14.12 DEGENERATE SEMICONDUCTORS

With an increase in the impurity concentration in an extrinsic semiconductor, the impurity-impurity interaction becomes
finite. This interaction splits the discrete impurity states, forming an impurity band. With a further increase in the impurity
concentration, the width of the impurity band increases and, ultimately, it may overlap either with the conduction band in an
n-type semiconductor or with the valence band in a p-type semiconductor (see Fig. 14.12). The overlap occurs when the
impurity concentration becomes comparable with the effective density of states, or rather increases compared with the
density of states. Such types of semiconductors are called degenerate semiconductors. In an n-type degenerate semicon-
ductor the Fermi energy Eg lies in the conduction band, while in a p-type degenerate semiconductor, Eg lies inside the
valence band (see Fig. 14.12). In an n-type degenerate semiconductor, the energy states below Eg are mostly filled and
above Ep they are mostly empty. Therefore, in an n-type degenerate semiconductor, the energy states between Er and
E. are mostly filled with electrons; thus, the electron concentration in the conduction band is very large. On the other hand,
in a p-type degenerate semiconductor, the energy states between E, and Er are mostly empty (have holes in them) and the
hole concentration in the valence band is very large.



Semiconductors Chapter | 14 319

FIG. 14.12 Simplified energy band diagram for
degenerately doped (A) n-type and (B) p-type semi-
Conduction band Conduction band conductors. The shaded region shows the filled
E. electron states.
E E
L w
E, E,
E:
Valence band
Valence band

(A) (B)

14.13 COMPENSATED SEMICONDUCTORS

A compensated semiconductor is one that contains both donor and acceptor impurity atoms in the same region. A com-
pensated semiconductor can be formed either by diffusing acceptor impurities into an n-type semiconductor or by diffusing
donor impurities into a p-type semiconductor. Let Ny and N, be the density of states in the donor and acceptor levels, respec-
tively. In an n-type compensated semiconductor N, <Ny and in a p-type compensated semiconductor Ny < N,,. If N, =Ny
one gets a completely compensated semiconductor, which exhibits the characteristics of an intrinsic semiconductor. Com-
pensated semiconductors are created quite naturally during device fabrication.

Problem 14.3
In an intrinsic semiconductor the energy bands for both the conduction and valence bands are ellipsoidal in shape and are defined

as

Pk koK

EEC+_<_’<*+ \/*4_—2,k (14.124)
2 \my my m;
Pk koK

E:Ev_i 7><*+ \/*4_72,k (14.125)
2 \my my  m

where E is the energy value at the bottom of the conduction band and E, is the energy at the top of the valence band. Here mg, my,
and m; are the effective component masses along the x-, y-, and z-directions. Find expressions for the density of states in the valence

and conduction bands.

Problem 14.4
Suppose that the effective mass of holes in an intrinsic semiconductor with E, =1eV is four times that of the electrons. Find the
temperature at which the Fermi energy will be shifted by 5% from the middle of the energy gap.
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The properties of conducting and semiconducting solids have already been studied in the preceding chapters. In this
chapter, both the macroscopic and microscopic descriptions of the properties of nonconducting solids, particularly the
dielectric solids, will be presented. A microscopic study provides more insight into the dielectric properties of solids.
The nonconducting solids can be classified into two categories:

1. Nonpolar solids
2. Polar solids

15.1 NONPOLAR SOLIDS

In a nonpolar solid, an atom/molecule does not possess an intrinsic electric dipole moment. In such a solid the centers of
negative and positive charges in each atom/molecule coincide (Fig. 15.1A). If an external electric field E is applied to a
nonpolar solid, then two situations may arise:

1. In the presence of an external electric field E(, each atom/molecule may become polarized due to the shifting of the
centers of positive and negative charges (Fig. 15.1B). In other words, the electric field induces an electric dipole
moment in each atom/molecule. Such solids are called dielectric solids in analogy with diamagnetic solids.

2. The atoms/molecules do not suffer any polarization at all and such solids are called ideal insulators.

15.2 POLAR SOLIDS

A solid in which each atom/molecule possesses intrinsic electric dipole moment is called a polar solid. In such solids the
centers of positive and negative charge of an atom/molecule do not coincide, yielding a finite electric dipole moment
(Fig. 15.2). These solids can further be classified into two categories.

1. Solids that exhibit net zero electric dipole moment in the absence of an external electric field but a finite dipole moment
in the presence of an applied electric field. Such solids are called paraelectric solids.

2. Solids that exhibit net finite electric dipole moment even in the absence of an external electric field are called ferro-
electric solids.
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FIG.15.1 (A) Atom with spherical shape: The electron cloud is — > E,
spherical in shape with the nucleus N represented by a dot at its Elactron-cloud

center. Here the centers of negative and positive charges
coincide. (B) Spherical atom in the presence of an applied electric
field Eo. It is assumed that there is no distortion in the shape of the
electron cloud in the presence of E. The electron cloud as such
moves in a direction opposite to that of the field Eg, while the
nucleus N moves in the direction of the field, causing dis-
placement r in the centers of the negative and positive charges.

(A) (B)

FIG. 15.2 An atom with an elliptical electron cloud has the nucleus at one of its foci. The
centers of negative and positive charges are separated by distance r.

15.3 ELECTRIC DIPOLE MOMENT

An electric dipole consists of two equal and opposite charges separated by a finite distance. The moment of an electric
dipole p is defined as the product of the magnitude of the charge and the distance between the two charges (Fig. 15.3).
The direction of p is from the negative to the positive charge. Therefore

p=qr (15.1)

FIG. 15.3 Electric field due to an electric dipole with dipole moment p, which is
directed from negative to positive charge.
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Here r is a vector directed from the negative to the positive charge. The electric field of the electric dipole is directed from
the positive to the negative charge, as shown in Fig. 15.3. If there are a number of discrete charges present in the system,
then the total electric dipole moment is given by

p= 152)

In the presence of a continuous electron charge distribution, with charge density p.(r), the electric dipole moment of the
system is defined as

p= ere(r) d’r (15.3)
Polarization P in a solid is defined as the electric dipole moment per unit volume and is written as
p
P==— 15.4
v (15.4)

where V is the volume of the solid. The polarization is a macroscopic property so the average is taken over the macroscopic
volume of the solid. The electric field due to a dipole moment p varies inversely as the cube of the distance and is given by

3(p-r)r—p

3

E(r)= (15.5)

Here r is a unit vector in the direction of r.

15.4 MACROSCOPIC ELECTRIC FIELD

Experimental measurements of different physical properties, such as electric field, magnetic field, and electrical resistivity,
of a bulk material yield some sort of average value of the property. On the other hand, at the position of an atom/molecule
inside the solid, the physical property may be significantly different, both in magnitude and direction, from the measured
value for the bulk material. Here we consider a macroscopic electric field inside a dielectric material. Fig. 15.4 shows the
bulk material in the presence of an externally applied electric field E¢. The dielectric material gets polarized with P as the
polarization and Ep as the electric field resulting from it. The macroscopic (average) field inside the material becomes

E=E,+E, (15.6)

Let E(r) be the local (microscopic) electric field at an atom/molecule situated at r, which may have different values at
different atoms/molecules. One can express the macroscopic electric field per unit volume at the position ry, i.e., E(ry), in
terms of the local field as

E, FIG. 15.4 Bulk dielectric material placed in the
+ e external electric field Eq. Ep is the electric field due
to the polarization P produced inside the material.

+ _ : —
+ive terminal = —ive terminal
of battery L - —_— of battery
b oo AV ) = | ol S

FE R R R R
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E(r,) :%JEIOC (r—r,) d’r (15.7)

The field E(r) is quite smooth compared with E;,.(r).

15.5 POTENTIAL DUE TO AN ELECTRIC DIPOLE

From elementary electrostatics it is well known that the potential due to an electric dipole moment distribution with polar-
ization P is given by

V(r) :Jd%P-V% (15.8)

V-(lP):V(l)-P+lV-P (15.9)
r r r

V(r) :JV- GP) d’r (15.10)

Applying the vector identity
one can write Eq. (15.8) as

Here we have assumed constant polarization, so that V - P = 0. Applying the divergence theorem to Eq. (15.10) one gets
n-pP P

V(r):JdSn—:JdS—“ (15.11)
T r

Here dS is an infinitesimal surface element and n is a unit vector normal to the surface and is directed away from the
dielectric material. Comparing the above equation with.

V(1) :st% (15.12)

the surface charge density normal to the surface o,, becomes
g,=0-P=P, (15.13)

Fig. 15.5 shows Eg, Ep, P, and i - P in a dielectric material in the form of a cuboid. With the help of Eq. (15.13), the electric
field due to the polarization of the dielectric material can be evaluated.

15.6 DEPOLARIZATION FIELD DUE TO CUBOID

Consider a dielectric material in the form of a cuboid (Fig. 15.5) to which is applied the external electric field E,. The
dielectric material is equivalent to two charged sheets: one surface has charge density n - P, while the other opposite to
it has —n - P, as shown in the figure. From Gauss’s law in an electrostatic, the field due to polarization Ep is given by

FIG.15.5 Bulk dielectric material in the form of a cuboid placed in the presence of an E;
external electric field E. Ep gives the electric field and n - P the surface charge density

due to the polarization produced inside the material.
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Ep=—2n0-P—2nn-P=—47mn-P

= —4nP, = —4no,

In the vector form one can write.
E,=—4nP (15.14)

Ep is called the depolarization field because it opposes the applied electric field Ey,.

Problem 15.1
Prove that the depolarization field Ep in a bulk dielectric material in the form of a sphere is given by

4
Epzf?” . (15.15)

Hence, the macroscopic field in a dielectric material in the form of a cuboid, from Eqgs. (15.6) and (15.14), is given by
E=E,—4nP (15.16)

In the above derivation the discrete lattice of the dipoles has been replaced by a smoothly varying polarization P, therefore,
Ep and E are smoothly varying fields. From Eq. (15.14) it is evident that the constant factor in the depolarization field
depends on the shape of the bulk material, therefore, in general the Cartesian components of the depolarization field
can be written as

Ep =-NP,, E, =-N,P, E; =—N,P, 15.17)

X" X? y y?

Here Ny, Ny, and N, are the depolarization factors and their values depend on the shape of the bulk material. For a solid in
the form of an ellipsoid, the values of Ny, N, and N, depend on the ratio of the major to minor axes and satisfy the following
condition

Nx+Ny+NZ:4n (15.18)

E( and P are parallel to each other and in the same direction. Further, Ep is parallel to P but in the opposite direction,

therefore, one can write
E,=—-NP (15.19)

Hence, the macroscopic field in this case becomes
E=E,—-NP (15.20)

15.7 POLARIZATION

In general, a crystalline solid is anisotropic in nature. In such solids, when a macroscopic electric field E(r,t) is applied at
position r at time t, the polarization P(r’, ') may be produced at all possible values of position r’ and time t'. The reverse is
also true, that is, the polarization P(r, t) at position r and time t is produced when macroscopic field E(r’,t') is applied at all
possible positions r’ at time t'. In the linear response approximation, this fact can be represented mathematically as follows

P(r,t) =) yg(r.t:r',t)E(r, 1) (15.21)
r,t
ye(r,t; ¥, t') is the linear response function and is usually called the electric susceptibility matrix. In reciprocal space
Eq. (15.21) is given by
P(K,w)= Z 15K, 0; K, o E(K', ) (15.22)
K/,(U,

One is usually interested in the equal-time response function, i.e., for t=t’ or w = w'. Therefore, for equal time, Egs. (15.21)
and (15.22) can be written as

P(r,t0)=> yp(r,r',)E(r, 1) (15.23)

P(K,0)=> 7:(K,K,0)E(K o) (15.24)
K/
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Here we have written yg(r,t;/,t) = yg(r,r/,t) and ye(K,0; K',0)= yg(K,K',w). The frequency-dependent susceptibility
1e(K,K', ) is generally called the dynamical susceptibility matrix. In a homogeneous and isotropic solid, the polarization
is produced in the direction of the applied field and in this case Eqgs. (15.23) and (15.24) reduce to

P(r,t) = yp(r, t) E(r,t) (15.25)
P(K, o) = 1:(K, 0) E(K, ) (15.26)

Here the dynamical electric susceptibility yg(K, w) is a scalar quantity. The time-independent polarization (static polari-
zation) for a homogeneous material is obtained by substituting t=0 and w =0 in Egs. (15.25) and (15.26) and is given by

P(r) = yg(r) E(r) (15.27)
P(K) = 75(K) E(K) (15.28)

ye(K) is the static electric susceptibility function. If a constant electric field is applied to the solid, the above equation can be
written as

P=.E (15.29)

The electric susceptibility yg becomes a constant. With the help of Eq. (15.20) the polarization P can also be expressed in
terms of the applied field E,. Substituting Eq. (15.20) into Eq. (15.29), one can write

XE

= E 15.30
1+Ngg ° (15.30)
In the limiting case of very large yg the above equation reduces to
E
P2 (15.31)

N

Hence, the polarization is determined purely by the shape of the material in the limit of very large yg. Such a situation must
be avoided in the experimental determination of the electrical susceptibility of a solid.

15.8 DIELECTRIC MATRIX

From elementary electricity, the displacement field D(r,t) is defined as

D(r,t) =E(r, t) + 47P(r, t) (15.32)
Substituting the value of P(r,t) from Eq. (15.23) into Eq. (15.32), one writes.
D(r,t) =E(r,t) +47 > yp(r,r, ) E(r,1) (15.33)
r!
Here we have used the equal-time expression for P(r,t). The above equation can be written as
D(r,t)=> &(r,r, )E(r,1) (15.34)
where
e(r, ', 1) = Opp +amyg(r, r',t) (15.35)

&(r,1’,t) is the response function and is called the dielectric matrix. In reciprocal space Egs. (15.34) and (15.35) can be
written as

D(K,») =) (K, K,0)EK, o) (15.36)
K/
(K, K, 0)= Ox x +4mys(K, K, o) (15.37)

For a homogeneous and isotropic solid, Egs. (15.35) and (15.37) reduce to scalar equations given by

e(r,t) =1+4myg(r,t) (15.38)
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(K, w)=1+4ny:(K, o) (15.39)

e(r,t) and &(K,w) represent the scalar dynamical dielectric function in the direct and reciprocal spaces. The time-
independent (static) dielectric function for a homogeneous material is obtained by substituting t=0 and w=0 in
Egs. (15.38) and (15.39), respectively, and is given by

8(r) = 1+4myg(r) (15.40)
e(K) =1+4ny5(K) (15.41)

The frequency-dependent dielectric function at K=0, i.e., &(w), from Eq. (15.39) becomes
e(w)=1+4nyg(w) (15.42)
&(w) gives the dielectric function at very long wavelengths. For a uniform electric field, Egs. (15.40) and (15.41) reduce to
e=1+4nyy (15.43)

¢ defines the dielectric constant of a material.

15.9 EXPERIMENTAL MEASUREMENT OF DIELECTRIC CONSTANT

The dielectric constant can be defined as the ratio of the capacity of a capacitor with dielectric material Cg;e). to the capacity
of the same capacitor when empty, C,,, i.e.,

diel
— Saicte 15.44
=C (15.49)

vac

Experimental measurements of the dielectric constant can be performed using Eq. (15.44). The capacity of a capacitor can
be calculated with the help of an LC resonant circuit, as shown in Fig. 15.6. Here L is an inductor, C is an experimental
capacitor, and Cg is a variable (gang) capacitor. It should be noted that Fig. 15.6 illustrates just the principle, but there are a
number of actual circuits employed to determine the dielectric constant. The resonance frequency of an LC circuit is given

by
1 1
_1 15.45
T\ L(C+ Cg) (15.43)

By varying the capacity Cg, the resonance frequency of the LC circuit is determined when the capacitor C is empty. From
the total capacity, C,,.+Cg, one can find C,,, i.e., the capacity when there is vacuum inside the experimental capacitor.
Now the dielectric material is placed inside the experimental capacitor and Cg is again varied to obtain the same resonance
frequency, yielding the total capacity of the circuit as Cyjeic +Cg. From the total capacity one can calculate Cygjey, i.€., the
capacity of the experimental capacitor with the dielectric inside it. With knowledge of Cg;eic and Cy,, one can find the
dielectric constant of the material.

In this chapter we shall present an atomic view (microscopic description) of the properties of a dielectric material. To
study the dielectric properties on the atomic scale, one should know that the electric field experienced by an atom may be
much different from the macroscopic field.

FIG. 15.6 The LC circuit used to measure the dielectric constant of
a solid. Here C is a parallel plate capacitor in which the specimen of
the given solid is used as a dielectric and Cg is a variable (gang)
capacitor.

C\D L 74 Ca C% <+«— Specimen

-
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15.10 LOCAL ELECTRIC FIELD AT AN ATOM

The actual electric field at the site of an atom is called the local electric field E,,., which may be significantly different from
the macroscopic electric field E. Let us find the general expression for E,, at the atomic site as it forms the backbone of a
microscopic study of the dielectric properties of solids. Consider a solid in ellipsoidal form (Fig. 15.7) in which the external
electric field E is applied along the major axis. It is assumed that all the electric dipoles are oriented parallel to the external
field. Let us evaluate E,,. at an atom situated at the center of the ellipsoidal solid. The exact value of E, at the position of
the atom is the sum of the external electric field and the field arising from all the atomic dipoles of the solid, i.e.,

3. - #)E — D
B, —Ey+ 27@1 r;grl B (15.46)

Here the summation is over all the atomic dipoles of the solid, an operation that may be difficult to perform. Therefore, the
following simplified procedure is adopted to estimate E;,.. The maximum contribution to E,. at the atom is expected to
come from its neighboring atomic dipoles and their contribution should be accounted for exactly. The contribution from the
rest of the atomic dipoles of the solid can be averaged out. To achieve this, a small hypothetical spherical solid with the atom
under consideration at its center is cut from the solid (see Figs. 15.7 and 15.8). The spherical solid is large enough to contain
very many atomic dipoles in it. After removing this spherical portion, a cavity, usually called the Lorentz cavity, is created
at the center of the ellipsoidal solid. Leaving aside the spherical portion, one is left with an ellipsoidal dielectric solid having
finite charge density at its outer surface and also finite charge density on the inner surface of the Lorentz cavity (see
Fig. 15.8). Now E, at the center of the cavity can be split into four contributions as follows:

FIG. 15.7 Polarization produced in a solid in the presence of an applied E:
electric field E. The sphere in the center of the solid shows a small portion —°
of the solid, which contains a sufficiently large number of atomic dipoles. s . o o e
By removing this small portion of the solid a cavity is produced, usually Ty = = = o e
. —_ s s s s s S —
called the Lorentz cavity. s e ) R e s
T2y =S > S > —
= = = > — > — — —> —> —>
—_ = — — —> —_— — —> — —> —>
f—— — — — orentz cavity — — —
If—-‘*—) —_— — —> —)—)—)—)—)—)\I
| —_— = — — —> —— —— — —> ‘
|- — — — — = —%— —*-—)|
—_—— — — —> —— —> —> —> —>
\~—+-—->-——a»-—ar—)—+ =gt D T Cas o
e S 2 s s M e e e i e e
— — = — — —> —F — —>—>—3
e U =
= B e B e Pk miS P
== = s
—_—— — —> —>

FIG.15.8 The dipole moments inside the solid cancel the effects of each
other; therefore, the surface of the solid is charged as shown. The inner
surface of the Lorentz cavity is also charged but opposite to that of the
outer surface of the solid.




Dielectric Properties of Nonconducting Solids Chapter | 15 329

FIG. 15.9 The Lorentz cavity with origin at its center O. The
polarization and electric field produced by the charge density
on the inner surface of the cavity are shown.

E

=E,+E, +E-+E (15.47)

loc

Ep is the net electric field at the center of the Lorentz cavity due to the fields of all of the electric dipoles inside the spherical
portion (Lorentz cavity) and is given by

3<Pj E) P
E,= —_ (15.48)
’ j(cazvi:ty) rf
Here Ep is the depolarization field due to the charge density on the outer surface of the solid and its value depends on the
shape of the solid (Section 15.6). E is the field arising from the charge density appearing on the inner surface of the Lorentz
cavity and is calculated according to what follows.
The Lorentz cavity with radius “a” has a finite charge density —i- P = —P cos 0 on its inner surface (Fig. 15.9). Let the
charge on the circular ring be dq, which, from the figure, is given by

dq=2masinf(adl)(—P cos0) (15.49)
The electric field due to the circular ring at the center O of the cavity dE is given by
dq .
dE:¥:—2nP cosf sinfdf (15.50)

The component of the electric field in the direction of polarization becomes
dE.=dEcos(n—0) = —27P cos 0 sinfdfcos (180 — 0)

Hence the total field at the center of the cavity becomes
PP 4n
E.=2nP | cos“0sin0df= ?P (15.51)
0

Using Egs. (15.48) and (15.51) in Eq. (15.47), one gets

:E0+EP+?7EP+ y el (15.52)
j(cavity) rj

E

loc

The equation above gives the local electric field for any structure. The evaluation of the last term of Eq. (15.52) is difficult
for a complex structure, so here we evaluate E,,. for an sc structure. From Eq. (15.48), Ep can be written as

3(p:-r. ) r.—12p,
Ep= Y (PJ rJ)fJ i Pj (15.5)

j(cavity) I'j

If all of the electric dipoles are oriented in the z-direction, i.e., p; = p;Z, then Ep (=ED) in the z-direction is given by



330 Solid State Physics

, 3Z —r 22 —x —y?
Eb= D p—s—= ) b 5 = J 3 (15.54)

j(cavity) J j(cavity)

For a cubic crystal with a spherical cavity all three directions are equivalent and, therefore,
x2 y? 72
i _ i_ j
LSRN 0559
i i i
Substituting Eq. (15.55) into Eq. (15.54), one gets.
E;, =0 (15.56)

The result above can also be proved from Eq. (15.48) using the definition of r;. Therefore, for a cubic crystal of any shape,
the local field at the site of an atom is given by

4
Ejo =Eo+Ep+ ?n p (15.57)
The equation above can be written in terms of the macroscopic field E as

4
E+-"p (15.58)

Eloc - 3

If the cubic crystal has a spherical shape instead of an ellipsoidal one, then the depolarization field Ep [given by Eq. (15.15)]
cancels the Lorentz cavity field Ec and, therefore, the local field reduces to the applied field, i.e.,

E,.=E, (15.59)

loc

15.11 POLARIZABILITY

The electric dipole moment of an atom/molecule p depends on the local electric field experienced by it. Therefore, in the
linear response approximation, p is given by

p=o"E,, (15.60)

where o is a constant of proportionally called the atomic polarizability. The dimensions of o* are L>.

15.12 POLARIZATION

For a microscopic description of dielectric properties, the polarization should be expressed in terms of the atomic dipole
moments. In general, a solid may contain more than one type of atom. Let pi be the number of the ith type of atom per unit
volume in the solid, with p; as the atomic dipole moment. The polarization of such a solid is given by

P :Zp;*pi (15.61)
From Eqgs. (15.60) and (15.61) one can write.

P= Z Jos O (15.62)

Here of and Ei,. are the polarizability and local electric field experienced by the ith type of atom. Substituting the value of
Ei,. from Eq. (15.58) into Eq. (15.62), we get

47
P= 2 E+—P 15.63
S (B ) (1569
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From the above equation the electric susceptibility becomes

) Zp?ai‘

e T (15.64)
B
Using Eq. (15.43) in Eq. (15.64), one obtains a relation between ¢ and o as
e—1 4n a.a
53 zi:pi o (15.65)

Eq. (15.65) is called the Clausius-Mossotti relation and represents the macroscopic physical quantities in terms of micro-
scopic quantities. This relation can be written in terms of conventional quantities. Let nj be the number of the ith type of
atom in a unit cell of volume V. Then the number of the ith type of atom per unit volume becomes p{ =n{/V,,. Substituting
the value of p{ in Eq. (15.65), we find

3V, e—1
a,a 0
E aga_~ "0 15.66
- i % 47 e+2 ( )

1

Eq. (15.66) can be used to find the polarizability of the solid. For example, consider a solid with n* identical atoms in a unit
cell. The polarizability o from Eq. (15.66) becomes

3V, e—1
dnn? e+2

o =

(15.67)

If, in a solid, there are two types of atoms with polarizabilities &} and &5, but with the same number of atoms per unit cell,
i.e., n=n5=n? then

Zn ot =n* (o} +03) (15.68)

Egs. (15.66) and (15.68) give the sum of the polarizabilities of two types of atoms by

3V, e—1
dnn? e+2

of +ob = (15.69)

15.13 TYPES OF POLARIZABILITIES

The polarizability of an atom comprises three possible contributions, namely

1. Electronic polarizability o
2. Tonic polarizability of
3. Dipolar or orientational polarizability o

The total atomic polarizability is the sum of the three contributions and is given by
ot = o +of + ol (15.70)

Fig. 15.10A shows a free spherical atom. When an electric field E is applied, the electron cloud of the atom not only shifts
toward the positive side but also suffers distortion (Fig. 15.10B). This causes the centers of negative and positive charges to
shift away from each other, thereby producing a finite electric dipole moment. This physical effect contributes to the polar-
izability, generally called the electronic polarizability.

Fig. 15.11A shows a linear ionic solid in which the distance between the nearest neighbors is the same. In the ionic solid
the adjacent electric dipole moments are equal and opposite, yielding net zero polarization. When an electric field is
applied, the positive and negative ions move in opposite directions (Fig. 15.11B), thereby producing oppositely directed
unequal electric dipole moments causing finite ionic polarization and hence ionic polarizability.

Consider a solid in which each atom possesses a finite intrinsic electric dipole moment. In the absence of an electric
field, all of the dipoles are randomly oriented, yielding zero polarization. When an electric field is applied, the dipole
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FIG. 15.10 (A) A free spherical atom. (B) An atom E,

in the presence of an external electric field Ey. In the =——F

presence of E, the shape of the electron cloud gets dis- + _

torted in addition to the shifting of the centers of neg-

ative and positive charges. + _
+ —
+ s
+ —_—
+ —
+ —_—
+ —_—
+ —_
+ —

(A) (B)
FIG.15.11 (A) A linear ionic solid with period- B p
icity 2a yields no polarization. (B) A linear ionic + — + — + _ B - +

solid in the presence of an applied electric field E, . \‘}. . ! . o . &) .

produces finite ionic polarization.

2a
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EIJ
P P:
= = t, = L= . 2 =
® ® ¢ ® O @ @
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moments tend to align in the direction of the field, producing finite polarization. The polarizability thus produced is called
dipolar or orientational polarizability. The electronic and ionic polarizabilities are produced in both polar and nonpolar
solids, but the dipolar polarizability is produced only in polar solids.

15.14 VARIATION OF POLARIZABILITY WITH FREQUENCY

At very low frequencies the ions, electrons, and intrinsic dipole moments all respond to the applied electric field; therefore,
the total polarizability is the sum of the three contributions (Eq. 15.70). With an increase in frequency the reorientation of
the intrinsic dipole moments becomes difficult as atoms are heavy particles that interact with one another. Ultimately, the
atomic dipole moments stop responding at some particular frequency. With a further increase in frequency, the response of
the ions also decreases due to the large inertia and goes to zero at some higher frequency. At very high frequencies only
electrons, being very light particles, respond to the applied electric field, yielding finite electronic polarizability. At optical
frequencies, only the electronic polarizability is finite. Fig. 15.12 shows the variation of & as a function of frequency. The
peaks appearing in the figure are due to resonance absorption at certain frequencies and are not of interest to us. At optical
frequencies ¢ =n* where n is the refractive index of the material. Therefore, in the optical range, Eq. (15.65) reduces to.

2
n"—1 4n a.a
- =— tor 15.71

n+2 3 Z:pl ! ( )
Here of corresponds to the electronic polarizability of the i-th type of atom. This equation can be used to evaluate the elec-
tronic polarizability as the refractive index of most materials is known to a fair degree of accuracy.
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FIG. 15.12 Variation of dipolar, ionic, and electronic
a'=al+ay+a; polarizabilities of an atom/molecule as a function of
frequency.
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15.15 ORIENTATIONAL POLARIZABILITY

The orientational or dipolar polarizability is shown by materials in which each atom/molecule possesses an intrinsic electric
dipole moment. At finite temperature, in the presence of an external electric field E, there are two forces acting on each
electric dipole:

1. First is the electric force, which tends to align the dipole moments along the direction of the electric field.
2. Second is the thermal force, which tries to destroy the alignment.

Under the action of these two competing forces, some electric dipole moments align in the direction of the applied electric
field and others make some angle 0, which may vary from O to 7 radians for different dipole moments (see Fig. 15.13).
Therefore, the specimen shows finite polarization in the direction of the electric field. The polarization increases either with
an increase in the strength of the electric field or with a decrease in temperature. The saturation polarization is reached when
all the dipole moments align along the direction of the electric field.

EU FIG. 15.13 The orientation of the electric dipole moment p with respect to an applied electric field E,.
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In the presence of an electric field, the potential energy E of the electric dipole moment is
E=—p-E,=—pEcosl (15.72)

According to classical statistical mechanics, the probability ® of an electric dipole moment to occupy a state making an
angle 0 with the electric field is given by

E E
®oc exp <—m) o exp (I),l(l cos 0) (15.73)

The component of an electric dipole moment along the direction of the electric field is p - Eo =p cos 0 where Eo is the unit
vector in the direction of the external electric field. Hence the average component of the dipole moment in the direction of
the electric field is given by

F PEo
J(p E,) exp (k T ©08 9) dQ,

B
Pavg = (15.74)
E
Jexp (% cos 0) dQy
Here dQ; is the solid angle. Solving the above integral one gets
PE0>
Pay pL( (15.75)
g kgT
where
1
L(y)= cothy—; (15.76)

Here L(y) is called the Langevin function. If p* is the number of atoms per unit volume, then the electric polarization is
given by

P(T) = p"‘pL<EBE¥> (15.77)
The electric susceptibility, in the linear response approximation, becomes
1e(T) = PéT) = pE—ap L(%) (15.78)
0 0 B
Simple expressions can be obtained for polarization and susceptibility in the limiting cases. If
pE, > kgT (15.79)
then
L<pEO> =1 (15.80)
kgT
Therefore,
P=p" (15.81)

which gives the saturation polarization. Hence, the saturation polarization is obtained either at very low temperatures or at
very high electric field. If

PE, < kT (15.82)

then, for small values of y, cothy can be expanded as

3

Iy vy
thy=—+Z—"—+---. 15.83
COMY=yT37 45 (15.83)
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1.0 T T Fa. T I FIG. 15.14 Plot of the Langevin function L(y) as a
’," function of the parameter y =pEy/kgT. The dashed line is
i tangent to the curve at the origin and its slope is 1/3.
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Therefore, for small y, L(y) can be written as
1 1
L(y)= <_+Z+ ...... > __%X (15.84)

The behavior of the Langevin function L(y) is shown in Fig. 15.14. L(y) has a slope of 1/3 aty =0 and attains the saturation
value of one at very large y. Hence, at small values of y, the polarization and electric susceptibility are given by

a2
P(T) = é’ka E, (15.85)
B
C
16(T) == (15.86)

where Cg is called the Curie constant and is given by

a2

PP
C. — (15.87)
7 3kg

Eq. (15.86) is usually called the Curie law. From Eqs. (15.60) and (15.75) the dipolar contribution to the polarizability is
given by

Pay p pEq
a(my=—2¢ _ X (I20 15.88
aD( ) Eloc E0 (kBT ( )

At weak field Eq and high temperature T (paramagnetic region), Eq. (15.88) reduces to

P (15.89)

15.16 CLASSICAL THEORY OF ELECTRONIC POLARIZABILITY

Suppose an electron is bound harmonically to the nucleus of an atom in a dielectric material. A frequency-dependent
electric field Eq(w) is applied to the material, given by
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E)(®) =E;sinwt (15.90)
The local field E;,.(w) acting on the electron of the atom is given by
E, . (0)=E,, sinot (15.91)
The equation of motion of the harmonically bound electron is given by

dr? ) .
M +m wyr = —eE,  sinwt (15.92)

Here w is the resonance frequency of vibration of the electron. The displacement of the electron is given as
r=r,sinwt (15.93)

Substituting Eq. (15.93) into Eq. (15.92) and solving for ry, we get.

Iy = (15.94)
m, ((,O% - 0)2)
Therefore, the dipole moment of the electron becomes
e’E,
p=—¢ry :H](T—Oca)z) (]595)
The electronic polarizability of(w) becomes
2
p e
w(w)=c—=—F——+ (15.96)
K Eloc m, (60(2) - wZ)

The static polarizability is obtained by applying a static electric field to the material. Therefore, from Eq. (15.96), the static
polarizability becomes

e

2 — 2 (0) = 15.97

=2 (0)= = (15.97)

The electronic polarizability can also be treated quantum mechanically and the expression is given by

2 f..
a € 4

=— E — 15.98

o () m, & wlzJ — o2 ( )

where fj; is called the oscillator strength of the electric dipole transition between the atomic states i and j. Eq. (15.98) is
derived for atoms and must be modified for dielectric solids. Note that Eq. (15.98) is quite similar to the classical result
given by Eq. (15.96).

Problem 15.2

The Hartree dielectric screening function &(K) for wave vector K is defined as

&(K) =1 -v(K) z£(K) (15.99)

where

47e?
v(K) = VIC (15.100)
and
f(E T) = (B T)
K= ———— (15.101)
XE( ) ; Ek_EI(+K

Here V is the volume of the solid and v(K) is the electron—electron interaction potential in the reciprocal space. Derive the expres-
sions for xe(K) and &(K) at absolute zero in the free-electron approximation.
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Problem 15.3

The bare-ion Coulomb potential in the reciprocal space as seen by an electron is given by

4nZe?
VE(K) = — 2228 (15.102)
V, K
If the screened ion potential is defined as
VP (K)
V(K) = 15.103
(K) oK ( )
where €(K) is the Hartree dielectric function (Problem 5.2). Prove that in the limit K— 0, the screened potential reduces to.
2
limy_oV(K) =S E (15.104)
Problem 15.4
The dielectric function in the Thomas-Fermi approximation is given by
e(K) =1+K} /K2 (15.105)
where K¢ is the Thomas-Fermi wave vector defined as
6 2\ 1/2
KTF:< mn.© ) (15.106)
Er
The bare-ion potential as seen by an electron is given as
4nZe?
Vh(K) = — AmLe (15.107)
VK

Find the expression for the screened potential in the crystal space.

Problem 15.5

Find the expression for the electronic polarizability of an atom.

Problem 15.6

Consider the one-dimensional ionic lattice shown in Fig. 15.11. If the external electric field E, is applied in the positive x-direction,
derive an expression for the ionic polarizability assuming harmonic forces between the ions.
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A number of dielectric materials exist in which the electric polarization depends nonlinearly on the applied electric field
and that exhibit a hysteresis effect. Such materials are called ferroelectric materials and the phenomenon is called ferro-
electricity. Ferroelectric crystal can be divided into a large number of regions, called ferroelectric domains. In each domain
all the electric dipoles are directed in one direction, yielding a finite net electric dipole within it. The spontaneous polar-
ization Py is the polarization in the absence of an electric field. The magnitude of Py is determined by the vector sum of the
electric dipole moments in an individual domain and, therefore, is a cooperative phenomenon. The different domains have
polarizations in different directions. In the absence of an applied electric field all the domains are randomly oriented,
yielding net zero polarization. When an electric field E, is applied, the domains with polarization in the direction of
the field grow, while those with polarization opposite to the direction of the field diminish in size and, ultimately, vanish.
When all the dipoles are oriented in the direction of the applied field, then a single domain exists in the solid and saturation
polarization is obtained. A plot of polarization P as a function of the applied field Ey is shown in Fig. 16.1. From the figure it
is evident that the polarization P always lags behind the applied electric field E, and this phenomenon is called hysteresis.
The figure shows that the polarization does not retrace its path, resulting in a hysteresis loop whose area gives the loss of
electrostatic energy. When the applied electric field is switched off, there exists a finite polarization in the solid, which is
called the remnant polarization P,. To reduce the polarization to zero, one has to apply the electric field to the solid in the
reverse direction; this is called the coercive field E.. The value of Py is obtained by extrapolating the linear part BC of the
hysteresis loop to zero electric field. The spontaneous polarization Py, remnant polarization P,, and coercive field E. are
shown in Fig. 16.1. The material shows ferroelectric properties only at low temperatures and makes a transition from the
ferroelectric state to the paraelectric state at a particular temperature T called the transition temperature. We should remark
here that the spontaneous polarization in a ferroelectric material arises due to electrostrictive strains in the crystal; therefore,
the ferroelectric state has lower symmetry than the paraelectric state.

The dielectric constant ¢ is given by the slope of the curve OA (see Fig. 16.1) at very small fields so that no motion of the
domain boundaries occurs. The dielectric function ¢ is a function of temperature and above T, it satisfies the relation

/

8:m+80 (161)

C'is a constant and 0 is the characteristic temperature, which is usually less than T¢. Near T, the electric susceptibility yg is
given by
C

T—0 (16.2)

AE =
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FIG.16.1 Schematic representation of electric polarization P as a function of applied
electric field E in ferroelectric solids (hysteresis loop).

where
C=—_ (16.3)

Eq. (16.2) is usually called the Curie-Weiss law.

16.1 CLASSIFICATION OF FERROELECTRIC SOLIDS

The ferroelectric solids can be classified broadly into three categories.

16.1.1 Tartrate Group

Rochelle salt is a sodium potassium salt of tartaric acid with the formula NaKC4H4O¢ - 4H,0 and is one of the first materials
in which ferroelectricity was observed. The other ferroelectric materials of this group can be prepared by partially replacing
K by NHy, Rb, or TI. Lithium ammonium tartrate and lithium tantalum tartrate are also members of this group. Rochelle salt
exhibits ferroelectric behavior in the temperature range from —18°C (255 K) to 23°C (296 K), which means it has two
transition temperatures. Rochelle salt exhibits orthorhombic structure (a; #a, #az, o =f=7=90°), but in the ferroelectric
state it has monoclinic structure (a, #a,#as, a= y=90°+£f). The spontaneous polarization occurs along the original
a-direction, i.e., positive and negative directions along the a-axis. There are three components of dielectric constant ¢,
&, and ¢3 along the three lattice vectors a;, a,, and a;. The dielectric constant ¢; exhibits two peaks at the transition
temperatures, while & and ¢; are found to vary smoothly with temperature (Fig. 16.2). The susceptibility function in
Rochelle salt obeys the Curie law in the nonferroelectric state as

I
Xll:‘:T—Tcl forT>T¢, =296K (16.4)

and

G
To, - T

e forT < Tc, =255K (16.5)
where C; =178 K and C, =93.8 K. The spontaneous polarization P4(T) as a function of temperature T is shown in Fig. 16.3
for Rochelle salt and deuterated Rochelle salt. It is noteworthy that the replacement of an H atom by D (deuterium) has a
marked influence on both Py(T) and T, which indicates the important role of H-bonds. But X-ray and neutron studies show
that H and D are not at all involved in the mechanism of ferroelectricity.


image of Image of Fig. 16.1

Ferroelectric Solids Chapter | 16 341

FIG. 16.2 The logarithm of the dielectric constant &, of
Rochelle salt along the three lattice vectors a, (« =1, 2, and 3)
4+ as a function of temperature. (Modified from Halblutzel, J.
285 K 296K (1939). Helv. Phys. Acta. 12, 489.)
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05 FIG. 16.3 The spontaneous polarization P (T) as a function of tem-
perature T. The lower curve corresponds to Rochelle salt, while the
upper curve corresponds to deuterated Rochelle salt. (Modified from
Halblutzel, J. (1939). Helv. Phys. Acta. 12, 489.)
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16.1.2 Dihydrophosphates and Arsenates

In the second type of ferroelectrics, the most important is potassium dihydrophosphate with the formula KH,PO,4, which
exhibits ferroelectric behavior below Te= 123 K. It possesses orthorhombic structure (a; # a, # as, o= f=7=90°) below
Tc but tetragonal structure (a; =a, #asz, = f§ =y =90°) above Tc¢. Py(T) in KH,PO, occurs in the az-direction, the only
polar direction, and its temperature variation is shown in Fig. 16.4. The temperature variation of ¢(T) is shown in Fig. 16.5
and exhibits the same behavior as given by Eq. (16.1) (see Fig. 16.2). In KH,PO,, the phosphate group contains four oxygen
atoms at the corners of a tetrahedron with a phosphorus atom at its center. The phosphate groups are bound together by the
H-bond. It has been observed that if the H-atom is replaced by a D-atom, then T changes from 123 K to 213K, i.e., by 90K.
This again indicates that H-bonds might be playing an important role in ferroelectricity in this class of ferroelectric solids.
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FIG. 16.4 The spontaneous polarization Py(T) as a function of temperature T for 7
KH,POy. (Modified from Von Arx, A. and Bantle, W. (1943). Helv. Phys. Acta. 16,211.)
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FIG. 16.5 The logarithm of the dielectric constant as a function of temper-
ature T for KH,PO, along the a, and a; axes. (Modified from Busch, G. and 7
Scherrer, P. (1935). Naturwiss., 23, 737.)
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16.1.3 Perovskite Structure

The general formula for perovskite structure is ABO3, where A and B represent metallic elements. Many of these materials
are ferroelectric in nature. The salient features of perovskite structure were presented in Chapter 1. The most important
material belonging to this class is barium titanate with the formula BaTiO;. The structure of BaTiOj3, in which the oxygen
atoms form an octahedron, is shown in Fig. 1.33. In the unpolarized state it has cubic symmetry: Ba*? ions occupy the
corners of the cubic unit cell, O~ 2 ions are at the centers of the faces, and a Ti** ion lies at the center of the unit cell.
In this structure O~ jons are highly polarizable, producing finite spontaneous polarization. When an electric field is
applied, the unit cell of BaTiO3 expands along the az-direction and contracts perpendicular to it, thereby producing finite
polarization. The spontaneous polarization is measured along the [001] direction. BaTiO5 has a T of 120°C (393 K) below
which it is ferroelectric with tetragonal structure, but above Tc it is nonferroelectric in nature. As the temperature is
decreased, two structural changes take place: at 278K it acquires orthorhombic structure, while at 193K its structure
changes to a thombohedral one. Figs. 16.6 and 16.7 show the variation of &(T) and Py(T) with T as measured along the
[001] direction and the structural transitions are evident from the graphs.
There are other groups of ferroelectric materials but they are not of much interest here.
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12,000 FIG. 16.6 The dielectric constant ¢, of BaTiO; along the a; and a;
axes as a function of temperature T. (Modified from Merz, W. J.
(1949) Physical Review, 76, 1221.)
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20 FIG. 16.7 The spontaneous polarization Py(T) measured
i along the [001] direction as a function of temperature T
16— for BaTiOs. (Modlified from Merz, W. J. (1949) Physical
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16.2 THEORIES OF FERROELECTRICITY

Two types of theories for ferroelectricity have been put forward:

1. Atomic models, which depend on the crystal structure of the solid.
2. A thermodynamic description, which is independent of the structure of the solid.

16.2.1 Atomic Models
16.2.1.1 Electric Dipole Theory

In the electric dipole theory, the following two assumptions are made:

1. In aferroelectric substance there exists finite spontaneous polarization P(T), which is a function of temperature T. Note
here that we have used P(T) as the symbol for spontaneous polarization instead of Py(T).

2. Within a ferroelectric solid there exists some internal interaction, which tends to align all the electric dipole moments
parallel to each other. This interaction gives rise to a finite temperature-dependent internal electric field E;,(T) and it is
assumed to be linearly proportional to the spontaneous polarization, i.e.,

Ein(T) = 7 P(T) (16.6)
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Here y; is the internal field constant, which is independent of temperature. In this approximation, each electric dipole
moment sees the average polarization of all other dipole moments.
If E, is the applied electric field, the total electric field E experienced by an electric dipole moment in a solid is given by

E=Eo+Ejy=Eo+y,P (16.7)

In a ferroelectric solid there are two competing forces acting on each electric dipole moment: the applied electric field,
which tries to align the dipole moments along its own direction, and the thermal field, which tries to randomize them. Under
the action of these two fields the average dipole moment becomes (Eq. 15.75)

where
1
L(y) = cothy -5 (16.9)
and
pE
= 16.10
Y =it (16.10)

Here L(y) is the Langevin function. If p® is the number of atoms per unit volume, then the average electric polarization is
given by

P(T) =p*pL(y) (16.11)
The saturation polarization Py, is obtained for pE>>kgT, in which case L(y) =1 and, therefore,
Pt =p"p (16.12)
Hence Pg, is obtained either at very low temperatures or at very high electric fields. From Eq. (16.11) one can write
P(T
Q:L(y) (16.13)
Psal
Substituting the value of E from Eq. (16.7) into Eq. (16.10), we obtain
p
=— (Ey+7v.P 16.14
y kBT( 0t 7i ) ( )

From Egs. (16.13) and (16.14) one can write

P(T) ([ p
o L<kBT (Eo +yiP)> (16.15)

The spontaneous polarization is obtained by substituting Eo=0 in the above expression to get

P(T
Q:L(x) (16.16)
Psal
where
_ 7nipP
X=1 T (16.17)

A graph of the spontaneous polarization P/Py,, as a function of x is shown in Fig. 16.8. The expression for P(T) can also be
obtained from Eq. (16.14) and is given by

kg T E
P(T)=——y — =2 (16.18)
ViP i
For spontaneous polarization, we put Eg=0 in Eq. (16.18) (y goes to X in this case) to get
kg T
P(T)=—2"x (16.19)

%P
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From the above expression
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FIG. 16.8 The spontaneous polarization P/Pg,,
is plotted as a function of x where x =7;p P/kg T.
The solid line represents the Langevin function L
(x) as a function of x. The dashed lines show
plots of Eq. (16.20) for different temperatures.

(16.20)

which represents a straight line passing through the origin. The spontaneous polarization is given by the point of inter-
section of the curves represented by Egs. (16.16) and (16.20), as shown in Fig. 16.8. It is evident that the slope of the straight
line, represented by Eq. (16.20), increases with an increase in temperature and, at a particular temperature Tc, the straight
line becomes a tangent at the origin to the curve represented by Eq. (16.16). From the figure it is evident that for T < T the
point of intersection yields a finite spontaneous polarization P(T), while for T >T¢, P(T) is zero. Therefore, the solid
exhibits ferroelectric behavior below T, but is paraelectric in nature above Tc. Hence T¢ represents the transition tem-
perature between the two states of the solid. For T (T, the spontaneous polarization can be evaluated at different temper-
atures by the method of intersection as described above. Fig. 16.9 shows the temperature dependence of the spontaneous

1.5

1.0
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0.0

0.5

T, ——»

FIG. 16.9 Schematic representation of spontaneous polarization P/Pg, as a
function of temperature T/Tc. The value of P/Pg, corresponds to the point of
intersection as explained in Fig. 16.8.
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polarization. It is evident that P(T) increases very quickly near T and approaches the saturation value with a decrease in

temperature.
At very small values of x, L(x) =x/3, therefore, Eq. (16.16) gives
P(T) «x
= 16.21

P 3 ( )

At T=Tc, the slopes of Eqs. (16.20) and (16.21) become the same, giving rise to
p*7ip’
Te= 16.22

T ( )
A simplified expression for the electric polarization and susceptibility can be obtained in the limiting case for which

pE<kgT (16.23)
Eq. (16.23) is equivalent to y< 1 and in this limit

L(y) % (16.24)
The polarization from Eqs. (16.11) and (16.24) is given by

1 pap2 1 pap2
P(T)= = E=- Eo+y;,P 16.25
() SkBT SkBT(O yl) ( )

The above equation yields the electric susceptibility as

P o Tc/’))i N CE

== = 16.26
ETE TT-Te T-Tc (16.26)
where Cg is the Curie constant and is written as
T
Cp = -c (16.27)
Vi
Using the value of T¢ from Eq. (16.22) in the above equation, one gets
a2
pp
Cr = 16.28
T, ( )

Therefore, the electric susceptibility in ferroelectric solids obeys the Curie-Weiss law, as is observed experimentally. There
are some objections to the dipole theory. First, the dipole theory is not able to explain the existence of two transition tem-
peratures. Second, if the dipole theory is correct, then most of the polar materials should exhibit ferroelectric behavior,
which is contrary to fact. Lastly, the dipole theory yields a very high value of saturated polarization Py, about 40 times
the observed value in Rochelle salt, which creates some doubts regarding the dipole theory.

16.2.1.2 Polarization Catastrophe

In nonpolar solids the dielectric constant ¢ arises mainly from the electronic and ionic contributions. Assuming the
Clausius-Mossotti relation to be valid in a nonpolar solid, one can write the expression for ¢ from Eq. (15.65) as

8
1+ ?n pr;‘oc?
= (16.29)

1*4?” Zp?a?

In ferroelectric solids the value of the dielectric constant ¢ is large. For finite spontaneous polarization P, in zero electric
field, & goes to infinity if

47
- pr‘ocf‘:O (16.30)
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The above equation can be written as

3
> plad=— (16.31)
- 47
We know that
P e¢—1
oo 16.32
XE E_ 4n ( )
For ¢ 1, the above equation gives
P="E (16.33)
4n

The above equation says that if ¢ is very large, the polarization P is also very large. The polarization will become infinite
when condition (16.31) is satisfied. So, Eq. (16.31) yields the condition for a polarization catastrophe. Fig. 16.10 shows the
variation of ¢ with polarizability. For large values of ¢ the left hand side of Eq. (15.65) approaches unity, therefore, a small
change in polarizability (47/3) >, p? o leads to a large change in ¢ (Eq. 16.29). Consider a very small departure of mag-
nitude S from unity in the value of (4n/3) >, p®o, which can be written as

4
Ty pla=1-8 (16.34)

where S« 1. Substituting Eq. (16.34) into Eq. (16.29), one gets

3
=22
*=3

which can be written approximately as

(16.35)

| W

FIG. 16.10 The logarithm of the dielectric function &
as a function of polarizability of the solid.
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As S is very small, ¢ is very large. Note that if ¢~ 10 or smaller, then any change in p{ resulting from the thermal expansion
will not greatly affect the value of ¢.

It can be shown that in solids with a large value of ¢, one can obtain the Curie-Weiss behavior. Differentiating
Eq. (15.65) with respect to T, we get

3 de 4= o(adpf‘
(e+2)2dT 3 £=71dT

(16.36)

Dividing Eq. (16.36) by Eq. (15.65) and simplifying, we obtain

3 dg d a,a
mﬁ:ﬁ[‘“ (Zpi “i)] (16.37)

It is not easy to solve the above expression. The solution to Eq. (16.37) becomes simple if all of the atoms in the unit cell are
assumed to be identical, with atomic density p® and atomic polarizability o®. Under this approximation Eq. (16.37)
reduces to

3 de 1 dp?

=) (e+2) dT _pidT -l (16.38)

I'ty is the coefficient of linear expansion of the solid. For ¢>> 1, the above equation reduces to

1 de

—__—~—-_r 16.39
2 4T T™H ( )
Integrating the above equation, we find
1 (de
—|=5=—1dT+0 16.40
'y J &2 J ( )

Here 0 is the constant of integration. The solution of the above equation gives

,_1/Tm

=45 (16.41)

which is the usual form of the Curie-Weiss law.

16.3 THERMODYNAMICS OF FERROELECTRIC SOLIDS

It has been observed that in a ferroelectric solid there is a structural phase transition at T and, therefore, it of interest to
study the behavior of the solid near Tc. It is well known that thermodynamics is most suitable to study the phase transitions
in solids. The phase transition in a ferroelectric solid can be of either first or second order. A first-order phase transition is
characterized by a discontinuous jump in the saturation polarization at T and involves latent heat. In a second-order phase
transition there is a continuous variation in polarization. Further, a second-order transition does not involve latent heat but
exhibits a discontinuous jump in specific heat. Let F, be the free energy in the unpolarized state of the solid when no
external pressure or electric field is applied. The free energy of a ferroelectric solid is a function of polarization and tem-
perature, i.e., F(P,T), and can be expanded in powers of polarization as

F(P, T):F0+1c1P2+1c2P4+1c3P6+--- (16.42)
2 4 6

Here the coefficients C, depend on temperature. In writing the above equation, it is assumed that a center of symmetry

exists in the crystal structure of a ferroelectric solid, which means that the free energy of the crystal should be the same

for positive and negative polarizations along the polar axis. In this approximation, the terms with odd powers of polarization

reduce to zero. In the thermal equilibrium state, the free energy of a ferroelectric solid must be minimum, i.e.,

dF
<@> = 0 (16.43)
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Substituting Eq. (16.42) into Eq. (16.43), one gets
P, (C; +C,P2+C3P!) =0 (16.44)
Here P; is the spontaneous polarization. For Pg#0 the above equation gives
C+CP2+C3Pt =0 (16.45)

One can calculate the susceptibility function from thermodynamic considerations. Let a weak electric field E be applied to
the system. Then the electric susceptibility yg is given by

1 OE
- %0 (16.46)
Ie OP
From thermodynamics one can write a small change in free energy as
dF=— SdT — pdV +E(dP (16.47)

Here S, p, and V are the entropy, pressure, and volume of the system at temperature T. Under zero pressure the above
equation becomes

dF =— SdT +EqdP (16.48)
At constant temperature the applied electric field becomes
oF
Ey=|= 16.49
0 ( 0P> . ( )
From Eqgs. (16.46) and (16.49) one can write
1 [(0°F
—=(= (16.50)
JE oP T

16.3.1 Second-Order Transition in Ferroelectric Solids

From Eq. (16.42), F — F, can be plotted as a function of P for different values (negative, positive, or zero) of the constant C,
the other constants being positive, and the plot is shown in Fig. 16.11A. The spontaneous polarization P; as a function of C;
is shown in Fig. 16.11B. It shows that Py is finite for C; <0 and is zero for C; >0 and, therefore, C; =0 is the value at the
transition temperature Tc. The polarization P varies continuously with temperature, but the slope of P and hence P* has a

F Y
F-F,
C,=0 C>0
!
C,<0
0 P—»
(A) (B) c.— O

FIG. 16.11 (A) Schematic representation of the free energy F —F as a function of the polarization P for various values of C;, negative, positive, and
zero. (B) The spontaneous polarization Py as a function of the parameter C; for a second-order transition.


Image of Fig. 16.11

350 Solid State Physics

discontinuity at T¢. Therefore, there should be a discontinuity in the specific heat at T resulting in a second-order tran-
sition. If, for simplicity, the term with C; is assumed to be negligible, then from Eq. (16.42) one can write

1 1
F=Fy+-CP*+-C,P* (16.51)
2 4
Therefore, spontaneous polarization satisfies the equation
C+CP2=0 (16.52)
which gives
G
Pl=—— 16.53
F=-3, (16:53)

According to the above equation P? is positive only if C; is negative. Note that Py is a continuous function of T; therefore, it
corresponds to a second-order transition and exhibits a discontinuous jump in specific heat. One can calculate yg above and
below Tc. Above T the polarization is small, so retaining the first two terms in Eq. (16.51) of free energy allows us to write

1
F—FO:ECIPz (16.54)
From Egs. (16.50) and (16.54) one obtains
1 T-T
—=C,= € (16.55)
XE Ce

Here we have used the fact that yg above T exhibits the Curie behavior given by Eq. (16.26). From the above equation the
constant C; is given in terms of the Curie constant Cg as
T—Tc
Cg

C = (16.56)

In the ferroelectric phase below T the polarization is appreciable, so retaining the first two terms of Eq. (16.42) allows us to
write the free energy as

1 1
F:F0+§C1P2+ZC2P4 (16.57)
From Egs. (16.50) and (16.57) the electric susceptibility becomes
1
—=C+3C,P? (16.58)
XE
For a weak applied electric field, P=P;, therefore, from the above equation
1
—=C; +3C,P? (16.59)
XE
Using Eq. (16.53) in the above equation, one gets
1
—=-2C (16.60)
/E

Assuming that the temperature variation of C; is the same as that given by Eq. (16.56), one can obtain yg in the ferroelectric
state from Eq. (16.60) as
1 2(Tc—-T

1 _2(Tc-T) (16.61)

JE Ce
The temperature dependence of 1/yr above and below T, given by Egs. (16.55) and (16.61), is shown in Fig. 16.12. It is
evident that the slope in the ferroelectric region is twice that in the paraelectric region. One can also calculate entropy S in a
second-order phase transition. From Eq. (16.48), the entropy at constant pressure is given by

OF
S__<6T)P (16.62)
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FIG. 16.12 Plot of the reciprocal of susceptibility 1/yg as a function of temperature
near the critical temperature T for a second-order transition. The spontaneous polar-
ization Py is shown by the dashed line.

Substituting Eq. (16.42) into Eq. (16.62), one obtains, to a first-order approximation, the change in entropy as

1 9C
S*S‘):*Ea_TIPZ (16.63)

Here Sy is the entropy in the unpolarized state. The polarization P varies continuously with temperature, but the slope of P
and hence P? has a discontinuity at T¢. Therefore, there should be a discontinuity in the specific heat at T and the transition
should be of second order.

16.3.2 First-Order Transition in Ferroelectric Solids

Consider the case when C, is negative but C; is positive. In this approximation, the free energy is plotted as a function of P
for different values of C; ranging from negative to positive values in Fig. 16.13A. In this case, the free energy becomes
minimum for finite values of the spontaneous polarization P,. This corresponds to a transition from the unpolarized to the
polarized state. Fig. 16.13B shows a plot of P as a function of temperature T and there is a discontinuity (jump) in the value
of Py at Tc. So, according to Eq. (16.63), there is a discontinuity in the entropy S and, therefore, latent heat is involved in the
transition; thus, this is a first-order transition. In a first-order transition at T,

F(Tc) =Fo(Tc) (16.64)
Substituting Eq. (16.42) into Eq. (16.64), one can write
1 5 1 4
C] +§C2PS(T(:)+§C3PS(T(:):O (1665)

At T=Tc, Eq. (16.45) gives
Ci+ CoP(Tc) +C3PH(Tc) =0 (16.66)
Subtracting Eq. (16.65) from Eq. (16.66), we get

1 2
P2(Tc¢) 5cz+§c31>§(TC) =0 (16.67)
For nonzero spontaneous polarization, Eq. (16.67) gives

1 2
Ecz+§c313§(TC)=o (16.68)
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P—

T—b T:‘.
(A) (B)
FIG. 16.13 (A) Schematic representation of the free energy F —F as a function of polarization P for positive and negative values of C; for a first-order
transition. (B) The spontaneous polarization Py as a function of temperature T for a first-order transition.

From this equation P2(T¢) is given by
P} (Te)=—-> = (16.69)

Multiplying Eq. (16.65) by 2 and subtracting from Eq. (16.66), we get

PH(Te) =t (16.70)
(6

Substituting Egs. (16.69) and (16.70) into Eq. (16.66), one can write

_3G

C, =
T XN

(16.71)
For T > T¢, the polarization is very small and the free energy is given by Eq. (16.54). From Eqgs. (16.50) and (16.54) one
obtains

1 T—-Tc

—:C =
I1E : Ce

(16.72)

which is the same equation as Eq. (16.55) in the second-order phase transition. For T < T, the polarization is appreciable
and so all the terms should be retained. From Egs. (16.42) and (16.50) one can write

1
—=C,+3C,P?+5C;P* (16.73)
XE

For a weak electric field P=P;, therefore, the susceptibility becomes

1
—=C;+3C,P?+5C;P! (16.74)

XE
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FIG.16.14 Plot of the reciprocal of susceptibility 1/yg as a function of temperature T
around the critical temperature T for a first-order transition. The spontaneous polari-
zation Py is shown by the dashed line.

e

P, ™ 1xe

Substituting Egs. (16.69), (16.70), and (16.71) into Eq. (16.74), one obtains

1 Te—T
—=4C, =4
XE Ce

(16.75)

The variation of 1/yg as a function of T is shown in Fig. 16.14. From Eqgs. (16.72) and (16.75) it is evident that the slope of 1/
«e in a ferroelectric state is four times the slope in a paraelectric state in a first-order phase transition. Further, the slope of 1/
e in a ferroelectric crystal with a first-order phase transition is twice the slope in a ferroelectric crystal with a second-order
transition.

A thermodynamic study has some advantages over other approaches used in ferroelectric materials. First, it is inde-
pendent of the structure of the ferroelectric solid. Second, it is independent of any atomic model. Therefore, a thermody-
namic study gives general results in ferroelectric solids. The deficiency of the thermodynamic theory is that it does not
provide any physical insight into the mechanism responsible for the existence of a ferroelectric state in a solid.

16.4 FERROELECTRIC DOMAINS

As the ferroelectric material is cooled to below T, some regions appear that are polarized along a particular direction, while
others are polarized exactly in the opposite direction. In other words, the ferroelectric crystal gets divided into regions that
are polarized in only two directions, which are along the same line but opposite in direction. Such regions are called
domains and the boundaries between these regions are called domain walls. Further, the direction of polarization of
domains is different in different materials. In contrast to ferroelectric materials, the domains in a ferromagnetic material
have magnetization in all possible directions (see Chapter 19) and, with a decrease in temperature, there is growth in
domains that possess magnetization along the direction of the magnetic field.

Rochelle salt has an orthorhombic structure and some domains are polarized along the positive a; direction, while others
are polarized along the negative a, direction with net polarization along the a; axis. If an electric field E is applied along
the positive a, direction, then the number and size of the domains with polarization along the positive a, direction increase
until saturation polarization is achieved. If the electric field Eq is switched off and then applied in the reverse direction, then
hysteresis is produced, which is evident from the variation of P with Ej in Fig. 16.1. The hysteresis gives rise to a dielectric
loss, which is proportional to the area of the hysteresis loop. The ferroelectric material KH,PO, possesses tetragonal
structure and the domains are polarized either along the positive or negative ajz direction, yielding a net polarization along
the a5 direction. The material BaTiO5 possesses cubic structure and spontaneous polarization may occur along any of the
three Cartesian directions (three edges of the unit cell), leading to six possible directions for spontaneous polarization.
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Luster and color, which have been known to mankind from ancient times, are the most important properties of solids, par-
ticularly metals. Because of these properties, metals have been used in jewelry and mirrors for ages. The entire electro-
magnetic spectrum ranges from radio waves to microwaves, infrared, visible, ultraviolet, and X-rays up to y-rays (see
Fig. 17.1) with wavelengths ranging from zero to infinity. The optical region forms a very small part of the electromagnetic
spectrum, with wavelengths ranging from about 4000 to 7000 A’ The measurable optical properties are the refractive index,
reflectance, and transmittance, among others, and they will be dealt with in this chapter both classically and quantum
mechanically. Today, optical methods are among the most important tools for studying the electronic structure of solids
through their interaction with light. Recently, a number of optical devices, such as lasers, photodetectors, optical fibers,
waveguides, light-emitting diodes, and flat-panel displays, have gained considerable technological importance. They are
used in communication, medical diagnostics, night viewing, solar applications, optical computing, and for other optoelec-
tronic purposes. Some other traditional uses of optical materials include manufacturing windows, antireflection coatings,
lenses, and mirrors.

17.1 PLANE WAVES IN A NONCONDUCTING MEDIUM

The macroscopic Maxwell equations for a nonconducting medium, in the absence of free charges, with magnetic perme-
ability u and electric permittivity ¢ are given by

V-D=0 (17.1)
1 oD
VxH=-— 17.2
e 17.2)
V-B=0 (17.3)
10B
VXE+-—=0 (17.4)
c ot
where
D=:E (17.5)
and
B=uH (17.6)
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FIG. 17.1 Electromagnetic wave spectrum from gamma rays to radio waves: /4 represents the wavelength of the waves. Magnified view of the visible
spectrum is shown separately.

For constant values of ¢ and u, Egs. (17.1)—(17.4) reduce to

V-E=0 17.7)
1 0B
VXE+-—=0 (17.8)
c ot
V-B=0 17.9)
oE
vxB=t (17.10)
c odt
Taking the curl of Eq. (17.8) and using Eq. (17.10), one gets
1 °°E
2
———=0 17.11
vZ o2 ( )
where
e n
with
n=./ue (17.13)
Here v is the velocity of electromagnetic waves in the medium and n is its refractive index. Similarly, one can obtain
1 B
2
B-———=0 17.14
v vZ o ( )

The solutions of Eqs. (17.11) and (17.14) are plane waves defined by
E(r,t) = EEje' KTV (17.15)
B(r,t) =BBye! (K TV (17.16)

where E and B are unit vectors and define the polarization of the electric and magnetic fields. The physical electric and
magnetic fields are obtained by taking the real parts of the complex fields. The wave vector K gives the direction of prop-
agation of the electromagnetic wave. The orientation of E, B, and K can be obtained from Eqs. (17.7)—(17.10), (17.15), and
(17.16). Substituting Egs. (17.15) and (17.16) into Egs. (17.7) and (17.9), one gets

K-E=K-B=0 (17.17)
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It is evident from Eq. (17.17) that K is perpendicular to both E and B but it does not give any information about the ori-
entation of E and B. Substituting Eqgs. (17.15) and (17.16) into Eq. (17.8), one gets

w

KxEE =B B 17.18
0 =By b ( )
We know that
K| =2 (17.19)
v
Using Eq. (17.19) one can write Eq. (17.18) as
S . B,
KxEEy=B — (17.20)
HE

Here K is a unit vector in the direction of the propagation wave vector K. The above equation is valid if both the direction
and magnitude are the same on both sides, i.e.,

KxE=B (17.21)
and

By = /i Eg (17.22)

Eq. (17.21) shows that B is perpendicular to both K and E. Hence E,B, and K form an orthogonal triad and the
electromagnetic plane wave is a transverse wave. Eq. (17.22) gives the relation between the electric and magnetic field
amplitudes.

17.2 REFLECTION AND REFRACTION AT A PLANE INTERFACE
Reflection and refraction at a plane surface are familiar phenomena and each has two aspects:

1. Kinematic properties
These constitute the laws of reflection and refraction.
2. Dynamic properties
Dynamic properties provide information about the intensities of the reflected and refracted waves. They also give
the phase changes and polarizations after reflection and refraction.

17.2.1 Kinematic Properties

Let the media below and above the z=0 plane have permeability and permittivity p, ¢ and 1/, ¢ (Fig. 17.2), respectively.
A plane wave with wave vector K and frequency o is incident from the medium g, . The reflected and refracted rays have
wave vectors K and K/, respectively. Let i be a unit vector normal to the z=0 plane and directed from the medium g, ¢ to
the medium ¢/, ¢'. The incident, reflected, and refracted waves are now represented as follows:

Incident wave:

E—Eye K00 (17.23)
B:\/EEK;E (17.24)

Refracted wave:
E —E)c!(K +ov (17.25)
| T Kl;, E (17.26)

Reflected wave:

E'=E|¢ (K" r-ov (17.27)
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FIG.17.2 Incident plane electromagnetic wave with wave vector K strikes a
plane interface between two different media. The incident plane wave gives
rise to a reflected wave with wave vector K~ and a refracted wave with wave
vector K'. Here 1 is a unit vector perpendicular to the interface (z=0 plane) Medium 2
separating the two media and is directed from medium 1 to medium 2. The
angles of incidence and refraction are represented by i and r. 0, ¢, and 0
are the angles made by the incident, refracted, and reflected rays with the
interface.

n'.e R
H.E TX
Medium 1
Kl/ X E//
B//:VMST (1728)
The wave vector of the reflected wave has the same magnitude as that of the incident wave and can be defined as
o o w
K=—=— =— 17.29
L= o Vke=_n (17.29)
But the wave vector K’ has the magnitude
K = |K|=2 /e =2n (17.30)
c c

Here n and n’ are the refractive indices of the two media defined by

n = /uen =/ue (17.31)

To prove the kinematic properties the boundary conditions at the interface must be satisfied at all points and for all times,
which implies that the spatial and time variation of all the fields must be the same at the z=0 plane. It also implies that the
phase factors at z=0 must be the same for all the waves, i.e.,

1(Kr—ot), j=1(K'-r-ot),_, =1(K' - r—owt),_, (17.32)
or
(K1), o=(K"1),_=(K"1),, (17.33)

Let us first consider refraction, for which

This can be written as
Kr cos§=K'r cost/

From Fig. 17.2, the above equation can be written as

K cos (90 —i) =K' cos (90 —r)
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which gives

sint K 1 Jue
Eq. (17.34) is nothing but the Snell’s law of refraction. In the case of reflection, the boundary condition from Eq. (17.33) can
be written as

sini _K'_ 2 _vwe_ o (17.34)
n

(Kor),o=(K"1), (17.35)
From Fig. 17.2 the above equation can be written as
K cos 0 =K cos 0"
or
i=r (17.36)

i.e., the angle of incidence is equal to the angle of reflection (law of reflection). Further, K, K’, and K’ all lie in the same
plane and, therefore, the incident, reflected, and refracted rays all lie in the same plane.

17.2.2 Dynamic Properties

The dynamic properties can be studied by considering the boundary conditions satisfied by the fields. The first two
boundary conditions are that the normal components of D and B should be continuous at the interface, i.e.,

(D-h), =(D-A), (17.37)
(B-n); =(B-n), (17.38)

=>

The subscripts 1 and 2 denote the two media represented by p, ¢ and ¢/, ¢'. The other two boundary conditions are that the
tangential components of E and H should be continuous at the interface, i.e.,

(Ex ), = (E x ), (17.39)
(H x h), = (Hx i), (17.40)

In medium 1 the electric field is E+E (of the incident and reflected waves) and in the medium 2 it is E’. The case with
magnetic fields is similar, so Egs. (17.37) and (17.38), in terms of E and B, can be written as

¢(E+E") - n=¢E -n (17.41)
(B+B”)-n=B"-n (17.42)
Substituting the values of the E and B fields from Egs. (17.23) to (17.28) and simplifying, one gets
[¢(Eo +Ef) —¢'Eg] -n=0 (17.43)
[KxEg+K"xEj—K xE(] n=0 (17.44)

Now the boundary condition represented by Eqs. (17.39) and (17.40) can be simplified in the same way as Eqs. (17.37) and
(17.38) and one can write

(Eo+Ej —Ej) xii=0 (17.45)
1
U

The boundary conditions represented by Eqs. (17.43)—(17.46) can be applied in two different situations for plane polarized
electromagnetic waves:

1 X
(KxEg+K" xEj) —— K xEj| xii=0 (17.46)
u

1. When the electric field vector E is perpendicular to the plane of incidence.
2. When the electric field vector E is parallel to the plane of incidence.
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17.2.2.1 Electric Field Perpendicular to Plane of Incidence

Fig. 17.3 shows an electric field perpendicular to the plane of incidence and directed away from the viewer. The directions
of the B fields are chosen to give a positive flow of energy in the direction of propagation, i.e., in the direction of the wave
vectors. As the electric field vectors are parallel to the interface, the boundary condition (17.43) becomes redundant (normal
components of E fields are zero). One can easily show that the boundary conditions (17.44) and (17.45) are equivalent
and yield

Eo+E; —E;=0 (17.47)

The boundary condition (17.46) can be simplified to finally obtain

/
\/E(EO—ES) cosi— \/E/E() cosr=0 (17.48)
2 ju

In obtaining Eq. (17.48), the angles in the clockwise direction are taken to be positive, while those in the counterclockwise
direction are negative. From Egs. (17.47) and (17.48) one can solve for Ey in terms of E, to get

E; 2 cos i _ 2 cosli (17.49)

E__ N . n
0 X cos1+ﬁ—cosr
COSi+— 4 /——cosr W on
u ue

For normal incidence (i=r =0) the above equation becomes

E{ 2
1+ - =
W n
For two media with the same permeability (u=u’) one can write
/ /
n &
—=/= (17.51)
n &
FIG. 17.3 Reflection and refraction of a plane electromagnetic wave with Z

polarization perpendicular the plane of incidence. The rest of the description
of the figure is the same as that of Fig. 17.2.
Medium 2

roar

ue
}'J'Jg

Medium 1
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From Egs. (17.50) and (17.51) one gets

E/ 2 2
E,_2n 2V (17.52)
Eo n+n  e+e
If u=y' =1, then
n=+%and n' =% (17.53)

Now the amplitude of the electric field vector of the incident wave must be equal to the sum of the amplitudes of the field
vectors of the reflected and refracted waves, i.e.,

EO:E6+Eg (17.54)
From Egs. (17.52) and (17.54) one can write
Ej n'—n
—0 _ 17.55
Ey n'+n ( )

Reflectivity R is defined as the ratio of the intensity of the reflected light I to the intensity of the incident light I and from

Eq. (17.55) is given by
2
Ik [EG ’
Io |Eof

n —n

17.56
n’ +n ( )

If medium 1, in which the incident and reflected waves are traveling, is vacuum, then n =1 and so Eq. (17.56) reduces to

n—11]?

n+1

(17.57)

Similarly, the ratio of the intensity of transmitted light I to the intensity of incident light I is defined as transmissivity or
transmittance T and is given by

I B[ 4w

I |EQ|2 B (n’+n)2

(17.58)

For n =1 (vacuum) one can write

4

T:@+U2

(17.59)

Both R and T are dimensionless quantities and are measured in percent.

Problem 17.1

Consider a plane wave incident at the interface of two media having the same permeability and represented by y, ¢ and g, ¢'. If the
electric field is parallel to the plane of incidence (see Fig. 17.4) prove that

56 _ 2'cosi sin.r (17.60)
Eo  sin(i+r) cos(i—r)

" H

E;  tan(i—r) (17.61)

E;  tan(i +r)

Further, prove that the values of R and T for normal incidence are given by Eqgs. (17.57) and (17.59).
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FIG. 17.4 Reflection and refraction of a plane electromagnetic wave with I3
electric polarization parallel to the plane of incidence. The rest of the
description of the figure is the same as that of Fig. 17.2.

Medium 2

Iy

TR

Medium 1

17.3 ELECTROMAGNETIC WAVES IN A CONDUCTING MEDIUM

Consider a transverse plane electromagnetic wave traveling in a medium with finite conductivity . The current density J is

defined by
J=0E

The Maxwell equations for a conducting medium in the absence of free charges are given by

V-D=0

1 0B
VXxE+-—=0

c ot

V-B=0
10D 4n
VxH=-—+—

X o ¢ J
Substituting the values of D and B from Egs. (17.5) and (17.6), we write the Maxwell equations as

V-E=0
vxE+LH g

c ot

V-H=0

oE 4

vxH-SZ g
c ot c

Taking the curl of Eq. (17.68) and using Eq. (17.70), we get

>
e P dmop 08
VE c? o2 c? at_o

(17.62)

(17.63)
(17.64)
(17.65)

(17.66)

(17.67)

(17.68)

(17.69)

(17.70)

(17.71)
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X FIG.17.5 A snapshot of a plane electromagnetic (em) wave E,(z, t) traveling
in the z-direction. The electric field of the wave is in the x-direction with
amplitude E,.

E.(z.t)

¥;

Similarly, we can obtain

‘H 4 H
v HedH _droudH (17.72)

The plane wave solutions of the E and H fields for Eqs. (17.71) and (17.72) are defined as
E(r,t)=Epexp[i (K- r—wt)] (17.73)
H(r,t)=Hpexp[1(K-r—wt)] (17.74)

Consider an electromagnetic wave traveling in the z-direction with its electric field vector in the x-direction (see Fig. 17.5).
Such a wave is represented as

Ex(z,t) =Eg exp[1(Kz — ot)] = Ej exp {lw (%Z —t)} (17.75)

Here we have used the symbol n. for the complex refractive index. Eq. (17.29) has been used in writing the above equation.
Then, Eq. (17.71) becomes

OE, ue OBy 4mop 0,

— — 0 17.76
072 ¢ o2 ¢z ot ( )
Substituting Eq. (17.75) into Eq. (17.76), we obtain
4
n2=pet1—t (17.77)
The complex refractive index can, in general, be written as
n.=n;+1ny (17.78)

n; and n, are the real and imaginary components of n.. The imaginary part of the refractive index n; is usually called the
damping factor and gives the absorption of electromagnetic waves. The square of n., from Eq. (17.78), becomes

n? =n?—n3+2inn, (17.79)
Comparing Egs. (17.77) and (17.79), we find
n? —n3=pe (17.80)
and
4
2n;n, = —22H (17.81)

A system of particular interest is one with =1, for which Eq. (17.77) becomes
20
v

4
n2:8+1%:8+1 (17.82)
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Here v is the frequency. In this case n? can be written as
n§=80281+182 (17.83)

Here ¢; and ¢, are the real and imaginary parts of the complex dielectric function ¢. and are given, from Egs. (17.79),
(17.82), and (17.83), as

e =&=n’—n3 (17.84)

and
Ang 2
g=2nny =227 (17.85)
w v

For an insulator ¢ =0, so from Eq. (17.85) one can write

e (ny) =0 (17.86)
assuming finite refractive index n;. Now from Eq. (17.84)

=g = (17.87)

which is the expected result from the Maxwell equations. In defining Eqgs. (17.84) and (17.87) we have written n; =n, the
real part of the refractive index.

Let us investigate the effect of a complex refractive index on an electromagnetic wave. Substituting n. from Eq. (17.78)
into Eq. (17.75), one writes

Ey(z,t) = Ed exp [lw(gz—t)} (17.88)

where

wny

Ej=Ege ¢ * (17.89)

Eq. (17.88) represents a damped wave in which the amplitude E§ decreases exponentially with increasing z (see Fig. 17.6).
The decrease in amplitude is determined by both n, and w. For fixed w, the damping is greater for greater values of n, and
that is why n, is usually called the damping constant. Therefore, high-frequency electromagnetic waves conduct only near
the outer surface of the wire (normal skin effect).

FIG.17.6 The exponential decrease in amplitude E§ of a plane electromag- 3
netic (em) wave traveling in the z-direction in a metal.

z




Optical Properties of Solids Chapter | 17 365

It is difficult to measure the amplitude of the electric field, but easier to measure its intensity, which is the square of the
modulus of the field amplitude. The intensity I corresponding to the damped electric field, from Eqs. (17.88) and (17.89), is
given by

2mny

=Bl =Tpe "¢ (17.90)

where
Io=|Eo|® (17.91)

It is customary to define the characteristic penetration depth Z, as the distance at which the intensity of the electric field
reduces to e ! times the original value, i.e.,

I
d_e! (17.92)
Ip
From Egs. (17.90) and (17.92) one can write
c c A
P 2wn, 4mvny, 4mny ( )
Further, the absorbance or attenuation a, is defined as the reciprocal of Zj, i.e.,
1 47nn,
= = 17.94
% zZ, A (17.94)
Substituting the value of n, from Eq. (17.85), one can write (for u=1)
4
oy = (17.95)
nc
Substituting the value of n, in terms of ¢,, from Eq. (17.85) one gets
2
oy =2 (17.96)
An
Hence one can write
_47tn2:47w_2n82:2wn2 (17.97)

L) nc  An c

17.4 REFLECTIVITY FROM METALLIC SOLIDS

In a metallic solid the refractive index n. is a complex quantity. Thus, by replacing n by n. in Eq. (17.57) and substituting
Eq. (17.78) into it, one can write

2
n+i1ny—1
= 17.98
n+inp +1 ( )
The above equation can be written as
—1)%*+n2
(=) +m (17.99)

2
(n+1)"+n3

Eq. (17.99) is called the Beer equation. If n. is imaginary, then its real part goes to zero, i.e., n=0. In this case R =1, which
means the reflectivity is 100%. But if n. is real and positive (n, =0), then Eq. (17.98) reduces to

n—1\2
R= —] (17.100)

which is same as Eq. (17.57). In this case the material is essentially transparent to these wavelengths (for perpendicular
incidence) and behaves optically like an insulator.
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Problem 17.2

For a medium with unit permeability (u =1), prove the following relations

n?+n3 =4/ +&3 (17.101)
{\/q +b2+&]:| (17.102)
n3 = |:\/81 +82781:| (17.103)
2n= 2(1/8%+8%+81> (17.104)
Problem 17.3
Using Eq. (17.99), prove that for a medium with unit permeability (1 =1),
1/2
1+4/e?+e— (2 (\/a%+s§+e1)>

R= (17.105)

1/2
1+\/£12+8§+(2(\/812+8§+81))

17.5 REFLECTIVITY AND CONDUCTIVITY

In a metallic solid it is interesting to examine the relationship between reflectivity and conductivity. Substituting the value

of ¢, from Eq. (17.85) into Egs. (17.102) and (17.103), one can write

[ 2
) 20
eT+ | — + &1
1 v

1
2—_
=3

1 20\*
H%ZE s%+<70> —&

For low frequencies, i.e., v< 101357 (in the infrared region) for a metal with o~ 10" 7!

) (20)2 (20)2
g+(—) ==
y y
1017 2 g
~ <1013> ~ 10

Hence, from Egs. (17.106) and (17.107), it is easy to write

2_2_0
n"=m=-
The reflectivity from Eq. (17.99) is given by
R —1 4n
~ 2n%+2n+1

(17.106)

(17.107)

and &; ~ 10, one can write

(17.108)

(17.109)

Here we have used Eq. (17.108). For metallic solids with n> 1, one can neglect the factor 2n+ 1 in comparison with 2n” to

yield
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2
R=1-= (17.110)
n

Substituting the value of n from Eq. (17.108), one gets

R—1—2\/E (17.111)
o

For small frequencies (say in the infrared region), ¢ can be replaced by the dc conductivity g, to write

R=1-2./" (17.112)

0o
Eq. (17.112) is usually called the Hagen-Rubens equation as this relation was found empirically by Hagen and Rubens
from experimental measurements of reflectivity in the infrared region (1 > 30nm). However. Drude derived Eq. (17.112) the-
oretically. Further, Eq. (17.112) shows that good metals (with large o) act as very good reflectors in the infrared regionas R ~ 1.

17.6 KRAMERS-KRONIG RELATIONS

In this and the previous chapters it has been found that, in the linear approximation, the response functions, such as reflec-
tance, absorption, and electrical susceptibility, are functions of variable w. A general linear response function N(w) can be
written as

N(w) =N (w)+ 1Ny (w) (17.113)

where N () and N,(w) are the real and imaginary parts of N(w). To obtain N;(w) and N,(w) one can apply complex variable
calculus. The response function may have one or more resonances (poles) and its total value is the sum of the contributions
arising from the various resonances. One of the most important methods to sum the contributions arising from all the reso-
nances is Cauchy’s integral theorem in which we calculate the integral in the upper half of the complex plane. The contour in
the upper half of the complex plane consists of four parts as shown in Fig. 17.7. Cauchy’s integral can be written as

1

do (17.114)

g —38
2
8\

Here P stands for the principal part of the integral. In order to apply Cauchy’s integral theorem, the response function must
satisfy the following conditions:

1. The poles of N(w) lie in the upper half of the complex plane.

2. The integral of N(w)/w vanishes when calculated around the infinite semicircular contour in the upper half on the
complex plane. In this approximation the integral over part 4 of the contour will go to zero.

3. Function N;(w) must be even, but N,(w) must be odd with respect to the variable w.

JJmaginary FIG. 17.7 The semicircular contour in the upper
axis

half of the complex plane.

—* Real axis
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Separating the real and imaginary parts in Eq. (17.114), one can write

do’ (17.115)

do’ (17.116)

The integral over parts 1, 2, and 3 of the contour, by definition, forms the principal part of the integral. Eq. (17.115) can
further be split into two integrals as follows:

0 0 [+

1 N, (o' 1 N, (o' 2 "N, ('
Nl(w):fPJ 2 4o+ Lp J 2@) 4o =2 p szz(u))da)’ (17.117)

i o —w i o' —w b w'* — w?

0 —0

Similarly, from Eq. (17.116) one can obtain
20 [ Ni(o) .,
0

Eqgs. (17.117) and (17.118) are known as the Kramers-Kronig relations. It is clear from Eqs. (17.117) and (17.118) that these
relations allow us to find the real part of the response function if its imaginary part is known over all the frequencies and vice
versa. As an example, take the case of a complex dielectric function of a material written as

g(w)=¢(0)+16(w) (17.119)

The imaginary part of the dielectric function ¢,(w) gives the absorption spectrum, while the real part ¢;(w) gives the
refractive index n(w) of the material. Therefore, if n(w) is known over the whole of the frequency range, one can calculate
the absorption spectrum without any additional information and vice versa. This shows that refraction and absorption are
not independent properties of a material but originate from the same physical effect. But in practice, the refractive index and
the absorption spectrum are measured experimentally over a certain finite frequency range. Therefore, the value of the
refractive index or the absorption spectrum evaluated using the Kramers-Kronig relations may involve some error. We
want to remark here that reflectivity also depends on the refractive index. Therefore, the reflectivity and absorption spectra
are also not independent, but rather can be calculated from each other. Note that if the absorption is strong, the transmission
through a thick slab may be too weak to measure, but the reflectivity can still be measured.

Other important quantity is the wave vector and the frequency-dependent susceptibility y(q, ), which can be written as

2(q, ) =7,(q, ) +17,(q, ©) (17.120)

The imaginary part of susceptibility y,(q,®) gives the absorption spectrum of the solid. Therefore,the static susceptibility
71(q,0) may be obtained by integrating the absorption spectrum. This is, in fact, an experimental technique used to obtain
the static susceptibility of certain materials.

17.7 OPTICAL MODELS

It has become evident by now that the optical properties of solids are determined by the refractive index n.(w), which in turn
depends on the dielectric function ¢(w). In Chapter 15, we have seen that ¢(w) depends on three polarization processes: the
electronic, ionic, and dipolar polarizations. In different materials different polarizations play a significant role in different
frequency ranges. For example, in the optical frequency range, &(w) arises almost entirely from the electronic polarization.
Fig. 17.8 shows a schematic representation of the real and imaginary parts of &(w). There is a sharp decrease in ¢;(w) when any
one of the polarization contributions ceases to exist. This gives rise to the energy loss indicated by the absorption peak in &;(w)
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FIG. 17.8 The real part ¢;(w) and imaginary part &(w) of the dielectric function in a solid as a function of frequency w.

in that frequency range. The first absorption peak occurs in the ultrahigh-frequency to microwave-frequency range, the
second peak occurs near the infrared region, and the third sharp peak occurs in the ultraviolet region near the visible frequency
range. From a comparison of Figs. 15.12 and 17.8 it is evident that the behavior of &;(®) is similar to that of the polarizability
o*(w). The optical properties, such as reflectivity, transmission, and absorption, can be evaluated using different models
depending on the nature of the solid. In this text, we describe simple models for metals, insulators, and ionic solids.

17.7.1 Drude Model

Drude gave a simple model for the dielectric function and optical conductivity of an electron gas. Let n, be the electron
density of the electron gas. In the absence of any collisions, the electrons are free to move (free-electron gas). The equation
of motion of a free electron moving in the x-direction is given by

me%:—eE (17.121)
Let both the position x and electric field E have the same time dependence defined as

X =Xpe ' (17.122)

E=Epe " (17.123)

Substituting Egs. (17.122) and (17.123) into Eq. (17.121), one gets

eE

x=— (17.124)
me
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Now consider the situation in which the electrons are colliding with one another. If v and 7. are the mean velocity and
relaxation time of the electron, then the distance traveled between two consecutive collisions is given by x=vz.. The
current density J due to the moving electrons is given by

X nee?

J=—-n.ev=—-ne—=— 5 (17.125)
Te Me W% T
Because ] = oE, the optical conductivity is given by
2
o= “eez (17.126)
me w? 7

Eq. (17.126) is known as the Drude formula for the optical conductivity. The polarization of the electron gas is given by
P=ygE=-n.ex (17.127)
Substituting the value of x from Eq. (17.124) into Eq. (17.127), we get

nee?

P(w)= E= — E 17.128
(@)= 1s(@)E= - (17.128)
From the above equation the susceptibility yg(w) is given as
2
nee
-_ 17.129
XE(CO) me 2 ( )

Therefore, the real part of the dielectric function ¢(w)=1+47 yg(w) is given as
gw)y=1-— (17.130)

where the plasma frequency ), is defined as

4 . 2 1/2
wp = ( e ) (17.131)

The dielectric function due to Drude, given by Eq. (17.130), is shown in Fig. 17.9. The refractive index n(w) for a material
with u=1 is given by

FIG.17.9 The dielectric function &(w) as a function of frequency o for a free-electron gas
in the Drude model. The crossover from negative to positive values occurs at the plasma
frequency wp.

glw)—
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w2 1/2
n(w):\/Ez( ——P) (17.132)

The behavior of the propagation vector can be studied in a free-electron gas. The equation of motion for the wave is given by
Eq. (17.11), which can be written for a nonmagnetic system (¢ = 1) as

2
2 ¢ 0°E
E—-——=0 17.133
v c2 ot ( )
We are looking for plane wave solutions of the type
E=Eqe' &) (17.134)

Substituting Eq. (17.134) into Eq. (17.133), one gets the dispersion relation

o’ e(w) = K*c? (17.135)
Substituting the value of &¢(w) from Eq. (17.130) into Eq. (17.135), the dispersion for &(w) becomes

o —of =K*c? (17.136)

The dispersion relation defined by Eq. (17.136) is shown in Fig. 17.10 and it describes the transverse electromagnetic waves
in a plasma.

The physical meaning of n(w) given by Eq. (17.132) is as follows. From Eq. (17.132) it is evident that the behavior of a
metal depends on the frequency of the applied field. If w2> w3, the propagation vector is real and the refractive index is real
and positive but less than unity. In this case the reflectivity is given by Eq. (17.100) and the metal, therefore, is
transparent to normally incident light, but there exists a critical angle of incidence above which total reflection takes place
at the surface of the metal. This happen at large frequencies or short wavelengths. On the other hand, if »? < w§ (large wave-
lengths), both the propagation vector and refractive index become imaginary so the value of reflectivity R becomes unity and
total reflection takes place at all angles of incidence. The reflectivity R as a function of wavelength A/Ap is shown in
Fig. 17.11A. The plasma wavelength /p acts as a dividing line between propagation though the medium and total reflection
at the surface of the medium (see Fig. 17.11B). At wp the medium becomes transparent to light of wavelength 1p =2 c/wp.
For example, in alkali metals, the electron density is 10> per c.c., which yields an wp on the order of 1016 rad/s and a A on the
order of 0.1 um. For this reason, alkali metal reflects visible light but is transparent to ultraviolet light.

Let us examine how Eq. (17.130) is modified when the electromagnetic wave propagates in a metal. In the Jellium
model of metal, there is a sea of free electrons in a uniform positive background. The uniform positive background gives
a constant contribution to the dielectric constant, denoted as &(o0), up to frequencies well above wp. Now the dielectric
constant from Eq. (17.130) can be written as

30k FIG. 17.10 A plot of w/wp as a function of ¢ K/wp (dispersion relation)
corresponding to the equation w*= wp+c?K>.
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FIG.17.11 (A) The reflectance R of a free-electron gas as a function of —
wavelength /. (B) Schematic representation of the frequency dependence
of reflectivity R for an alkali metal in the free-electron theory without
damping. (A: From Zener, C. (1933). Nature, 23, 968.)
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E(w) =&(00) ——==¢(c0) |1 —— (17.137)
w w
where
1/2
~ 4nn.e?
p= | ——— (17.138)
m,&(o0)

p is the normalized plasma frequency. One can find the refractive index and the propagation vector in the metal in the
same way as was done above, yielding

o\ 12
() = Vi) = [¢(c0)]/? 1—% (17.139)
o — op = c*K?/g(o0) (17.140)

Egs. (17.139) and (17.140) can be interpreted in the same way as in the case of a free-electron gas. Eq. (17.140) gives the
dispersion relation of a transverse electromagnetic wave in the electron plasma of a metal.

Let us examine the behavior of a metal in the case of electromagnetic waves at intermediate wavelengths. In a
metal, the electrons interact with each other and with the ions, giving rise to a finite mean free path and causing the
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absorption of energy by the metal. The equation of motion of an electron in the presence of a finite mean free path is
given by

d*x me dx

+ 2 _¢E 17.141
de2 7. dt ¢ ( )

me

The second term in the above equation is a damping term with 1/z. as the damping coefficient. Substituting Eqs. (17.122)
and (17.123) into Eq. (17.141), one gets

= ﬁ%—l/i’e} (17.142)
Further, substituting the value of x from Eq. (17.142) into Eq. (17.127), one can easily obtain
1e(®) =—ﬁejl/re} (17.143)
Hence the dielectric function becomes
g(w):l—w—% (17.144)
o(w+1/7e)

Itis evident that in the limit 7. — o0, Eq. (17.144) reduces to Eq. (17.130) given by Drude. Separating the real and imaginary
parts of Eq. (17.144), we write

2
Wp

- 17.14
a1() w?+1/72 (17.143)
2
ws /0,
= 17.146
e2(0) =5 /2 ( )
From Eq. (17.145) the refractive index of the metal is given by
(H2 1/2
=./¢ = (1 -—"" 17.147
n(@)=ve(@) < | /Tg) (17.147)

In the limit wz.>>1_the real part ¢;(w) gives the same expression as Eq. (17.130), while the imaginary part &;(w) reduces,
from Eq. (17.146), to

w:  4no
& () :w;; = (17.148)

Here we have used Eq. (17.85). From the above equation the magnitude of the photoconductivity is given by

o(0) = ne? we(o)

Me W27, 4n

which is the same equation as given by Eq. (17.126). The function g(w) decreases with an increase in w, as shown in
Fig. 17.12. Another quantity of interest is —Im &', which is proportional to the absorption spectrum, and is given from
Eq. (17.119) as

1 &

—Imeg ' = 17.149
me el +es ( )

The function —Im ¢~ ', plotted in Fig. 17.12, is peaked about the plasma frequency. The effect of introducing a finite mean
free path or damping coefficient 1/z. is that the electrons vibrate freely for a finite time only and then give up their energy to
the lattice. For wp/mw” > 1 the reflecting power becomes slightly less than unity because some energy is absorbed in the
surface. On the other hand, for w3/w?* < 1, the wave in the metal is damped so that the metal is opaque except for relatively
thin films. The behavior of the metal in the two cases is shown in Fig. 17.13.

To express Eqs. (17.145) and (17.146) in terms of wavelength, we define the following quantities

1 ) . o 1/2
w=27S, 2 =2"C 5= <n;ne§ ) (17.150)
€
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FIG.17.12 The optical conductivity ¢(w) and the negative
of the imaginary part of the inverse of the dielectric function
—Im ¢ '(w), are plotted as a function of frequency .

|
— Ime

&y
7

FIG. 17.13 The electric vector E of an electromagnetic

wave incident on a metal for (A) wd/w>>1 and (B) w3/
2

w”<1.

Using Eq. (17.150) in Egs. (17.145) and (17.146) one can immediately write

w=1- (1) oo

At
/IT 1+ (;L/}T)z

(17.151)

(17.152)
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1.00 FIG. 17.14 Reflectivity R for Pt metal as a function of wavelength 4 in
< s > the infrared region. Curve I gives the results obtained from Eqs. (17.151)
and (17.152), while Curve II gives the results obtained from the Hagen-
Rubens relation given by Eq. (17.112). Here g has been taken as the
0.99— observed conductivity at room temperature.

I | I I
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Fig. 17.14 shows the value of reflectivity R, calculated from Eqgs. (17.151) and (17.152) in the transition region where 1/
W=~ 1., and also from the Hagen-Rubens relation defined by Eq. (17.112). In the limiting case of /o <., i.e., A/ir<1,
Egs. (17.151) reduces to

N2
a(l)=1- <i) (17.153)

which is actually the same as Eq. (17.130) due to Drude.

Problem 17.4

Consider a free-electron metal in which there is a damping of the electron motion due to collisions with the atoms. The damping
term is assumed to be ydx/dt, which is proportional to the electron velocity. The vibration equation is given by

d*x  dx o
me¥+"ya=eE=eEge t (17.154)
Prove that the damping factor is inversely proportional to the conductivity of the metal oo and is given as
2
y="1e€ (17.155)
00

Here n. is the electron density.

17.7.2 Lorentz Model for Insulators

Lorentz provided a model to explain the optical properties of nonferromagnetic insulators. He assumed that the major con-
tribution to polarization in an insulator is due to the bound electrons in an atom oscillating with natural frequency .
According to Lorentz, the equation of motion of a bound atomic electron in an insulator is given by

— +xx=—cE (17.156)
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The third term on the left side of Eq. (17.156) represents a harmonic force with spring constant g given by
Ks = Me 0} (17.157)

Substituting Egs. (17.122), (17.123), and (17.157) into Eq. (17.156), one can write
eE 1

=_——— 17.158
x me wf — > —10/7e ( )
The dipole moment induced on the atom is given by
e’E 1
=—eX=——5—"— 17.159
P X me w3 —w?—10/7 ( )
From the above equation the electronic polarizability becomes
2
1
W= — — (17.160)

Eqgs. (17.159) and (17.160) exhibit a resonance at the natural frequency w,. Quantum mechanically, h wg gives the energy
difference before and after the transition.

Consider the material for which the permeability is unity, that is, £ = 1. The dielectric constant in an insulator is given by
the expression (see Eq. 16.29)

8t .

1+ —npdoc;:
ae(w):+ (17.161)

1 —?p“a?-;

where p® is the atomic density. Substituting the value of o from Eq. (17.160) into Eq. (17.161) and separating the real and
imaginary parts of the dielectric function, one gets

2 1 %
(a)(z) —w?+ gw%,) (w% —? —gwg) + (T—>
e1(w)= 5 5 = (17.162)
2 2 1 2 ®
CUO —w —gwp + T—
(S
()
Te
&2(0) = 1 \2 2
D2 —a? ) + (2
0 3" Te

The refractive index can be evaluated from Eq. (17.162) with the help of Eq. (17.87). In covalent Si crystals, the dielectric
function ¢(w) simply equals the static dielectric function ¢y =¢,(0) below the frequency of visible light. So, at w = 0,
Eq. (17.162) reduces to

(17.163)

2
w2+ wf

80:7? (17.164)
W} —~ o}

3

In Si, wg="7.2 and wp=11, which gives wo/wp=0.654. With these values one obtains go=11. Fig. 17.15 shows the cal-
culated values of ¢;(w) and ¢(w) versus the scaled frequency w/wg for Si.

The Lorentz model can also be applied to explain the polarization in ionic solids or covalent solids with ionic bonding.
In the presence of an electric field, the equation of motion of an ionic solid can be written as

d>x Mdx
—+=— =qE 17.165
i + T dt +KsX=(q ( )
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FIG. 17.15 ¢, and ¢, are plotted as a function of frequency w for Si.
40 w,=7.2

Mp= 11
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where M is the mass of an ion having charge q. Here 1/I" is the damping factor and «g is the spring constant
defined as

Ks = Mo}, (17.166)

Here wy; is the resonance frequency of the ionic polarization. Substituting Egs. (17.122) and (17.123) into Eq. (17.165), one
obtains the displacement as

1

q
:——E
x(@) M 0} —»? —10/T

(17.167)
Hence the ionic polarizability is given by

qx(@) ¢ 1
E Mo} —0?—10/T

of(w) = (17.168)
It is known that wy; is the frequency of the optical branches w;(0) (see Chapter 6), i.e., wg;=w;(0). In NaCl, the real part
of the dielectric constant ¢;(w) ranges from about 2.8 to 3.0 in the microwave frequency range of 0.4—4 GHz but the static
dielectric constant is 5.895. The reduction in &;(w) at radio frequency (rf) must be due to the dipolar polarization of
defects. But in the covalent crystals, such as diamond or silicon, there is no dipolar contribution as there are very
few defects in these crystals. As a result, the refractive index of a covalent crystal is almost constant below infrared
frequency.

It is interesting to compare the validity of different models as regards the frequency. Fig. 17.16 shows the frequency
dependence of the reflectivity R obtained from different models for metals compared with the experimental results. The
theoretical results obtained from the Hagen-Rubens relation (Eq. 17.112) exhibit good agreement with the experimental
results in the infrared (IR) region (up to frequency of 10'* s™" and below). It is noteworthy that electromagnetic waves of
such low frequencies (long wavelengths) are not able to see the atomic structure of the solid. Therefore, the Hagen-Rubens
relation is for a continuous material and is not able to explain the values of R at higher frequencies. With an increase in
frequency, the electromagnetic waves start interacting with the atoms of the solid and, therefore, one needs an atomistic
model to explain the experimental results for R. The first atomistic model was given by Drude for a free-electron gas, which
was then improved by including collisions between the electrons, which cause damping of the electron motion. Drude’s
model explains the reflectivity in the near-infrared and visible regions (see Fig. 17.16). At still higher frequencies the exper-
imental value of R increases and then decreases, as shown in the figure, giving rise to an absorption band. Lorentz assumed
that the electron is bound to an atom and that it oscillates harmonically about its position. The Lorentz model explains the
peak in reflectivity R in metals in the ultraviolet (UV) region. Fig. 17.17 shows the results of reflectivity R as a function of
frequency in dielectrics in which there are no free electrons. The experimental results exhibit two peaks in the ultraviolet
region, which are well explained by the Lorentz model.
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FIG. 17.16 The frequency dependence of reflectivity R for a metal. The solid line shows the experimental results, while the dashed and dotted lines

show the theoretical results obtained from the Drude and Lorentz models. The figure also depicts the results obtained from the Hagen-Rubens equation
(dash-dot line). (Modified from Hummel, R. E. (2001) Electronic properties of materials, Springer-Verlag, Berlin.)

[
Experimental

1
1
1
(]
1
1
1
1
1 ]
1
1
L]
1
1
L3
L)

Y
-’ S ea?

Infrared Visible region Ultraviolet

v(s™) —
FIG.17.17 The frequency dependence of reflectivity R for a dielectric solid. The solid line shows the experimental results, while the dashed line shows
the theoretical results obtained from the Lorentz model. (Modified from Hummel, R. E. (2001) Electronic properties of materials, Springer-Verlag, Berlin.)

17.8 LYDDANE-SACHS-TELLER RELATION

In Chapter 6 it was explained that the amplitudes of vibration of the two types of ions in an ionic solid are affected by the
presence of electromagnetic radiation, particularly IR radiation, that produces a finite dipole moment on the ionic molecule.
The polarization and dielectric function of the ionic solid depend on the intensity of the IR radiation. Therefore, it is of
interest to study the optical properties of ionic solids in the IR region.

The dipole moment on a molecule of an ionic solid is given by e (u, —u;) where u; and u, are the amplitudes of vibration

of the two types of ions given by Eqs. (6.86) and (6.88). If there are n; molecules per unit volume, i.e., n; positive and n;
negative ions, then the ionic polarization is given by

P;=nje (u —u)

(17.169)
Substituting the values of u; and u, from Egs. (6.86) and (6.88) into the above equation, one can write
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2
8
2 MO;F/I sin®(Ka/2)
P = n;e*Ey |—M i (17.170)
G .
w? (02 — wf) + Mll\}jlz sin’Ka

where i is the reduced mass of the ionic molecule and is defined as

1 1 1
o 4 (17.171)
e My M
In the IR region the wave vector K is small, so in the limit of Ka< 1, Eq. (17.170) reduces to
2
Pi:%}zo (17.172)
M (wo —w )
We know that the dielectric function ¢(w) is given by
P
g(w)—1=4n— (17.173)

0

In ionic solids the polarization comprises ionic and electronic contributions because the dipolar contribution is negligible.
Therefore, for ionic solids the above equation becomes

Pi Pe
g(w)71:4nE— +4n— (17.174)

0 Eg

where P; and P, are the ionic and electronic contributions to the polarization. At low frequencies both P; and P, are finite, but
at high frequencies P; is zero due to the large ion mass. As w — oo the above equation can be written as

P
g(o0)—1=4n— (17.175)
Ey
Substituting Eq. (17.175) into Eq. (17.174), one gets
P;
e(w)=¢(c0)+ dn— (17.176)
Eo
From Eqs. (17.172) and (17.176) one can write
(@) =2(c0) & (17.177)
e(w)=¢(o0) — .
w?—w}
where
47n;e? 12
wpi = (17.178)
Hwm
From Eq. (17.177) the dielectric function is positive if
2
Dpi
0)2—(1)(2)<8(00) (17.179)

If the above condition is satisfied, then &(w) and hence the refractive index n(w) is positive and the electromagnetic wave
passes through the ionic solid. On the other hand, if

2
Wpi

wz—w%>£(oo) (17.180)
then &(w) is negative and n(w) is imaginary and, therefore, the electromagnetic wave is reflected from the solid. The above

equation can be written as

o P2 (17.181)
g(c0) ‘
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In writing the above condition we have assumed the second term of Eq. (17.177) to be positive. Therefore, n(w) is imag-
inary if the frequency satisfies the following condition

2 2 w12>i 2
Wy { @ 8(00)+w0 (17.182)

Hence the electromagnetic waves cannot propagate through the ionic solid in the range of frequencies defined by
Eq. (17.182). In an ionic solid the frequencies of transverse and longitudinal waves are given by

2
Dpi
w%:w%,wf:w%+ﬁ (17.183)
Using Eq. (17.183), Eq. (17.182) becomes
wi <o’ <o} (17.184)
From Eq. (17.177) the static dielectric function &(0) is given by
w3,
a(0):g(oo)+w—‘;' (17.185)
0
Dividing Eq. (17.185) by &(c0) and rearranging the terms, one gets
0 2
#(0) =2 (17.186)
&(o0) i

Eq. (17.186) is known as the Lyddane-Sachs-Teller relation. The upper limit for the forbidden band of frequencies
(reflected waves) falls at wy. Therefore, the dielectric function at . should go to zero (the upper limit for the negative
values of ¢), i.e.,

e(wp) =0. (17.187)

Eq. (17.187) can be taken as the definition for the longitudinal optical phonon frequency for small K values.

Problem 17.5
Using Egs. (17.177) and (17.185) prove that

(17.188)

£(®) (00) = [£(0) — (o0

,

Problem 17.6
From Egs. (17.177), (17.185), and (17.186) prove that

e(w) o —aw?
H(o0) @i —a? (17.189)

Problem 17.7

The equation of motion of an electron in the presence of finite mean free path is given by (see Eq. 17.141)
d*x . me dx

Cdt T oTe dt

Prove that the above equation in terms of current density becomes

2
d_ ne (E—i) (17.190)

ai Me g0

m —eE
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Magnetism was discovered in Magnesia, a place in Greece, around 800 BCE and that is the origin of its name. The writing of
Thales, a Greek writer, shows that magnetite or loadstone was known to attract iron pieces. The Chinese made a magnetic
compass sometime around 200 BCE. Today, we can observe that most of the elements in the periodic table exhibit magnetism
of varying strength. The type of magnetization that occurs when an external magnetic field is applied to an element varies:

1. In some elements of the periodic table, magnetization is induced in a direction opposite to the applied magnetic field.
The induced magnetization lasts only for the time the applied magnetic field exists. Such elements are called diamag-
netic elements and are repelled by the magnetic field.

2. In many elements, weak magnetization is produced in the direction of the applied magnetic field. Moreover, the mag-
netization lasts so long as the applied field is finite. Such elements are called paramagnetic elements and are weakly
attracted by the magnetic field.

3. Insome elements, remarkably strong magnetization is produced in the direction of the applied magnetic field. Further,
the magnetization exists even in the absence of the applied field. Such elements are called ferromagnetic elements and
are strongly attracted by the magnetic field.

In addition, there exist antiferromagnetic and ferrimagnetic elements, which will be discussed in reasonable detail in the
coming chapters. The atomic magnetic dipole moment, induced or intrinsic, is basically responsible for the existence of
magnetism in the various elements.

18.1 ATOMIC MAGNETIC DIPOLE MOMENT

In an atom, electrons revolve around the nucleus and the nucleus contains protons and neutrons. An atom as a whole is
electrically neutral, but it consists of moving charged particles that may behave as magnetic dipoles. An electron in an
atom has two motions: orbital and spin. Similarly, protons and neutrons also possess orbital and spin motions inside
the nucleus. Therefore, the magnetic moment of an electron has two principal contributions, which are the orbital and spin
magnetic moments. There is also a third contribution to the magnetic moment arising from the spin-orbit interaction. If the
spin and orbital motions are assumed to be independent of each other, then the spin-orbit contribution vanishes and the total
magnetic moment of the ith electron 1, is the vector sum of its orbital and spin contributions, i.e.,

ﬁei :ﬁeil"'ﬁeis (181)
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where i, and i are the orbital and spin contributions to the magnetic moment of the ith electron. The total electronic
contribution to the magnetic moment of an atom i, therefore, is the vector sum of the magnetic moments of all the elec-
trons, i.e.,

He=) K (18.2)

The protons in a nucleus, being charged particles, possess both orbital and spin magnetic moments, just like electrons. The
neutrons, being neutral particles, do not possess an orbital magnetic moment in spite of their orbital motion, but they do
possess an intrinsic spin magnetic moment. The total magnetic moment of a nucleus i is the vector sum of the magnetic
moments of the neutrons and protons and is given by

NN:Zij"' Z:unk (18.3)
] K

where pi,; and ﬁnk are the total magnetic moment of the jth proton and kth neutron. From Eqgs. (18.2) and (18.3) the magnetic
moment of an atom is given by

K=l + fiy (18.4)

We shall see later that the magnetic moment of a nucleus is negligible compared with the electronic contribution (about
2000 times smaller); therefore, the magnetic moment of an atom is determined mainly by the electrons. In the coming
discussion the magnetic moment of an atom 4 is assumed to include only the electronic contribution.

18.1.1 Orbital Magnetic Moment

Consider an atom in which an electron is moving in an elliptical orbit with a nucleus at one of its foci, say O (Fig. 18.1). Let
T be the time period of revolution of the electron around the nucleus. The revolving electron constitutes an electric current
I given by

I = 7% (18.5)
The total area of the elliptical orbit swept by the electron in time T is given by
2n
A:% Jrzdgo (18.6)
0

where ¢ is the angle formed by the major axis of the ellipse with the radius vector r (from the focus) of the electron at any
time t. From elementary electricity, the orbital magnetic moment arising from the current I, is given by
LA

Uy = < (18.7)

where c is the velocity of light. The angular momentum of the electron is given by

FIG.18.1 Motion of an atomic electron in an elliptical orbit with a nucleus at
one of its foci O. The electron with position vector r is moving with velocity v
in the orbit.

=]




Magnetism Chapter | 18 385

de
pwzmerzwwzmerza (18.8)
where m, is the mass and w,, is the angular velocity of the electron. Substituting the value of 1 from Eq. (18.8) into

Eq. (18.6), we write

2n T
1(p, 1 Lp 1p,T

A=- |2 d :——WJdt:—“p— 18.9
2Jmed‘?/d 4 2m, 2 m, (189)

0 t 0

Substituting Eqgs. (18.5) and (18.9) into Eq. (18.7), we get
e

=_ 18.10
lu’L zmeCpr ( )

From Bohr’s quantization rule for orbits, the angular momentum p,, can be written as
p,=hL (18.11)

Here L is called the orbital quantum number and has integral values 1, 2, 3, ... Sometimes L is also called the orbital angular
momentum in units of 7 =h/2r where h is the Planck constant. From Egs. (18.10) and (18.11) one can write

= —ugL (18.12)
where g is called the Bohr magnetron defined as
eh
= 18.13
Uy 2m,c ( )
In vector notation Eq. (18.12) can be written as
U =—ppL (18.14)

The negative sign indicates that the orbital magnetic moment is in a direction opposite to the orbital angular momentum and
is basically due to the negative charge of the electron. The above expression is valid only for orbital motion. An alternate
method for calculating . for an electron moving in a circular orbit is given in Appendix L.

18.1.2 Spin Magnetic Moment

The orbital theory does not explain the multiplicity of atomic spectra, e.g., the doublet of d-states. In addition, it also does
not explain the Zeeman levels in some of the elements. These difficulties were resolved by assuming that an electron pos-
sesses intrinsic spin angular momentum S, which has eigenvalues 4-(1/2) in units of /. Note that spin is purely a relativistic
property of an electron and arises from quantum effects. The magnetic moment arising from the spin angular momentum is
given by

lig=—2u5S (18.15)

From Eq. (18.15) the value of the spin magnetic moment is numerically equal to the Bohr magnetron. Hence the total mag-
netic moment of an electron becomes

ﬁJ:ﬁL-'-ﬁS

(18.16)
=—ug(J+8)
where the total angular momentum J of an electron is given by
J=L+S (18.17)

The vector S is spinning around the direction of J (see Fig. 18.2). So, the average value of the magnetic moment ﬁJ is
obtained by substituting the average value of S along the direction of J, that is, (S) in Eq. (18.16), allowing us to write

Hy=—pg [J+(S)] (18.18)
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b J
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v

0
FIG.18.2 The spinning of an electron spin S around the total angular momentum J of the electron. The vector (S) gives the average value of spin S along
the J vector.

Here J+(S) gives the diagonal element of J+S. The average value of (S) is given by

J-S. J-S
S)="5rJd="31J (18.19)
I J?
where J is a unit vector in the direction of J. From Eq. (18.17) we write
J—S=L (18.20)
Squaring both sides, we find
1
J-S:E(J2+82—L2) (18.21)
From Eqgs. (18.19) and (18.21) the average value of the spin becomes
P+s*-1?

The eigenvalues of L% S andJ?are L(L+1), S(S+1) and J(J+1). Therefore, the average value of spin along the direction
of J is given by
( >_J(J+1)+S(S+1)—L(L+ 1)
B 2J(J+1)

(18.23)

Substituting the value of (S) from Eq. (18.23) into Eq. (18.18), we get the average value of the magnetic moment as
ty =—gyugd (18.24)
where

JJ+1)+S(S+1)—L(L+1)
21(0+1)

g =1+ (18.25)
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The factor gy is usually called Lande’s splitting factor. The above expression gives the magnetic moment of an electron due
to its total angular momentum J. It can be easily proved from Eq. (18.25) that gy =2 if there is only the spin motion and that
it is equal to 1 if there is only the orbital motion. From experiments, the actual value of gy for electron spin is found to be
2.0023.

18.1.3 Nuclear Magnetic Moment

One can also calculate the magnetic moment of a proton ﬁp and neutron £, in exactly the same way as for an electron. The
expressions for the magnetic moments are

/_jp = Up, Ip (18.26)
and
ﬁn = g, I, (18.27)
where
eh eh
Hpp =5 Hpy = (18.28)
P2Mc’ TPt 2Me

I, and I, are the total angular momenta for the proton and neutron, respectively. I, arises from both the orbital and spin
motions, while I, arises from the spin motion only. From Eq. (18.26) it is evident that the angular momentum and magnetic
moment of a proton are in the same direction, in contrast with an electron, and this is because of the positive charge on the
proton. In the case of a neutron, the angular momentum and magnetic moment are also in the same direction, although the
neutron is a neutral particle. Further, due to the large mass of the proton, the Bohr magnetron of a proton gy, is about 2000
times smaller than the Bohr magnetron of an electron ug. The same applies to the neutron Bohr magnetron pg,. Therefore,
the nuclear magnetic moment is very small compared with the electronic magnetic moment in an atom. In other words, the
atomic magnetic moment arises mainly from the electron contribution.

18.2 MAGNETIZATION

When a solid is placed in a magnetic field, it gets magnetized. Therefore, one can talk about the strength of magnetism
produced inside the solid, which is determined by a physical quantity called magnetization. Magnetization is defined
as the atomic/molecular magnetic moment per unit volume. For weak magnetic fields, magnetization M(r) is linearly pro-
portional to the applied magnetic field H(r). For inhomogeneous and anisotropic solids.

M(r) =Y (. r)H(r) (18.29)

M(r) is the magnetization produced in the r direction, while the magnetic field H(r) is applied in the r direction. Here
am(r, r) is the proportionality constant and is, in general, a tensor for an inhomogeneous and anisotropic solid. ym(r, r)is
usually called the magnetic susceptibility tensor. According to the above expression, the magnetic field applied in all pos-
sible directions of r: contributes to magnetization along the r direction. If the solid is homogeneous and isotropic, then both
the magnetic field and magnetization are in the same direction and one can write

M(r) =y, (r)H(r) (18.30)

For such solids the magnetic susceptibility yy(r) becomes a scalar quantity. A uniform magnetic field produces a constant
magnetization and, therefore, the magnetic susceptibility yy; becomes a constant. It can easily be shown from the above
expression that the magnetic susceptibility is dimensionless.

18.3 MAGNETIC INDUCTION

In the presence of an externally applied magnetic field, a solid is magnetized. Therefore, the magnetic field inside the solid
B(r), usually called the magnetic induction, is different than the applied field and is given by

B(r) =H(r) +47M(r) (18.31)
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Substituting the value of M(r) from Eq. (18.29) into Eq. (18.31), one gets

B(r) =H(r)+41 > yy(r,r')H(r) (18.32)
r/
The above expression can be written as
B(r)=> u(r,r')H(r) (18.33)
r/
where
u(r,v') =0, .+ 4y (r,r’) (18.34)

Here pu(r, r) is called the magnetic permeability tensor of the material. As already discussed, for a homogeneous and iso-
tropic material the magnetic susceptibility is a scalar, therefore, from Eq. (18.34) the magnetic permeability also becomes a
scalar and is given as

u(r)=1+4myy(r) (18.35)

As the magnetic susceptibility is dimensionless, the magnetic permeability is also dimensionless.

18.4 POTENTIAL ENERGY OF MAGNETIC DIPOLE MOMENT

Consider an electron moving in an elliptical orbit with its magnetic dipole moment always perpendicular to it. Let a uniform
magnetic field H be applied in the z-direction, as shown in Fig. 18.3. In the presence of H, torque will act on the current loop
or the magnetic dipole moment, which is given by

7=u xH (18.36)
The magnitude of the torque is given by
t=uHsin 0 (18.37)

Work will be done by the torque on the magnetic moment, which will change the orientation of the dipole moment. The
work done will be stored as the potential energy of the magnetic dipole moment. The zero of the potential energy (reference
level) may be taken in any direction of the dipole moment. To be consistent with Eq. (18.37) we usually assume potential
energy to be zero when 1 and H are perpendicular to each other. The potential energy of the magnetic dipole moment in the

4H

=

al)

-

FIG. 18.3 The torque 7 acting on the magnetic moment i, arising from a current loop, in the presence of applied magnetic field H.
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presence of a magnetic field is the work required to rotate the magnetic dipole from the zero energy position (0 = 90°) to an
angle 0, i.e.,

0 0
E= erf):,uH J sin0d0 (18.38)
90 90
The above integral can easily be solved to get
E=—u-H (18.39)

It should be noted that the choice of the zero energy configuration for E is arbitrary as one is usually interested in the
changes in potential energy that occur when a dipole moment is rotated.

18.5 LARMOR PRECESSION

Consider an orbital magnetic moment 1, , associated with an electron, in a uniform magnetic field H, as shown in Fig. 18.4.
The torque acting on the magnetic moment, from Eqgs. (18.14) and (18.36), is given by

7 = xH=—puzLxH (18.40)
So, the magnitude of the torque is given by
7, = pugHL sinf (18.41)

Depending on the direction of motion, the torque will either accelerate or retard the electron in motion, thereby inducing
additional current in the current loop. According to Newton’s second law of motion the torque produces a change in the
orbital angular momentum L, which is at a right angle to itself. Torque can also be defined as the rate of change of angular

momentum and is given by
dp dL
- %
- —F 18.42
L0 (1842)

So, the torque causes L to precess about the direction of H with an angular frequency ;. The precession of the orbital
angular momentum about the direction of a magnetic field is called the Larmor precession and )y is called the Larmor
frequency. An alternate simple method for calculating wy_is presented in Appendix M. From Fig. 18.4, the change in orbital
angular momentum L in time dt is given by

dL =Lsin6 (w dt)

The above equation gives the torque 7 as

dL
rL:ha:thL sin 0 (18.43)

From Eqs. (18.41) and (18.43) one can immediately write
hop = pugH (18.44)

From this equation the Larmor precession frequency becomes
eH

= 18.45
“L 2m,c ( )

Diamagnetism is related to the Larmor precession of the electrons. Diamagnetism is the tendency of electrical charges to
partially shield the interior of the solid from the applied magnetic field. The basic principle of diamagnetic behavior can be
illustrated with the Lenz law of electricity. Consider an atom with Z electrons revolving around its nucleus in different
orbits. When an external magnetic field H is applied, the magnetic force acts on every electron. The magnetic force accel-
erates some of the electrons, while others are retarded depending on the direction of their motion. The change in velocity of
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z-axis

AH

Electron orbit

FIG. 18.4 The torque 7, acting on an orbital magnetic moment 1, in the presence of an applied magnetic field H in the z-direction. The figure also
depicts the change in orbital angular momentum dL due to the torque.

the electrons gives rise to an induced current that opposes the applied magnetic field (Lenz law). The induced current is
responsible for inducing an orbital magnetic moment 1, on the atom. If Ty is the time period for Larmor precession of the
electrons around the magnetic field, the induced current I, is given by

Ze
[ =—— 18.46
L= (18.46)
But the Larmor frequency is given by
2n  eH
2T 18.47
“L T, 2m.c ( )
Substituting the value of Ty from Eq. (18.47) into Eq. (18.46), we find
Ze*H
I = (18.48)

4nm.c



Magnetism Chapter | 18 391

Let <ri) be the average of the square of the radius of the electron from the nucleus perpendicular to the direction of the
magnetic field. Then the average area of the electron orbit perpendicular to the magnetic field becomes

A =n(r7) (18.49)

As the magnetic field is in the z-direction, (r1) is in the xy-plane. One can write

(r]) =)+ (%) (18.50)
In general, the mean square distance <r2) of the electrons from the nucleus in three dimensions is given by
()= () +(y*) + (=) (18.51)

In order to estimate the induced magnetic moment, we consider a simple case in which the charge distribution is spherically
symmetric, that is,

2 2 2
<x >:<y >:<z > (18.52)
From Egs. (18.50), (18.51), and (18.52) one can easily write

(1) ==3(% (18.53)

Substituting Eqgs. (18.48), (18.49), and (18.53) into Eq. (18.7), the induced magnetic moment due to the Larmor precession
is given by

Ze*H

— @<r2> (1854)

Ky =

If there are p* atoms per unit volume, the diamagnetic susceptibility is given by

M _p Ze?p
This is called the Langevin result. From Eq. (18.55) it is evident that the problem of calculating the diamagnetic suscep-
tibility is reduced to the calculation of (r*) for the atomic electron distribution in an atom, which can be estimated using a
quantum mechanical approach.

The units of y4 can be calculated from Eq. (18.55). Z is a number but p?, as the density of atoms, has dimensions of /L3
and so, from Eq. (18.55), one can write

1 e? e? 1
=713 - 2L2:* 22 (18.56)
LM (LT 1) L ML-T
Now e*/L have the units of energy (work) with dimensions
2
[ =maS=M (LT ?)L=ML*T > (18.57)

From Egs. (18.56) and (18.57), 4 is found to be dimensionless. The value of y4 is specified in the same way as the density p*
is defined. If the density p® is defined per unit volume, then the values of yq4 are listed per unit volume, but if p* is taken per
gram mole, then y4 is specified per gram mole.

Problem 18.1

Calculate the diamagnetic susceptibility for a He atom in the ground state, i.e., the 1s state, taking its radius as the Bohr radius ao.

The density of He atoms is given by p®=2.7 x 10**cm >,
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18.6 QUANTUM THEORY OF DIAMAGNETISM

The Hamiltonian of an electron in an atom (say the Bohr atom) is given by

p2

Hy=-—+V 18.58
0 2 me ( )
where p and m, are the momentum and mass of the electron, respectively. If the atom is placed in electric and magnetic
fields represented by E and H, respectively, then the Lorentz force acting on the electron is given by

F——cE—SvxH (18.59)
c
The magnetic field in terms of the vector potential A is given by
H=VxA (18.60)
The momentum of an electron in the presence of an electromagnetic field changes as follows:
p—p—-A (18.61)
c
Therefore, the Hamiltonian of an electron in the presence of a magnetic field becomes
~ 1 e, \2
H:—(pﬁA) +V (18.62)
2m, c
H can be split up into two parts as
H=H,+H, (18.63)
where
0 2m, ( )
H=—-" (p-A+A-p)+ Sy (18.65)
' 2m,c P P 2m,c? '

Here ﬁo is the unperturbed Hamiltonian and ﬁ] is the perturbation. Suppose H is uniform and is applied in the z-direction,
then the components of the magnetic field from Eq. (18.60) are given as

0A, O0A
H="~2-—2=0 18.66
¥ 9y oz ( )
0A, OA
H=—"-—2=0 18.67
Y0z 0x ( )
A, 0A
H=—2_"%X-¥H 18.68
oox oy ( )
The above equations are satisfied if the components of the vector potential are given by
1 1
AX:nyH,Ay:EXH,AZ:O (18.69)
This can be written in vector form as
1
AZEer (18.70)
Substituting p= —1h V into Eq. (18.65), ﬁl can be written as
~ 7 2
H="" (V-A+A-V)+ - A (18.71)

2m.c

2
. 2m.c
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In terms of Cartesian components ﬁl, from Eq. (18.65), can be written as

~ e e’ 2, A2
H] = — —2mec (pXAX +pyAy +Axpx +Aypy) + Tecz (Ax +Ay) (1872)

From Egs. (18.69) and (18.72) it is straightforward to write

~ eH e?H*  ,
Hy=- 2m.c (Xpy —ypx) * 8m,c? (X Ty ) (18.73)
The orbital angular momentum, defined as L =r X p, can be used to write
~ eH e?H?
H =- L+——(xX*+y’
' 2mee ¢ 8m,c? (¢ +y7)
or
~ e?H?
H =—uH+—— (x*+y’
1 My 8mecz (X y )
or
~ e?H?
H =7 H+ —— (x2+v2 18.74
! H 8m,c? (X y ) ( )

The expectation value of H, gives us the change in energy due to the application of the magnetic field. The lowest order
change in energy is given by the first-order correction in perturbation theory. Let |/¢) = | 0) represent the ground state of the
system. For diamagnetic substances the atomic or molecular magnetic moment is zero in the ground state, therefore,

(0lu,10y=0 (18.75)
Hence the first-order correction to energy in a diamagnetic substance comes from the expectation value of the second term
in Eq. (18.74), i.e.,

2172

E =
' 8m,c?

(0]x%+y?10) (18.76)

(0| x*+y?|0) is the average value of the area of the electron loop perpendicular to the direction of the magnetic field and is
given by

2
(O1x*+y?(0) = () =3 (") (18.77)
Substituting Eq. (18.77) into Eq. (18.76), we obtain
e?H?
1= Tom &2 <r > (18.78)
€
We know that the magnetic energy is given by
E=—u -H=-pH (18.79)
Therefore, the magnetic moment is given by
J0E
B =—7h (18.80)
Substituting Eq. (18.78) into Eq. (18.80), one gets
2
e’H

This is the same result for the magnetic moment as that obtained classically.
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Let us find the expectation value of the Hamiltonian of the perturbed ground state. Suppose | n) represents the nth state of
the unperturbed system with energy E,,. The matrix element of the magnetic moment between the ground state |0) and the
nth state |n) is (n| u,|0). When a magnetic field H is applied, the perturbed ground state of the system is written as

|07) = 0) + ZM In) (18.82)

n£0 En - EO

The first-order correction to the magnetic moment with respect to the perturbed ground state of the system, neglecting terms
of second and higher order in H, is given by

OMZH nuzo
— (01,|07) = (O] J0) + 1 3 Ol 0l 10)

n#0
(0 10 (18.83)
+H Z | lu'z ‘I’l | luz| >
'#0
The first term on the right side of Eq. (18.83) is zero. Further, the second and third terms are equal, yielding
| HIMZIO
Ap=2H Z (18.84)
n#£0
If there are p® atoms or molecules per unit volume of the solid, then the magnetization produced is given by
0)[2
AM=p*Au=2p"H ZM (18.85)
E,—E,
n#0 N
Therefore, the magnetic susceptibility contribution is given by
0)|
Aag —2p Z‘ n'“l' (18.86)

Here E,, > E, therefore, Ay and hence Ay, is positive. With respect to E, — E, two cases arise:

1. IfE, —Ey>kgT, i.e., the excited state has energy much greater than the thermal energy, then most of the electrons will
be in the ground state. In this case, Ay is positive and independent of temperature. This type of contribution to the
magnetic susceptibility of a diamagnetic substance is known as Van Vieck paramagnetism.

2. IfE,—Ey<kgT, the excited state has an energy much less than the thermal energy. In this situation, both the ground
and excited states are occupied with electrons, but the ground state has a higher population compared with the excited
state. The excess population in the ground state is p® (E, — E)/2kg T. Hence the resultant magnetization in the ground
state of the system is given by

AM = p*Au(E, —E,)/2kgT

Substituting the value of Au from Eq. (18.84) into the above equation, we find

AM = .
M= k < S Ll oy 2 (18.87)
n#0

Hence the magnetic susceptibility becomes
Aty = k - Q (nl,|0)? (18.88)

Aym has a behavior similar to that of the Curie susceptibility, but the origin of this contribution is entirely different: Ay
arises due to the polarization of the states of the system. It should be noted that the energy separation E,, — Eq does not enter
in Eq. (18.88). We should also note that if E, — E, then the electrons become free and the solid becomes a metal; in this
case, Eq. (18.88) is not valid.
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The above treatment can be generalized for the n'™ perturbed excited state given by

) = oy — 3 e HIn)

n£0 En - EO

The expectation value of the magnetic moment in the perturbed state is given by

nlu O
A = (|, ) =2 Y ‘Z'
n#£0

18.7 PARAMAGNETISM

In a paramagnetic substance each atom or molecule possesses an intrinsic magnetic dipole moment j. At finite temperature,
all of the magnetic dipole moments are oriented randomly in the form of closed chains yielding zero magnetization. In the
presence of an applied magnetic field, two opposing forces act on each atomic dipole moment in a paramagnetic substance:

1. The magnetic field tries to align the dipole moments in the direction of the field, thereby producing finite magnetization
along the magnetic field.

2. At finite temperature, the thermal energy tries to randomize the magnetic moments to form closed chains and hence
tends to decrease magnetization.

18.7.1 Classical Theory of Paramagnetism

In the classical description, the magnetic dipole moment 1 is taken to be a constant physical quantity independent of the
quantum numbers. Under the action of the competing forces mentioned above, some dipole moments align in the direction
of the applied magnetic field, while others make some angle 0, which is different for different dipole moments. Therefore, a
solid shows finite magnetic dipole moment and hence finite magnetization in the direction of the magnetic field. The
maximum magnetization is produced when all of the dipole moments align along the direction of the applied field. In
the presence of a magnetic field, the potential energy of the magnetic dipole moment is given by

E=—u -H= —puHcosl (18.89)

According to classical statistics, the probability P of a dipole moment making an angle 6 with the magnetic field is given by

E uH
P _ 2 cosf 18.90
oc exp < kBT) oC exp (kBT cos ) ( )

The component of the magnetic moment along the direction of the magnetic field is x - H= u cos 6 where H is a unit vector
in the direction of the field. Hence the average component of magnetic moment in the direction of the magnetic field is

given by
-~ 4 H
J(u -H) exp (lfT cos@) dQ
Havg = T B (18.91)
Jexp —— cos0 | dQ
kgT |
Here dQ; is the elemental solid angle. Solving the above integral, one gets
H
ﬂ%—uL(ﬁ‘ T) (18.92)
where

1
L(y)= cothy—; (18.93)



396 Solid State Physics

L(y) is the Langevin function (see Section 15.15). If p* is the number of atoms per unit volume, then the magnetization is
given by

a1 (HH
M =p*ulL|{— 18.94
P (kBT> ( )
The magnetic susceptibility yy; becomes
p'u . (1H
U L 18.95
M=y (kBT> (1895)

It is interesting to study M and yy in limiting cases. If the magnetic field is very high and the temperature is very low then,
uH>kp T (18.96)
In this limiting case the Langevin function goes to unity, i.e., L(uH/kgT) = 1 and therefore
M=pu (18.97)

which is the saturation magnetization when all the magnetic dipole moments are aligned in the direction of the magnetic
field. Hence saturation magnetization is obtained either at very low temperatures or at very high magnetic field values. The
other limiting case occurs when the magnetic field is low, but the temperature is high and, according to this.

uH<k,T (18.98)
If y is small, L(y)~y/3 [see Eq. (15.84)] and hence the magnetization from Eq. (18.94) becomes

pH @ p
H3keT ~ 3k, T

M(T) = p* (18.99)
The behavior of the magnetization M(y) as a function of y is shown in Fig. 18.5. M(y) acquires the saturated value p®u at
very large values of y, but the slope of the M(y) curve at y = 0 is p*u/3. From Eq. (18.99) the paramagnetic susceptibility is
given by

C
an(T) =24 (18.100)
T
FIG. 18.5 The magnetization M(y) in a para-
magnetic solid as a function of parameter
y=uH/kgT in the classical theory. The slope
of the magnetization curve at the origin is
shown by the dashed line.
Saturation value (p°n)
Lt
f 3 _
= PuLly)
=

y—>
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where Cy; is the Curie constant and is given by

1o

TS

Cu (18.101)
Eq. (18.100) is the usual Curie law. The limitation of the classical theory is that the distribution of magnetic dipole moments
is assumed to be continuous, i.e., all values of 0 are allowed. But according to quantum mechanics, the distribution of mag-
netic dipoles must be discrete.

Problem 18.2
Let the paramagnetic susceptibility be given by

P g

M3, T
where g is the Bohr magnetron. If the density of atoms is p®=2 x 10% atoms/cm?, find the paramagnetic susceptibility at room
temperature taken as T=300K.

Problem 18.3

If one retains the first two terms in the series expansion of the Langevin theory of paramagnetism, prove that the susceptibility is

given by
_M_pl |1 (uHN
IMT T 3keT | 15 \kgT

18.7.2 Quantum Theory of Paramagnetism

Eq. (18.14) yields discrete values for the orbital magnetic moment zi; , which means that it is quantized. Similarly, the spin
magnetic moment ﬁs is also discrete, having two values [Eq. (18.15)]: ug and — ug. Therefore, the total magnetic moment
U, has discrete values. The general expression for the magnetic moment of an atom or an ion in free space is given by

iy =7h] (18.102)

where J is the total angular momentum. The constant y; is the ratio of the magnetic moment to the angular momentum and is
called the magneto-mechanical or gyromagnetic ratio. Comparing Eq. (18.102) with Eq. (18.24), one can write

gy =—7h (18.103)

Lande’s spectroscopic splitting factor gy represents the ratio of the number of Bohr magnetrons to the angular momentum in
units of h.

Suppose a magnetic field H is applied to a paramagnetic substance along the z-direction. The Hamiltonian of the system
is given by

H=—y, - H=gu,J,H (18.104)

J, is the z-component of the angular momentum J. If Mj is the eigenvalue of J,, the interaction energy is given by
E =g;us HM; (18.105)
M; is the azimuthal quantum number having the values—J,—(J—1), ......... -1,0,1, ...... (J—1),J, which are 2J+1 in

number. In a paramagnetic substance the occupation probability is given by the Boltzmann di