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Preface

For the past three decades, many scientists have been jumping onto the bandwagon of applied science, thereby hampering

the development of basic science. If this emerging trend is permitted to persist over a long period of time, research in

applied science will find itself at a crossroad. Recent years have been characterized by debates at the international level

over attracting intelligent people to the basic sciences. During my entire professional career, which spans more than

40years in the field of theoretical solid state physics, I have found that textbooks on solid state physics greatly outnumber

books on theoretical solid state physics. This unfortunate trend motivated me to write an elementary textbook on theoretical

solid state physics. A major portion of this book has been derived from lectures I delivered on solid state physics at various

Indian universities over a period of three decades. I began writing this book in 2000 and it took me almost 17years of

concentrated effort to accomplish a task of such magnitude. Needless to say, the collection of material commenced much

earlier.

Solid state physics is such a diverse field that it cannot be covered in a single book. Further, the theory of solids

is progressing at a very fast pace and is reaching an increased level of sophistication, greatly complicating the task of

providing up-to-date knowledge of the whole subject. Therefore, I have tried to concentrate on the fundamentals of the

theoretical aspects of those topics that are required in a first course for undergraduate students of physics, chemistry, mate-

rials science, and engineering at various universities across the globe. There are two approaches involved in the devel-

opment of a book on solid state physics. First is the phenomenological approach, which includes hypotheses and

models that are important in the development of the subject. Second is the fundamental approach, based on quantum

mechanics and statistical mechanics, which provides greater insight into the actual processes responsible for the various

properties of solids. I have tried to present a unified quantum mechanical treatment for the different properties of solids,

touching upon phenomenological models wherever necessary. Some of the salient features of the book are discussed later.

For the study of the various properties of solids, a general formalism for the fundamentals has been derived wherever

possible. Detailed mathematical steps are presented to make it comprehensible even to students with a minimal mathe-

matical background. The results for simple structures in one-, two-, and three-dimensional solids are derived for particular

cases. All of the chapters of the book are coherently interrelated. Elementary courses in quantum mechanics and statistical

mechanics may be considered prerequisites for understanding the subject matter.

Dirac’s notation has been used, which highlights the physics contained in the mathematics in a befitting and

compact manner.

More than 400 diagrams and geometrical constructions of the elementary processes present in solids have been used to

enable students to easily comprehend the subject matter.

A considerable number of problems have been inserted at appropriate places in all the chapters with the aim of providing

deeper insight into the subject. Throughout the text, bold letters represent vector quantities. Greek letters with arrows also

represent vector quantities.

The book contains an elementary account of some recent topics, such as the quantum Hall effect, high-Tc supercon-
ductivity, and nanomaterials. The topics of elasticity in solids, dislocations, polymers, point defects, and nanomaterials

are of special interest for engineering students. The inclusion of abstract methods of quantum field theory, though important

in many-body problems, have been deliberately avoided as they may not be very relevant to the diverse student commu-

nities for whom this book was written.

At the end of the book, some elementary textbooks on solid state physics are listed for supplementary reading. Advanced

books on the topics covered in the present text are also included in the list, which may be helpful to advanced learners in

carrying out further work.

I am indebted to Professor K.N. Pathak, former Vice Chancellor of Panjab University, Chandigarh, for fostering and

nurturing my interest in the subject of solid state physics while I was a student. I am thankful to my daughters Amardeep

Galsin, Manveen Galsin, my son-in-law Dr. Nirjhar Hore, and my son Damanjit Singh Galsin, who have been a constant

source of encouragement and support for me during the completion of this work. I am very grateful to my wife, Professor
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Surinder Kaur, for encouraging me to liberally devote time to the writing of this book and also for editing the technical

aspects of the English language. I am grateful to Mr. Rakesh Kumar (Somalya Printers, Ludhiana) for undertaking the

artwork for this book so diligently and efficiently. I am also thankful to all my loved ones, colleagues, and well-wishers

especially Dr. Jagtar Singh Dhiman, Dr. Nathi Singh and Dr. Paramjit Singh, who silently urged me to move on toward

the successful completion of this momentous project. Last but not least, my journey with the Elsevier team, from the

submission of the manuscript to the finished product, has been very pleasant. The book has not been read by any subject

expert, therefore, any omission or error is my sole responsibility. I would welcome and appreciate comments/suggestions/

feedback for the improvement of the book in the near future. A big thanks to Lord Almighty-our creator.

Joginder Singh Galsin
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Matter exists in three states: solid, liquid, and gas. At very low temperatures, all forms of matter condense to form a solid.

Matter consists of very small particles called atoms that can exist independently. The most remarkable property of the solid

state is that the atoms of most of the solids, in the pure form, arrange themselves in a periodic fashion. Such materials are

called crystalline solids. The word crystal comes from the Greek word meaning “clear ice.” This term was used for trans-

parent quartz material because for a long period in ancient times only quartz was known to be a crystalline material. The

modern theory of solids is founded on the science of crystallography, which is concerned with the enumeration and clas-

sification of the actual structures exhibited by various crystalline solids. There are 103 stable elements in the periodic table

and the majority of these exist in the solid state. Todaymetallic solids play an indispensable role in engineering, technology,

and industry. Tools and machines ranging from sewing needles to automobiles and aircraft are made of metallic solids with

required properties. Thus, the study of various physical properties of solids is very important. In this chapter we shall give

an introductory account of the various periodic arrangements of atoms in solids.

1.1 CLOSE PACKING OF ATOMS IN SOLIDS

There exist forces of attraction and repulsion among the atoms in a solid. But the net force between any two atoms must be

attractive for a solid to exist. In solids, each atom is attracted approximately equally and indiscriminately to all of its neigh-

boring atoms. As a result, in a crystalline solid the atoms have the tendency to settle in a close-packed structure. In an ideal

close-packed structure, atoms touch one another just like peas placed in a vessel. The packing of atoms into a minimum total

volume is called close packing. If the atoms are assumed to have a spherical shape, then a close-packed layer of atoms of an

element with centers at positions A appears as shown in Fig. 1.1A. Above this layer, there are two types of voids, labelled B

and C. Therefore, in the second layer, above the first one, the atoms can settle down with their centers at either of the

positions B or C. If the atoms in the second layer go over the B positions then there are two nonequivalent choices for

the third layer. The atoms in the third layer can have their centers at either the A or C positions and so on. Therefore,

the most common close-packed structures that are obtained have a layer stacking given by ABABA… (or BCBCB…

or CACAC…) and ABCABCA… The stacking of layers given by ABABA (or BCBCB or CACAC) gives a hexagonal

close-packed (hcp) structure while the second type of stacking, ABCABCA, gives a face-centered cubic (fcc) structure.

Therefore, the most common close-packed structures exhibit either cubic or hexagonal symmetry: the basic symmetries

of crystal structure. The details of the geometry of these close-packed structures will be discussed in the coming sections.

Solid State Physics. https://doi.org/10.1016/B978-0-12-817103-5.00001-3
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Another close-packed structure exhibited by some elements is a simple cubic (sc) structure. The bottom layer of an sc

structure is shown in Fig. 1.1B, in which the centers of the atoms are shown by the points D. If in all of the layers above

the first layer the atoms settle down with their centers at the positions D then an sc structure is formed.

There can also be other sequences of layer stacking that show either a lower order or no order. Such structures are called

faulted close-packed structures. For example, some rare-earth elements exhibit structures possessing layer stacking

ABACA. This corresponds to a stacking fault appearing in every fourth layer and leads to a doubling of the hexagonal

structure along the vertical axis (double hexagonal structure). Samarium has a unique structure, which has stacking

sequence ABABCBCAC.

A quantitative measurement of the degree of close packing is given by a parameter called the packing fraction, fp. It is
defined as the ratio of actual volume occupied by an atom Va to its average volume V0 in a crystalline structure,

fp ¼
Va

V0

(1.1)

The value of fpwill be calculated for some simple structures later in this chapter. Here we would like to mention two facts

about crystal structures. First, crystals with a higher value of fpare more likely to exist. Second, in real crystals, the atoms

may not necessarily touch each other but may instead settle down at some equilibrium distance that depends on the binding

force between them.

From the above discussion, it is evident that a crystalline solid is obtained by piling planes of atoms one above the other

at regular intervals with the different planes bound together by interplanar electrostatic forces. Each atomic plane consists

of periodic arrangement of atoms in two dimensions that are bound together by intraplanar electrostatic forces. A crystalline

solid may exhibit one-dimensional, two-dimensional, or three-dimensional behavior depending on the strength of the inter-

planar and intraplanar forces. If the interplanar forces are much weaker than the intraplanar forces, then each atomic plane

FIG. 1.1 (A) A close-packed layer of atoms,

which are assumed to be hard spheres, with their

centers at the points marked A. Above this layer,

voids exist at points B and C. (B) The close

packing of atoms with centers at points marked

D in the bottom layer of the sc structure.
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can be considered to be independent of the other atomic planes. Such a situation can arise in a solid in which the distance

between the atoms of the same plane is much smaller than that of the atoms belonging to different planes. These crystalline

solids exhibit the behavior of a two-dimensional solid. Further, each atomic plane can be considered to be made of parallel

lines of atoms (atomic lines) and the atoms in the same and different atomic lines are bound together by electrostatic forces.

If the forces between the atoms belonging to different atomic lines are much weaker than those among the atoms belonging

to the same atomic line, then each atomic line becomes nearly independent of the other atomic lines and the solid behaves as

a one-dimensional solid. Such a situation may arise in a two-dimensional solid when the distance between the atoms in

the same atomic line is much smaller than the distance between atoms belonging to different atomic lines. Therefore, a

crystalline solid will behave as a one-dimensional solid if the interplanar forces and the forces between different atomic

lines in a plane are quite weak.

1.2 CRYSTAL LATTICE AND BASIS

An ideal crystal consists of a periodic arrangement of an infinite number of atoms in a three-dimensional space. In order to

express the periodicity of a crystal in mathematical language, it is convenient to define a crystal lattice (space lattice), or

more commonly a Bravais lattice. A Bravais lattice consists of an infinite array of points distributed periodically in three-

dimensional space in which each point has surroundings identical to those of every other point. A crystal lattice is an ide-

alized mathematical concept and does not exist in reality. Fig. 1.2 shows a one-dimensional lattice in which the lattice

vector is defined as

Rn ¼ na1 (1.2a)

a1 ¼ a î1 (1.2b)

FIG. 1.2 Monatomic linear lattice with periodicity “a.” (A) One-dimensional solid with lattice points at the position of the atoms. Here each end of

the primitive cell contributes, on average, half a lattice point/atom, thus yielding one lattice point/atom in the primitive cell. (B) One-dimensional solid

with lattice point in the middle of the two atoms, that is, at a distance a/2 from the atom. The new primitive cell contains one lattice point/atom.

(C) One-dimensional solid with lattice point at a distance a/4 toward the left of the atom. The new primitive cell contains one lattice point/atom.

Crystal Structure of Solids Chapter 1 3



where a1 is a primitive translation vector and n is an integer: negative, positive, or zero. The vector Rn is called the trans-
lation vector. Here îa is a unit vector in the a-Cartesian direction, that is, î1, î2, and î3 are unit vectors along the x-, y-, and z-
directions, respectively. Fig. 1.3 shows a two-dimensional square lattice in which the lattice vector is given by

Rn ¼ n1a1 + n2a2 (1.3)

with

a1 ¼ a î1,a2 ¼ âi2 (1.4)

where n1and n2 are integers: negative, positive, or zero. In general, in a two-dimensional lattice, the primitive lattice vectors

a1 and a2 may not be along the Cartesian directions and further their magnitudes may not be equal, that is, j a1 j 6¼ j a2 j. In
exactly the same manner, one can define a lattice vector for a three-dimensional Bravais lattice as

Rn ¼ n1a1 + n2a2 + n3a3 (1.5)

with a1, a2, and a3 as the primitive translation vectors (not necessarily in the Cartesian directions), and n1, n2, and n3 as the

integers: negative, positive, or zero. Here, n represents n1, n2, and n3 and is denoted as n¼ (n1,n2,n3). Eqs. (1.2a), (1.3), and

(1.5) can be written in the general form

Rn ¼
X
i

niai (1.6)

Here i is used as a subscript (not a) as a1, a2, and a3 may not always be in the Cartesian directions. The subscript i assumes a

value of 1 for a one-dimensional crystal, 1 and 2 for a two-dimensional crystal, and 1, 2, and 3 for a three-dimensional

crystal. If the origin of coordinates is taken at one of the lattice points, one can generate the whole of the lattice by giving

various possible values to n1, n2, and n3.

The crystal structure is obtained by associating with each lattice point a basis of atoms, which consists of either an atom
or a group of atoms. The basis of atoms associated with every lattice point must be identical, both in composition and

orientation. If there is only one atom in the basis, it is usually assumed to be situated at the lattice point itself. However,

if there is more than one atom in the basis, one of them can be assumed to be situated at the lattice point and the others can be

FIG. 1.3 Monatomic square lattice with primitive vectors a1
and a2, where j a1 j¼ j a2 j. In part 1 of the figure, the atom is

assumed to be situated at the position of the lattice point and

the primitive cell has atoms at its corners. The lattice points/

atoms at the corners contribute, on average one-fourth of the

lattice point/atom to the primitive cell, thus yielding one lattice

point per primitive cell. In part 2 of the figure, the lattice point

is situated in themiddle of the two atoms on the horizontal lines

of atoms. The primitive cell has one lattice point as each corner

contributes 1/4 of a lattice point to the primitive cell. Further,

an atom at the middle of the side contributes½ atom to the cell.

In part 3 of the figure, again the atom is assumed to be situated

at the position of the lattice point. It shows the Wigner-Seitz

(WS) cell of a monatomic square lattice with one lattice

point/atom at its center. Further, the area of the WS cell is

the same as in cases 1 and 2.
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specified with respect to it. Fig. 1.4 shows a linear lattice and a square lattice with a basis of two atoms in which one of the

atoms is taken at the lattice point. So, in general, the position of the mth basis atom associated with the nth lattice point may

be written as

Rnm ¼Rn +Rm (1.7)

with

Rm ¼m1a1 +m2a2 +m3a3 (1.8)

where m1, m2, and m3 are constants and usually 0 �m1,m2,m3 � 1. Here m denotes all three numbers m1,m2,m3 and is

usually written as m ¼ (m1,m2,m3). Such a lattice is called a Bravais lattice with a basis. It is worth mentioning here that

the choice of the lattice point is not unique, but rather a number of choices are possible. Fig. 1.2A–C shows three possible

choices of lattice points in a one-dimensional crystal. Similarly, Fig. 1.3 shows two possible choices, namely, 1, 2, of lattice

points in a two-dimensional square lattice. It is evident from the figures that the magnitude and the orientation of the prim-

itive lattice vectors remain the same, although the positions of the basis atoms with respect to the lattice point change. In

other words, for all the choices of the lattice points, the crystal lattice exhibits the same periodicity.

1.3 PERIODICITIES IN CRYSTALLINE SOLIDS

In a pure crystalline solid there are basically two types of periodicities: structural and electrostatic. In this chapter, we shall

discuss only the structural periodicity, while the electrostatic periodicity will be discussed in Chapter 12.

FIG. 1.4 (A) A diatomic linear lattice with lattice constant a. The first atom (black sphere) of the crystal is at the origin and the basis atom (shaded)with

respect to it is at a distance of (1/4)a. (B) A square lattice with a basis of two atoms: the shaded and black spheres represent the two types of atoms in the

lattice. The lattice points are taken at the positions of the black spheres with the coordinates of the basis atoms given by Rm ¼ 0, (1/2)a1+ (1/2)a2.
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1.3.1 Structural Periodicity

The ordered arrangement of the faces and edges of a crystal is known as crystal symmetry. A sense of symmetry is a pow-

erful tool for the study of the internal structures of crystals. The symmetries of a crystal are described by certain mathe-

matical operations called symmetry operations. A symmetry operation is one that leaves the crystal and its environment

invariant. The structural periodicity comprises two types of symmetries: translational and rotational.

1.3.1.1 Translational Symmetry

In a three-dimensional crystal space, any position vector r can be written as

r¼
X3
a¼1

ra ¼
X3
a¼1

îara (1.9)

where ra or ra is the a-Cartesian component of r, that is, the subscripts 1,2, and 3 correspond to the x, y, and z components,

respectively, of the vector r. In a two-dimensional crystal lattice, a position vector is given by

r¼
X2
a¼1

ra ¼
X2
a¼1

îara (1.10)

In a one-dimensional crystal, the position vector is defined by

r¼ r1 ¼ î1r1 (1.11)

In a crystalline solid, the translation of any vector r by a lattice vector Rn takes it to a new position r0 in which the atomic

arrangement is exactly the same as before the translation (see Fig. 1.5). Therefore, the vector Rn defines the translational

FIG. 1.5 A square lattice with lattice points at the positions of the atoms (solid spheres). The figure exhibits the same distribution of atoms around any

two points r and r0 ¼r+Rn.
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symmetry of the crystalline solid. Let the subscript n denote the nth unit cell and m the number of atoms in it. Then, in a

crystalline solid with s number of atoms in a unit cell (s atoms associated with a lattice point), the density of atoms, ra(r), is
defined as

ra rð Þ¼ 1

V

X
n

X
m

d r�Rnmð Þ (1.12)

where the summation nm is over the crystal and V is the volume of the crystal. It can easily be proved that

ra rð Þ¼ ra r+Rnð Þ (1.13)

Eq. (1.13) shows that the atomic arrangement at r and r+Rn is the same and therefore defines the translational symmetry of

the crystal lattice mathematically.

1.3.1.2 Near Neighbors

It has already been noted that the distribution of lattice points and of atoms around any lattice point is the same. To be more

specific, the distribution of lattice points can be classified in terms of near neighbors (NNs) of different orders about a given

lattice point. In a Bravais lattice, the lattice points closest to a given lattice point are called first nearest neighbors (1NNs)

and the number of 1NNs is usually called the coordination number. The next closest lattice points to that particular lattice

point are called the second nearest neighbors (2NNs). In this way, one can define third nearest neighbors (3NNs), fourth

nearest neighbors (4NNs) and, in general, the nth nearest neighbors (nNNs). As the lattice is periodic, each lattice point in a

given crystal structure has the same number of nNNs for all values of n. The number, position, and distance of 1NNs and

2NNs in some simple crystal structures are given in Table 1.1.

1.3.1.3 Primitive Unit Cell

The most important property of structural periodicity is that it allows us to divide the whole of the lattice into the smallest

identical cells, called primitive unit cells or simply primitive cells. Figs. 1.2 and 1.3 show the primitive cells of one- and

two-dimensional lattices, while Fig. 1.6 shows the primitive cell of an sc lattice. In a monatomic linear lattice, the primitive

cell is a line segment of length j a1 j ¼ a with one lattice point in it on average. One can say that each end contributes, on

TABLE 1.1 Positions, Distances, and Numbers of 1NNs and 2NNs in sc, fcc, and bcc Structures

nNN Position Number Distance

sc structure

1NN a(�1, 0, 0)
a(0, �1, 0)
a(0, 0, �1)

6 a

2NN a(�1, �1, 0)
a(0, �1, �1)
a(�1, 0, �1)

12
ffiffiffi
2

p
a

fcc structure

1NN a(�1/2, �1/2, 0)
a(�1/2, 0, �1/2)
a(0, �1/2, �1/2)

12 a=
ffiffiffi
2

p

2NN a(�1, 0, 0)
a(0, �1, 0)
a(0, 0, �1)

6 a

bcc structure

1NN a(�1/2, �1/2, �1/2) 8
ffiffiffi
3

p
a=2

2NN a(�1, 0, 0)
a(0, �1, 0)
a(0, 0, �1)

6 a

Here a is the lattice parameter.
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average, a half lattice point to the primitive cell. Therefore, the number of lattice points per unit length, N0 (linear density of

lattice points), is given by

N0 ¼
1

a
(1.14)

In a square lattice, the primitive cell is a square bounded by primitive vectors a1 and a2 with sides having length j a1 j ¼ j a2 j
¼ a. There is one lattice point, on average, in a primitive cell: each corner of the square contributes, on average, one-fourth

of a lattice point to the primitive cell. In general, in a two-dimensional lattice, the primitive cells are parallelograms

bounded by vectors a1 and a2 and having area A0 given by

A0 ¼ a1�a2j j (1.15)

Therefore, the number of lattice points per unit area, N0 (surface density of lattice points), is given by

N0 ¼
1

A0

(1.16)

In an sc lattice, the primitive cell is a cube bounded by the primitive vectors a1, a2, and a3 with lattice points (atoms) at the

corners and with each corner contributing one-eighth of the lattice point (atom) to the primitive cell (Fig. 1.6). In general, in

a three-dimensional lattice, the primitive cell is a parallelepiped bounded by vectors a1, a2, a3 and having volume V0 given

by

V0 ¼ a1 � a2�a3
�� �� (1.17)

Hence the volume density of lattice points, N0, in a three-dimensional lattice is given by

N0 ¼
1

V0

(1.18)

One should note that in a monatomic crystal the density of lattice points N0 is equal to the atomic density ra. In many

crystals, a primitive cell contains one lattice point with a basis containing more than one atom. If the subscript n is assumed

to label the primitive cell, then Rnm gives the position of the mth atom in the nth cell. The translation of a primitive cell by

all possible Rn vectors just fills the crystal space without overlap or voids.

FIG. 1.6 Conventional primitive cell (shaded region) in the sc structure.
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The crystal space can also be filled up without any overlap by the translation of cells larger than the primitive cell, whose

volume is usually an integral multiple of the volume of the primitive cell. Such cells are called unit cells and their choice is
not unique. The shape of a unit cell may be different from that of a primitive cell and it may contain more than one lattice

point. For example, in an sc structure, a cube with side 2a (see Fig. 1.6) is one choice for a unit cell. It contains eight prim-

itive cells and hence eight lattice points. Therefore, a primitive cell can be defined as a unit cell with minimum volume.
The choice of a primitive cell is also not unique, but its volume is independent of the choice for a particular crystal

structure. Wigner and Seitz gave an alternative and elegant method to construct a primitive cell. In a Bravais lattice, a given

lattice point is joined by lines to its 1NN, 2NN, 3NN…. lattice points. The smallest polyhedron bounded by perpendicular

bisector planes of these lines is called the Wigner-Seitz (WS) cell. Figs. 1.2A and 1.3 show the WS cells for a monatomic

linear lattice and a square lattice, respectively. The WS cell for an sc structure is shown in Fig. 1.7. The WS cell in a mon-

atomic linear lattice is a line segment of length a with the lattice point (atom) at its center. Similarly, the WS cell in a square

lattice is a square with area a2, with a lattice point at the center. In an sc lattice, it is a cube with volume a3, again having a

lattice point at the center. It is evident that in these simple crystal structures both the shape and the volume of the conven-

tional primitive cell and the WS cell are the same. But, in general, the shape of the two types of cells may differ in other

crystals. The WS cell exhibits the following characteristic features. First, the WS cell is independent of the choice of prim-

itive lattice vectors. Second, the lattice point lies at the center of the WS cell as a result of which the WS cell is nearly

symmetrical about the lattice point, unlike the conventional primitive cell. This symmetry allows us to replace the actual

WS cell by a sphere whose volume is equal to that of the WS cell. It is usually called theWS sphere and simplifies many of

the theoretical calculations.

The translational symmetry of a lattice can be deduced from the concept of theWS cell. Fig. 1.8 shows one of the planes

of the WS cell, the equation for which can be written directly as

r � R̂n ¼
1

2
Rnj j (1.19)

where R̂n ¼ Rn/j Rn j is a unit vector in the direction of Rn. Eq. (1.19) is equivalent to the relation

r0 ¼ r+Rn (1.20)

FIG. 1.7 The WS cell (shaded region) in the sc structure.
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where jr0j ¼ jr j. Fig. 1.5 shows the points r and r0 defined by Eq. (1.20) and these are found to be equivalent. Therefore,

Eq. (1.20) describes the translational symmetry of a Bravais lattice. The translational symmetry allows us to generate the

whole lattice by making all possible translations of the WS cell. It can be easily proved that two successive translations are

equivalent to a single translation and, moreover, two successive translations commute with each other. Therefore, the col-

lection of lattice translations forms an Abelian group.

1.3.2 Rotational Symmetry

The second type of structural symmetry exhibited by crystalline solids is that for which at least one point of the lattice is

fixed. A Bravais lattice can be taken into itself by the following operations:

1. Rotation about an axis passing through a lattice point.

2. Reflection about a plane of atoms.

3. Inversion.

4. Different combinations of the above three symmetry operations.

In all of these operations at least one point of the lattice is fixed and therefore such operations are called point symmetries.
The rotations in a crystalline solid can be classified into two categories: proper rotations and improper rotations. The proper
rotations are the simple rotations and are usually expressed in terms of the angle 2p/n, where n is an integer. The rotation

through 2p/n is called an n-fold rotation. Detailed analysis shows that the proper rotations can only be through multiples of

p/3 and p/2. The improper rotations consist of inversions, reflections, and combinations of them with rotations. It can be

easily proved that a reflection can be expressed as the product of a proper rotation and an inversion. An inversion can be

expressed as a 2-fold rotation followed by a reflection in the plane normal to the rotation axis.

Let Sni be a symmetry operator (3�3 matrix) for the n-fold rotation about an axis Oi. The position vector r after the n-

fold rotation becomes

r0 ¼ Snir (1.21)

The inverse operator Sni
�1, which transforms r0 into r, is defined as

r¼ S�1
ni r

0 (1.22)

One can define the identity rotational transformation, which is a 3�3 unit matrix, as

r¼ Ir (1.23)

FIG. 1.8 The perpendicular bisector plane of the translation vector Rn, where r is the position vector of a point in the plane.
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The collection of all the rotational symmetry operations forms a group, usually known as a point group, because two suc-

cessive rotations are equivalent to a single rotation. The point group is non-Abelian because the two successive rotations do

not commute.

1.3.2.1 Space Group

The group of all the translational and rotational symmetry operations that transform a Bravais lattice into itself forms a

bigger group known as the space group of the Bravais lattice. The general symmetry transformation in a space group

is defined as

r0 ¼ Snir+Rn (1.24)

It means that first an n-fold rotation is performed, which is followed by a translation through Rn. For convenience,

Eq. (1.24) is written as:

r0 ¼ Sni Rnjf g r (1.25)

where {Sni jRn} defines the operator corresponding to the transformation (1.24). The inverse transformation corresponding

to Eq. (1.25) is defined as

r¼ Sni Rnjf g�1 r0 (1.26)

All of the pure lattice translations are given by the collection of symmetry operators {I jRn}, while all of the pure rotations

are given by the collection of symmetry operators {Sni j0}, and both of them form the subgroups of the space group.

Problem 1.1

If {Sni jRn} and {Smi jRn0} are two transformations of a space group, prove that

Sni Rnjf g Smi Rn0jf g¼ SniSmi SniRn0 +Rnjf g (1.27)

Problem 1.2

Prove that the inverse transformation of {Sni jRn} is given as

Sni Rnjf g�1 ¼ S�1
ni �S�1

ni Rn

��� �
(1.28)

The important property of the space group is that the subgroup of pure translations {I jRn} is invariant. As a result, in three-

dimensional crystals, the only allowed rotations are those that satisfy this invariant property. Let {Smi jRn0} and {I jRn} be

the members of the space group of a lattice. The invariance demands that {Smi jRn0}{I jRn}{Smi jRn0}
�1 must be a lattice

translation. Using Eqs. (1.27), (1.28), it can be readily proved that

Smi Rn0jf g I Rnjf g Smi Rn0jf g�1 ¼ I SmiRnjf g (1.29)

According to Eq. (1.29), the lattice translation vector after an m-fold rotation about an axis, that is, SmiRn, must be a lattice

vector that restricts the allowed rotations. With the help of this property the allowed rotations can be found.

1.3.2.2 Allowed Rotations in a Crystal

Consider a row of lattice points in a crystalline solid represented by the line ABCD (see Fig. 1.9). Let a be the primitive

translation vector with magnitude a. The vectors BA and CD are rotated clockwise and counterclockwise, respectively,

through an angle yn ¼ 2p/n (n-fold rotation) with final positions given by the BE and CF vectors. The rotational symmetry

of Eq. (1.29) demands that the points E and F must correspond to lattice points if the crystal lattice is to possess an axis of n-

fold rotational symmetry. Clearly, EFmust be parallel to AD and the magnitude of EFmust be an integral multiple of a, that

is, EF ¼ ma where m is an integer. From Fig. 1.9, it is evident that
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cosyn ¼
EG

BE
¼ FH

CF

and it gives

EG¼ FH ¼ a cosyn

Hence, the rotational symmetry gives

EF¼ a + 2a cosyn ¼ ma

which yields the value of cosyn given by

cosyn ¼
m�1

2
¼N

2
(1.30)

where N is an integer. The allowed values of N are obtained from the fact that cosyn lies between +1 and�1. Table 1.2 gives

the possible values of N, yn, and n. It shows that all the allowed rotations are multiples of either p/2 or p/3 and that the 5-fold
rotation is not allowed, that is, not allowed by the condition of Eq. (1.29).We want to mention here that the 7-fold rotation is

also not allowed as it is not a multiple of either p/2 or p/3 and therefore is not compatible with the translational symmetry of

the three-dimensional lattice. The geometric proof of the fact that 5- and 7-fold symmetries are not allowed is as follows.

Fig. 1.10 shows that primitive cells with five-fold rotational symmetry (pentagon) do not fill the space completely but leave

voids, which is not allowed. On the other hand, primitive cells with seven-fold symmetry (see Fig. 1.10) overlap when

translated to fill the space, which again is not allowed. Therefore, both the 5-fold and 7-fold rotational symmetries are

not allowed in a three-dimensional crystal lattice. Before we proceed further, we state a few theorems for the student

to prove.

l Theorem 1: If a Bravais lattice has a line of symmetry, it has a second line of symmetry at right angles to the first.

l Theorem 2: There is a two-fold axis passing through every lattice point of a Bravais lattice and every midpoint between

two lattice points.

l Theorem 3: If a Bravais lattice has a twofold axis, it also has a plane of symmetry at right angles to that axis, and

vice versa.

l Theorem 4: If a Bravais lattice has an axis of n-fold symmetry, it also has n-fold symmetry about any lattice point.

FIG. 1.9 The lattice points A, B, C, and D along a particular line in a crystal. E and F are the positions of the lattice points A and D after n-fold rotation yn
about the points B and C, respectively.

TABLE 1.2 Allowed Rotations in a Three-Dimensional Crystal

N cos un un n

�2 �1 p 2

�1 �1/2 2p/3 3

0 0 p/2 4

1 ½ p/3 6

2 1 2p 1
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l Theorem 5: If a lattice has two lines of symmetry making an angle y, it also has rotational symmetry about their inter-

section with an angle 2y.
l Theorem 6: If a Bravais lattice has two planes of symmetry making an angle y, the intersection of the two planes is a

rotational axis of period 2y.

The consideration of a space group for a particular solid yields a number of crystallographic point groups. Once we know

the point group corresponding to a particular class of crystals, information can be obtained about the primitive translations

{I jRn}, which are invariant under the operations of its point group. It is sufficient to put restrictions on the basic primitive

vectors.

To discuss crystals with different dimensions, we first represent the primitive vectors a1, a2, and a3 and the angles

between them a, b, and g (see Fig. 1.11). The values of a1, a2, a3, a, b, and g are chosen in such a way that the invariance

of the lattice under the point symmetry group is satisfied.

1.4 ONE-DIMENSIONAL CRYSTALS

In one-dimensional crystals, there is one primitive vector a1 and the translation vector is given by Eq. (1.2). In these crystals,

there is one translational group and two point symmetry operations or groups. First, point symmetry operation is the identity

operation (equivalent to a rotation of 2p about a lattice point) and second is a reflection through a lattice point, which trans-

forms x into – x. The total number of space groups, n, is obtained by multiplying the number of translational groups nT and

point symmetry groups nR, that is, n¼nT�nR. Therefore, in a one-dimensional monatomic crystal there are two space

groups and both satisfy the invariance property under point symmetry groups.

FIG. 1.10 (A) Five-fold rotational symmetry cannot exist in a lattice as it is not possible to fill the whole of the space. Voids are created with a connected

array of pentagons. (B) A seven-fold rotational symmetry cannot exist in a lattice as the connected polygons with seven sides overlap with one another

(Kepler’s demonstration).
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1. Rotation by 2p (identity operation) and by p about the center of any of the lattice points (or atoms).

2. Reflection about a plane passing through any lattice point (or atom) and perpendicular to the linear lattice.

3. Inversion about any of the lattice points (or atoms) of the linear monatomic lattice.

On the other hand, in a diatomic linear lattice, only a rotation by 2p radians about any lattice point is allowed and this

comprises the point group.

1.5 TWO-DIMENSIONAL CRYSTALS

In two-dimensional crystals there are two primitive vectors a1 and a2 with an angle g between them. In a two-dimensional

lattice, it has been found that there are 5 distinct translational groups (Bravais lattices) and 10 crystallographic point groups.

Further, it has been established that there are 17 permissible space groups in total. One should note that the total number of

permissible space groups is less than the total number of space groups n ¼ 5�10 ¼ 50. The five Bravais lattices in two-

dimensional crystals are shown in Fig. 1.12 and have the following relation between a1, a2, and angle g.

1. ja1 j¼ ja2 j, g¼90° square lattice

2. ja1 j¼ ja2 j, g¼120° hexagonal lattice
3. ja1 j 6¼ ja2 j, g¼90° rectangular lattice
4. ja1 j 6¼ ja2 j, g¼90° centered rectangular lattice

5. ja1 j 6¼ ja2 j, g 6¼90° oblique lattice

1.6 THREE-DIMENSIONAL CRYSTALS

In a three-dimensional crystal, the invariance of the lattice under the point symmetry group yields 14 Bravais lattices (trans-

lational groups) and 32 crystallographic point groups. Further, it has been established that there are in all 230 permissible

space groups, which is less than the total number of space groups n¼nT�nR ¼ 14�32¼ 448. Therefore, in general, each

translational group is compatible with a limited number of point groups. It is a common practice to divide the 14 Bravais

lattices into seven groups as stated below (see Fig. 1.13). In the seven classes of Bravais lattices, the unit cell may or may not

be primitive in nature. Let us discuss some features of these crystals.

FIG. 1.11 The angles a, b, and g between the primitive vectors a1, a2, and a3.
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Cubic Crystals In this class of crystals

a1j j ¼ a2j j ¼ a3
�� ��&a¼ b¼ g¼ 90°

These are high-symmetry crystals in which the primitive vectors are orthogonal to each other and the repetitive interval is

the same along the three axes. The cubic lattices may have sc, bcc, or fcc structures.

Trigonal Crystals In the trigonal symmetry

a1j j ¼ a2j j ¼ a3
�� ��&a¼ b¼ g 120°, 6¼ 90°h

There is only one type of trigonal crystal in which the unit cell is primitive in nature. Note that the three primitive vectors are

equally inclined to each other.

FIG. 1.12 The possible primitive cells of the two-dimensional lattices permitted by the property of invariance under translational and rotational

symmetries.
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Tetragonal Crystals In tetragonal symmetry

a1j j ¼ a2j j 6¼ a3
�� ��&a¼ b¼ g¼ 90°

There are two crystal lattices. One is simple and the other is a body-centered tetragonal crystal. The simple tetragonal

crystal has a primitive unit cell.

Hexagonal Crystals In the hexagonal symmetry

a1j j ¼ a2j j 6¼ a3
�� ��&a¼ b¼ 90°,g¼ 120°

FIG. 1.13 The conventional unit cells of the possible fourteen Bravais lattices in a three-dimensional crystal.
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In this class of crystals a1 and a2 make 2p/3 ¼ 120 degrees angles, and there is sixfold rotational symmetry: thus the name

hexagonal. The third primitive vector a3 is perpendicular to both a1 and a2. The hexagonal lattice is primitive in nature (see

Fig. 1.13).

Orthorhombic Crystals In this class of Bravais lattices

a1j j 6¼ a2j j 6¼ a3
�� ��&a¼ b¼ g¼ 90°

There are four types of orthorhombic crystals. They are simple, base-centered, body-centered, and face-centered ortho-

rhombic crystals. The simple orthorhombic crystal has a primitive cell.

Monoclinic Crystals In this class

a1j j 6¼ a2j j 6¼ a3
�� ��&a¼ g¼ 90° 6¼ b

There are two lattices. One lattice has a primitive cell with lattice points (atoms) at its corners while the other has a non-

primitive cell with base-centered planes formed by a1 and a2.

Triclinic Crystals In this class, there is only one lattice with

a1j j 6¼ a2j j 6¼ a3
�� ��&a 6¼ b 6¼ g

The lattice has a primitive cell as there is one lattice point in it.

1.7 SIMPLE CRYSTAL STRUCTURES

Atoms in a crystal have the tendency to settle in close-packed structures. The simplest close-packed structures have either

cubic or hexagonal symmetry. Both the translational and the point groups of the full cubic group are of highest symmetry.

The operations of the cubic group are as follows:

1. The identity operation {I j0}.
2. The four-fold rotation {S4i j0} about the edge of a cubic unit cell.

3. The two-fold rotation {S2i j0} about an edge of a cubic unit cell.

4. The three-fold rotation {S3i j0} about the diagonal of a cubic unit cell.

5. The inversion J with respect to the origin.

6. Any of the above-mentioned rotations followed by an inversion about the origin, that is,J{S4i j0}, J{S4i j0}2, J{S2i j0},
J{S3i j0}

Note that {I j0}, {S4i j0}, {S4i j0}2, {S2i j0}, and {S3i j0} form one subgroup while {I j0}, {S4i j0}2, J{S4i j0}, J{S2i j0}, and
{S3i j0} form another subgroup. The compatibility considerations of the translational and point symmetries show that 10

space groups are associated with the full cubic point group. These include sc, bcc, fcc, diamond lattices, and others.

1.7.1 Simple Cubic Structure

The simplest crystal structure is the sc structure in which the primitive translation vectors are given by

a1 ¼ âi1,a2 ¼ âi2,a3 ¼ âi3 (1.31)

It is a monatomic crystal structure, that is, there is one atom per primitive cell. The volume of the primitive cell is given by

V0 ¼ a1 � a2�a3
�� �� ¼ a3 (1.32)

and the density of lattice points (or atoms) in monatomic crystals is given by

N0 ¼
1

V0

¼ a�3 (1.33)

In a close-packed sc structure the four atoms in the basal plane of the primitive cell touch each other to form a square. Exactly

above these atoms are another four atoms that form the top face of the primitive cell. Hence, in a close-packed sc structure

Va ¼
4p
3

a

2

� �3

(1.34)
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The packing fraction, fp, in the sc structure is given by

fp ¼
Va

V0

¼
4p
3

a

2

� �3

a3
¼ p
6
¼ 0:52 (1.35)

Therefore, in a crystal with sc structure only 52% of the space is occupied by the atoms.

1.7.2 Body-Centered Cubic Structure

The bcc structure of a pure element is obtained by the penetration of two identical sc structures. Fig. 1.14 shows two iden-

tical sc unit cells in which one sc cell is shifted from the other sc cell by a vector.

r¼ 1

2
a î1 + î2 + î3

� �
(1.36)

where a is the magnitude of a side of the cube. Fig. 1.15 shows one of the convenient choices of the primitive translation

vectors of the bcc structure. They are given by

a1 ¼
1

2
a î1 + î2� î3

� �

a2 ¼
1

2
a �î1 + î2 + î3

� �

a3 ¼
1

2
a î1� î2 + î3

� � (1.37)

Problem 1.3

Prove that the average volume per atom in a bcc structure is given by

V0 ¼ a3=2

Problem 1.4

Prove that the angle between the primitive vectors of the bcc structure is 109 degrees, 280.

FIG. 1.14 The penetration of two cubic unit cells in the formation of the unit cell of a bcc structure (shaded region).
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Pure elements, such as V, Cr, Nb, Mo, Ta, and W, possess a bcc structure and are monatomic (one atom per primitive

cell). The conventional unit cell and the WS cell for the bcc structure are shown in Fig. 1.16. The WS cell for the bcc

structure is a truncated octahedron: the perpendicular bisector planes of the lines joining the 2NNs cut the corners of

the octahedron formed by the perpendicular bisector planes of the 1NNs. The WS cell is nearly symmetric about its center.

Some compounds, such as CsCl, RbCl, TlBr, and TlI, also exhibit bcc structure. Fig. 1.17 shows the unit cell of CsCl in

which two sc lattices of Cs and Cl penetrate into one another. The bcc structure of CsCl has a basis of two atoms and the unit

cell contains one molecule of CsCl.

FIG. 1.15 The primitive translation vectors of a bcc structure.

FIG. 1.16 (A) The conventional primitive cell of a bcc structure (dark lines). (B) The WS cell of a bcc structure (shaded region enclosed by dark lines).

Crystal Structure of Solids Chapter 1 19



1.7.3 Face-Centered Cubic Structure

The fcc structure can be considered as a crystal structure obtained by the penetration of four sc structures as shown in

Fig. 1.18. Here the black cube shows the primitive cell of the fcc structure with primitive vectors defined by (see

Figs. 1.18 and 1.19)

a1 ¼
1

2
a î1 + î2

� �

a2 ¼
1

2
a î2 + î3

� �

a3 ¼
1

2
a î3 + î1

� � (1.38)

FIG. 1.18 The penetration of four cubic structures in the formation of the unit cell of an fcc structure (shaded region).

FIG. 1.17 The primitive cell of the CsCl structure.
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It is noteworthy that the sc unit cells with green, blue, and red colors are displaced from the black sc unit cell by vectors

�(1/2) [a1+a2 ], (1/2) [a2�a3 ], and (1/2) [a1�a3 ], respectively.

Problem 1.5

Prove that the average volume per atom in an fcc structure is given by

V0 ¼ a3=4 (1.39)

Problem 1.6

Prove that the angle between the primitive vectors in an fcc structure is 60 degrees.

Pure elements, such as Cu, Ag, Au, Ni, Pd, and Pt, possess fcc structure and are monatomic in nature. The conventional

unit cell and the WS cell for the fcc structure are shown in Fig. 1.19. The WS cell in the fcc structure is a regular 12-faced

polyhedron (dodecahedron) and is nearly symmetric about its center.

Many compounds also exhibit fcc structure and NaCl is a good example of this case. Fig. 1.20 shows the fcc

structure possessed by a NaCl crystal, which is a Bravais lattice with a basis: the basis consists of one Na atom

and one Cl atom and these are separated by one-half of the body diagonal of the unit cube. There are four molecules

of NaCl in one unit cell.

The above discussion shows that the bcc crystal structure is obtained by the penetration of two sc structures, while the

fcc crystal structure is obtained by the penetration of four sc structures. Therefore, on physical grounds, one expects a

maximum packing fraction in the case of fcc crystal structure and a minimum in the sc structure, which is the case in

reality.

Problem 1.7

Prove that the packing fraction fp in

(a) bcc crystal structure is 0.68.

(b) fcc crystal structure is 0.74.

FIG. 1.19 (A) The conventional primitive cell of an fcc structure (shaded region enclosed by dark lines). (B) The WS cell of an fcc structure (shaded

region enclosed by dark lines).
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1.7.4 Hexagonal Structure

One of the close-packed structures in crystalline solids is the hcp structure, which is represented by the stacking sequence

ABABA … (see Fig. 1.1). We first describe simple hexagonal structure, which is possessed by only a few elements. It

exhibits 6-fold symmetry in the basal plane usually called hexagonal symmetry. Fig. 1.21 shows the unit and primitive

FIG. 1.20 The unit cell of the NaCl structure. The shaded region enclosed by the dark lines shows the primitive cell of the NaCl crystal.

FIG. 1.21 (A) The unit cell and the primitive cell (shaded region) of a hexagonal structure with primitive vectors a1, a2, and a3. (B) The basal plane of the

hexagonal structure shown in Fig. 1.21A.
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cells of the simple hexagonal structure with a1, a2, and a3 as the primitive lattice vectors: j a1 j ¼ j a2 j ¼ a and j a3 j ¼ c. It is a

monatomic crystal structure. The mathematical forms of the primitive translation vectors vary for different choices of the

Cartesian coordinates. Consider the basal plane, shown in Fig. 1.21, with the x-axis along the a1 primitive vector. In this set

of Cartesian coordinates, the primitive vectors are given by

a1 ¼ âi1

a2 ¼�1

2
âi1 +

ffiffiffi
3

p

2
âi2

a3 ¼ ĉi3

(1.40)

Another choice for the x- and y-axes in the basal plane of the simple hexagonal structure is shown in Fig. 1.22 for which the

primitive translation vectors acquire the form

a1 ¼
1

2
âi1�

ffiffiffi
3

p

2
âi2

a2 ¼
1

2
âi1 +

ffiffiffi
3

p

2
âi2

a3 ¼ ĉi3

(1.41)

Problem 1.8

Prove that the volume of the primitive cell of the simple hexagonal structure in the crystal space, which is the average volume per

atom, obtained either from Eq. (1.40) or (1.41), is given by

V0 ¼ a1 � a2�a3j j ¼
ffiffiffi
3

p

2
a2c (1.42)

FIG. 1.22 The primitive vectors a1 and a2 are depicted with respect to another set of x and y Cartesian coordinates in the basal plane.
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1.7.5 Hexagonal Close-packed Structure

Hexagonal close-packed (hcp) structure is obtained by the penetration of one hexagonal structure into another hexagonal

structure. The basal plane of one hexagonal unit cell is at half the height of another hexagonal unit cell and is also laterally

displaced (see Fig. 1.23A). The unit and primitive cells of hcp structure are shown in Fig. 1.23B. The hcp structure is a

diatomic structure: one atom of the basis is taken at the origin while the other at position r is defined by

r¼ 2

3
a1 +

1

3
a2 +

1

2
a3 (1.43)

Hence, the average volume occupied by an atom in an hcp structure is
ffiffiffi
3

p
=4

� 	
a2c. In an ideal close packing of the hcp

structure, the distance between the two basis atoms in a primitive cell must be equal to a, that is, jr j¼a. So

2

3
a1 +

1

3
a2 +

1

2
a3

����
����
2

¼ a2

The above equation can be written as

2

3
a1 +

1

3
a2


 �
� 2

3
a1 +

1

3
a2


 �
+
1

4
c2 ¼ a2 (1.44)

which on simplification gives

c

a
¼

ffiffiffiffiffiffiffiffi
8=3

p
¼ 1:633 (1.45)

FIG. 1.23 (A) The penetration of two hexagonal structures in the formation of a unit cell of an hcp structure (shaded region). (B) The unit cell and

primitive cell (shaded region) of an hcp structure with primitive vectors a1, a2, and a3.
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Eq. (1.45) gives the ideal value of the axial ratio c/a for the hcp structure. It is worth mentioning here that in the real crystals

the axial ratio c/a deviates significantly from its ideal value 1.633. It simply means that the atoms do not exhibit ideal close

packing in real crystals.

Alternate Method for c/a

Fig. 1.24 shows the close packing of four atoms in the bottom layer of the primitive cell in an hcp structure in which the

B and C points represent the centers of the two types of voids between them. The center of an atom in the second layer of the

hcp structure is at the point B, which is at a distance of c/2 above the bottom layer. Let a1 and a2 be the vectors in the basal

plane as shown in the figure, then j a1 j ¼ j a2 j ¼ a. Let the third vector a3 be in the vertical direction passing through O such

that j a3 j ¼ c. Now to arrive at the center of the atom situated at the point B in the second layer, one has to travel a distance

OM (¼ j a1 j/3) along the vector a1 and then fromM, a distance j a2 j/3 parallel to the vector a2, and finally a vertical distance
of c/2 (ja3 j/2) to reach the point B. Hence the position vector d

!
of the atom at position B in the second layer with respect to

the point O is given by

d
!¼ a1 + a2

3
+
a3
2

(1.46)

In the case of close packing of the atoms d
!��� ��� ¼ a, that is,

a1 + a2
3

+
a3
2

��� ���2 ¼ a2

which on simplification gives

c

a
¼

ffiffiffiffiffiffiffiffi
8=3

p
¼ 1:633:

Problem 1.9

Prove that the packing fraction fp in an hcp structure is 0.74.

From the problems 1.7 and 1.9 it is evident that the packing fraction for both the fcc and hcp structures is the same.

1.8 MILLER INDICES

An actual crystal has a definite shape bounded by a set of planes. In 1669, Niels Stenson found that the angles between the

similar faces of a quartz crystal are always the same, no matter how the crystal is prepared. In 1772, Jean Baptiste Rome de

FIG. 1.24 The close packing of four atoms in the basal plane of the primitive cell of an hcp structure.
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l’Isle extended the law of consistency of plane angles to many other crystals and observed that their values depend on a

particular crystal and not on the size of the planes. It is a well-known fact in geometry that a plane can be specified uniquely

by three noncollinear points. Therefore, in 1839, William Hallowes Miller gave the law of rational numbers according to

which a plane can be specified by three integers, usually calledMiller indices, and represented by (hkl) where h, k, and l are
integers, positive, negative, or zero. Miller indices of a plane are obtained by finding the reciprocals of the intercepts

(expressed in units of lattice parameter) on the axes of the primitive lattice vectors of the crystal structure and then reducing

them to the smallest integers. For example, consider an sc structure with lattice constant ‘a’ and Cartesian coordinates as

shown in Fig. 1.25a. Here the primitive lattice vectors a1, a2, and a3 of the sc structure are along the Cartesian coordinates.

FIG. 1.25 (A) The (111) plane in an sc structure with primitive vectors a1, a2, and a3. (B) The 100
� 	

plane in an sc structure.
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The magnitudes of the intercepts of the plane shown in the figure by the shaded area along a1, a2, and a3 are equal to a and

the reciprocals of the intercepts are 1/a, 1/a, and 1/a. The reduction of these values to the smallest integers yields 1,1,1.

Hence the Miller indices of the plane are written as (111). If any of the intercepts of a plane are on the negative side

of the axes, then the corresponding smallest integer is also negative and is represented by putting a bar over the number,

for example, �1¼ 1. Thus, the Miller indices of a plane (the shaded area) in Fig. 1.25b are written as (100).

Therefore, in general, (hkl) represents a single plane. But in a crystal structure, there can exist a number of equivalent

planes corresponding to particular Miller indices (hkl). Such planes are collectively represented by the symbol {hkl}. For

example, theMiller indices of the six faces of an sc structure are represented by (100), (010), (001), (100), (010), and (001).

All of the six planes of a cubic crystal are equivalent by symmetry and are therefore denoted by {100}.

Problem 1.10

Draw the planes in an sc structure represented by the Miller indices (100), (200), and (110).

A direction in a crystal structure can also be represented by a set of the smallest three integers written in a square bracket

as [hkl]. In order to examine what these three integers represent, consider the sc structure shown in Fig. 1.26. In the direction

OA, the first lattice point from the origin is positioned at A. To move from 0 to A one has to move a distance a along the a1-

axis, that is, OC, and then a distance a parallel to the a2-axis, that is, CA. The coordinates of point A are (a,a,0) and the

indices of this direction are obtained by reducing the coordinates to smallest integers. Hence, the direction OA is repre-

sented by [110]. Similarly, the direction OB is represented by [111]. Note that in cubic crystals, the direction [hkl] is per-

pendicular to the plane (hkl) with the same indices. This fact can straightway be proved from Fig. 1.26. Here the x-axis with

[100] is perpendicular to the front face of the cubic cell represented by (100). Similarly, the lines [110] and [111] are per-

pendicular to the planes (110) and (111).

Let us examine the representation of planes in a hexagonal structure having lower symmetry. Fig. 1.27 shows the basal

plane of the hexagonal structure with primitive vectors a1 and a2 passing through the origin. The third primitive vector a3 is

perpendicular to the basal plane and passes through the origin. The planes passing through AB, BC, CD, DE, EF, and FA,

and perpendicular to the basal plane, are called prism faces of the hexagon and comprise a set of similar planes possessing 6-

fold rotational symmetry about the origin. With respect to the primitive vectors a1 and a2, the Miller indices of the prism

FIG. 1.26 [100], [110], and [111] directions in an sc structure with primitive vectors a1, a2, and a3.
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faces passing through AB, BC, CD, DE, EF, and FA are (100), (010), (110), (100), (010), and (110), respectively. These

Miller indices form two groups: the first group consists of planes (100), (010), (100), and (010) and the second group con-

sists of the (110) and (110) planes. But one expects similar indices for the equivalent planes in a crystal structure. We find

the same thing in the situation of planes passing through AC, BD, CE, DF, EA, and FB, and perpendicular to the basal plane,

which haveMiller indices (110), (120), (210), (110), (120), (210), respectively. These again form two groups, that is, (110),

(110) and (120), (210), (120), (210).

To obtain one group of Miller indices for all the equivalent planes, Bravais adopted a different coordinate system that

has four axes, with three being in the basal plane. Fig. 1.28 shows the coordinate axes a1, a2, and a4 in the basal plane, which
are inclined at an angle of 2p/3 to one another. Now four indices will represent a plane, which are called Miller-Bravais
indices: finding the reciprocals of intercepts on the four axes and then reducing them to the smallest integers. Miller-Bravais

indices are represented as (hkil), where the index i corresponds to the a4 axis. For all the planes, the intercept on the a4 axis

has a definite relationship with the intercepts on the a1 and a2 axes. To find this relationship, consider a plane passing

through AC and perpendicular to the basal plane (Fig. 1.28). For this plane, the intercepts on the a1 and a2 axes are equal

to a in magnitude, while on the a4 axis the intercept is – OB/2 ¼ –a/2. For this plane it is straightforward to prove that

i¼� h + kð Þ (1.47)

It can be proved that the above relation holds good for all the planes. Hence, the index i is completely determined by the first

two Miller indices. Now the Miller-Bravais indices for planes passing through AB, BC, CD, DE, EF, and FA become

(1010), (0110), (1100), (1010), (0110), and (1100), which evidently form one group in contrast to the Miller indices. Sim-

ilarly, the Miller-Bravais indices for planes passing through AC, BD, CE, DF, EA, and FB are (1120), (1210), (2110),

(1120), (1210), and (2110), respectively.

A direction can also be represented by four indices as [hkil]. A direction is defined by translations parallel to each of the

four axes that give motion in the required direction. These translations are then reduced to the smallest integers. In addition,

the first three indices must satisfy the condition given by Eq. (1.47). High-symmetry directions in the basal plane of a

hexagon are shown in Fig. 1.29.

Let us examine the direction of primitive vector a1 represented by [100] in the system of three indices (old system). In the

system of four indices (new system) one can obtain the representation in the sameway. If one moves directly from the origin 0

FIG. 1.27 [100], [010], [110] directions in the basal plane of the hexagonal crystal structure.
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to point A, then the translations along the four directions are a, 0, 0, 0 and hence the direction of a1 is represented by [1000].

Similarly, the direction of a3 becomes [0001] if the translation is performed directly from the origin to the atom at a distance c

perpendicular to the basal plane. But in the [1000] and [0001] representations the property given by Eq. (1.47) is not satisfied.

FIG. 1.28 The primitive vectors a1, a2, and a4 in the basal plane of the hexagonal structure. The figure also shows the directions [1000], [0100], 1120
� 


,

1000
� 


, and 1120
� 


, in terms of Miller-Bravais indices, in the basal plane.

FIG. 1.29 The method for the conversion of Miller indices into Miller-Bravais indices along the different symmetry directions.
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In order to fulfill this requirement, one may have to choose a lattice atom different from the first atom in a particular direction.

Further, to reach this lattice point, translations parallel to the primitive vectors a1, a2, a3, and a4 have to be chosen such that

Eq. (1.47) is satisfied. For example, in Fig. 1.29, line OH represents the same direction as vector a1, that is, [100]. Starting from

the origin, to reach the point H we choose a path that consists of translations OF, then FG and GH; these are parallel to vectors

�a2, a1, and�a4, respectively. These translations have magnitudes of 2a,�a,�a, and 0, which give the indices of direction

as [2110]. Similarly, OQ represents the [010] direction and, to reach Q, we travel from O to D, then from D to P, and finally

from P to Q (Fig. 1.29). This path yields indices [1210] for the direction of vector a2. The four indices representation of the

direction satisfies Eq. (1.47). In Fig. 1.29 are shown four indices representations for some symmetry directions. Another

important property of the four indices representation is that the direction [hkil] is perpendicular to the plane (hkil). For

example, from Fig. 1.28, it is evident that the direction [1120] is perpendicular to the plane (1120).

1.9 OTHER STRUCTURES

There are a number of other crystal structures that are more involved than the simple structures described earlier. We shall

briefly describe some of the structures that are relevant to the present text.

1.9.1 Zinc Sulfide Structure

Zinc sulfide (ZnS) structure is obtained by the penetration of two fcc lattices: one fcc lattice composed of Zn atoms and the

other of S atoms (see Fig. 1.30). The two fcc lattices are oriented parallel to each other and the corner of one cube is placed

on the body diagonal of the other cube at a distance of one quarter of the length of the diagonal. Here the atoms of the two

kinds are connected tetrahedrally: four equidistant S atoms, which occupy the apexes of a tetrahedron, surround one

Zn atom.

The space lattice for the ZnS crystal structure can be considered as an fcc lattice with a basis of two atoms, one Zn atom

and the other an S atom. Let the lattice constant of the ZnS structure be a, that is, the length of the edge of the cube. Then, the

vector connecting the two basis atoms is given by

Rm ¼ a

4
î1 + î2 + î3

� �
(1.48)

Note that an atom has twelve 1NN atoms of the same kind and a unit cell contains four ZnS molecules.

FIG. 1.30 The crystal structure of the ZnS compound.
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1.9.2 Diamond Structure

The crystal structure of diamond is exactly similar to that of cubic ZnS, in which both the interpenetrating fcc lattices are

made of carbon atoms (see Fig. 1.31). Hence the space lattice of diamond structure is an fcc lattice with a basis of two

identical carbon atoms situated at (0, 0, 0) and (a/4, a/4, a/4). Here, each C atom has four 1NNs, which are positioned

at the apexes of a tetrahedron, and twelve 2NNs. There are eight carbon atoms in a unit cube.

1.9.3 Wurtzite Structure

Wurtzite structure has basic hexagonal symmetry. It can be considered as being formed by the penetration of two hcp lat-

tices (see Fig. 1.32). The two hcp lattices have the same axis (a3–axis) but one of them is displaced with respect to the other.

The wurtzite structure may be considered as an hcp structure with a basis of two atoms. The primitive vector along a3 has a

length of 3/8 times the a3 vector, that is, (3/8) a3. In the wurtzite structure, the atoms are also arranged with tetrahedral

symmetry, that is, an atom has four 1NN atoms of another kind and twelve 2NN atoms of the same kind. It is noteworthy

that the atomic arrangement along the a3 axis in the wurtzite structure is similar to the atomic arrangement along the [111]

direction in the ZnS structure. In the wurtzite structure, there are four atoms per unit cell. Hence, the average volume per

atom in the wurtzite structure is given by (
ffiffiffi
3

p
/8)a2c. The wurtzite structure has uniaxial symmetry and a number of pie-

zoelectric and pyroelectric crystals possess this structure.

1.9.4 Perovskite Structure

Some naturally occurring minerals have cubic structure with the formula ABO3, where A and B are cations while O is an

oxygen anion, for example, BaTiO3 and CaTiO3. This structure is generally called perovskite structure and is shown in

Fig. 1.33. Most of the materials having this structure exhibit ferroelectric behavior and are therefore important from a tech-

nological point of view.

In the perovskite structure A+m occupy the corners of the cubic unit cell and the centers of the faces of the cube are

occupied by O�2 ions. The O�2 ions form an octahedron at the center of which is located a small B+n ion. One of the

important compounds possessing perovskite structure is BaTiO3. In this compound Ba+2 ions occupy the corners of the

cubic unit cell while Ti+4 is situated at the center of the oxygen octahedron. But the atomic arrangement is not restricted

only to divalent and quadrivalent ions as in BaTiO3, CaTiO3, or SrNbO3. In fact, compounds such as KNbO3 and LaAlO3

also possess the same structure: here the ions are K+1 and Nb+5 in KNbO3 and La
+3 and Al+3 in LaAlO3. It appears that the

FIG. 1.31 The crystal structure of diamond.
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FIG. 1.32 Wurtzite crystal structure.

FIG. 1.33 ABO3 perovskite structure.
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size of the atoms is a more important factor than the valency of the atoms in determining the arrangement of the atoms.

Hence, in general, perovskite structure can be assigned the formula A+mB+nO3with (m,n)¼ (2,4), (3,3), or (1,5). Almost all

the ABO3 compounds are insulators except when A and B are both nontransitional elements. But these metallic compounds

generally have low carrier density.

There is an intimate relationship between the atomic arrangement and the ferroelectric properties of a material. For

example, in BaTiO3, the Ti
+4 ion is considerably smaller than the space available inside the oxygen octahedron. As a result,

below a certain temperature called the Curie temperature, the structure is slightly deformed, with Ba+2 and Ti+4 ions dis-

placed relative to the O�2 ions, thereby developing a dipole moment. The displacement of Ba+2 and Ti+4 ions gives rise to

spontaneous polarization in BaTiO3.

Another important property of ABO3 compounds is that A and/or B sites may be partially occupied by cations of a

different kind (say C) giving rise to A1�xCxBO3 or AB1-xCxO3 compounds. The common examples of such compounds

are K1�xBaxBiO3, SrGa1-xNbxO3, BaPb1-xBixO3 etc. High-temperature superconductivity is observed in the pseudoternary

compound BaPb1-xBixO3 with Tc ¼ 13K. The compound K1�xBaxBiO3 exhibit superconductivity with Tc ¼ 30K.

Replacing Ba+2 by K+1 is likely to generate oxygen vacancies. The deficiency of oxygen is responsible for enhanced

electron-phonon interactions, which may yield high-Tc behavior. In these compounds, the conductivity depends on the

value of parameter x, which is very difficult to control. In this sense, such materials are sometimes called alloys.

1.9.5 High-Tc Superconductors

In 1986, Bednorz andMuller discovered a new class of superconductors in which the transition temperature Tc is considerably

higher than in normal superconductors; thus, these are commonly known as high-Tc superconductors. They discovered super-

conductivity in La2�xBaxCuO4 compounds with Tc > 30 K: La2�xBaxCuO4 with x ¼ 0.15 exhibits bulk superconductivity

with Tc � 35 K. Later, a large number of superconductors were found with different values of Tc and it is interesting to note

that all of the superconductors contain layers of copper oxide in their crystal structures. Therefore, they are also sometimes

called oxide superconductors. Historically, one can say that the high-Tc superconductive cuprates have evolved frommaterials

related to the perovskite family ABO3. All of the high-Tc superconductors can be grouped into three categories.

1. The first group of high-Tc superconductors is represented by the formula (La,M)2CuO4, which means that some of the

positions of La atoms in La2CuO4 are occupied by atoms labeled as M. These superconductors have a K2NiO4-type

structure, as shown in Fig. 1.34A. One should note that Fig. 1.34A shows a schematic ideal structure but the actual

structure exhibits some distortions. For a theoretical study, the ideal structure is more suitable as it makes mathematical

treatment simple. The highest Tc achieved in these superconductors is 35 K for La1.85Sr0.15CuO4�y, where y represents

the deficiency of oxygen atoms in the structure. The value of Tc is very sensitive to the value of y, which is difficult to

control.

2. The second group can be represented by a general chemical formula MBa2Cu3O7�y, where y ranges from 0.0 to 0.5.

Here, M can be one of the rare-earth elements Sc, Y, La, Nd, Sm, Gd, Tb, Dy, Ho, Er, etc., and binary combinations with

Lu, Sc, Y, and La are prototype rare-earth elements. This structure is usually called the 123 structure, as there is 1 atom

of M, 2 atoms of Ba, and 3 atoms of Cu. The ideal 123 structure is shown in Fig. 1.34B. In these superconductors, a

suitable choice for the rare-earth element M enhances Tc; the highest value of Tc that has been reached is 95 K in the

case of YBa2Cu3O7�y.

3. The third group of high-Tc superconductors can be represented by the chemical formula Bi2Sr2CanCun+1On+6+y. For n¼
0, that is, Bi2Sr2CuO6+y, the highest Tc that has been reached is less than 20 K for some suitable values of y. For n¼ 1,

that is, Bi2Sr2CaCu2O7+y, the highest Tc is 85 K. Such superconductors are said to possess 2212 structure, which is

shown in Fig. 1.34C in the ideal case. For n ¼ 2, that is, Bi2Sr2Ca2Cu3O8+y, the highest Tc � 110 K. In the structure

of these compounds, perovskite and BiO layers alternate.

Tl2Ca2BanCun+1On+6+y represents a similar group of superconductors. In these superconductors, for n¼ 1 (2212 structure),

the highest value of Tc ¼ 105 K, while for n ¼ 2 the highest value of Tc ¼ 127 K.

1.10 QUASICRYSTALS

A solid can be obtained from the molten state of an element (or a mixture of elements) in three ways:

1. If the material in the molten state is cooled slowly, then a crystalline solid or crystal is obtained, which exhibits perfect

long-range periodicity. The different structures of crystalline solids have already been discussed.
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2. If the material in the molten state is cooled very rapidly, then an amorphous solid is obtained in which periodicity is

absent. Glass is an example of an amorphous solid. Actually, there exists a short-range order in an amorphous solid. In

the very rapid cooling process the atoms (molecules) do not have time to arrange themselves in a periodic fashion.

3. If the molten state of the material is cooled rapidly (neither slowly nor very rapidly), then a quasicrystalline solid (qua-
sicrystal) is produced in some materials. This is because the atoms (molecules) do not have sufficient time to arrange

themselves in perfect order. A quasicrystalline solid consisting of small periodic structures, which are bound together in

an irregular manner, is obtained. For example, when a mixture of Al and Mn in the molten state is cooled rapidly, a

quasicrystalline alloy, Al6Mn, is obtained. A diffraction study of Al6Mn shows a sharp diffraction pattern corre-

sponding to icosahedral structure, which exhibits 5-fold (pentagonal) and 10-fold (decagonal) symmetries.

It is easy to study the structure of quasicrystals in two dimensions. In order to fill the two-dimensional space, Penrose con-

structed two small plane surfaces (usually called tiles) of different shapes from a unit pentagon (Fig. 1.35) and these form

rhombi with their areas forming an irrational number ’¼ 1.618. He was able to cover the two-dimensional space perfectly

in an infinite number of aperiodic ways yielding infinite patterns called Penrose patterns. Each arrangement possesses a

long-ranged quasiperiodicity that is responsible for the discrete diffraction pattern. In the same way, one can study the

FIG. 1.34 The structure of high-Tc superconductors is divided

into three categories: (A) (La,M)2CuO4 structure: In this class,

the high-Tc superconductors haveK2NiO4-typecrystal structure.

HereMisametallicelement. (B)M
1ð Þ
1 M

2ð Þ
1 Cu3O7 (123)structure

for high-Tc superconductors.HereM
(1) andM(2) aremostly rare-

earth elements. An example of a 123 structure is MBa2Cu3O7.

(C) M2Sr2BaCu2O8 (2212) structure for high-Tc supercon-

ductors with M as the metallic atom. An example of 2212

structure is Bi2Sr2BaCu2O8.
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symmetry elements of quasicrystals in three dimensions. In analogy with the two-dimensional tiles, construct two types of

rhombohedra. Fill the three-dimensional space with different arrangements of rhombohedra without overlaps and gaps. The

rhombohedra produce an irregular but quasiperiodic arrangement of lattice points with icosahedral symmetry. In Fig. 1.36

an icosahedron is shown, which has twenty similar sides forming equilateral triangles. Further, the icosahedron has six

5-fold, ten 3-fold, and fifteen 2-fold axes of rotational symmetry. Just as pentagons cannot cover the two-dimensional space

FIG. 1.35 (A) The unit pentagon and the Penrose tiles (shown shaded) derived from it. AC is the irrational number ’. (B) The Penrose tiles; they may

only be used if matching sides, as indicated by arrows, are placed together.

FIG. 1.36 An icosahedron in a quasicrystal.
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perfectly, so the icosahedra cannot fill the three-dimensional space. We shall see in Chapter 25 that some clusters of atoms

(nanoparticles) possess icosahedral or truncated icosahedral structure.

A number of quasicrystals have been found since their discovery. Some of them, for example, Al65Cu20Fe12, do not even

require rapid cooling to form the quasicrystalline phase. Quasicrystals always contain two or more components and the

quasiperiodicity may arise over a range of compositions. Quasicrystals may be considered a link between the perfectly

periodic and amorphous states.
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In Chapter 1, we saw that atoms in a crystalline solid form a three-dimensional periodic array but nothing has been said

about the determination of the structure of a crystalline solid, which involves knowledge of the positions of the atoms. Two

types of studies are performed for the determination of crystal structure:

1. Direct imaging method

2. Diffraction method

With the help of high-resolution electron microscopes, such as field-ion microscopes, electron tunneling microscopes,

atomic force microscopes, and magnetic force microscopes, one can obtain a direct image of a real crystal structure. This

very useful technique is ideal for investigating point defects and dislocations and to study surfaces and interfaces. This

method will be discussed in some detail in the last chapter of the book. On the other hand, diffraction studies yield detailed

information about the crystal structure. To observe the diffraction pattern from a crystal, one requires a wave having a

wavelength comparable to the interatomic spacing, which is on the order of a few angstroms. Visible light cannot be used

for the determination of crystal structure because its wavelength is very large (on the order of few thousand angstroms)

compared with the interatomic spacing. X-rays, low-energy electrons, and thermal neutrons are best suited for diffraction

studies in crystalline solids.

2.1 X-RAY DIFFRACTION

In 1895, Wilhelm Roentgen accidentally discovered X-rays while studying electric discharge through gases at low pres-

sures but was not able to establish their nature. Because of the vast and diversified applications of X-rays, Roentgen was

awarded the first Nobel Prize in 1901. Max von Laue thought that the periodic arrangement of atoms in a crystalline solid

could satisfy the condition for diffraction of X-rays. On his suggestion, the most important discovery in solid state physics

was made byW. Friedrich and P. Knipping in 1912. They showed that interference among X-rays occurs on passing through

a crystal. This was the first proof of the wave nature of X-rays and also of the existence of a space lattice in a crystal. Thus,

the wave theory of X-rays and the atomic theory of crystals came into the light together. Max von Laue derived the scat-

tering expression, known as Laue scattering, which marked the beginning of scattering studies from crystals. In 1913,

William Henry Bragg and his son William Lawrence Bragg studied, for the first time, the structure of rock salt crystal
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with the help of X-ray diffraction experiments. They were able to obtain the value of the wavelength l of X-rays and the

lattice parameter of the crystal and found that these are on the order of a few angstroms. This study marked the beginning of

X-ray spectroscopy, which enabled the determination of the structure of a large number of crystalline solids.

2.1.1 Bragg’s Law of X-Ray Diffraction

In a crystalline solid, there are a number of sets of parallel planes of atoms and each set acts as a three-dimensional

diffraction grating rather than the plane grating used in optics. The beauty of Bragg’s study is that he gave a very simple

law for the X-ray diffraction from a particular set of parallel planes of a crystal. For simplicity we consider a square lattice as

shown in Fig. 2.1, in which a set of parallel planes with Miller indices (120) are shown. A parallel beam of X-rays falls on

the crystal and is reflected from the (120) set of parallel planes. At a particular angle of incidence, all the X-rays in a

reflected beam are parallel and interfere constructively to yield a bright spot on the photosensitive plate. According

to Bragg’s law, two incident rays undergoing reflection from the adjoining parallel planes of a particular set interfere

constructively if the path difference between them after reflection is an integral multiple of l, that is,

2d siny¼ nl (2.1)

where n is an integer, d is the spacing between adjoining parallel planes of the crystal, and y is the angle made by incident

X-ray beam with one of the planes (see Fig. 2.1). Note that d may or may not be equal to the lattice parameter of the crystal.

2.2 ELECTRON DIFFRACTION

In 1898, Sir J. J. Thomson discovered the electron as one of the constituent particles of an atom and gave a physical model

of an atom. In 1924, Louis de Broglie gave the famous and revolutionary idea of the wave-particle duality in which the

wavelength l associated with a particle having momentum p¼jp j is given by

l¼ h

p
(2.2)

FIG. 2.1 Reflection of X-rays from a set of parallel atomic planes (120) of a crystal. The path difference between two parallel incident rays after

reflection from the adjacent planes is AB+BC¼2d siny.
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where h is Planck’s constant. The energy of a free electron E is given by

E¼ p2

2me

(2.3)

where me is the mass of an electron. From Eqs. (2.2), (2.3) one gets

l¼ hffiffiffiffiffiffiffiffiffiffiffi
2meE

p (2.4)

Assuming the wave-particle duality to be true, Elsasser in 1925, thought that the waves associated with electrons might

interfere on passing through crystals as X-rays do. In 1927, Davison and Germer and G. P. Thomson, independently,

obtained the interference pattern produced by electrons passing through a crystal and also measured the wavelength of

electron waves. Electrons are light charged particles, so they interact strongly with matter and penetrate relatively short

distances into the crystal. Therefore, the low-energy electron diffraction (LEED) technique is very useful for studying

the structure of surfaces and thin films and in surface science in general. LEED is also a very important technique for

the study of surface structures formed by atoms or molecules adsorbed on metal or semiconductor surfaces.

2.3 NEUTRON DIFFRACTION

In 1932, J. Chadwick found a new particle called a neutron in radioactive processes. According to the wave-particle duality

principle, the wavelength of a neutron is also given by Eq. (2.4) by replacing the electronmass by the neutron massMn, that is,

l¼ hffiffiffiffiffiffiffiffiffiffiffiffi
2MnE

p (2.5)

The energy of a thermal neutron (energy at room temperature T) is given by

E¼ 3

2
kBT (2.6)

where kB is the Boltzmann constant. From Eqs. (2.5), (2.6) the wavelength of a thermal neutron is given by

l¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MnkBT

p (2.7)

At T ¼ 293K one gets l ¼ 1.49Å, which is of the order of atomic spacing in crystalline solids, a necessary condition for

interference from a crystal lattice. Therefore, a beam of thermal neutrons, having velocity on the order of 3�1015 cm/sec,

suffers diffraction from the atoms of a crystalline solid and provides information about the crystal structure in the same way

as X-ray diffraction does.

An important property of neutrons is that they possess finite magnetic moment even though neutrons have no charge.

The magnetic moment of a neutron is �1.91307 �0.0006 mBp where

mBp ¼
eh

4p Mpc
¼ 5:05�10�24 erg=gauss (2.8)

is the Bohr magnetron of a free proton having mass Mp and c is the velocity of light. It is noteworthy that the magnetic

moment of a neutron is much different in magnitude and sign from that of a proton. In neutron diffraction, the magnetic

moments of neutrons interact with the magnetic moments of crystal atoms. Thus, neutron diffraction has an added

advantage over X-ray diffraction as it yields information about the magnetic structure (orientation of magnetic moments

of atoms of the crystal) in addition to the chemical structure of crystalline solids. Shull and Smart (1949) performed the first

neutron diffraction study to investigate the structure of antiferromagnetic MnO crystal. The early studies on neutron dif-

fraction from crystals are nicely reviewed by Becon (1975) and Shull (1995). In the early 1950s, experimental studies on

neutron diffraction from crystals received considerable impetus (Koehler &Wollan, 1955; Shull, Strauser, &Wollan, 1951;

Shull &Wilkinson, 1955; Shull &Wollan, 1956). Neutron diffraction studies give information about the ferromagnetic and

antiferromagnetic ordering of magnetic moments in crystalline solids (Izyumov & Ozerov, 1970). In the case of magnetic

binary alloys, neutron diffraction studies yield information about the magnetic moments of the two constituent atoms (Shull

& Wollan, 1956). Now it is generally accepted that thermal neutron diffraction is one of the most powerful experimental

techniques to study the properties of crystalline solids.
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2.4 LAUE SCATTERING THEORY

Consider a crystalline solid on which is incident a parallel beam of radiation. The amplitude of radiation at any point r

having frequency o is given by

A rð Þ¼ A0 e
i K � r�otð Þ (2.9)

where A0 is the amplitude at r¼ 0 andK is the wave vector of the incident radiation. As the frequencyo remains constant in

the scattering process so e� iot is constant and can be absorbed in amplitude A0 at a particular instant. Hence, the incident

radiation at a particular instant can be written as

A rð Þ¼ A0 e
iK � r (2.10)

The radiation is scattered from the atoms in a solid and the geometry of the scattering process is shown in Fig. 2.2. In the

case of elastic scattering, jK0j ¼ jK j ¼ K and the amplitude of scattered waves depends on the amplitude of the incident

radiation at position Rn. Hence, the amplitude of a scattered wave As(r) at the observation point P is given by

As rð Þ¼C A0 e
iK �Rn

� � eiKr

r
(2.11)

which, in the case of elastic scattering, can be written as

As rð Þ¼C A0e
iK �Rn

eiK
0 � r

r
(2.12)

Here C is the constant of proportionality and depends on the details of the scattering center. From the geometry of the

scattering process (Fig. 2.2)

r¼Rn0 �Rn (2.13)

which in the asymptotic limit, with jRn j<<j r j, jRn j<<jRn0j is given by

r¼Rn0 � R̂n0 �Rn ¼Rn0

KR̂n0 �Kr̂¼K0 (2.14)

where R̂n0 ¼ Rn0/jRn0j is a unit vector in the direction of Rn0 and r̂ is a unit vector in the direction of vector r. Here symbols

without a vector sign are moduli (absolute values) of their vector forms. Substituting Eqs. (2.13), (2.14) into Eq. (2.12) we get

As rð Þ¼ CA0

e�iDK �Rn

Rn0
(2.15)

FIG. 2.2 Electromagnetic waves with plane wave fronts

having wave vector K are incident on an atom at Rn in the

crystal lattice. After scattering, radiation with a spherical

wave front having wave vector K0 is produced and travels

in the direction of the position vector r.
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where

DK¼K0 �K (2.16)

Here, the factor exp(iK0 �Rn0)¼ exp(iKRn0) is nearly a constant quantity and is absorbed in A0. This is the case when jRn0j
is very large compared with the dimensions of the crystal under consideration. The total scattering amplitude from all the

atoms of a crystalline material is obtained by summing over all the atoms, that is,

As rð Þ¼ CA0

X
n

e�iDK �Rn

Rn0
(2.17)

Actually, the incident radiation interacts with the electrons of the atom at a particular siteRn and is scattered. Therefore, the

strength of scattered radiation depends on the electron density ne(Rn) at Rn. So, the total scattering amplitude of radiation

becomes

As rð Þ ¼ CA0

Rn0

ðX
n

ne Rnð Þe�iDK �Rnd3Rn (2.18)

Here, the integral is over the volume of the nth atom. If the material under consideration is monatomic, then the atom can be

assumed to be at a lattice point and the scattering strength of all the atoms is the same. But if there is more than one atom in

the basis (s number of atoms), then the total scattering amplitude from the whole of the crystal is found to be

As rð Þ¼ 1

Rn0

X
n

Xs

m¼1

fm DKð Þe�iDK �Rnm

¼ 1

Rn0
AL DKð Þ FS DKð Þ

(2.19)

where

AL DKð Þ¼
X
n

e�iDK �Rn (2.20)

FS DKð Þ¼
Xs

m¼1

fm DKð Þe�iDK �Rm (2.21)

Here AL(DK) gives the scattering amplitude from the lattice of a crystalline solid and depends on the periodicity of

the lattice. On the other hand, FS(DK) gives the amplitude of scattering from a unit cell and depends upon the

distribution of atoms in the unit cell and hence is called the geometrical structure factor of the basis. The product

of AL(DK) and FS(DK) determines the total scattering amplitude from the crystalline structure. Here fm measures

the amplitude of scattered waves from the mth atom of the unit cell and its value depends on the electron distribution

of the mth atom in the nth unit cell. In terms of the electron density of the atom at the Rm site, that is, ne(Rm), fm can be

written as

fm DKð Þ¼
ð
ne Rmð ÞeiDK �Rm d3Rm

It can also be written as

fm DKð Þ¼
ð
ne rð ÞeiDK � rd3r (2.22)

where the volume integral is over the volume of the mth atom. The value of fm for the mth atom is the same for each lattice

point Rn. Thus, every lattice point Rn has associated with it a unit cell and every unit cell yields the same amplitude of

scattered radiation.

Further, fm also depends on the nature of the incident radiation. If X-ray diffraction is studied from a crystalline material,

then fm ¼ fm
X is called the X-ray scattering amplitude of the mth atom in the unit cell. In the case of a neutron diffraction

study, fm ¼ fm
N is called the neutron scattering amplitude from the mth nonmagnetic atom of the unit cell. On the other

hand, in the case of neutron diffraction from a magnetic atom (magnetic material) fm¼ fm
M is called the magnetic scattering

amplitude.
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Problem 2.1

Substitute for Rn from Eq. (1.5) in Eq. (2.20) and prove that the intensity of scattered waves is maximum when the following con-

ditions are satisfied:

a1 �DK¼ 2pN1

a2 �DK¼ 2pN2

a3 �DK¼ 2pN3

(2.23)

whereN1, N2, andN3 are integers. The conditions given by Eq. (2.23) are called Laue’s diffraction conditions. Further, prove that the

intensity of the scattered beam is directly proportional to the number of atoms in the crystal.

2.5 RECIPROCAL LATTICE

An X-ray or neutron diffraction pattern is in a space that has dimensions of reciprocal length and such a space is called

reciprocal space. Therefore, to interpret the X-ray diffraction pattern and then relate it to the crystal (direct) space, one

has to define a reciprocal lattice. Ewald originally proposed the formal concept of the reciprocal lattice in 1921 and Bernal

studied its applications in 1927.

Consider a Bravais lattice in the reciprocal space with primitive translation vectors b1, b2, and b3. One of the ways to

construct a reciprocal lattice is to make its primitive vectors orthogonal to the primitive vectors of the direct space, which

mathematically can be written as

aa � bb ¼ 2pdab (2.24)

where a and b take values 1, 2, and 3. The factor 2p in Eq. (2.24) arises due to geometrical reasons. We have seen in

Chapter 1 that a1, a2, and a3 are not generally orthogonal to one another and so are the vectors b1, b2, and b3. From

Eq. (2.24) it is evident that b1 is perpendicular to a2 and a3, b2 is perpendicular to a3 and a1, and b3 is perpendicular to

a1 and a2. Therefore, one can write

b1∝ a2�a3
orb1 ¼K1a2�a3

(2.25)

where K1 is a constant of proportionality which can be determined from the condition

a1 � b1 ¼ 2p (2.26)

Substituting b1 from Eq. (2.25) into Eq. (2.26) we get

K1 ¼
2p

a1 � a2�a3
(2.27)

Hence, the vector b1 from Eq. (2.25), (2.27) becomes

b1 ¼ 2p
a2�a3

a1 � a2�a3
(2.28a)

Similarly, expressions for b2 and b3 can be obtained and are given by

b2 ¼ 2p
a3�a1

a1 � a2�a3
(2.28b)

b3 ¼ 2p
a1�a2

a1 � a2�a3
(2.28c)

Problem 2.2

If the primitive translation vectors a1, a2, and a3 are constructed from b1, b2, and b3 in the sameway as b1, b2, and b3 are constructed

from a1, a2, and a3 [see Eq. (2.28)], prove that

a1 ¼ 2p
b2�b3

b1 � b2�b3
,a2 ¼ 2p

b3�b1
b1 �b2�b3

,a3 ¼ 2p
b1�b2

b1 �b2�b3
(2.29)
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From Eqs. (2.24) and (2.28), it is evident that vectors b1, b2, and b3 have dimensions of reciprocal of length and are

therefore, called primitive reciprocal lattice vectors. The periodic repetition of b1, b2, and b3 generates a new lattice called

the reciprocal lattice in a space called the reciprocal space or the Fourier space. A general reciprocal lattice vector Gp is

defined in the conventional way as

Gp ¼ p1b1 + p2b2 + p3b3 (2.30)

where p1, p2, and p3 are integers: negative, positive, or zero. The set of integers p1, p2, and p3 is, collectively, represented by

an integer p, that is, p ¼ (p1, p2, p3). The important property of the reciprocal lattice is that

eiGp �Rn ¼ 1 (2.31)

The reciprocal lattice can also be constructed by making use of the periodicity of the electron and atomic densities.

2.5.1 Periodicity of Electron Density

The concept of reciprocal lattice can also be derived from the electronic band theory of solids (see Chapter 12). The general

wave function for an electron in a periodic crystalline solid is the Bloch wave function defined as

ck rð Þj i¼ eik � ruk rð Þ (2.32)

where k is the electron wave vector and uk(r) is a scalar complex function that satisfies the periodicity of the crystal, that is,

uk rð Þ¼ uk r+Rnð Þ (2.33)

If T(Rn) is the translation operator, then the Bloch wave function satisfies the following condition

T Rnð Þ ck rð Þj i¼ ck r+Rnð Þj i ¼ eik �Rn ck rð Þj i (2.34)

Eq. (2.34) is usually called the Bloch condition [see Eq. (12.33)]. Let us consider some vector k¼Gp such that

eiGp �Rn ¼ 1 (2.31)

then Eq. (2.34) reduces to

T Rnð Þ cGp
rð Þ

��� E
¼ cGp

r+Rnð Þ
��� E

¼ cGp
rð Þ

��� E
(2.35)

Eq. (2.35) shows that the choice of k¼Gp makes jck(r)i invariant under translation (translational periodicity). Eq. (2.31) is
satisfied if

Gp �Rn ¼ 2pp (2.36)

where p is an integer: negative, positive, or zero. Using Eq. (1.5) for Rn in Eq. (2.36) we get

n1Gp � a1 + n2Gp � a2 + n3Gp � a3 ¼ 2pp (2.37)

For each of the integers (n1, n2, n3), there exists some integer p for which the above equation holds. In other words, the value

of p depends on the set {n1, n2, n3}. As a simple case, consider n2¼n3¼0, then Eq. (2.37) gives

Gp � a1 ¼ 2p
p

n1
¼ 2pp1 (2.38a)

where p/n1 ¼ p1 is another integer. Similarly, one can get

Gp � a2 ¼ 2pp2 (2.38b)

Gp � a3 ¼ 2pp3 (2.38c)

From Eqs. (2.38a), (2.38b), and (2.38c) the general form of vector Gp can be written as

Gp ¼ p1b1 + p2b2 + p3b3 (2.39)

which is the same as Eq. (2.30). It is noteworthy that Gp is defined by satisfying Eq. (2.31). Using Eq. (1.5) for Rn and

Eq. (2.39) for Gp in Eq. (2.31) one can prove the condition defined by Eq. (2.24). This shows that the factor of 2p comes

from the geometry of the crystal.
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2.5.2 Periodicity of Atomic Density

2.5.2.1 Monatomic Linear Lattice

In the direct crystal space, the atomic density is periodic [Eq. (1.13)]. For a monatomic linear lattice, the periodicity of the

atomic density ra(r1) can be written as

ra r1ð Þ ¼ ra r1 +Rnð Þ (2.40)

where

Rn ¼ na1 (2.41)

Here n is an integer: negative, positive, or zero. A periodic function can always be expanded in the Fourier space. Therefore,

ra(r1) can be written as

ra r1ð Þ¼
X
p

rap e
i 2p

a
p î1

� �
� r1 (2.42)

where p is an integer. Let us define a vector Gp in the Fourier space by

Gp ¼
2p
a
p̂i1 ¼ pb1 (2.43)

then Eq. (2.42) becomes

ra r1ð Þ¼
X
p

raGp
eiGp � r1 (2.44)

Here Gp is called the reciprocal lattice vector in one dimension. The translation of Gp, by varying all possible values of p,

forms a periodic lattice called the reciprocal lattice, which in a one-dimensional crystal is also along the î1 direction (see

Fig. 2.3). Here and hereafter the small dots represent the reciprocal lattice points. From Eq. (2.41) and Eq. (2.43) one can

write

Gp �Rn ¼ 2p� integer (2.45)

and therefore,

eiGp:Rn ¼ 1 (2.46)

is an important property of a reciprocal lattice.

2.5.2.2 Two-Dimensional Square Lattice

In a square lattice the periodic atomic density is given by Eq. (1.13), which for completeness is written again as

ra rð Þ¼ ra r+Rnð Þ (2.47)

Here r and Rn for a two-dimensional crystal are given by Eqs. (1.10) and (1.3), respectively. The expansion for ra(r) in the
Fourier space becomes

ra rð Þ¼
X
p1,p2

rap1,p2 e
i 2p

a
p1 î1 +

2p
a
p2 i

_

2

� �
� r1 + r2ð Þ (2.48)

¼
X
Gp

raGp
eiGp � r (2.49)

FIG. 2.3 Reciprocal lattice of a monatomic one-dimensional crystal having primitive lattice vector a1 such that j a1 j¼a. Here, dots represent the

reciprocal lattice points and b1 ¼ 2p=að Þ î1 is the primitive reciprocal lattice vector.
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where

Gp ¼
2p
a

p1 î1 + p2 î2

� �
¼ p1b1 + p2b2 (2.50)

Here we have used Eq. (1.10) for r. The reciprocal lattice of a square lattice is shown in Fig. 2.4.

2.5.2.3 Three-Dimensional Cubic Lattice

In a three-dimensional cubic crystal, the periodic atomic density is given by Eq. (1.13), where r and Rn are the position

vector and lattice vector given by Eqs. (1.9) and (1.5). Just as in the two-dimensional crystal, one can prove that in a three-

dimensional crystal the atomic density can be represented in the form

ra rð Þ¼
X
Gp

raGp
eiGp � r (2.51)

where

Gp ¼
2p
a

p1 î1 + p2 î2 + p3 î3

� �
¼ p1b1 + p2b2 + p3b3 (2.52)

In the reciprocal lattice, one can introduce physical concepts corresponding to those already defined in the direct space. For

simplicity consider a square lattice in the reciprocal space as shown in Fig. 2.4. HereK is any wave vector in the reciprocal

space, which is related to any other wave vector K0 through a reciprocal lattice vector Gp, that is,

K0 ¼K +Gp (2.53)

(see Fig. 2.4). Note that the points corresponding to vectors K and K0 are equivalent in the reciprocal space. The equiv-

alence between K and K0 can be proved using the key property of the reciprocal lattice defined by Eq. (2.31). The phase

factor of K0 is given by

eiK
0 �Rn ¼ ei K +Gpð Þ �Rn

¼ eiK �Rn

(2.54)

which is the phase factor for vectorK. Eq. (2.54) shows that vectorsK andK0 in Eq. (2.53) are equivalent. From Eq. (2.53)

one can generate an infinite number of points that are equivalent to vectorK. Hence one can say that a reciprocal lattice is a

FIG. 2.4 Square lattice in the reciprocal space having prim-

itive reciprocal lattice vectors b1and b2 (dots represent the

reciprocal lattice points). Let K be any vector in the reciprocal

space. The vectorsK andK0 are related to one another through a
reciprocal lattice vectorGp¼b1+3b2, where j b1 j¼ j b2 j¼2p/
a and a is the lattice constant of the square lattice. The shaded

square represents the conventional primitive cell of the lattice.
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mathematical abstraction and consists of an array of an infinite number of points in the reciprocal space in which each
point has identical surroundings. Further, Eq. (2.53) in the reciprocal space is equivalent to Eq. (1.20) in the direct space:
Eq. (1.20) defines periodicity of the lattice in the direct space while Eq. (2.53) defines the periodicity of the lattice in the

reciprocal space.

2.6 PRIMITIVE CELL IN RECIPROCAL SPACE

The primitive cell in the reciprocal space can be defined in the conventional way as a polyhedron bounded by the primitive

vectors b1, b2, and b3 with volume given by

O0 ¼ b1 � b2�b3
�� ��¼ 2pð Þ3

V0

(2.55)

In the conventional primitive cell, the reciprocal lattice points are at the corners of the polyhedron, which yield on average

one reciprocal lattice point per cell. However, the common practice is to define WS cells in the reciprocal lattice in exactly

the same way as in the crystal space. The WS cells in the reciprocal space are known as Brillouin zones (BZs). In con-

structing a BZ, we draw the perpendicular bisector planes to the lines joining the reciprocal lattice point under consideration

(assumed to be at the origin) to the reciprocal lattice points corresponding to 1NNs, 2NNs, 3NNs, and higher order NNs

from the origin. We start from the origin and proceed away from it until the first set of bisector planes is encountered. The

region inside these planes is called the first BZ (1BZ) with a reciprocal lattice point at its center. The surfaces of the inter-

secting planes define the surface of the 1BZ. We then start from the surface of the 1BZ and move away from it until we

encounter the next new bisector planes. The surface of these planes defines the surface of the second BZ (2BZ) and the

volume between the surfaces of the 1BZ and the 2BZ gives the volume of the 2BZ. In general, if we start from the surface of

the (n-1)th BZ and move away from it until the next bisector planes are encountered, then the surface of these planes define

the surface of the nth BZ (nBZ). The volume between the surfaces of the (n-1)th and nth BZs gives the volume of the nBZ.We

take some simple examples for obtaining the reciprocal lattices and constructing their BZs.

2.6.1 Linear Monatomic Lattice

Consider a linear monatomic lattice, along the x-axis, with lattice constant a (see Fig. 1.2A). The primitive translation

vector a1 is given by Eq. (1.2b). The primitive vector b1 can be calculated in terms of a1. To do so, we introduce temporary

unit lattice vectors a2 and a3 along y- and z-directions defined as

a2 ¼ î2
a3 ¼ î3

(2.56)

The vectors a2 and a3 are introduced so as to use Eq. (2.28). Using Eqs. (1.2b) and (2.56) one can immediately write

a1 � a2�a3
�� ��¼ a (2.57)

Further substituting a1, a2, and a3 in Eq. (2.28a) one obtains

b1 ¼
2p
a
î1 (2.58)

Now, the reciprocal lattice vector in one dimension is given by

Gp ¼
2p
a
p̂i1 (2.59)

Hence, the reciprocal lattice is also along the x-direction with periodicity of 2p/a (see Fig. 2.3). The different BZs in a one-
dimensional crystal can be shown in a simple but most instructive way. The shortest nonzero reciprocal lattice vectors from

Eq. (2.59) are for p ¼ �1, that is,

G1 ¼�2p
a
î1 (2.60)

The 1BZ is subtended by the perpendicular bisectors ofG1 around the origin and is shown in Fig. 2.5. The reciprocal lattice

vectors next to the shortest ones are obtained by putting p ¼ �2 in Eq. (2.59), that is,
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G2 ¼�4p
a
î1 (2.61)

The 2BZ formed by the perpendicular bisectors of G2 is shown in Fig. 2.5 and it has two segments: one on the left and the

other on the right of the 1BZ, but the total length of the 2BZ is the same as that of the 1BZ. Similarly, one can draw the 3BZ,

4BZ, … in the reciprocal lattice and all will have the same length, that is, 2p/a.

2.6.2 Square Lattice

The square lattice in the crystal space is shown in Fig. 1.3 and the translation vector and the primitive translation vectors are

given by Eqs. (1.3) and (1.4), respectively. The reciprocal lattice vector in two dimensions is given by

Gp ¼ p1b1 + p2b2 (2.62)

The primitive vectors b1and b2 can be evaluated from Eq. (2.28) by introducing a third temporary unit vector a3 along the

z-direction defined as

a3 ¼ î3 (2.63)

Now, it is straightforward to prove that

a1 � a2�a3
�� ��¼ a2 (2.64)

From Eqs (2.28) one can immediately write

b1 ¼
2p
a
î1, b2 ¼

2p
a
î2 (2.65)

From Eqs. (2.62), (2.65) the general reciprocal lattice vector becomes:

Gp ¼
2p
a

p1 î1 + p2 î2

� �
(2.66)

which is the same as Eq. (2.50). Here b1 and b2 are perpendicular to each other with the same magnitude. It is noteworthy

that the directions of b1 and b2 are the same as those of a1 and a2 but with different magnitude. Hence, the direct and recip-

rocal lattices of a square lattice exhibit the same symmetry. From Eq. (2.66) the shortest nonzero reciprocal lattice vectors

are given by

G1 ¼�2p
a
î1, �2p

a
î2 (2.67)

The perpendicular bisectors of four G1 vectors form the 1BZ, which is a square having side 2p/a with a reciprocal lattice

point at its center (see Fig. 2.6). The construction of the 2BZ and 3BZ is also shown in Fig. 2.6. The 2BZ has four parts,

namely, 2a, 2b, 2c, and 2d while the 3BZ has eight parts, namely, 3a, 3b, 3c, 3d, 3e, 3f, 3g, and 3h. When we fold back the

different parts of the 2BZ or 3BZ, they form squares with area equal to that of the 1BZ.

2.6.3 sc Lattice

Consider an sc lattice with primitive lattice vectors given by Eq. (1.31). It is straightforward to prove that

a1 � a2�a3
�� ��¼ a3 (2.68)

FIG. 2.5 The BZs of a monatomic one-dimensional lattice having lattice constant a. The dots represent the reciprocal lattice points.
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and

b1 ¼
2p
a
î1

b2 ¼
2p
a
î2

b3 ¼
2p
a
î3

(2.69)

Hence, the general reciprocal lattice can be written as

Gp ¼
2p
a

p1 î1 + p2 î2 + p3 î3

� �
(2.70)

which is the same as Eq. (2.52). From the above equation, the shortest nonzero reciprocal lattice vectors are six in number

and are given by

G1 ¼�2p
a
î1, �2p

a
î2, �2p

a
î3 (2.71)

Hence, the reciprocal lattice of an sc crystal structure is also an sc lattice with primitive vectors given by Eq. (2.69). The

volume of the primitive cell is given by (2p/a)3, which is consistent with Eq. (2.55). The 1BZ of the sc lattice, formed by the

perpendicular bisector planes of theG1 vectors, is a cube with side 2p/a in magnitude (see Fig. 2.7). It is noteworthy that the

reciprocal lattice point is situated at the center of the 1BZ, which is symmetrical about the lattice point. The 2BZ of the sc

reciprocal lattice is a dodecahedron and is shown in Fig. 2.8.

In all of the above examples, the direct and reciprocal primitive vectors lie along the same directions with the same

symmetry, but this may not be always true. We consider some examples below in which the direct and reciprocal lattices

exhibit different symmetries.

FIG. 2.6 The 1BZ, 2BZ, and 3BZ of a square lattice in the reciprocal space with dots representing the reciprocal lattice points.
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FIG. 2.7 The reciprocal lattice and 1BZ of sc crystal structure having lattice constant a.

FIG. 2.8 (A) The 2BZ of an sc lattice (omitting the interior cube, which is the 1BZ). (B) Three typical segments of the 2BZ and the interior cube that

forms the 1BZ.



2.6.4 fcc Crystal Structure

The fcc crystal structure is shown in Fig. 1.19a and its primitive vectors are given by Eq. (1.38). The volume of the primitive

cell from Eq. (1.39) is given by

V0 ¼ a1 � a2�a3
�� ��¼ a3

4
(2.72)

Substituting Eqs. (1.38) and (2.72) into Eq. (2.28), we can prove that

b1 ¼
2p
a

î1 + î2� î3

� �

b2 ¼
2p
a

�î1 + î2 + î3

� �

b3 ¼
2p
a

î1� î2 + î3

� � (2.73)

Comparison of Eq. (2.73) with Eq. (1.37) shows that the reciprocal lattice of the fcc crystal structure exhibits bcc symmetry.

The reciprocal lattice vectors given by Eq. (2.73) are shown in Fig. 2.9. Here the origin is chosen to be at the center of the

cube while the x-, y-, and z-directions are parallel to the edges of the cube. So, the reciprocal lattice of the fcc crystal lattice

is a bcc lattice with a primitive cell of volume 4(2p/a)3, using Eq. (2.55). Substituting Eqs. (2.73) into Eq. (2.30), the general
reciprocal lattice is given by

Gp ¼
2p
a

p1�p2 + p3ð Þ î1 + p1 + p2�p3ð Þ î2 + �p1 + p2 + p3ð Þ î3
h i

(2.74)

The above equation yields eight shortest nonzero reciprocal lattice vectors given by

G1 ¼
2p
a

�î1, � î2, � î3

� �
(2.75)

The next shortest reciprocal vectors G2 are six in number and are given by

G2 ¼�4p
a
î1, �4p

a
î2, �4p

a
î3 (2.76)

The perpendicular bisector planes toG1 give an octahedron with a reciprocal lattice point at its center. However, it is found

that the perpendicular bisector planes ofG2 cut the corners of the regular octahedron formed above. Therefore, the 1BZ of

the fcc crystal structure is a truncated octahedron, as shown in Fig. 2.10A.

FIG. 2.9 The primitive vectors b1, b2, and b3 of the fcc crystal structure with lattice constant a [Eq. (2.73)]. The reciprocal lattice exhibits bcc symmetry.
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Problem 2.3

Consider a crystal with bcc structure whose primitive vectors are given by Eq. (1.37). Prove that its reciprocal lattice has fcc sym-

metry with primitive vectors given by

b1 ¼
2p
a

î1 + î2

� �

b2 ¼
2p
a

î2 + î3

� �

b3 ¼
2p
a

î3 + î1

� � (2.77)

Draw the primitive vectors b1, b2, and b3 in the reciprocal space.

The general reciprocal lattice vector obtained from Eqs. (2.77) and (2.30) is given by

Gp ¼
2p
a

p1 + p3ð Þ î1 + p1 + p2ð Þ î2 + p2 + p3ð Þ î3
h i

(2.78)

The above equation yields twelve shortest nonzero reciprocal lattice vectors given by

G1 ¼
2p
a

�î1, � î2

� �
,

2p
a

�î2, � î3

� �
,

2p
a

�î3, � î1

� �
(2.79)

The 1BZ is obtained by the perpendicular bisector planes of G1, defined by Eq. (2.79), and is a regular rhombic dodeca-

hedron, as shown in Fig. 2.10B.

2.6.5 Hexagonal Crystal Structure

The primitive translation vectors of the hexagonal structure in direct space, as shown in the basal plane of Fig. 1.22, are

given by Eq. (1.41). Using Eq. (2.28), one can find the primitive lattice vectors in the reciprocal space that are given by

b1 ¼
2p
a

î1�
1ffiffiffi
3

p î2

� 	

b2 ¼
2p
a

î1 +
1ffiffiffi
3

p î2

� 	

b3 ¼
2p
c
î3

(2.80)

Here we have used Eq. (1.42) for the volume of the primitive cell of the hexagonal structure. Fig. 2.11 shows the unit cell

formed by vectors b1, b2, and b3. Hence, the reciprocal lattice of hexagonal crystal structure also exhibits hexagonal

FIG. 2.10 The 1BZs for (A) fcc and (B) bcc crystal structures. Each BZ is inscribed in a cube of edge 4p/a, where a is the edge of the cubic cell in the

crystal space.
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symmetry. The general reciprocal lattice vector for the hexagonal structure can be written from Eqs. (2.30), (2.80) and is

given by

Gp ¼
2p
a

p1 + p2ð Þ î1�
1ffiffiffi
3

p p1�p2ð Þ î2 +
a

c
p3 î3


 �
(2.81)

Problem 2.4

If the primitive lattice vectors in the crystal space in a hexagonal structure are given by

a1 ¼ âi1

a2 ¼�a

2
î1 +

ffiffiffi
3

p

2
âi2

a3 ¼ c î3

(2.82)

(see Fig. 1.21), prove that the primitive lattice vectors in the reciprocal space are given by

b1 ¼
2p
a

î1 +
1ffiffiffi
3

p î2

� 	

b2 ¼
2p
a

2ffiffiffi
3

p î2

b3 ¼
2p
c
î3

(2.83)

The primitive vectors in the reciprocal space are shown in Fig. 2.12. Further, show that the general reciprocal lattice vector Gp

from Eqs. (2.30), (2.83) is given by1

Gp ¼
2p
a

p1 î1 +
1ffiffiffi
3

p p1 + 2p2
� �

î2 +
a

c
p3 î3


 �
(2.84)

FIG. 2.11 The unit cell in the reciprocal space formed by primitive lattice vectors b1, b2, and b3 given by Eq. (2.80) for the hexagonal crystal structure.

1. If I1 ¼ p1, I2 ¼ p1 + 2 p2, and I3 ¼ p3, then I1+I2¼2 (p1 + p2). Because p1, p2andp3 are integers, therefore I1+I2 is always an even integer. While

generating reciprocal lattice vectors of hexagonal structure, one should incorporate the above condition (I1+I2 is always even) in the variation of p1,

p2andp3.
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Problem 2.5

Consider a body-centered tetragonal (bct) structure (see Fig. 2.13A) with primitive vectors given by

a1 ¼
a

2
î1 +

a

2
î2�

c

2
î3

a2 ¼� a

2
î1 +

a

2
î2 +

c

2
î3

a3 ¼
a

2
î1�

a

2
î2 +

c

2
î3

(2.85)

FIG. 2.12 The unit cell in the reciprocal space formed by primitive lattice vectors b1, b2, and b3 given by Eq. (2.83) of the hexagonal structure. The figure

also shows separately the primitive vectors b1 and b2 in the basal plane of the unit cell.
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Prove that the reciprocal lattice of bct is a face-centered tetragonal (fct) lattice defined by primitive reciprocal lattice vectors

b1 ¼
2p
a

î1 + î2

� �

b2 ¼
2p
a

î2 +
a

c
î3

� �

b3 ¼
2p
a

î1 +
a

c
î3

� � (2.86)

The primitive vectors b1, b2, and b3 in reciprocal space are drawn in Fig. 2.13B.

2.7 IMPORTANCE OF RECIPROCAL SPACE AND BZs

2.7.1 Bragg Reflection

The importance of the BZ can be understood by considering the equation of the face of a BZ (see Fig. 2.14) given by

K � Ĝp ¼
1

2
Gp

��� ��� (2.87)

where K is any wave vector ending on the face of the BZ and Ĝp is a unit vector along Gp. If Gp is the shortest reciprocal

lattice vector, then Eq. (2.87) gives the face of the 1BZ. Eq. (2.87) is equivalent to the equation

K0 ¼ K +Gp (2.88)

with jK0j ¼ jK j. Eq. (2.88) may be viewed as an expression for the conservation of momentum in a crystal. Note that

Eqs. (2.87), (2.88) in the reciprocal space are equivalent to Eqs. (1.19) and (1.20), respectively, in the crystal space.

Eq. (2.88) is just the same as Eq. (2.53) and gives the Bragg reflection condition and can be represented by Ewald’s con-

struction (Fig. 2.15). Eq. (2.87) can also be written as

2K �Gp +G
2
p ¼ 0 (2.89)

It is noteworthy that the Eqs. (2.87), (2.88), and (2.89) are all equivalent and represent the Bragg reflection condition.

According to Fig. 2.15, Bragg reflection occurs if the wave vectors before (K) and after (K0) reflection end at the reciprocal
lattice points. Hence, the Bragg reflection condition is satisfied at all points on the surface of the BZ, which is an important

property of the reciprocal lattice.

FIG. 2.13 (A) The unit cell of the bct structure in the crystal space. (B) The unit cell of the bct structure in the reciprocal space.
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Problem 2.6

Prove that Eq. (2.88) or Eq. (2.89) can be written as

2a sin y¼ nl (2.90)

for cubic crystals. Here a and l are the lattice parameter and the wavelength, n is an integer, and angle y is defined in the same way

as in Fig. 2.1.

FIG. 2.14 A plane bisects perpendicularly the reciprocal vector Gp with P as the mid point. The vector K represent the position vector of any point on

the plane.

FIG. 2.15 Ewald’s construction for a square reciprocal lattice with dots representing the lattice points. The wave vectorsK andK0 are such that they join
lattice points and jK j¼ jK0j.
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Note that Eq. (2.90) is the Bragg reflection condition, except that the distance between the two planes d [Eq. (2.1)] is

replaced by a.

2.7.2 Significant Wave Vectors

Eqs. (2.53), (2.54) show that a wave vector K is not unique. An infinite number of equivalent wave vectors K0 can be

generated using Eq. (2.53). Let us denote the set of wave vectors that are equivalent to K by {K0}. Any wave vector in

{K0} is related toK by some reciprocal lattice vectorGp. In other words, everyK possesses an infinite number of equivalent

wave vectors in the reciprocal space. In a set of equivalent wave vectors {K0}, ifK forms the smallest vector, it is called the

significant wave vector. Let us investigate if there exists any particular region in the reciprocal space that contains all the

significant wave vectors for a particular crystal.

Consider a one-dimensional lattice in reciprocal space (Fig. 2.16) in which AOB is the 1BZ. Now add the shortest

Gp(¼2p/a) to the portion DB of the 2BZ. It will occupy the position in the 1BZ shown in Fig. 2.16. Similarly, subtract

the shortest Gp from the second portion AC of the 2BZ to bring it to the 1BZ (Fig. 2.16). Similarly, the 3BZ can also

be brought to the 1BZ and it will occupy the position shown in Fig. 2.16.

Consider a square lattice in the reciprocal space, as shown in Fig. 2.17. The wave vector K1 lies inside, while K2 lies

outside the 1BZ. When even the shortest reciprocal lattice vector is subtracted from (or added to) K1, the resultant wave

vector K1
0 lies outside the 1BZ. On the other hand, if the shortest reciprocal lattice vector is subtracted from K2, the

resultant vector K2
0 lies inside the 1BZ. In both the cases, the smaller wave vector (significant wave vector) lies inside

FIG. 2.16 Schematic representation of the 2BZ and 3BZ in the reciprocal lattice of a monatomic linear lattice, when transferred to the 1BZ.

FIG. 2.17 A square lattice in the reciprocal space in which the 1BZ is shown by the shaded region. The figure shows two cases: one with wave vectorK1

lying in the 1BZ and the second with wave vector K2 outside the 1BZ.
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the 1BZ. One can generalize this fact by saying that a significant wave vectorK, corresponding to a set of equivalent wave

vectors {K0}, always lies inside the 1BZ. In general, all the significant wave vectors for a particular reciprocal lattice lie

inside the 1BZ. Sometimes the significant wave vectors are called reduced wave vectors and are usually represented by

vector q. It is for this reason that the electronic properties, particularly the energy band structure, are calculated in the

1BZ and these get repeated in the higher BZs.

2.7.3 Construction of Reciprocal Lattice

The 1BZ of a crystal structure is a primitive unit cell in the reciprocal space. By translating the 1BZ by all possible recip-

rocal lattice vectors one can fill the whole of the reciprocal space and can generate the reciprocal lattice. From Fig. 2.10, it is

evident that the 1BZ is symmetrical about the lattice point situated at its center. Therefore, for convenience, in the theo-

retical investigations of the properties of a crystal, one can replace the actual 1BZ by a sphere of equal volume to that of the

1BZ, generally called the WS sphere. Hence, the reciprocal lattice is a very important concept in the study of crystalline

materials because:

1. The diffraction pattern of a crystal (Laue spots) is a picture of the reciprocal lattice of the crystal. In principle, the prim-

itive translation vectors and their orientation in the crystal space can be obtained by making a transformation from the

reciprocal to the crystal space with the help of Eq. (2.29).

2. The mathematical solution of many physical problems in solid state physics is very difficult in the crystal space. But if

one transforms the problem into reciprocal space, using Eq. (2.28), the mathematical solution becomes easy.

2.8 ATOMIC SCATTERING FACTOR

The atomic scattering factor measures the amplitude of the wave scattered from a particular atom of a unit cell. The scat-

tering of X-rays depends on the electron distribution in an atom. The atomic scattering factor of the mth atom of a unit cell

from Eq. (2.22) is given by

fm DKð Þ¼
ð
ne rð Þ eiDK � rd3r (2.91)

The integral is over the electron density of the atom under consideration. Eq. (2.91) is nothing but the Fourier transform of

the atomic electron density. The plane wave can be expanded in terms of Legendre polynomials P‘(cosy) as

eiDK � r ¼
X∞
‘¼0

2‘ + 1ð Þ i‘ j‘ DKrð ÞP‘ cosyDK,r

� �
(2.92)

j‘(DK r) is a spherical Bessel function of order ‘ (orbital quantum number) and yDK, r is the angle between DK and r.
Assuming the electron density of an atom to be spherically symmetric, only the ‘¼ 0 component contributes to

Eq. (2.92). Therefore,

eiDK � r ¼ j0 DKrð Þ ¼ sin DKrð Þ
DKr

(2.93)

Hence, Eqs. (2.93), (2.91) give

fm DKð Þ¼ 4p
ð
ne rð Þ sin DKrð Þ

DKr
r2dr (2.94)

As the angle y between K and K0 goes to zero (see Fig. 2.18), DK also reduces to zero, which gives

fm 0ð Þ¼ 4p
ð
ne rð Þ r2dr¼Z (2.95)

where Z is the valence of atom under consideration. If DK is nonzero, then according to Bragg’s reflection DK¼ Gp [see

Fig. (2.15)]. Therefore, Eq. (2.94) reduces to

fm Gp

� �
¼ 4p

ð
ne rð Þ

sin Gpr
� �
Gpr

r2dr (2.96)
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If the whole of the electron distribution of an atom, situated at the origin, is concentrated at the origin, then the atom can be

treated as a point charge and Eq. (2.96) reduces to

fm Gp

� �
¼ 4p

ð
ne rð Þ r2dr¼Z (2.97)

Therefore, in both the approximations of Gp! 0 and r ! 0, the total scattering amplitude reduces to the same value.

2.9 GEOMETRICAL STRUCTURE FACTOR

The geometrical structure factor from Eq. (2.21) is given by

FS DKð Þ¼
Xs

m¼1

fm DKð Þ e�iDK �Rm (2.98)

FS(Gp) gives the amplitude of scattering from a unit cell of the crystal. Bragg reflection occurs at various atoms in the unit

cell when DK ¼ Gp, which reduces FS(DK) to

FS Gp

� �
¼
Xs

m¼1

fm Gp

� �
e�iGp �Rm (2.99)

Substituting the values of Gp and Rm from Eqs. (2.30) and (1.8), respectively, one gets

FS Gp

� �
¼
Xs

m¼1

fm Gp

� �
e�2pi p1m1 + p2m2 + p3m3ð Þ (2.100)

It is evident from Eq. (2.100) that FS(Gp) may not be real, but the scattered wave intensity, given by FS
∗(Gp)FS(Gp), is real.

With the help of Eq. (2.100), one can find directions in which the Bragg’s reflection has a maximum and others in which it is

a minimum. Such a study will help us in the determination of the structure of a crystalline solid.

2.9.1 sc Crystal Structure

In a crystal with sc structure there is one basis atom, which is assumed to be situated at the lattice point. If this lattice point is

at the origin, then, m¼ (m1,m2,m3) ¼ (0,0,0) ¼ 0 and Eq. (2.100) reduces to

FS Gp

� �
¼ f0 Gp

� �
(2.101)

which is real. The intensity of scattered wave IS becomes

IS ¼ F∗S Gp

� �
FS Gp

� �
¼ f20 Gp

� �
(2.102)

FIG. 2.18 The change in wave vector DK after the scattering process. Here, K is the wave vector before scattering and K0 is the wave vector after

scattering.
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2.9.2 fcc Crystal Structure

In the unit cell of the fcc structure, there are four atoms at the positions a(0,0,0), a(½,½,0), a(½,0, ½), and a(0, ½, ½), see

Fig. 1.19. Substituting these coordinates into Eq. (2.100) one gets

FS Gp

� �
¼ f0 Gp

� �
1 + e�ip p1 + p2ð Þ + e�ip p2 + p3ð Þ + e�ip p3 + p1ð Þ
h i

(2.103)

Here, it is assumed that all of the four atoms are identical (pure crystalline solid), each having atomic form factor f0(Gp).

The maximum value of FS(Gp) from Eq. (2.103) becomes

FS Gp

� �
¼ 4 f0 Gp

� �
(2.104)

when the integers p1, p2, and p3 are all even or all odd. The maximum intensity of Bragg reflection then becomes

IS ¼ 16 f20 Gp

� �
(2.105)

On the other hand, if one of the integers p1, p2, and p3 is odd and the others are even, or if one integer is even and others odd,

then FS(Gp) goes to zero; in such directions, there is no Bragg reflection. All of the four atoms in a unit cell may not be

identical if the crystal is a compound or an alloy. In these materials, one obtains minima in the Bragg reflection instead of no

reflection because the atomic form factors fm have different values for different atoms.

2.9.3 bcc Crystal Structure

In a pure crystal with bcc structure, the basis consists of two identical atoms at a(0,0,0) and a(½,½,½) (see Fig. 1.14).

Substituting the coordinates of the basis atoms into Eq. (2.100), we obtain

FS Gp

� �
¼ f0 Gp

� �
1 + e�ip p1 + p2 + p3ð Þ
h i

(2.106)

If p1 + p2 + p3 is an odd integer, then

FS Gp

� �
¼ 0 (2.107)

FIG. 2.19 The X-ray reflection from the first three atomic planes in a bcc crystal structure.
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and yields zero for the value of the scattered amplitude. Therefore, the intensity of the Bragg reflection in these directions of

the unit cell is zero. If p1 + p2 + p3 is an even integer, then

FS Gp

� �
¼ 2 f0 Gp

� �
(2.108)

Eq. (2.108) yields the maximum value of the intensity of scattered waves in these directions and is given by

IS ¼ 4 f20 Gp

� �
(2.109)

Eqs. (2.107), 2.108) show that the diffraction pattern does not contain lines such as [100], [111], [300], or [221], but does

contain lines such as [110], [200], [211], and [222].

One can explain physically why the [100] reflection is missing in the diffraction pattern from a bcc structure of a pure

element. The [100] reflection occurs when the reflections from the first and third planes differ in phase by 2p (see Fig. 2.19)

and these planes bind the unit cell. The reflection from the first and the intervening second plane are out of phase, thereby

canceling exactly the effect of each other due to the identical nature of the two planes. On the other hand, if the bcc structure

is of a compound, such as CsCl (see Fig. 1.17), then the atoms in the first and second planes are of a different kind: the first

plane consists of Cl atoms, while the second plane consists of Cs atoms and the atomic scattering factors of the two types of

atoms are different say f0 and f1. From Eq. (2.100) one obtains

FS Gp

� �
¼ f0 Gp

� �
+ f1 Gp

� �
e�ip p1 + p2 + p3ð Þ (2.110)

In this case FS(Gp) will never be zero, but it will oscillate from a minimum f0� f1 to a maximum value of f0 + f1. Hence, the

intensities of lines will vary from a maximum value of jf0 + f1j2 to a minimum value jf0 � f1j2.
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A pure crystalline solid consists of a periodic array of atoms in three dimensions and each atom consists of a nucleus with

electrons revolving around it. In a solid, one talks either about the electronic properties, such as electron states, electronic band

structure, and electrical conductivity, or about the lattice properties, such as phonons, lattice specific heat, and thermal con-

ductivity. Solids can be classified broadly as insulators, conductors, and semiconductors. In an insulator, there are no free

electrons and the atoms as such form the periodic array. But in a conducting solid, each atom provides some free electrons,

leaving an ion behind. Therefore, in a conductor there are free electrons with ions fixed at the lattice positions. An intrinsic

semiconductor behaves as an insulator at low temperatures, but at reasonably high temperatures some electrons are excited to

the conduction band to become free. On the other hand, in an extrinsic semiconductor, there are a few free electrons or holes

even at room temperature, which give rise to finite electrical conductivity. Therefore, in general, a crystalline solid consists of

a large number of electrons and ions, which give rise to a finite electrostatic field inside it, usually called the crystal field.
The crystal field plays a central role in the theoretical study of the various physical properties of crystalline solids but its exact

determination is very difficult due to the many-body nature of the problem. To simplify the theoretical study, some approx-

imations are made in the estimation of the crystal field of a crystalline solid and these are discussed in this chapter.

3.1 SEPARATION OF ION-CORE AND VALENCE ELECTRONS

In most solids, except the inert gas crystals, the outermost electron orbit of each atom is partially filled and the electrons

belonging to it are called valence electrons. Below the outermost electron orbit, there is the ion core in which all the electron

orbits are completely filled. The valence electrons play an important role in the study of various physical properties of solids.

In a metallic solid the valence electrons are loosely bound to the nucleus of an atom. The valence electrons experience the

crystal field as a result of which they get detached from the atom and become free tomove anywhere in the solid. So, a metallic

solid can be considered to be a sea of free (conduction) electrons in which the ions are embedded at the lattice positions. It is

usually assumed that there is a sharp distinction between the valence electrons and the ion core and these can be dealt with

separately in a theoretical study. This approximation works well in most solids. If the ion core is small and spherical in shape,

which is the case in light elements, it can be treated as a point with charge Ze, where Z is the valency of the atom/ion.

3.2 RIGID ION-CORE APPROXIMATION

The electrons belonging to an ion core, called core electrons, are assumed to move rigidly along with the nucleus and cannot

be excited at available energies in a solid. This is called the rigid ion approximation. Further, the core states in a solid are

assumed to be the same as in an isolated atom, which means that the crystal field does not affect (distort) the core states. This

approximation works reasonably well in solids with small ion core size, such as simple metals. But in solids with large ion

core size, such as d- and f-band metals, this is not a very good approximation as the core states are affected significantly by

the crystal field.
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3.3 SELF-CONSISTENT POTENTIAL APPROXIMATION

The exact evaluation of the crystal potential V(r) is not possible. This is because V(r) depends on the electron states, which

in turn depend on V(r). Therefore, V(r) must be calculated self-consistently and such a potential is called a self-consistent

potential. This approximation is called the self-consistent approximation.

3.4 THE BORN-OPPENHEIMER APPROXIMATION

In a solid the electrons, being lighter particles, move much more quickly than ions. Further, calculations show that the

average speed of an electron in the hydrogen molecule-ion is approximately 1000 times that of a proton. This means that

an electron can complete an orbit before the nuclei of the molecule-ion have moved significantly. This fact enables the

electrons to adjust their orbitals almost instantaneously in response to any change in the positions of the two nuclei.

Therefore, the motion of the nuclei of the hydrogen molecule-ion (representing translation, vibration, and rotation) can

be separated from the electron motion. This fact can be generalized to all the crystalline solids in which the electron motion

can be considered to be independent from the motion of the ions. This is known as the Born-Oppenheimer approximation or
the adiabatic approximation because the electrons follow the motion of the ions adiabatically in a solid.

The adiabatic approximation can be explained further by considering the Hamiltonian of a crystalline solid given by

H
_¼ Te +Ti +Vii +Vee +Vei +Vxc +Vc (3.1)

where

Te ¼�
X
i

ħ2

2me

r2
i (3.2)

Ti ¼�
X
n

ħ2

2Mn

r2
n (3.3)

Vee ¼
1

2

X
i, j i 6¼jð Þ

e2

ri� rj

��� ��� (3.4)

Vii ¼
1

2

X
n,n0 n 6¼n0ð Þ

ZnZn0 e
2

Rn�Rn0j j (3.5)

Vei ¼�
X
n,i

Zne
2

ri�Rnj j (3.6)

Here ri and Rn are the positions of i
th electron and nth ion. Mn is the mass of the nth ion, having charge Zne, while me is the

mass of an electron having charge� e. Te and Ti are the kinetic energies of all the electrons and ions, respectively. Vee, Vii,

and Vei represent potentials due to electron-electron, ion-ion, and electron-ion interactions in a solid. The factor of½ in Vee

(Vii) avoids the occurrence of a pair of electrons (ions) twice in the summation. Vxc and Vc represent the potentials arising

from the exchange interactions and correlation interactions among the electrons, respectively, and will be discussed in

detail later in this chapter.

The Schrodinger wave equation for a solid can be written as

H
_

C rf g, Rf gð Þj i¼E C rf g, Rf gð Þj i (3.7)

The coordinates of all the electrons are collectively written as {r}and those of ions as {R}. jC({r},{R})i is the wave

function of the solid, which is a function of the coordinates of all the ions and electrons. In the adiabatic approximation,

the total wave function of the solid can be written as the product of an electronic wave function jC({r})i, which is a

function only of the electron coordinates for the fixed positions of ions, and an ionic wave function jF({R})i, which is

a function only of the ionic coordinates, that is,

C rf g, Rf gð Þj i ¼ C rf gð Þj i F Rf gð Þj i (3.8)

In order to study separately the electronic and lattice properties of a solid, one should split the total Hamiltonian into two

parts: the electronic partH
_

e and the ionic partH
_

i. From Eq. (3.6), we see that Vei involves the coordinates of all the electrons
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and ions, therefore, it should be included in both the electronic and ionic parts of the Hamiltonian. The electronic part of the

Hamiltonian is defined as

H
_

e ¼Te +Ve rf gð Þ (3.9)

where

Ve rf gð Þ¼Vee +Vei +Vxc +Vc (3.10)

It is noteworthy that Ve({r}) is a function of the coordinates of all the electrons for fixed ion positions. The ionic part of the

Hamiltonian is defined as

H
_

i ¼Ti +Vi Rf gð Þ (3.11)

where

Vi Rf gð Þ¼Vii +Vei (3.12)

Vi({R}) is a function of the positions of all the ions in the solid. One should note that Vi({R}) also includes the direct ion-

ion overlap interaction, not written here, in addition to the ion-ion and electron-ion Coulomb interactions. Eqs. (3.9), (3.11)

show that the solutions of H
_

e and H
_

i are many-body problems.

3.5 ONE-ELECTRON APPROXIMATION

In studying the electronic properties of a solid, one has to solve the electronic part of the Schrodinger wave equation defined

as

H
_

e r1, r2,…, rNe

� �
C r1, r2,…, rNe

� ���� E
¼E C r1, r2,…, rNe

� ���� E
(3.13)

Here jC(r1,r2,…,rNe
)i is an orthonormal wave function, which is a function of the positions of all the electrons, and E is the

energy of the composite electron system. The exact solution of Eq. (3.13) is not possible as it is a many-body problem with a

large number of electrons in a solid and, therefore, one has to resort to some simplifying assumption. The one-electron

approximation is usually adopted in which an electron is assumed to move in some average potential V(r) due to all

the ions and the remaining electrons in a solid. In this approximation, one replaces the real system by a system of Ne inde-

pendent electrons with the effective Hamiltonian of the ith electron given by

H
_

e rið Þ¼� ħ2

2me

r2
i +V rið Þ (3.14)

H
_

e rið Þ satisfies the one-electron Schrodinger equation defined by

H
_

e rið Þ ci rið Þj i¼Ei ci rið Þj i (3.15)

where jci(ri)i and Ei are the one-electron orthonormal wave function and energy of the ith electron. The orthonormality

condition demands

ci rið Þh jcj rj

� �E
¼ dij (3.16)

Now, the total energy of the composite system will be the sum of the energies of the individual electrons, that is,

E¼
XNe

i¼1

Ei (3.17)

and correspondingly the total Hamiltonian will be the sum of the Hamiltonians of the individual electrons, that is,

H
_

e r1, r2,…, rNe

� �
¼
XNe

i¼1

H
_

e rið Þ (3.18)

The wave function of the composite system can be proved, from Eqs. (3.14)–(3.18), to be the product of the individual

electron wave functions as
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C r1, r2,…, rNe

� ���� E
¼ c1 r1ð Þj i c2 r2ð Þj i… cNe

rNe

� ���� E
(3.19)

Therefore, in the one-electron approximation, the solution of the one-electron Schrodinger equation (3.15) is employed to

find the wave function and energy of the composite system. From Eqs. (3.15), (3.17) the total energy of the system is given

by

E¼
XNe

i¼1

ci rið Þh jH_e rið Þ ci rið Þj i (3.20)

The solution of Eqs. (3.15), (3.20) requires knowledge of the one-electron potential, which must be calculated self-

consistently. Hartree (1928) gave a self-consistent method for the determination of the ground state energy of a system.

It was extended by Fock (1930) by incorporating symmetry in the wave function and this is usually called the Hartree-Fock

self-consistent field theory.

3.6 ELECTRON EXCHANGE AND CORRELATION INTERACTIONS

In addition to the usual Coulomb interactions, which vary as 1/r, there are many-body electron interactions in a solid that

can be classified into two categories:

1. Electron exchange interactions

2. Electron correlation interactions

Pines (1963) has described in detail the physics of exchange and correlation effects.

3.6.1 Electron Exchange Interactions

In a system of two or more indistinguishable electrons, the exchange of any two electrons gives rise to an additional con-

tribution to the energy, usually called exchange energy, and the possible interactions are called exchange interactions.

Therefore, the exchange interactions are many-body interactions that play an important role in understanding the electronic

properties of solids. These interactions have purely quantummechanical origin and have no classical analogue. The various

exchange interactions in a solid are described below.

3.6.1.1 Intra-Atomic Exchange Interactions

Intra-atomic exchange interactions are the interactions between the electrons in the same or different orbits of a particular

atom. These exchange interactions tend to align the spins of the electrons parallel to each other so as to give the maximum

value of spin permitted by the available states (Hund’s rule). In the transition metals (TMs), p-d and d-d exchange inter-

actions are important, while in the rare earth metals (REMs) the important exchange interactions are d-f and f-f interactions.

3.6.1.2 Interatomic Exchange Interactions

This is an exchange interaction between the electrons belonging to different atoms or ion cores in a solid. The most

important contributions are the s-d and d-d exchange interactions in TMs and the s-f and f-f exchange interactions in REMs.

One can further classify the interatomic exchange interactions into direct and indirect interatomic exchange interactions, as

discussed below.

Direct Interatomic Exchange Interaction

The electrons around different nuclei are more separated compared with those around the same nucleus. Therefore, the

strength of the direct interatomic exchange interaction is much less than for an intra-atomic exchange interaction. But

at the same time, the strength of the attractive electron-ion interaction is quite large. In the interatomic exchange interaction,

the antiparallel arrangement of the spins is more probable (preferred). The most important of such exchange interactions are

the d-d (f-f) interactions in the TMs (REMs).

Indirect Interatomic Exchange Interaction

In the indirect interatomic exchange interaction, the spins of the two electrons belonging to two different ions interact with

one another via the conduction electrons, favoring a parallel alignment of the spins. Zener (1951a, 1951b) proposed the s-d

interaction in TMs for the first time.
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In a TM, the s-conduction electrons around a d-shell ion get polarized due to the ionic magnetic moment. These spin-

polarized s-electrons interact with the spin of any other neighboring magnetic d-shell ion. This is called the s-d interaction,

which favors a parallel alignment of the spins of the d-electrons. The s-d interaction, therefore, is responsible for the exis-

tence of ferromagnetism in solids. In the TMs, d-electrons are quasilocalized and possess an itinerant character to a sig-

nificant extent. Therefore, it cannot be said with certainty that only the s-d interaction is responsible for the origin of

ferromagnetism in TMs. On the other hand, in the REMs, the f-electrons are highly localized and therefore the s-f exchange

interaction is mainly responsible for ferromagnetism in many of these metals. But some of the REMs exhibit spiral mag-

netic ordering of various complexities, which cannot be understood in terms of the s-f interaction as it favors ferromagnetic

ordering. The spiral ordering can be accounted for in terms of the competition between the ferromagnetic and antiferro-

magnetic interactions between the adjacent spins.

A quantitative analysis shows that the s-d (s-f) interaction between the spins is independent of their separation, which is

physically an unreasonable result because an interaction cannot have an infinite extent. Therefore, the higher-order terms

must be included in the Zener’s s-d interaction. Ruderman and Kittel (1954), Kasuya (1956), and Yosida (1957) proposed

another interaction, usually called the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which includes the higher-

order terms in the s-d (s-f) interaction. In the RKKY interaction, the s-conduction electrons around a magnetic ion are spin

polarized (yielding finite magnetization) and the spin polarization is oscillatory in nature. The spin polarization of the con-

duction electrons tends to align more and more of the s-conduction electrons in a particular direction. One can therefore talk

about the spin density nS(r), defined as

nS rð Þ¼ n" rð Þ�n# rð Þ (3.21)

where n"(r) and n#(r) are the densities of the s-conduction electrons with up and down spins. The quantity nS(r) is related to
the magnetization M(r) as

M rð Þ¼ mBnS rð Þ (3.22)

where mB is the Bohr magnetron. It has been shown that nS(r) and hence M(r) varies as 1/r3 where r is the distance from the

magnetic ion. Fig. 3.1 shows M(r), produced by the spin polarization of the s-electrons, as a function of r. Such an oscil-

latory spin polarization can couple the ionic spins in a pure ferromagnetic arrangement, pure antiferromagnetic

arrangement, or a partially ferromagnetic and partially antiferromagnetic arrangement depending on the ionic separation.

Therefore, the RKKY interaction is capable of explaining the various types of spiral orderings at suitable distances.

FIG. 3.1 Magnetization M(r) as a function of r around an ion at the

origin with finite spin. The solid spheres represent ions.
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Further, the rapid decrease in the amplitude of the spin polarization or magnetization means that the interionic spin coupling

is a localized effect and falls off rapidly with an increase in the separation between the ions.

In somematerials, such asMnO,MnSe, andMnTe, the spins of theMn ions exhibit antiferromagnetic order even though

they are well separated by the nonmagnetic ions O, Se, and Te, respectively. Interatomic exchange is a highly localized

effect and, therefore, is unable to explain the spin-spin interaction in these materials that have a large separation between the

magnetic ions. To explain the antiferromagnetic behavior of such materials, another interaction, usually called the super-

exchange interaction, has been proposed. It has been suggested that a superexchange involves the transfer of an electron

from a nonmagnetic ion to a vacancy in the orbit of a magnetic ion. As a result, the nonmagnetic ion with an unbalanced spin

will become paramagnetic and then its spin will be able to interact with the spin of another nearby magnetic ion through

direct interatomic coupling. It is this indirect interaction of two magnetic ions via a nonmagnetic ion that produces anti-

ferromagnetic order among the spins of the magnetic ions. It must be emphasized that the superexchangemechanism relates

to nonmetallic systems.

3.6.1.3 Conduction Electron-Conduction Electron Exchange Interaction

There exists a spin-spin exchange interaction between the conduction electrons in a metal. In all of the SMs, TMs, and

REMs it is named the s-s exchange interaction as the s-electrons in the outermost orbit of the atoms behave as itinerant

electrons. Many authors (Hubbard, 1963, 1964a, 1964b; Kohn & Sham, 1965; Lindgren & Schwarz, 1972; Sham,

1961; Singwi, Sjolander, Tosi, & Land, 1970; Toigo & Woodruff, 1970) have put forward the exchange interaction in

a free electron gas. Many of these authors gave a parameterized form of the exchange interactions for a paramagnetic

electron gas.

3.6.2 Electron Correlation Interactions

In a free electron system, the electrons move independently of each other, but no real system exhibits the ideal free-electron

behavior. There always exists a finite repulsion between the electrons, which causes them to avoid each other. In other

words, the motions of the electrons are correlated in the presence of repulsive interactions. Such effects are called corre-

lation effects and affect the energy of an electron system. The neglect of electron correlations causes the total energy of a

typical atom to be overestimated by an amount � 100 kJ mol�1. This energy is known as the correlation energy, and it is

very difficult to make proper allowance for it in calculations. There are different types of correlation effects in a

crystalline solid.

3.6.2.1 Coulomb Correlations

The motion of one electron is affected by the motion of other electrons due to the Coulomb repulsion between them. Such

correlations are called Coulomb correlations. The effect of the Coulomb correlations is to reduce the probability that two

electrons approach closely to one other. The change in energy of a system due to these effects is called the Coulomb cor-

relation energy. In the Hartree theory, the Coulomb correlations are completely ignored as each electron is supposed to

move in the average charge distribution of all the other electrons.

3.6.2.2 Parallel-Spin Correlations

The motion of two electrons with parallel spins is governed by the Pauli exclusion principle according to which no two

electrons with parallel spins can occupy the same position. Therefore, the motions of electrons with parallel spins are

coupled together and these are called parallel-spin correlations. The parallel-spin correlations appear in the Hartree-Fock

theory and they affect the energy in the same way as the Coulomb correlations.

According to the Pauli exclusion principle, there is a very small probability of finding an electron close to another

electron with parallel spin. As a result, there is a finite region around each electron in which there is no electron distribution

with parallel spin. In other words, one can say that each electron is surrounded by a hole in the electron distribution with

parallel spin. This is usually called the Fermi hole or exchange hole and can be regarded roughly as a sphere in a spherically

symmetric system.
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3.6.2.3 Antiparallel-Spin Correlations

There are finite antiparallel-spin correlation effects. Each electron might be expected to be surrounded by a hole, similar to

the exchange hole, in the electron distribution with antiparallel-spin also. Such a hole is called a correlation hole in the

electron distribution.
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To understand the formation of a crystalline solid in the form of a three-dimensional periodic array, one has to consider

interactions between the various atoms. Any two atoms in a solid interact with each other via the repulsive and attractive

interactions that oppose each other (Chapter 3) but the net interaction between them is attractive. The attractive interaction

should be sufficiently strong to form a stable aggregate of atoms at temperatures of interest. The phenomenon of holding the

atoms together is known as bonding or, more appropriately, chemical bonding. Further, the different elements crystallize in

different structures as explained in Chapter 1. A particular arrangement of atoms in a crystalline solid is determined by the

character, strength, and directionality of the chemical bonding and cohesive forces. As regards the nature of chemical

bonding, the crystalline solids can be classified as follows:

1. Inert gas crystals

2. Ionic crystals

3. Covalent crystals

4. Metallic crystals

In addition to these, there are hydrogen-bonded crystals. In this chapter we shall briefly describe the various types of

bonding and the related properties in crystalline solids.

4.1 INTERACTIONS BETWEEN ATOMS

Consider two atoms labeled 1 and 2, separated by an infinitely large distance. There will be no interaction between the

atoms and they will behave as free particles. As the atoms are brought closer, they start interacting with each other via

electrostatic forces. The net interaction energy U(R) between the atoms may be attractive or repulsive, as is shown in

Fig. 4.1. If the interaction is attractive, the two atoms bind together and such a state is called a bonding state. On the other
hand, if the interaction is repulsive, the atoms do not bind together and the state is called an antibonding state.

Suppose two atoms interact via attractive forces. When the atoms come very close to each other, their electron clouds

begin to overlap (Fig. 4.2), which gives rise to an additional repulsive interaction due to the Pauli exclusion principle. As a

result, the electron states split up causing promotion of electrons to higher unoccupied states of the atom. The repulsive

contribution to the interaction potential increases the energy of the system. The repulsive interaction comes into existence

only when the distance is on the order of atomic dimensions and increases very quickly as the distance decreases, ultimately
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overpowering the attractive interaction. One should note that the attractive interaction is a long-ranged one, while the

repulsive interaction operates over short range. The net interaction energy in a stable state of two atoms, which exhibits

a minimum at a particular distance R0, is shown in Fig. 4.3. Here R0 represents the equilibrium distance between the two

atoms. In a solid, there are a large number (N) of atoms and the above description can be generalized to all of the atoms in it.

In a bonding state, all of the atoms of a solid attract each other and the total energy of the solid is the sum of the energies of

the individual atoms in addition to their interaction energy.

FIG. 4.1 The interaction potential U(R) as a function of the distance R between two atoms for the bonding and antibonding states. Here the repulsive

interaction due to the direct overlap of electron distributions of two atoms is not taken into account.

FIG. 4.2 The electron clouds of the two atoms begin to overlap as the atoms approach very closely to each other. The figure also depicts the overlapping

of the electronic wave functions of the two atoms.
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The general form of the interaction potential energy between two atoms can be written as

U Rð Þ¼� A

Rm +
B

Rn (4.1)

where R is the distance between the atoms. Here A and B are constants and m and n are integers to be determined. The first

term in Eq. (4.1) gives the attractive interaction, while the second term gives the repulsive interaction. The equilibrium

distance R0 between two atoms can be evaluated by minimizing U(R) as

dU

dR

����
R¼R0

¼ 0 (4.2)

Substitute Eq. (4.1) in Eq. (4.2) to get

R0 ¼
n

m

B

A

� �
1

n�m (4.3)

For the energy to be minimum, the double derivative of U(R) must be positive, that is,

d2U

dR2

����
R¼R0

i0 (4.4)

Eqs. (4.1), (4.4) yield

n n + 1ð ÞB
Rn+2
0

�m m+1ð ÞA
Rm+2
0

i0

Simplifying the above equation, one gets

n im (4.5)

FIG. 4.3 The repulsive and attractive interaction potentials

between the two atoms are shown separately as a function of

distance R between the two atoms. The net interaction potential

U(R) obtained by adding the two contributions is plotted, where

R0 gives the equilibrium distance.
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Here we have used Eq. (4.3) for R0. Now the minimum value of interaction potential between the two atoms is given by

U R0ð Þ¼� A

Rm
0

+
B

Rn
0

(4.6)

Substituting the value of R0 from Eq. (4.3) in Eq. (4.6), one gets

U R0ð Þ¼ A

Rm
0

1�m

n

h i
(4.7)

Eq. (4.7) represents the interaction potential energy when one atom is brought closer to another atom. The total potential

energy in a solid is obtained by summing over all the N atoms. Considering the ith atom as the reference atom, the position of

the jth atom is given by

Rij ¼Ri�Rj (4.8)

where Ri and Rj are the positions of the i
th and jth atoms. In a solid with one atom per primitive cell, all the atoms are at the

lattice positions; therefore, Rij can be represented in terms of the 1NN distance R as

Rij ¼ pijR (4.9)

where pij is a number whose value depends on the crystal structure. From Eqs. (4.1) and (4.9) the total potential energy of

the ith atom is given by

Ui Rð Þ¼
X
j i6¼jð Þ

� A

pijR
� �m +

B

pijR
� �n

2
64

3
75 (4.10)

The potential energy of the ith atom in the equilibrium state is given by substituting R¼R0 in Eq. (4.10), that is,

Ui R0ð Þ¼
X
j i 6¼jð Þ

� A

pijR0

� �m +
B

pijR0

� �n
2
64

3
75 (4.11)

The total interaction potential of a solid with N atoms, in the equilibrium state, is given by

U R0ð Þ¼
X
i

Ui R0ð Þ¼ 1

2

X
i, j i 6¼jð Þ

� A

pijR0

� �m +
B

pijR0

� �n
2
64

3
75

¼ 1

2
N
X
j i 6¼jð Þ

� A

pijR0

� �m +
B

pijR0

� �n
2
64

3
75 (4.12)

The factor of one-half appears in order to avoid double counting a pair of atoms. Here we have used the fact that every atom

yields the same amount of potential energy due to the periodicity of the crystal structure. Another form of the interaction

potential of a solid that appears in the literature assumes

A¼ 4k�m,B¼ 4k�n (4.13)

where k and � are new constants. From Eqs. (4.12), (4.13) one can write

U R0ð Þ¼ 2Nk
X
j i6¼jð Þ

� �

pijR0

 !m

+
�

pijR0

 !n" #
(4.14)

Eqs. (4.12), (4.14) are the two forms of potential energy of a solid that appear in the literature.
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4.2 COHESIVE ENERGY

Let ET be the total energy of N free atoms. When the atoms are brought closer they start interacting with one another and in

doing so some of the energy is used in binding the atoms together. Let ET

0
be the energy of the N atoms when bound together

to form a solid. Naturally, ET

0
is the sum of the kinetic and potential energies of the atoms of the solid and ET

0 h ET for a stable

solid. The cohesive energy EC of a solid is the difference between ET and ET

0
and is usually defined per atom as

EC ¼
1

N
ET�E0

T

� �
(4.15)

The cohesive energy is usually defined for one kilomole (Kmol) of the solid. Therefore, the cohesive energy or binding
energy is defined as the energy of formation of one Kmol of a solid from its atoms or ions. It is equal, but opposite in sign, to

the energy of dissociation of a solid. The cohesive energy can be obtained from a knowledge of the thermodynamics and

spectroscopic data. Inert gas crystals are weakly bound, while alkali metal crystals have intermediate values of cohesive

energy. On the other hand, TMs exhibit strong binding, yielding high values of cohesive energy. Ionic solids also exhibit

large values of cohesive energy.

4.3 EQUILIBRIUM DISTANCE

The total interaction potential of a solid composed of N atoms is given by Eq. (4.14). Let us define the following parameters

X
j j6¼ið Þ

1

pij

 !m

¼ pmi and
X
j j 6¼ið Þ

1

pij

 !n

¼ pni (4.16)

Substituting Eq. (4.16) in Eq. (4.14), we can write

U Rð Þ¼ 2Nk pni
�

R

� �n
�pmi

�

R

� �mh i
(4.17)

The equilibrium distance, from Eqs. (4.2), (4.17), is given by

R0

�

� �n�m

¼ npni
mpmi

(4.18)

From Eqs. (4.17), (4.18) the interaction potential in the equilibrium position is given by

U R0ð Þ¼ 2Nkpmi

mpmi

npni

� �
m

n�m
m

n
�1

h i
(4.19)

Eq. (4.19) gives the cohesive energy of a solid and is always negative as n i m.

Problem 4.1

From Eq. (4.12) prove that the equilibrium distance is given by

Rn�m
0 ¼ n

m

B

A

pni
pmi

(4.20)

Further, the total interaction potential in the equilibrium state is given by

U R0ð Þ¼ 1

2
N

pmiA

Rm
0

m

n
�1

h i
(4.21)
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4.4 BULK MODULUS AND COMPRESSIBILITY

The bulk modulus BM is defined as the ratio of stress to strain in three dimensions and can be written as

BM ¼� dP

dV=V
¼�V

dP

dV
(4.22)

Here dP is the change in pressure and dV is the corresponding change in volume. The negative sign represents the fact that

the increase in pressure decreases the volume. According to the first law of thermodynamics

dQ¼ dU+ dW (4.23)

where dQ is the change in heat energy, dU is the change in internal energy, and dW is the work done. At constant pressure

the work done is given by

dW¼ P dV (4.24)

We know that

dQ¼TdS (4.25)

where T and S are temperature and entropy, respectively. From Eqs. (4.23)–(4.25) one can write

dU ¼TdS�PdV (4.26)

At constant entropy, the pressure from Eq. (4.26) becomes

P¼� dU

dV

� �
S

(4.27)

Substituting Eq. (4.27) in Eq. (4.22), the bulk modulus is given by

BM ¼ 1

KC

¼V
d2U

dV2

� �
(4.28)

Here KC denotes the compressibility, which is the reciprocal of the bulk modulus.

Let us evaluate the bulk modulus for a solid with an fcc structure. If a is the lattice constant, the average volume per atom

is given by (1/4)a3. The volume of a solid with N atoms becomes

V¼ 1

4
Na3 (4.29)

The 1NN distance R in an fcc structure is given by

R¼ affiffiffi
2

p (4.30)

From Eqs. (4.29), (4.30) one can write

V ¼ 1ffiffiffi
2

p NR3 (4.31)

From the above equation one can write

1

R
¼ N1=3

21=6V1=3
(4.32)

Substituting Eq. (4.32) into Eq. (4.17) allows us to write

U Vð Þ¼ 2Nk
Pni

Vn=3
� Pmi

Vm=3


 �
(4.33)

where

Pni ¼
Nn=3pni�

n

2n=6
and Pmi ¼

Nm=3pmi�
m

2m=6
(4.34)
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In the equilibrium state the interaction potential must be minimum, that is,

dU

dV

����
V0

¼ 0 (4.35)

From Eqs. (4.33), (4.35) one can find the equilibrium volume V0, which is given by

V0 ¼
nPni
mPmi

� �
3

n�m (4.36)

From Eqs. (4.33), (4.36) the double derivative of the interaction potential U(V) in the equilibrium state is given by

d2U

dV2

����
V¼V0

¼ 2Nk
nPni

V
n
3
+ 2

0

n�m

9
(4.37)

Substituting Eq. (4.37) into Eq. (4.28), the bulk modulus in the equilibrium state is given by

BM ¼ 1

KC

¼ 2Nk
nPni

V
n
3
+ 1

0

n�m

9
(4.38)

BM is a positive quantity as n is always greater than m.

4.5 INERT GAS CRYSTALS

The inert gas crystals constitute the 8th column of the periodic table and their outermost electron orbit is completely filled

with a nearly spherical distribution of electronic charge. Such atoms exhibit maximum stability compared with others

having incomplete outermost electron orbits and, therefore, have large values of ionization energy. The inert gas solids

crystallize at low temperatures, forming transparent insulators. As the inert gas atoms are nearly spherical in shape, their

crystals exhibit fcc structure: a close-packed structure with cubic symmetry. A schematic diagram of the arrangement of

atoms in an inert gas crystal is shown in Fig. 4.4. The inert gas crystals are weakly bound with a low melting point.

Therefore, the electron distribution in an inert gas atom in a crystal is not much different from that of the free atom except

for some distortion. Two types of interactions are present between the atoms in an inert gas crystal.

1. Van der Waals-London interaction

2. Repulsive interaction

FIG. 4.4 A schematic diagram for the arrangement of atoms of the inert gas element Ar in a plane.
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Both the interactions are discussed in Appendix A. The total interaction potential between two inert gas atoms is obtained

from Eq. (4.1) by substituting m ¼ 6 and n ¼ 12 and is written as

U Rð Þ¼� A

R6
+

B

R12
(4.39)

The constants A and B from Eq. (4.13) are given as

A¼ 4k�6,B¼ 4k�12 (4.40)

Therefore, the interaction potential (4.39) becomes

U Rð Þ¼ 4k � �

R

� �6
+

�

R

� �12
 �
(4.41)

This is known as the Lennard-Jones potential, which is attractive at large distances but repulsive in nature at small

distances.

4.5.1 Equilibrium Lattice Constant

Neglecting the kinetic energy, the cohesive energy of an inert gas crystal is obtained by summing over all the pairs of atoms

in the crystal. The total potential of a solid containing N atoms can be obtained from Eq. (4.14) by substituting m¼6 and

n¼12 to write

U Rð Þ¼ 2Nk
X
j i 6¼jð Þ

� �

pijR

 !6

+
�

pijR

 !12
2
4

3
5 (4.42)

The summation in Eq. (4.42) is to be evaluated assuming fcc structure for the inert gas crystal. It can be shown that

X
j j 6¼ið Þ

1

pij

 !6

¼ 14:454 and
X
j j 6¼ið Þ

1

pij

 !12

¼ 12:131 (4.43)

One should note that there are twelve 1NNs in the fcc structure and the above summations yield values near twelve. This

shows that the 1NNs contribute the most to the interaction potential. So, Eq. (4.42) gives

U Rð Þ¼ 2Nk 12:131
�

R

� �12
�14:454

�

R

� �6
 �
(4.44)

The equilibrium distance R0 is obtained by substituting Eq. (4.44) into Eq. (4.2), which, after simplification, gives

R0

�
¼ 1:09 (4.45)

The above derivation gives the same value of R0/� for all of the inert gas crystals with fcc structure. But the actual values of
R0/� vary a little from the above value and these are listed in Table 4.1. The agreement between the calculated and the

experimental values is quite good. The slight departure of the experimental values from 1.09 can be attributed to quantum

mechanical effects.

TABLE 4.1 Equilibrium Distance for the Inert Gas Crystals

Element Ne Ar Kr Xe

R0

�

1.14 1.11 1.10 1.09
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4.5.2 Cohesive Energy of Inert Gas Crystals

The cohesive energy of a solid with N atoms is given by Eq. (4.44) by replacing R by R0, that is,

U R0ð Þ¼ 2Nk 12:131
�

R0

� �12

�14:454
�

R0

� �6
" #

(4.46)

Substituting the value of �/R0 from Eq. (4.45) into Eq. (4.46), one gets

U R0ð Þ¼�4:30 2Nkð Þ (4.47)

The cohesive energy also comes out to be the same for all of the inert gas elements. In the above derivation, the cohesive

energy is calculated assuming zero kinetic energy. But the kinetic energy is always finite and its inclusion reduces the

cohesive energy. Further, the value of the kinetic energy is different for different elements, which makes the cohesive

energy different also. For example, in heavier elements the kinetic energy is small and hence the reduction in cohesive

energy is small.

Problem 4.2

Prove that the result given by Eq. (4.47) can be obtained from Eq. (4.19) by substituting m ¼ 6 and n ¼ 12.

4.5.3 Bulk Modulus

The bulk modulus for inert gas crystals can be calculated from the general expression given by Eq. (4.38) by substituting

m ¼ 6 and n ¼ 12 to write

BM ¼ 1

KC

¼ 2Nk
12P12 i
V5

0

2

3
(4.48)

where P12i ¼
1

4
N4�12p12i (4.49)

Here we have used Eq. (4.34) for Pni. Substituting Eq. (4.49) into Eq. (4.48), one gets

BM ¼ 1

KC

¼ 4Nkp12i
N4�12

V5
0

(4.50)

Substituting the value of V0 from Eq. (4.36) allows us to write

BM ¼ 1

KC

¼ 4k
�3

p6ið Þ5=2
p12ið Þ3=2

(4.51)

From the above equation it is evident that BM is on the order of k/�3 in inert gas crystals.

Problem 4.3

From Eq. (4.33) the total interaction potential for m ¼ 6 and n ¼ 12 can be written in terms of volume as

U Vð Þ¼ b12
V4 �

b6
V2 (4.52)

Here b6 and b12 are new constants that can be expressed in terms of k and �. Prove that for the interaction potential given by

Eq. (4.52) the bulk modulus is given by

BM ¼
ffiffiffi
2

p b5=26

b
3=2
12

(4.53)

Further, show that BM is on the order of k/�3.
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4.6 IONIC BONDING

An element that acquires a positive charge by giving an electron is called an electropositive element, while one that acquires

negative charge by receiving an electron is called an electronegative element. In other words, an electronegative element

has an affinity for negative charge. The electropositive elements lie on the left side of the periodic table, while the elec-

tronegative elements lie on the right side. Electronegativity is a measure of the tendency of an atom or a radical to attract

electrons in the formation of an ionic bond. Pauling gave the most commonly used scale, called the Pauling scale of elec-

tronegativity. The higher the associated electronegativity number, the more attracted is an element or compound toward an

electron (negative charge). For example, fluorine (F) is the most electronegative element and is assigned the value 4.0,

while cesium (Cs) and francium (Fr) are the least electronegative elements with values of 0.7. Ionic bonding is the simplest

type of bonding between the electropositive and electronegative elements. For this reason, the ionic bond is also called the

heteropolar bond. Crystalline solids in which the atoms exhibit ionic bonds are called ionic crystals. The ionic crystals are

made of positive and negative ions and these are arranged in such a way that the Coulomb attraction between the oppositely

charged ions is stronger than the Coulomb repulsion between the ions of the same charge. Therefore, the ionic bond is

purely electrostatic in nature. NaCl and CsCl are common examples of ionic crystals and their crystal structures are shown

in Figs. 1.20 and 1.17.

Let us study the formation of an ionic solid. Consider a NaCl crystal in which the Na and Cl atoms have the following

electronic configuration:

Na : 1s22s22p63s1

Cl : 1s22s22p63s23p5
(4.54)

In an atom of Na, there is one electron in the outermost electron orbit that is loosely bound to the nucleus. So, an atom of Na

can easily lose this electron to the surroundings so as to acquire the most stable inert gas configuration with all of the

electron orbits completely filled. On the other hand, an atom of Cl has one electron deficit in its outermost orbit and,

therefore, can easily accept an electron to acquire the most stable inert gas electron configuration. This process leads

to the formation of positively and negatively charged ions with the following configurations:

Na+1 : 1s22s22p6

Cl�1 : 1s22s22p63s23p6
(4.55)

Na+1 and Cl�1 ions attract each other to form a molecule that is electrically neutral. The formation of a NaCl molecule can

be described by the following equation

Na +Cl !Na+1 +Cl�1 !NaCl (4.56)

Because chlorine is a gas with Cl2 as its molecule, the above equation is modified as

2Na +Cl2 ! 2Na+1 + 2Cl�1 ! 2NaCl (4.57)

Some energy is required to carry out the above reaction. But once the reaction starts it proceeds vigorously with the evo-

lution of light and heat from the ionic bond formation causing a sizable decrease in energy.

4.6.1 Ionic-Bond Energy

Let us estimate the ionic-bond energy of a NaCl crystal. The ionization energy of an atom of Na (¼ 5.1 eV) is required to

remove an electron from the Na atom, yielding a Na+1 ion and an electron. Mathematically one can write

Na + 5:1eV ¼Na+1 + e�1 (4.58)

The electron affinity of Cl is 3.6 eV, so in the formation of a chlorine ion one can write

Cl + e�1 ¼Cl�1 + 3:6eV (4.59)

Adding Eqs. (4.58), (4.59) allows us to write

Na +Cl + 1:5eV¼Na+1 +Cl�1 (4.60)
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Thus, an energy of 1.5 eV is needed to create Na+1 and Cl�1 ions from the corresponding atoms. The Na+1 and Cl�1 ions join

together by attractive forces to form a NaCl molecule with minimum potential energy. In the formation of a molecule from

the Na+1 and Cl�1 ions, some energy is released, usually called the bond energy. It can be calculated as follows.

The equilibrium distance between the Na+1 and Cl�1 ions is R0¼2.4�10�8cm. So the potential energy of the NaCl

molecule becomes

V R0ð Þ¼� e2

R0

¼� 4:8�10�10
� �2

2:4�10�8�1:6�10�12
¼�6:0eV

Thus, in the formation of a sodium chloride molecule one can write

Na+1 + Cl�1 ¼NaCl + 6eV (4.61)

From Eqs. (4.60), (4.61) one can write

Na +Cl¼NaCl + 4:5eV (4.62)

Eq. (4.62) shows that in the formation of a NaCl molecule from the Na and Cl atoms, an energy of 4.5 eV is released. In

other words, when a molecule of NaCl dissociates into Na and Cl atoms it requires an energy of 4.5 eV.

4.6.2 Lattice Energy

Lattice energy is defined as the energy released when the constituent atoms are placed in their respective positions on the

crystal lattice. It can also be defined as the amount of energy that is spent to separate an ionic crystal into its constituent ions.

It can be evaluated considering different contributions to the potential energy. In an ionic solid there are present three types

of interactions:

1. The electrostatic interactions between the ions, which yield the overall very strong attractive interaction.

2. Van der Waals interactions, which fall off as the 6th power of the distance. These are attractive but very weak and are

usually neglected in comparison with the electrostatic interactions.

3. The ion-ion overlap interactions, which are repulsive in nature and fall off as the 12th power of the distance. These

interactions are significant at very small distances.

Therefore, the interaction energy between the ith and jth ions Uij(Rij) is given by

Uij Rij

� �
¼ B

Rn
ij

�Z2e2

Rij

(4.63)

Here Ze is the charge on the ion and the charge on both types of ions is assumed to be equal and opposite. The first term

represents the repulsive overlap interaction between the ions, while the second term represents the electrostatic interaction

between them. In the above equation, the plus sign is for ions with like charges, while the negative sign is for ions with

unlike charges. With the help of Eq. (4.9), Eq. (4.63) can be written in terms of the 1NN distance R as

Uij Rð Þ¼ B

pijR
� �n�Z2e2

pijR
(4.64)

The net interaction energy of the ith ion in the lattice becomes

Ui Rð Þ¼
X
j j6¼ið Þ

Uij Rð Þ¼
X
j j6¼ið Þ

B

pijR
� �n�X

j j 6¼ið Þ

Z2e2

pijR
(4.65)

The total interaction energy of a crystal with N ions, which gives the lattice energy, becomes

U Rð Þ¼NUi Rð Þ¼N
X
j j6¼ið Þ

B

pijR
� �n�N

X
j j 6¼ið Þ

Z2e2

pijR
(4.66)

In writing the above equation, it is assumed that the interaction energy of all the ions is the same. This is true because the

surroundings of all the ions are similar due to the symmetry of the lattice. The calculation of U(R) is difficult as it involves a
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sum over the whole of the lattice. The problem is simplified if one assumes that the repulsive interaction, being very short-

ranged, is appreciable only up to the 1NNs of an ion. In this approximation, Eq. (4.66) is simplified to

U Rð Þ¼N n0
B

Rn�aM
Z2e2

R


 �
(4.67)

where n0 is the number of 1NNs and aM is the Madelung constant defined as

aM ¼�
X
j j 6¼ið Þ

1

pij
(4.68)

In Eq. (4.67) we have taken the negative sign before the electrostatic term as it yields a positive value of aM. In aM, the
positive sign is for charges of opposite sign, while the negative sign is for charges of the same sign. From Eqs. (4.2), (4.67)

one gets, in the equilibrium state, the constant B as

B¼ aM
Z2e2

nn0
Rn�1
0 (4.69)

So, the total interaction potential in the equilibrium state is obtained by substituting the value of constant B from Eq. (4.69)

in Eq. (4.67), that is,

U R0ð Þ¼�NaMZ2e2

R0

1�1

n


 �
(4.70)

The term �NaMZ2e2/R0 is called the Madelung energy. Being very short ranged, the repulsive interaction is very small at

the equilibrium distance R0. Therefore, the lattice energy U(R0) is mainly electrostatic in nature.

4.6.3 Difference Between Bond Energy, Cohesive Energy, and Lattice Energy

The bond energy is the energy by which the ions/atoms of a molecule are held together and, therefore, it involves the ions/

atoms of a single molecule. The lattice energy of an ionic crystal is the energy released when a crystal is formed by placing

the ions on the lattice and, therefore, involves all the ions of the crystal. The cohesive energy of an ionic solid is the energy

that would be liberated in the formation of the ionic solid from the individual neutral atoms. The cohesive energy is also

called the binding energy of the solid and involves the interaction of all the atoms present in the solid.

4.6.4 Bulk Modulus of Ionic Crystals

From Eq. (4.28) it is evident that the bulk modulus depends on the double derivative of potential with respect to volume,

which can be calculated from the interaction potential as follows:

dU

dV
¼ dU

dR

dR

dV
(4.71)

Differentiating Eq. (4.71) again allows us to write

d2U

dV2
¼ d2U

dR2

dR

dV

� �2

+
dU

dR

d2R

dV2
(4.72)

In the equilibrium state, dU/dR ¼ 0. Therefore, Eq. (4.72) reduces to

d2U

dV2
¼ d2U

dR2

dR

dV

� �2
�����
V¼V0

(4.73)

Substituting Eq. (4.73) into Eq. (4.28), the bulk modulus is given by

BM ¼ V
d2U

dR2

dR

dV

� �2
�����
V ¼V0

(4.74)

Let us evaluate the bulk modulus for a NaCl crystal having fcc structure. If a is the lattice parameter, then (1/4)a3 is the

volume per molecule. The total volume of a NaCl crystal with N number of molecules becomes (see Fig. 1.20)
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V¼ 1

4
Na3 ¼ 1

4
N 2Rð Þ3 ¼ 2NR3 (4.75)

From the above equation

dV

dR
¼ 6NR2 (4.76)

Substituting Eqs. (4.75), (4.76) into Eq. (4.74), the bulk modulus becomes

BM ¼ 1

18NR0

d2U

dR2

����
R¼R0

(4.77)

From Eqs. (4.67), (4.69) one can write

d2U

dR2

����
R¼R0

¼NaMZ2e2

R3
0

n�1ð Þ (4.78)

Substituting Eq. (4.78) into Eq. (4.77), one gets

BM ¼ aMZ2e2

18R4
0

n�1ð Þ (4.79)

Problem 4.4

Assuming the interaction potential to be of the form given by Eq. (4.67), prove that the bulkmodulus for the CsCl structure (Fig. 1.17)

is given by1

BM ¼ aMZ2e2

8
ffiffiffi
3

p
R4
0

n�1ð Þ (4.80)

One of the requirements of a reliable theory of cohesion is that it should be able to predict the correct structure of the solid

that yields the minimum value of the interaction energy given by Eq. (4.70). It has been found that the energy given by

Eq. (4.70) is not adequate for this purpose and the reason may be two-fold. First, the repulsive interaction may not be

reliable, and second, the small but nevertheless finite Van der Waals interaction must be considered. The improved inter-

action potential suggested by Born and Mayer is given by

Ui Rð Þ¼
X
j j 6¼ið Þ

B

pijR
� �n�aM

Z2e2

R
�
X
j j 6¼ið Þ

A

pijR
� �m +

X
j j 6¼ið Þ

Dij (4.81)

The third term on the right side of the above equation is the Van der Waals interaction and the last term contains other

corrective interactions.

The expressions derived for the bulk modulus of a solid can be used to find the value of n, the exponent in the repulsive

potential. The equilibrium distance R0 can be determined from X-ray studies, the bulk modulus BM can be measured exper-

imentally, and the values of Ze, aM, and n0 can be calculated from the structure of the solid. Knowing these quantities, one

can determine the value of n from Eq. (4.79). Let us take the case of KCl, in which

BM ¼ 1:97�1011 dynes=cm2

R0 ¼ 3:14�10�8 cm

Z¼ 1

aM ¼ 1:75

1. It should be noted that the difference in the bulk modulus arises due to the different unit cell volume for different structures. One can attempt the general

case in which the volume of the crystal can be assumed to be V¼CNR3 where C is a constant whose value depends on the structure of the solid.
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From Eq. (4.79) one can calculate the value of the exponent n, which is given by

n¼ 18R4
0BM

aMZ2e2
+ 1¼ 9:4

Hence, in KCl, the power of the repulsive interaction n�9�10.

4.6.5 Exponential Repulsive Potential

The interaction potential Uij(Rij), representing the repulsive potential in exponential form, can be written as

Uij Rij

� �
¼ lRe

�Rij=r�Z2e2

Rij

(4.82)

where the parameter lR gives the strength of the repulsive potential and r is the decay factor. Considering only the 1NN

interactions in the repulsive potential, the total interaction potential of the crystal is given by

U Rð Þ¼NUi Rð Þ¼N n0lRe
�R=r� aM

Z2e2

R


 �
(4.83)

The improved form of the interaction potential given by Eq. (4.83) must include the Van der Waals interactions and the

residual interactions that are included in the potential given by Eq. (4.81).

Problem 4.5

Using Eq. (4.83) prove that the total interaction potential in the equilibrium state is given by

U R0ð Þ¼�NaM
Z2e2

R0

1� r
R0


 �
(4.84)

where the 1NN equilibrium distance R0 is given by

R2
0e

�R0=r ¼ raM
Z2e2

lRn0
(4.85)

Problem 4.6

Using the interaction potential given by Eq. (4.83), show that the bulk modulus for the NaCl structure (see Fig. 1.20) is given by

BM ¼ aMZ2e2

18R4
0

R0

r
�2


 �
(4.86)

One can calculate the values of r and lR for the exponential form of the repulsive potential using Eqs. (4.85), (4.86).

Substituting the values of BM, R0, Z, and aM for KCl, given above, into Eq. (4.86) yields

R0

r
¼ 18R4

0BM

aMZ2e2
+ 2¼ 10:4

The above equation yields

r¼ R0

10:4
¼ 3:14�10�8

10:4
¼ 0:30�10�8cm
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Knowing the value of r one can calculate the value of lR from Eq. (4.85), that is,

lR ¼
aMZ2e2

n0R
2
0

reR0=r ¼ 1:75� 4:8�10�10
� �2

6� 3:14�10�8
� �2 0:30�10�8� e10:4

¼ 0:67�10�8 cm

With these values of R0 and r the cohesive energy from Eq. (4.84) is given by

U R0ð Þ¼�1:16�10�11 erg

¼�7:26 eV

The observed value of the cohesive energy for KCl is �7.397 eV. Therefore, the theoretical value agrees reasonably well

with the observed value.

4.6.6 Calculation of the Madelung Constant

The Madelung constant was defined in Eq. (4.68), which, when divided by R, gives

aM
R

¼�
X
j j6¼ið Þ

1

pijR
(4.87)

Eq. (4.87) shows that the Madelung constant depends on the crystal structure and, therefore, has different values for dif-

ferent ionic solids. Further, the value of aM for a particular structure depends on the way it is defined: whether it is defined in

terms of the 1NN distance R or the lattice parameter a, or in some other way. In the calculation of aM, if one takes the

negative ion as the reference ion, then a positive sign will be used for positive ions and a negative sign for negative ions.

4.6.6.1 First Method

To illustrate the evaluation of aM, consider the simplest case of a monatomic linear lattice of ions (see Fig. 4.5). Let us

consider a negatively charged ion as the reference ion, then Eq. (4.87) yields

aM
R

¼ 2

R
� 2

2R
+

2

3R
� 2

4R
+ ::…… (4.88)

Here the factor of 2 in the first term is due to the fact that there are two 1NNs, one on the left and the other on the right, and

the same is true for all other NNs. Simplifying the above equation, we get

aM
R

¼ 2

R
ln2 (4.89)

Therefore, the Madelung constant for a linear chain of ions becomes

aM ¼ 2 ln2 (4.90)

4.6.6.2 Second Method

The interaction potential of a negatively charged reference ion with its two 1NNs is�2e2/R, with its 2NNs, 2e2/2R, and so

on. Here each ion is assumed to be monovalent. Hence the total interaction potential seen by the reference ion due to whole

of the linear chain of ions is given by

FIG. 4.5 One-dimensional ionic solid with lattice parameter a. The negatively and positively charged ions occur alternately.
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U Rð Þ¼�2e2

R
+
2e2

2R
�2e2

3R
+
2e2

4R
� ::…

¼�e2

R
2 ln2½ �

(4.91)

Eq. (4.91) can be written more conveniently as (Appendix B)

U Rð Þ¼�aM
e2

R
(4.92)

where aM is given by Eq. (4.90).

4.6.6.3 Madelung Constant for NaCl Structure

It is much more difficult to perform the summation in a three-dimensional crystal. Let us consider the case of NaCl crystal

shown in Fig. 1.20. The Na+1 ion at position O is taken as the reference ion. The Na+1 ion has six Cl-1 ions as its 1NNs at a

distance R, so the interaction potential seen by the reference ion due to all its 1NNs becomes�6e2/R. There are twelve 2NN

Na+1 ions each at a distance of
ffiffiffi
2

p
R which contribute potential energy of 12e2=

ffiffiffi
2

p
R and there are eight 3NNs Cl-1 ions

each at a distance of
ffiffiffi
3

p
R with potential energy contribution of�8e2=

ffiffiffi
3

p
R. Further, there are six 4NNs, each at a distance

of 2R, which gives a potential energy of 6e2/2R and so on. Summing over all the NNs, the total potential energy becomes

U Rð Þ¼�6e2

R
+
12e2ffiffiffi
2

p
R
� 8e2ffiffiffi

3
p

R
+
6e2

2R
� :…

¼�aM
e2

R

(4.93)

where

aM ¼ 6� 12ffiffiffi
2

p +
8ffiffiffi
3

p � 6ffiffiffi
4

p + :…

¼ 1:75

(4.94)

Therefore, the Madelung constant for NaCl structure is 1.75.

4.7 COVALENT BOND

A covalent bond is a homopolar bond that is formed by the sharing of an even number of electrons between atoms. A single

covalent bond involves the sharing of two electrons, one from each atom. Two bonds involve the sharing of four electrons,

and so on. In general, a multiple covalent bond involves the sharing of 2n electrons where n is the number of bonds. Familiar

examples of covalently bonded crystals are found among the group IV semiconductors, which comprise the elements C, Si,

Ge, and Sn. Covalent bonding also exists in crystals of the form ANB8�N made of elements A and B with N and 8�N

valence electrons per atom, respectively. This gives eight s or p valence electrons per pair of atoms.

To understand covalent bonding, let us take the case of the element carbon (C). A C atom possesses the electronic con-

figuration given below:

C : 1s22s22p2 (4.95)

Consider the covalent bond between two C atoms. The first C atom shares its electron with the second C atom and the

second C atom in turn shares its electron with the first C atom (see Fig. 4.6A). In this process of sharing, both the C atoms

possess 5 electrons in their outermost orbit. The electrons forming the bond tend to localize partially in the region between

the two atoms joined by the bond. The spins of the two electrons participating in the bond should be antiparallel. If the two

atoms are equally electronegative, then both have the tendency to attract the bonding pair of electrons equally. Therefore,

the bonding pair of electrons will be, on average, partially localized exactly in the middle of the two atoms or in the middle

of the covalent bond. Such a pair of atoms is said to form a pure covalent bond. It is important to note that this is an average

picture because the electrons are actually moving all the time in the molecular orbitals. Actually, a single C atom can share

its valence electrons with four adjoining C atoms (see Fig. 4.6B), thus forming four covalent bonds. In this process, each C

atom acquires 8 electrons in its outermost electron orbit, attaining the inert gas configuration and thus forming the most

stable state.
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The covalent bond is a strong bond, which is evident from the unusual hardness of diamond. The bond strength of a

covalent crystal is comparable with that of an ionic crystal. A typical value of the binding energy of a covalent bond is a few

electron volts per bond. Themost striking feature of a covalent bond is its highly directional properties. One should note that

C, Si, and Ge all have the diamond structure in which each atommakes covalent bonds with four atoms at tetrahedral angles

to one another (see Fig. 4.7). In the pure elements mentioned above, identical atoms form covalent bonds. The binding

energy (EB) of a covalent bond arises mainly from the following three contributions:

1. The formation of tetragonal bonds gives a negative contribution to EB as some energy is required to form tetragonal sp3

hybrid orbits from the s- and p- quantum orbits in a free atom.

2. The Coulomb repulsion between the ions or between the inner orbit electrons, such as 1s22s22p6 orbits.

3. Exchange interaction potential.

In general, the covalent bonds repel each other for the simple reason that the clouds of negatively charged electrons have a

repulsive interaction. Therefore, it has been observed that, in an element, the covalent bonds formed by the same atoms

FIG. 4.6 (A) Covalent bond between two carbon (C) atoms. The two electrons in the middle of the C atoms are shared by them. The covalent bond is

represented by the electron charge in the shaded region between the two C atoms. (B) Covalent bond of an atom of C, in the center, with four C atoms

forming the 1NNs. The description of the figure is the same as in part (A).

FIG. 4.7 Four covalent bonds around an atom in a pure crystal with the diamond structure.
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arrange themselves symmetrically around the atom. For example, one atom will form two covalent bonds in a straight line.

If the atom forms three covalent bonds, these will most likely arrange themselves in a plane at an angle of 120o to each other.

If the atom forms four covalent bonds, these will most likely arrange themselves in such a way that the four atoms form the

corners of a tetrahedron. The tetrahedral bonds in a covalent crystal are shown in Fig. 4.7. The tetrahedral bonds naturally fit

into cubic symmetry because the four nonadjacent corners of a cube correspond to the corners of a tetrahedron.

This plausible account still does not explain why a double-electron arrangement produces a bond, that is, an attractive

interatomic interaction. The explanation of a covalent bond can be given only through quantum mechanics. The simplest

known example is that of a hydrogen molecule, H2, in which two atoms are held together by covalent bonds by sharing their

electrons (Heitler-London theory of H2 molecule). Let us now examine the wave functions of the tetragonal covalent bonds

formed in a crystal of carbon. The electronic configuration of the neutral C atom is given by Eq. (4.95). In this configu-

ration, one has the following orbitals:

sj i ¼ 1

4p
(4.96)

pxj i ¼
ffiffiffi
1

2

r
Y1

1 +Y
�1
1

� �¼ 3p
4

� �1=2

siny cos’ (4.97)

py

��� E
¼�

ffiffiffi
1

2

r
i Y1

1�Y�1
1

� �¼ 3p
4

� �1=2

siny sin’ (4.98)

pzj i ¼ 3p
4

� �1=2

cosy (4.99)

But the electronic configuration of an atom of C in the valence state having the tetragonal bonding angles is known to be

C : 1s22s2p3 (4.100)

This is usually called the sp3 configuration. The four wave functions that determine the sp3 configuration are the linear

combinations of the orbitals given by Eqs. (4.96)–(4.99) and are given below:

c1j i ¼ c0111

�� �¼ sj i+ pxj i+ py

��� E
+ pzj i (4.101)

c2j i ¼ c0111

�� �¼ sj i + pxj i� py

��� E
� pzj i (4.102)

c3

�� �¼ c0111

�� �¼ sj i� pxj i+ py

��� E
� pzj i (4.103)

c4j i ¼ c0111

�� �¼ sj i� pxj i� py

��� E
+ pzj i (4.104)

The above four orbitals are called hybrid sp3 orbitals and are nearly degenerate. These are also sometimes called tetrahedral

orbits. In exactly the same manner one can define sp2 hybridization. The wave functions for the sp2 configuration consist of

the superposition of jsi, jpxi, and jpyi orbitals (leaving jpzi as it is) and are given as

c1j i ¼ c01

�� �¼ sj i+ pxj i (4.105)

c2j i ¼ c011

�� �¼ sj i� pxj i+ py

��� E
(4.106)

c2j i ¼ c011

�� �¼ sj i� pxj i� py

��� E
(4.107)

The above three wave functions are called hybrid sp2 orbitals. The sp2 bonds are three degenerate bonds 120 degrees apart in a

plane,with the leftover p-orbital stickingout perpendicular to the plane in the z-direction (commonlyknown as the c-direction).

The sp2 bonds give a hexagonal structure. It is noteworthy that sp2 hybridization is relevant to the formation of graphene planes

and carbon nanotubes. One can also define sp1 hybridization, which is the linear combination of jsi and jpxi orbitals.

4.8 MIXED BOND

In the above discussion, we have considered only the pure bonds: either purely ionic or purely covalent in nature. There are,

however, many crystals that exhibit mixed bonds, that is, the mixture of ionic and covalent bonds. Let us understand the
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formation of a mixed bond from the concept of sharing of electrons in a chemical bond between two atoms A and B. We

have seen that if two atoms forming a bond are equally electronegative, a pure covalent bond is formed. But in general, the

two atoms forming the bond may possess different electronegativities, for example, atom B may be more electronegative

than atom A. In this case, the bonding pair of electrons, on average, will be partially localized near the atom B as compared

with atom A. One can interpret this by saying that some electronic charge is transferred from A (cation) to B (anion). In

other words, one can say that the bond exhibits a mixed character: it is partially ionic (A+�B� ) and partially covalent (A :

B). Depending on the difference in electronegativities, the extent of the covalent and ionic nature of the bond may vary: the

greater the difference, the greater the ionic nature of the bond. In the extreme case in which the electronegativity of atom B

is very large as compared with that of atomA, the bonding pair of electrons is dragged very near atom B. So, for all practical

purposes, the atom A has lost control on its electron while the atom B has complete control over both the bonding electrons.

In other words, one can say that ions are formed that give rise to pure ionic bonding. GaAs presents a good example of a

mixed bond. In GaAs charge transfer does take place but it is not complete: only 0.46 of an electron is transferred on average

from the Ga to the As atom. This transfer accounts for a part of the binding force in GaAs but the major part comes from the

electron sharing (covalent bond) between Ga and its neighboring As atoms. Other examples that exhibit the mixed bond

character are InP, InAs, GaSb and, SiC.

The extent (in percent) of the ionic and covalent characters is described quantum mechanically. The valence electron

would, then, probabilistically speaking, spend a part of its time in an ionic state and a part in a covalent state. Such alter-

nation is often called a resonance in analogy with the harmonic oscillator, which alternately stores its energy in kinetic and

potential forms.

The simplest example of covalent bonding is between two hydrogen atoms in the H2 molecule. When two hydrogen

atoms are far apart their wave functions do not overlap (Fig. 4.8A). On coming closer, their electronic wave functions

overlap and the net wave function is the linear combination of the two wave functions given by

FIG. 4.8 (A) The wave functions of two atoms separated by a large distance. Here jcA(r)i and jcB(r)i are the wave functions of the individual atoms. (B)

Overlapping of the wave functions of two atoms having antiparallel spins that form a bonding state defined by jc+(r)i¼jcA(r)i+ jcB(r)i. (C) Overlapping
of the wave functions of two atoms having parallel spins that form an antibonding state defined by jc�(r)i¼jcA(r)i�jcB(r)i.
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c� rð Þj i ¼ cA rð Þj i� cB rð Þj i (4.108)

Here jcA(r)i and jcB(r)i are the electronic wave functions for the hydrogen atoms A and B. The electrons in both the wave

functions are in the 1s state, that is, in the ground state. Fig. 4.8B and C shows the electronic wave functions jc+(r)i and
jc_(r)i. The electronic charge distribution is given by the square of the wave function and the charge distributions for the

two wave functions given by Eq. (4.108) are shown in Fig. 4.9A and B. It is evident that jc+(r)i deposits the electrons

primarily in the region between the protons, giving rise to a lower energy state (bonding state), while jc�(r)i deposits
electrons around the individual protons (away from the intermediate region), giving rise to a higher energy state (anti-

bonding state). The wave function jc+(r)i corresponds to two atoms having opposite spins, while the wave function jc�(-
r)i corresponds to two atoms having parallel spins. It is worthwhile mentioning here that the similarity of the bonding

between carbon atoms and between silicon atoms should not be overemphasized as carbon gives biology while silicon gives

geology and semiconductor technology.

4.9 METALLIC BOND

Metals are perhaps the first elements to have been utilized by humans. These elements constitute more than half of the

elements in the periodic table. Metals possess a number of distinct physical properties. The most important are high values

for the electrical and thermal conductivities, as a result of which metallic solids behave as good conductors of electricity.

This fact indicates that in metallic solids, there must be a fraction of electrons that are mobile and conduct electricity. Such

electrons are usually called conduction electrons.

The electronic structure of metals gives information about the bonding in metallic solids, which is central in under-

standing the various physical properties of these solids. As an example, consider Al metal composed of N atoms in which

the electronic structure of each Al atom is given as

Al : 1s22s22p63s23p1 (4.109)

The ionization potential of 3s and 3p electrons (valence electrons) is much lower than that of 2p electrons and, therefore,

they are loosely bound to the nucleus. Each atom (and hence all the electrons in it) experiences the electrostatic potential

due to all of the other atoms, as a result of which the 3s and 3p electrons are detached from the atom. These electrons roam

about more or less freely in the whole of the crystal and are thus called free electrons. As these are the electrons largely

FIG. 4.9 The charge densities of the bonding and antibonding states defined by e j c+(r) j2 and e j c�(r) j2, respectively, as a function of distance.
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responsible for the conduction of charge in a metal, they are also called conduction electrons. The ion cores left behind are

somewhat distorted by the crystal field of the metallic solid and have the electronic structure

Al+3 : 1s22s22p6 (4.110)

Metallic crystals in which the conduction electrons are of type s or p are usually called simple metals. In Al metal with N

atoms, there will be 3N conduction electrons and N positively charged Al+3 ions at the lattice positions. As the simplest

approximation, a simple metal can be represented as a sea of conduction electrons in which are embedded the ions at the
lattice positions. Such a representation is shown in Fig. 4.10. The electrostatic potential seen by an electron due to all the

ions and the rest of the electrons is called the crystal potential V(r). In a metallic solid, the different contributions to V(r), in

the one-electron approximation, have already been discussed in Chapter 3 and it should be calculated self-consistently. For

a metallic crystal to form, the attractive interaction potential Vei must dominate the sum of the repulsive interaction poten-

tials Vii and Vee. Three main terms contribute to the binding energy EB of a metallic solid:

1. Kinetic energy: It gives a positive contribution to the binding energy. But in metallic solids the interatomic distance is

comparatively large, which gives rise to lower values of kinetic energy for the conduction electrons.2

2. Exchange interaction potential: The exchange interaction potential Vxc is negative in a free-electron gas.

3. Coulomb interaction potential: The Coulomb repulsion and attraction both increase in metals and contribute toward EB.

The attractive interaction potential Vei is large for large electron-ion distances, but the kinetic energy decreases.2

Pure metallic bonds are not strong chemical bonds. The binding energy in metallic solids ranges from 0.7eV for Hg to 8.8

eV for W. The alkali metals Li, Na, K, Rb, and Cs fall in the lower limit of binding energy and hence have relatively low

melting and boiling points due to the presence of pure metallic bonds. On the other hand, TMs, such as W, fall in the upper

limit and exhibit extremely high melting and boiling points. In the TMs, the conduction electrons possess both s- and

d-characters. The s-conduction electrons are nearly free and form metallic bonds. The d-conduction electrons are below

the s-conduction electrons and are quasilocalized. The d-electrons form covalent bonds andmake an additional contribution

to the binding energy.

FIG. 4.10 Model representation of a simple metal or free-electron metal. Spheres represent the ion cores, which are assumed to be hard.

2. The uncertainty principle states that

DxDp� h=2p
Or Dp� h=2pDx

So, the kinetic energy K.E. is given by

K:E:¼ Dpð Þ2
2m

� ħ2

2m Dxð Þ2

So, for larger interatomic distance Dx, the value of K.E. is smaller.
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Thus, the TMs exhibit high values for the binding energy due to the mixed bonding character: the bonds are partly

metallic and partly covalent. One of the characteristic properties of the metallic bond is that it is isotropic in nature, which

gives rise to the ductility and machinability of metals. Further, most of the metallic elements crystallize into fcc, bcc, or hcp

structures, which are basically the close-packed structures. It is also because the metallic bonds are isotropic in nature and

the ions are hard spherical balls. Another interesting property is that metallic alloys can be easily formed by mixing two or

more metals. This is because the valence electrons from the different metals mix easily together to form a sea of conduction

electrons and participate in the formation of metallic bonds. It is noteworthy to see that the binding energy of alkali metals is

considerably less than that of the alkali halides. This is because of the fact that the alkali halides are ionic crystals and the

ionic bond is much stronger than the metallic bond.

4.10 HYDROGEN BOND

A neutral hydrogen atom consists of a proton with one electron revolving around it. Therefore, one hydrogen atom is

expected to form a covalent bond with another hydrogen atom, forming a hydrogen molecule (H2). But, under certain con-

ditions, a hydrogen atom is found to form bonds with two other atoms. Such bonds are usually called hydrogen bonds with a

bond energy on the order of 0.1 eV. In the hydrogen bond, the hydrogen atom loses one electron to either of the two

adjoining atoms and there is equal probability of finding the electron on either ion. The hydrogen bond is largely ionic

in nature and is formed with the most electronegative elements, such as F, O, and N. Fig. 4.11 shows a hydrogen bond

with F atoms in which hydrogen difluoride (HF2
�1) is formed. Here a proton forms a hydrogen bond with the two F� ions.

The proton tends to draw the two anions more closely together than their normal spacing so that the shortening of their

interatomic spacing serves to indicate the presence of a hydrogen bond. The proton, being very small in size, can accom-

modate only two F atoms on either side.

Water molecules (H2O) interact with each other via hydrogen bonds, which is responsible for the electrostatic attraction

between the electric dipole moments of water molecules. This fact gives rise to the remarkable physical properties of water

and ice. The hydrogen bond is also important in some ferroelectric crystals.

In the above discussion and also in most of books, the bulk modulus is evaluated from Eq. (4.14). But one can derive the

expression for the bulk modulus from Eq. (4.12) in exactly the samemanner. Here we give this as a problem for the students.

Problem 4.7

With the help of Eq. (4.32), the interaction potential given by Eq. (4.12) can be written as

U Vð Þ¼ 1

2
N

BP0ni
Vn=3

�AP0mi

Vm=3


 �
(4.111)

where P0ni ¼
Nn=3pni
2n=6

, P0mi ¼
Nm=3pmi

2m=6
(4.112)

In Eq. (4.12) R0 has been replaced by R. From Eq. (4.111), prove that the equilibrium volume is given by

V0 ¼
n

m

BP0ni
AP0mi

� �
3

n�m (4.113)

Further, the bulk modulus in terms of volume, from Eq. (4.111), is given by

BM ¼ 1

2
NB

nP0ni
V
n
3+1

n�m

9
(4.114)

FIG. 4.11 Hydrogen difluoride ion HF2
�1 represents a stable hydrogen bond. It is a schematic representation of the ion as proton is shown to be a base

particle.
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It is easy to prove that the expressions for V0 and BM, given by Eqs. (4.113), (4.114) are precisely the same as given in

Eqs. (4.36), (4.38).
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The theoretical study of the various properties of crystalline solids requires a knowledge of the crystal potential, the reliable

determination of which is difficult. One of the oldest and simplest methods is to view the crystal as an isotropic continuous

elastic material with uniform density instead of as a discrete periodic array of atoms. The various properties of the solids,

such as elastic constants, lattice vibrations, and thermal properties, can be studied using the continuum elasticity theory of

solids. The study of elastic constants is of immense importance because they give information about the nature of binding

forces in solids: a central physical quantity in studying various properties of solids. The continuum elasticity theory is valid

for low-frequency waves, such as elastic waves with wavelength l> 10�6 cm or frequency n< 1011Hz, as these waves are
not able to see the atomic structure of a crystalline solid. The present chapter presents the calculation of elastic constants in

the isotropic linear elasticity approximation in which Hooke’s law is valid.

5.1 STRAIN TENSOR

Consider a solid with Cartesian coordinate axes having unit vectors îa with a¼ 1,2,and 3. The position vector of a point or a
particle in the solid (Fig. 5.1) is defined as

r¼
X
a

îara (5.1)

where ra are the Cartesian components of the vector r. The application of a weak external force produces a small defor-

mation in the solid that changes the orientation and magnitude of both the position vector and the unit vectors. The strain

produced in the body can be studied in two approaches. In the first approach the unit vectors are kept unchanged and the

orientation and magnitude of the Cartesian components of the position vector are changed. In the second approach the

Cartesian components of the position vector are kept unchanged and the orientation and magnitude of the unit vectors

are changed. It is more convenient to adopt the second approach as is done here. In a strained body, a particle at point

r moves to r0 (Fig. 5.1) given by

r0 ¼ r+ u rð Þ (5.2)

where u(r) is the displacement produced. If ua is the Cartesian component of u(r) along the unit vector îa, then

u rð Þ¼
X
a

ua îa (5.3)
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Note that u(r) is not a constant quantity but is a function of the position vector. Therefore, u(r) varies continuously

throughout the solid and forms a vector field usually called the strain field or displacement field. The components of

the unit vector after displacement, denoted as î
0
a, are given as

î
0
a ¼

∂

∂ra
r + uð Þ¼ ∂

∂ra

X
b

rb îb + ub îb

h i

¼
X
b

dab + eab
� �̂

ib

(5.4)

where

eab ¼ ∂ub=∂ra (5.5)

The position vector r0 can be written, in terms of î
0
a, as

r0 ¼
X
a

ra î
0
a (5.6)

In the above equation the Cartesian components of r0 remain unchanged after deformation. To make the measurement of

deformation free from the orientation of the coordinate axes, it is convenient to define a scalar product between the new unit

vectors as

gab ¼ î
0
a � î

0
b ¼ dab + eab + eba +

X
g

eagebg (5.7)

From the above equation the angle between the two deformed axes is

yab ¼ cos�1 gab= j î0ak̂i
0
bj

h i� �
(5.8)

FIG. 5.1 Coordinate axes in perfect and strained crystals. The position vector r goes to r0 after producing strain in the crystal.
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In terms of gab the strain components eab are defined as

eab ¼
1

2
gab�dab

� �
¼ 1

2
eab + eba

� �

¼ 1

2

∂ub

∂ra
+
∂ua
∂rb

" #
(5.9)

In defining the above equation, the second order terms in eab are neglected (the linear elasticity approximation). Eq. (5.9)

shows that the strain tensor e$ is symmetric, that is, eab¼ eba. The diagonal components of the strain tensor from Eq. (5.9) are

given as

eaa ¼
∂ua
∂ra

¼ eaa (5.10)

When the direction of the axes is reversed, that is, a goes to�a, then under the reversal of the coordinate axes one can write

r�a ¼�ra, u�a ¼�ua (5.11)

From Eqs. (5.9), (5.10) one can write

e�a�a ¼
∂u�a

∂r�a
¼ eaa (5.12)

ea�b ¼
1

2

∂u�b

∂ra
+

∂ua
∂r�b

" #
¼�eab (5.13)

Eqs. (5.12), (5.13) show that with the reversal of direction of one of the Cartesian coordinates, the nondiagonal components

of the strain tensor change their sign while the diagonal components remain unchanged.

Ideally speaking, two types of strain can exist in a solid. The first is hydrostatic pressure in which the volume of the solid

changes without any change in its shape and is represented by the diagonal components of the strain tensor e$. The second is
pure shear in which the volume of the body remains unchanged by the deformation and only the shape changes. Pure shear is

represented by the nondiagonal components of e$. But in an actual strain, both the volume and shape of the solid may

change. Therefore, the general strain may be represented as the linear combination of pure hydrostatic pressure and pure

shear. To do so, the strain components are defined as

eab ¼ eab�
1

3
dab

X
g

egg

" #
+
1

3
dab

X
g

egg (5.14)

The first term on the right side is evidently a pure shear as the sum of its diagonal terms is zero, while the second term is a

pure hydrostatic pressure. Hydrostatic pressure acts perpendicular to the surface of the solid, while pure shear acts along the

surface. Therefore, these two scalar components are independent of each other and the square of the strain component eab
can be obtained by the addition of the squares of these two components, that is,

eab
h i2

¼ eab�
1

3
dab

X
g

egg

" #2

+
1

3

X
g

egg

" #2

(5.15)

The strain field, from Eqs. (5.1), (5.2), (5.4), and (5.6), can be written as

u rð Þ¼ r0 � r¼
X
a,b

raeab

h î
ib (5.16)

From Eqs. (5.3), (5.16) the components of the strain field are given by

ub ¼
X
a

raeab (5.17)

5.2 DILATION

Dilation is defined as the fractional change in volume of a solid due to the deformation produced by the application of an

external force. It can be expressed in terms of the strain field components eab. Consider a solid in the form of a cube with unit

edges î1, î2, and î3. The volume of the solid V is given by

V¼ î1 � î2� î3 ¼ 1 (5.18)
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After deformation the cube becomes a parallelepiped with edges î
0
1, î

0
2, and î

0
3, having volume V0 given by

V0 ¼ î
0
1 � î

0
2� î

0
3 ¼ 1 +

X
a

eaa (5.19)

in the linear elasticity approximation. The dilation produced by the deformation becomes

dD ¼V0 �V

V
¼DV

V
¼
X
a

eaa (5.20)

The symmetric strain tensor has six independent elements. For simplicity of notation, it is very convenient to use the Voigt

notation for the strain components, according to which the subscripts are defined as

1 � 11¼ xx; 2� 22¼ yy; 3� 33¼ zz

4� 23¼ yz; 5� 31¼ zx; 6� 12¼ xy
(5.21)

In the Voigt notation eab can be written as em where m takes the values 1, 2, 3, 4, 5, and 6.

5.3 STRESS TENSOR

There are two types of forces acting on a solid body. The first type is called the body force, which acts throughout the body

and exerts influence on the whole of the mass distribution. The inertial and gravitational forces are examples of the

body force. The body force is expressed per unit mass or per unit volume. If f(r) is the body force per unit volume, it

can be written as

f rð Þ¼
X
a

fa îa (5.22)

Here fa is the a-component of the body force density. The second type is the surface force, which acts on the surface of the

body. A surface force is expressed in units of force per unit area and is called stress. The stress is further divided into two

categories: stress acting normal to the surface (normal stress) and stress acting along the surface (shear stress). As the

normal stress and the shear stress act perpendicularly to each other, therefore, they are orthogonal stresses. Stress is repre-

sented by a tensor s$ with components sab where the first subscript indicates the direction of the stress and the second

subscript the direction of the normal to the surface on which the stress is acting. Fig. 5.2 shows the different components

of stress acting on a cubic solid. It can be easily shown that the stress tensor is symmetric, that is,

sab ¼ sba (5.23)

which is a consequence of the fact that shear stress does not cause angular rotation. The symmetric stress tensor s$ has six

independent elements, which, in the Voigt notation, can be written as sm where m can take values 1, 2, 3, 4, 5, and 6. If a

body under stress is in the equilibrium state, its equation of motion is

X
b

∂sab
∂rb

+ fa ¼ 0 (5.24)

The first term gives the body force per unit volume applied externally on the body and the second term is the internal body

force per unit volume.

5.4 ELASTIC CONSTANTS OF SOLIDS

In the linear elasticity approximation, valid for very small deformations only, the strain is linearly proportional to stress and

vice versa. In mathematical language, we can write

sab ¼
X
m,n

Cabmnemn (5.25a)

eab ¼
X
m,n

Cs
abmnsmn (5.25b)
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where Cabmn and Cabmn
s are called the elastic stiffness constants and elastic compliance constants. The quantity Cabmn has

dimensions of energy/volume, while Cabmn
s has dimensions of volume/energy. In the Voigt notation Eqs. (5.25a), (5.25b)

become

sm ¼
X
n

Cmn en (5.26a)

em ¼
X
n

Cs
mnsn (5.26b)

where m and n have integral values from 1 to 6. The constants Cmn are usually called the elastic constants of the

crystalline solid.

5.5 ELASTIC ENERGY DENSITY

If U is the elastic energy density per unit volume, the stress components in terms of it are given by

sab ¼� ∂U

∂eab
(5.27a)

or

dU¼�sabdeab (5.27b)

The minus sign indicates that U is the work done on the system. In Voigt notation one can write (magnitude)

dU¼ snden (5.28)

From the above equation the stress components can be written in terms of energy density as

sn ¼
dU

den
(5.29)

FIG. 5.2 Components sab of the stress tensor in a cubic crystal.
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The total change in energy density due to all the stress components becomes

dU¼
X
n

snden (5.30)

Substituting for sn from Eq. (5.26a), one can write

dU¼
X
n,m

Cnmemden (5.31)

Therefore, the total energy density becomes

U¼
ð
dU¼ 1

2

X
n,m

Cnmemen (5.32)

From Eqs. (5.29), (5.32) one can write

s1 ¼
dU

de1
¼C11e1 +

1

2

X6
n¼2

C1n +Cn1ð Þen (5.33)

Hence, in the stress-strain relations, the combination 1/2(Cmn+Cnm) appears in all the stress components. It follows that the

elastic stiffness constants Cmn are symmetrical, that is,

Cmn ¼Cnm (5.34)

Eq. (5.34) reduces the independent elastic constants from 36 to 21.

5.6 ELASTIC CONSTANTS IN CUBIC SOLIDS

In the linear elasticity approximation, the stress-strain relation given by Eq. (5.26a) allows us to write the different com-

ponents of stress as

sxx ¼C11exx +C12eyy +C13ezz + C14eyz + C15ezx +C16exy
syy ¼C21exx +C22eyy +C23ezz + C24eyz + C25ezx +C26exy
szz ¼C31exx + C32eyy +C33ezz + C34eyz +C35ezx +C36exy
syz ¼C41exx +C42eyy +C43ezz + C44eyz +C45ezx +C46exy
szx ¼C51exx +C52eyy +C53ezz + C54eyz +C55ezx +C56exy
sxy ¼C61exx +C62eyy +C63ezz + C64eyz + C65ezx +C66exy

(5.35)

The above equation can be written in matrix form as

sxx
syy
szz
syz
szx
sxy

0
BBBBBBBB@

1
CCCCCCCCA

¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

0
BBBBBBBB@

1
CCCCCCCCA

exx
eyy
ezz
eyz
ezx
exy

0
BBBBBBBB@

1
CCCCCCCCA

(5.36)

Consider an isotropic solid in which the physical properties do not alter under the symmetry operations of a cubic solid. The

number of elastic constants can be reduced by considering the different symmetry relations of the cubic solid. Following are

the important symmetry operations in a cubic solid.

Fourfold (2p=4) rotation about one of the edges of a cube (Fig. 5.3), which changes the sign of the coordinates as follows
(anticlockwise rotation)

About z� axis : x! y, y!�x

About y� axis : z! x, x!�z

About x� axis : y! z, z!�y

(5.37)
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Twofold (2p/2) rotation about one of the edges of a cube, which changes the axes as follows (anticlockwise rotation):

About z� axis : x!�x, y!�y

About y� axis : z!�z, x!�x

About x� axis : y!�y, z!�z

(5.38)

Threefold (2p/3) rotation about the diagonals of a cube (Fig. 5.4). There are four diagonals about which the transformation

of the axes is as follows:

x! y! z! x

�x! z!�y!�x

x! z!�y! x

�x! y! z!�x

(5.39)

We see from the above symmetry relations that the rotations either interchange the axes or reverse their sign. Let us apply

the operation of a twofold rotation to the cubic solids in which the signs of the axes change. If the sign of the y-axis is

reversed, then the left-hand side of the first expression of Eq. (5.35) is given as

sxx ¼C11exx +C12e�y�y +C13ezz + C14e�yz +C15ezx +C16ex�y

¼C11exx +C12eyy +C13ezz�C14eyz +C15ezx�C16exy
(5.40)

In the above equation we have used the properties (5.12), (5.13) of eab and we see that all the terms remain unchanged

except the 4th and 6th terms of Eq. (5.40). Therefore, sxx is invariant under the transformation y!�y only if

C14 ¼C16 ¼ 0 (5.41)

The symmetry property of the elastic constants yields

C41 ¼C61 ¼ 0 (5.42)

Similarly, if we make the transformation z!�z in the first expression of Eq. (5.35), we get

C14 ¼C41 ¼C15 ¼C51 ¼ 0 (5.43)

Applying the transformation x!�x in the second expression of Eq. (5.35), we find

syy ¼C21exx +C22eyy +C23ezz + C24eyz�C25ezx�C26exy (5.44)

FIG. 5.3 Twofold and fourfold rotations about the edges of a cube.
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and the transformation z!�z in the second expression of Eq. (5.35) yields

syy ¼C21exx +C22eyy +C23ezz�C24eyz�C25ezx +C26exy (5.45)

The property of invariance yields, from Eqs. (5.44), (5.45),

C24 ¼C25 ¼C26 ¼C42 ¼C52 ¼C62 ¼ 0 (5.46)

The transformations x!�x and y!�y, when applied to the third expression of Eq. (5.35), reduce the following elastic

constants to zero

C34 ¼C35 ¼C36 ¼C43 ¼C53 ¼C63 ¼ 0 (5.47)

In the above description we have considered the invariance of only the normal stress components sxx, syy, and szz in cubic
crystals. Using Eqs. (5.41)–(5.43), (5.46), and (5.47) in Eq. (5.35), one can write

sxx ¼C11exx +C12eyy +C13ezz
syy ¼C21exx +C22eyy +C23ezz
szz ¼C31exx +C32eyy +C33ezz
syz ¼C44eyz +C45ezx +C46exy
szx ¼C54eyz +C55ezx +C56exy
sxy ¼C64eyz +C65ezx +C66exy

(5.48)

Let us now consider the shear stress defined by the last three expressions of Eq. (5.48). If we apply the transformation

x!�x to the fourth expression of Eq. (5.48), the invariance property yields

C45 ¼C46 ¼C54 ¼C64 ¼ 0 (5.49)

We have used the fact that syz does not change under the transformation x!�x as it does not involve the x-coordinate.

Similarly, the application of transformation y!�y to the fifth expression and of z!�z to the sixth expression of

Eq. (5.48) give

C54 ¼C56 ¼C45 ¼C65 ¼ 0 (5.50)

C64 ¼C65 ¼C46 ¼C56 ¼ 0 (5.51)

FIG. 5.4 Threefold rotation about the diagonal of a cubic structure.
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Substituting Eqs. (5.49)–(5.51) into Eq. (5.48), one gets

sxx ¼C11 exx + C12 eyy +C13 ezz
syy ¼C21 exx + C22 eyy +C23 ezz
szz ¼C31 exx + C32 eyy +C33 ezz
syz ¼C44 eyz
szx ¼C55 ezx
sxy ¼C66 exy

(5.52)

In the above discussion we have applied a twofold rotation about one of the edges of the cubic structure. Let us apply a

fourfold rotation about one of the edges of the cube. In a fourfold rotation either the transformation x!y, y!z, z!x or

x!�y, y!�z, z!�x can take place. In both of these transformations, invariance is required.When fourfold rotation is

applied about the x-axis, then the allowed transformations are y!z and z!�y and in these transformations the first

expression of Eq. (5.52) changes to

sxx ¼C11 exx + C12 ezz + C13 eyy (5.53)

The first expression of Eqs. (5.52), (5.53) must be the same (invariance property) under the transformation, which gives

C12 ¼C13 (5.54)

Similarly, when fourfold rotation is applied to the second expression of Eq. (5.52) about the y-axis and to the third

expression of Eq. (5.52) about the z-axis, one gets

C21 ¼C23 ¼C31 ¼C32 (5.55)

Eqs. (5.54), (5.55) collectively can be written as

C12 ¼C21 ¼ C31 ¼C32 ¼C13 ¼C23 (5.56)

Use of Eq. (5.56) in Eq. (5.52) yields

sxx ¼C11 exx +C12 eyy + ezz
� �

syy ¼C22 eyy +C12 ezz + exxð Þ
szz ¼C33 ezz + C12 exx + eyy

� �
syz ¼C44 eyz
szx ¼C55 ezx
sxy ¼C66 exy

(5.57)

Let us apply a threefold rotation to Eq. (5.57) in which x!y!z!x. The application of the transformation x!y to the

first expression of Eq. (5.57) yields

syy ¼C11 eyy + C12 exx + ezzð Þ (5.58)

Comparing Eq. (5.58) with the second expression of Eq. (5.57), the invariance of syy demands

C11 ¼C22 (5.59)

Similarly, when the transformations y!z and z!x are applied to the second and third terms, respectively, of Eq. (5.57)

these give

C22 ¼C33, C33 ¼C11 (5.60)

The application of the transformation x!y!z!x to the last three expressions of Eq. (5.57) yields

C44 ¼C55 ¼C66 (5.61)

Using Eqs. (5.59)–(5.61) in Eq. (5.57) one gets

sxx ¼C11 exx +C12 eyy + ezz
� �

syy ¼C11 eyy +C12 ezz + exxð Þ
szz ¼C11 ezz + C12 exx + eyy

� �
syz ¼C44 eyz
szx ¼C44 ezx
sxy ¼C44 exy

(5.62)
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Eq. (5.62) can be written in matrix form as

sxx
syy
szz
syz
szx
sxy

0
BBBBBB@

1
CCCCCCA

¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

0
BBBBBB@

1
CCCCCCA

exx
eyy
ezz
eyz
ezx
exy

0
BBBBBB@

1
CCCCCCA

(5.63)

Eq. (5.62) or Eq. (5.63) shows that in a solid with a cubic structure there are three independent elastic constants, C11, C12,

and C44, the determination of which explains all of the elastic properties of these solids. From Eq. (5.63) one can derive the

relation between the elastic stiffness and the elastic compliance constants for a cubic crystal. Table 5.1 presents the elastic

stiffness constants for Al, Cu, Ag, and Au metals.

5.7 ELASTIC ENERGY DENSITY IN CUBIC SOLIDS

The elastic energy density, given by Eq. (5.32), is a quadratic function of the elastic strain. In cubic crystals there are only

three nonzero elastic constants, C11, C12, and C44. Therefore, the nonzero terms in Eq. (5.32), with the help of Eq. (5.63),

can be written as

U¼ 1

2
C11 e21 + e

2
2 + e

2
3

� �
+
1

2
C44 e24 + e

2
5 + e

2
6

� �
+C12 e1e2 + e1e3 + e2e3ð Þ (5.64)

The above equation can be written in terms of the x, y, and z axes as

U¼ 1

2
C11 e2xx + e

2
yy + e

2
zz

� �
+
1

2
C44 e2yz + e

2
zx + e

2
xy

� �

+C12 exxeyy + eyyezz + ezzexx
� �

(5.65)

5.8 BULK MODULUS IN CUBIC SOLIDS

The bulk modulus BM is defined, in terms of the energy density U, as

U¼ 1

2
BMd2D (5.66)

where dD is the dilation. From Eq. (5.65), U can be calculated in terms of dD. For uniform dilation

exx ¼ eyy ¼ ezz ¼
1

3
dD (5.67)

and

eyz ¼ ezx ¼ exy ¼ 0 (5.68)

TABLE 5.1 Adiabatic Elastic Stiffness Constants (1012 dyne/cm2) at Room Temperature (300K) for Al, Cu, Ag, and Aua

Metal C11 C12 C44 Aas

Al 1.068 0.607 0.282 0.611

Cu 1.684 1.214 0.754 1.604

Ag 1.240 0.937 0.461 1.521

Au 1.923 1.631 0.420 1.438

aKittel, C. (1971). Introduction to solid state physics (4th ed.). New York: J. Wiley & Sons.
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Substituting Eqs. (5.67), (5.68) into Eq. (5.65), one can write

U¼ 1

6
C11 + 2C12ð Þd2D (5.69)

Comparing Eqs.(5.66), (5.69), the bulk modulus becomes

BM ¼ 1

3
C11 + 2C12ð Þ (5.70)

and the compressibility KC can be written as

KC ¼
1

BM

¼ 3

C11 + 2C12

(5.71)

With the knowledge of the elastic constants, the bulk modulus and compressibility of a cubic solid can be estimated.

5.9 ELASTIC WAVES IN CUBIC SOLIDS

The propagation of elastic waves in a solid can be understood by considering the mechanical system shown in Fig. 5.5. Here

P, Q, and R are wooden blocks joined together with springs A and B along the x-direction. Elastic waves are produced by

stretching the springs along the x-direction. If the springsAandBare stretched equally in opposite directions, the force acting

on the block Q is zero. Further, if uniform stress sxx is applied, the force acting on the blocks is again zero. If spring B is

stretched more than spring A, nonuniform stress is produced in the system and the net stress acting on the block Q becomes

Dsxx ¼ sxx Bð Þ�sxx Að Þ (5.72)

Dsxx will make the block Q move in the x-direction, thereby producing an elastic wave. Let us now consider a small

cubic solid with sides Dx, Dy, and Dz (Fig. 5.6). The application of a nonuniform stress sxx(x) in the x-direction produces
a nonuniform strain in the cube. Let sxx(x+Dx) and sxx(x) be the stress applied to the opposite faces of the cube (see

Fig. 5.6), then

sxx x +Dxð Þ¼ sxx xð Þ+ ∂sxx
∂x

Dx (5.73)

The net stress acting on the face ABCD is given by

Dsxx Dxð Þ¼ sxx x +Dxð Þ�sxx xð Þ¼ ∂sxx
∂x

Dx (5.74)

Therefore, the force DF(Dx) acting on the face ABCD becomes

DF Dxð Þ¼DsxxDyDz¼
∂sxx
∂x

DxDyDz (5.75)

The application of stress Dsxx(Dx) makes the cube move along the x-direction, thereby producing an elastic wave in the

same direction. The stress Dsxx will also produce strain (deformation) in the y- (in the faces BCGF and ADHE) and z- (in

the faces DCGH and ABFE) directions. The forces acting along the y- and z-directions are given by

DF Dyð Þ¼ F y +Dyð Þ�F yð Þ¼ ∂sxy
∂y

DxDyDz (5.76)

DF Dzð Þ¼ F z +Dzð Þ�F zð Þ¼ ∂sxz
∂z

DxDyDz (5.77)

FIG. 5.5 A mechanical system of three wooden blocks P, Q, and R joined together with springs A and B along the x-direction.
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Hence the total force acting on the cube due to the stress applied in the x-direction becomes

DF¼DF Dxð Þ+DF Dyð Þ+DF Dzð Þ

¼ ∂sxx
∂x

+
∂sxy
∂y

+
∂sxz
∂z

� �
DxDyDz

(5.78)

Let rm be the mass density of the homogeneous isotropic material, then according to Newton’s second law

rmDxDyDzð Þ d
2u1

dt2
¼DF (5.79)

where u1 is the displacement in the x-direction. From Eqs. (5.78), (5.79) one can write

rm
d2u1

dt2
¼ ∂sxx

∂x
+
∂sxy
∂y

+
∂sxz
∂z

(5.80)

The solution of Eq. (5.80) requires knowledge of the elements of the stress tensor of a cubic solid. Differentiating the

expressions for sxx, sxy, and sxz given by Eq. (5.62), and using Eqs. (5.9), (5.10) for the elements of the strain tensor,

one gets

∂sxx
∂x

¼C11

∂exx
∂x

+C12

∂eyy
∂x

+
∂ezz
∂x

� �
¼C11

∂
2u1
∂x2

+C12

∂
2u2

∂x∂y
+
∂
2u3

∂x∂z

� 	
(5.81)

∂sxy
∂y

¼C44

∂exy
∂y

¼ 1

2
C44

∂
2u1
∂y2

+
∂
2u2

∂x∂y

� 	
(5.82)

∂sxz
∂z

¼C44

∂exz
∂z

¼ 1

2
C44

∂
2u1
∂z2

+
∂
2u3

∂x∂z

� 	
(5.83)

FIG. 5.6 A small cubic solid with sides Dx, Dy, and Dz along the three Cartesian directions. A nonuniform stress sxx(x) is applied along the x-direction.
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Substituting Eqs. (5.81)–(5.83) into Eq. (5.80), one can write

rm
∂
2u1
∂t2

¼C11

∂
2u1
∂x2

+
1

2
C44

∂
2u1
∂y2

+
∂
2u1
∂z2

� 	
+ C12 +

1

2
C44

� �
∂
2u2

∂x∂y
+
∂
2u3

∂z∂x

� 	
(5.84)

Eq. (5.84) gives the equation of motion of the elastic wave produced in a cubic solid when stress is applied externally in the

x-direction. In exactly the same manner, one can apply the nonhomogeneous stress in the y- and z-directions and can obtain

the corresponding equations of motion for u2 and u3, which are given by

r
∂
2u2
∂t2

¼C11

∂
2u2
∂y2

+
1

2
C44

∂
2u2
∂x2

+
∂
2u2
∂z2

� 	
+ C12 +

1

2
C44

� �
∂
2u1

∂x∂y
+
∂
2u3

∂y∂z

� 	
(5.85)

rm
∂
2u3
∂t2

¼C11

∂
2u3
∂z2

+
1

2
C44

∂
2u3
∂x2

+
∂
2u3
∂y2

� 	
+ C12 +

1

2
C44

� �
∂
2u1

∂x∂z
+
∂
2u2

∂y∂z

� 	
(5.86)

Eqs. (5.84)–(5.86) can be written in a general form as

rm
∂
2ua
∂t2

¼C11

∂
2ua
∂r2a

+
1

2
C44

X
b b 6¼að Þ

∂
2ua
∂r2b

+ C12 +
1

2
C44

� � X
b b 6¼að Þ

∂
2ub

∂ra∂rb
(5.87)

To examine the actual elastic waves produced in a cubic solid, let us apply Eq. (5.87) in different directions.

5.9.1 Elastic Waves in the [100] Direction

The elastic waves along the [100] direction may be longitudinal or transverse in nature. The displacement of longitudinal

(L) elastic waves in the x-direction u1L is given by

u1L ¼ u0L exp �i Kr1�oL tð Þ½ � ¼ u0L exp �i Kx�oL tð Þ½ � (5.88)

Here u0L and K are the amplitude and propagation wave vector along the x-direction andoL is the frequency of the L elastic

wave. Substituting Eq. (5.88) into Eq. (5.84), the frequency of the elastic wave is given by

oL ¼
ffiffiffiffiffiffiffi
C11

rm

s
K (5.89)

Eq. (5.89) is called the dispersion relation because it relates the frequency to the wave vector. It immediately gives the

linear velocity as

vL ¼
oL

K
¼

ffiffiffiffiffiffiffi
C11

rm

s
(5.90)

Here the group velocity and the phase velocity are the same.

There are two transverse (T) elastic waves with displacements along the y- and z-directions but with K along the x-

direction and they are defined as

u2T1
¼ u02 exp �i Kr1�oT1

t
� �h i

(5.91)

u3T2
¼ u03 exp �i Kr1�oT2

t
� �h i

(5.92)

where oT1
and oT2

are the frequencies of the T elastic waves. Substituting Eq. (5.91) into Eq. (5.85) and Eq. (5.92) into

Eq. (5.86), one can solve for the velocities of the waves vT1
and vT2

to get

vT1
¼oT1

K
¼

ffiffiffiffiffiffiffiffiffi
C44

2rm

s
(5.93a)

vT2
¼oT2

K
¼

ffiffiffiffiffiffiffiffiffi
C44

2rm

s
(5.93b)

Eqs. (5.93a), (5.93b) show that the velocities of the two T elastic waves are the same, but differ from that of the L elastic

wave. The experimental measurement of the velocities of the L and T elastic waves in a cubic crystal allows us to find the
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elastic constants C11 and C44 using Eqs. (5.90), (5.93a), (5.93b). Fig. 5.7 shows the L and T polarizations of the elastic wave

with propagation wave vector K along the x-direction.

5.9.2 Elastic Waves in the [110] Direction

The propagation of elastic waves in the [100] direction gives information only about the elastic constants C11 and C44, but

the elastic constant C12 remains undetermined. Let us consider the propagation of elastic waves along the [110] symmetry

direction as shown in Fig. 5.8. The propagation wavevector K in the [110] direction is given by

K¼ î1K1 + î2K2 ¼
Kffiffiffi
2

p î1 + î2

� �
(5.94)

FIG. 5.7 Longitudinal and transverse polarizations of the elastic wave traveling along the x-direction.

FIG. 5.8 Longitudinal and transverse polarizations of an elastic wave traveling along the [110] direction.
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The components K1¼Kx and K2¼Ky have the same magnitude. Fig. 5.8 shows the different polarizations (modes) of the

elastic wave. It is evident from the figure that one of the transverse elastic waves T1 propagates in the xy-plane with particle

displacement along the z-direction defined as

u3T1
¼ u03 exp �i

Kffiffiffi
2

p x + yð Þ�oT1
t

� �� 	
(5.95)

Substituting Eq. (5.95) into Eq. (5.86), one gets

oT1
¼

ffiffiffiffiffiffiffiffiffi
C44

2rm

s
K (5.96)

Therefore, the velocity of the T1 elastic wave becomes

vT1
¼

ffiffiffiffiffiffiffiffiffi
C44

2rm

s
(5.97)

The second transverse elastic wave T2 and the L elastic wave propagate in the xy-plane with particle displacement also in

the xy-plane and they are defined as

u1 ¼ u01 exp �i
Kffiffiffi
2

p x + yð Þ�ot

� �� 	
(5.98)

u2 ¼ u02 exp �i
Kffiffiffi
2

p x + yð Þ�ot

� �� 	
(5.99)

Substituting u1 and u2 into Eqs. (5.84), (5.85), one gets

o2rmu1 ¼ C11 +
1

2
C44

� �
K2

2
u1 + C12 +

1

2
C44

� �
K2

2
u2 (5.100)

o2rmu2 ¼ C11 +
1

2
C44

� �
K2

2
u2 + C12 +

1

2
C44

� �
K2

2
u1 (5.101)

Eqs. (5.100), (5.101) have nontrivial solutions only if the determinant of the coefficients of u1 and u2 is zero, that is,

�o2rm + C11 +
1

2
C44

� �
K2

2
C12 +

1

2
C44

� �
K2

2

C12 +
1

2
C44

� �
K2

2
�o2rm + C11 +

1

2
C44

� �
K2

2




















¼ 0 (5.102)

The above determinant gives a quadratic equation in o2 with the following solutions

o2
1rm ¼ 1

2
C11 +C12 +C44ð ÞK2 (5.103)

o2
2rm ¼ 1

2
C11�C12ð ÞK2 (5.104)

So, the velocities of these elastic waves are given by

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 +C12 +C44

2rm

s
(5.105)

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12

2rm

s
(5.106)

Let us examine the nature of the two waves described by Eqs. (5.103), (5.104). Substituting Eq. (5.103) into Eq. (5.100) for

the frequency o¼o1, one can prove that

u1 ¼ u2 (5.107)
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Thus, corresponding to the frequencyo1, the displacement of the particle is in the [110] direction, which gives the L elastic

wave. Similarly, substituting Eq. (5.104) into Eq. (5.100) for the frequency o¼o2, one can get

u1 ¼�u2 (5.108)

According to Eq. (5.108) the displacement of the particle is along the 110
� �

direction, which is perpendicular to the

direction of propagation [110]. Hence Eq. (5.104) gives the frequency of the T2 elastic wave. Now, the velocities of

the L and T2 elastic waves are given by

vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 +C12 +C44

2rm

s
(5.109)

vT2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12

2rm

s
(5.110)

Hence, from the experimental measurements of the velocities of the L and T elastic waves, given by Eqs. (5.97), (5.109),

and (5.110), one can determine all of the elastic constants C11, C12and C44 of a cubic crystal.

5.9.3 Elastic Waves in the [111] Direction

Another high-symmetry direction of interest in cubic crystals is the [111] direction. Consider an elastic wave propagating in

the [111] direction with wave vector K (Fig. 5.9) defined as

K¼ î1K1 + î2K2 + î3K3 ¼ î1Kx + î2Ky + î3Kz

¼ Kffiffiffi
3

p î1 + î2 + î3

� � (5.111)

Here we have used the fact that, in the [111] direction, the magnitude of all the Cartesian components of K is equal.

Therefore, the Cartesian components of displacement are given by

u1 rð Þ¼ u01 exp �i
Kffiffiffi
3

p x + y + zð Þ�ot

� �� 	
(5.112)

FIG. 5.9 Longitudinal and transverse polarizations of an elastic wave traveling along the [111] direction.
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u2 rð Þ¼ u02 exp �i
Kffiffiffi
3

p x + y + zð Þ�ot

� �� 	
(5.113)

u3 rð Þ¼ u03 exp �i
Kffiffiffi
3

p x + y + zð Þ�ot

� �� 	
(5.114)

The total displacement u(r) becomes

u rð Þ¼ u01 î1 + u02 î2 + u03 î3

� �
exp �i

Kffiffiffi
3

p x + y + zð Þ�ot

� �� 	
(5.115)

One is interested in finding the velocities of the different modes of the elastic wave propagating in the [111] direction.

Substituting Eqs. (5.112)–(5.114) into Eq. (5.84) and simplifying, we obtain

C11 +C44�3Lð Þu1 + C12 +
1

2
C44

� �
u2 + C12 +

1

2
C44

� �
u3 ¼ 0 (5.116)

where

L¼ rm
o2

K2
(5.117)

Similarly, substituting Eqs. (5.112)–(5.114) into Eqs. (5.85), (5.86), one can write

C12 +
1

2
C44

� �
u1 + C11 +C44�3Lð Þu2 + C12 +

1

2
C44

� �
u3 ¼ 0 (5.118)

C12 +
1

2
C44

� �
u1 + C12 +

1

2
C44

� �
u2 + C11 +C44�3Lð Þu3 ¼ 0 (5.119)

Eqs. (5.116), (5.118), and (5.119) have nontrivial solutions only if the determinant of the coefficient of u1, u2, and u3 is zero,

that is,

A B B

B A B

B B A














 ¼ 0 (5.120)

where

A¼C11 +C44�3L (5.121)

and

B¼C12 +
1

2
C44 (5.122)

Expanding the determinant of Eq. (5.120), we get

A�Bð Þ2 A + 2Bð Þ¼ 0 (5.123)

The above equation gives three solutions (out of which one solution is doubly degenerate) given by

A¼B (5.124)

A¼�2B (5.125)

Eqs. (5.124), (5.125), with the help of Eqs. (5.121), (5.122), yield

o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12 +

1

2
C44

3rm

vuuut
K (5.126)

o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 + 2C12 + 2C44

3rm

s
K (5.127)
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Let us determine the nature of the polarization of the elastic waves with frequencieso1 ando2. Eq. (5.125) can be written as

3L2 ¼C11 + 2C12 + 2C44 (5.128)

Substituting Eq. (5.128) into Eq. (5.116), one gets

2u1 ¼ u2 + u3 (5.129)

Similarly, substituting Eq. (5.128) into Eqs. (5.118), (5.119), we obtain

2u2 ¼ u3 + u1 (5.130)

2u3 ¼ u1 + u2 (5.131)

From Eqs. (5.129)–(5.131) one can immediately write

u1 ¼ u2 ¼ u3 (5.132)

Hence, for the eigenvalue L2, the three components of displacement are equal, which yields the displacement u along the

[111] direction. Therefore, the elastic wave corresponding to the eigenvalue L2 or o2 represents the L elastic wave. If oL

represents the frequency of the L wave, then from Eq. (5.127) its velocity is given by

vL ¼
oL

K
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 + 2C12 + 2C44

3rm

s
(5.133)

Let us now consider the wave with frequency o1, which from Eqs. (5.124), (5.121), and (5.122) gives

3L1 ¼C11�C12 +
1

2
C44 (5.134)

Substituting Eq. (5.134) into Eq. (5.116), one immediately gets

u1 + u2 + u3 ¼ 0 (5.135)

If we substitute Eq. (5.134) into Eqs. (5.118), (5.119) we obtain the same expression as given by Eq. (5.135). Therefore,

Eq. (5.134) represents two degenerate T modes of the elastic wave propagating in the [111] direction and these must be

orthogonal to each other and also to the L elastic wave. Let us take 110
� �

as the direction of displacement of one of the

transverse waves (say T1). Then the third displacement vector X3, representing the second transverse wave (say T2), must

be perpendicular to both X1¼ [111] and X2 ¼ 110
� �

, that is,

X3 ¼X1�X2 ¼ î1 + î2 + î3

� �
� î1� î2 + 0 î3

� �

¼ î1 + î2�2 î3

(5.136)

Hence the displacement vector X3 of the T2 elastic wave is in the 112
� �

direction. The polarizations of three elastic waves

are shown in Fig. 5.9. From Eq. (5.126) the velocities of both the T elastic waves are the same and are given by

vT1
¼ vT2

¼ vT ¼
oT

K
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12 +

1

2
C44

3rm

vuuut
(5.137)

An alternate method for determining the eigenvectors of the elastic wave is given in Appendix C.

The above discussion yields only two velocity equations, that is, Eqs. (5.133), (5.137), but there are three elastic con-

stants. Therefore, one cannot determine all the elastic constants of a cubic solid in this case. It is worthwhile to note that, in

general, the elastic waves in an isotropic medium are mixtures of both the L and T polarizations, depending on the direction

of propagation of the wave: only in high-symmetry directions do these possess pure L or T polarization. Further, the two T

elastic waves may not, in general, have the same velocity.

5.10 ISOTROPIC ELASTICITY

The substitution

C11�C12 ¼C44 (5.138)
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into Eqs. (5.90), (5.109), and (5.133) gives the same velocity of the L elastic waves in the different symmetry directions

[100], [110], and [111]. Further, the velocities of the T elastic waves, given by Eqs. (5.93a), (5.93b), (5.97), (5.110), and

(5.137) along the different directions [100], [110], and [111], also become the same, although different from that of the L

elastic waves. In other words, regardless of the direction of propagation, the velocity of an elastic wave with a particular

polarization becomes the same, subject to the condition (5.138). Therefore, this is known as the elastic isotropy condition.
The anisotropy factor Aas in cubic crystals is defined as the square of the ratio of the velocities of the T elastic waves prop-

agating in the [100] and [110] directions, that is,

Aas ¼
C44

C11�C12

(5.139)

Aas is also equal to the ratio of the squares of the velocities of the two T elastic waves propagating in the [110] direction. Aas

is unity for elastic isotropy. The departure of the values of Aas from unity is a measure of the anisotropy in cubic crystals (see

Table 5.1).

5.11 EXPERIMENTAL MEASUREMENT OF ELASTIC CONSTANTS

Ultrasonic waves are elastic waves whose velocity in solids can be measured experimentally. The elastic constants can be

evaluated from the experimentally measured velocities of ultrasonic waves with different polarizations propagating in dif-

ferent symmetry directions in cubic solids. One of the most commonly used methods to measure the velocities is the ultra-

sonic pulse method, a schematic setup of which is shown in Fig. 5.10. In this method, ultrasonic pulses at regular intervals

are produced by a quartz crystal fixed at one end of the specimen crystal and these are allowed to travel through it, as shown.

The pulses are reflected back at the opposite end of the specimen, which ultimately reach the quartz crystal again. The time t

taken by an ultrasonic pulse to travel the forward and backward journey in the crystal is measured experimentally. If d is the

length of the specimen, then the velocity of the ultrasonic waves is given by

v¼ 2d

t
(5.140)

Actually, the ultrasonic waves are allowed to travel along one of the symmetry directions, say [110], and the velocity of the

waves with different polarizations is measured. Then the elastic constants of the cubic solid are evaluated using Eqs. (5.97),

(5.109), and (5.110).

In the above discussion we have defined the second-order elastic constants assuming Hooke’s law to be valid. In this

approximation, the elastic energy density is a quadratic function of the strain. But for large stresses and strains, the Hooke’s

law is not valid and one has to consider higher-order terms in strain and stress-strain relations (Eqs. 5.26a, 5.26b) and the

energy density expression (Eq. 5.32). The elastic energy density involving cubic terms of the strain elements should be

considered and these are manifestations of nonlinear effects, such as the interaction of phonons and thermal expansion.

Therefore, one can define the third-order elastic constants from the energy density involving cubic terms of the strain

elements.

FIG. 5.10 Schematic diagram for the ultrasonic pulse method used for determining velocities of ultrasonic waves in solids.
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Problem 5.1

If the factor of one-half is neglected in Eq. (5.9) and the strain components are defined as

eab ¼
∂ub
∂ra

+
∂ua
∂rb

,eaa ¼
∂ua
∂ra

(5.141)

prove that the equation of motion for any component ua of the displacement field is given by

rm
∂
2ua
∂t2

¼C11

∂
2ua
∂r2a

+C44

X
b b 6¼að Þ

∂
2ua
∂r2b

+ C12 +C44ð Þ
X

b b 6¼að Þ

∂
2ub

∂ra∂rb
(5.142)

In some books, the equation of motion given by Eq. (5.142) is used.

Problem 5.2

Assume the running wave-like solution for the displacement u(r) defined as

u rð Þ ¼ u0e
�i K � r�o tð Þ (5.143)

where K is the propagation wave vector for the elastic wave.

(a) If the elastic wave is traveling in the [100] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse

waves are given by

vL ¼
ffiffiffiffiffiffiffiffi
C11

rm

s
,vT1 ¼ vT2 ¼

ffiffiffiffiffiffiffiffi
C44

rm

s
(5.144)

(b) If the elastic wave is traveling in the [110] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse

waves are given by

vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 +C12 + 2C44

2rm

s
(5.145)

vT1 ¼
ffiffiffiffiffiffiffiffi
C44

rm

s
,vT2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12

2rm

s
(5.146)

(c) If the elastic wave is traveling in the [111] direction, then from Eq. (5.142) prove that the velocities for the longitudinal and transverse

waves are given by

vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 + 2C12 + 4C44

3rm

s
(5.147)

vT1 ¼ vT2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11�C12 +C44

3rm

s
(5.148)

112 Solid State Physics



Problem 5.3

Using the Newton second law of force in equation

fa ¼
X
b

∂sab
∂rb

(5.149)

prove that for a wave-like solution, the equation of motion is given by

X
m,n,b

CabmnKbKn�o2rmdam
h i

um0 ¼ 0 (5.150)

Here u0 is the amplitude of the elastic wave and the other symbols have their usual meanings. Eq. (5.150) is called the Christoffel

equation.

Problem 5.4

The free energy of a deformed body is defined as

F¼ F0 +
1

2
lL

X
a

eaa

" #2

+ mL e
2
ab (5.151)

where F0 is a constant quantity and lL and mL are called the Lame’s coefficients. Express the free energy as a sum of the pure shear

strain and pure hydrostatic compression. Further, find the stress components from the free energy.
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The study of the thermal properties of solids is an important field in the subject of solid-state physics. There are a number of

thermal properties, such as lattice vibrations, specific heat, thermal conductivity, and thermal expansion. The temperature

variation of lattice vibrations, magnetism, and superconductivity form another class of thermal properties. At absolute zero,

all of the atoms in insulators and dielectrics are at rest at the lattice positions. With an increase in temperature, the atoms

acquire thermal energy given by

ETH ¼ kBT (6.1)

where kB is the Boltzmann constant and T is the temperature in degrees Kelvin. By gaining finite thermal energy, each atom

starts vibrating about its equilibrium position with finite frequency. The amplitude and frequency of atomic vibrations

increase with an increase in temperature. As the atoms in a solid are bound together, the vibrations of one atom are handed

over to the next atom and so on. Therefore, all of the atoms vibrate collectively in the form of an elastic wave. Such a

collective motion is called the normal mode of vibration of the lattice. The total number of normal modes of vibration

is equal to the number of degrees of freedom, which is 3N if there are N atoms in a solid. In a metal, there are ions at

the lattice positions and the conduction electrons are free to move in it. Therefore, in a metal at finite temperature, the

ions vibrate about the lattice positions as in insulators, while the conduction electrons move with some finite velocity.

In this chapter and Chapter 7, we study the lattice vibrations at finite temperatures, which play a central role in the study

of a number of lattice properties, such as lattice specific heat, lattice conduction, and thermal expansion. In this chapter, the

lattice vibrations in one-dimensional solids will be studied using the classical approach.

6.1 VIBRATIONS IN A HOMOGENEOUS ELASTIC MEDIUM

For simplicity, consider a one-dimensional homogeneous elastic solid along the x-direction, having great length but a small

uniform area of cross section (Fig. 6.1). Let rm be the mass per unit length (linear mass density) of the solid, then

rm ¼ dM

dx
(6.2)

where M denotes the mass. When opposing external forces F1 and F2 are applied at the points x and x+Dx along the x-

direction, the net force acting on the small element Dx is

DF¼ F2�F1 (6.3)

The force DF produces strain in the elemental length Dx. Let exx(x) and exx(x+Dx) represent the x-component of strain

produced at the points x and x+Dx. The strain component exx(x) is defined as

exx xð Þ¼ ∂u
∂x

(6.4)
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where u(x) is the displacement at point x due to the strain. In a one-dimensional solid, the stress cannot be defined in the

same way as in a three-dimensional solid. But one can talk about the force acting at a point, which is assumed to be linearly

proportional to the strain at that point. Therefore, one can write

F1 ¼ C11 exx xð Þ (6.5)

F2 ¼ C11 exx x +Dxð Þ (6.6)

where C11 is the proportionality constant and is the modulus of elasticity. From Eqs. (6.5), (6.6) it is easy to write

DF¼ C11 exx x +Dxð Þ� exx xð Þ½ � (6.7)

If the strain exx(x+Dx) is varying slowly, it can be expanded as

exx x +Dxð Þ¼ exx xð Þ+ ∂exx
∂x

Dx (6.8)

Substituting Eq. (6.4) into Eq. (6.8), the net strain acting on the element Dx is given by

exx x +Dxð Þ� exx xð Þ¼ ∂2u
∂x2

Dx (6.9)

with the help of which Eq. (6.7) becomes

DF¼C11

∂
2u

∂x2
Dx (6.10)

From Newton’s second law of motion, DF can immediately be written as

DF ¼ rmDx
∂
2u

∂t2
(6.11)

From Eqs. (6.10), (6.11) one gets

∂
2u

∂x2
¼ 1

v2x

∂
2u

∂t2
(6.12)

where

vx ¼
ffiffiffiffiffiffiffi
C11

rm

s
(6.13)

Here vx gives the velocity of the elastic wave. Eq. (6.12) is the well-known Newton’s formula for the velocity of sound

waves. For Eq. (6.12) we are seeking a wave solution of the form

u xð Þ¼ u0e
i Kx�o tð Þ (6.14)

where u0 is the amplitude, K is the propagation wave vector, ando is the frequency of the wave. Substituting Eq. (6.14) into

Eq. (6.12), one obtains

o¼ vxK (6.15)

This is called the dispersion relation as it relates the frequency to the wave vector K. Eq. (6.15) shows that o is linearly

proportional to K, which implies that velocity vx is independent of the wavelength. Further, there is no upper limit to the

frequency of vibration in a homogeneous medium. For an infinitely long one-dimensional solid, the values of K vary con-

tinuously and so does the frequency. Fig. 6.2 shows the dispersion relation for an infinite homogeneous line. If the

FIG. 6.1 One-dimensional homogeneous line with strain produced

between x and x+Dx.
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one-dimensional solid has a finite length L, then the solution must satisfy the boundary conditions: the displacement must

be zero at the fixed boundaries, that is,

u 0ð Þ¼ u Lð Þ¼ 0 (6.16)

Substituting Eq. (6.14) into Eq. (6.16), one obtains discrete values of K given by

K¼ 2pn
L

(6.17)

where n is an integer: negative, positive, or zero. The different values of K give different modes of vibration. The dispersion

relation gives the phase velocity vp as

vp ¼
o
K
¼ vx (6.18)

while the group velocity vg is given as

vg ¼
do
dK

¼ vx (6.19)

Hence the phase and group velocities of the elastic wave in a homogeneous medium are the same.

6.2 INTERATOMIC POTENTIAL IN SOLIDS

The interaction potential V(r) between two atoms, denoted by the numerals 1 and 2, of a crystalline solid is shown by the

curve PQR in Fig. 6.3. At absolute zero the equilibrium distance between the atoms is R0, which corresponds to the inter-

action potential

V R0ð Þ ¼ �V0 (6.20)

In the equilibrium position, atom 2 occupies the position O. It is evident from Fig. 6.3 that the interaction potential energy

curve PQR is asymmetrical about the point Q (or O) and can be evaluated in the following manner.

Let atom 2 be displaced by a distance u(t) at the time t from its equilibrium position R0. So, the displaced position of

atom 2, keeping atom 1 fixed, becomes

r¼R0 + u tð Þ (6.21)

FIG. 6.2 Dispersion curve for a homogeneous line. The

slope of the curve gives vp or vg.
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If the displacement is small as compared with the interatomic distance, then V(r) can be expanded about the mean position

R0 as

V rð Þ¼V R0ð Þ+
X
a

ua
∂V
∂ra

����
r¼R0

+
1

2

X
a,b

uaub
∂
2V

∂ra∂rb

�����
r¼R0

+
1

6

X
a,b,g

uaubug
∂
3V

∂ra∂rb∂rg

�����
r¼R0

+
1

24

X
a,b,g,d

uaubugud
∂
4V

∂ra∂rb∂rg∂rd

�����
r¼R0

+⋯

(6.22)

If the solid is isotropic, the potential becomes independent of direction, at least in the high-symmetry directions (e.g., solid

with cubic structure). In such a solid, ua¼ub¼ug¼ud¼u and Eq. (6.22) reduces to

V rð Þ¼V R0ð Þ + u∂V
∂r

����
r¼R0

+
1

2
u2

∂
2V

∂r2

����
r¼R0

+
1

6
u3

∂
3V

∂r3

����
r¼R0

+
1

24
u4
∂
4V

∂r4

����
r¼R0

+⋯
(6.23)

In the equilibrium position the force acting on atom 2 vanishes, thereby reducing the term with the first derivative of V(r) to

zero. So, Eq. (6.23) becomes

V rð Þ¼V R0ð Þ+ 1

2
aFu

2�1

3
gFu

3�1

4
dFu

4 +⋯ (6.24)

FIG. 6.3 Interatomic potential V(r) between the two atoms 1 and 2 as a function of r.
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where

aF ¼
∂
2V

∂r2

����
r¼R0

(6.25)

gF ¼�1

2

∂
3V

∂r3

����
r¼R0

, dF ¼�1

6

∂
4V

∂r4

����
r¼R0

(6.26)

Here aF is called the force constant and is a measure of the rigidity of the bond between the two atoms. gF and dF are the
derivatives of the force constants and represent higher-order force constants. For simplicity, aF, gF, and dF can be taken as
proportionality constants. Corresponding to V(r), and given by Eq. (6.24), the force between atoms 1 and 2 is given by

F¼�∂V rð Þ
∂r

¼�aFu + gF u
2 + dF u

3 +⋯ (6.27)

Eqs. (6.24), (6.27) form an infinite series and are exact expressions for the potential and force. The exact evaluation of V(r)

is very difficult but it can be estimated in various approximations.

6.2.1 Square-Well Potential

V(r) is, sometimes, approximated by a square-well potential centered on the point O (see Fig. 6.4) and is defined as

V rð Þ¼�V0 for rj j � a0
¼ 0 for rj j > a0

(6.28)

FIG. 6.4 Approximation of the interatomic potential V(r) by a square-well potential with depth �V0 and width 2a0.
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But the square-well potential is in no way close to the exact interaction potential, except that its value corresponds to the

actual value at R0.

6.2.2 Harmonic Interaction Potential

As the lowest-order approximation, one can retain terms up to the second power of displacement in Eq. (6.24), which gives

V rð Þ¼ �V0 +
1

2
aF u

2 (6.29)

In defining the above equation, the reference level of potential is assumed to be at V(R0)¼ �V0. Therefore, the force from

Eq. (6.27) is given by

F¼�aFu (6.30)

In this approximation, the force acting on atom 2 is proportional to its displacement and is directed toward its equilibrium

position. It is wellknown that an atom acted upon by such a force oscillates harmonically about its equilibrium position and

hence the name harmonic force. Therefore, Eq. (6.29) defines the harmonic potential, which is parabolic in nature. It is

evident from Fig. 6.5 that atom 2 oscillates with equal amplitude on both sides of its equilibrium position. The third-,

fourth-, and higher-order terms in Eq. (6.24) give an anharmonic contribution to the interaction potential, which is assumed

to be negligible here.

FIG. 6.5 Approximation of the interatomic potential V(r) by a harmonic potential (dashed line) that is parabolic in nature. Here the amplitude of atom 2 is

the same on both sides, that is, j u1 j¼ j u2 j¼ u.

120 Solid State Physics



6.3 LATTICE VIBRATIONS IN A DISCRETE ONE-DIMENSIONAL LATTICE

It has already been discussed in Chapter 1 that a one-dimensional solid consists of a periodic arrangement of atoms (mol-

ecules) in a particular direction and that its primitive cell may contain one or more atoms. In this section, we shall study

lattice vibrations in monatomic and diatomic linear lattices.

6.3.1 Monatomic Linear Lattice

Fig. 6.6 shows a monatomic linear lattice along the x-direction with distance “a” between the consecutive atoms (lattice

points). At finite temperature, the atoms start vibrating about their mean positions along the x-direction. The position of the

nth atom at time t is given by

R n, tð Þ¼Rn + u n, tð Þ¼ na + u n, tð Þ (6.31)

Rn is the lattice vector and u(n, t) is the displacement of the nth atom at time t and both are along the same direction, that is,

the x-direction. To find the frequencies of vibration of the atoms we make the approximations described below.

First, the force F acting on a vibrating atom is assumed to obey Hooke’s law, according to which F is linearly propor-

tional to the displacement u of the atom (harmonic force), that is,

F¼�aF u (6.32)

The parameter aF is the force constant. Because a vibrating spring executes a simple harmonic motion about its mean

position, the atoms can be assumed to be connected via massless springs. It is for this reason that aF is sometimes called

the spring constant. Thus, a linear solid can be replaced by a mechanical system of the form shown in Fig. 6.6.

Let us consider the equation of motion of the nth atom of the lattice. The force Fn, s acting on the nth atom due to (n+s)th

atom depends on the relative displacement of these two atoms and is written as

Fn,s ¼ �aFs u nð Þ�u n + sð Þ½ � (6.33)

where u(n) and u(n+s) are the displacements of the nth and (n+s)th atoms from their mean positions and their time depen-

dence is assumed to be understood. The parameter aFs represents the force constant for the sNN of the nth atom under

consideration. In general, an atom interacts with all of the other atoms of the solid, therefore, the total force acting on

the nth atom is given by

Fn ¼
X
s

Fn,s ¼�
X
s

aFs u nð Þ�u n + sð Þ½ � (6.34)

where s¼ 0, �1, �2,… Secondly, we assume that an atom interacts with its 1NNs only. The force constant aFs for both the
1NNs is the same (say aF). In this case, the subscript s takes the values 1 and –1 in Eq. (6.34) to give

Fn ¼ aF u n + 1ð Þ+ u n�1ð Þ�2u nð Þ½ � (6.35)

According to Newton’s second law of motion

Fn ¼M
∂
2u nð Þ
∂t2

(6.36)

where M is the mass of an atom. From Eqs. (6.35), (6.36), the equation of motion for the nth atom becomes

M
∂
2u nð Þ
∂t2

¼ aF u n + 1ð Þ+ u n�1ð Þ�2u nð Þ½ � (6.37)

FIG. 6.6 Monatomic linear lattice with distance “a” between the consecutive atoms. At finite temperature, u(n�1), u(n), and u(n+1) are the instan-

taneous displacements of the (n�1)th, nth, and (n+1)th atoms, respectively, from their mean positions.
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The wave-like solution of Eq. (6.37) can be written as

u nð Þ¼ u0 e
i KRn�o tð Þ ¼ u0 e

i Kna�o tð Þ (6.38)

Similarly, we can write

u n + 1ð Þ¼ u0e
i K n+ 1ð Þa�o t½ � (6.39)

u n�1ð Þ¼ u0e
i K n�1ð Þa�o t½ � (6.40)

Substituting Eqs. (6.38)–(6.40) into Eq. (6.37) and simplifying, we get

Mo2 ¼ 4aF sin
2 Ka

2

� �
(6.41)

Therefore, the frequency of vibration of atoms is given by

o¼�
ffiffiffiffiffiffiffiffi
4aF
M

r
sin

Ka

2

� �
(6.42)

Because the frequency of vibration is always positive for a stable lattice, therefore, in Eq. (6.42), we should take the positive

square root and modulus of the sine function to write

o¼
ffiffiffiffiffiffiffiffi
4aF
M

r
sin

Ka

2

� �����
���� (6.43)

Eq. (6.43) shows that o depends nonlinearly on the wave vector K and gives the dispersion relation. The sine function is a

periodic function and its modulus varies from 0 to 1, therefore, the value of K varies from 0 to p=a (see Fig. 6.7). Beyond

this value the sine function is repeated, therefore, the independent values of K range from 0 to p=a on the positive side. The

wave can propagate either to the right or to the left, therefore, K can have both positive and negative values. Hence the range

of independent values of K is

�p
a
�K� p

a
(6.44)

This range of independent values of K is called the 1BZ (see Chapter 2) of the one-dimensional lattice. Fig. 6.8 shows the

frequencies of vibration of atoms (phonon frequencies) as a function of K in the 1BZ. Eq. (6.43) can also be written in terms

of the elastic constant C11 and the density per unit length rm. One can easily write

aF ¼
C11

a
and M¼ arm (6.45)

FIG. 6.7 Plot of j sin(Ka/2) j as a function of K.
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Using Eq. (6.45) in Eq. (6.43), one can write

o¼ 2

a
vx sin

Ka

2

� �
(6.46)

where

vx ¼
ffiffiffiffiffiffiffi
C11

rm

s
(6.47)

Eq. (6.47) is the same as Eq. (6.13). Let us calculate the phase and group velocities for a linear monatomic lattice. The phase

velocity, from Eq. (6.46), is given by

vp ¼
o
K
¼ 2vx

Ka
sin

Ka

2

� �
(6.48)

and the group velocity is given by

vg ¼
do
dK

¼ vx cos
Ka

2

� �
(6.49)

It is evident that vp and vg are different for a linear monatomic lattice. At the 1BZ boundary with K¼p/a, the phase and
group velocities are given as

vp ¼
2vx
p

, vg ¼ 0 (6.50)

The group velocity represents the transfer of signal or energy, therefore, at the 1BZ there is no transfer of energy and the

wave is a standing wave. At low frequencies, that is, in the limit of K! 0, Eq. (6.46) reduces to

o¼ vxK (6.51)

which is the same dispersion relation as that obtained for a homogeneous line (see Eq. 6.15). Such behavior is expected

because long wavelengths would not be sensitive to the discreteness of the lattice. Further, at long wavelengths (low fre-

quencies), the group and phase velocities become the same (¼vx).

Let us calculate the values of the wave vector K in a discrete monatomic linear lattice. If the crystal is finite with a

number N of atoms in it, the periodic boundary condition demands

u nð Þ¼ u n +Nð Þ (6.52)

FIG. 6.8 Vibrational frequencies o as a function of the

wave vector K for a linear monatomic lattice in the 1BZ.
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Substituting the value of displacement from Eq. (6.38), the above expression yields

eiKNa ¼ 1 (6.53)

which is satisfied if

K¼ 2pm
Na

(6.54)

Here m¼ 0, �1, �2,… From Eqs. (6.38), (6.54), it is trivial to prove that there are N allowed values K for a monatomic

linear lattice with N atoms. As the value of N increases, the difference between the consecutive values of K decreases, and

finally, in the limit of very large N, the vector K becomes a continuous parameter. Hence, in an infinite linear monatomic

crystal, the wave vector K varies continuously within the range specified by Eq. (6.44).

An estimation of the specific heat of solids involves knowledge of the frequency distribution function g(o), which is

defined as the number of modes per unit frequency range. The number of modes lying between frequencieso ando+do is

given by g(o)do. Therefore, the number of modes lying between o ando+do is equal to the number of modes between K

and K+dK. From Eq. (6.54) one K state (mode) lies in a length 2p/Na, therefore, the number of modes between K and K

+dK is given by (Na/2p)dK. The total number of modes is given by the equation

ð
g oð Þdo¼

ð
2
Na

2p
dK¼N (6.55)

According to Eq. (6.44) or Eq. (6.54) every positive value of K has a corresponding negative value. The factor of two takes

into account both the positive and negative values of K. The above equation allows us to write

g oð Þ¼Na

p
dK

do
(6.56)

From Eq. (6.43) it is straightforward to write

dK

do
¼ 2

a

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

max �o2
p (6.57)

where

omax ¼
ffiffiffiffiffiffiffiffi
4aF
M

r
(6.58)

Substituting Eq. (6.57) into Eq. (6.56), one gets

g oð Þ¼ 2N=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

max �o2
p (6.59)

The function g(o) is shown in Fig. 6.9 and has the maximum frequency omax. The figure shows that most of the modes of

vibration lie near omax. In the above treatment, only the interactions with the 1NNs have been included, but in an exact

treatment one should include the interactions with all the NNs.

Problem 6.1

With the help of Eq. (6.59) prove that the total number of modes in a one-dimensional monatomic solid is equal to the total number

of atoms.

6.3.2 Diatomic Linear Lattice

Consider a one-dimensional solid with two different types of atoms in the basis (see Fig. 6.10) with masses M1 and M2,

where M1>M2. Note that the masses of the two types of atoms may not necessarily be different. If “a” is the distance
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between consecutive atoms, then the repeat distance is 2a. The position of the nth atom at time t is given by Eq. (6.31).

Considering the harmonic forces, the equations of motion for the 2nth and (2n+1)th atoms are given by

M1 €u 2nð Þ¼�
X
s

aFs u 2nð Þ�u 2n + sð Þ½ � (6.60)

M2 €u 2n + 1ð Þ¼�
X
s

aFs u 2n + 1ð Þ�u 2n + 1 + sð Þ½ � (6.61)

where s¼ 0, �1, �2,… For further simplification of the equations of motion of the atoms, only the 1NN interactions are

retained. The force constants between an atom and its 1NNs are the same (say aF) as the forces are identical. Therefore, the
equations of motion of the 2nth and (2n+1)th atoms become

M1 €u 2nð Þ¼ aF u 2n + 1ð Þ+ u 2n�1ð Þ�2u 2nð Þ½ � (6.62)

M2 €u 2n + 1ð Þ¼ aF u 2n + 2ð Þ+ u 2nð Þ�2u 2n + 1ð Þ½ � (6.63)

FIG. 6.9 Frequency distribution function g(o) as a function of o for a one-

dimensional monatomic lattice.

FIG. 6.10 Linear diatomic lattice with even-numbered atoms having mass M1 and the odd-numbered atoms having mass M2. Here, a is the distance

between two consecutive atoms.
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Let us consider a longitudinal wave in which the atoms vibrate along the direction of the wave vector K. In this case the

wave-like solutions of Eqs. (6.62), (6.63) are given by

u 2nð Þ¼ u1e
i 2Kna�o t½ � (6.64)

u 2n + 1ð Þ ¼ u2e
i K 2n+ 1ð Þa�o t½ � (6.65)

where u1 and u2 are the amplitudes of the waves for the 2nth and (2n+1)th atoms. Substituting Eqs. (6.64), (6.65) into

Eqs. (6.62), (6.63), one gets

M1o
2�2aF

� �
u1 + 2aF cosKað Þ u2 ¼ 0 (6.66)

2aF cosKað Þu1 + M2o
2�2aF

� �
u2 ¼ 0 (6.67)

The above equations have nontrivial solution only if the determinant of the coefficients of u1 and u2 is zero, that is,

M1o
2�2aF 2aF cosKa

2aF cosKa M2o
2�2aF

����
����¼ 0 (6.68)

The expansion of the above determinant yields the expression

o4�2aF
1

M1

+
1

M2

� �
o2 +

4a2F
M1M2

1� cos2Ka
� �¼ 0 (6.69)

Eq. (6.69) is quadratic in o2 and yields the solutions

o2 ¼ aF
1

M1

+
1

M2

� �
�aF

1

M1

+
1

M2

� �2

� 4

M1M2

sin2Ka

" #1=2
(6.70)

Fig. 6.11 shows a plot of sin2Ka as a function of K and this is a periodic function. The independent values of K lie in the

range from �p/2a to p/2a, that is,

� p
2a

�K� p
2a

(6.71)

which defines the 1BZ for a diatomic linear lattice. The frequencies of atomic vibrations are calculated in the 1BZ only as

these are repeated in higher BZs.

The frequencies of atomic vibrations can be calculated in the limiting cases. At K¼ 0, Eq. (6.70) yields two frequencies

o + ¼ 2aF
1

M1

+
1

M2

� �� 	1=2
(6.72a)

o� ¼ 0 (6.72b)

FIG. 6.11 Plot of sin2Ka as a function of K for a diatomic linear

lattice with a as the distance between two consecutive atoms.
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o+ and o� are the atomic vibration frequencies corresponding to the plus and minus signs in Eq. (6.70). For very small

values of K, sinKa ¼Ka, therefore, the atomic vibration frequencies from Eq. (6.70) are given by

o + ¼ 2aF
1

M1

+
1

M2

� �
� 2aF Kað Þ2

M1 +M2ð Þ

" #1=2
(6.73a)

o� ¼ 2aF Kað Þ2
M1 +M2ð Þ

" #1=2
(6.73b)

At the 1BZ boundary, that is, at K¼p/2a, sin Ka¼ 1, therefore, Eq. (6.70) gives the frequency of atomic vibrations as

o + ¼
2aF
M2

� �1=2

(6.74a)

and

o� ¼ 2aF
M1

� �1=2

(6.74b)

With the help of Eqs. (6.70), (6.72a), (6.72b)–(6.74a), (6.74b), o can be plotted as a function of K, which is shown in

Fig. 6.12. The curve for o� as a function of K is called the acoustical branch and that for o+ is called the optical branch

of the dispersion relations for the longitudinal waves. Fig. 6.12 shows that wave-like solutions do not exist for frequencies

between (2aF/M2)
1/2 and (2aF/M1)

1/2 at the 1BZ boundary. This frequency gap is a characteristic feature of the elastic

waves in a diatomic lattice. If one looks for a solution with real o in this gap, then the wave vector K will be complex,

which means that the wave is damped in space.

To study the nature of acoustical and optical waves, let us find the amplitudes of these waves. Substituting the value of

o� from Eq. (6.73b) into Eq. (6.66), we find

2aFu1
M1 Kað Þ2
M1 +M2

�1

 !
+ 2aFu2 cosKa¼ 0 (6.75)

For very small values of K(Ka≪1) the above expression yields

u1 ¼ u2 (6.76)

Hence, for very small values of K or for very large values of wavelength, the amplitudes of the two types of atoms are the

same. The corresponding wave is shown in Fig. 6.13A. Such a wave can be stimulated by some kind of force that makes all

of the atoms move in the same direction, such as a compressional wave or a sound wave; that is why it is called the

FIG. 6.12 Dispersion relations for longitudinal waves in a

linear diatomic lattice with a as the distance between two

consecutive atoms.
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acoustical branch. A monatomic lattice can respond only to this kind of excitation. Substituting the value of o+ from

Eq. (6.73a) into Eq. (6.66), we find

u1
u2

¼� 1

M1

cosKa

1

M2

� Kað Þ2
M1 +M2

(6.77)

For very small values of K(Ka≪1), we obtain

u1
u2

¼�M2

M1

(6.78)

Therefore, in the optical branch, the ratio of the amplitudes of the two types of atoms is in the inverse ratio of their

masses. Further, the atoms vibrate against each other but their center of mass is fixed. If the atoms carry opposite

charges, a motion of this type can be excited by the electromagnetic field of an optical wave and this explains its

name. Fig. 6.13B shows a schematic diagram for the optical wave of a diatomic linear lattice. If M1¼M2, then u1/

u2¼ �1. In this case the frequency range is the same for both the monatomic and diatomic linear lattices and there

will be no forbidden gap. It is noteworthy that the optical vibrations do not depend on the mass difference. Further, if

the diatomic linear lattice consists of ions, the optical vibrations do not depend on their opposite charges. These

depend only on the fact that there are two or more atoms per primitive cell so that they can vibrate in and out from

the center of mass. In general, if there are s atoms per primitive cell, then there will be 3s branches in all: 3 acoustical

branches and the remaining 3s – 3 optical branches.

FIG. 6.13 (A) Acoustic wave in a diatomic linear lattice with a as the distance between two consecutive atoms. (B) Optical wave in a diatomic linear

lattice with a as the distance between two consecutive atoms.
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From the discussion of lattice vibrations of discrete monatomic and diatomic linear lattices, the following features

emerge:

1. The frequency o is no longer linearly proportional to the wave vector K but is a periodic function. This fact imposes an

upper limit on o in contrast with the wave propagation in a homogeneous medium.

2. There exist allowed frequency (energy) bands separated by a forbidden frequency (energy) band. The forbidden band is

related to Bragg’s reflection in crystalline solids.

Problem 6.2

Consider a diatomic linear lattice as shown in Fig. 6.14where the unit cell, having length a, contains two atoms named 1 and 2with

masses M1 and M2, respectively. Assuming a wave-like solution for the two atoms of the form

u nmð Þ¼ u mð Þei K �Rn�o tð Þ (6.79)

prove that the phonon frequency of the lattice is given by

o2 ¼ aF
1

M1

+
1

M2

� �
�aF

1

M1

+
1

M2

� �2

� 4

M1M2

sin2 Ka

2

� �" #1=2
(6.80)

Further prove that

u1
u2

¼� M2

M1

The expressions for the phonon frequencies obtained in Section 6.3.2 and in the above problem are the same except for

the different values of the repeat distance (the repeat distance in Section 6.3.2 is 2a, while in Problem 6.1 it is a). A plot of

the vibrational frequencies as a function of K obtained from Eq. (6.80) is shown in Fig. 6.15. The only difference in

Figs. 6.12 and 6.15 is due to the different boundaries of the 1BZ arising from the different values of the repeat distance.

FIG. 6.14 Linear diatomic lattice with repeat distance a. The figure shows that each unit cell contains two atoms of type 1 and 2.

FIG. 6.15 Vibrational frequencies o as a function of the

wave vector K in the 1BZ of the linear diatomic lattice with

repeat distance a and for M1>M2.
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6.4 EXCITATION OF IONIC LATTICE IN INFRARED REGION

Consider a one-dimensional ionic lattice with charges �e on the ions. Let the negative ions occupy even-numbered posi-

tions and the positive ions the odd-numbered positions (see Fig. 6.16). A field of electromagnetic waves can affect the

optical branches of a vibrating ionic lattice. To examine this, allow infrared radiation to fall on an ionic crystal for which

the electric field can be defined as

E¼E0e
i Kx �o tð Þ (6.81)

In the presence of infrared radiation, Eqs. (6.62), (6.63) become

M1 €u 2nð Þ¼ aF u 2n + 1ð Þ+ u 2n�1ð Þ�2u 2nð Þ½ �� eE0e
i 2Kna�o tð Þ (6.82)

M2 €u 2n + 1ð Þ¼ aF u 2n + 2ð Þ+ u 2nð Þ�2u 2n + 1ð Þ½ �+ eE0e
i K 2n+ 1ð Þa�o t½ � (6.83)

Substituting Eqs. (6.64), (6.65) into the above expressions, we get

�M1o
2 + 2aF

� �
u1� 2aF cosKað Þu2 + eE0 ¼ 0 (6.84)

� 2aF cosKað Þu1 + �M2o
2 + 2aF

� �
u2� eE0 ¼ 0 (6.85)

Multiplying Eq. (6.84) by (�M2o
2+2aF) and Eq. (6.85) by 2aF cosKa and adding, we get

u1 ¼
�eE0

M1

�o2 +
4aF
M2

sin2 Ka

2

� �

o2 o2�o2
0

� �
+

4a2F
M1M2

sin2Ka

(6.86)

where

o2
0 ¼ 2aF

1

M1

+
1

M2

� �
(6.87)

Similarly, one can get

u2 ¼
eE0

M2

�o2 +
4aF
M1

sin2 Ka

2

� �

o2 o2�o2
0

� �
+

4a2F
M1M2

sin2Ka

(6.88)

Hence the ratio of two amplitudes is given by

u1
u2

¼�M2

M1

�o2 +
4aF
M2

sin2Ka

2

�o2 +
4aF
M1

sin2Ka

2

(6.89)

FIG. 6.16 One-dimensional ionic lattice with charges �e on alternate ions. The negative ions occupy even-numbered positions, while the positive ions

occupy odd-numbered positions.
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In the long wavelength limit (Ka≪1), the individual amplitudes from Eqs. (6.86), (6.88) are given by

u1 ¼
e

M1

E0

o2�o2
0

(6.90)

u2 ¼�
e

M2

E0

o2�o2
0

(6.91)

Therefore, the amplitudes u1 and u2 exhibit resonance behavior at o0. From Eqs. (6.90), (6.91) the ratio of amplitudes

become

u1
u2

¼�M2

M1

(6.92)

which is the same result as that given by Eq. (6.78) for the optical branch of the diatomic lattice. The general Eq. (6.89) also

reduces to Eq. (6.92) for Ka≪1. Comparing Eqs. (6.77), (6.89), it is evident that the infrared radiation affects the ampli-

tudes of the two types of ions forming the optical wave in an ionic lattice. In other words, one can say that the infrared

radiation can excite optical vibrations in an ionic lattice.

Problem 6.3

In the harmonic force approximation, the equation of motion for a lattice is given by

M€u n1, n2, n3ð Þ¼ �
X
s

aFs u n1, n2, n3ð Þ�u n1 + s1, n2 + s2, n3 + s3ð Þ½ � (6.93)

where n¼ (n1,n2,n3) represents the nth atom in a lattice and s¼ (s1, s2, s3) represents the sth nearest neighbor of the nth atom.

Further, M is the mass of an atom and aFs is the force constant for the sth nearest neighbor of the nth atom. Assuming 1NN inter-

actions with force constant aF, show that the dispersion relation for the square lattice is given by

o2M¼ 2aF 2� cos Kxa� cos Kya

 �

(6.94)

Problem 6.4

The general equation of motion of the lattice in the harmonic approximation is given by Eq. (6.93). Assuming 1NN interactions with

force constant aF, derive the expression for the dispersion relation for an sc lattice.
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In the last chapter, we found that the frequency of atomic vibrations is determined by the force constant, which is the deriv-

ative of the force acting on an atom or the double derivative of the lattice potential. A determination of the exact lattice

potential is undoubtedly very difficult (see Eq. 3.12) but can be estimated within some simplifying assumptions described in

Chapter 3. In the adiabatic approximation, electrons are considered to move in a field of ions regarded as instantaneously

stationary. The electronic energy eigenvalue so determined serves as the potential energy for ionic motion. To study the

lattice properties, one needs to consider only the lattice part of the Hamiltonian as the motion of the ions can be separated

from that of the electrons.

In this chapter, we present the general theory of lattice vibrations in a three-dimensional metallic solid, usually called the

lattice dynamics of metals. Consider a crystal composed of an infinite number of unit cells, each of which is a parallelepiped

bounded by three noncoplanar vectors a1, a2, and a3. Here we consider Bravais crystals with a basis in which each unit cell

contains “s” ions. Such crystals are also called nonprimitive crystals. If there is only one ion in the unit cell, the crystals are

called primitive crystals or Bravais crystals.

7.1 EQUATION OF MOTION OF THE LATTICE

We restrict our attention to stable crystals in which, as a result of thermal energy, each ion is displaced from its equilibrium

position by an amount u(nm) at a specific point of time. So, the instantaneous position of the ion can be written as

R nmð Þ¼ Rnm + u nmð Þ (7.1)

where Rnm is the equilibrium position vector. Now, the total Hamiltonian of the lattice becomes

H
_

i ¼
1

2

X
nma

Mm _u2a nmð Þ+Vi Rð Þ (7.2)

whereMm is the mass of the mth type of ion. Vi(R) is the total lattice potential energy given by Eq. (3.12) and is a function of

the instantaneous position-coordinates of all the ions denoted by R. Note that Vi(R) also includes the direct overlap inter-

action between the electron distributions of the ions. It is convenient to expand Vi(R) in powers of displacements u(nm) of

the ions about their equilibrium positions (Taylor expansion) as
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Vi Rð Þ¼V0 +
X
nma

Va nmð Þua nmð Þ

+
1

2

X
nma

X
n0m0 b

Vab nm, n0m0ð Þua nmð Þub n0m0ð Þ

+
1

6

X
nma

X
n0m0 b

X
n00m00 g

Vabg nm, n0m0, n00m00ð Þua nmð Þub n0m0ð Þug n00m00ð Þ +⋯

(7.3)

where

Va nmð Þ¼ ∂Vi Rð Þ
∂ua nmð Þ

����
u¼0

, Vab nm, n0m0ð Þ ¼ ∂
2Vi Rð Þ

∂ua nmð Þ∂ub n0m0ð Þ

�����
u¼0

,

Vabg nm, n0m0, n00m00ð Þ ¼ ∂
3Vi Rð Þ

∂ua nmð Þ∂ub n0m0ð Þ∂ug n00m00ð Þ

�����
u¼0

(7.4)

V0 is the potential energy of a perfect crystal. The subscript u ¼ 0 indicates that the derivatives are evaluated in the equi-

librium configuration of the crystal. Let us first interpret physically all the quantities occurring in Eq. (7.3). The coefficient

Va(nm) is the negative of the force acting in the a-direction on the atom at Rnm. The coefficient Vab(nm,n0m0), in the first
approximation, is the negative of the force exerted in the a-direction on the atom (nm) when the atom (n0m0) is displaced by
a unit distance in the b-direction, all other atoms being kept fixed at their equilibrium positions: it is just the force constant

as defined in Chapter 6. In exactly the same way, one can interpret the coefficients Vabg(nm,n0m0, n00m00), which gives us

the bond-bending forces.

The motion of ions is described by Eqs. (7.2), (7.3), which can be regarded as a set of coupled anharmonic oscillators.

The potential energy expansion up to the second order gives harmonic terms, while the higher-order terms are anharmonic

in nature. If the ionic displacements are small compared with the interatomic spacing, the series (7.3) is expected to con-

verge rapidly. Therefore, to a good approximation, one can retain terms up to the second order only and neglect the higher-

order terms, treating them as small. This is called the harmonic approximation in which the forces obey Hooke’s law. In the
equilibrium position, the net force acting on an ion is zero, that is, Va(nm) ¼ 0. Therefore, the potential in the harmonic

approximation becomes

Vi Rð Þ¼V0 +
1

2

X
nma

X
n0 m0 b

Vab nm, n0m0ð Þua nmð Þub n0m0ð Þ (7.5)

From Eqs. (7.2), (7.5), the lattice Hamiltonian in the equilibrium position is given as

H
_

i ¼
1

2

X
n ma

Mm _u2a nmð Þ+V0

+
1

2

X
nma

X
n0 m0 b

Vab nm;n0m0ð Þua nmð Þub n0m0ð Þ
(7.6)

The equations of motion of the lattice are then easily found to be

Fg n00m00ð Þ ¼Mm00 €ug n00m00ð Þ ¼ � ∂Vi Rð Þ
∂ug n00m00ð Þ (7.7)

Substituting Vi(R) from Eq. (7.5) into Eq. (7.7), one gets

Fg n00m00ð Þ ¼ �1

2

X
n0m0 b

Vgb n00m00, n0m0ð Þub n0m0ð Þ � 1

2

X
nma

Vag nm, n00m00ð Þua nmð Þ (7.8)

As the force constants Vab(nm,n0m0) are the second-order partial derivatives of Vi(R), therefore,

Vab nm, n0m0ð Þ ¼ Vba n0m0, nmð Þ (7.9)

Using the above relation in Eq. (7.8), one can write

Mm00 €ug n00m00ð Þ ¼ �1

2

X
n0m0 b

Vgb n00m00, n0m0ð Þub n0m0ð Þ � 1

2

X
nma

Vga n00m00, nmð Þua nmð Þ
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The two terms on the right side of the above equation are the same, therefore,

Mm00 €ug n00m00ð Þ ¼ �
X
nma

Vga n00m00, nmð Þua nmð Þ

which can also be written as

Mm €ua nmð Þ¼ �
X
n0m0 b

Vab nm, n0m0ð Þub n0m0ð Þ (7.10)

7.1.1 Restrictions on Atomic Force Constants

The atomic force constants satisfy several conditions due to the infinitesimal translational and rotational invariance.

However, we shall prove only the translational invariance conditions, which are of use here. Let us replace each dis-

placement vector u(nm) by an arbitrary constant vector u0, which is independent of n and m. Such a displacement field

describes the rigid body translation of the whole of the crystal by an amount u0 and, therefore, the potential energy of

the lattice should remain unchanged. For rigid body displacement, the potential from Eq. (7.3), in the harmonic approx-

imation, becomes

Vi Rð Þ¼ V0 +
X
nm a

Va nmð Þu0a +
1

2

X
nma

X
n0m0 b

Vab nm, n0m0ð Þu0au0b (7.11)

The apparent change in Vi(R), described by the last two terms on the right-hand side of Eq. (7.11), must vanish. Because u0

is an arbitrary vector, we must equate the coefficients of each power of ua
0 to zero. In this way, we obtain

X
nm

Va nmð Þ¼ 0 (7.12a)

X
nm

X
n0m0

Vab nm, n0m0ð Þ ¼ 0 (7.12b)

According to the first equation the net force on the whole of the lattice vanishes. This condition is automatically satisfied if

all of the atoms of the crystal are in their equilibrium positions as the net force on each atom vanishes. If the atoms are not in

the equilibrium positions, then the net force on each atom is finite, but still the net force acting on whole of the lattice

vanishes.

A more restrictive condition on Vab(nm,n0m0) follows from the behavior of the force on each atom Fa(nm) under rigid

body translation of the crystal by u0. The force in general from Eq. (7.7) is given as

Fa nmð Þ¼ � ∂Vi Rð Þ
∂ua nmð Þ

¼�Va nmð Þ�
X
n0m0 b

Vab nm, n0m0ð Þub n0m0ð Þ +⋯

using Eq. (7.3). When the rigid body translation is performed, the force becomes

Fa nmð Þ¼�Va nmð Þ�
X
n0m0 b

Vab nm, n0m0ð Þu0b +⋯

Under rigid body translation, there should be no change in the force acting on an atom, which is so only if the coefficient of

ub
0 is zero, that is, X

n0m0
Vab nm, n0m0ð Þ ¼ 0 (7.12c)

It is evident that Eq. (7.12b) implies Eq. (7.12c) but not vice versa as Eq. (7.12c) is more restrictive than Eq. (7.12b).

In a pure crystalline solid, there is perfect periodicity as a result of which the environments of each lattice point are the

same in the crystal. Therefore, if we change the origin of the coordinate system from one lattice point to another, it does not
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affect the physical properties, such as Vab(nm,n0m0). This is equivalent to the fact that Vab(nm,n0m0) depends on Rn and

Rn0 only through their vector difference Rn�Rn0. Mathematically, we can write

Vab nm, n0m0ð Þ ¼Vab n�n0m, 0m0ð Þ ¼Vab 0m, n0 �nm0ð Þ (7.12d)

Va nmð Þ¼Va 0mð Þ¼Va mð Þ (7.12e)

Eq. (7.12e) says that the force acting on an atom does not depend on the value of n or the unit cell as explained above.

7.2 NORMAL COORDINATE TRANSFORMATION

To study the lattice vibrations, one has to solve Eq. (7.10), which represents a set of an infinite number of coupled linear

differential equations. The problem may be solved by making a transformation to new coordinates called normal coordi-
nates, which diagonalizes the Hamiltonian and reduces the problem to that of uncoupled oscillators. Making use of the

periodicity of the lattice, the wave solution can be written in the form

ua nmð Þ¼ 1ffiffiffiffiffiffiffiffi
Mm

p ua mð Þ ei q �Rnm�o t½ � (7.13)

where

K¼ q�G (7.14)

Here ua(m) is the a-component of amplitude u(m). The wave vector q of the vibrational wave is restricted to the 1BZ with

j q j ¼ 2p/lwhere l is the wavelength. Because the vibrational frequencies are calculated in the 1BZ, only the reduced wave
vector q is introduced. Substituting Eq. (7.13) into Eq. (7.10), we write

o2 ua mð Þ¼
X
m0 b

Dab q, mm0ð Þub m0ð Þ (7.15)

where

Dab q, mm0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMm0

p X
n0

Vab nm, n0m0ð Þ e�iq � Rnm�Rn0m0½ � (7.16)

Dab(q,mm0) are the elements of a dynamical matrix. One can write Eq. (7.15) in the following form

X
m0 b

o2dabdmm0 �Dab q, mm0ð Þ
h i

ub m0ð Þ ¼ 0 (7.17)

As ub(m
0) is an arbitrary amplitude, therefore, the above equation has a nontrivial solution only if the determinant of the

coefficients of ub(m
0) is zero, that is,

det o2dabdmm0 �Dab q, mm0ð Þ
��� ���¼ 0 (7.18)

For a given value of q, Eq. (7.15) constitutes a set of 3s linear homogeneous algebraic equations. The frequency o is a

function of both q and j where j is called the branch index. Therefore, one can write

o¼o qjð Þ, j¼ 1,2,3, ::::3s (7.19)

The relation given by Eq. (7.19) is known as the dispersion relation and o(qj) is the frequency of the normal mode of

vibrations of the lattice. For a stable crystal it is necessary that o2(qj) be positive for every normal mode, otherwise

o(qj) will be imaginary, which is not allowed. For each of the 3s values of o(qj) for a given q, there are eigenvectors

of the dynamical matrix Dab(q,mm0) denoted as e(qj,m) such that

o2 qjð Þ ea qj, mð Þ¼
X
m0 b

Dab q, mm0ð Þ eb qj, m0ð Þ (7.20)
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The eigenvectors ea(qj,m) are in fact elements of a unitary matrix, which diagonalize Dab(q,mm0). As a result, the eigen-
vectors satisfy the following orthonormality and completeness relationsX

m a

e∗a qj,mð Þ ea qj0,mð Þ ¼ djj0 (7.21a)

X
j

e∗a qj, mð Þ eb qj, m0ð Þ ¼ dmm0 dab (7.21b)

7.3 PROPERTIES OF DYNAMICAL MATRIX AND EIGENVECTORS

The dynamical matrix defined by Eq. (7.16) depends on both n and n0. Because of the periodicity of the lattice, the force

constants depend only on the vector difference Rn�Rn0 (Eq. 7.12d). Assuming the nth cell to be at the origin of the coor-

dinate axes, the expression for the dynamical matrix (Eq. 7.16) becomes

Dab q, mm0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMm0

p X
n0

Vab 0m, n0m0ð Þ e�iq � Rm�Rm0�Rn0½ � (7.22)

The dynamical matrix can be separated into two parts as:

(i) For m 6¼ m0, the dynamical matrix (7.22) is given by

Dab q, mm0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMm0

p X
n

Vab 0m, nm0ð Þ e�iq � Rm�Rm0�Rn½ � (7.23a)

(ii) For m ¼ m0, Rm�Rm0 ¼ 0 and therefore, in the equilibrium position, Eq. (7.22) becomes

Dab q, mmð Þ¼ 1

Mm

X
n

Vab 0m, nmð Þ eiq �Rn

¼ 1

Mm

X
n6¼0

Vab 0m, nmð Þeiq �Rn +Vab 0m, 0mð Þ
" # (7.23b)

The rigid displacement of the lattice as a whole does not change the force acting on an atom, which gives condition (7.12c).

If we take n ¼ 0, then Eq. (7.12c) becomes X
nm0

Vab 0m, nm0ð Þ ¼ 0

which on expansion can be written as

Vab 0m, 0mð Þ¼�
X
n 6¼0

Vab 0m, nmð Þ�
X
n

X
m0 m0 6¼mð Þ

Vab 0m, nm0ð Þ (7.23c)

Substituting Eq. (7.23c) into Eq. (7.23b), we get

Dab q, mmð Þ¼ 1

Mm

X
n 6¼0

Vab 0m, nmð Þ eiq �Rn �
X
n 6¼0

Vab 0m, nmð Þ�
X
n

X
m0 m0 6¼mð Þ

Vab 0m, nm0ð Þ
2
4

3
5

Adding and subtracting a term Vab(0m,0m), that is, the term for n¼ 0, and absorbing these in the first and second terms of

the above equation, we have

Dab q, mmð Þ¼ 1

Mm

X
n

Vab 0m, nmð Þeiq �Rn �
X
n

Vab 0m, nmð Þ�
X
n

X
m0 m0 6¼mð Þ

Vab 0m, nm0ð Þ
2
4

3
5 (7.23d)

Now, the general expression for the dynamical matrix can be written as

Dab q, mm0ð Þ ¼ Dab q, mm0ð Þ�Limq!0dmm0
X
m00

Dab q, mm00ð Þ (7.24)
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where

Dab q, mm0ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMm0

p X
n

Vab 0m, nm0ð Þ eiq � Rn�Rm +Rm0½ � (7.25)

The dynamical matrix is fully known from Eqs. (7.24), (7.25) if Vab(0m,nm0) are known. Therefore, the basic problem is

reduced to the determination of the atomic force constants. From Eq. (7.16) it is straightforward to prove the following

properties of the dynamical matrix

Dab �q, mm0ð Þ ¼D∗
ab q, mm0ð Þ (7.26)

D∗
ab q, mm0ð Þ ¼Dba q, m0mð Þ (7.27)

Here we have assumed the force constants to be real. Substituting �q for q in Eq. (7.20), we get

o2 �qjð Þ ea �qj, mð Þ¼
X
m0 b

Dab �q, mm0ð Þ eb �qj, m0ð Þ (7.28)

Taking the complex conjugate of the above equation and using Eq. (7.26), we have

o2 �qjð Þ e∗a �qj, mð Þ¼
X
m0 b

Dab q, mm0ð Þ e∗b �qj, m0ð Þ (7.29)

As Dab(q,mm0) is Hermitian, its eigenvalues o2(�qj) must be real. Further, we note that e∗(�qj,m) are also the eigen-

functions of the same dynamical matrix, therefore, if q is not in the 1BZ at which Dab(q,mm0) has degenerate values, we
can write

o2 �qjð Þ¼o2 qjð Þ (7.30)

We see from Eqs. (7.20), (7.29) that both ea(qj,m) and ea
∗(�qj,m) are the eigenfunctions of the dynamical matrix with the

same eigenvalue. Therefore, the two eigenfunctions differ only by a constant factor whose modulus is unity and one can

write

e∗a �qj, mð Þ¼Cea qj, mð Þ (7.31)

Sometimes, the constant C is written as a phase factor eif. There are two common choices of C, 1 or�1. As the choice of the

constant does not affect any physical property, it is chosen to be unity, giving

e∗a �qj, mð Þ¼ ea qj, mð Þ (7.32)

Now we are in a position to make a normal coordinate transformation. The transformation from the original displacements

ua(nm) to the normal coordinates Q(qj, t) is given by

ua nmð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
NMm

p X
q j

ea qj, mð ÞQ qj, tð Þ eiq �Rn (7.33)

In defining the above equation, q is assumed to possess discrete values. Because the displacement is always real, therefore

u∗a nmð Þ¼ ua nmð Þ (7.34)

Substituting Eq. (7.33) into Eq. (7.34) and using Eq. (7.32), one gets

Q∗ qj, tð Þ¼Q �qj, tð Þ (7.35)

Using Eq. (7.33), the expression for kinetic energy becomes

T¼ 1

2

X
nm a

Mm _u2a nmð Þ

¼ 1

2

X
ma

X
q j j0

ea qj, mð Þe∗a qj0, mð Þ _Q qj, tð Þ _Q∗ qj0, tð Þ
(7.36)
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Here we have used Dirac’s delta function defined as

d qð Þ¼ 1

N

X
n

eiq �Rn (7.37)

along with the properties given by Eqs. (7.32), (7.35). Further, using the orthogonality relation defined by Eq. (7.21a) in

Eq. (7.36), we get

T¼ 1

2

X
q j

_Q qj, tð Þ _Q∗ qj, tð Þ (7.38)

In the crystal potential, defined by Eq. (7.5), V0 is a constant potential of a perfectly periodic crystal so one can take the

reference point such that V0 ¼ 0. Therefore, the lattice potential from Eq. (7.5) can be written as

Vi Rð Þ ¼ 1

2

X
nma

X
n0m0 b

Vab nm, n0m0ð Þua nmð Þub n0m0ð Þ (7.39)

Substituting the value of ua(nm) in terms of normal coordinates from Eq. (7.33) and simplifying, we write

Vi ¼
1

2

X
q j

o2 qjð ÞQ qj, tð ÞQ∗ qj, tð Þ (7.40)

Eq. (7.20), along with the properties of ea(qj,m), have been used in obtaining the above expression. Further, in obtaining

Eq. (7.40) the dynamical matrix is defined as

Dab q, mm0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MmMm0

p X
n�n0

Vab n�n0m, 0m0ð Þ e�iq � Rn0�Rn½ � (7.41)

Knowing the kinetic and potential energies, the Hamiltonian and Lagrangian of the lattice can be written as

H
_

i ¼T+Vi ¼
1

2

X
q j

_Q qj, tð Þ _Q∗ qj, tð Þ+o2 qjð ÞQ qj, tð ÞQ∗ qj, tð Þ� �
(7.42)

L¼T�Vi ¼
1

2

X
q j

_Q qj, tð Þ _Q∗ qj, tð Þ�o2 qjð ÞQ qj, tð ÞQ∗ qj, tð Þ� �
(7.43)

The momentum conjugate to Q∗(qj, t) is defined as

P qj, tð Þ¼ ∂L
∂ _Q∗ qj, tð Þ¼

_Q qj, tð Þ (7.44)

Hamilton’s equations give

_P qj, tð Þ¼ � ∂H
_

i

∂Q∗ qj, tð Þ¼ �o2 qjð ÞQ qj, tð Þ (7.45)

Substituting the value of P(qj, t) from Eq. (7.44) into Eq. (7.45), we get

€Q qj, tð Þ +o2 qjð ÞQ qj, tð Þ¼ 0 (7.46)

which is the equation of motion of a simple harmonic oscillator. We see that each of the new coordinates is simply a periodic

function that involves only one of the frequencies o(qj). In the theory of dynamical systems, such coordinates are custom-

arily called normal coordinates. Each normal coordinate describes an independent mode of vibration of the crystal with

only one frequency and such vibration modes are referred to as normal modes. Every atom in each normal mode vibrates

with the same frequency and with the same phase and we see that there are as many normal modes as there are degrees of

freedom (3sN) in the crystal. From Eq. (7.33) we see that the general motion of the crystal as a whole is a superposition of

the normal mode motions, each weighted appropriately by the coefficients ea(qj,m) exp(iq �Rn).
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7.4 QUANTIZATION OF LATTICE HAMILTONIAN

In the previous sections our discussion has been classical. A transition to quantum mechanics is made by regarding Q(qj, t)

and P(qj, t) as equal time operators, which will be discussed below. From the displacement ua(nm), given by Eq. (7.33), one

can define the momentum pa(nm) as

pa nmð Þ¼Mm _ua nmð Þ

¼
ffiffiffiffiffiffiffiffi
Mm

N

r X
q j

ea qj, mð ÞP qjð Þ eiq �Rn
(7.47)

The lattice field is quantized if the displacement ua(nm) andmomentum pa(nm) are replaced by the corresponding operators

that satisfy the following commutation relations

ua nmð Þ, u +
b n0m0ð Þ

h i
¼ pa nmð Þ, p+

b n0m0ð Þ
h i

¼ 0

ua nmð Þ, p +
b n0m0ð Þ

h i
¼ iħdnn0 dmm0 dab

(7.48)

Here ub
+(nm) denotes the transpose conjugate of ub(nm) and so on. Substituting the values of the displacement ua(nm) in

terms of the normal coordinates from Eq. (7.33) and the momentum pa(nm) from Eq. (7.47), one can show that

Q+ qjð Þ, P q0j0ð Þ½ � ¼ Q qjð Þ, P+ q0j0ð Þ½ � ¼ iħdqq0 djj0 (7.49a)

Q qjð Þ, Q+ q0j0ð Þ½ � ¼ P qjð Þ, P+ q0j0ð Þ½ � ¼ Q qjð Þ, P q0j0ð Þ½ � ¼ 0 (7.49b)

Let us define Q(qj) and P(qj) in terms of the creation and destruction operators denoted by aqj
+ and aqj, respectively, as

follows

Q qjð Þ¼ ħ
2o qjð Þ

� �1=2
aqj + a

+
�qj

h i
(7.50a)

P qjð Þ¼�i
ħo qjð Þ

2

� �1=2
aqj� a+

�qj

h i
(7.50b)

Substituting Eqs. (7.50a), (7.50b) into Eqs. (7.49a), (7.49b) one can further show that the annihilation and creation operators

satisfy the following commutation relations

aqj, a
+
q0j0

h i
¼ dqq0 djj0

aqj, aq0j0
h i

¼ a+
qj, a

+
q0j0

h i
¼ 0 (7.51)

Substituting the values of Q(qj) and P(qj) from Eqs. (7.50a), (7.50b) in the Hamiltonian given by Eq. (7.42), we can write

H
_

i ¼
1

2

X
q j

ħo qjð Þ a+
qj aqj + a�qj a

+
�qj

h i
(7.52)

Using the first commutation relation of Eq. (7.51) in Eq. (7.52), we can get

H
_

i ¼
X
qj

ħo qjð Þ a+
qj aqj +

1

2

� �
(7.53)

Here we have used the fact that o2(qj)¼o2(�qj). Eq. (7.53) is the standard form of the Hamiltonian for a collection of

independent harmonic oscillators. To obtain the eigenvalues of H
_

i, let us first describe the properties of the creation and

destruction operators. Let jni denote the state having n particles in it. When the operator a+ acts on the state jni it increases
the number of particles by one (or creates a particle) and its eigenvalue equation is given by

a+ nj i ¼
ffiffiffiffiffiffiffiffiffiffi
n + 1

p
n + 1j i (7.54)

Similarly, the operator a annihilates one particle and satisfies the equation

a nj i ¼ ffiffiffi
n

p
n�1j i (7.55)
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Using the above two equations, it is easy to prove that

a+a nj i ¼ n nj i (7.56)

The above equation shows that when the operator a+a acts on a state, it gives the total number of particles in that state and

therefore a+a is called the number operator. Now when the Hamiltonian defined by Eq. (7.53) acts on the state jni, it gives
the energy, that is

H
_

i nj i ¼ E nj i (7.57)

where1

E¼
X
qj

nqj +
1

2

� �
ħo qjð Þ (7.58)

Here nqj takes any integral value from zero to infinity. Eq. (7.58) says that the energy eigenvalues are quantized and the

quantum of excitation energy of the lattice vibrations is called a phonon having energy ħo(qj). The frequency o(qj) is
called the phonon frequency and the plot of o(qj) as a function of q is called the phonon dispersion relation.

7.5 SIMPLE APPLICATIONS

7.5.1 Linear Monatomic Lattice

Let us consider a one-dimensional array of atoms, each having the same mass M as shown in Fig. 6.6. Further, assume that

the atoms interact with one another through the 1NN harmonic forces. The general expression for the equation of motion of

a lattice is

Mm €ua nmð Þ¼ �
X
n0m0 b

Vab nm, n0m0ð Þub n0m0ð Þ (7.59)

which is the same as Eq. (7.10) and is written here for completeness. Here the labels m and m0 have no meaning and become

redundant as the lattice is monatomic. Further, in a one-dimensional lattice (say along the x-axis), a¼b¼x. Under these

approximations Eq. (7.59) reduces to

M €ux nð Þ¼�
X
n0

Vxx n, n0ð Þux n0ð Þ (7.60)

As the interactions are assumed to be finite with the 1NNs only, therefore, the force constants Vxx(n,n), Vxx(n,n+1) and

Vxx(n,n�1) are finite, with the others being zero. Further, as the atoms are identical, the interactions of the nth atom with

the (n�1)th and (n + 1)th atoms are the same and hence so are the force constants, that is,

Vxx n, n + 1ð Þ¼Vxx n, n�1ð Þ¼ Vi
00 ¼�aF (7.61)

Vi
00 is the second derivative of the lattice potential Vi(R). As the nth atom is attracted by both the (n�1)th and (n + 1)th

atoms, so the potential Vi(R), and hence the force constant aF, are attractive. From Eq. (7.12c), the force constants of a one-

dimensional monatomic crystal satisfy the relation X
n0

Vxx n, n0ð Þ ¼ 0 (7.62)

Considering only the 1NN interactions, the above expression gives Vxx(n,n) as

Vxx n, nð Þ¼� Vxx n, n + 1ð Þ+Vxx n, n�1ð Þ½ � ¼ 2aF (7.63)

Substituting Eqs. (7.61), (7.63) into Eq. (7.60), we get

M €ux nð Þ¼ aF ux n + 1ð Þ + ux n�1ð Þ�2ux nð Þ½ � (7.64)

1. In obtaining Eq. (7.57) we have taken the state jni as
jni ¼ jnq1j1

, nq1j2
…, nq1j3s

, nq2j1
, nq2j2

…, nq2j3s
,…, nqNj1

, nqNj2
…, nqNj3s

i
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The displacement ux(n) satisfies the periodicity of the lattice, so it can be written as

ux nð Þ¼ u0xe
i q �Rn�o tð Þ (7.65)

u0x is the amplitude of vibration in the x-direction. In one dimension, Rn¼na, so the above equation becomes

ux nð Þ¼ u0xe
i qna�o tð Þ (7.66)

Substituting Eq. (7.66) into Eq. (7.64), we get

o¼
ffiffiffiffiffiffiffiffi
4aF
M

r
sin

qa

2

� 	
(7.67)

From the periodic boundary condition the allowed values of the wave vector are given as q¼2pn/Na, where n is an integer

and N is the number of cells in the crystal. In the limit N!∞, the wave vector q, and hence the frequencies of the normal

modes, form a quasicontinuum. Eq. (7.67) is the same as Eq. (6.43) with q replaced by K and hence the plot of phonon

frequencies is the same as that shown in Fig. 6.8. At small values of q, Eq. (7.67) yields

o¼
ffiffiffiffiffiffiffiffi
4aF
M

r
qa

2
(7.68)

Therefore, at small wave vectors there is a linear relationship between o and q with a slope
ffiffiffiffiffiffiffiffiffiffiffiffi
aF=M

p
a.

7.5.2 Linear Diatomic Lattice

Let us now consider a linear lattice with two different kinds of atoms, named 1 and 2, per primitive cell, having masses M1

and M2 (M1 iM2) (see Fig. 7.1). The figure shows three consecutive cells of the diatomic lattice. Here again we assume that

the atoms interact with one another through the 1NN harmonic forces. So atom 1 in the nth cell interacts with atom 2 in the

nth and (n�1)th cells with the same interaction. Similarly, atom 2 in the nth cell interacts with atom 1 in the nth and (n+1)th

cells with the same interaction potential as in the case of the interaction of atom 1 with atom 2. Therefore, one can write

Vxx n1, n2ð Þ¼Vxx n1, n�12ð Þ¼Vxx n2, n1ð Þ¼Vxx n2, n + 11ð Þ
¼V00

i ¼�aF
(7.69)

Considering only the 1NN interactions, Eq. (7.12c) for 1 and 2 types of atoms of the nth cell can be written as

Vxx n1, n1ð Þ+Vxx n1, n2ð Þ+Vxx n1, n�12ð Þ¼ 0 (7.70a)

Vxx n2, n2ð Þ+Vxx n2, n + 11ð Þ+Vxx n2, n1ð Þ¼ 0 (7.70b)

Using Eq. (7.69) in Eqs. (7.70a), (7.70b), one can write

Vxx n1, n1ð Þ¼Vxx n2, n2ð Þ¼ 2aF (7.71)

The equations of motion for the atoms 1 and 2 in the nth cell can straightway be written from Eq. (7.59) as

M1 €ux n1ð Þ¼ aF ux n2ð Þ+ ux n�12ð Þ�2ux n1ð Þ½ � (7.72a)

M2 €ux n2ð Þ¼ aF ux n1ð Þ+ ux n + 11ð Þ�2ux n2ð Þ½ � (7.72b)

FIG. 7.1 Linear diatomic lattice with repeat distance a. The figure shows the (n�1)th, nth, and (n+1)th unit cells and each cell contains two atoms of

types 1 and 2.
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In writing the above equations, Eqs. (7.69), (7.71) have been used. Assume the solution to be a running plane wave defined by

u nmð Þ¼ u mð Þ ei q �Rn�o tð Þ (7.73)

Substituting Eq. (7.73) into Eqs. (7.72a), (7.72b) and using the fact that Rn¼na, we get

o2M1�2aF

 �

ux 1ð Þ+ aF 1 + e�iqað Þ ux 2ð Þ¼ 0 (7.74a)

aF 1 + eiqað Þux 1ð Þ + o2M2�2aF

 �

ux 2ð Þ¼ 0 (7.74b)

Eqs. (7.74a), (7.74b) possess nontrivial solutions only if the determinant of the coefficients of ux(1) and ux(2) is zero, that is,

o2M1�2aF aF 1 + e�iqað Þ

aF 1 + eiqað Þ o2M2�2aF

������
������ ¼ 0

Expanding the determinant one can write

M1M2o
4�2aF M1 +M2ð Þo2 + 2a2F 1� cos qað Þ¼ 0 (7.75)

The above equation can be solved for o2 to get

o2 ¼ aF
1

M1

+
1

M2

� 

�aF

1

M1

+
1

M2

� 
2

� 4

M1M2

sin2 qa

2

� 	" #1=2

(7.76)

which is the same equation as given by Eq. (6.80). From the periodic boundary conditions the wave vector is given by

q¼2pn/Na, where the integer n lies in the range�N/2�n�N/2 and N is assumed to be an even integer. As N approaches

infinity, q becomes quasicontinuous. At q ¼ 0, Eq. (7.76) gives two values of o as

o� ¼ 0

o + ¼ 2aF
1

M1

+
1

M2

� 
� �1=2
(7.77)

Here o+ and o� are the values of o for the plus and minus signs in Eq. (7.76). The values of o2 at the 1BZ boundary are

obtained by putting q ¼ �p/a in Eq. (7.76), giving

o + ¼
2aF
M1

� 
1=2

, o� ¼ 2aF
M2

� 
1=2

(7.78)

The plot of phonon frequencies o as a function of q in the 1BZ is the same as that shown in Fig. 6.15 (replacing K by q).

Fig. 7.2 shows the phonon frequency curves in both the 1BZ and 2BZ, that is, in the extended zone scheme. The same

diagram can be extended to the higher BZs. The phonon frequencies exhibit periodic behavior due to the periodicity of

the lattice.

FIG. 7.2 Phonon frequencies as a function of wave vector K for the normal modes of a diatomic linear lattice in the extended zone scheme. The wave

vectorK can have any value ranging from zero to infinity. The phonon dispersion relations of the 2BZ can be brought to the 1BZ by adding or subtracting

the smallest lattice vector G1 to K, that is, q¼K�G1, thus obtaining the dispersion relations shown in Fig. 6.15. It is for this reason that q is called the

reduced wave vector.
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7.5.3 Simple Cubic Lattice

The general formalism developed in this chapter can be applied to study the phonon frequencies in three-dimensional

crystals having different structures. Here we consider an sc lattice, which is the simplest among the three-dimensional

crystals. To further simplify the equations of motion, we assume central forces between the 1NN and 2NN atoms only

(see Fig. 7.3). The equation of motion along the x-direction, for an sc lattice is given by

M €ux Rnð Þ¼ aF1
X
n0
1
¼�1

ux n1 + n
0
1, n2, n3


 ��ux n1, n2, n3ð Þ� �

+aF2
X
n0
1
¼�1

X
n0
2
¼�1

ux n1 + n
0
1, n2 + n

0
2, n3


 ��ux n1, n2, n3ð Þ�

+n01n
0
2 uy n1 + n

0
1, n2 + n

0
2, n3


 ��uy n1, n2, n3ð Þ
n oi

+aF2
X

n1
0¼�1

X
n0
3
¼�1

ux n1 + n
0
1, n2, n3 + n

0
3


 ��ux n1, n2, n3ð Þ�

+n01n
0
3 uz n1 + n

0
1, n2, n3 + n

0
3


 ��uz n1, n2, n3ð Þ� ��

(7.79)

where aF1 and aF2 are the 1NN and 2NN force constants. Tomake the representation explicit, the lattice sites, which are also

the atomic sites in this case, are specified by three integers n1, n2, n3, and these are collectively written as n in Rn (see

Chapter 1). The equations of motion along the y- and z-directions can also be written by the cyclic permutations of x,

y, z and the increments of n1, n2, n3. We are interested in the plane wave solutions of the form

ua Rnð Þ¼ u0ae
i q �Rn�o tð Þ (7.80)

Substituting Eq. (7.80) into Eq. (7.79), one can immediately write the equation of motion along the x-direction as

o2Mu0x ¼ 2aF1 1�Cxð Þ + 4aF2 2�CxCy�CxCz

� 	h i
u0x + 4aF2SxSyu

0
y + 4aF2SxSzu

0
z (7.81)

FIG. 7.3 The 1NNs and 2NNs of an atom (n1,n2,n3) in an sc structure.
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where

Ca ¼ cos qaað Þ, Sa ¼ sin qaað Þ (7.82)

Similarly, the equations of motion along the y- and z-directions can be written as

o2Mu0y ¼ 4aF2SxSyu
0
x + 2aF1 1�Cy

� 	
+ 4aF2 2�CxCy�CyCz

� 	h i
u0y + 4aF2SySzu

0
z (7.83)

o2Mu0z ¼ 4aF2SxSzu
0
x + 4aF2SySzu

0
y + 2aF1 1�Czð Þ+ 4aF2 2�CxCz�CyCz

� 	h i
u0z (7.84)

The nontrivial solution of Eqs. (7.81), (7.83), (7.84) is obtained by equating to zero the determinant of the coefficients of ux
0,

uy
0, uz

0, that is,

2aF1 1�Cxð Þ+ 4aF2 2�CxCy�CxCz

� 	
�o2M 4aF2SxSy 4aF2SxSz

4aF2SxSy 2aF1 1�Cy

� 	
+ 4aF2 2�CxCy�CyCz

� 	
�o2M 4aF2SySz

4aF2SxSz 4aF2SySz 2aF1 1�Czð Þ+ 4aF2 2�CxCz�CyCz

� 	
�o2M

�����������

�����������
¼ 0 (7.85)

Eq. (7.85) is a cubic equation ino2 and in a general direction its solution is difficult. But in high-symmetry directions, such

as [100], [110], and [111], its solution becomes quite simple. Consider the case of a wave propagating in the [100] direction

in which the wave vector q ¼ [q00], for which

Sy ¼ Sz ¼ 0, Cy ¼Cz ¼ 1

So Eq. (7.85) reduces to

2aF1 1�Cxð Þ+ 8aF2 1�Cxð Þ�o2M 0 0

0 4aF2 1�Cxð Þ�o2M 0

0 0 4aF2 1�Cxð Þ�o2M

������
������¼ 0 (7.86)

The solutions of the above equation are given as

o2
1 ¼

4aF1
M

1 + 4
aF2
aF1

� 

sin2 qa

2
(7.87)

o2
2 ¼

8aF2
M

sin2 qa

2
(7.88)

Eq. (7.87) gives a single solution, while Eq. (7.88) gives two equal solutions. Using the standard technique, it is straight-

forward to find the eigenvectors corresponding to the frequencies given by Eqs. (7.87), (7.88). Eq. (7.87) corresponds to

longitudinal waves in which the displacements are parallel to the x-axis, that is, in the direction of propagation. The two

solutions given by Eq. (7.88) correspond to degenerate transverse waves in which the displacement is perpendicular to the

direction of propagation, that is, in the y- and z-directions. Therefore, Eqs. (7.87), (7.88) yield

oL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aF1
M

1 + 4
aF2
aF1

� 
s
sin

qa

2
(7.89)

oT ¼
ffiffiffiffiffiffiffiffiffi
8aF2
M

r
sin

qa

2
(7.90)

The dispersion curves for longitudinal and transverse waves with q along the [100] direction are shown in Fig. 7.4. In

exactly the same manner the phonon frequencies can be evaluated for wave vector q along the [110], [111] directions.
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It is noteworthy that purely longitudinal and purely transverse waves can be obtained only in the high-symmetry directions.

In a general direction of propagation, the normal modes of vibration are mixtures of the two types of wave and it is quite

cumbersome to obtain the solution.

7.6 EXPERIMENTAL DETERMINATION OF PHONON FREQUENCIES

Scattering phenomena play a vital role in the determination of different properties of crystalline solids and these can be

divided into two broad categories.

1. Elastic scattering is scattering in which the energy of the incident particles (radiation) remains unchanged during the

scattering process, with a familiar example being Bragg reflection.

2. Inelastic scattering is scattering in which the incident particles (radiation) either gain or lose energy during the scat-
tering process. For example, when incident radiation interacts with a lattice, the energy of the radiation changes either by

the emission or absorption of a phonon.

The elastic and inelastic scattering phenomena are further divided into two categories: coherent and incoherent scat-

tering processes. In coherent scattering from a lattice, the scattering of radiation takes place collectively from the ions,

which thus interfere with one another. Elastic coherent scattering provides information about the structure of crystalline

solids and has been discussed in Chapter 2. Inelastic coherent scattering provides information about the phonon frequencies

of a crystalline solid. In incoherent scattering, the ions on the lattice scatter the radiation independently and, therefore, do

not interfere with one another. Elastic incoherent scattering does not give any useful information, but inelastic incoherent

scattering determines the frequency distribution function directly.

The phonon frequencies are determined either by using the X-ray diffraction or neutron diffraction techniques. The

neutron diffraction technique is more powerful as it also provides information about the magnetic state of a crystalline

solid. In the present text we shall briefly describe the neutron diffraction technique.

7.6.1 Neutron Diffraction Technique

Two methods are used to determine the phonon frequencies in crystalline solids.

7.6.1.1 Time-of-Flight Method

Neutrons are produced in a nuclear reactor with an average energy of 2 MeV. They are slowed down by passing through a

material (moderator) to acquire thermal energy (� 0.025 eV for T¼ 300 K). The thermal neutrons are then Bragg reflected

from a single large crystal, for example of Al or Pb, to produce a monochromatic beam of neutrons. In the time-of-flight

method a monochromatic beam of neutrons is allowed to fall on the specimen crystal. The beam after reflection through an

angle f is collected by a counter and the time of flight is measured. In this method neutrons scattered at two or more than

two angles can be analyzed. The main disadvantage of this method is that the phonon wave vector q is chosen randomly.

FIG. 7.4 Schematic representation of phonon frequencies as a function of q along

the [100] direction for the normal modes of an sc solid. Here q is the reduced

wave vector.
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7.6.1.2 Constant Momentum Method

Brockhouse (1995) provided a constant q method for neutron diffraction, which is now widely used for measuring the

phonon frequencies in crystalline solids. Let K be the wave vector of incident neutrons and K0 the wave vector after scat-
tering. The conservation of momentum demands

K0 �K¼DK¼�q+G (7.91)

where q is the reduced wave vector. The plus (minus) sign on the right side of the above equation gives the absorption

(creation) of a phonon during the neutron scattering process. The conservation of energy of the neutrons gives

ħ2

2Mn

K02�K2
� 	

¼�ħo qð Þ (7.92)

Mn is the mass of the neutron and o(q) is the frequency of vibration of the lattice with wave vector q. Again, the plus

(minus) sign on the right side of Eq. (7.92) gives the absorption (creation) of a phonon. Thus, accurate measurements

ofK andK0 and the energy loss of the neutron beam provide the relation betweeno(q) and q, that is, the phonon dispersion
relation.

The experimental set up used to measure the phonon frequencies, which is usually called triple axis spectrometer, is
shown in Fig. 7.5. A parallel beam of thermal neutrons from a nuclear reactor is allowed to fall on a single crystal XM,

usually called the monochromating crystal. The Bragg reflected neutrons from XM constitute a monochromatic beam

of thermal neutrons, which is allowed to pass through a collimator. By changing the angle yM it is possible to obtain

the desired value of K or the momentum of incident neutrons. The monochromatic narrow beam of neutrons with the

desired value of the wave vectorK is allowed to fall on the specimen crystal S whose phonon frequencies are to be studied.

The direction of incidence of the neutrons on the specimen crystal plane corresponding to a particular reciprocal lattice

vector can be varied by changing the value of the angle yR. The neutron beam scattered through an angle f is allowed

to fall on the crystal XA, called the analyzing crystal. By rotating the second arm, the angle f between K and K0 can
be varied. The scattered neutron beam is Bragg reflected from the crystal XA in the direction yA and analyzed by the

detector D. Knowing the values of yM and yA, and using Bragg’s law, one can determine the wave vector of the incident

neutron, K, and that of the scattered neutron, K0. Hence the main advantage of the triple axis spectrometer is that one can

choose the desired values of wave vector q in a particular symmetry direction.

The triple axis spectrometer allows us to measure the energy of scattered neutrons by varying yA but keepingf constant.

In this way one obtains a peak in the scattered neutron beam for a particular wave vector q. The same experiment is repeated

for different values of the scattering angle f. The frequencyo(q) can be calculated from the energy conservation condition

(Eq. 7.92). The measured values of the phonon frequencies of Al metal along the high-symmetry directions are shown in

FIG. 7.5 Schematic diagram of a triple axis spectrometer. The angle yR is made by the incident direction with the vertical direction. (Modified from

Ghatak, A. K., & Kothari, L. S. (1972). An introduction to lattice dynamics. New York: Addison-Wesley.)
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Fig. 7.6 (Yarnell, Warren, & Koenig, 1965). In the [100] symmetry direction one obtains phonon frequencies of a longi-

tudinal (L) wave, usually called the L branch, and one transverse (T) wave called the T branch. But actually, there are two T

branches that overlap each other as these travel with the same velocity. In the [110] direction there is an L branch and two

distinct T branches, namely T1 and T2.
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Specific heat is the most extensively studied thermal property of solids and is a measure of the capacity to store heat energy

in a solid. Because of this it is sometimes called the heat capacity and is usually expressed per unit mass of the solid.

Therefore, the specific heat of a solid is the heat energy required to raise the temperature of one gram (gram mole) of

the solid by one degree centigrade. It is usually measured in cal/gramK (cal/moleK) of solid unless otherwise stated.

The specific heat comprises two contributions:

1. Lattice specific heat

It is the contribution to the specific heat from the lattice of a solid.

2. Electronic specific heat

It is the contribution to the specific heat arising from the conduction electron distribution and is finite in conductors and

semiconductors.

In this chapter we shall describe the lattice specific heat, which can be defined in two ways. First is the lattice specific

heat at constant pressure CP, which can be measured experimentally. Second is the lattice specific heat at constant volume

CV, which is easy to deal with theoretically. CV quantitatively measures the ability of a system to absorb energy into its

internal degrees of freedom, which, in turn, are related to the atomic and molecular characteristics of the system. Thus, the

specific heat can provide an important link between the observed macroscopic behavior of a solid and its detailed atomic

and molecular structure. The two types of specific heat are related to one another through the relation

CP�CV ¼ 9G2
THBMVT (8.1)

where GTH is the coefficient of linear expansion. BM, V, and T represent the bulk modulus, volume, and temperature (in

degrees Kelvin), respectively. One can also write

CP�CV ¼ R (8.2)

where R is the gas constant.
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8.1 EXPERIMENTAL FACTS

For the first time in 1819, Dulong and Petit measured the specific heat of a solid at room temperature experimentally and

found it to be 3R (� 6 calories per mole). This value is below themelting point of a solid. At and above themelting point, the

specific heat starts increasing due to the change in phase. Actually, the specific heat is a function of temperature: at very low

temperatures, it varies as T3 and approaches zero at absolute zero (see Fig. 8.1). At intermediate temperatures, the specific

heat varies linearly with T and approaches the Dulong and Petit’s value at reasonably large temperatures (� room tem-

perature). In a superconducting solid, the specific heat decreases exponentially below the superconducting transition tem-

perature and goes to zero as the temperature approaches absolute zero. Further, in magnetic substances, the specific heat

becomes large over the temperature range in which magnetic moments are ordered. This may be because the ordering of the

magnetic moments decreases the entropy of the solid faster, thereby increasing the specific heat. Below 0.1K the ordering of

magnetic (nuclear) moments may give very large values of specific heat.

8.2 THERMODYNAMICAL DEFINITION

The specific heat C in mathematical language can be written as

C¼ dQ

dT
(8.3)

where Q is the heat energy. When a solid is heated by imparting a small amount of energy dQ, then, a part of it is used in

increasing the internal energy of the solid dE and the rest is used in doing work. So, one can write

dQ¼ dE +PdV (8.4)

where P is pressure and dV is the volume change in a solid. Dividing Eq. (8.4) by dT we get

C¼ dQ

dT
¼ dE

dT
+P

dV

dT
(8.5)

The energy E depends on both T and V. The specific heat at constant volume V, from Eq. (8.5), becomes

CV ¼ dQ

dT

� �
V

¼ dE

dT

� �
V

(8.6)

From the second law of thermodynamics, for reversible processes,

dQ¼TdS (8.7)

FIG. 8.1 Temperature dependence of experimentally measured values of specific heat for some elements. The solid line represents the theoretical values
obtained for CV from the Debye theory. (Modified from Epifanov, G. I. (1979). Solid state physics (p. 119). Moscow: Mir Publishers.)
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where S is entropy of the system. So

CV ¼T
dS

dT

� �
V

(8.8)

In theoretical investigations, we usually consider CV as it can easily be obtained from E and S of a thermodynamic system.

Therefore, in this chapter, we discuss the evaluation of CV from which CP can be obtained by using Eq. (8.2).

8.3 PHASE SPACE

A space that gives both the position and velocity of a particle, as a function of time, is known as phase space (or config-

uration space). Consider a physical system with a large number of particles in the phase space. The state of the system at a

given instant of time may be defined by specifying the position and velocity of each particle at that time. The simplest

example of phase space is one with a one-dimensional velocity distribution, say along the x-direction. Let x and vx represent

the position and velocity of a particle in the x-direction. Such a phase space is two-dimensional and the elemental volume

reduces to an elemental area (see Fig. 8.2) given by

dτ2 ¼ dxdvx (8.9)

In a realistic system the velocity distribution is three dimensional and the position and velocity of a particle at a particular

time t is specified by the corresponding coordinates as

r¼
X
a

îa ra (8.10)

v¼
X
a

îava (8.11)

The phase space for a single particle is six dimensional: three components for position and three components for velocity.

The volume element in this space is given by

dτ6 ¼ d3rd3v (8.12)

FIG. 8.2 Two-dimensional phase space with one-dimensional velocity distribution function f(x,vx, t). The shaded region shows the elemental area for

particles having positions between x and x+dx and velocity between vx and vx+dvx.
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where

d3r¼ dr1dr2dr3 ¼ dxdydz (8.13)

d3v¼ dv1dv2dv3 ¼ dvxdvydvz (8.14)

Here d3r is the volume element around the terminal point r in the position space and d3v is the volume element around the

terminal point v in the velocity space. Fig. 8.3 shows the volume element for a particle in six-dimensional phase space. Here

it is assumed that the volume element d3r is large enough to contain a great many particles but small enough compared with

the dimensions of the system.

Consider a system of N particles in phase space. The total number of coordinates (degrees of freedom) of the system is

6N: 3N for position and 3N for velocity. The state of a particle in this system is defined by six coordinates as mentioned

above. But the state of the system, as a whole, is defined in terms of the 6N coordinates defining a 6N-dimensional space.

Let ri and vi be the coordinates of the ith particle. The elemental volume of the 6N-dimensional space with coordinates

ranging from ri to ri +dri and vi to vi +dvi, for all the particles is given by

dτ6N ¼ d3r1d
3v1 d

3r2d
3v2…d3ri d

3vi…d3rNd
3vN (8.15)

The above equation can also be written as

dτ6N ¼
YN
i¼1

d3ri d
3vi ¼

YN
i¼1

dτi6 (8.16)

where dτ6
i is the volume element for the ith particle in the six-dimensional phase space.

8.4 CLASSICAL THEORIES OF LATTICE SPECIFIC HEAT

In the classical treatment of the lattice specific heat of solids, the simplest approximation is to treat atoms as free particles

and apply the kinetic theory of gases. For further simplification of the theoretical treatment we consider an ideal

monatomic gas.

FIG. 8.3 Six-dimensional phase space with three-dimensional velocity distribution function f(r,v, t). The shaded region shows the elemental volume for

particles having positions between r and r+dr and velocity between v and v+dv .
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8.4.1 Free Atom Model

8.4.1.1 One-Dimensional Solid

Consider a one-dimensional ideal gas of atoms in which the atoms move freely along the x-direction. The energy of a free

atom is given by

Ex ¼ p2x
2M

(8.17)

where M and px are the mass and momentum of an atom along the x-direction. If f(E,T) is the distribution function for the

atoms, the average energy of an atom can be written as

E¼

ð
E f E, Tð Þdτð
f E, Tð Þdτ

(8.18)

Here dτ is the volume element in the phase space, given in one dimension by dτ ¼ dxdpx. The Maxwell-Boltzmann dis-

tribution, usually called the classical distribution of atoms, is given by

f E, Tð Þ¼ e
� E
kBT (8.19)

where kB is the Boltzmann constant. Using Eqs. (8.17), (8.19) in Eq. (8.18), the average energy of an atom in a one-

dimensional solid is given by

E¼

ð
p2x
2M

e
�p2x=2M

kBT dx dpx

ð
e
�p2x=2M

kBT dx dpx

(8.20)

The integral over x gives Lx, the length of the one-dimensional solid, while the integral over px will be from �∞ to∞.

Hence Eq. (8.20) reduces to

E¼

ð∞

�∞

p2x
2M

e�b0 p
2
x=2Mdpx

ð∞

�∞

e�b0 p
2
x=2Mdpx

(8.21)

where

b0 ¼
1

kBT
(8.22)

The integrands of the integrals in Eq. (8.21) are an even function of px so the integration can be performed from 0 to∞ and

multiplied by a factor of two. Therefore

E¼

ð∞

0

p2x
2M

e�b0 p
2
x=2 Mdpx

ð∞

0

e�b0 p
2
x=2 Mdpx
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With the help of Eq. (8.17) the above integral can be written as

E¼

ð∞

0

E1=2
x e�b0 Ex dEx

ð∞

0

E�1=2
x e�b0 Ex dEx

(8.23)

Integrating by parts, one finally gets

E¼ 1

2
kBT (8.24)

Eq. (8.24) gives the energy associated with one degree of freedom. The average energy of a one-dimensional solid with N

atoms becomes

E¼NE¼ 1

2
NkBT (8.25)

From Eqs. (8.6), (8.25) CV is given by

CV ¼ 1

2
NkB ¼

1

2
R (8.26)

where the gas constant R is given by

R¼NkB (8.27)

8.4.1.2 Two-Dimensional Solid

Consider a two-dimensional solid with atoms moving freely in the xy-plane (two-dimensional ideal gas of atoms). The

energy of a free atom can be written as

E¼ p2

2M
(8.28)

with

p2 ¼ p2x + p
2
y (8.29)

Substituting Eqs. (8.19), (8.28) into Eq. (8.18), the average energy of an atom becomes

E¼

ð
p2

2M
e�b0 p

2=2Mdτð
e�b0 p

2=2Mdτ
(8.30)

In two dimensions

dτ¼ d2r d2p¼ 2prdrð Þ 2ppdpð Þ (8.31)

Substituting Eq. (8.31) into Eq. (8.30), one can write

E¼

ð∞

0

p2

2M
e�b0 p

2=2Mpdp

ð∞

0

e�b0 p
2=2Mpdp

(8.32)

The integral over r gives the area A of the two-dimensional solid. Converting momentum into energy with the help of

Eq. (8.28), we get
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E¼

ð∞

0

Ee�b0 EdE

ð∞

0

e�b0 EdE

(8.33)

Solving the integral by parts, one gets

E¼ 1

b0
¼ kBT (8.34)

E is the energy associated with two degrees of freedom and therefore is double the energy of an atom in a one-dimensional

solid. Hence the average energy of a two-dimensional solid with N atoms becomes

E¼NE¼ NkBT (8.35)

The specific heat at constant volume CV is given by

CV ¼NkB ¼R (8.36)

which is twice of the value obtained in a one-dimensional solid.

8.4.1.3 Three-Dimensional Solid

Consider a three-dimensional solid in the form of a cube of edge L. The atoms move freely in all possible directions and the

energy of a free atom is given by

E¼ p2

2M
(8.37)

with

p2 ¼ p2x + p
2
y + p

2
z (8.38)

The average energy of an atom in the phase space is given by

E ¼

ð
p2

2M
e�b0 p

2=2Md3r d3pð
e�b0 p

2=2Md3r d3p

(8.39)

The integration over the direct space gives the volume of the solid V¼L3. Using spherical coordinates, the integral over

momentum becomes

E ¼

ð∞

0

p2

2M
e�b0 p

2=2Mp2dp

ð∞

0

e�b0 p
2=2Mp2dp

(8.40)

Substituting Eq. (8.37) for the energy E into Eq. (8.40), one can write

E¼

ð∞

0

E3=2 e�b0 EdE

ð∞

0

E1=2 e�b0 EdE

(8.41)
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Solving the above integral by parts, we get

E¼ 3

2

1

b0
¼ 3

2
kBT (8.42)

which is the sum of energies of the three degrees of freedom of an atom. If there are N atoms in the solid, the total energy

becomes

E¼NE¼ 3

2
NkBT (8.43)

The specific heat CV, therefore, is given by

CV ¼ 3

2
NkB ¼

3

2
R (8.44)

Eq. (8.44) gives only half the value observed by Dulong and Petit. From the above discussion it is evident that the average

energy of an atom is equal to the energy associated with one degree of freedom multiplied by the number of degrees of

freedom n of the atom. So, in general, one can write the average energy of an atom as

E¼ 1

2
nkBT (8.45)

Note that n is also equal to the dimensionality of the solid. The specific heat CV, then, becomes

CV ¼ 1

2
nNkB ¼

1

2
nR (8.46)

8.4.2 Fixed Classical Harmonic Oscillator Model

In a solid, the atoms cannot move from one place to another but can oscillate about their mean positions. So, the first

improvement over the free-atom model is to assume each atom as a harmonic oscillator with a fixed equilibrium position.

8.4.2.1 One-Dimensional Solid

In a one-dimensional solid, an atom will execute simple harmonic motion along the x-direction. So, the energy of an atom is

given by

E¼ p2x
2M

+
1

2
aFx

2 ¼ p2x
2M

+
1

2
Mo2x2 (8.47)

where

o¼
ffiffiffiffiffi
aF
M

r
(8.48)

Here aF is the force constant, M is the mass, and o is the natural frequency of vibration of the atom. The average energy of

an atom, from Eq. (8.18), becomes

E¼

ð∞

�∞

p2x
2M

+
1

2
Mo2x2

� �
e
�b0

p2x
2M

+
1
2
Mo2 x2

� �
dxdpx

ð∞

�∞

e
�b0

p2x
2M

+
1
2
Mo2 x2

� �
dxdpx

(8.49)

The above integral can be simplified to write

E¼

ð∞

�∞

p2x
2M

e�b0
p2x
2Mdpx

ð∞

�∞

e�b0
p2x
2Mdpx

+
1

2
Mo2

ð∞

�∞

x2e�
1
2
b0Mo2 x2 dx

ð∞

�∞

e�
1
2
b0Mo2 x2 dx

(8.50)

156 Solid State Physics



Putting Ex¼px
2/2M and q¼ 1

2
b0Mo2x2 into Eq. (8.50), we get

E¼

ð∞

0

E1=2
x e�b0 Ex dEx

ð∞

0

E�1=2
x e�b0 Ex dEx

+
1

b0

ð∞

0

q1=2 e�qdq

ð∞

0

q�1=2 e�qdq

The first integral is exactly the same as in the case of the one-dimensional free atom model and the second integral can be

solved by integrating it by parts to give

E¼ 1

2
kBT +

1

2
kBT¼ kBT (8.51)

If there are N atoms in the one-dimensional solid, then the total energy E becomes

E¼NE¼NkBT (8.52)

Therefore, the specific heat CV is given by

CV ¼ NkB ¼ R (8.53)

Problem 8.1 Two-Dimensional Solid

Consider a two-dimensional solid with N atoms in which each atom is considered to be a fixed harmonic oscillator. The energy of

an atom is given by

E¼ p2

2M
+
1

2
aF r

2 (8.54)

where

p2 ¼ p2x + p2y

r2 ¼ x2 + y2

and

o¼
ffiffiffiffiffi
aF
M

r
(8.55)

Here M is the mass of an atom. Prove that the total energy of the solid and the specific heat are given by

E¼ 2NkBT (8.56)

CV ¼ 2NkB ¼ 2R (8.57)

8.4.2.2 Three-Dimensional Solid

Consider a three-dimensional solid with N atoms in which each atom is considered to be a fixed harmonic oscillator with

energy

E¼ p2

2M
+
1

2
aF r

2 (8.58)

where

r2 ¼ x2 + y2 + z2 (8.59)
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The average energy of an atom is found by substituting Eq. (8.58) into Eq. (8.18), that is,

E¼

ð∞

�∞

p2

2M
+
1

2
Mo2 r2

� �
e
�b0

p2

2M
+
1
2
Mo2 r2

� �
d3r d3p

ð∞

�∞

e
�b0

p2

2M
+
1
2
Mo2 r2

� �
d3r d3p

(8.60)

Simplifying the above integral, we find

E¼

ð∞

�∞

p2

2M
e�

b0 p
2

2M d3p

ð∞

�∞

e�
b0 p

2

2M d3p

+
1

2
Mo2

ð∞

�∞

r2 e�
1
2
b0Mo2 r2 d3r

ð∞

�∞

e�
1
2
b0Mo2 r2 d3r

(8.61)

Using spherical coordinates, the above equation reduces to

E¼

ð∞

0

p2

2M
e�

b0 p
2

2M p2dp

ð∞

0

e�
b0 p

2

2M p2dp

+
1

2
Mo2

ð∞

0

r4 e�
1
2
b0Mo2 r2 dr

ð∞

0

r2 e�
1
2
b0Mo2 r2 dr

(8.62)

The first integral is the same as in Eq. (8.40). The second integral can be solved by parts, finally yielding

E¼ 3

2
kBT +

3

2
kBT¼ 3kBT (8.63)

Hence the total energy of the three-dimensional solid becomes

E¼ NE¼ 3NkBT (8.64)

The specific heat is given by

CV ¼ 3NkB ¼ 3R � 6 calories=degree=mole (8.65)

This model reproduces the Dulong and Petit’s value but does not explain the temperature variation of CV at low

temperatures.

8.5 QUANTUM MECHANICAL THEORIES

8.5.1 Einstein Theory of Specific Heat

The classical theory yields a constant value of specific heat, but the experimental results exhibit temperature variation at

low temperatures. To explain the temperature variation of specific heat, Einstein assumed that the atoms in a solid are

identical independent quantum harmonic oscillators vibrating with the same natural frequency oE, usually called the Ein-

stein frequency. The energy of a quantum harmonic oscillator is given by

En ¼ n +
1

2

� �
ħoE (8.66)

where n ¼ 0, 1, 2, … As the temperature decreases, the amplitude and energy of a harmonic oscillator decrease and, at

absolute zero, the energy becomes (1/2)ħoE, the zero-point energy. Einstein assumed that the oscillators obey the

Maxwell-Boltzmann distribution and, therefore, the average energy of an oscillator is given by
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E oEð Þ¼

X∞
n¼0

n +
1

2

� �
ħoEe

�b0 n + 1=2ð ÞħoE

X∞
n¼0

e�b0 n + 1=2ð ÞħoE

¼

X∞
n¼0

nħoEe
�b0 nħoE

X∞
n¼0

e�b0 nħoE

+
1

2
ħoE (8.67)

Solving Eq. (8.67) the average energy of a mode of vibration is given by

E oEð Þ¼ ħoE

e
ħoE

kBT�1

+
1

2
ħoE (8.68)

Consider a solid comprising N atoms. Let Dn denotes the total number of degrees of freedom (total number of modes of

vibration) of all the atoms in the solid: it has a value of 1N, 2N, and 3N for one-, two-, and three-dimensional solids,

respectively. Therefore, the total energy of the solid is given by

ET oEð Þ¼DnE oEð Þ¼Dn

ħoE

e
ħoE

kBT�1

+
1

2
DnħoE (8.69)

The specific heat at constant volume is given by

CV ¼ ∂ET

∂T

� �
V

¼Dn

∂E
∂T

� �
V

(8.70)

Substituting Eq. (8.68) into Eq. (8.70), CV is given by

CV ¼Dn

∂
∂T

ħoE

e
ħoE

kBT�1

0
@

1
A (8.71)

The above expression shows that the zero-point energy of the solid does not contribute toward CV and therefore may be

disregarded in the forthcoming discussion on the specific heat. Let us define the Einstein temperature yE by

yE ¼
ħoE

kB
(8.72)

In terms of yE, Eq. (8.71) can be written as

CV ¼DnkB
yE
T

� �2
eyE=T

eyE=T�1ð Þ2
(8.73)

This is the general expression for CV and one can study its limiting cases. At high temperatures T >> yE or yE/T ≪ 1,

Eq. (8.73) reduces to

CV ¼DnkBe
yE=T ffiDnkB (8.74)

Eq. (8.74) gives values 1NkB, 2NkB, and 3NkB for one-, two-, and three-dimensional solids, respectively, and this

agrees with the Dulong-Petit’s value at high temperatures. At very low temperatures T<< yE or yE/T ≫ 1, Eq. (8.73)

reduces to

CV ¼DnkB
yE
T

� �2

e�yE=T (8.75)

Eq. (8.75) shows that the temperature variation of CV in one-, two-, and three-dimensional solids is the same and approaches

zero exponentially as the temperature goes to absolute zero. Fig. 8.4 shows the temperature variation of CV for a three-

dimensional solid obtained in the Einstein model. Experimentally it has been observed that CV varies as T3 at very low

temperatures. Therefore, although the Einstein theory exhibits the temperature variation of specific heat, the decrease

is much faster than that observed experimentally.
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8.5.2 Debye Theory of Specific Heat

Debye pointed out a possible reason for the discrepancy in the Einstein theory of specific heat. He said that all of the atoms

in a solid do not vibrate with the same frequency. Rather, there must be some spread in the allowed frequencies of vibration

of the atoms. He assumed that the frequencies of atomic vibrations vary from zero to somemaximum frequencyoD, usually

called the Debye frequency.

FromEq. (8.68) it is evident that, at low temperatures, the average energy per mode E oð Þ becomes small for large values

of frequencyo. Therefore, at low temperatures, a significant contribution to the internal energy comes from the long wave-

length (small o) modes of vibration. For long wavelengths, it is reasonable to assume that the solid is a homogeneous

continuous medium in which the dispersion relation is given by

o Kð Þ¼ vK (8.76)

where v is the phase velocity, which is also equal to the group velocity.

8.5.2.1 Linear Monatomic Lattice

In a one-dimensional solid the number of modes of vibration in a wave vector K is given by

n¼ L

2p
K (8.77)

Therefore, the number of vibration modes in the range from K to K+dK is given by

dn¼L

p
dK (8.78)

It is well known that every positive value of the wave vector K has the corresponding negative value �K.

Therefore, in Eq. (8.78), we have multiplied by a factor of 2 to get the total number of vibration modes. From Eq.

(8.76) one can write

do¼ vdK (8.79)

FIG. 8.4 The specific heat CV as a function of temperature

T due to the Einstein and Debye theories.
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Substituting the value of dK from Eq. (8.79) into Eq. (8.78), one gets the number of vibration modes in the frequency range

o and o+do as

g oð Þdo¼ L

pv
do¼Ado (8.80)

where A¼g(o)¼L/pv is a constant. The function g(o) gives the phonon density of states and should be defined in such a
way that the total number of modes of vibration given by it must be equal to the total number of degrees of freedom N, that

is,

ðoD

0

g oð Þdo¼N (8.81)

Substituting Eq. (8.80) into Eq. (8.81), one can immediately write

g oð Þ¼A¼ N

oD

(8.82)

Assuming g(o) to be a continuous function of o, the total energy of the solid becomes

ET ¼
ð
Eg oð Þdo¼

ð∞

0

ħo

e
ħo
kBT�1

g oð Þdo (8.83)

In writing the above expression, the zero-point energy has been neglected, as it does not contribute toward the lattice spe-

cific heat. Substituting

x¼ ħo
kBT

and yD ¼ ħoD

kB
(8.84)

along with Eq. (8.82) into Eq. (8.83), we obtain

ET ¼NkB
T2

yD

ðyD=T

0

xdx

ex�1
(8.85)

Here yD is the Debye temperature. Eq. (8.85) gives the general expression for the total energy of a one-dimensional solid,

which gives analytical expressions only in the limiting cases. At high temperatures, x ≪ 1, Eq. (8.85) reduces to

ET ¼NkBT (8.86)

Therefore, at high temperatures, one obtains the classical value of CV, that is,

CV ¼NkB (8.87)

At low temperatures, x ≫ 1 and yD/T!∞, Eq. (8.85) yields

ET ¼NkB
T2

yD

ð∞

0

xdx

ex�1
(8.88)

The integral in the above expression is a standard one and has a value of p2/6, therefore, the total energy is given by

ET ¼
p2

6
NkB

T2

yD
(8.89)

From the above expression, CV is immediately written as

CV ¼ p2

3
NkB

T

yD
(8.90)

Therefore, in a one-dimensional solid, CV varies linearly with temperature.
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The lattice specific heat can also be estimated using the frequency distribution function of the lattice vibrations for a

one-dimensional solid given by Eq. (6.59). Substituting the value of g(o) from Eq. (6.59) into Eq. (8.83), one gets

ET ¼
2Nħ
p

ðomax

0

odo

eħo=kBT�1ð Þ o2
max�o2

� �1=2 (8.91)

At low temperatures, the states with small energy (low frequency) are occupied or one can say that the high-frequency

modes are effectively frozen. Therefore, at low temperatures, o/omax h h 1, in this approximation, Eq. (8.91) becomes

ET ¼
2Nħ
p

� 1

omax

ðomax

0

odo
eħo=kBT�1

(8.92)

Making the substitution

x¼ ħo
kBT

and yD ¼ ħomax

kB
(8.93)

Eq. (8.92) becomes

ET ¼
2NkB
p

T2

yD

ðyD=T

0

xdx

ex�1
(8.94)

The integral in the above expression is the same as in Eq. (8.85), so it gives

ET ¼
p
3
NkB

T2

yD
(8.95)

The heat capacity at constant volume is given by

CV ¼ 2p
3
NkB

T

yD

� �
(8.96)

Eq. (8.96) is similar to Eq. (8.90) except for the constant factor. At high temperature, ħo ≪kBT, Eq. (8.91) reduces to

ET ¼ kBT

ðomax

0

g oð Þdo¼NkBT (8.97)

which is the same result as Eq. (8.86). The value of CV from the above equation is given by

CV ¼NkB (8.98)

which is the Dulong and Petit’s value for a one-dimensional solid.

8.5.2.2 Two-Dimensional Lattice

The phonon density of states in a two-dimensional solid can be calculated from the periodicity of the lattice. Consider a two-

dimensional solid in the form of a square of side L. The number of phonon states n in a circle of radius K is given by

n¼ pK2 L

2p

� �2

(8.99)

So, the number of phonon states in a ring of radius K and thickness dK is obtained by differentiating Eq. (8.99) to obtain

dn¼A0

2p
KdK (8.100)

Here A0 is the area of the two-dimensional solid. If we change the wave vector K into the frequency o using the Debye

approximation given by Eq. (8.76), we get

dn¼ A0

2pv2
o do (8.101)
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The above expression gives the number of phonon states between two circles of constant energyo ando+do, that is, g(o)
do. Therefore, one can write

g oð Þ¼ A0

2pv2
o¼Co (8.102)

where C is a constant given by

C¼ A0

2pv2
(8.103)

Eq. (8.102) can also be obtained from the general expression for the density of phonon states in two-dimensional solids

(Appendix E). The total number of modes of vibration must be equal to the total number of degrees of freedom, that is,

ðoD

0

g oð Þdo¼ 2N¼C

ðoD

0

odo (8.104)

The above equation gives C as

C¼ 4N

o2
D

(8.105)

Eqs. (8.102), (8.105) give the phonon density of states

g oð Þ¼ 4N

o2
D

o (8.106)

The total energy of the solid is given by

ET ¼
ðoD

0

E oð Þg oð Þdo (8.107)

Substituting the values of E oð Þ from Eq. (8.68) and neglecting the zero-point energy and substituting g(o) from Eq. (8.106)

into Eq. (8.107), we write

ET ¼
4N

o2
D

ħ
ðoD

0

o2do

e
ħo
kBT�1

(8.108)

Making the substitution given by Eq. (8.84) into Eq. (8.108), one gets

ET ¼ 4NkB
T3

y2D

ðyD=T

0

x2dx

ex� 1
(8.109)

It is the general expression for the total energy of a two-dimensional solid with N atoms. At high temperatures x≪1,

Eq. (8.109) reduces to

ET ¼ 4NkB
T3

y2D

ðyD=T

0

xdx¼ 2NkBT (8.110)

Eq. (8.110) yields the classical value of CV as

CV ¼ 2NkB (8.111)

It gives the Dulong and Petit’s value for a two-dimensional solid. At low temperatures, x≫1, Eq. (8.109) reduces to

ET ¼ 4NkB
T3

y2D

ð∞

0

e�xx2dx¼ 8NkB
T3

y2D
(8.112)
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Hence CV from Eq. (8.112) becomes

CV ¼ 24NkB
T

yD

� �2

(8.113)

Eq. (8.113) shows that in a two-dimensional solid CV varies as T2 at very low temperatures.

8.5.2.3 Three-Dimensional Lattice

The phonon density of states can be calculated from the periodicity of the lattice as in the two-dimensional solid. If the solid

is in the form of a cube with edges of length L, then the number of states per unit volume in the K-space is (L/2p)3. The
number of phonon states n in a sphere of radius K is given by

n¼ 4p
3
K3 L

2p

� �3

(8.114)

Therefore, the number of phonon states in a spherical shell of radius K and thickness dK is obtained by differentiating the

above equation, that is,

dn¼ 4pK2dK
V

2pð Þ3 (8.115)

where V is the volume of the solid. The number of modes of vibration between K and K+dK, given by Eq. (8.115), cor-

responds to the number of modes between frequency o and o+do, that is,

g oð Þdo¼ V

2p2v3
o2do (8.116)

Every atom possesses three modes of vibration, therefore, g(o) from the above equation can be written as

g oð Þ¼ 3V

2p2v3
o2 ¼Ao2 (8.117)

where

A¼ 3V

2p2v3
(8.118)

Eq. (8.117) can be obtained from the general expression for the density of phonon states for the three-dimensional solid as

given in Appendix E. Fig. 8.5 shows the frequency distribution function for a three-dimensional solid in the Debye approx-

imation. The figure also shows the Einstein frequencyoE, which is greater than the Debye frequencyoD. The function g(o)
must satisfy the relation

ðoD

0

g oð Þdo ¼ 3N (8.119)

Substituting Eq. (8.117) into Eq. (8.119), the constant A is given by

A¼ 9N

o3
D

(8.120)

From the above equation the Debye frequency is given by

oD ¼ 9N

A

� �1=3

¼ v
6p2N
V

� �1=3

¼ vKD (8.121)

Eq. (8.121) allows us to write the Debye wave vector KD as

KD ¼ 6p2
N

V

� �1=3

(8.122)
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The total energy of the lattice is given by

ET ¼
ðoD

0

E oð Þg oð Þdo (8.123)

Substituting Eq. (8.117) for g(o) and Eq. (8.68) for the average energy (neglecting the zero-point energy) into the above

equation, we get

ET ¼Aħ
ðoD

0

o3 do

e
ħo
kBT�1

(8.124)

Making the substitution given by Eq. (8.84), the above equation can be written as

ET ¼
A

ħ3
kBTð Þ4

ðyD=T

0

x3

ex�1
dx (8.125)

The integral in Eq. (8.125) cannot be solved analytically but one can study the special cases for ET. At very high temper-

atures, that is, (T≫yD) x≪1, Eq. (8.125) reduces to

ET ¼
A

ħ3
kBTð Þ4

ðyD=T

0

x2dx

¼ 3NkBT

(8.126)

Hence the specific heat at constant volume becomes

CV ¼ 3NkB (8.127)

which is the Dulong and Petit’s value for CV (classical result). At low temperatures, that is, (T≪yD) x≫1, Eq. (8.125) can

be written as

ET ¼
A

ħ3
kBTð Þ4

ð∞

0

x3

ex�1
dx (8.128)

FIG. 8.5 The density of phonon states g(o) as a function of o. The
Einstein frequency oE is greater than the Debye frequency oD.

Specific Heat of Solids Chapter 8 165



The above integral can be evaluated by using the standard integral defined as

ð∞

0

xs�1

ex�1
dx ¼ s�1ð Þ!

X∞
n¼1

1

ns
(8.129)

For s ¼ 4 the above equation gives

ð∞

0

x3

ex�1
dx¼ 3!

X∞
n¼1

1

n4
¼ p4

15
(8.130)

Substituting Eq. (8.130) into Eq. (8.128), one gets

ET ¼
Ap4

15ħ3
kBTð Þ4 ¼ 3

5
p4NkB

T4

y3D
(8.131)

Hence the specific heat at constant volume becomes

CV ¼ 12

5
p4NkB

T

yD

� �3

¼ 234 NkB
T

yD

� �3

(8.132)

The above expression shows that at very low temperatures, the lattice specific heat varies as T3, which agrees with the

experimental observations (see Fig. 8.1). It is usually known as the Debye T3 law. Fig. 8.6 shows CV for one-, two-,

and three-dimensional solids. It is evident from the figure that the temperature variation of CV in the three types of solids

is different at very low temperatures in contrast with that found in the Einstein model. The theoretical results obtained in the

Einstein and Debye models are compared in Fig. 8.4. It is noteworthy that the Debye approximation works well at suffi-

ciently low temperatures because at these temperatures only long-wavelength acoustic modes are excited. The energy of

short-wavelength modes (e.g., the optical modes) is too high to allow these to be populated at low temperatures. Further,

according to the dispersion relation (8.76), o¼0 at K¼0, but for the optical modes the frequency of vibration is finite at

FIG. 8.6 Schematic representation of specific heat CV

as a function of temperature T for one-, two-, and three-

dimensional solids in the Debye theory.
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K¼0 (see Chapter 6). Therefore, the Debye theory does not account for the optical modes.Wewant to mention here that the

Debye approximation includes only the linear term in the dispersion relation (Eq. 8.76), which is the lowest order approx-

imation. In fact, one should consider the dispersion relations calculated from the experimentally measured phonon fre-

quencies and then calculate the lattice specific heat.

8.6 EFFECT OF ELECTRONS ON SPECIFIC HEAT

One distinctive property of metals (also of semiconductors) is their electrical conductivity. It might be expected that the

conduction electrons make a significant contribution to the specific heat of a metal. It will be shown in Chapter 9 that the

electronic contribution to the specific heat varies linearly with temperature. Therefore, the total specific heat in a metal

becomes

Cmetal ¼ b‘T
3 + geT (8.133)

Here b‘ and ge are constants. At room temperature the electronic contribution is very small compared with the lattice con-

tribution to the specific heat (see Fig. 8.7A). But at low temperatures the electrons make an appreciable contribution to the

specific heat, as is evident from Fig. 8.7B.

8.7 IDEAL PHONON GAS

Consider a crystal containing N atoms that are vibrating about their equilibrium positions at finite temperature. It has been

shown in Chapter 7 that the energy of a crystal, in the harmonic approximation, is equivalent to the energy of 3N inde-

pendent harmonic oscillators. The energy of each harmonic oscillator is quantized and is given from Eq. (7.58) by

Enq
¼ nq +

1

2

� �
ħo qð Þ (8.134)

with nq¼ 0, 1, 2… ando(q) is the angular frequency of the normal mode. In the above equation we have omitted the index

of polarization. Hence the difference in the energies of two consecutive states nq and nq+1 is given by

Eph ¼Enq + 1
�Enq

¼ ħo qð Þ¼ hn qð Þ (8.135)

FIG. 8.7 (A) Temperature dependence of the lattice contribution Clatt and the electronic contribution Ce to the specific heat for Cr0.8V0.2 alloy. (B) Clatt

and Ce for Cr0.8V0.2 alloy at very low temperatures. Ce>Clatt up to T�8.5 K. Here yD¼500 K. (Modified from Epifanov, G. I. (1979). Solid state physics.

(p. 122). Moscow: Mir Publishers.)
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Here n(q) is the frequency of thermal vibrations propagating through the crystal in the form of elastic waves. Eq. (8.135)

gives the quantum of energy of elastic waves, called a phonon. The field of elastic waves may be treated as a gas of phonons

(or a gas of quanta of normal modes of the lattice), having energy given by Eq. (8.135) and momentum pph given by

pph ¼
ħo qð Þ

v
¼ h

l
¼ ħq (8.136)

where q¼ 2p/l is the phonon wave vector restricted to the 1BZ. Here v is the velocity and l is the wavelength of the elastic
waves. The phonon density nph is defined as the number of phonons excited per unit volume of the crystal and is equal to the

lattice energy per unit volume Elattice divided by the energy of a phonon, that is,

nph ¼
Elattice

ħo qð Þ (8.137)

In the harmonic approximation, the atomic vibrations are strictly noninteracting harmonic elastic waves, and therefore,

travel through the lattice without scattering and without meeting any resistance. So, in the harmonic approximation,

phonons make up an ideal phonon gas. Because the waves do not meet any resistance, considerable heat flux flows, even

for an infinitesimally small temperature difference, yielding an infinitely large thermal conductivity for a solid.

The behavior of nph can be studied in the limiting cases. In the Debye approximation at low temperatures, the lattice

energy is given by (see Eq. 8.131)

Elattice ¼
ET

V
∝T4 (8.138)

and the phonon energy ħo(q)�kBT�T. Hence from Eq. (8.137)

nph∝T3 (8.139)

On the other hand, in the high-temperature limit, the Debye approximation gives (see Eq. 8.126)

Elattice ¼
ET

V
∝T (8.140)

But at high temperatures the phonon energy attains the maximum value of ħoD�kByD and is independent of temperature.

Therefore, in the high-temperature limit, from Eq. (8.137), one gets

nph∝T (8.141)

8.8 INTERACTING PHONON GAS

The actual interaction potential in a crystalline solid is not harmonic in nature but contains anharmonic terms [see

Eq. (6.24)]. The anharmonic part of the interaction potential causes the normal modes of vibration to interact with each

other. In the interaction process, the normal modes exchange energy and may change the direction of propagation. In other

words, it can be said that the scattering of normal modes of vibration takes place in the presence of an anharmonic inter-

action potential, yielding anharmonic modes of vibration.

The process of mutual interaction of anharmonic modes of vibration can be conveniently described in terms of phonons.

The anharmonic part of the potential introduces an interaction between the phonons, usually called the phonon-phonon

interaction. Phonon-phonon scattering may result in the splitting of a phonon into two or more phonons or the formation

of a phonon from two or more phonons. As usual, the probability of scattering may be described in terms of the effective

phonon scattering cross section sph. If a phonon is represented by a sphere of radius rph, then

sph ¼ pr2ph (8.142)

Phonon-phonon scattering can take place only if two phonons approach within a distance (equal to the diameter of a

phonon) at which their effective cross sections begin to overlap. As phonon-phonon scattering is due to the anharmonic

potential whose strength is given by the coefficient gF (considering only the lowest term), therefore, it is reasonable to

assume that

sph �∝g2F (8.143)

168 Solid State Physics



Knowing sph, one can calculate the phonon’s mean free path lph, which is the average distance traveled by a phonon

between two consecutive scattering events. Calculations show that

lph ¼
1

nphsph
∝

1

nphg
2
F

(8.144)

8.9 THERMAL EXPANSION OF SOLIDS

In the harmonic approximation the interaction potential is parabolic in nature, which is symmetric about its axis, that is,

about the line QS at a distance R0 from atom 1 (see Fig. 6.5). Therefore, the displacements u1 and u2 are equal, yielding the

mean position of atom 2 as R0. Assuming atom 1 to be fixed at its position, the increase in temperature excites atom 2 to the

higher energy state, thereby increasing its amplitude of vibration. But the vibration remains symmetric, yielding the same

mean position O for atom 2. Hence the harmonic interaction potential is unable to explain thermal expansion in solids. The

anharmonic potential from Eq. (6.24) is written as

V uð Þ¼ V R0ð Þ+ 1

2
aFu

2�1

3
gFu

3�1

4
dFu

4 +⋯ (8.145)

The first term in the above equation is constant. If the reference level of the potential is taken as V(R0) and only the first

anharmonic term is retained in Eq. (8.145), then one can write

V uð Þ¼ 1

2
aF u

2�1

3
gF u

3 (8.146)

When atom 2 is displaced to the positive u values (toward the right of O) or to increasing values of r, the second term in

Eq. (8.146) is subtracted from the first term, thereby decreasing the slope of part QR of the interaction potential curve (see

Fig. 8.8). On the other hand, for negative u values (toward the left of O) or for decreasing values of r, the second term in

Eq. (8.146) is positive and is added to the first term, thereby increasing the slope of part PQ of the interaction potential

curve. Thus, anharmonicity in the potential makes the interaction potential asymmetric about the line QS, as shown in

Fig. 8.8. Because of the asymmetric nature of the potential, the amplitudes of vibration of atom 2 toward left and right

are different; the amplitude in the former direction being less than that in the latter direction. As a result, the mean position

of atom 2 no longer coincides with the previous equilibrium position O but shifts by a distance u toward the right to the

position O1. Let E be the energy of atom 2 at temperature T. Then, thermal vibrations of atom 2 increase the distance

between the two atoms 1 and 2 by u on average and this causes thermal expansion of the solid. The above explanation

shows that the cause of thermal expansion is the anharmonic nature of atomic vibrations in a solid. Heating to higher tem-

perature T0 increases the energy of atom 2 further to E0. With the increase in energy, the mean position of atom 2 shifts more

to the right to O1
0, thereby further increasing the mean distance between the atoms (Fig 8.8). The above explanation can be

extended to a solid in which the equilibrium distance between all the adjoining atoms increases with an increase in the

temperature. Hence thermal expansion increases with an increase in the temperature of a solid.

Let us estimate the coefficient of linear thermal expansion of a solid. The force acting on an atom from Eq. (8.146)

becomes

F¼�aF u + gF u
2 (8.147)

The average value of the force F caused by the displacement of atom 2 from its equilibrium position is

F¼�aF u + gF u
2 (8.148)

In the equilibrium position of the particle, the average force vanishes to give

u¼ gF
aF

u2 (8.149)

The average value of the potential from Eq. (8.146) is

V uð Þ¼ 1

2
aF u

2 (8.150)

In addition to the potential energy, an atom also possesses finite kinetic energy. It is well known that the average kinetic

energy of a vibrating atom is equal to its average potential energy. Therefore, the total average energy E of atom 2 becomes
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E¼ 2V uð Þ¼ aF u
2 (8.151)

From Eqs. (8.149), (8.151), the average displacement u in terms of average total energy becomes

u¼ gF
a2F

E (8.152)

An alternate method for the calculation of average displacement is described in Appendix G. The coefficient of linear

thermal expansion GTH is defined as the increase in length per unit original length per degree rise in temperature. In

the present case of two atoms it can be written as

GTH ¼ 1

R0

du

dT
(8.153)

Substituting u from Eq. (8.152) into Eq. (8.153), we get

GTH ¼KPCV (8.154)

where

KP ¼
gF

a2FR0

(8.155)

CV ¼ dE

dT
(8.156)

Fig. 8.9 shows the temperature dependence of both GTH and CV. It is evident that both are interrelated (proportional to each

other). In the high-temperature limit, the average energy of an atom E¼ kBT and therefore CV¼kB, which is temperature

independent. Hence in the high-temperature limit,

FIG. 8.8 Interatomic potential V(r) as a

function of r between two atoms 1 and 2. Here

u1 and u2 represent the displacements of atom 2,

at finite temperature T, to the left and right of

the mean position R0 and is asymmetrical about

R0. The new mean position of atom 2 becomes

R0 + u where u is the average shift in the mean

position.
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GTH ¼ gFkB
a2FR0

(8.157)

Substituting the values of gF, kB, aF, and R0 for various solids, GTH is found to be on the order of 10�4�10�5, which is in

agreement with experiment. In the low-temperature limit, GTH behaves in a way similar to that of CV, that is, GTH∝ T3.

In the case of metals, Gruneisen proposed a formula for GTH, which is given by

GTH ¼ gGKM

3V0

CV (8.158)

where KM is the metal compressibility, V0 is the atomic volume, and gG is the Gruneisen constant whose value is equal to

1.5–2.5 depending on the metal. It is noteworthy that both Eqs. (8.154), (8.158) are similar as for as the temperature depen-

dence is concerned.

8.10 THERMAL CONDUCTIVITY OF SOLIDS

Consider a solid with length Lx along the x-direction and rectangular opposite faces having area A perpendicular to the

length (see Fig. 8.10). Let T1 and T2 (T1>T2) be the temperatures on the opposite faces. The gradient of temperature along

the length of the solid dT/dx is

dT

dx
¼T1�T2

Lx

(8.159)

Let E be the heat energy, which flows from the face PQRS to the face UVWY in time t. The flux of heat energy Q (heat

energy transmitted per unit area per unit time) is given by

FIG. 8.9 Temperature dependence of the specific heat CV

and the coefficient of linear expansion GTH. (Modified from

Epifanov, G. I. (1979). Solid state physics (p. 126). Moscow:

Mir Publishers.)

FIG. 8.10 A solid with length Lx along the x-

direction. The opposite faces PQRS and

UVWY are rectangular in shape, each having

area of cross section A and at temperatures

T1 and T2 with T1>T2.
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Q¼ E

At
(8.160)

The flow of heat flux is directly proportional to the temperature gradient along the length of the solid, that is,

Q∝
dT

dx

This gives

Q¼�sT

dT

dx
(8.161)

The negative sign shows that the temperature decreases in the direction of increasing x (negative temperature gradient).

Here sT is a constant of proportionality and is called the thermal (heat) conductivity of the solid. The unit of thermal con-

ductivity is J/s cmK or W/cmK. The reciprocal of sT gives thermal resistivity rT. We explain the thermal conductivity in

what follows.

If the atomic vibrations are harmonic in nature, then the corresponding elastic waves propagate through the solid

without experiencing any resistance. In such a situation, if a temperature difference is set up across a crystalline solid,

the atoms at the hot end will start vibrating with larger amplitude and transfer their energy to the neighboring atoms.

As a result, a heat wave will travel along the length of the solid with the velocity of sound. In the absence of any resistance,

a considerable amount of heat flux will flow through the solid even at an infinitesimally small temperature difference.

Hence, in the harmonic approximation, the thermal conductivity of the solid will be infinitely large. But the real potential

in a solid is anharmonic in nature, which produces anharmonic modes of vibration. These modes cause phonon-phonon

interactions and offer finite resistance to the flow of the heat wave along the solid. Hence anharmonic waves are responsible

for the finite thermal conductivity in a solid.

8.10.1 Thermal Conductivity for an Ideal Gas of Atoms

The expression for thermal conductivity can be derived assuming the solid to consist of free atoms forming an ideal gas of

atoms. Let na be the density of free atoms per unit volume in a rectangular-shaped rod of a solid along the x-direction (see

Fig. 8.11). Further, assume that the temperature gradient is produced along the length of the rod. The flow of heat from the

end at higher temperature to the other at lower temperature is due to the motion of atoms along the x-direction. The atoms

move with equal probability in both the positive and negative x-directions, so on average half of the atoms, that is, (1/2)na
atoms, move in the positive x-direction with average velocity hvxi, while the other half move along the negative x-direction

with the same average velocity. Hence the flux of atoms in both the positive and negative x-directions is (1/2)na hvxi in
magnitude. Let cV be the specific heat of an atom at constant volume. Then in moving from region x with temperature T

+DT to region x+Dx with temperature T (see Fig. 8.11), the energy given up by an atom is cVDT. The temperature dif-

ference between the two ends of the mean free path la¼hvxi τa of an atom is given by

DT¼�dT

dx
vxh i τa (8.162)

where τa is the time between two consecutive scatterings of atoms, usually called the relaxation time. The net flux of energy

from atoms moving in both the positive and negative directions is given by

FIG. 8.11 A rectangular-shaped rod of a solid along the x-direction with finite temperature gradient along its length. The small circles represent the

atoms in the solid.
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Q¼ na vxh icVDT
¼�na vxh i2 cV τa

dT

dx

(8.163)

If the velocity is constant and equal in all three Cartesian directions, then

v2 ¼ v2
	 
¼ 3 vxh i2 (8.164)

Therefore,

Q¼�1

3
na v2

	 

cV τa

dT

dx
¼�1

3
nav

2 cV τa
dT

dx
(8.165)

If CV is the specific heat per unit volume, then CV¼ nacV. Further, the mean free path of an atom is la¼v τa, therefore, one
can straightway write

Q¼�1

3
CVvla

dT

dx
(8.166)

Comparing Eqs. (8.161), (8.166) we get

sT ¼
1

3
CVvla (8.167)

8.10.2 Thermal Conductivity in Insulators and Dielectrics

In insulators atoms vibrate about their equilibrium positions at finite temperature. Therefore, the atoms can be considered to

be anharmonic oscillators, which give rise to an interacting phonon gas. Eq. (8.167) for an ideal gas of atoms can also be

applied to a phonon gas by replacing la by the mean free path of phonons lph, v by the velocity of sound, and CV by the

specific heat of the solid. Therefore, the lattice thermal conductivity is given by

slatt ¼
1

3
CVv lph (8.168)

Substituting the value of lph from Eq. (8.144) into the above equation, we find

slatt∝
CVv

nphg
2
F

(8.169)

In the above expression, gF and v determine the magnitude of the thermal conductivity, while CV and nph determine its

temperature dependence. The parameters v and gF depend strongly on the rigidity of the bonds between the atoms in a

solid: bonds of higher rigidity yield higher values of v and lower values of gF because the strengthening of bonds reduces

both anharmonicity and the thermal vibration amplitude of atoms. Therefore, slatt increases with an increase in the rigidity
of the bonds. This conclusion is supported by the experimental results. Further, a detailed analysis shows that slatt also
depends strongly on the mass M of the atoms: slatt is larger for smaller values of M. Experimentally it is found that for

light elements, such as B, C, and Si, slatt is on the order of a few tens or hundreds of W/cmK. For elements in the middle

of the periodic table, slatt is on the order of several W/cmK, but for heavy elements, slatt is on the order of several tenths of
W/cmK. This trend may be due to the fact that with an increase in M, the value of the rigidity of the bonds decreases as the

bond length increases.

The temperature dependence of slatt depends on CV and nph (or lph). In the high-temperature limit, CV is independent of

temperature (Dulong and Petit’s law) but nph is proportional to T (see Eq. 8.141). Therefore, Eq. (8.169) gives

slatt �∝
1

T
(8.170)

which is consistent with the experimental findings. For T values below the Debye temperature yD, nph decreases strongly
with a decrease in T, leading to a sharp increase in the mean free path lph. At sufficiently low temperatures, lph becomes

comparable with the dimensions of the solid, therefore, any further decrease in temperature does not lead to any increase in

lph. Hence at very low T values, the temperature variation of slatt is determined by the behavior of CV only. It has already

been seen that, at very low temperatures, CV ∝T3 (Debye law), therefore,
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slatt �∝T3 (8.171)

The behavior of slatt predicted by Eq. (8.171) is also in qualitative agreement with the experimental results. From the dis-

cussion above it is evident that, with an increase in temperature, slatt increases at very low temperatures (Eq. 8.171), while at

high temperatures, slatt decreases (Eq. 8.170). Hence at some temperature in between, slatt should exhibit a peak

(maximum). Fig. 8.12 shows the experimental results for the temperature dependence of the thermal conductivity sT
for synthetic sapphire.

8.10.3 Thermal Conductivity of Metals

In metals there are ions at the lattice positions and electrons move freely in the crystal. Therefore, heat is conducted by both

the vibrating ions (phonons) and the free electrons and the total thermal conductivity sT is the sum of the two contributions,

that is,

sT ¼ slatt + sel (8.172)

where sel is the electronic contribution to the thermal conductivity. The main contribution to sel comes from the electrons at

the Fermi surface having velocity vF. sel can be estimated from Eq. (8.167) where CV is replaced by the electronic specific

heat Ce, v is replaced by vF, and la is replaced by the mean free path of electrons le. Therefore, sel can be written as

sel ¼
1

3
CevF le (8.173)

The mean free path of electrons depends on the following scattering processes:

1. le depends on the scattering of electrons from the ions (e-p scattering) and is inversely proportional to the phonon

density nph, that is,

le �∝ � 1

nph
(8.174)

FIG. 8.12 Temperature dependence of thermal conductivity sT of synthetic sapphire (Al2O3). (Modified from Berman, R. (1958). Z. f. Phys. Chem.

(Neue Folge) 16, 10.)
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2. le depends on the scattering of electrons from the impurities present in the crystal and is inversely proportional to the

impurity concentration ni, that is,

le �∝
1

ni
(8.175)

The electronic specific heat Ce is given by (see Eq. 9.107)

Ce ¼
1

2
p2NekB

kBT

EF

(8.176)

Ne is the total number of free electrons in the metal. Substituting Eq. (8.176) into Eq. (8.173), we obtain

sel ¼
1

3
p2

Nek
2
B

mevF
leT (8.177)

Here me is the mass of a free electron. In Eq. (8.177), only le depends on the temperature. It is interesting to study the

behavior of sel in the limiting cases.

At very low temperatures, nph in a metal becomes very small, therefore, the electrons are scattered mainly from the

impurities present in the metal. As the electron scattering from the impurities is temperature independent, so is le. Hence,
at very low temperatures, Eq. (8.177) yields

sel �∝ �T (8.178)

But at very low temperatures, slatt is proportional to T3 (see Eq. 8.171). Hence, at very low temperatures, the main con-

tribution to sT comes from sel and is proportional to T, an experimental fact. At low temperatures, nph and hence le is finite
and therefore contributes significantly toward sel. Substituting the value of le from Eq. (8.174) into Eq. (8.177), we get

sel �∝ � p
2

3

Nek
2
B

mevF

T

nph
(8.179)

At low temperatures, nph is given by Eq. (8.139), which when substituted in Eq. (8.179) gives

sel �∝T�2 (8.180)

Hence in the low temperature range, sel in metals is inversely proportional to the square of the absolute temperature. In the

high-temperature limit, nph is proportional to T (Eq. 8.141), which when substituted in Eq. (8.179) yields

sel ¼Constant (8.181)

Hence sel becomes constant in pure metals at very high temperatures.

It is interesting to compare the lattice and electronic contributions to the thermal conductivity of metals. From

Eqs. (8.168), (8.173) one can write

sel
slatt

¼ CevF le
CVv lph

(8.182)

In pure metals, Ce/CV�0.01, vF¼108cm/s, v¼ 5�105cm/s, le�10�6cm, and lph�10�7cm. Substituting these values in

Eq. (8.182) we get

sel
slatt

� 0:2�102 (8.183)

This shows that sT in metals is determined mainly by sel, with slatt being negligible. The magnitude of sel can also be found
by substituting the values of various quantities in Eq. (8.173). Fig. 8.13 shows the experimental results for the temperature

variation of the thermal conductivity of Cu metal. It is found that the behavior of the experimental results is the same as that

of sel in the whole of the range. Table 8.1 gives the values of sT for some particular metals at room temperature.

In the case of alloys, the situation may be entirely different as the impurities form strong scattering centers for the con-

duction electrons. Therefore, the mean free path le is mainly determined by the impurity scattering processes. In metallic

alloys, le and lph may come out to be of the same order of magnitude, making both the lattice and electronic contributions to

the thermal conductivity equally important.
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FIG. 8.13 Experimental values of thermal conductivity

sT as a function of temperature T for Cu metal. sT
becomes constant at high temperatures. (Modified from
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Moscow: Mir Publishers.)

TABLE 8.1 Experimental Values of Thermal Conductivity sT of Some Selected Metals

Metal sT (W/cmK)

Cu 3.84

Ag 4.03

Au 2.96

Al 2.10

Ni 0.60
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Ametallic solid consists of a periodic array of atoms and each atom consists of a nucleus with electrons revolving around it.

The electrons in the outermost orbit of an atom are called valence electrons and are loosely bound to the nucleus. Each atom

(and hence the electrons in it) experiences the crystal potential V(r), as a result of which the valence electrons get detached

from the atom and are able to move more or less freely anywhere in the crystal. These electrons determine the conduction

properties of metallic solids and thus the name conduction electrons. Therefore, a metal can be represented by a sea of

conduction electrons in which the ions are embedded at the lattice positions (Fig. 4.10). In simple metals the conduction

electrons are s- or p-electrons, which are nearly free, yielding a nearly uniform electron charge density. In a more simplified

representation of a simple metal, the discrete positive ionic charge is assumed to be smeared out to form a uniform positive

background. In this approximation a simple metal consists of a nearly uniform conduction electron gas moving in a uniform

positive background. It is usually called the jellium model of metal.

9.1 FREE-ELECTRON APPROXIMATION

In Chapter 3, it has been discussed that the electronic properties of crystalline solids are studied in the one-electron approx-

imation in which an electron experiences a self-consistent potential. The self-consistent potential contains both the

repulsive part due to the electron-electron and the ion-ion interactions and the attractive part due to the electron-ion inter-

actions. In simple metals it is usually assumed that the average repulsive part of the potential cancels exactly the attractive

part, giving rise to a net zero potential. Therefore, the conduction electrons experience zero potential and are free to move

anywhere in the metal. This is called the free-electron approximation. In this approximation the conduction electrons in

a metal form a free-electron gas. We offer no detailed justification for this approximation except to say that it yields

reasonably good results for some simple metals, such as Na, K, and Al. We want to mention here that in the jellium model

the negative charge density due to the electrons is equal and opposite to the positive charge density of the background, thus

yielding net zero charge density. Therefore, the net potential is zero due the vanishing charge density in the jellium model.

9.2 THREE-DIMENSIONAL FREE-ELECTRON GAS

Consider a three-dimensional free-electron gas, having Ne electrons, confined to a cube with sides of length L. The

Schrodinger wave equation for a free electron is given by

H
_

e ck rð Þj i ¼Ek ck rð Þj i (9.1)
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whereH
_

e is the Hamiltonian of an electron. jck(r)i and Ek are the wave function and energy of a state with wave vector k. In

the free-electron approximation, the potential energy is zero so the HamiltonianH
_

e contains only the kinetic energy p
2/2me

where me is the mass of an electron. Therefore, the Schrodinger wave equation for a free electron becomes

� ħ2

2me

r2 ck rð Þj i¼Ek ck rð Þj i (9.2)

Here r2 is the three-dimensional Laplacian operator and k and r are given by

k¼ î1kx + î2ky + î3kz (9.3)

r¼ î1x + î2y + î3 z (9.4)

The probability of finding a free electron at any point in the system is the same, therefore, the wave function can be written

in the exponential form as

ck rð Þj i¼Ceik � r (9.5)

where C is a constant and its value can be obtained by normalizing the wave function to unity. The normalization condition

for the wave function is defined as

ck rð Þh jck rð Þi¼ 1 (9.6)

Substituting Eq. (9.5) into Eq. (9.6), one gets

C¼ 1

V

� �1=2

(9.7)

where V¼L3 is the volume of the free-electron gas. Hence the normalized wave function for the three-dimensional free-

electron gas is given by

ck rð Þj i¼ 1

V

� �1=2

eik � r ¼ kj i (9.8)

Here jki or jck(r)i represents a normalized plane wave and these form a complete orthonormal set of wave

functions. For a finite system of the free-electron gas the wave function satisfies the cyclic boundary condition according

to which

ck rð Þj i¼ ck r+Lð Þj i (9.9)

Substituting Eq. (9.8) into Eq. (9.9), one can write

eik �L ¼ 1 (9.10)

which is equivalent to

eikx L ¼ eiky L ¼ eikz L ¼ 1 (9.11)

The above equation is satisfied for the following values of kx, ky, and kz

kx ¼
2pnx
L

, ky ¼
2pny
L

, kz ¼
2pnz
L

(9.12)

where nx¼ny¼nz¼0,�1,�2,…. Substituting Eq. (9.8) into Eq. (9.2) and operating on the equation by hk j from the left

side, the energy of the k-state is given by

Ek ¼ kh j� ħ2

2me

r2 kj i ¼ ħ2k2

2me

(9.13)

The above equation gives a parabolic energy band, as shown in Fig. 9.1. The linear momentum of an electron can be

obtained from the wave function as

p ck rð Þj i¼�iħr ck rð Þj i¼ ħk ck rð Þj i (9.14)
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Therefore, the velocity v of an electron with momentum p is given by

v¼ ħk
me

(9.15)

Points in the k-space represented by each set of kx, ky, kz values from Eq. (9.12) represent the allowed states. Ne electrons

can be accommodated in different k-states. As the electrons obey the Pauli exclusion principle, two electrons possessing

opposite spins can be accommodated in each k-state (spin degeneracy) until all the electrons are exhausted (see Fig. 9.2).

The highest filled state is the Fermi state with wave vector kF, called the Fermi wave vector. The energy of the highest filled

state EF is called the Fermi energy and is given by

EF ¼
ħ2k2F
2me

(9.16)

FIG. 9.1 Ek as a function of k¼j k j for a three-dimensional free-electron gas.

FIG. 9.2 Distribution of electrons, represented by dots, in up- and downspin electron states in accordance with the Pauli exclusion principle.
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If the three-dimensional free-electron gas has large dimensions, then the k-points lie very close to each other and become

quasicontinuous. The occupied states lie approximately in a sphere called the Fermi sphere (see Fig. 9.3). The k-states

outside the Fermi sphere are all empty. The radius kF of this sphere is called the Fermi radius or Fermi wave vector.

The velocity of electrons on the surface of the Fermi sphere is called the Fermi velocity and is given by

vF ¼
ħkF
me

(9.17)

From Eq. (9.12) it is evident that there is one k-state in a volume of (2p/L)3 of the k-space. Therefore, the number of states

in the Fermi sphere is given by

2

4p
3
k3F

2p=Lð Þ3 ¼Ne (9.18)

The factor of 2 takes into account the spin degeneracy of a k-state. The above equation yields the Fermi wave vector as

kF ¼ 3p2ne
� �1=3 ¼ 3p2

Z

V0

� �1=3

(9.19)

where ne ¼ Ne/V¼Z/V0 gives the volume density of free electrons. Let ne(k) be the number of electron states with wave

vector less than or equal to k¼j k j. It is given by

ne kð Þ ¼ 2

4p
3
k3

2pð Þ3=V¼ V

3p2
k3 (9.20)

FIG. 9.3 The Fermi sphere in a three-dimensional free-electron gas. The bigger dots represent the filled electron states and lie within the Fermi sphere.

Outside the Fermi sphere all the electron states (represented by smaller dots) are empty.
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The density of electron states per unit energy Ne(Ek) in three dimensions is given by

Ne Ekð Þ ¼ dne kð Þ
dEk

(9.21)

Substituting Eqs. (9.13), (9.20) into Eq. (9.21), we get

Ne Ekð Þ¼ V

2p2
2me

ħ2

� �3=2

E
1=2
k (9.22)

The density of electron states per unit energy per unit volume becomes

ge Ekð Þ¼ 1

2p2
2me

ħ2

� �3=2

E
1=2
k (9.23)

The general expression for the density of electron states ge(Ek) is given in Appendix F. A plot of ge(Ek) as a function of Ek is

shown in Fig. 9.4 for the ground state of the free-electron gas. At absolute zero all the states below EF are filled, while those

above are completely empty. The total energy of the system is given by

ET ¼
ðEF

0

EkNe Ekð ÞdEk

¼ V

5p2
2me

ħ2

� �3=2

E
5=2
F

(9.24)

The above equation can also be written as

ET ¼
3

5
NeEF (9.25)

Hence the average energy of an electron in a three-dimensional free-electron gas is (3/5)EF.

The physical quantities of the free-electron gas can also be expressed in terms of the interelectronic distance re. In the

free-electron gas under consideration, the average volume per electron is

1

ne
¼ V

Ne

¼ 4p
3
r3e (9.26)

FIG. 9.4 The density of electron states per unit volume per unit energy ge(Ek) as a function of energy Ek for a one- (1D), two- (2D), and three-dimensional

(3D) free-electron gas at absolute zero.
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From the above equation the interelectronic distance re is given by

re ¼
3

4pne

� �1=3

(9.27)

The Fermi wave vector kF is obtained by substituting the value of ne from Eq. (9.26) into Eq. (9.19) to write

kF ¼
9p
4

� �1=3
1

rs a0
(9.28)

where

re ¼ rs a0 (9.29)

Here a0¼ħ2/mee
2 ¼ 0.529 Å is the Bohr radius. The Fermi energy, in terms of rs, is obtained from Eqs. (9.16), (9.28) as

EF ¼
mee

4

2ħ2
9p
4

� �2=3
1

r2s

¼ 9p
4

� �2=3
1

r2s
¼ 3:68

r2s
Ryd

(9.30)

which is the Fermi energy for the free-electron gas at absolute zero in the ground state. From Eqs. (9.25), (9.30) the average

energy per electron becomes

ET

Ne

¼ 2:21

r2s
Ryd (9.31)

The value of rs is different for different metals (in the range of 1.8–5.8 Å approximately) and is maximum in the case of

monovalent metals. The Fermi energy is basically the kinetic energy (KE) of the electrons, so from Eq. (9.30) we can write

KE ∝
1

r2s
(9.32)

The potential energy (PE) of an electron is given by

V rð Þ¼ e2

re

From the above equation one can write that

PE∝
1

rs
(9.33)

Therefore, the ratio of PE and KE is given by

PE

KE
¼ rs (9.34)

Hence rs is a measure of the ratio of the potential and kinetic energies of an electron. In other words, rs is a measure of the

interaction between the electrons: the smaller the value of rs, the weaker the electron-electron interaction. This is equivalent

to saying that the kinetic energy of an electron is large compared with its potential energy for rs < 1.

9.3 TWO-DIMENSIONAL FREE-ELECTRON GAS

Consider a two-dimensional free-electron gas containing Ne electrons, in the form of a square of side L. Here the Schro-

dinger wave equation is the same as Eq. (9.2) but with a two-dimensional Laplacian operator r2. In the two-dimensional

space the position vectors in the direct and reciprocal space are defined as

r¼ î1x + î2y (9.35)

k¼ î1kx + î2ky (9.36)
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The normalized wave function for the two-dimensional free-electron gas is given as

ck rð Þj i¼ 1ffiffiffiffiffiffi
A0

p eik � r ¼ kj i (9.37)

where A0¼L2 is the area of the free-electron gas. The cyclic boundary condition defined by Eq. (9.9) gives discrete values

of kx and ky as

kx ¼
2pnx
L

, ky ¼
2pny
L

(9.38)

where nx¼ny¼0,�1,�2, … The points in the k-space represented by each set of kx and ky give the allowed states. In a

two-dimensional free-electron gas the Fermi surface is circular, having radius kF and area pkF
2. All the k-states within the

Fermi circle are occupied but are empty outside. From Eq. (9.38) it is evident that there is one electron state in an area of

(2p/L)2 in the k-space. The total number of occupied states in the Fermi circle is given by

2
pk2F

2p=Lð Þ2 ¼Ne (9.39)

which gives the value of kF as

kF ¼ 2pneð Þ1=2 (9.40)

where ne¼Ne/A0 gives the number of electrons per unit area, that is, the surface density of the electrons. The Fermi energy

is obtained by substituting Eq. (9.40) into Eq. (9.16) to give

EF ¼
pħ2

me

ne (9.41)

The Fermi velocity vF can be obtained by substituting kF from Eq. (9.40) into Eq. (9.17) giving

vF ¼
ħ
me

2pneð Þ1=2 (9.42)

Let ne(k) be the number of electron states with a wave vector less than or equal to k, then

ne kð Þ¼ pk2
L

2p

� �2

(9.43)

One can calculate Ne(Ek) and ge(Ek) in exactly the same manner as for the three-dimensional electron gas. They are

given by

Ne Ekð Þ¼meA0

pħ2
(9.44)

ge Ekð Þ¼ me

pħ2
(9.45)

It is evident that Ne(Ek) and ge(Ek) for the two-dimensional gas are independent of energy. Fig. 9.4 shows ge(Ek) as

a function of energy for a two-dimensional free-electron gas. The total energy of the system can be written as

ET ¼
ðEF

0

Ne Ekð ÞEkdEk

¼ 1

2
NeEF

(9.46)

Hence the average energy of an electron in a two-dimensional free-electron gas is half of the Fermi energy of the system.
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Problem 9.1

In a one-dimensional free-electron gas with Ne electrons, and having length L, the Schrodinger wave equation is defined as

� ħ2

2me

d2

dx2
ck xð Þj i ¼ Ek ck xð Þj i (9.47)

where the normalized wave function jck(x)i is given by

ck xð Þj i¼ 1ffiffiffi
L

p eikx ¼ kj i (9.48)

Prove that the Fermi wavevector, Fermi energy, and the density of electron states are given by

kF ¼ p
Ne

L
¼ pne (9.49)

EF ¼
ħ2k2F
2me

¼ p2ħ2n2e
2me

(9.50)

Ne Ekð Þ¼ L

2p
2me

ħ2

� �1=2

E�1=2
k (9.51)

ge Ekð Þ¼ 1

2p
2me

ħ2

� �1=2

E
�1=2
k (9.52)

Further prove that the total energy of the free-electron gas is given by

ET ¼
1

3
NeEF (9.53)

The function ge(Ek) as a function of energy for a one-dimensional free-electron gas is shown in Fig. 9.4.

9.4 COHESIVE ENERGY AND INTERATOMIC SPACING OF IDEAL METAL

In a simple metal there are two contributions to the Coulomb energy: the repulsive part of the energy is given by the kinetic

energy of the free electron gas and the attractive part is given by the interaction of electrons with the positive ions situated

at the lattice positions.Consider ametalwith valenceZand interatomicdistanceR.Theelectronic charge�Zeonanatomcan

be considered to be distributed uniformly in a sphere of radius R. Therefore, the electronic charge density�ene is given by

� ene ¼ � Ze

4p
3
R3

(9.54)

where ne is the electron density. Let the nucleus be assumed to be a point with positive charge Ze and situated at a distance r

from the center of the sphere of electronic charge (see Fig. 9.5). If we draw a concentric sphere with radius r, then the

electronic charge inside this sphere q is given by

q ¼ �Ze
r

R

� �3

(9.55)

FIG. 9.5 Schematic representation of an atom: electronic charge is uniformly distributed in a sphere of radius R. The nucleus with positive charge Ze,

represented by a dot, is situated at a distance r from the center of the electronic charge distribution.
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So, the net charge inside the sphere of radius r, which also contains positive charge of magnitude Ze, becomes

q rð Þ¼ Ze�Ze
r

R

� �3

(9.56)

The Coulomb potential at a distance r from the center of the sphere becomes

f rð Þ¼ q rð Þ
r

¼Ze

r
1� r

R

� �3
	 


(9.57)

The electronic charge dq(r) in a spherical shell of radius r and thickness dr is given by

dq rð Þ¼ � Ze

4p
3
R3

4pr2dr (9.58)

The contribution to potential energy by this spherical shell is given by

dEC ¼ dq rð Þf rð Þ¼�3Z2e2

R3
r 1� r

R

� �3
	 


dr (9.59)

Hence the Coulomb potential energy per atom becomes

EC ¼
ðR

0

dEC ¼� 9

10

Z2e2

R
(9.60)

Now the average kinetic energy per electron EK in a free electron gas is given by

EK ¼ 3

5
EF ¼

3

5

ħ2k2F
2me

� ¼ 3

5

ħ2

2me

3p2ne
� �2=3

(9.61)

where we have used Eq. (9.19). Substituting the value of ne from Eq. (9.54), one gets

EK ¼ 3

5

ħ2

2me

9p
4
Z

� �2=3
1

R2
(9.62)

Therefore, the kinetic energy per atom, which contains Z electrons, becomes

EK ¼ 3Z

5

ħ2

2me

9p
4
Z

� �2=3
1

R2
(9.63)

The total energy per atom is the sum of the potential and kinetic energies given by Eqs. (9.60), (9.63), that is,

E Rð Þ¼EC +EK

¼� 9

10

Z2e2

R
+
3Z

5

ħ2

2me

9p
4
Z

� �2=3
1

R2

(9.64)

The equilibrium value of interatomic distance R0 is obtained by minimizing the total energy per atom, that is,

dE Rð Þ
dR

����
R¼R0

¼ 0 (9.65)

Substituting Eq. (9.64) into Eq. (9.65), the value of R0 is given by

R0 ¼
2

3

9p
4

� �2=3 ħ2

mee
2
Z�1=3

¼ 1:30Z�1=3A

(9.66)
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The value of energy per atom in the equilibrium state is obtained by substituting R0, from Eq. (9.66) for R, into Eq. (9.64)

to obtain

E R0ð Þ¼� 9

20

Z2e2

R0

¼�0:3Z2 Ryd��5:0Z2eV

(9.67)

We know that the binding energy of the hydrogen atom (Z ¼ 1) is �13.6 eV. Therefore, the above model gives only the

order of energy per atom.

9.5 THE FERMI-DIRAC DISTRIBUTION FUNCTION

The description of the free-electron theory presented so far has been temperature independent, but a number of elec-

tronic properties depend on temperature. The effect of temperature on various electronic properties of solids can be

studied with the help of the Fermi-Dirac distribution function. It has been seen that at absolute zero all of the electron

states are filled up to the Fermi energy EF, which represents the ground state of the system. When the temperature is

increased, the kinetic energy of the electrons increases and the electrons in the vicinity of EF cross the Fermi energy. As

a result, some of the electron states close to but above EF are occupied. In other words, some energy levels above EF are

occupied that were vacant at absolute zero, and some levels below EF become partially vacant that were fully occupied

at absolute zero.

The Fermi-Dirac distribution function f(Ek�m) correctly describes the distribution of electrons at finite temperatures

and is defined as

f Ek�mð Þ¼ 1

e
Ek�m
kBT + 1

(9.68)

Here m(T) is the chemical potential and is chosen in such a way that the total number of electrons Ne is conserved. It is

noteworthy that m(T) is equal to the Fermi energy EF at absolute zero. The Fermi-Dirac distribution function f(Ek�m) gives
the probability of occupation of an electron state with energy Ek in thermal equilibrium. At absolute zero we know that

Ek�m(T), so from Eq. (9.68), f(Ek�m) is unity at absolute zero. But for Ek > m(T), Ek�m(T) is positive and therefore

f(Ek�m) is zero at absolute zero. On the whole, one can say that at absolute zero the probability of occupation of all

the states below EF is one (occupied) and for states above EF is zero (unoccupied). The dashed line in Fig. 9.6A shows

f(Ek�m) as a function of Ek at absolute zero, which changes discontinuously from the value 1 to 0 at EF.

To have an idea about the variation of the Fermi-Dirac distribution function at finite temperature, let us calculate it at

some points of interest. Here we take m ¼ EF (the value at absolute zero). If Ek ¼ EF�kBT, then from Eq. (9.68) we get

f Ek�mð Þ¼ 1

e�1 + 1
¼ 0:73

At Ek ¼ EF, Eq. (9.68) gives

f(Ek�m) ¼ 0.50

At Ek ¼ EF+kBT, one gets

f(Ek�m) ¼ 0.27

The dark line in Fig. 9.6A shows the variation of f(Ek�m) as a function of Ek at a finite T value. It shows that as the

temperature is raised from absolute zero, only a few electrons having energy close to EF (within a range�kBT) are raised to

higher states to give free electrons and all other electrons are tightly bound. At Ek ¼ EF, f(Ek�m) has the value one-half at
all temperatures. Hence the Fermi energy can also be defined as the electron state whose probability of occupation is always

one-half. From Fig. 9.6A it is evident that the slope of the Fermi-Distribution function, at finite temperature, is finite only

around EF (approximately within an energy range of kBT) and is zero at all other values of energy. Fig. 9.6B shows the

derivative of f(Ek�m) as a function of Ek. At finite temperature, it is a peaked function around Ek¼EF whose width

increases with an increase in temperature. But at absolute zero it becomes the Dirac delta function.

If Ek�m >> kBT, then the exponential term in Eq. (9.68) dominates and, hence, the distribution function can be

written as

f Ek�mð Þ¼ e
m�Ekð Þ
kBT (9.69)

This is essentially the Maxwell-Boltzmann distribution.

186 Solid State Physics



9.6 SPECIFIC HEAT OF ELECTRON GAS

The early development of the theory of specific heat of electrons, which was based on classical mechanics, caused great

difficulty. For example, consider a solid with N atoms, each contributing one conduction electron. If the conduction elec-

trons are considered to be free electrons, then the solid has a free electron gas with Ne (¼N) electrons. It has already been

proved in Chapter 8 that each free electron possesses thermal energy of (3/2)kBT, giving rise to a contribution of (3/2)kB to

the specific heat. Hence the total electronic contribution to the specific heat at constant volume Ce becomes (3/2)NekB. But

at room temperature, the observed value of Ce is not more than 0.01 times the value predicted above. This happened because

all the free electrons contributed only to the electrical conduction and not to the specific heat.

The fact that electrons obey the Fermi-Dirac distribution solved this problem. In the previous section, it was found that,

as the temperature is increased from absolute zero to T, not every electron gains thermal energy (�kBT) as expected clas-

sically. Rather, only those electrons that lie in states around EF, within an energy range of kBT, gain energy, and, hence,

participate in the thermal properties. Therefore, only a fraction on the order of T/TF of the total number of electrons Ne can

be excited thermally at temperature T because only these electrons lie within an energy range on the order of kBT. The Ne(T/

TF) electrons, each having thermal energy kBT, give a total electronic energy E as

E¼Ne

T

TF

� �
kBT (9.70)

FIG. 9.6 (A) The Fermi distribution function f(Ek�m) as a function of

energy Ek. The dashed line represents f(Ek�m) at absolute zero, while

the dark line represents f(Ek�m) at a finite temperature T. (B) The energy

derivative of the Fermi-Dirac distribution function, that is, �∂f/∂Ek as a

function of energy Ek at absolute zero (dashed line) and at finite temperature

T (dark line).
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Therefore, the electronic contribution to the specific heat becomes

Ce ¼
∂E

∂T

� �
V

�NekB
T

TF

(9.71)

which is very small compared with the classical value, but comparable with the experimental results.

9.6.1 One-Dimensional Free-Electron Gas

At finite temperature some of the electrons are excited to states above EF but the total number of electrons remains the same.

Therefore, the total number of electrons at finite temperature is given by

Ne ¼
ð∞

0

Ne Ekð Þf Ek�mð ÞdEk (9.72)

Substituting the value of Ne(Ek) from Eq. (9.51) into Eq. (9.72), we get

Ne ¼
L

2p
2me

ħ2

� �1=2 ð∞

0

E
�1=2
k f Ek�mð ÞdEk (9.73)

Making the substitution

x¼ Ek

kBT
and y¼ m

kBT
(9.74)

in the above integral, one can write

Ne ¼
L

2p
2me

ħ2

� �1=2 ffiffiffiffiffiffiffiffi
kBT

p ð∞

0

f x�yð Þ 1ffiffiffi
x

p dx (9.75)

The integral in Eq. (9.75) is the Fermi distribution function integral (see Appendix I) with

h xð Þ¼ 1ffiffiffi
x

p (9.76)

Therefore, H(x), from Eqs. (9.76), (I.5) of Appendix I, is given by

H xð Þ¼
ðx

0

1ffiffiffi
x

p dx¼ 2x1=2 (9.77)

Using Eq. (I.17) of Appendix I, the integral in Eq. (9.75) can be solved, giving

Ne ¼
L

2p
2me

ħ2

� �1=2 ffiffiffiffiffiffiffiffi
kBT

p
1 +

p2

6

∂
2

∂y2
+⋯

	 

H yð Þ (9.78)

Substituting H(y) from Eq. (9.77) into Eq. (9.78) and simplifying, we obtain

Ne ¼
L

p
2me

ħ2

� �1=2

m1=2 1�p2

24

kBT

m

� �2

+⋯

" #
(9.79)

At absolute zero, Ne can be obtained from Eq. (9.49) by substituting the value of kF from Eq. (9.50) and is given by

Ne ¼
L

p
2me

ħ2

� �1=2

E
1=2
F (9.80)
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Equating Eqs. (9.79), (9.80) one obtains the chemical potential m(T) as

EF Tð Þ¼ m Tð Þ¼EF 1 +
p2

12

kBT

EF

� �2

+⋯

" #
(9.81)

In writing the above expression, we have substituted EF (at absolute zero) in place of m(T) in the denominator of the second

term in the square brackets on the right side of Eq. (9.81): an approximate expression. It shows that the Fermi energy

increases with an increase in temperature. The total energy of the free-electron gas at temperature T is given by

ET ¼
ð∞

0

EkNe Ekð Þf Ek�mð ÞdEk (9.82)

Substituting the value of Ne(Ek) from Eq. (9.51) and making the substitution given by Eq. (9.74), one can write

ET ¼
L

2p
2me

ħ2

� �1=2

kBTð Þ3=2
ð∞

0

f x�yð Þx1=2dx (9.83)

Here

H xð Þ¼
ðx

0

x1=2dx¼ 2

3
x3=2 (9.84)

The total energy can be calculated by solving the Fermi distribution function integral in Eq. (9.83) and is given by

ET ¼
L

2p
2me

ħ2

� �1=2

kBTð Þ3=2 1 +
p2

6

∂
2

∂y2
+⋯

	 

2

3
y3=2

� �
(9.85)

Solving the above equation, one gets, at low temperatures,

ET ¼
Ne

2E
1=2
F

2

3
m3=2 +

p2

12

kBTð Þ2
m1=2

" #
(9.86)

In writing the above expression, the terms with the lowest powers of T are retained. Substituting the value of m(T)¼
EF(T) from Eq.(9.81) into Eq. (9.86), we finally obtain

ET ¼
1

3
NeEF 1 +

p2

4

kBT

EF

� �2
" #

(9.87)

retaining the terms up to T2. The electronic specific heat at constant volume Ce can be calculated from Eq. (9.87) and is

given by

Ce ¼
∂ET

∂T

� �
V

¼ p2

6
NekB

T

TF

� �
(9.88)

This shows that Ce depends linearly on the temperature.

9.6.2 Two-Dimensional Free-Electron Gas

Substituting Ne(Ek) for a two-dimensional electron gas from Eq. (9.44) into Eq. (9.72) and making the substitution given by

Eq. (9.74), we obtain

Ne ¼
meA0

pħ2
kBT

ð∞

0

f x�yð Þdx (9.89)
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Here h(x) ¼ 1 in the above integral, so

H xð Þ¼
ðx

0

dx¼ x (9.90)

Ne can be evaluated by solving the Fermi distribution function integral in Eq. (9.89) and is given as

Ne ¼
meA0

pħ2
kBT 1 +

p2

6

∂
2

∂y2
+⋯

	 

y

¼meA0

pħ2
m Tð Þ¼meA0

pħ2
EF Tð Þ

(9.91)

At T ¼ 0 K, Ne can also be obtained by integrating Ne(Ek), given by Eq. (9.44), from zero to the Fermi energy, yielding

Ne ¼
meA0

pħ2
EF (9.92)

The total number of electrons in the free-electron gas is constant at all temperatures, therefore, equating Eqs. (9.91), (9.92),

we obtain

EF Tð Þ¼EF (9.93)

This shows that the Fermi energy in a two-dimensional free-electron gas is independent of temperature. The

total energy of the two-dimensional free-electron gas is obtained by substituting Ne(Ek) from Eq. (9.44) into Eq. (9.82)

to get

ET ¼
meA0

pħ2
kBTð Þ2 �

ð∞

0

xf x�yð Þdx (9.94)

Here

H xð Þ¼ x2

2
(9.95)

The Fermi distribution integral in Eq. (9.94) can be solved easily to get

ET ¼ 1

2
NeEF 1 +

p2

3

T

TF

� �2
" #

(9.96)

The electronic specific heat at constant volume becomes

Ce ¼
∂ET

∂T

� �
V

¼ p2

3
NekB

T

TF

� �
(9.97)

From Eqs. (9.88), (9.97) it is evident that Ce in a two-dimensional free-electron gas is double the value in a one-dimensional

free-electron gas.

9.6.3 Three-Dimensional Free-Electron Gas

The total number of electrons in a three-dimensional free-electron gas at finite temperature is obtained by substituting the

value of Ne(Ek) from Eq. (9.22) into Eq. (9.72), which gives

Ne ¼
V

2p2
2me

ħ2

� �3=2

�
ð∞

0

E
1=2
k f Ek�mð ÞdEk (9.98)
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With the help of Eq. (9.74), the above equation can be written as

Ne ¼
V

2p2
2me

ħ2

� �3=2

kBTð Þ3=2 �
ð∞

0

x1=2 f x�yð Þdx (9.99)

The Fermi distribution function integral above can be solved easily to get

Ne ¼
V

3p2
2me

ħ2

� �3=2

� m3=2 1 +
p2

8

kBT

m

� �2

+⋯

" #
(9.100)

At absolute zero the total number of electrons in the three-dimensional gas, from Eqs. (9.16), (9.19) is given by

Ne ¼
V

3p2
2me

ħ2

� �3=2

E
3=2
F (9.101)

Equating Eqs. (9.100), (9.101), the temperature dependence of the Fermi energy becomes

EF Tð Þ¼ m Tð Þ¼EF 1�p2

12

kBT

EF

� �2

+⋯

" #
(9.102)

This shows that EF decreases with an increase in temperature. Fig. 9.7 shows the behavior of EF as a function of temperature

for one-, two-, and three-dimensional solids. Now the total energy of the three-dimensional gas is obtained by substituting

the value of Ne(Ek) from Eq. (9.22) into Eq. (9.82) and further using the substitution (Eq. 9.74) to get

ET ¼
V

2p2
2me

ħ2

� �3=2

KBTð Þ5=2
ð∞

0

x3=2 f x�yð Þdx (9.103)

FIG. 9.7 Schematic representation of the temperature variation of the Fermi energy EF(T) for one-, two-, and three-dimensional free-electron gases.

Free-Electron Theory of Metals Chapter 9 191



From the above integral

H xð Þ¼
ðx

0

x3=2dx¼ 2

5
x5=2 (9.104)

The Fermi distribution function integral in Eq. (9.103) can be easily solved to write

ET ¼
V

5p2
2me

ħ2

� �3=2

m5=2 1 +
5p2

8

kBT

m

� �2

+⋯

" #
(9.105)

Substituting m(T) from Eq. (9.102) into the above expression and retaining terms only up to T2 we get

ET ¼
3

5
NeEF 1 +

5p2

12

kBT

EF

� �2

+⋯

" #
(9.106)

In writing the above expression we have used Eqs. (9.24), (9.25). With the help of the above expression, the electronic

specific heat at constant volume becomes

Ce ¼
∂ET

∂T

� �
V

¼ 1

2
p2NekB

T

TF

� �

¼ 1

3
p2Ne EFð Þk2BT

(9.107)

It is noteworthy, from Eqs. (9.88), (9.97), (9.107) that the magnitude of the electronic specific heat is in the ratio of 1:2:3 for

one-, two-, and three-dimensional solids. The temperature variation of Ce is the same regardless of the dimensionality of the

solid, which is due to the same temperature variation of the total energy in these solids. In the above derivation the electron-

electron and electron-ion interactions, which are finite in a solid, have been neglected. If these interactions are included in

the derivation of Ce, then the form of the expression will remain the same except that the density of electron states Ne(Ek) is

modified.

9.7 PARAMAGNETIC SUSCEPTIBILITY OF FREE-ELECTRON GAS

Paramagnetic susceptibility is measured experimentally at a finite temperature and, therefore, temperature effects should be

included in the theory. In the free-electron gas the electrons with up (ms¼½) and down (ms¼�½) spins are distributed in

parabolic bands. At absolute zero, the densities of electron states per unit volume per unit energy for up g"(Ek) and down

g#(Ek) spins are equal and each is equal to half of the total density of electron states ge(Ek) (see Fig. 9.8A). Therefore, one

can write

g" Ekð Þ¼ g# Ekð Þ¼ 1

2
ge Ekð Þ (9.108)

Let the magnetic field H be applied parallel to the upspin electrons. The spin magnetic moment is given as m!s¼�gsmB s
(see Chapter 18) where s is the spin, mB is the Bohr magnetron, and gs is Lande’s splitting factor for spin (gs¼2). Therefore,

the magnetic moment of the upspin electrons is opposite to the direction of H, while that of the downspin electrons is par-

allel to H. The magnetic interaction energy of each electron is given by

E ¼ � m!s �H ¼ gsmB s �H (9.109)

Therefore, after the application of a magnetic field, the magnetic energy for upspin electrons is raised by mBH and that for

downspin electrons is lowered by the same amount. Therefore, the densities of electron states per unit volume per unit

energy for up- and downspin electrons become

g" Ekð Þ¼ 1

2
ge Ek�mBHð Þ (9.110)

g# Ekð Þ¼ 1

2
ge Ek + mBHð Þ (9.111)
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To obtain the equilibrium state, the upspin electrons from the higher energy states will shift to the lower energy states with

spin down until the Fermi level of the two distributions become the same (Fig. 9.8B). Hence the densities of electrons per

unit volume with up n" and down spins n# become

n" ¼
1

2

ð∞

mBH

f Ek�mð Þge Ek�mBHð ÞdEk (9.112)

n# ¼
1

2

ð∞

�mBH

f Ek�mð Þge Ek + mBHð ÞdEk (9.113)

For a weak magnetic field, mBH is small and, therefore, the lower limit in the above integrals can be taken to be zero,

allowing us to write

n" ¼
1

2

ð∞

0

f Ek�mð Þge Ek�mBHð ÞdEk (9.114)

n# ¼
1

2

ð∞

0

f Ek�mð Þge Ek + mBHð ÞdEk (9.115)

FIG. 9.8 (A) The parabolic energy bands for up- and downspin electrons in

the absence of a magnetic field. The Fermi energy EF is the same for both the

spin states. (B) The parabolic energy bands for up- and downspin electrons in

the presence of magnetic field H applied in the vertical direction.
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The magnetization is defined as the magnetic moment per unit volume and is given by

M¼ mB n# �n"
� �

(9.116)

Substituting Eqs. (9.114), (9.115) into Eq. (9.116), we get

M¼ 1

2
mB

ð∞

0

f Ek�mð Þ ge Ek + mBHð Þ�ge Ek�mBHð Þ½ �dEk (9.117)

Further, for a weak H field, the functions for the density of electron states in the above expression can be expanded around

Ek to write (retaining terms linear in H)

M¼ m2BH
ð∞

0

f Ek�mð Þ ∂ge
∂Ek

dEk (9.118)

Now the magnetic susceptibility per unit volume of the free-electron gas becomes

wM ¼M

H
¼ m2B

ð∞

0

f Ek�mð Þ ∂ge
∂Ek

dEk (9.119)

This is the general expression for the paramagnetic susceptibility for a free-electron gas at a finite temperature and is also

called the Pauli spin susceptibility. Eq. (9.119), with the help of the substitution from Eq. (9.74), can be written as

wM ¼ m2B

ð∞

0

dx f x�yð Þ ∂
∂x

ge Ekð Þ (9.120)

The density of electron states ge(Ek) for a free-electron gas can be written as

ge Ekð Þ¼Cge xð Þ (9.121)

where the constant C depends on the dimensionality of the free-electron gas under consideration. Eq. (9.120) becomes

wM ¼ m2BC
ð∞

0

dx f x�yð Þ ∂
∂x

ge xð Þ (9.122)

Eq. (9.122) is the Fermi distribution function integral which allows us to write

h xð Þ¼ ∂

∂x
ge xð Þ (9.123)

and hence

HFD xð Þ¼
ðx

0

h xð Þdx¼ ge xð Þ (9.124)

After solving the integral in Eq. (9.122), wM is given by

wM ¼ m2B C 1 +
p2

6

∂
2

∂y2
+⋯

	 

HFD yð Þ

¼ m2B Cge yð Þ 1 +
p2

6

g00e yð Þ
ge yð Þ +⋯

	 
 (9.125)
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where

g00e yð Þ¼ ∂
2

∂y2
ge yð Þ (9.126)

Eq. (9.125) is the general expression and shows that the temperature dependence of wM depends on the density of electron

states. Let us calculate wM at absolute zero. Integrating Eq. (9.119) by parts, one gets

wM ¼ wP ¼ m2B

ð∞

0

ge Ekð Þ � ∂f

∂Ek

� �
dEk (9.127)

At absolute zero, the slope of f(Ek�m) is finite only at EF and is the Dirac delta function (see Fig. 9.6B), that is,

� ∂f

∂Ek

� �
¼ d Ek�EFð Þ (9.128)

Substituting Eq. (9.128) into Eq. (9.127), one gets the familiar expression for wM as

wM ¼ wP ¼ m2Bge EFð Þ (9.129)

The same expression can be obtained by putting f(Ek�m)¼1 in Eq. (9.119).

9.7.1 One-Dimensional Free-Electron Gas

In a one-dimensional free-electron gas, ge(Ek) is given by Eq. (9.52), which can be written as

ge Ekð Þ¼Cge xð Þ (9.130)

where

C¼ kBTð Þ�1=2
(9.131)

and

ge xð Þ¼ 1

2p
2me

ħ2

� �1=2

x�1=2 (9.132)

Substituting the values of C and ge(y) from Eqs. (9.131), (9.132) into Eq. (9.125), one gets

wP ¼ m2B
1

2p
2me

ħ2

� �1=2

m�1=2 1 +
p2

8

kBT

m

� �2

+⋯

" #
(9.133)

Substituting m(T) from Eq. (9.81) into the above expression and retaining terms up to the second power of T, one gets

wP ¼ m2Bge EFð Þ 1 +
p2

12

kBT

EF

� �2

+⋯

" #
(9.134)

According to Eq. (9.134), at low temperatures, Pauli’s spin susceptibility increases with an increase in temperature. At

absolute zero it gives the same expression as Eq. (9.129).

9.7.2 Two-Dimensional Free-Electron Gas

In a two-dimensional free-electron gas, ge(Ek) is given by Eq. (9.45) and is a constant quantity. Therefore,

ge Ekð Þ¼ me

pħ2
¼ ge yð Þ (9.135)

and

g00e yð Þ¼ 0, C¼ 1 (9.136)
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Substituting Eqs. (9.135), (9.136) into Eq. (9.125), one immediately writes

wP ¼ m2Bge EFð Þ (9.137)

Therefore, in a two-dimensional free-electron gas, Pauli’s paramagnetic spin susceptibility is independent of temperature.

9.7.3 Three-Dimensional Free-Electron Gas

In a three-dimensional free-electron gas, ge(Ek) is given by Eq. (9.23), which can also be written as

ge Ekð Þ¼ kBTð Þ1=2ge xð Þ (9.138)

where

ge xð Þ¼ 1

2p2
2me

ħ2

� �3=2

x1=2 (9.139)

From Eq. (9.138) we can write

C¼ kBTð Þ1=2 (9.140)

Now it is straight forward to prove (from Eq. 9.139) that

g00e yð Þ
ge yð Þ ¼�1

4
y�2 (9.141)

Substituting Eqs. (9.139), (9.141) into Eq. (9.125) and simplifying, we get

wP ¼ m2B
1

2p2
2me

ħ2

� �3=2

m1=2 1�p2

24

kBT

m

� �2

+⋯

" #
(9.142)

Substituting m(T) from Eq. (9.102) into the above equation and simplifying, we get

wP ¼ m2B ge EFð Þ 1�p2

12

kBT

EF

� �2

+⋯

" #
(9.143)

The above expression shows that Pauli’s spin susceptibility decreases with an increase in temperature. The temperature

dependences of the paramagnetic susceptibilities for one-, two-, and three-dimensional free-electron gases are shown in

Fig. 9.9 and they exhibit different trends for different dimensionalities. Further, comparing Eqs. (9.81), (9.93), (9.102)

for EF(T) with Eqs. (9.134), (9.137), (9.143) for wP, it is evident that the temperature variation of wP is the same as that

of the corresponding EF(T). It is also evident from Figs. 9.7 and 9.9.

FIG. 9.9 Schematic representation of the temperature variation of paramagnetic susceptibility (the Pauli spin susceptibility) of one-, two-, and three-

dimensional free-electron gases.
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9.8 CLASSICAL SPIN SUSCEPTIBILITY

The classical expression for spin susceptibility can be derived from the general expression in the limit of very high

temperatures. In the very high temperature limit, the Fermi-Dirac distribution function, defined by Eq. (9.68),

becomes

f Ek�mð Þ¼ e
m�Ek

kBT (9.144)

So, in the very high temperature limit, the magnetic susceptibility of the free-electron gas, given by Eq. (9.119),

becomes

wM ¼ m2Be
m

kBT

ð∞

0

e
�Ek

kBT
∂ge
∂Ek

dEk (9.145)

Integrating the above equation by parts, one gets

wM ¼ m2B
kBT

e
m

kBT

ð∞

0

e
�Ek

kBTge Ekð ÞdEk (9.146)

In writing the above expression we have used the fact that ge(Ek)!0 as Ek!0. From Eqs. (9.114), (9.115) the total number

of electrons per unit volume can be written as

ne ¼ n" + n# ¼
ð∞

0

f Ek�mð Þge Ekð ÞdEk (9.147)

which, in the very high temperature limit, becomes

ne ¼ e
m

kBT

ð∞

0

e
�Ek

kBTge Ekð ÞdEk (9.148)

Substituting Eq. (9.148) into Eq. (9.146), one can immediately obtain

wM ¼ m2Bne
kBT

(9.149)

which is the classical expression for the spin magnetic susceptibility per unit volume.

In this chapter we have concentrated on simple metals that are characterized by free conduction electrons contained in

broad s- (p-) bands. But in the periodic table of the elements, there exist a large number of d- and f-band metals in which the

d-band and f-band are localized. In a d-band metal each atom possesses s- or p-electrons in the outermost shell, which are

loosely bound to the nucleus and can be regarded as free electrons. Just below the outermost shell is the d-shell containing

electrons that are neither tightly bound to the nucleus nor free like the s-electrons. Therefore, a d-band metal can

be regarded as a sea of s-conduction electrons, with nearly uniform density, in which the ions with a quasilocalized

(or deformable) shell are embedded at the lattice positions. The study of the electronic structure and electronic properties

of these metals is more involved and is not within the scope of this book, but interested readers may consult Galsin (2002)

for further study.
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A number of properties of solids, such as the electrical properties, dielectric properties, and magnetic properties, depend on

the electric and magnetic fields. Therefore, it is of great interest to study, in general, the effects of electric and magnetic

fields on crystalline solids. In this Chapter we consider simple metals in which the ions are situated at the lattice positions,

while the conduction electrons interact with each other.

10.1 EQUATION OF MOTION

Consider a system of interacting electrons confined to a cubical box of finite size. An electron, during its motion, interacts

with other electrons and gets scattered. Therefore, one can define a relaxation time τe, which is some sort of average time

between two consecutive scattering processes (collisions) of an electron. The equation of motion of an interacting electron

in the presence of an applied force F is given by

dp

dt
+
p

τe
¼F (10.1)

where p¼mev is the momentum of an electron moving with velocity v. The first term is due to Newton’s second law of

motion and the second due to the collision processes. The above equation can be written in terms of v as

me

d

dt
+
1

τe

� �
v¼F (10.2)

From wave mechanics we know that

p¼mev¼ ħk (10.3)

where k is the electron wave vector in the reciprocal space. Therefore, Eq. (10.1) can also be written as

ħ
d

dt
+
1

τe

� �
k¼F (10.4)
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If F is the Lorentz force experienced by an electron due to the application of an electromagnetic field, it is given by

F¼�e E +
1

c
v�H

� �
(10.5)

Here E and H are electric and magnetic fields and �e is the electronic charge. Substituting Eq. (10.5) into Eqs. (10.2),

(10.4), the general equation of motion becomes

me

d

dt
+
1

τe

� �
v¼�e E+

1

c
v�H

� �
(10.6)

ħ
d

dt
+
1

τe

� �
k¼�e E +

1

c
v�H

� �
(10.7)

For free electrons the relaxation time goes to infinity, that is, τe!∞. Therefore, the equation of motion for a free electron

becomes

me

dv

dt
¼�e E+

1

c
v�H

� �
(10.8)

ħ
dk

dt
¼�e E +

1

c
v�H

� �
(10.9)

10.2 FREE ELECTRONS IN A STATIC ELECTRIC FIELD

Let a static electric field E be applied to the free electron gas with electron density ne. The equation of motion of an electron

from Eq. (10.8) reduces to

me

dv

dt
¼�eE (10.10)

In the presence of an electric field, the electrons move in the direction opposite to that of the electric field. From Eq. (10.10),

a small change in velocity dv(dt) in time dt is given by

dv dtð Þ ¼� eE

me

dt (10.11)

The free electrons move continuously without any hindrance in the presence of the applied field E. But in the presence of

collisions, the electrons acquire new equilibrium positions after the relaxation time τe. The change in velocity in time τe is
given by

dv τeð Þ¼� eE

me

τe (10.12)

The electric current density J becomes

J ¼�needv τeð Þ¼ s0E (10.13)

where

s0 ¼
nee

2 τe
me

(10.14)

Here we have substituted the value of dv(τe) from Eq. (10.12). Eq. (10.13) is nothing but the Ohm’s law and s0 gives the
Drude’s conductivity for an electron gas. The resistivity of the electron gas r0 is given by

r0 ¼
1

s0
¼ me

nee
2 τe

(10.15)

One can also derive the expression for J in terms of the wave vector k. For a free electron, Eq. (10.9) in the presence of E

reduces to
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ħ
dk

dt
¼�eE (10.16)

In the presence of electron collisions, the change in wave vector dk in time τe is given by

dk τeð Þ¼�eE

ħ
τe (10.17)

After time τe the electrons acquire their new equilibrium positions, as a result of which the Fermi sphere is displaced by

dk(τe) (see Fig. 10.1). From Eqs. (10.3), (10.13) the current density in terms of dk(τe) can be written as

J¼�neeħ
me

dk (10.18)

Substituting the value of dk from Eq. (10.17) into Eq. (10.18), one can immediately get the expression for s0 given by

Eq. (10.14).

10.3 FREE ELECTRONS IN A STATIC MAGNETIC FIELD

If a free electron moves in the presence of an applied static magnetic field H, then Eq. (10.8) reduces to

me

dv

dt
¼�e

c
v�H (10.19)

If H is in the z-direction, that is, H¼ î3H, then the Cartesian components of Eq. (10.19) become

me

dvx
dt

¼� eH

c
vy (10.20)

me

dvy

dt
¼ eH

c
vx (10.21)

dvz
dt

¼ 0 (10.22)

Eq. (10.22) shows that the velocity vz in the direction of the applied magnetic field is constant in time. On the other hand,

Eqs. (10.20), (10.21) show that vx and vy are functions of time and their solution can be obtained as described below. Dif-

ferentiating Eq. (10.20) with respect to time and using Eq. (10.21), we get

d2vx

dt2
+o2

c vx ¼ 0 (10.23)

where

oc ¼
eH

mec
(10.24)

FIG. 10.1 (A) The Fermi sphere of a free-electron gas in

the ground state (at absolute zero) in the absence of an

electric field at zero time. The dots inside the Fermi sphere

represent the filled electronic states. (B) The Fermi sphere

of the electron gas in the presence of an electric field E. It

is displaced by a wave vector dk in time dt after the appli-
cation of the electric field. Here the shape of the Fermi

surface is assumed to be unaffected in the presence of

the electric field.
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Here oc is called the cyclotron frequency. In exactly the same manner, the differential equation for vy can also be obtained,

given by

d2vy

dt2
+o2

c vy ¼ 0 (10.25)

The applied magnetic field does not change the energy of an electron. Therefore, the solution of Eqs. (10.22), (10.23),

(10.25) should be such that the energy of the electron remains unchanged. But vz is already constant, therefore, the velocity

of the electron in the xy-plane should also be constant. If v0 is the magnitude of constant velocity in the xy-plane, then

v2x + v
2
y ¼ v20 (10.26)

Eq. (10.26) shows that the electron moves in a circular path with frequency oc in the xy-plane, that is, perpendicular to the

direction of magnetic field (see Fig. 10.2). Therefore, vx and vy from Eqs. (10.23), (10.25) are given by

vx ¼�v0 sinoct (10.27)

vy ¼ v0 cosoct (10.28)

10.4 ELECTRONS IN STATIC ELECTRIC AND MAGNETIC FIELDS

From Eqs. (10.6) one can write

_v¼� e

me

E+
1

c
v�H

� �
� v

τe
(10.29)

If the magnetic field H is in the z-direction, then the components of Eq. (10.29) are given by

_vx ¼� e

me

Ex�
e

mec
vyH�vx

τe
(10.30)

_vy ¼� e

me

Ey�
e

mec
�vxHð Þ�vy

τe
(10.31)

_vz ¼� e

me

Ez�
vz
τe

(10.32)

y

x

V0

P

O

–V0 sinwct

wct

V0 coswct

FIG. 10.2 The circular motion of an electron in the xy-plane when a magnetic field H is applied in the z-direction.
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Multiplying Eqs. (10.30), (10.31), (10.32) by nee τe, we obtain

�τe _Jx ¼�s0Ex +ocτe Jy + Jx (10.33)

�τe _Jy ¼�s0Ey�ocτe Jx + Jy (10.34)

�τe _Jz ¼�s0Ez + Jz (10.35)

Here Eqs. (10.13), (10.14) for J and s0, respectively, have been used. In the equilibrium condition

_Jx ¼ _Jy ¼ _Jz ¼ 0 (10.36)

Therefore, for a system in the equilibrium state, Eqs. (10.33), (10.34), (10.35) reduce to

Jx +ocτe Jy ¼ s0Ex (10.37)

� ocτeð ÞJx + Jy ¼ s0Ey (10.38)

Jz ¼s0Ez (10.39)

Eqs. (10.37), (10.38), (10.39) can be written in matrix form as

Ex

Ey

Ez

0
BBBB@

1
CCCCA¼

1

s0

ocτe
s0

0

�ocτe
s0

1

s0
0

0 0
1

s0

0
BBBBBB@

1
CCCCCCA

Jx

Jy

Jz

0
BBBB@

1
CCCCA (10.40)

which can also be written as

Ea ¼
X
b

rab Jb (10.41)

Here rab are the Cartesian components of the magnetoresistivity tensor r$. From Eqs. (10.40), (10.41) it is evident that the

diagonal and nondiagonal components of r$ are given by

rxx ¼ ryy ¼ rzz ¼
1

s0
(10.42)

rxy ¼�ryx ¼
ocτe
s0

, rxz ¼ rzx ¼ ryz ¼ rzy ¼ 0 (10.43)

The diagonal components raa are called the magnetoresistivity and are scalar quantities independent of the magnetic field.

rzz is called the longitudinal magnetoresistivity as the applied magnetic field is parallel to the current. The nondiagonal

component rxy (or ryx) depends on the magnetic field and gives the Hall resistivity. These are also called the transverse

magnetoresistivity as the magnetic field is perpendicular to the current or electric field. In the presence of electric and

magnetic fields perpendicular to each other, the electron executes a helical path, as shown in Fig. 10.3. One should note

that if the magnetic field or the relaxation time is zero, then rxy and ryx go to zero. The diagonal and nondiagonal com-

ponents of resistivity in a cubical solid with side L are related to the resistance R as follows:

rxx ¼
Ex

Jx
¼Vx=L

Ix=L
2
¼RxxL (10.44)

ryx ¼
Ey

Jx
¼Vy=L

Ix=L
2
¼RyxL (10.45)

Vx and Vy are the components of voltage along the x- and y-directions and Ix and Iy are the corresponding current com-

ponents. Eqs. (10.44), (10.45) show that the resistance in three dimensions depends on the size of the solid. Eqs. (10.37),

(10.38), (10.39) can be solved for the components of the current density to write

Jx ¼
s0

1 + ocτeð Þ2 Ex +
�ocτeð Þs0
1 + ocτeð Þ2 Ey (10.46)
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Jy ¼
ocτes0

1 + ocτeð Þ2 Ex +
s0

1 + ocτeð Þ2 Ey (10.47)

Jz ¼ s0Ez (10.48)

The above equations can be written in matrix form as

Jx

Jy

Jz

0
BBBB@

1
CCCCA¼

s0
1 + oc τeð Þ2

� ocτeð Þs0
1 + oc τeð Þ2 0

ocτeð Þs0
1 + oc τeð Þ2

s0
1 + ocτeð Þ2 0

0 0 s0

0
BBBB@

1
CCCCA �

Ex

Ey

Ez

0
BBBB@

1
CCCCA (10.49)

which can also be written as

Ja ¼
X
b

sabEb (10.50)

sab are the components of magnetoconductivity tensor s$. It is evident from Eq. (10.49) that

sxx ¼ syy 6¼ szzð Þ, sxy ¼�syx

syz ¼ szy ¼ szx ¼ sxz ¼ 0 (10.51)

The diagonal components sxx and syy give the magnetoconductivity, while the nondiagonal components sxy and syx give
the Hall conductivity. Further, if the relaxation time or the magnetic field is zero, then sxy ¼ syx ¼ 0 and the diagonal

components give the Drude conductivity.

10.5 THE HALL EFFECT IN METALS

Consider a slab of metallic material subjected to a uniform magnetic fieldH along the z-direction, that is,H¼ ẑH, and with

a current density Jx passed through the material along the x-direction (see Fig. 10.4). Due to the magnetic force acting on the

charge carriers (Fleming’s left-hand rule), they will be deflected and a current in the y-direction is set up. Soon after, an

FIG. 10.3 Spiral motion of an electron about the direction of a magnetic field, that is, about the z-axis. The inset diagram shows the circular motion of the

electron perpendicular to the magnetic field, that is, in the xy-plane.
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equilibrium state is achieved, which makes the current in the y-direction zero, but develops an electric field Ey called the

Hall field. In a metallic solid the current is due to the flow of electrons; therefore, the bottom surface will become positively

charged as the electrons collect on the top surface. But if the current in a solid is due to the positive charges, then the bottom

surface will become negative relative to the top surface. The Hall coefficient RHC is defined as the electric field Ey

developed per unit magnetic field H per unit current density Jx, that is,

RHC ¼
Ey

JxH
(10.52)

The coefficient RHC can be calculated for a general charge carrier q. The Lorenz force acting on a charge q is given by

F¼ q E +
1

c
v�H

� �
(10.53)

where v is the velocity of the charge carrier. For the magnetic field in the z-direction, the force acting on the charge carrier

along the y-direction is given by

Fy ¼ q Ey +
1

c
�vxHð Þ

� �
(10.54)

In the equilibrium position, the force Fy must be zero, which gives Ey as

Ey ¼
1

c
vxH (10.55)

But the current density Jx is given by

Jx ¼ nqvx (10.56)

Substituting Eqs. (10.55), (10.56) into Eq. (10.52), RHC is given by

RHC ¼
1

nqc
(10.57)

One noteworthy feature of the Hall effect is that RHC is negative if the charge carriers are negatively charged (say electrons

with charge�e) and positive if the charge carriers are positively charged (say holes with charge e). Therefore, the nature of

charge carriers in a solid can be inferred from the sign of RHC determined from the experimental study of the Hall effect.

FIG. 10.4 The Hall voltage Ey in a rectangular slab of a

metallic solid when a magnetic field H is applied in the z-

direction. The applied electric field Ex and the velocity of

the charge carriers vx are in the x-direction.
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10.6 FREE ELECTRONS IN AN ALTERNATING ELECTRIC FIELD

Consider an electron gas with electron density ne, which is subjected to an alternating electric field E defined by

E¼E0 e
�io t (10.58)

where o is the frequency of the field. The electric force acting on an electron is given by

F¼�eE0 e
�io t (10.59)

In this situation the velocity of the electron and, hence, the current density will also depend on time with a variation similar

to that of E, that is,

v tð Þ¼ v0 e
�io t (10.60)

J¼ J0 e
�io t (10.61)

where

J0 ¼�neev0 (10.62)

Substituting Eqs. (10.59), (10.60) into Eq. (10.2), we get

me �io +
1

τe

� �
v0 ¼�eE0 (10.63)

From the above equation v0 is given by

v0 ¼� eτe=me

1� ioτe
E0 (10.64)

Using Eq. (10.64), the amplitude of the current density J0, defined by Eq. (10.62), becomes

J0 ¼
s0

1� ioτe
E0 (10.65)

The frequency-dependent electrical conductivity s(o) is defined as

J0 ¼ s oð ÞE0 (10.66)

From Eqs. (10.65), (10.66) one can write

s oð Þ¼ s0
1� ioτe

(10.67)

It is evident that s(o) is a complex quantity having both real and imaginary parts, denoted by s1(o) and s2(o), respectively.
Therefore, one can write

s oð Þ¼ s1 oð Þ+ i s2 oð Þ (10.68)

s1 oð Þ¼ s0
1 + oτeð Þ2 (10.69)

s2 oð Þ¼ oτeð Þs0
1 + oτeð Þ2 (10.70)

From Eq. (10.69), it is clear that s1(o) has a maximum value s0 at oτe ¼ 0 and thereafter decreases continuously with an

increase in o τe. On the other hand, s2(o) shows resonant behavior with a resonance at o τe ¼ 1 having maximum value of

(1/2)s0. It is interesting to study the behavior of s(o) at high frequencies. For oτe >> 1, Eqs. (10.69), (10.70) reduce to

s1 oð Þ¼ s0
oτeð Þ2 ¼

nee
2

meo2 τe
(10.71)

s2 oð Þ¼ s0
oτe

¼ nee
2

meo
(10.72)
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It is evident from Eqs. (10.71), (10.72) that s2(o) is independent of the relaxation time and dominates over s1(o).
It is always convenient to express the results in terms of a complex dielectric function e(o) that is defined as

e oð Þ¼ 1 + 4pw oð Þ (10.73)

where

w oð Þ¼ P0

E0

(10.74)

where P0 is the complex amplitude of the polarization P defined as

P¼P0 e
�i o t (10.75)

To calculate the polarization P0, Eq. (10.2) can be written as

me

d2

dt2
+
1

τe

d

dt

� �
r¼F (10.76)

Here r is the position vector and v¼dr/dt. The time dependence of r is the same as that of v, that is,

r¼ r0 e
�io t (10.77)

Substituting Eq. (10.77) into Eq. (10.76), we get

r0 ¼
e=með ÞE0

o2 + io=τe
(10.78)

The dipole moment of an electron is given by �er0. Therefore, P0 for the electron gas is given by

P0 ¼�neer0 ¼� nee
2=með ÞE0

o2 + io=τe
(10.79)

P0 is a complex quantity and its real and imaginary parts can be separated to write

P0 ¼P0
0 + iP

00
0 (10.80)

where

P0
0 ¼� n0e

2=með ÞE0

o2 1 + 1= oτeð Þ2
h i (10.81)

P00
0 ¼

n0e
2=með ÞE0

o2 oτe + 1=oτe½ � (10.82)

Substituting P0 from Eqs. (10.80)–(10.82) in Eq. (10.74) and then in Eq. (10.73), the complex dielectric matrix e(o)
becomes

e oð Þ¼ e1 oð Þ+ i e2 oð Þ (10.83)

where

e1 oð Þ¼ 1�o2
P

o2

1

1 + 1=oτeð Þ2
" #

(10.84)

e2 oð Þ¼o2
P

o2

o=τe
o2 + 1=τ2e

� �
(10.85)

and

o2
P ¼

4pnee
2

me

(10.86)
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oP is a constant frequency and is usually called the plasma frequency for reasons to be described below. The wavelength lP
associated with oP is given by lP ¼ 2pc/oP. Eqs. (10.83)–(10.85) give the general expression for the dielectric function.

The limiting cases of e(o) are of more interest. For example, when τe!∞, e2(o) reduces to zero, while e1(o) is finite.
Therefore, in the free-electron approximation, e(o) reduces to e1(o) given by

e oð Þ¼ e1 oð Þ¼ 1�o2
P

o2
(10.87)

The dielectric function e(o) is negative foro2<oP
2. The waves satisfying this condition (with wavelength l greater than lP)

possess an imaginary wave vector and decay exponentially. Therefore, waves with o2< oP
2 are totally reflected from the

free-electron gas. On the other side, e(o) is positive for o2> oP
2 and such high-frequency waves (with l less than lP) can

pass through the free-electron gas. For o ¼ oP, e(o) is zero and, therefore, oP acts as a cutoff frequency. The above dis-

cussion shows that the free-electron gas acts as a high-pass filter with a cutoff frequencyoP (or wavelength lP) that depends
on the electron density. It has been found that the alkali metals are transparent to ultraviolet light.

10.7 QUANTUM MECHANICAL THEORY OF ELECTRONS IN STATIC ELECTRIC AND
MAGNETIC FIELDS

Consider an electron gas in which an electron experiences an electric field E0 in the x-direction. The force experienced by

an electron is F(x) ¼ �eE0. As a result, an electron is subject to the potential V(x) given by

V xð Þ¼�
ð
F xð Þdx ¼ eE0x (10.88)

The Schrodinger equation for an electron is given by

p2

2me

+V xð Þ
� �

c rð Þj i¼E c rð Þj i (10.89)

The momentum operator p ¼ � iħr. To introduce the spin, we consider

p2 ¼ p � p¼ SP � p� �
SP � p� �¼ SP � p� �2

(10.90)

Here SP¼ (Sx
P,Sy

P,Sz
P) denotes the Pauli spin matrices and SP¼2 s where s denotes the spin matrices. In writing the above

equation, the following identity has been used

SP � a� �
SP � b� �¼ a � b + iSP � a�bð Þ (10.91)

Here a and b are any two vectors. Using Eq. (10.90) in Eq. (10.89), we write

1

2me

SP � p� �2
+V xð Þ

� �
c rð Þj i¼E c rð Þj i (10.92)

If a magnetic field H is applied on the electron gas, then the momentum changes as follows:

p! p� e

c
A (10.93)

Here A is the vector potential defined as follows

H¼ r�A (10.94)

Hence the Schrodinger equation in the presence of electric and magnetic fields is given by

1

2me

SP � p� e

c
A

� 	n o2

+V xð Þ
� �

c rð Þj i¼E c rð Þj i (10.95)

Using the identity (10.91)
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SP � p� e

c
A

� 	h i2
¼ SP � p� e

c
A

� 	h i
SP � p� e

c
A

� 	h i

¼ p� e

c
A

� 	2

+ iSP � p� e

c
A

� 	
� p� e

c
A

� 	

¼ p� e

c
A

� 	2

� i
e

c
SP � p�A +A�pð Þ

¼ p� e

c
A

� 	2

� i
e

c
SP � �iħHð Þ

¼ p� e

c
A

� 	2

� 2eħ
c

s �H

(10.96)

Substituting Eq. (10.96) into Eq. (10.95), one gets

1

2me

p� e

c
A

� 	2

+ m!s �H +V xð Þ
� �

c rð Þj i¼E c rð Þj i (10.97)

where m!s ¼ �(eħ/mec) s is the operator for the spin magnetic moment. To evaluate the stationary states for the electron

system, the magnetic field is assumed to be in the z-direction, that is,H¼ ẑH. The vector potentialA is chosen by using the

gauge transformation

A¼ 0, Hx, 0ð Þ (10.98)

Eq. (10.97) can be expanded to write

1

2me

p2�2e

c
A � p+ e2

c2
A2

� �
c rð Þj i+ eE0x c rð Þij ¼ E � �mBHð Þ½ � c rð Þj i (10.99)

Here we have substituted sz¼ �1/2. Using Eq. (10.98) for A and the operator form of p, the above equation becomes

1

2me

�ħ2
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

� �
+
2iħeH

c
x
∂
∂y

+
e2H2

c2
x2


 �
+ eE0x

� �
c rð Þj i

¼ E � �mBHð Þ½ � c rð Þj
(10.100)

� ħ2

2me

∂2

∂x2
+

∂2

∂z2

� �
c rð Þj i� ħ2

2me

∂2

∂y2
�2ieHx

ħc
∂
∂y

+
i2 e2H2

ħ2 c2
x2

� �
c rð Þij

+eE0x c rð Þj i ¼ E � �mBHð Þ½ � c rð Þj i
(10.101)

Eq. (10.101) obviously has a solution of the form

c rð Þj i¼ eiky y eikzzu xð Þ (10.102)

Substituting Eq. (10.102) into Eq. (10.101) and rearranging the terms, we get

� ħ2

2me

d2

dx2
+
1

2
meo

2
c x�Xð Þ2 + eE0X+

1

2
me

cE0

H

� �2
" #

u xð Þ

¼ E�ħ2k2z
2me

� �mBHð Þ
� �

u xð Þ
(10.103)

where

X¼ cħky
eH

� eE0

meo2
c

(10.104)

The electron has linear velocity vz in the z-direction due to the applied electric field, but it executes a circular motion in the

xy-plane due to the application of the magnetic field along the z-direction. Therefore, according to Eq. (10.103), an

electron, in the presence of both electric and magnetic fields, executes a spiral motion about the center X. If only the mag-

netic field H is acting on the system (E0 ¼ 0), then Eq. (10.103) yields
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� ħ2

2me

d2

dx2
+
1

2
meo

2
c x�x0ð Þ2

� �
u xð Þ¼ E�ħ2k2z

2me

� �mBHð Þ
� �

u xð Þ (10.105)

Eq. (10.105) is the equation of motion of a harmonic oscillator having natural frequency oc and centered at

x0 ¼
cħky
eH

¼ 1

oc

ħky
me

¼ vy

oc

(10.106)

The electron moves in a spiral motion about the center x0. Thus, the energy eigenvalues of Eq. (10.105) are

Es ¼ ns +
1

2

� �
ħoc (10.107)

where ns is an integer. Therefore,

E�ħ2k2z
2me

� �mBHð Þ¼Es (10.108)

which gives

E¼ ħ2 k2z
2me

+Es�mBH (10.109)

In Eq. (10.109) the first term corresponds to the free motion of electrons along the direction of the magnetic field H and

yields parabolic bands due to the continuous values of kz in a solid. The second term gives a discrete set of eigenvalues due

to the harmonic oscillations of electrons in a plane perpendicular toH and the last term gives the spin splitting of the energy

states. Fig. 10.5A shows the energy bands in the presence of a magnetic field, neglecting the effect of spin splitting. It shows

that the motion of the electrons gets quantized in the crystal plane perpendicular toH. If the electric field is also finite, then

from Eq. (10.103) the energy eigenvalues are given by

E¼ ħ2k2z
2me

+Es�mBH+ eE0X+
1

2
me

cE0

H

� �2

(10.110)

The last two terms give the effect of the electric field E0.

Let us investigate the degeneracy of the energy given by Eq. (10.109). From Eq. (10.102) it is evident that the allowed

values of ky are given as

FIG. 10.5 (A) The quantized parabolic energy bands in the presence of a magnetic field neglecting the spin splitting of the energy bands. (B) The quan-

tized Landau cylindrical levels within the Fermi sphere in the presence of the magnetic field.
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ky ¼
2pny
Ly

(10.111)

where ny¼0,�1,�2,… This means ky is quantized in units of 2p/Ly. But the energy is independent of ky [Eq. (10.103)].

Therefore, for a particular value of ns, one may think that ky has any value out of the infinite series of its allowed values. But

actually, it is not so as will be clear from the following arguments. As Eq. (10.105) represents a linear oscillator centered

about x0 (dependent on ky), therefore, the function u(x) also depends on ky. This means that if an electron starts off in the y-

direction with velocity vy it will move in a circular path in the magnetic field, with center at x0 (see Fig. 10.6). This path

must not be too big and lies inside the xy-plane with

0< x0 <Lx (10.112)

In terms of x0 the values of ky are given by (see Eq. 10.106)

ky ¼
meoc

ħ
x0 (10.113)

The restriction on the allowed values of x0 also restricts the values of ky, which are given by

0 < ky <
meoc

ħ
Lx ¼ eH

ħc
Lx

� �
(10.114)

There is one value of ky in distance 2p/Ly, so the maximum number of its values is

nky ¼
Ly

2p
meoc

ħ
Lx (10.115)

Hence, for a particular value of ns, there are nky states corresponding to each value of ky. In other words, an energy state for a

particular value of ns is nky-fold degenerate. As kz has continuous values for a bulk solid, the k-states lie on Landau cylinders

(see Fig. 10.5B) in which the limit of occupancy is set by the original Fermi surface. Fig. 10.5B shows that the electron

energy varies with kz up to EF on each cylinder, which is a one-dimensional magnetic subband, called a Landau level, rather

than a constant energy surface. Each circle around any cylinder, with both kz and ns fixed, is a line of constant energy,

generally called a Landau circle or Landau level. Fig. 10.7 shows the Landau circles for different values of ns in the presence

of a magnetic field.

One should note that in the absence of a magnetic field, kx and ky are also quantized, having values

kx ¼
2pnx
Lx

(10.116)

ky ¼
2p ny
Ly

(10.117)

where nx ¼ ny ¼ 0, �1,�2, … With the application of a magnetic field, the quantization described by Eqs. (10.116),

(10.117) is broken. The wave function (Eq. 10.102) gives states with energy defined by Eq. (10.109) and these are nky-fold

FIG. 10.6 The solution of the Schrodinger wave equation in the xy-plane in the presence of a magnetic field H. The electron moves in a circular path

(dashed line) perpendicular to the z-direction.

Electrons in Electric and Magnetic Fields Chapter 10 211



degenerate. Consider two energy surfaces with energies E and E + dE. The area between the two energy surfaces separated
by energy dE can be written as [see Appendix J, Eq. (J.10)]

dA¼ 2pmc

ħ2
dE (10.118)

Here the electronic mass me is replaced by the cyclotron mass mc. Let us assume that dE is the quantum of energy due to the

cyclotron frequency, that is, dE¼ ħoc. We know that in the free electron case the density of allowed states per unit area is

given as LxLy/(2p)
2 in the (kx,ky) space. Therefore, the number of electron states in area dA is

LxLy

2pð Þ2 dA¼ 2pmc

ħ2
ħocð Þ LxLy

2pð Þ2 (10.119)

which, after simplification, gives

LxLy

2pð Þ2 dA¼LxLy

2p
mcoc

ħ
¼ nky (10.120)

Eq. (10.120) gives the number of allowed states between two quantized orbits. Therefore, the effect of the magnetic field is

to create these quantized states (orbits) in k-space (see Fig. 10.7) and to cause the free electron states to “condense” onto the

nearest such orbit. The number of states in each orbit is exactly the number of allowed states in the annulus in which it lies.

The new states are not really fixed at any point on the circle, but rotate around it with frequencyoc. In the magnetic field we

can classify the various levels by naming the circles on which they lie. The quantized circular orbits, with energy given by

Eq. (10.107), are called Landau orbits (Landau levels). The degeneracy of the Landau orbits depends upon the applied

magnetic field (see Eq. 10.115). In other words, the number of electrons that occupy Landau orbits is proportional to

the magnetic field.

10.8 QUANTUM HALL EFFECT

The QuantumHall Effect (QHE) was observed by Von Klitzing, a German scientist (Von Klitzing, Dorda, & Pepper, 1980).

The most interesting aspect of the QHE is that it is observed in two-dimensional (2D) electron systems only, for example, in

an inversion layer of a metal-oxide-semiconductor field-effect transistor (MOSFET). It has been observed that for certain

combinations of the magnetic field and the surface (areal) density of electrons, the Hall conductance has plateaus at values

that are integral multiples of e2/h: e is the electronic charge and h is Planck’s constant. These plateaus extend over a range of

the electron density. The QHE is observed under special conditions quite different from those of the ordinary Hall effect: the

FIG. 10.7 (A) Quantization of the free electron states, shown by dots, in the absence of a magnetic field. The circles (dashed lines) show the Landau

levels, which appear only in the presence of a magnetic field, as shown in part (B) of the figure. (B) Quantization of the electron states, represented by dots,

in the Landau orbits in the presence of a magnetic field.
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sample is kept at liquid He temperature (� 4 K) and subjected to very high magnetic fields (� 10 Tesla). Actually, Ando,

Matsumoto, and Uemura (1975) were the first to observe this effect, but the results lacked sufficient precision to make

sound conclusions. But now the results are of high precision (at least a few parts in 108).

10.8.1 Two-Dimensional Electron System

A 2D system consists of electrons confined to a thin layer, of about 100 Å thickness, near an interface between two dis-

similar materials. An important question is how a layer of electrons with a finite thickness behaves as a 2D system. One can

argue that if the thickness of the layer is smaller than the thermal wavelength of electrons at low temperatures, the motion of

the electrons perpendicular to the layer becomes quantized. The excitation energies of electrons in the perpendicular

direction are then much larger than the excitation energies in the plane of the layer and also much larger than the thermal

energy. Under such conditions, the motion of electrons in the perpendicular direction is frozen, but they can move easily in

the plane of the layer and hence it behaves like a 2D system. This fact has been confirmed experimentally, which shows that

the density of states is indeed two dimensional. According to Ohm’s law

E¼ rJ (10.121)

In a two-dimensional crystal, J is the current per unit width andE is the voltage per unit length. Hence, in a two-dimensional

crystal, from Eq. (10.121),

r¼ voltage

current
¼R (10.122)

where R is the resistance. Hence, in a two-dimensional crystal, the resistivity is equal to the resistance of the system, in

contrast to a 3D system. In Ohm’s law, J and E are in the same direction, yielding scalar resistivity. But when magnetic a

field H is applied perpendicular to the surface of a two-dimensional system (and hence perpendicular to the current), an

electric field perpendicular to both H and J is generated, which is called the Hall field. For a 2D system, the resistivity

matrix can be written as

Ex

Ey

� �
¼ rxx rxy

ryx ryy

� �
Jx
Jy

� �
(10.123)

The off-diagonal components rab (a 6¼b) yield the Hall resistivity. In order to make measurements of the Hall effect, one

has to specify the direction of the current when a magnetic field H is applied perpendicular to the plane of the 2D electron

system having length Lx and breadth Ly (Fig. 10.8). Let the current flow along the x-direction (Jy ¼ 0), then from

Eq. (10.123) one can write

Ex ¼ rxx Jx (10.124)

Ey ¼ ryx Jx (10.125)

FIG. 10.8 Schematic diagram of a 2D system for measuring the quantum Hall effect. The length of the crystal is Lx and the breadth is Ly. The magnetic

field H is applied in the z-direction.
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We can relate the resistivity components with the components of resistance. From Eqs. (10.124), (10.125)

rxx ¼
Ex

Jx
¼Vx=L

Ix=Ly

¼Vx

Ix

Ly

L
¼Rxx

Ly

L
(10.126)

and

ryx ¼
Ey

Jx
¼Vy=Ly

Ix=Ly

¼Vy

Ix
¼Ryx (10.127)

Here L is the distance between two points, along the direction of Ix, between which the potential difference Vx is measured.

Ly is the distance, perpendicular to both Ix andH, across which the potential difference Vy is measured (see Fig. 10.9). It is

noteworthy that ryx and Ryx are equal, without any geometric factor, in contrast with the 3D crystal. Hence, a measurement

of the Hall resistivity ryx of a 2D system is independent of the dimensions of the crystal. It is this fact that makes possible the

measurement of the Quantum Hall resistivity with a high degree of accuracy. In general, the conductivity matrix s$ in two

dimensions can be written as

Jx
Jy

� �
¼ sxx sxy

syx syy

� �
Ex

Ey

� �
(10.128)

10.8.2 Classical Theory of Conductivity in a Magnetic Field

The motion of an electron in the presence of electric and magnetic fields was described in Section 10.4. From Eq. (10.40)

one can straightway write the expression for resistivity in two dimensions as

FIG. 10.9 (A) Schematic diagram of Si-MOSFET. (B) The energy band diagram of Si-MOSFET when positive gate voltage VG is applied.
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Ex

Ey

0
BB@

1
CCA¼

1

s0

ocτe
s0

�ocτe
s0

1

s0

0
BB@

1
CCA

Jx

Jy

0
BB@

1
CCA (10.129)

Comparing Eq. (10.129) with Eq. (10.123), one can write

rxx ¼ ryy ¼
1

s0
;rxy ¼�ryx ¼

oc τe
s0

(10.130)

From Eq. (10.49), the conductivity of a two-dimensional solid can be written as

Jx

Jy

0
BB@

1
CCA ¼

s0
1 + ocτeð Þ2

� ocτeð Þs0
1 + ocτeð Þ2

ocτeð Þs0
1 + ocτeð Þ2

s0
1 + ocτeð Þ2

0
BBB@

1
CCCA

Ex

Ey

0
BB@

1
CCA (10.131)

Comparing Eqs. (10.131), (10.128), one immediately gets

sxx ¼ syy ¼
s0

1 + ocτeð Þ2 , sxy ¼�syx ¼� ocτeð Þs0
1 + ocτeð Þ2 (10.132)

The relation between the components of the conductivity and resistivity matrices in a two-dimensional crystal can be

obtained by dividing both the numerator and denominator on the right side of Eq. (10.132) by (1/s0)
2, which gives

sxx ¼ syy ¼
rxx

r2xx + r2xy
; sxy ¼�syx ¼� rxy

r2xx + r2xy
(10.133)

In studying the Hall effect, we are mainly interested in the calculation of sxy, which from Eq. (10.132) can be written as

�sxy ¼
neec

H

ocτeð Þ2
1 + ocτeð Þ2 (10.134)

In writing the above expression we have used Eqs. (10.14), (10.24) for s0 and oc, respectively. Further manipulation of the

above equation will yield

�sxy ¼
neec

H
� sxx
ocτe

(10.135)

If sxx vanishes, the Hall resistivity sxy is given by

sxy ¼�neec

H
(10.136)

Eq. (10.136) is purely a classical result.

10.8.3 Quantum Theory of a 2D Free-Electron Gas in a Magnetic Field

Consider a two-dimensional free-electron gas in the xy-plane in which a magnetic field H is applied along the z-direction.

The free electrons in a magnetic field will satisfy the Schrodinger wave equation

1

2me

p� e

c
A

� 	2

cj i ¼E cj i (10.137)

where A is the vector potential and jc(x,y)i is the wave function. We want to evaluate stationary states of the two-

dimensional free-electron gas. Let us choose the vector potential using the gauze transformation as

A¼ 0, Hx, 0ð Þ (10.138)

which gives H along the z-direction. Using the two-dimensional Laplacian operator and the vector potential A from

Eq. (10.138) and simplifying in exactly the same manner as we did in Section 10.7, we find
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∂2

∂x2
cj i+ ∂

∂y
� ieH

ħc
x

� �2

cj i+ 2meE

ħ2
cj i ¼ 0 (10.139)

Eq. (10.139) obviously has a solution of the form

c x, yð Þj i ¼ eiky yu xð Þ (10.140)

Substituting Eq. (10.140) into Eq. (10.139) and simplifying, we write

� ħ2

2me

d2u

dx2
+
1

2
meo

2
c x�x0ð Þ2u xð Þ¼Eu xð Þ (10.141)

where x0 is given by Eq. (10.106). Eq. (10.105) reduces to Eq. (10.141) if one substitutes

ħ2k2z
2me

¼ mBH¼ 0 (10.142)

The energy in the z-direction is zero because the system is a two-dimensional free-electron gas and the magnetic interaction

between the electron magnetic moment and the magnetic field is neglected. Eq. (10.141) is the equation of motion of a one-

dimensional harmonic oscillator, having natural frequencyoc, and centered at x0. The electron makes a spiral motion about

the center x0. Thus, the energy eigenvalues of Eq. (10.141) are given by

E¼ ns +
1

2

� �
ħoc (10.143)

where ns is an integer. This shows that the motion of electrons gets quantized in the plane of a two-dimensional free-

electron gas.

The degeneracy in energy E, given by Eq. (10.143), can be calculated in exactly the same way as was done in

Section 10.7. For a particular value of s, there are nky states corresponding to each value of ky given by

nky ¼
LxLy

2p
meoc

ħ
¼ A0

2p
meoc

ħ
(10.144)

where A0¼LxLy is the area of the 2D system. nky gives the number of allowed states between two quantized orbits. The

quantized circular orbits with energy given by Eq. (10.143) are called Landau orbits. The degeneracy of the Landau orbits

depends upon the applied magnetic field (see Eq. 10.144). In other words, the number of electrons that occupy Landau

levels is proportional to the magnetic field.

For the QHE to be observed, the temperature has to be low and the magnetic field has to be high enough so that the

separation between the Landau levels (equal to magnetic energy ħoc) is much larger than the thermal energy kBT. With

these conditions, the lower lying Landau levels will be completely filled with electrons and the higher levels completely

empty. Under these circumstances, it is found that the Hall resistance Rxy is quantized and is given as

Rxy ¼
h

s0e
2

(10.145)

where s0 is the number of completely filled Landau levels, generally called the filling factor of the Landau levels. The filling

factor can be changed either by changing the charge carrier density or by adjusting the magnetic fieldH. In either case, the

position of the Fermi level is shifted relative to the position of the Landau levels. The plateaus in the Hall resistance are

observed for integral values of the filling factor s0, as mentioned above, and, therefore, it is usually called the integral QHE.

The quantized Hall resistance can also be written in terms of the fine structure constant afs as

Rxy ¼
m0 c
2s0afs

(10.146)

where m0 is the permeability of vacuum and has a value of 4�10�7 H/m. From Eqs. (10.145), (10.146) we have

afs ¼
m0 e

2c

2h
(10.147)
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Problem 10.1

The vector potential A, yielding a magnetic field in the z-direction, can also be given by the gauze

A¼ �yH, 0, 0ð Þ (10.148)

Prove that the Schrodinger wave equation for a two-dimensional system with A given by Eq. (10.148) becomes

� ħ2

2me

∂
2c
∂y2

� ħ2

2me

∂

∂x
+ i

eH

cħ
y

� �2

cj i¼ E cj i (10.149)

Solve the Schrodinger wave equation to obtain the energy eigenvalues.

Problem 10.2

The general gauze for the vector potential, which yields a magnetic field along the z-direction, is written as

A¼ �1

2
yH,

1

2
xH, 0

� �
(10.150)

Show that the Schrodinger wave equation, for the two-dimensional system with A given by Eq. (10.150) becomes

� ħ2

2me

∂

∂x
+ i

eH

2cħ
y

� �2

cj i� ħ2

2me

∂

∂y
� i

eH

2cħ
x

� �2

cj i¼ E cj i (10.151)

10.8.4 Experimental Setup for QHE

There are two types of 2D systems used for observing the QHE:

1. Silicon MOSFETs (Si-MOSFETs)

2. Semiconductor heterojunctions

Both of these devices create 2D electron systems with very small thickness.

10.8.4.1 Silicon MOSFETs

A systematic diagram of a Si-MOSFET is shown in Fig. 10.9A. It consists of a Si base doped with a p-type material. An

SiO2 layer of about 1000 Å thickness is grown over the substrate. Above the SiO2 layer is an Al metal layer for making

good electrical contacts. A positive gate voltage is applied to the Al layer, which generates an electric field on the order

of 106 volts/cm across the oxide layer. This field separates the electron-hole pairs in p-Si. The electrons move toward

the SiO2 interface, while the holes move away into the bulk p-Si substrate. The band picture of Si-MOSFET is shown

in Fig. 10.9B. The gate voltage bends the energy bands of p-Si near the oxide interface. At sufficiently high gate

voltage, the conduction band in Si bends so much near the interface that it crosses the Fermi energy. The electrons

of the acceptor level and conduction band are, therefore, held by the energy barrier between the conduction band of Si

and the oxide layer. Thus, the surface layer near the interface contains more electrons than holes even though the

material is doped with acceptors and, therefore, is called an inversion layer. The electrons are confined to a narrow

region of about 50 Å near the interface. The energies of excitation in a direction perpendicular to the interface are on

the order of 20 meV, which are much larger than the excitation energy in the plane of the interface.

A very useful feature of the Si-MOSFET is that the carrier density is directly proportional to the gate voltage and can be

adjusted continuously. The source and the drain provide contacts to the 2D system of electrons and a current source can be

connected across these contacts.
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10.8.4.2 Semiconductor Heterojunctions

A 2D electron system can be created with the help of a differentially doped semiconductor heterojunction interface. The

most commonly used devices use a GaAs� (AlxGa1�x)As interface, as shown in Fig. 10.10. It consists of a substrate of

GaAs doped with Cr+. Above this is a GaAs layer of 1 mm thickness and then layers of (AlGa)As and (AlGaAs) :Si(doped

with Si). At the top again, we have a layer of GaAs. These heterojunctions are synthesized with the help of sophisticated

techniques, such asMolecular Beam Epitaxy (MBE), which ensure abrupt steps in the conduction band at the interface. The

experimental setup for the QHE with heterojunctions is also shown in Fig. 10.10.

The conduction band of GaAs is lower than the conduction band of (AlGa)As by about 300meV. To maintain a constant

Fermi level throughout the junction, the Si donors of the (AlGa)As side of the interface get ionized and transfer electrons to

the GaAs side of the interface. The charge transfer produces strong electric fields and band bending near the interface, as a

result of which a 2D electron system is formed, which is analogous to that formed in Si-MOSFET. Ohmic contacts can be

made in the 2D system by alloying indium (IN) with the epilayer.

The mobility of the charge carriers in these devices is extremely high (� 2�106 cm2/Vs.). This corresponds to a mean

free path as large as 10 mm for an elastic event. In general, the low-temperature mobility is limited by the scattering of

charge carriers from the ionized impurities. But in heterojunctions, such a scattering is small as the spatial separation

between the charge carriers and the parent donors is sufficiently large. The introduction of a thin layer of undoped

(AlGa)As (�100 Å) between doped (AlGaAs) :Si and pure GaAs layers further separates the charge carriers and the donors

and hence enhances the mobility.

It is interesting to compare the merits and demerits of the two devices. In heterojunctions the charge carrier density is

fixed and depends upon the Si donor concentration and the thickness of the undoped (AlGa)As layer. Hence, to change the

position of the Fermi level relative to the position of the Landau levels, as is required in the QHE, the magnetic field has to

be adjusted. This is a disadvantage because it is relatively more difficult to change the magnetic field than to change the

charge carrier density by adjusting the gate voltage inMOSFETS. An important advantage of heterojunctions is that in them

the effective mass of electrons is small (�0.068 me) as compared with that inMOSFETs in which it is on the order of 0.2 me

for Si. The smaller effective mass leads to a larger characteristic magnetic energy (¼ħoc), which allows one to work at

smaller magnetic fields (� 8Tesla versus 13Tesla for Si) and at comparatively higher temperatures.

FIG. 10.10 (A) Experimental setup for measurements of the integral QHE with heterojunctions. (B) Magnified view of the edge of the heterojunction

shown by a small square (dashed line) in part (A) of the figure.
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10.8.5 Integral Quantum Hall Effect

When an integral numbers of Landau levels are completely filled, it is usually called the integral QHE. The experimental

setup for measuring the Hall effect is shown in Fig. 10.9. A current of 1–10 mA is passed through the sample at the He

temperature in the presence of a magnetic fieldH. The linear voltage Vxx and the Hall voltage VH are measured. The linear

resistance Rxx and the Hall resistance Rxy are given by the ratio of the respective voltages to the current Ix.

Typical measurements of Von Klitzing et al. (1980) on Si-MOSFET are shown in Fig. 10.11 in which the Hall voltage

and the linear voltage are plotted as a function of the gate voltage VG for a given source-drain current of 1 mA. A series of

plateaus referred to as “Hall steps” are observed in which Rxy appears to be essentially constant and independent of VG. The

value of Rxy(RH) at these steps is given by Eq. (10.145) to a high degree of accuracy. The resistance Rxx appears to vanish in

the region of these plateaus: rxx as low as 5�10�7O cm has been measured. This value is almost an order of magnitude

lower than the resistivity of any nonsuperconducting material at any temperature: rxx further decreases with temperature.

There are two main features of the QHE that require a physical understanding: one is the existence of Hall steps and the

dissipationless current flow in the regions of Hall steps and the second is the high precision to which the Hall steps are

quantized. A simple explanation is as follows: In a high magnetic field, the electrons occupy Landau levels having discrete

energy. The Landau levels are highly degenerate with degeneracy given by Eq. (10.144). Therefore, the number of electrons

per unit area ne in a Landau level from Eq. (10.144) is given by

ne ¼
1

2p
meoc

ħ
¼ eH

hc
(10.152)

If s0 is the number of completely filled Landau levels, the total carrier density ne due to all these levels is

ne ¼ s0
eH

hc
(10.153)

In the Hall effect, the Hall constant is given as

RHC ¼
1

neec
(10.154)

and the Hall resistivity is given as

rxy ¼RHCH¼ H

neec
(10.155)

FIG. 10.11 The measurements of the Hall voltage VH and linear voltage Vxx as a function of gate voltage VG in a Si-MOSFET at T¼ 1.5 K and H¼ 18

Tesla. Here the source-drain current is kept fixed at 1 mA. (Modified from Von Klitzing, K., Dorda, G., & Pepper, M. (1980). Newmethod for high-accuracy

determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 45, 494.)
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Substituting the value of ne from Eq. (10.153) into Eq. (10.155), we get

Rxy ¼ rxy ¼
h

s0e
2

(10.156)

which gives Eq. (10.145) for the QHE. The QHE is observed at very low temperatures and high magnetic fields so that the

thermal excitation of electrons from the last full Landau level s0 to the next higher Landau level can be neglected.

In reality the above explanation does not hold. The probability that s0 Landau levels will be completely filled in a real

physical system is zero because the charge carrier density is specified. As soon as an extra electron is added to a 2D system

with s0 Landau levels completely full, the extra electron goes to the (s0+1)th Landau level and the Fermi level jumps dis-

continuously. What is required, then, is a reservoir of electrons, which would keep s0 Landau levels completely full by

transferring electrons to and from the 2D system when the electron density is varied over a limited range. Note that the

above explanation ignores any impurities present in the system.

The integral QHE has been measured (especially the Hall resistance Rxy) with an accuracy on the order of 0.1ppm. The

integral QHE can be used in defining a primary resistance standard similar to using the Josephson effect in defining a

primary voltage standard. This is because of the fact that Rxy is expressed in terms of universal constants (Eq. 10.156).

This would make the international comparison of resistance easier and more reliable. The integral QHE can also be used

to find the universal constant h or e if one measures Rxy.

10.8.6 Fractional Quantum Hall Effect

Soon after the discovery of the integral QHE, Tsui, Stormer, and Gossard (1982) found that the Hall conductance has pla-

teaus at fractional filling of the Landau levels also. They found that plateaus exist at filling factors with 1/3 and 2/3 values.

Later on, plateaus were found at values of filling factors equal to simple fractions of the type p/q where q is an odd integer

(Stormer et al., 1983).

The fractional QHE is observed in the extreme quantum limit (at very high magnetic fields) and only in samples with a

very high mobility of charge carriers. This is in contrast to the case of the integral QHE in which the width of the plateaus

increases with an increase in impurity concentration, which decreases the charge carrier mobility. This observation shows

that the origins of the integral and fractional QHE are different. The two effects actually compete with each other. Many

explanations have been put forward for the fractional QHE based on the ideas of Wigner crystallization of electrons into a

solid, condensation of electrons into a quantum liquid, and others. The most appealing explanation is due to Laughlin

(1983). According to this explanation, the Coulomb interactions between the electrons cause the electron system to con-

dense into a highly correlated incompressible quantum liquid. Laughlin has given a variational wave function for such a

quantum state. An energy gap separates the ground state from the excited state. The quasiparticles of this quantum liquid,

which carry the current, behave as particles having a fractional charge of 1/q where q is an odd integer. These fractional

charges lead to the plateaus at fractional quantum numbers. On changing the filling factor from the exact fractional quantum

number, excess quasiparticles are created. These excess quasiparticles are trapped by the impurities, which lead to the

plateaus.

10.9 WIEDEMANN-FRANZ-LORENTZ LAW

It has already been proved that the electrical conductivity s0 is given by

s0 ¼
nee

2 τe
me

(10.157)

The corresponding electronic contribution to the thermal conductivity per unit volume sel in metals is given by (see

Eq. 8.177)

sT ¼ sel ¼
1

3
p2

nek
2
B

mevF
leT (10.158)

It may be noted that in the above equation sel has been defined for unit volume. The mean free path at the Fermi energy is

given as

le ¼ vF τe (10.159)
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From Eqs. (10.158), (10.159) one gets

sT ¼ sel ¼
1

3
p2

nek
2
B τe

me

T (10.160)

Dividing Eq. (10.160) by Eq. (10.157), we find

sT
s0

¼LNT (10.161)

where

LN ¼ p2

3

kB
e

� �2

(10.162)

LN is called the Lorentz number and is independent of the particular metal under consideration. Eq. (10.161) is the

Wiedemann-Franz-Lorentz law, which states that the ratio of the thermal conductivity to the electrical conductivity is pro-

portional to the temperature and the constant of proportionality (Lorentz number) is independent of the metal. In the der-

ivation of Eq. (10.161) it is assumed that the relaxation times for the electrical and thermal processes are the same. If these

are different, then the Lorentz number gets modified.

Problem 10.3

Magnetoresistance is defined as the fractional change in resistivity in the presence of a magnetic field. Prove that the magnetore-

sistance is proportional to the square of the magnetic field intensity.
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Themost important phenomena are the motion of particles and the flow of energy in solids, liquids, and gases. For example,

in metallic solids electric current is produced by the motion of conduction electrons in the presence of an externally applied

electric field. On the other hand, heat current arises due to the flow of thermal energy, which is handed over from one atom

(or electron) to another in a solid. In liquids electric current is produced by the motion of both the electrons and ions and the

heat current arises from the convection currents set up by the actual motion of the atoms or ions. Further, plasma consists of

a gas of moving electrons, ions, or neutral particles and it flows in a particular direction. In all of these examples there is

transport of either charge or energy. In Chapter 10, we discussed the motion of electrons in the presence of electric and

magnetic fields using the Newton laws of motion and some related properties were explained. In the present chapter, we

shall describe the motion of electrons and, in general, of charged particles in the presence of electric and magnetic fields

using the Boltzmann transport equation, which is an entirely different approach from the previous one. Some basic prop-

erties, such as the conduction of electricity and heat in solids, will be presented.

11.1 VELOCITY DISTRIBUTION FUNCTION

In a crystalline solid there are large numbers of particles (electrons or ions) that are distributed in space and possess velocity

ranging from zero to somemaximum value. The state of a moving particle at a particular time is precisely defined if both the

position and velocity are known at that time. Hence it is useful to define a distribution function f(r,v, t) that gives the

number of particles per unit volume at position r that have velocity v at time t in phase space. Hence f(r,v, t) d3rd3v gives

the number of particles in a volume element d3rd3v of phase space at time t.

11.2 ELECTRIC CURRENT AND ELECTRICAL CONDUCTIVITY

In a metallic solid, electric current is produced by the motion of conduction electrons and is given by

J¼�e

ð
v f r, v, tð Þd3v (11.1)

The motion of conduction electrons in a crystalline solid originates from two types of interactions.

1. Electrostatic interactions

2. Collision interactions
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11.2.1 Electrostatic Interactions

Two types of electrostatic fields are responsible for the motion of conduction electrons in a crystalline solid:

1. Crystal field

2. External electric field

The crystal potential is the sum of the atomic potentials of the lattice atoms and exhibits the periodicity of the lattice. The

interaction of electrons with the crystal potential produces a uniform motion of electrons throughout the crystal. Hence, in

the equilibrium state, the motion of an electron in any particular direction is equally probable. In other words, for each

electron moving with velocity v there is a corresponding electron with velocity �v. Mathematically, one can write

f0 r, v, tð Þ¼ f0 r, �v, tð Þ (11.2)

Here f0(r,v, t) is the distribution function in the equilibrium state and is an even function of velocity. Therefore, the electric

current in the equilibrium state J0 is given by

J0 ¼�e

ð
v f0 r, v, tð Þd3v¼ 0 (11.3)

J0 is zero because v f0(r,v, t) is an odd function of velocity. According to the Bloch theorem, in a crystal with periodic

crystal potential, no spontaneous current is possible, which is equivalent to the uniform motion of conduction electrons

in all directions in a solid. When an external electric field is applied, the conduction electrons tend to move along the

direction of the field. Hence, the application of the field produces changes in both the position and velocity of the electrons,

thus causing a change in the distribution function f(r,v, t). Hence, in the presence of an external electric field, the current

density J becomes finite and is given by Eq. (11.1). Bloch has proved that in a periodic potential there is no hindrance to the

flow of conduction electrons in a crystalline solid in the presence of an electric field, yielding zero resistance.

11.2.2 Collision Interactions

In a metallic crystal the ions start vibrating about their mean positions by gaining thermal energy kBT, thereby breaking the

periodicity of the lattice and hence of the crystal potential. Because of the breaking of the periodicity of the crystal potential,

the conduction electrons are scattered from the ions by exchanging energy in the form of phonons [electron-phonon (e-p)

interactions]. The e-p interactions offer hindrance to the flow of conduction electrons in the presence of an external field,

giving rise to finite electrical resistance. From the above argument, it is evident that the external electric field and the col-

lision interactions oppose each other. Hence, to calculate the electric current density or conductivity, we must study the

combined effect of both the collision interactions and the external electric field. Note that the lattice periodicity is also

destroyed by the presence of impurities (lattice defects), thus making an additional contribution to the resistivity or con-

ductivity, especially in alloys.

For weak electric fields, the current density in a metallic solid is linearly proportional to the applied electric field, that is,

Ja ¼
X3
b¼1

sabEb (11.4)

In a nonhomogeneous and anisotropic solid, an electric field Eb applied in the b-Cartesian direction produces a current

density Ja in the a-Cartesian direction. In this situation the conductivity becomes a tensor and its elements are represented

by sab. In a homogeneous and isotropic solid, the current density and the applied field are in the same direction and,

therefore, the conductivity becomes a scalar, that is,

sab ¼ sdab (11.5)

Substituting Eq. (11.5) into Eq. (11.4), we get

J¼ sE (11.6)

In cubic crystals all three Cartesian directions are equivalent and thus the solid behaves as an isotropic medium. It is note-

worthy that Eq. (11.4) does not hold for strong electric fields because then one has to include higher-order terms inE, which

incorporate nonlinearity in the conduction phenomenon. In metallic crystals the electrons are responsible for the electrical

conduction, while in semiconductors both the electrons and holes are responsible for it.
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11.3 HEAT CURRENT AND THERMAL CONDUCTIVITY

Consider a solid in the form of a rod with one end at a higher temperature than the other (see Fig. 8.10). It is well known that

heat flows from the higher temperature end to the lower temperature end of the rod. It is reasonable to assume that the heat

current density Q is linearly proportional to the temperature gradient. Mathematically, one can write

Q¼�sTrrT (11.7)

where sT is a constant of proportionality and is called the thermal conductivity. The negative sign indicates that heat current

flows in the direction of negative temperature gradient. The heat current originates from the transfer of kinetic energy of

electrons in a finite temperature gradient. Let Ek be the band energy and m(T) denote the chemical potential of a solid with

finite temperature gradient, then the difference Ek�m(T) appears as kinetic energy and is responsible for the flow of heat

current density.

11.4 THE BOLTZMANN TRANSPORT EQUATION

11.4.1 Classical Formulation

Consider a system of electrons in a solid having a one-dimensional velocity distribution function f(x,vx, t) with position and

velocity in the x-direction. The electrons are assumed to be point charges and, uponmoving closer, interact with one another

over a finite time.1 The average time of interaction “dt” between two electrons, or between an electron and an ion, is

assumed to be very small compared with the average time τe between two consecutive interactions. The number of electrons

at any time t in a small elemental area dxdvx of the phase space (see Fig. 8.2) is given by

dNe ¼ f x, vx, tð Þdxdvx (11.8)

The application of an electric field to the solid changes the distribution for two reasons:

1. The function f(x,vx, t) changes due to the drift velocity produced by the application of the electric field.

2. The function f(x,vx, t) changes due to the collision interactions.

Hence the total rate of change in the distribution function ∂ f/∂t is given by

∂f x, vx, tð Þ
∂t

¼ ∂f x, vx, tð Þ
∂t

����
drift

+
∂f x, vx, tð Þ

∂t

����
coll

(11.9)

In the equilibrium state of the system the distribution function becomes constant with respect to time. Therefore, Eq. (11.9)

reduces to

∂f x, vx, tð Þ
∂t

����
drift

+
∂f x, vx, tð Þ

∂t

����
coll

¼ 0 (11.10)

This is the basic form of the Boltzmann equation. Eq. (11.10) can be written as

∂f x, vx, tð Þ
∂t

����
drift

¼�∂f x, vx, tð Þ
∂t

����
coll

(11.11)

Eq. (11.11) shows that the rates of change of the distribution function due to the electric field and the collision processes are

equal and opposite. In other words, the collision processes oppose the effect of an external electric field.

To start with, let us assume that the collision processes are absent. The application of an electric field produces drift in

the position and velocity of the electrons. The number of electrons dNe
0 at time t+dt, in the cell dxdvx, at position and

velocity coordinates x+dx and vx+dvx, respectively, is given by

dN0
e ¼ f x + dx, vx + dvx, t + dtð Þdxdvx (11.12)

1. If the particles are not charged, then they are assumed to be elastic and impenetrable spheres and the interaction between them takes place

instantaneously.
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In the equilibrium state, the number of electrons in the elemental volume dxdvx must be constant with time, that is,

dNe ¼ dN0
e (11.13)

Hence from Eqs. (11.8), (11.12), and (11.13) one can write

f x + dx, vx + dvx, t + dtð Þ¼ f x, vx, tð Þ (11.14)

Expanding the left side of Eq. (11.14) around x, vx, and t, we find.

∂f x, vx, tð Þ
∂x

dx +
∂f x, vx, tð Þ

∂vx
dvx +

∂f x, vx, tð Þ
∂t

����
drift

dt¼ 0

which can also be written as

∂f x, vx, tð Þ
∂t

����
drift

¼�vx
∂f x, vx, tð Þ

∂x
� ax

∂f x, vx, tð Þ
∂vx

(11.15)

where ax¼ dvx/dt gives the acceleration in the x-direction produced by the applied electric field. If Fx is the force produced

by the electric field in the x-direction, then the acceleration can also be written as ax¼Fx/me. Substituting Eq. (11.15) into

Eq. (11.9), the total change in the distribution function becomes

∂f x, vx, tð Þ
∂t

¼�vx
∂f x, vx, tð Þ

∂x
� ax

∂f x, vx, tð Þ
∂vx

+
∂f x, vx, tð Þ

∂t

����
coll

(11.16)

In the equilibrium state of the system we get

∂f x, vx, tð Þ
∂t

����
coll

¼�∂f x, vx, tð Þ
∂t

����
drift

¼ vx
∂f x, vx, tð Þ

∂x
+ ax

∂f x, vx, tð Þ
∂vx

(11.17)

Eq. (11.17) gives the Boltzmann transport equation in one dimension. One can derive similar equations for the velocity

distributions along the y- and z-directions separately. Therefore, the Boltzmann transport equation in three dimensions

is given by

∂f r, v, tð Þ
∂t

����
coll

¼�∂f v, r, tð Þ
∂t

����
drift

¼ v � rr f +
F

me

� rv f (11.18)

where rr and rv are gradient operators with respect to r and v, respectively.

Appendix K describes an alternate method for the derivation of the Boltzmann transport equation.

Let us now suppose that collision processes are also present in the system. The rate of change of the distribution function

due to collision processes is given by

∂f

∂t

����
coll

¼� f� f0
τe

(11.19)

where τe is the electron relaxation time. The negative sign ensures the decay of the distribution function to its equilibrium

form f0(r,v, t). Because f0(r,v, t) is constant in time, Eq. (11.19) can be written as

∂ f� f0ð Þ
∂t

����
coll

¼� f� f0
τe

(11.20)

The solution of the above equation gives

f� f0ð Þt ¼ f� f0ð Þt¼0 e
�t=τe (11.21)

which gives an exponential decay of the change in the distribution function from its equilibrium value. From Eq. (11.21) the

relaxation time is defined as the time in which the perturbed distribution function f� f0 decreases by a factor of e.

Substituting Eq. (11.19) into Eq. (11.18), the distribution function f(r,v, t) becomes

f r, v, tð Þ ¼ f0 r, v, tð Þ� τe v � rr f +
F

me

� rv f

� �
(11.22)

The concept of relaxation time in the collision process has been introduced in an arbitrary fashion. The different relaxation

times are defined for different physical phenomena and they reduce to the ordinary differential equation given by
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Eq. (11.22). For example, any type of current decays to its equilibrium value in elastic scattering processes. In an inho-

mogeneous system, the density of electrons is different at different points and, therefore, one should define different dis-

tribution functions at different points. In such systems, one should define the equilibrium function as a function of the local

density n(r), that is, f[n(r)].

11.4.2 Quantum Formulation

Electrons in a crystalline solid form a quantum mechanical system in which the wave vector of an electron is a good

quantum number. Therefore, the state of an electron is characterized by its wave vector k and energy Ek. The quantum

mechanical expressions for the velocity and force on an electron are given by

v¼ 1

ħ
rkEk (11.23)

F¼ ħ _k (11.24)

Treating the electrons as free, the energy can be approximated by a parabolic band, that is,

Ek ¼
ħ2k2

2me

(11.25)

Substituting Eq. (11.25) into Eq. (11.23), we get

v¼ ħk
me

(11.26)

Further, substituting Eq. (11.24), (11.26) into Eq. (11.18), we get.

∂f v, r, tð Þ
∂t

����
coll

¼�∂f v, r, tð Þ
∂t

����
drift

¼ v � rr f +
F

ħ
� rk f (11.27)

Eq. (11.27) gives the quantum mechanical expression for the Boltzmann transport equation.

The solution of the Boltzmann equation is not simple because it is an integro-differential equation on account of the

collision processes. To solve for the distribution function arising from the collision processes, it is convenient to make the

relaxation time approximation. Consider a system of electrons in a crystalline solid with equilibrium distribution function

f0(r,k, t). The application of an external electric field shifts the distribution of electrons by dk (say) because the electrons

collide with the lattice ions, thereby producing finite drift. After some time τe, usually called the electron relaxation time,

the system comes a steady state with distribution function f(r,k, t) in the presence of the external field. If the external field is

switched off, the system will again come to the original state, in time τe, with distribution function f0(r,k, t).

11.5 LINEARIZATION OF BOLTZMANN EQUATION

The Boltzmann transport equation is a nonlinear equation and its solution is thus a difficult problem. Therefore, one has to

resort to some simplification and one of the obvious simplifications is to linearize the Boltzmann transport equation. Con-

sider a system of free electrons in the equilibrium state with distribution function f0(r,v, t). A weak electric fieldE is applied

to the system, which changes the distribution function to f(r,v, t) defined as

f r, v, tð Þ¼ f0 r, v, tð Þ +Df r, v, tð Þ (11.28)

Df(r,v, t) is the small change in the distribution function caused by the application of the E field. Hence Df(r,v, t) can be

treated as a perturbation in the solution of the Boltzmann equation for any physical property. The linear Boltzmann equation

is obtained by substituting Eq. (11.28) into Eq. (11.27) and retaining terms only up to the first order. It gives

∂f

∂t

����
coll

¼�∂f

∂t

����
drift

¼ v � rr f0 r, v, tð Þ�eE

ħ
� rk f0 r, v, tð Þ (11.29)

where it is assumed that

v � rrDf r, v, tð Þj j≪ v � rr f0 r, v, tð Þ�� �� (11.30)

E � rkDf r, v, tð Þj j≪ E � rk f0 r, v, tð Þ�� �� (11.31)
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The linear Boltzmann equation can be solved for a system of free electrons in which the equilibrium distribution function

can be taken to be the Fermi-Dirac distribution function given by

f0 Ek, m, Tð Þ¼ 1

e Ek�m Tð Þ½ �=kBT + 1
(11.32)

Now it is straightforward to prove that.

rk f0 Ekð Þ¼ ∂f0
∂Ek

rkEk ¼
∂f0
∂Ek

ħv (11.33)

rr f0 Ekð Þ¼ ∂f0
∂T

rrT

¼� ∂f0
∂Ek

Ek�m Tð Þ
T

+
∂m
∂T

� �
rrT

(11.34)

In writing Eq. (11.33) we have used Eq. (11.23). Substituting Eqs. (11.33), (11.34) into Eq. (11.29), the linear Boltzmann

equation for a system of electrons becomes

∂f

∂t

����
coll

¼�∂f

∂t

����
drift

¼�v � ∂f0
∂Ek

A

� �
(11.35)

where

A¼ eE +
Ek�m Tð Þ

T
+
∂m
∂T

� �
rrT

¼ eE +
Ek�m Tð Þ

T
rrT+rrm

(11.36)

Here A is the vector field, which combines the actions of electric and thermal fields.

11.6 ELECTRICAL CONDUCTIVITY

Lorentz investigated the problem of electrical conductivity with the Boltzmann transport equation, treating electrons as

classical particles and using a simplified model for the collision process between the electrons and ions in the lattice.

His treatment led to some serious difficulties. Later, Sommerfeld calculated the electrical conductivity of metals using

the Boltzmann transport equation and treating the electrons as quantum particles. He, further, assumed that the relaxation

time is a function of energy without investigating the actual mechanism of interaction between the electrons and ions.

Consider a crystalline solid to which an electric fieldE is applied in the x-direction, that is,E¼ î1Ex. The force acting on

an electron in the direction of the field is given by

F ¼ � eEx î1 (11.37)

and the acceleration produced by this force is

a¼ F

me

¼�eEx

me

î1 (11.38)

Substituting Eq. (11.38) into Eq. (11.18), one gets the one-dimensional Boltzmann equation as

∂f

∂t

����
coll

¼� ∂f

∂t

����
drift

¼ vx
∂f

∂x
� eEx

me

∂f

∂vx
(11.39)

Substituting Eq. (11.19) for the rate of change of the distribution function arising from the collision interactions into

Eq. (11.39), we obtain

f x, vx, tð Þ¼ f0 x, vx, tð Þ � τe vx
∂f

∂x
�eEx

me

∂f

∂vx

� �
(11.40)

According to Eq. (11.40), f(x,vx, t) depends on itself through its derivatives and, therefore, its solution can be obtained

through the successive approximation method (iteration method). If the applied electric field is weak, the deviation of
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f(x, vx, t) from its equilibrium value f0(x, vx, t) is small. Hence, in the lowest order approximation, one can substitute

f(x, vx, t)� f0(x, vx, t) on the right side of Eq. (11.40) to write

f x, vx, tð Þ¼ f0 x, vx, tð Þ � τe vx
∂f0
∂x

� eEx

me

∂f0
∂vx

� �
(11.41)

In the equilibrium state, f0(x,vx, t) for an electron is nothing but the Fermi-Dirac distribution function f0(E,m,T) defined by
Eq. (11.32). In the equilibrium state, the energy E is constant and, therefore, one can write

∂f0 E, m, Tð Þ
∂x

¼ ∂f0
∂m

∂m
∂T

∂T

∂x
+
∂f0
∂T

∂T

∂x
(11.42)

We are interested in the electrical conductivity of a crystalline solid at a particular temperature yielding ∂T/∂x¼0, which

gives ∂ f0/∂x¼0. Therefore, Eq. (11.41) yields

f x, vx, tð Þ¼ f0 x, vx, tð Þ + eEx τe
me

∂f0
∂vx

(11.43)

If the conduction electrons in a solid are assumed to be free, they possess only kinetic energy, that is,

E ¼ 1

2
mev

2 (11.44)

The velocity derivative of the distribution function can be written as

∂f0
∂vx

¼ ∂f0
∂E

∂E

∂vx
¼mevx

∂f0
∂E

(11.45)

Therefore, the distribution function in the free-electron approximation is given by substituting Eq. (11.45) into Eq. (11.43)

to obtain

f x, vx, tð Þ¼ f0 x, vx, tð Þ+ eτevxEx

∂f0
∂E

(11.46)

With the knowledge of the distribution function, the current density in the x-direction (see Eq. 11.1) is given by

Jx ¼�e

ð
vx f x, vx, tð Þd3v (11.47)

Substituting f(x,vx, t) from Eq. (11.43) into Eq. (11.47), we get

Jx ¼ � e

ð
vx f0 x, vx, tð Þd3v� e2Ex

me

ð
vx

∂f0
∂vx

τe vð Þd3v (11.48)

Here the relaxation time is assumed to be a function of the velocity or energy of the electron. The first integral in Eq. (11.48)

is zero in the equilibrium state (see Eq. 11.3), therefore, one can write

Jx ¼ � e2Ex

me

ð
vx

∂f0
∂vx

τe vð Þd3v (11.49)

Comparing Eqs. (11.6), (11.49), the expression for electrical conductivity can be written as

s¼ � e2

me

ð
vx

∂f0
∂vx

τe vð Þd3v (11.50)

This is the general expression for conductivity when the current density is in the x-direction. If the conduction electrons in a

crystalline solid are assumed to be free, then from Eqs. (11.45), (11.50), s becomes

s¼ � e2
ð
v2x

∂f0
∂E

τe vð Þd3v (11.51)

In the derivation of Eq. (11.51), it is assumed that the applied electric field is in the x-direction, as a result of which

the electrons move with velocity vx. Similar expressions for s can also be obtained for electron motions along the
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y- and z-directions. The general expression for s is obtained by substituting the average of the square of velocities in the

Cartesian directions, which are related as

v2x
� �¼ v2y

D E
¼ v2z
� �¼ v2=3 (11.52)

where v is the velocity of an electron in a general direction. Substitution of Eq. (11.52) into Eq. (11.51) yields

s¼ � e2

3

ð
v2

∂f0
∂E

τe vð Þd3v (11.53)

11.6.1 Classical Theory

Consider a finite system containing Ne conduction electrons and having volume V. In the equilibrium state one can writeð
f0 r, v, tð Þd3rd3v¼Ne (11.54)

If, in the equilibrium state, the electrons are distributed uniformly, say with density ne, then f0(r,v, t) becomes independent

of position r. Therefore, Eq. (11.54) reduces to ð
f0 v, tð Þd3v¼Ne

V
¼ ne (11.55)

Lorentz treated the electrons as classical particles obeying the Maxwell-Boltzmann distribution defined by

f0 E, Tð Þ¼ ne
me

2pkBT

� �3=2

e�E=kBT (11.56)

where E is the energy of the electron state. From Eq. (11.56) one can write

∂f0
∂E

¼� 1

kBT
f0 (11.57)

Lorentz, further, assumed the relaxation time of the conduction electrons to be a constant. Substituting Eqs. (11.56), (11.57)

into Eq. (11.53), the electrical conductivity in polar coordinates becomes

s¼ 4pnee
2

3kBT
τe

me

2pkBT

� �3=2 ð∞
0

e�E=kBTv4dv (11.58)

If the conduction electrons are treated as free, then their energies are given by Eq. (11.44). Therefore, substituting

Eq. (11.44) into Eq. (11.58), one gets

s ¼ 4pnee
2

3kBT
τe

me

2pkBT

� �3=2 ð∞
0

e
�me v

2

2kBT v4dv (11.59)

Making the substitution

x ¼ mev
2

2 kBT
(11.60)

in Eq. (11.59) and simplifying, one gets

s¼ 4nee
2

3
ffiffiffi
p

p τe
me

ð∞
0

x3=2 e�xdx (11.61)

The integral in the above equation is a standard gamma integral, so

s¼ 4nee
2

3
ffiffiffi
p

p τe
me

G 5=2ð Þ¼ nee
2 τe

me

¼ s0 (11.62)
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which is nothing but the Drude conductivity. Here G(5/2) is a gamma function given by

G
5

2

� �
¼ 3

2
� 1
2
� ffiffiffi

p
p

(11.63)

11.6.2 Quantum Theory

Sommerfeld treated electrons as quantum particles (fermions) with the Fermi-Dirac function f0(E,m,T), defined by

Eq. (11.32), as the distribution function. We know that the number of electron states per unit volume in k-space is given
by V/(2p)3. Hence the number of states in an elemental volume d3k becomes V/(2p)3d3k. Taking account of the spin degen-
eracy, the total number of electrons is given by

Ne ¼
2V

2pð Þ3
ð
f0 E, m, Tð Þd3k¼ 2V

2pð Þ3
ð

1

e E�mð Þ=kBT + 1
d3k (11.64)

We know that d3p¼ħ3d3k¼me
3d3v. Changing the variable of integration from k to v, Eq. (11.64) reduces to

ne ¼
Ne

V
¼ 2

me

2pħ


 �3
ð

1

e E�mð Þ=kBT + 1
d3v (11.65)

Comparing Eq. (11.65) with Eq. (11.55) the distribution function in the equilibrium state is given by

f0 v, tð Þ¼ f0 v, Tð Þ¼ 2
me

2pħ


 �3 1

e E�mð Þ=kBT + 1
(11.66)

Substituting f0(v,T) from Eq. (11.66) into Eq. (11.53), we get

s¼�2e2

3

me

2pħ


 �3
ð
v2

∂

∂E

1

e E�mð Þ=kBT + 1

� �
τe vð Þ d3v (11.67)

Changing the variable from v to E using Eq. (11.44) and simplifying, we obtain

s¼�8pe2

3me

2

me

� �3=2
me

2pħ


 �3
ð
E3=2 ∂

∂E

1

e E�mð Þ=kBT + 1

� �
τe Eð Þ dE (11.68)

The conductivity is usually measured at quite low temperatures. At such temperatures the Fermi-Dirac distribution function

can be approximated by its value at absolute zero, that is, f0(E,m,T) is one for E�EF and zero for E>EF. At absolute zero

the energy derivative of f0(E,m,T) is zero everywhere except at E¼EF where it is minus infinity, that is,

� ∂

∂E

1

e E�mð Þ=kBT + 1

� �
¼ d E�EFð Þ (11.69)

Substituting Eq. (11.69) into Eq. (11.68), we get

s¼ e2

3p2me

2me

ħ2

� �3=2

E
3=2
F τe EFð Þ¼ 2e2

3me

ge EFð ÞEFτe EFð Þ (11.70)

where

ge EFð Þ¼ 1

2p2
2me

ħ2

� �3=2

E
1=2
F ¼ 3ne

2EF

(11.71)

Hence the conductivity can finally be written as

s¼ s0 ¼ nee
2 τe EFð Þ
me

(11.72)

It is noteworthy that Eqs. (11.62), (11.72) are the same, except that in Sommerfeld theory the relaxation time is evaluated at

EF, while in the Lorentz theory it is constant and independent of energy. In the derivation of electrical conductivity, ∂ f0/∂E
has been taken to be a Dirac delta function, which is true only at absolute zero. Actually, the electrical conductivity is

measured at a finite temperature at which ∂ f0/∂E is a sharply peaked function with some spread in energy, which is on

Transport Phenomena Chapter 11 231



the order of kBT around EF (see Fig. 9.6B). Hence only those electrons that occupy states in the range of kBT around EF

contribute to conduction and are the actual conduction electrons. Hence, the Sommerfeld theory gives a clear-cut definition

of the conduction electrons. The expression for s can be improved by including the actual peaked function ∂ f0/∂E with

finite spread (it will yield an additional contribution to the value given by Eq. 11.72).

11.7 THERMAL CONDUCTIVITY

It has already been discussed that the heat current arises due to the flow of energy (kinetic energy) from one end of a solid to

the other in the presence of a finite temperature gradient. From Eq. (11.7) it is evident that the thermal conductivity sT is a
measure of the flow of heat and is a property of the solid under consideration. In a metallic solid most of the heat is carried

by the conduction electrons and a very little by the lattice vibrations. In a semiconductor, both the electrons and lattice

vibrations transport heat. But in dielectrics, it is only the lattice vibrations that carry heat. The flow of heat can be studied

by solving the Boltzmann transport equation in the presence of a finite temperature gradient.

Let an electric field E be applied to a crystalline solid in the x-direction, that is, E¼ î1E1 ¼ î1Ex, in the presence of a

finite temperature gradient dT/dx, again along the x-direction. Then the electric current and heat current densities flow in

the x-direction and are given by

Jx ¼ � e

ð
vx f x, vx, tð Þd3v (11.73)

Qx ¼
ð
vxE f x, vx, tð Þd3v (11.74)

Substituting the value of f(x, vx, t) from Eq. (11.41) into Eqs. (11.73), (11.74), we write

Jx ¼ e

ð
τe vð Þ v2x

∂f0
∂x

�vx
eEx

me

∂f0
∂vx

� �
d3v (11.75)

Qx ¼�
ð
τe vð ÞE v2x

∂f0
∂x

�vx
eEx

me

∂f0
∂vx

� �
d3v (11.76)

In writing the above expressions for Jx and Qx, the equilibrium condition given by Eq. (11.3) is used.

11.7.1 Classical Theory

If the electrons are treated as classical particles, they obey the Maxwell-Boltzmann distribution f0(E,T), given by

Eq. (11.56). The derivatives of f0(E,T) are given by

∂f0
∂x

¼ ∂f0
∂T

dT

dx
(11.77)

∂f0
∂vx

¼ ∂f0
∂E

dE

dvx
¼mevx

∂f0
∂E

(11.78)

In writing Eq. (11.78) the electrons are assumed to be free particles with energy given by Eq. (11.44). Substituting

Eq. (11.56) for f0(E,T) in the above equations, we get

∂f0
∂x

¼ b0E�3

2

� �
f0 E, Tð Þ 1

T

dT

dx
(11.79)

∂f0
∂vx

¼�b0mevx f0 E, Tð Þ (11.80)

where

b0 ¼
1

kBT
(11.81)
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Substituting Eqs. (11.79), (11.80) into Eqs. (11.75), (11.76), we get

Jx ¼ e

ð
τe vð Þv2x b0E�3

2

� �
1

T

dT

dx
+ eExb0

� �
f0 E, Tð Þd3v (11.82)

Qx ¼ �
ð
τe vð ÞEv2x b0E�3

2

� �
1

T

dT

dx
+ eExb0

� �
f0 E, Tð Þd3v (11.83)

The expressions for Jx and Qx are simplified to a great extent if one assumes the relaxation time to be independent of

velocity, that is, a constant parameter. Then

Jx ¼ e τe
1

T

dT

dx

1

2
meb0 I2�

3

2
I1

� �
+ e2 τeExb0 I1 (11.84)

Qx ¼ � me τe
2

1

T

dT

dx

meb0
2

I3�
3

2
I2

� �
+ eExb0 I2

� �
(11.85)

where

I1 ¼
ð
v2x f0 E, Tð Þd3v (11.86)

I2 ¼
ð
v2xv

2 f0 E, Tð Þd3v (11.87)

I3 ¼
ð
v2xv

4 f0 E, Tð Þd3v (11.88)

The integrals I1, I2, and I3 can be solved analytically for the Maxwell-Boltzmann distribution in polar coordinates assuming

vx
2¼vy

2¼vz
2¼v2/3 and they are given by

I1 ¼
ne

meb0
(11.89)

I2 ¼
5ne

m2
eb

2
0

(11.90)

I3 ¼
35ne

m3
eb

3
0

(11.91)

Substituting the values of the integrals from Eqs. (11.89)–(11.91) into Eqs. (11.84), (11.85), we find

Jx ¼
nee

2τe
me

Ex +
neeτe
meb0

1

T

dT

dx
(11.92)

Qx ¼ � 5ne τe
2meb

2
0

eExb0 + 2
1

T

dT

dx

� �
(11.93)

The thermal conductivity is measured when no electric current passes through the solid, that is, Jx ¼ 0. So, for Jx ¼ 0,

Eq. (11.92) gives

eExb0 ¼ � 1

T

dT

dx
(11.94)

Substituting Eq. (11.94) into Eq. (11.93), the heat current density becomes

Qx ¼ �sT
dT

dx
(11.95)

sT ¼
5ne τe

2meb
2
0T

(11.96)
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Here sT gives the thermal conductivity of a solid. In metallic solids Lorentz defined a parameter, usually called the Lorentz

number, as

LN ¼ sT
s0T

(11.97)

Substituting the values of s0 and sT from Eqs. (11.62), (11.96), the classical theory yields the value as

LN ¼ 5

2

kB
e

� �2

(11.98)

Eq. (11.98) shows that the electrical and thermal conductivities, determined by using the Boltzmann transport equation,

satisfy the Wiedemann-Franz-Lorentz law. But the Lorentz number LN given by Eq. (11.98) is not in agreement with

the experimental results, which shows that the electrons cannot be assumed to be classical particles, but rather that they

should be treated as quantum particles.

11.7.2 Quantum Theory

Sommerfeld treated electrons as quantum particles obeying the Fermi-Dirac distribution function defined by Eq. (11.66).

Therefore, the general expression for Jx and Qx given by Eqs. (11.75), (11.76) involve the Fermi-Dirac distribution function

f0(E,m,T) and its derivatives. In the equilibrium state of the system, the energy is constant in space, that is, dE/dx¼0. Hence

the derivatives of f0(E,m,T) can be written as

∂f0
∂x

¼ ∂f0
∂m

dm
dx

+
∂f0
∂T

dT

dx
(11.99)

∂f0
∂vx

¼ ∂f0
∂E

∂E

∂vx
¼ mevx

∂f0
∂E

(11.100)

Eq. (11.100) is the same as Eq. (11.78). From Eq. (11.66) the derivatives of f0(E,m,T) are given by

∂f0
∂E

¼ �2b0
me

2pħ


 �3 eb0 E�mð Þ

eb0 E�mð Þ + 1½ �2
(11.101)

∂f0
∂m

¼� ∂f0
∂E

(11.102)

∂f0
∂T

¼ � E�m
T

∂f0
∂E

(11.103)

Substituting Eqs. (11.102), (11.103) into Eq. (11.99), we get

∂f0
∂x

¼�∂f0
∂E

T
d

dx

m
T


 �
+
E

T

dT

dx

� �
(11.104)

Substituting the values of ∂ f0/∂x and ∂ f0/∂vx from Eqs. (11.104), (11.100) into Eqs. (11.75), (11.76), we can write

Jx ¼�e

ð
d3v τe vð Þv2x

∂f0
∂E

eEx + T
d

dx

m
T


 �
+
E

T

dT

dx

� �
(11.105)

Qx ¼
ð
d3v τe vð Þv2xE

∂f0
∂E

eEx + T
d

dx

m
T


 �
+
E

T

dT

dx

� �
(11.106)

Changing thevariableof integration fromv toEusingEq. (11.44),wecanwriteEqs. (11.105), (11.106) in polar coordinates as

Jx ¼� 8p
3m2

e

2

me

� �1=2 ð∞
0

dEE3=2 τe Eð Þ ∂f0
∂E

e2Ex + eT
d

dx

m
T


 �
+
eE

T

dT

dx

� �
(11.107)

Qx ¼
8p
3m2

e

2

me

� �1=2 ð∞
0

dEE5=2 τe Eð Þ ∂f0
∂E

eEx + T
d

dx

m
T


 �
+
E

T

dT

dx

� �
(11.108)
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To solve for Jx and Qx we define an integral

In ¼� 8p
3m2

e

2

me

� �1=2 ð∞
0

dEEn+
1
2 τe Eð Þ ∂f0

∂E
(11.109)

where n is an integer. Therefore, in terms of In, we can write expressions for Jx and Qx as follows:

Jx ¼ e2Ex + eT
d

dx

m
T


 �� �
I1 +

e

T

dT

dx
I2 (11.110)

Qx ¼� eEx + T
d

dx

m
T


 �� �
I2�

1

T

dT

dx
I3 (11.111)

To calculate the values of Jx and Qx we have to evaluate the integral In. Substituting f0(v, T) from Eq. (11.66) into

Eq. (11.109) and integrating by parts, we obtain

In ¼C

ð∞
0

dE f0 E, m, Tð Þ d

dE
En+

1
2 τe Eð Þ

� �
(11.112)

where

C¼ 16p
3m2

e

2

me

� �1=2
me

2pħ


 �3

(11.113)

Here f0(E, m, T) is given by Eq. (11.32). If we make the substitution

h xð Þ¼ d

dx
xn+

1
2 τe xð Þ

� �
(11.114)

then

H Eð Þ¼
ðE
0

h xð Þdx¼En+
1
2 τe Eð Þ (11.115)

Now the integral In can be written as

In ¼C

ðE
0

dEf0 E, m, Tð Þh Eð Þ (11.116)

In is the Fermi distribution function integral (see Appendix I) and its solution is given by

In ¼C 1+
p2

6

∂
2

∂y2
+⋯

� �
H mð Þ (11.117)

where

y¼ m
kBT

¼ b0m (11.118)

So Eqs. (11.115), (11.117), and (11.118) give

In ¼ C mn +
1
2 τe mð Þ+ pkBTð Þ2

6

d2

dm2
mn +

1
2 τe mð Þ

� 

+⋯

" #
(11.119)

From Eq. (11.119) the integrals I1, I2, and I3 are given by

I1 ¼
16p
3m2

e

2

me

� �1=2
me

2pħ


 �3

m3=2 τe mð Þ+ pkBTð Þ2
6

d2

dm2
m3=2 τe mð Þ

n o
+⋯

" #
(11.120)

I2 ¼
16p
3m2

e

2

me

� �1=2
me

2pħ


 �3

m5=2 τe mð Þ+ pkBTð Þ2
6

d2

dm2
m5=2 τe mð Þ

n o
+⋯

" #
(11.121)

Transport Phenomena Chapter 11 235



I3 ¼
16p
3m2

e

2

me

� �1=2
me

2pħ


 �3

m7=2 τe mð Þ+ pkBTð Þ2
6

d2

dm2
m7=2 τe mð Þ

n o
+⋯

" #
(11.122)

The electrical conductivity is measured at a particular temperature; therefore, dT=dx¼ dm=dx¼ 0. Hence from

Eq. (11.110) Jx is given by

Jx ¼ e2 I1Ex (11.123)

which gives the electrical conductivity as

s¼ e2 I1 ¼
16pe2

3m2
e

2

me

� �1=2
me

2pħ


 �3

m3=2 τe mð Þ+ pkBTð Þ2
6

d2

dm2
m3=2 τe mð Þ

n o
+⋯

" #
(11.124)

Substituting m¼ EF and considering τe(EF) to be a constant, one can solve the second term of Eq. (11.124), which, after

simplification gives

s¼ nee
2 τe EFð Þ
me

1 +
1

8
p2

kBT

EF

� �2

+⋯

" #
(11.125)

It should be noted that the first term of Eq. (11.125) gives the same value as in Eq. (11.72) and the second term is a cor-

rection to it. But at room temperature, kBT≪EF and hence the correction term is very small and can be neglected in com-

parison with the first term to give

s¼ s0 ¼
ne e

2 τe EFð Þ
me

(11.126)

The thermal conductivity is measured in the absence of electric current. Hence, by putting Jx ¼ 0, Eq. (11.110) yields the

condition

eEx +T
d

dx

m
T


 �
¼� 1

T

dT

dx

I2
I1

(11.127)

Substituting Eq. (11.127) into Eq. (11.111), the thermal current becomes

Qx ¼�sT
dT

dx
(11.128)

with

sT ¼
1

T

I1 I3� I22
I1

(11.129)

The value of sT can be obtained by substituting the values of I1, I2, and I3 from Eqs. (11.120), (11.121), and (11.122). If one

retains only the first terms in I1, I2, and I3, then the term (I1 I3� I2
2)/I1 vanishes. The finite value of (I1 I3� I2

2)/I1 is obtained

by retaining at least the first two terms in each of the integrals I1, I2, and I3, which gives

I1 I3� I22
I1

¼ nep
2

3me

τe mð Þ kBTð Þ2 (11.130)

Substituting Eq. (11.130) into Eq. (11.129), the thermal conductivity becomes

sT ¼
nep

2

3me

τe mð Þk2BT (11.131)

Hence, the thermal conductivity at m¼ EF is given by

sT ¼
nep

2

3me

τe EFð Þk2BT (11.132)
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The value of the Lorentz number, in the quantum theory of Sommerfeld, is obtained by substituting the values of s0 and sT
from Eqs. (11.126), (11.132) into Eq. (11.97), giving

LN ¼ p2

3

kB
e

� �2

(11.133)

Eq. (11.133) gives the value of LN that agrees with the experimental results of the Wiedemann-Franz-Lorentz law.

11.8 HALL EFFECT

The conductivity measurements do not give any information about the sign of the charges responsible for conduction in

solids. To study the nature of the charge carriers responsible for the electric current and hence the conductivity, one has to

study the Hall effect. Consider a metallic solid in the form of a slab (see Fig. 10.4) with electric and magnetic fields applied

in the x- and z-directions, that is,

E¼ î1Ex (11.134)

H ¼ î3Hz (11.135)

If q and mq are the charge and mass of the charge carriers responsible for conduction, then the Lorentz force acting on them

is given by Eq. (10.53). The charge carriers, in a metallic material, are electrons, but in a semiconductor the charge carriers

consist of both electrons and holes.

In the equilibrium state, the distribution function is independent of position, that is, — rf¼ 0, therefore, the Boltzmann

transport equation, given by Eq. (11.18), becomes

∂f

∂t

����
coll

¼ F

mq

� rvf (11.136)

The Lorentz force produces a perturbation f1 in the distribution function and hence the perturbed distribution function f

becomes

f¼ f0 + f1 (11.137)

Substituting Eq. (11.137) into Eq. (11.136), we find

∂f

∂t

����
coll

¼ F

mq

rvf0 +rvf1ð Þ (11.138)

In the relaxation time approximation, the rate of change of the distribution function due to collisions is given by Eq. (11.19),

which, when substituted in Eq. (11.138), can be written as

f¼ f0� τq
F

mq

� rvf0�
τq
mq

F � rvf1 (11.139)

where τq is the relaxation time for the charge carriers. But

rv f0 ¼ îv
∂f0
∂v

¼ îv
∂f0
∂E

∂E
∂v

¼mqv
∂f0
∂E

(11.140)

Here ı̂v is the unit vector in the direction of velocity v. Therefore, the distribution function in the presence of the Lorentz

force is given by

f¼ f0� τq v �Fð Þ ∂f0
∂E

� τq
mq

F � rvf1 (11.141)

Substituting Eq. (10.53) into Eq. (11.141), we obtain the distribution function up to the first order,

f¼ f0�qτq v �Eð Þ ∂f0
∂E

� qτq
mqc

v�Hð Þ �rvf1 (11.142)
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Here the term containing E �— vf1 is neglected, as it is a second-order term. Comparing Eqs. (11.137), (11.142), the change

in distribution function due to the Lorentz force is given by

f1 ¼�qτq v �Eð Þ ∂f0
∂E

� qτq
mqc

v�Hð Þ �rvf1 (11.143)

We want to find the current density due to the distribution function given by Eq. (11.142). To use our previous knowledge

for calculating the current density due to an electric field (see Section 11.6), we reduce the distribution function to a form

similar to that given by Eq. (11.46). To do so we define an effective electric field Eeff such that f1, given by Eq. (11.143),

reduces to

f1 ¼ �qτq v �Eeffð Þ ∂f0
∂E

(11.144)

and hence the distribution function f can be written as

f¼ f0 + f1 ¼ f0 � qτq v �Eeffð Þ ∂f0
∂E

(11.145)

To find the relationship between E and Eeff we calculate the velocity derivative of f1 from Eq. (11.144) given by

rv f1 ¼ �qτq mqv v �Eeffð Þ ∂
2f0
∂E2

+Eeff

∂f0
∂E

� �
(11.146)

Substituting Eq. (11.146) into Eq. (11.142), we get

f¼ f0� qτq v �Eð Þ ∂f0
∂E

+
qτq


 �2

mqc
v�Hð Þ �Eeff

∂f0
∂E

(11.147)

The last two terms of Eq. (11.147) give the perturbation f1 in the distribution function, which, when equated to f1 given by

Eq. (11.144), yields

E¼ Eeff +
qτq
mqc

H�Eeffð Þ (11.148)

This equation gives the relationship between E and Eeff.

The current density due to the charge carriers with charge q and distribution function f(v,E) is given by

J¼ q

ð
v f v, Eð Þ d3v (11.149)

Substituting Eq. (11.145) into Eq. (11.149) and using the equilibrium state condition given by Eq. (11.3), we get

J¼ � q2
ð
v v �Eeffð Þ τq vð Þ ∂f0

∂E
d3v (11.150)

If the electric field is applied in the x-direction, then the charged particles move along the x-direction with velocity v¼ î1vx.

Therefore, Eq. (11.150) can be written as

J¼�q2
ð
v2xEeff τq vð Þ ∂f0

∂E
d3v

¼�q2

3

ð
v2Eeff τq vð Þ ∂f0

∂E
d3v

(11.151)

Here Eeff is the component of Eeff along the x-direction. In writing Eq. (11.151) we have substituted the average of the

square of velocities in the Cartesian directions (see Eq. 11.52). Now one can solve Eq. (11.151) in the same way as in

Section 11.6 and can straightway obtain the relation

J ¼ s0Eeff (11.152)
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with

s0 ¼
nqq

2 τq EFð Þ
mq

(11.153)

Substituting the value of Eeff from Eq. (11.152) into Eq. (11.148), we get

E¼ J

s0
+

qτq
mqcs0

H�J

¼ J

s0
+

1

nqqc
H�J

(11.154)

If the magnetic field is zero the second term in Eq. (11.154) goes to zero yielding the familiar expression for conductivity.

The second term gives the component of the electric field perpendicular to both J andH, that is, the transverse electric field

usually called the Hall field, which is produced by the combined effect of the electric andmagnetic fields. The coefficient of

the second term is called the Hall constant and is given by

RHC ¼
1

nqqc
(11.155)

(see Eq. 10.57). In metals the conductivity is due to the flow of electrons (q¼ �e), which yields a negative value of the Hall

coefficient, that is,

RHC ¼� 1

neec
(11.156)

In n-type semiconductors the Hall coefficient is also negative as the majority carriers are electrons. But in p-type semi-

conductors the Hall coefficient is positive as the majority carriers are holes with positive charge, that is, q¼e, and

RHC ¼
1

nhec
(11.157)

Here nh is the density of holes.

11.9 MOBILITY OF CHARGE CARRIERS IN SOLIDS

In a crystalline solid the conduction is due to the motion of free charges. Suppose that the magnitude of the charges is q. If an

electric field E is applied to the solid, the charges experience a force, which produces an acceleration in their motion.

During the accelerated motion charges suffer collisions with the lattice ions and impurities that are present in the solid

and continuously lose kinetic energy. Ultimately, the charges acquire some constant average velocity vd, usually called

the drift velocity. The expression for vd can be obtained from simple arguments. When a particle with charge q and mass

mq moves in an electric field E, the acceleration produced is given by

a ¼ F

mq

¼ qE

mq

(11.158)

If a constant average velocity vd is achieved in the relaxation time τq for the charge q, then one can write

vd ¼ aτq ¼
qτq
mq

E (11.159)

The above expression can be written as

vd ¼ mqE (11.160)

where

mq ¼
qτq
mq

(11.161)
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Eq. (11.160) shows that the drift velocity is linearly proportional to the electric field and the constant of proportionality mq is
called the mobility of the charge carriers. According to Eq. (11.160) the mobility of a charge carrier is defined as the average

drift velocity per unit field.

The expression for mq can also be obtained from the Boltzmann transport equation. The current density J produced by

the charges is given by

J¼ nqqvd (11.162)

where nq is the density of charges. From Eqs. (11.160), (11.162) we get

mq ¼
J

nqqE
(11.163)

With the help of Eq. (11.53), the current density is given by

J¼ sE¼ �q2E

3

ð
v2

∂f0
∂E

τq vð Þ d3v (11.164)

Therefore, from Eqs. (11.163), (11.164), the general expression for the mobility of charge q becomes

mq ¼�1

3
q

ð
v2

∂f0
∂E

τq vð Þd3vð
f0 v, tð Þd3v

(11.165)

In the above expression the density of charges nq has been taken from Eq. (11.55). The integrals in Eq. (11.165) can be

evaluated using the Maxwell-Boltzmann or the Fermi-Dirac distributions in the same way as was done earlier. Using the

Maxwell-Boltzmann distribution given by Eq. (11.56), mq reduces to

mq ¼
qτq
mq

(11.166)

In the above derivation, the relaxation time τq is assumed to be a constant, but actually it is a function of the velocity or energy.

Assuming the charges to be quantumparticles (e.g., electrons or positrons), the Fermi-Dirac distribution given byEq. (11.66)

should be used. Solving the integrals in Eq. (11.165) using the Fermi-Dirac distribution (see Section 11.6), one obtains

mq ¼
q τq EFð Þ

mq

(11.167)

which is the familiar result. Note that Eqs. (11.166), (11.167) involve the magnitude of the charge, that is, q¼ qj j.

Problem 11.1

Let the relaxation time be a function of the energy E:

τq Eð Þ¼ τ0E
p (11.168)

where p is a rational number. Assuming the Maxwell-Boltzmann distribution for f0(v, t) in Eq. (11.165), prove that the mobility is

given by

mq ¼
4

3
ffiffiffi
p

p kBTð Þp qτ0
mq

G p+
5

2

� �
(11.169)

where G(p+5/2) is the gamma function.

To estimate the average relaxation time and mobility, consider a physical example with p ¼� 1. Then, from Eq. (11.169),

we get

mq ¼
4

3
ffiffiffi
p

p 1

kBT

qτ0
mq

G
3

2

� �
¼ 2

3

qτq Eð Þ
mq

(11.170)
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with

τq Eð Þ¼ τ0
kBT

¼ τ0
E

(11.171)

If we write the mobility as

mq ¼
q τq Eð Þ
D E
mq

(11.172)

then the average relaxation time hτq(E)i can be written as

τq Eð Þ
D E

¼ 2

3
τq Eð Þ (11.173)

Thus, the Boltzmann equation gives the same result as given by Eqs. (11.166) or (11.167), but here the average relaxation

time is used. Further, the numerical factor 2/3 is not much different from unity and the deviation from unity is comparable

with the experimental error due to the inhomogeneity of the sample material used.

Inmetallic solids, conduction occurs because of the motion of free electrons. Hence themobility of the electrons is given

by

me ¼
e τe EFð Þ

me

(11.174)

But in semiconductors, there are both electrons and holes and they both contribute to the mobility. One can easily obtain the

mobility contribution of the holes along similar lines to what was done above to obtain

mh ¼
e τh EFð Þ

mh

(11.175)

Assuming the relaxation times for both electrons and holes to be the same, that is, τe(EF)¼ τh(EF), the net mobility m in a

semiconductor is given by

m¼ me + mh ¼ e τe EFð Þ 1

me

+
1

mh

� �
(11.176)

In n-type semiconductors the majority carriers are electrons, while in p-type semiconductors they are holes. Substituting the

value of τe(EF) from Eq. (11.174) into Eq. (11.72), one gets the expression for conductivity due to electrons as

se ¼ neeme (11.177)

Similarly, one can obtain the expression for the conductivity due to the holes as

sh ¼ nhemh (11.178)

where nh is the density of holes. Therefore, the total electrical conductivity s in a semiconductor is the sum of the electron

and hole contributions, that is,

s¼ se + sh ¼ neeme + nhemh (11.179)

In an intrinsic semiconductor the density of electrons and holes is the same, that is, ne¼nh, but in an extrinsic semiconductor

the two are unequal.

Problem 11.2

The resistivity, electron density, and effective mass of the electrons in Cu metal are given as:

m∗
e ¼ 1:01 me

ne ¼ 8:5�1028=m3

r¼ 1:7�10�8O m

Find the relaxation time at the Fermi surface τe(EF). If the Fermi velocity of the electrons is vF ¼ 1:55�106m=s, find themean free

path of the electrons in Cu metal at the Fermi surface.
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The free-electron theory of metals was developed in Chapter 9. It explained, in a satisfactory manner, a number of elec-

tronic properties, such as electrical and thermal conductivities, specific heat, thermionic emission, and paramagnetic sus-

ceptibility. The most important achievement of the free-electron approximation is the precise definition of conduction

electrons. Unlike the classical theory, it shows that only those free electrons in the vicinity of the Fermi energy participate

in conduction. But the free-electron theory could not explain why some solids behave as metals, others as insulators, and

still others as semiconductors. It also could not explain other properties, such as the transport properties. The free-electron

theory yields only negative values of the Hall coefficient as the charge carriers are simply the electrons. Further, exper-

imental studies show that the Fermi surface is nonspherical in most of the metals, which contradicts the free-electron

approximation.

In solids there are electrons (core or valence electrons) and nuclei, which interact among themselves. As a result, a finite

crystal potential arises that obeys the periodicity of the lattice (Chapter 1). Therefore, in explaining the various properties of

crystalline solids, the crystal potential must be incorporated in the theory. As mentioned earlier in Chapter 3, an exact

calculation of the crystal potential is not possible due to the many-body nature of the problem. Therefore, to study the

electronic properties, particularly the electronic energy bands in crystalline solids, some simplifying approximations

are made: the one-electron approximation is made for the wave function and energy and the crystal potential is estimated

in the self-consistent approximation. Let us first examine the nature of the electron wave function in a crystalline solid.

12.1 BLOCH THEOREM

12.1.1 One-Dimensional Solid

Consider a one-dimensional monatomic crystalline solid with “a” as the periodicity and length L¼Na (see Fig. 12.1).

Let V(x) be the self-consistent crystal potential in the one-electron approximation that satisfies the periodicity of the crystal,

that is,

V x + að Þ¼V xð Þ (12.1)
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The Schrodinger wave equation for a one-dimensional solid is written as

H
_

e ck xð Þj i¼Ek ck xð Þj i (12.2)

where jck(x)i and Ek represent the one-electron wave function and energy, respectively, for the electron state with wave

vector k. H
_

e represents the one-electron Hamiltonian defined as

H
_

e ¼� ħ2

2me

d2

dx2
+V xð Þ (12.3)

The Bloch theorem states that the wave functions for a wave equation with periodic potential V(x) are of the form

ck xð Þj i¼ eikxuk xð Þ (12.4)

Here uk(x) is a scalar function that satisfies the periodicity of the lattice, that is,

uk x + að Þ¼ uk xð Þ (12.5)

The wave function given by Eq. (12.4) is generally called the Bloch function. It is evident from Eq. (12.4) that the Bloch

function is a plane wave modified by the periodic potential of the lattice. It is noteworthy that the Bloch functions are the

general one-electron wave functions for an ideal crystalline solid.

Consider a translation operator T(a)¼{I ja} (see Chapter 1), which, when it acts on the wave function, translates it by

the distance a so that

T að Þ ck xð Þj i¼ ck x + að Þj i (12.6)

Applying the translation operator on the left side of the Schrodinger wave equation given by Eq. (12.2), we write

T að ÞH_e ck xð Þj i¼ � ħ2

2me

d2

d x + að Þ2 +V x + að Þ
" #

ck x + að Þj i¼H
_

e T að Þ ck xð Þj i (12.7)

Eq. (12.7) shows that T(a) commutes with H
_

e, that is,

H
_

e,T að Þ
h i

¼ 0 (12.8)

where [ ] represent the commutation brackets. From elementary quantum mechanics we know that the commutating oper-

ators T(a) and H
_

e possess simultaneous eigenfunctions. Because H
_

e is a constant of motion, T(a) is also a constant of

motion. So, one can write

T að Þ ck xð Þj i¼C0 ck xð Þj i (12.9)

where C0 is a constant. From Eqs. (12.6), (12.9) one can write

ck x + að Þj i¼C0 ck xð Þj i (12.10)

FIG. 12.1 The attractive atomic potential Va(x) and the

crystal potential V(x) for a monatomic linear lattice with

“a” as the periodicity. Here V(x), for simplicity, is obtained

by the linear combination of atomic potentials.
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Similarly, one can show that

ck x + 2að Þj i¼C2
0 ck xð Þj i (12.11)

and so on. In general, one can show that

ck x +Lð Þj i¼ ck x +Nað Þj i ¼CN
0 ck xð Þj i (12.12)

The cyclic boundary condition of the finite crystal demands

ck x +Lð Þj i¼ ck xð Þj i (12.13)

From Eqs. (12.12), (12.13) one gets

CN
0 ¼ 1¼ ei2pn (12.14)

where n¼0,�1,�2, … Eq. (12.14) gives the value of C0 as

C0 ¼ e2pi
n
N (12.15)

Substituting the value of C0 in Eq. (12.10), we write

ck x + að Þj i¼ e2pi
n
N ck xð Þj i (12.16)

The above equation immediately yields

ck x + að Þj j2 ¼ ck xð Þj j2 (12.17)

Eq. (12.17) shows that the probability density also satisfies the periodicity of the lattice. But we know that k has got discrete

values given by (see Eq. 9.12)

k¼ 2pn
Na

(12.18)

From Eqs. (12.16), (12.18) one gets

ck x + að Þj i¼ eika ck xð Þj i (12.19)

Eq. (12.19) is usually called the Bloch condition. It can be easily shown that Eqs. (12.4), (12.19) are equivalent if the

function uk(x) satisfies the periodicity of the lattice. From Eq. (12.4) one can write

ck x + að Þj i¼ eik x + að Þuk x + að Þ
or

ck x + að Þj i¼ eika ck xð Þj i (12.20)

which is nothing but the Bloch condition. Hence the general wave functions for a one-dimensional crystal with periodic

potential are the Bloch wave functions defined by Eq. (12.4).

12.1.2 Three-dimensional Solid

Consider a three-dimensional lattice with a1, a2, and a3 as the primitive translation vectors. Let the dimensions of the crystal

along the three Cartesian directions be given by L1¼N1a1, L2¼N2a2, and L3¼N3a3 where N1, N2, and N3 are integers.

The general lattice vector Rn in the direct space is given by Eq. (1.5). In a perfect crystalline solid the crystal potential

exhibits the periodicity of the lattice, that is,

V rð Þ¼V r+Rnð Þ (12.21)

In the presence of the periodic potential, all the physical properties of a solid remain the same when a translation in made

through a direct lattice vector. The Schrodinger wave equation in three dimensions is given by

H
_

e ck rð Þj i ¼Ek ck rð Þj i (12.22)
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where the Hamiltonian is given by

H
_

e ¼� ħ2

2me

r2 +V rð Þ¼� ħ2

2me

d2

dr2
+V rð Þ (12.23)

Let us define the translation operator as T(Rn)¼{I j Rn}, then one can show that

T Rnð Þ,H_e

h i
¼ 0 (12.24)

Therefore, T(Rn) is a constant of motion and both T(Rn) and H
_

e possess simultaneous eigenfunctions. Operating T(Rn) on

Eq. (12.22) from left-hand side and using Eq. (12.24), we get

H
_

eT Rnð Þ ck rð Þj i¼EkT Rnð Þ ck rð Þj i (12.25)

From Eqs. (12.22), (12.25) it is evident that both j ck(r)i and T(Rn) jck(r)i are eigenfunctions of H
_

e with the same energy

eigenvalue. Therefore, these eigenfunctions differ only by a constant and can be written as

T Rnð Þ ck rð Þj i¼C0 ck rð Þj i (12.26)

or

ck r+Rnð Þj i ¼C0 ck rð Þj i (12.27)

According to the translational symmetry of the crystal, the translation of a position vector by a direct translation vector

changes only the origin, but the environment of the new position vector remains the same. Therefore, the probability density

must be the same at both the position vectors, that is,

ck r+Rnð Þj j2 ¼ ck rð Þj j2 (12.28)

By using Eq. (12.27) the above equation yields

C0

�� ��2 ¼ 1 (12.29)

To find the parameter C0 let us use the following properties of the translation operator:

T Rnð ÞT Rn0ð Þ ck rð Þj i¼ ck r+Rn +Rn0ð Þj i ¼T Rn +Rn0ð Þ ck rð Þj i (12.30)

T Rnð ÞT Rn0ð Þ ck rð Þj i¼C0C
0
0 ck rð Þj i (12.31)

The properties given by Eqs. (12.30), (12.31) are satisfied if one assumes

C0 ¼ eik �Rn (12.32)

Substituting the value of C0 into Eq. (12.27), one gets

ck r+Rnð Þj i¼ eik �Rn ck rð Þj i (12.33)

which is nothing but the Bloch condition. Eq. (12.33) is satisfied by the Bloch functions, defined as

ck rð Þj i ¼ eik � ruk rð Þ (12.34)

Here uk(r) is a scalar function that satisfies the periodicity of the lattice, that is,

uk r+Rnð Þ¼ uk rð Þ (12.35)

The Bloch functions define the general wave functions for the electrons in a crystalline solid. The possible values of the

electron wave vector k in the Bloch functions are obtained from the cyclic boundary condition on the wave function, which

is given as

ck rð Þj i¼ ck r +Lð Þj i¼ ck r+N1a1 +N2a2 +N3a3ð Þ�� �
(12.36)

Using Eq. (12.34) for the wave function in Eq. (12.36), we write

eik � N1 a1 +N2 a2 +N3 a3ð Þ ¼ 1 (12.37)
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Here we have used the fact that uk(r) satisfies the periodicity of the crystal. As the primitive vectors a1, a2, and a3 are

independent, so the exponential terms involving these vectors will separately be unity, that is,

eik �N1 a1 ¼ 1¼ ei2pn1

eik �N2 a2 ¼ 1¼ ei2pn2

eik �N3 a3 ¼ 1¼ ei2pn3

From the above equations one gets

k � a1 ¼
2pn1
N1

(12.38)

k � a2 ¼
2pn2
N2

(12.39)

k � a3 ¼
2pn3
N3

(12.40)

For an sc structure a1 ¼ a î1, a2 ¼ a î2, and a3 ¼ a î3, therefore, one can write the wave vector k as

k¼ 2p
a

n1
N1

î1 +
n2
N2

î2 +
n3
N3

î3

� �
(12.41)

In the same way, one can find the expression for k in different structures.

12.2 THE KRONIG-PENNEY MODEL

With knowledge of the electron wave function, one can study the behavior of conduction electrons in a crystalline solid in

the presence of a periodic crystal potential. The one-dimensional Kronig-Penney model is a very simple mathematical

exercise, which explains beautifully the nature of the energy bands in a crystalline solid. In this model, the periodic potential

is assumed to be an array of square-well potentials (see Fig. 12.2) defined as follows:

V xð Þ ¼ V0 for �b< x< 0

¼ 0 for 0< x< a
(12.42)

Here, as a rough approximation, the potential in the vicinity of an atom is approximated by the potential energy well. The

Schrodinger wave equation for the electron state with wave vector k in the two regions is given by

d2

dx2
ca
k xð Þ�� �

+
2meEk

ħ2
ca
k xð Þ�� � ¼ 0 for 0< x< a (12.43)

d2

dx2
cb
k xð Þ�� �

+
2me

ħ2
Ek�V0ð Þ cb

k xð Þ�� �¼ 0 for �b< x< 0 (12.44)

FIG. 12.2 Schematic representation of the

periodic square-well potential with periodicity a+b

for a monatomic lattice.
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If the energy Ek of the electrons is smaller than the potential V0, then one can define real quantities as

a2k ¼
2meEk

ħ2
, b2k ¼

2me

ħ2
V0�Ekð Þ (12.45)

Substituting Eq. (12.45) into Eqs. (12.43), (12.44), one can write

d2

dx2
ca
k

�� �
+ a2k ca

k

�� �¼ 0 for 0< x< a (12.46)

d2

dx2
cb
k

�� ��b2k cb
k

�� �¼ 0 for �b< x< 0 (12.47)

Let us suppose that the solutions of the above equations are the Bloch functions defined as

ca
k xð Þ�� �¼ eikxuak xð Þ (12.48)

cb
k xð Þ�� �¼ eikxubk xð Þ (12.49)

Substituting Eqs. (12.48), (12.49) into Eqs. (12.46), (12.47), one can write

D2 + 2ikD+ a2k�k2
� �� 	

uak xð Þ¼ 0 for 0< x< a (12.50)

D2 + 2ikD� b2k + k
2

� �� 	
ubk xð Þ¼ 0 for �b< x< 0 (12.51)

where

D¼ d

dx
(12.52)

Eq. (12.50) has a nontrivial solution if the coefficient of uk
a(x) is zero, which gives

D¼ i ak�kð Þ and � i ak + kð Þ
Hence the solution of Eq. (12.50) for uk

a(x) becomes

uak xð Þ¼Aei ak�kð Þx + Be�i ak + kð Þx for 0< x< a (12.53)

Similarly, the solution of Eq. (12.51) can be obtained and is given by

ubk xð Þ¼C e bk�ikð Þx +De� bk + ikð Þx for �b< x< 0 (12.54)

To find the solutions for uk
a(x) and uk

b(x), one needs to know the constants A, B, C, and D appearing in Eqs. (12.53), (12.54).

These constants can be determined by using the continuity conditions given below:

uak 0ð Þ¼ ubk 0ð Þ, uak að Þ¼ ubk �bð Þ (12.55)

duak
dx

� �
x¼0

¼ dubk
dx

� �
x¼0

,
duak
dx

� �
x¼a

¼ dubk
dx

� �
x¼�b

(12.56)

The conditions on the left side of Eqs. (12.55), (12.56) represent the requirement of continuity of the wave functions at the

origin, while those on the right side represent the periodicity of the wave functions and their derivatives. Substituting

Eqs. (12.53), (12.54) into Eqs. (12.55), (12.56), one can write

A +B¼C+D (12.57)

i ak�kð ÞA� i ak + kð ÞB¼ bk� ikð ÞC� bk + ikð ÞD (12.58)

Aei ak�kð Þa + Be�i ak + kð Þa ¼Ce� bk�ikð Þb +De bk + ikð Þb (12.59)

Ai ak�kð Þei ak�kð Þa�Bi ak + kð Þe�i ak + kð Þa ¼C bk� ikð Þ e� bk�ikð Þb�D bk + ikð Þ e bk + ikð Þb (12.60)

These are homogeneous equations in A, B, C, and D and have nontrivial solutions if and only if the determinant of the

coefficients of A, B, C, and D is zero, that is,
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1 1 �1 �1

i ak�kð Þ �i ak + kð Þ � bk� ikð Þ bk + ikð Þ
ei ak�kð Þa e�i ak + kð Þa �e� bk�ikð Þb �e bk + ikð Þb

i ak�kð Þei ak�kð Þa �i ak + kð Þe�i ak + kð Þa � bk� ikð Þe� bk�ikð Þb bk + ikð Þe bk + ikð Þb

���������

���������
¼ 0 (12.61)

Solving the above determinant, one gets

b2k�a2k
2akbk

sinh bk b sinaka + cosh bkb cos aka¼ cos k a + bð Þ (12.62)

To obtain the energy band structure one has to solve Eq. (12.62), which is complex in nature. Kronig and Penney simplified

the problem by assuming the potential barrier to be a delta function potential, that is, V0 approaches infinity as b approaches

zero such that V0b is finite and much less than unity. In this approximation

bk ¼
2me

ħ2
V0

� �1=2

, bkb≪1, b≪a, and ak≪bk (12.63)

Using Eq. (12.63) to simplify Eq. (12.62), one can write

P
sin ak a
ak a

+ cos ak a¼ cos ka (12.64)

where

P¼me aV0b

ħ2
(12.65)

Therefore, P is proportional to the area under the potential barrier, that is, V0b, and is the measure of the strength of the

barrier potential. In other words, P gives the binding of an electron to the potential well: the greater the value of P, the

greater the binding of the electron to the potential well.

Fig. 12.3 shows the plot of the left side of Eq. (12.64) as a function of aka for P¼3p/2. As ak is proportional to Ek, the

abscissa is the measure of energy. Now the right side of Eq. (12.64) has values ranging from�1 to +1. Therefore, only those

values of energy that satisfy Eq. (12.64) are allowed. The values of energy corresponding to the shaded regions in Fig. 12.3

are allowed. From Fig. 12.3 the following interesting conclusions can be drawn:

1. The energy spectrum of the electrons consists of a number of allowed energy bands separated by forbidden energy gaps.

2. According to Eq. (12.64) the energies are allowed if cos ka ranges from�1 to +1. Therefore, the range of k values is as

follows:

k¼�np
a
! np

a

for the nth band. Hence for the 1BZ, the k values range from �p/a to p/a and for the

2BZ these range from �p/a to �2p/a and from p/a to 2p/a and so on.

FIG. 12.3 A graph of P sinaka/aka+cosaka as a function of aka with P¼3p/2 for a linear monatomic lattice. The shaded regions represent the allowed

energy bands, while the white spaces between the shaded regions represent the forbidden energy gaps.
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3. The width of the allowed energy band increases while that of the forbidden energy gap decreases with an increase in the

value of aka, that is, with an increase in the value of energy. This is a consequence of the fact that the first term of

Eq. (12.64) decreases on average with an increase in the value of ak a.
4. The width of a particular allowed energy band decreases with increasing P value, that is, with increasing binding energy

of the electrons. One can study Eq. (12.64) in the limiting cases. If the electrons are not bound (free electron case), then

P¼ 0 and Eq. (12.64) reduces to

cos ak a¼ cos ka

or
ak a¼ ka (12.66)

Substituting the value of ak from Eq. (12.45) into Eq. (12.66), one gets

Ek ¼
ħ2k2

2me

(12.67)

which is nothing but the energy of a free electron. On the other hand, if the electrons are tightly bound, then P¼∞. In this

case the first term of Eq. (12.64) becomes finite only if

sin ak a¼ 0

which gives

ak a¼ np (12.68)

Substituting the value of ak in the above equation, one gets

Ek ¼En ¼
n2p2ħ2

2mea
2

(12.69)

These are the energy levels of a particle in a box of atomic dimensions and with finite potential.When the potential becomes

infinite (P¼∞), the tunneling of an electron through the barrier becomes impossible and the allowed energy spectrum

becomes a line spectrum. Fig. 12.4 shows a plot of the energy as a function of P (binding) and we see that for P¼0 there

are no bands, that is, the energy is quasicontinuous. Also, for P¼∞ , there are no bands but the line spectrum.

FIG. 12.4 A plot of energy E as a function of parameter P, which gives the strength of

the barrier potential. On the left side of 1, the value of P decreases, while it increases on

the right side.
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12.3 NEARLY FREE-ELECTRON THEORY

The Kronig-Penney model does not represent a physical system, except that the electron wave functions are assumed to be

the Bloch functions in the presence of a periodic square-well potential. In this section we study the nature of energy bands in

a crystalline solid with self-consistent periodic crystal potential V(r). The crystal potential V(r) can be taken to be the linear

combination of self-consistent atomic potentials Va(r) as

V rð Þ¼
X
n

Va r�Rnð Þ (12.70)

The Schrodinger wave equation for a three-dimensional solid is given by

� ħ2

2me

r2 +V rð Þ

 �

ck rð Þj i¼Ek ck rð Þj i (12.71)

As the simplest approximation, one can assume V(r) to be a weak potential. In this approximation, the conduction electrons

in the crystalline solid behave as nearly free electrons and, therefore, this approximation is called the nearly free-electron

approximation. One can use perturbation theory to evaluate Ek and jck(r)i in the presence of a weak periodic potential. In
the absence of a potential, Eq. (12.71) reduces to

� ħ2

2me

r2


 �
c0
k rð Þ�� �¼E0

k c0
k rð Þ�� �

(12.72)

which is the wave equation for the free electrons. The unperturbed wave function is a plane wave jki defined as

c0
k rð Þ�� �¼ 1ffiffiffiffi

V
p eik � r ¼ kj i (12.73)

where

V¼NV0 (12.74)

Here V0 and V are the atomic volume and crystal volume and N is the total number of atoms. Operating on Eq. (12.72) with

hck
0
0(r)j from the left side and simplifying, one can write

E0
k ¼ kh j� ħ2

2me

r2 kj i ¼ ħ2k2

2me

(12.75)

In the presence of a weak potential the plane waves are no longer independent of each other. Therefore, the perturbed wave

function up to the first order jck(r)i is obtained by taking a linear combination of plane waves as

ck rð Þj i¼ c0
k rð Þ�� �

+
X
k0 6¼kð Þ

Ak0 k c0
k0 rð Þ�� �

(12.76)

where the constants Ak
0
k are given by

Ak0 k ¼
Vk0 k

E0
k�E0

k0
(12.77)

Vk
0
k are the matrix elements of V(r) between the electron states with wave vectors k

0
and k and they are given by

Vk0k ¼ k0h jV rð Þ kj i ¼ 1

V

ð
e�tk0 � rV rð Þetk � r d3r (12.78)

The perturbed energy, correct up to the second order, is given by

Ek ¼E0
k +Vkk +

X
k0 6¼kð Þ

Vk0 kj j2
E0
k�E0

k0
(12.79)

To calculate jck(r)i and Ek for a solid, one has to evaluate the matrix elements Vk
0
k. The diagonal matrix element Vkk

gives the average crystal potential in the electron state jki and, as a suitable reference of energy, it can be taken as zero,
that is,

Energy Bands in Crystalline Solids Chapter 12 251



Vkk ¼ kh jV rð Þ kj i ¼ 1

V

ð
V rð Þd3r¼ 0 (12.80)

Therefore, the perturbed energy from Eq. (12.79) becomes

Ek ¼E0
k +

X
k0 6¼kð Þ

Vk0 kj j2
E0
k�E0

k0
(12.81)

Substituting the Eq. (12.70) for the crystal potential in Eq. (12.78) and rearranging the terms, one can write

Vk0 k ¼
1

V

X
n

e�i k0�kð Þ �Rn

ð
e�ik0 � r�Rnð ÞVa r�Rnð Þ eik � r�Rnð Þ d3 r�Rnð Þ (12.82)

Here we have used the fact that d3r¼d3(r�Rn). As V
a(r) is the atomic potential, so its normalization constant will be the

atomic volume. Therefore, Eq. (12.82) can be written as

Vk0 k ¼ Sk0 kV
a
k0 k (12.83)

where

Sk0 k ¼
1

N

X
n

e�i k0�kð Þ �Rn (12.84)

Va
k0 k ¼

1

V0

ð
e�i k0�kð Þ � rVa rð Þd3r (12.85)

Vk
0
k
a is nothing but the Fourier transform of the atomic potential, generally called the atomic form factor. Sk0

k describes the

structure of the solid in the reciprocal space and it can be shown that

Sk0 k ¼ 1 if k0 ¼ k�Gp

¼ 0 otherwise
(12.86)

Here Gp is the reciprocal lattice vector (see Eq. 2.30). Therefore, Sk0
k is called the structure factor of the crystal. From

Eqs. (12.83), (12.86) one can write

Vk0 k ¼Vk�Gp k
¼Va

Gp
(12.87)

where

Va
Gp

¼ 1

V0

ð
eiGp � rVa rð Þd3r (12.88)

Substituting Eq. (12.87) into Eqs. (12.76), (12.81), we can write

ck rð Þj i ¼ c0
k rð Þ�� �

+
X

Gp 6¼0ð Þ

Va
Gp

E0
k�E0

k�Gp

c0
k�Gp

rð Þ
��� E

(12.89)

Ek ¼E0
k +

X
Gp 6¼0ð Þ

Va
Gp

��� ���2
E0
k�E0

k�Gp

(12.90)

Eqs. (12.89), (12.90) are valid under the following conditions:

1. VGp

a rapidly approaches zero as Gp increases.

2. The states k and k�Gp are nondegenerate because, for degenerate states, the wave function and energy both blow up

and hence perturbation theory is not valid. For degenerate states

E0
k ¼E0

k�Gp

which gives

kj j2 ¼ k�Gp

��� ���2 (12.91)
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The above equation is equivalent to

Gp

��� ���2�2k �Gp ¼ 0 (12.92)

Eq. (12.92) is the Bragg reflection condition (Ewald’s construction). Therefore, Eqs. (12.89), (12.90) are not valid at or near

the BZ boundary.

At the BZ boundary, one has to use degenerate perturbation theory in which the wave function is represented as a linear

combination of wave functions jck
0(r)i and jck�G

0
p (r)i, that is,

ck rð Þj i¼A0 c0
k rð Þ�� �

+AGp
c0
k�Gp

��� E
(12.93)

Substituting Eq. (12.93) into Eq. (12.71), one gets

A0E
0
k c0

k rð Þ�� �
+AGp

E0
k�Gp

c0
k�Gp

rð Þ
��� E

+V rð Þ A0 c0
k rð Þ�� �

+AGp
c0
k�Gp

��� Eh i
¼Ek A0 c0

k rð Þ�� �
+AGp

c0
k�Gp

rð Þ
��� Eh i

(12.94)

Operating hck
0(r)j on Eq. (12.94) from the left side and simplifying, we get

A0 E0
k�Ek

� 	
+AGp

Va
Gp

h i∗ ¼ 0 (12.95)

Similarly, operating hck�Gp

0(r)j on Eq. (12.94) from the left side and simplifying, we get

A0V
a
Gp

+ E0
k�Gp

�Ek

h i
AGp

¼ 0 (12.96)

Eqs. (12.95), (12.96) have a nontrivial solution if and only if the determinant of the coefficients of A0 and AGp
is zero, that is,

E0
k�Ek Va

Gp

h i∗
Va

Gp
E0
k�Gp

�Ek

������
������¼ 0 (12.97)

Solving the above determinant, the energy is given by

Ek ¼
1

2
E0
k +E

0
k�Gp


 �
� E0

k�E0
k�Gp


 �2
+ 4 Va

Gp

��� ���2
� �1=2

" #
(12.98)

If [Ek�Ek�Gp
]2≫4 j VGp

a j2, then one is quite far away from the BZ boundary and Eq. (12.98) yields

Ek ¼Eo
k (12.99)

Ek ¼Eo
k�G (12.100)

which are nothing but the free-electron energy bands. But if [Ek�Ek�Gp
]2≪4 jVGp

a j2, one is very near the BZ boundary

and Eq. (12.98) reduces to

Ek ¼
1

2
E0
k +E

0
k�Gp


 �
� Va

Gp

��� ��� (12.101)

At the BZ boundary with k¼ (1/2) jGp j, the energies from Eq. (12.101) are given by

E+

1
2
Gp

��� ���¼E0

1
2
Gp

��� ��� + Va
Gp

��� ��� (12.102)

E�
1
2
Gp

��� ���¼E0

1
2
Gp

��� ���� Va
Gp

��� ��� (12.103)

Eqs. (12.102), (12.103) show that the two bands are separated by an energy gap of magnitude Eg¼2 j VGp

a j at the BZ

boundary, corresponding to the vectorGp. It is noteworthy that the magnitude of the band gap at the boundary of a particular

BZ depends on the atomic potential. Further, its magnitude is different at the boundaries of different BZs, even for the same

atomic potential.
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To study the nature of the waveform at the BZ boundary, one has to calculate the coefficients A0 and AGp
. From

Eq. (12.95) one can write

A0

AGp

¼
Va

Gp

h i∗
Ek�E0

k

(12.104)

At the BZ boundary the ratio of coefficients for E+ and E� becomes

A0

AGp

 !
+

¼
Va

Gp

h i∗
E+

1
2
Gp

��� ����E0

1
2
Gp

��� ���
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Va

Gp

h i∗
Va

Gp

vuuut (12.105)

A0

AGp

 !

�
¼

Va
Gp

h i∗
E�
1
2
Gp

��� ����E0

1
2
Gp

��� ���
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Va

Gp

h i∗
Va

Gp

vuuut (12.106)

If the potential is real, then

Va
Gp

h i∗ ¼Va
Gp

¼Va
�Gp

(12.107)

From Eqs. (12.105), (12.106), and (12.107) one gets

A0

AGp

 !
+

¼� A0

AGp

 !
�
¼ 1 (12.108)

From Eqs. (12.93), (12.108) the wave functions at the BZ boundary are given by

c�
1
2
Gp

rð Þ
����

�
¼A0 c0

1
2
Gp

rð Þ
����

�
� c0

�1
2
Gp

rð Þ
����

�
 �
(12.109)

Substituting jck
0(r)i for the required wave vector, from Eq. (12.73), into the above equation, we obtain

c�
1
2
Gp

rð Þ
����

�
¼ A0ffiffiffiffi

V
p ei

1
2
Gp � r� e�i 1

2
Gp � r


 �
(12.110)

Therefore, the two wave functions are given by

c +
1
2
Gp

rð Þ
����

�
¼ 2A0ffiffiffiffi

V
p cos

1

2
Gp � r

� �
(12.111)

c�
1
2
Gp

rð Þ
����

�
¼ 2iA0ffiffiffiffi

V
p sin

1

2
Gp � r

� �
(12.112)

Eqs. (12.111), (12.112) represent standing waves at the BZ boundary, as two plane waves that are exactly the same are

moving in opposite directions. The corresponding probability densities at the BZ boundary are given by

r+
1
2
Gp

rð Þ¼ c +
1
2
Gp

rð Þ
����

����
2

¼ 4A2
0

V
cos2

1

2
Gp � r

� �
(12.113)

r�1
2
Gp

rð Þ¼ c�
1
2
Gp

rð Þ
����

����
2

¼ 4A2
0

V
sin2 1

2
Gp � r

� �
(12.114)

We know that Gp �Rn¼2p n0, where n0 is an integer, therefore,

1

2
Gp �Rn ¼ n0p (12.115)
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From Eqs. (12.113), (12.114) it is evident that r +
1
2
Gp

rð Þ is maximum while r�1
2
Gp

rð Þ is minimum at the lattice positions

defined by Rn. In order to study the behavior of r +
1
2
Gp

rð Þ and r�1
2
Gp

rð Þ in detail, one can apply the general expressions to

one-, two-, and three-dimensional crystalline solids.

12.3.1 Application to One-Dimensional Solid

Consider a monatomic linear lattice along the x-direction with periodicity “a” and length L¼Na (see Fig. 12.1). The

position vector can be written as

r¼ x î1 (12.116)

The reciprocal lattice vector of the linear lattice is given by

Gp ¼
2pp
a

î1 (12.117)

Therefore,

Gp � r¼
2pp
a

x (12.118)

So, the unperturbed wave function is a one-dimensional plane wave defined as

c0
k xð Þ�� �¼ 1ffiffiffi

L
p eikx (12.119)

Substituting Eq. (12.117) into Eqs. (12.102), (12.103), we get

E+
pp=a ¼E0

pp=a +V
a
Gp

(12.120)

E�
pp=a ¼E0

pp=a�Va
Gp

(12.121)

where VGp

a is the Fourier transform of the real atomic potential Va(x) in one dimension and is given by

Va
Gp

¼ 1

a

ða
0

Va xð Þ e2 pipx=adx (12.122)

Hence, at the boundary of the pBZ, there are two energy eigenvalues, namely Epp/a
+ and Epp/a

� , which are separated by the

forbidden energy having value Eg¼ 2 j VGp

a j.
In the free-electron approximation, the energy bands, shown by dashed lines in Fig. 12.5, are parabolic and are degen-

erate at the BZ boundary. With the introduction of a weak periodic potential, the parabolic distribution of electrons is

modified to remove the degeneracy and the energy bands at the BZ boundary are separated by an energy gap of the order

Eg¼2 j VGp

a j. Fig. 12.5 shows the energy bands in the first three BZs in the nearly free-electron approximation.

Substituting Eq. (12.119) into Eq. (12.109), one gets

c +
pp=a xð Þ

��� E
¼ 2A0

L
cos

pp
a
x


 �
(12.123)

c�
pp=a xð Þ

��� E
¼ 2iA0

L
sin

pp
a
x


 �
(12.124)

The wave functions j cpp/a
+ i and j cpp/a

� i represent standing waves. If the atomic potential Va(x) is attractive (Fig. 12.1), that

is, the matrix elements VGp

a are negative, then, from Eqs. (12.120), (12.121), it is evident that Epp/a
+ has a lower value than

Ep p/a
� . Hence, the wave function j cpp/a

+ i corresponds to the lower energy state. The above fact can also be explained with the
help of the electron probability densities, which, for the states j cpp/a

+ i and j cpp/a
� i, are given by

r +
pp=a xð Þ¼ 4A2

0

L
cos2

pp
a
x


 �
(12.125)
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r�pp=a xð Þ¼ 4A2
0

L
sin2 pp

a
x


 �
(12.126)

Fig. 12.6 shows that rpp/a
+ (x) is maximum at the atomic positions and minimum midway between the atoms. Therefore, the

electronic screening of the atoms is maximum in the case of j cpp/a
+ i, thereby lowering the potential energy in comparison

with the average potential energy. On the other hand, rpp/a
� (x) has its minimum value at the atomic sites but is maximum

midway between the atoms. In this case the potential energy is maximum due to the minimum electronic screening. The

wave function jcpp/a
� (x)i corresponds to the higher energy eigenvalue.

The standing waves are formed only if the travelling wave is reflected back in the opposite direction. It can be shown

that the reflection at the BZ boundary is nothing but the Bragg’s reflection. The wave will be Bragg reflected only if the

Bragg reflection condition is satisfied, that is,

2d siny¼ pl (12.127)

Here p is the order of reflection. For normal incidence the above equation reduces to

2d¼ p l (12.128)

In the case of a linear monatomic lattice, d¼a and, therefore, the above equation gives

FIG. 12.5 The band energy Ek as a function of wave vector k in

various BZs of a linear lattice (extended zone scheme) in the nearly

free-electron approximation.

FIG. 12.6 The electron probability densities rpp/a
+ and rp p/a

- for the two types of standing waves formed in a linear lattice in the nearly free-electron

approximation.
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l¼ 2a

p
(12.129)

From the definition of wave vector k (¼2p/l) one gets

k¼ pp
a

(12.130)

which defines the boundary of the pBZ. Therefore, a travelling plane wave with wave vector k¼ �pp/a is reflected back at
the BZ boundary forming the standing wave. In other words, one can say that in a linear lattice the waves, corresponding to

k¼ �pp/a, reflected from one atom interfere constructively with those reflected from the adjacent atoms. The energies of

the two standing waves are different, causing a finite energy gap at the BZ boundary (see Fig. 12.5). The first energy gap

occurs at k¼ �p/a, corresponding to the 1BZ boundary, while the others occur at the boundaries of the higher-order BZs.

The number of electron states in a band can be found using the plane wave function. From the periodicity of the wave

function defined by Eq. (12.119), the allowed values of k in a one-dimensional solid are given by

k¼ 0, �2p
L
, �4p

L
,…, �Np

L
(12.131)

The series has been cut at Np/L as it gives the boundary of the 1BZ. According to Eq. (12.131), in a wave vector of length of

2p/L in k-space, there is one energy state. Hence the total number of electron states in one band is given by

ðp=a
�p=a

L

2p
dk¼ L

2p
2p
a

¼N (12.132)

Therefore, the total number of states in one band is equal to the number of primitive cells or the number of lattice points in

the solid, which is also equal to the number of k-points in one BZ. One should note that each primitive cell contributes one

independent value of k to one energy band. If account is also taken of the spin orientation, then there are 2N independent

states in a band. We can remark here that if in a linear solid the atoms are monovalent, then the valence band will be half

filled with a total of N electrons at absolute zero. But if the atoms are divalent, then the valence band will be completely

filled with 2N electrons.

Problem 12.1

Let the atomic potential Va(r) seen by an electron be represented by a Coulomb potential of the form

Va rð Þ¼ �Ze2

r

Find the Fourier transform VGp

a of the atomic potential.

12.4 DIFFERENT ENERGY ZONE SCHEMES

The electronic energy bands in a crystalline solid calculated either in the Kronig-Penneymodel or in the nearly free-electron

approximation possess the same main features as shown in Figs. 12.3 and 12.5. The energy bands are represented in three

zone schemes as described below.

12.4.1 Extended Zone Scheme

The representation of the nondegenerate energy bands in different BZs, as shown in Fig. 12.5, is usually called the extended

zone scheme. It is an actual representation of the energy bands in which the first band lies in the 1BZ, the second band lies in

the 2BZ, and so on. Further, the value of the energy increases with an increase in the order of the band or the order of the BZ.

12.4.2 Periodic Zone Scheme

The various physical properties of crystalline solids, especially the electronic energy bands, show periodic behavior due to

the periodic nature of the Bloch wave functions. The Bloch wave function is defined as
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ck0 rð Þj i¼ eik
0 � ruk0 rð Þ

If we substitute k
0 ¼k+Gp into the equation above, then

ck0 rð Þj i¼ eik � r eiGp � ruk +Gp
rð Þ

h i

¼ eik � ruk rð Þ ¼ ck rð Þj i
(12.133)

where

uk rð Þ¼ eiGp � ruk+Gp
rð Þ (12.134)

is a periodic function. Eq. (12.134) shows that the values of k are not uniquely defined. According to Eq. (12.133) the Bloch

wave function gets repeated after every reciprocal lattice vector, as is Ek: an energy band is periodic with Gp as the peri-

odicity, that is,

Ek ¼Ek +Gp
(12.135)

The above physical property has also been proved in the nearly free-electron theory. Therefore, every energy band in the

extended zone scheme can be repeated in all the BZs. Such a representation of the energy bands in a one-dimensional solid

is shown in Fig. 12.7 and is usually called the periodic zone scheme.

12.4.3 Reduced Zone Scheme

In the periodic zone scheme, the representation of each energy band is translated to different BZs by adding suitable recip-

rocal lattice vectors. The reverse can also be done, that is, one can bring all of the energy bands to the 1BZ by adding or

subtracting suitable reciprocal lattice vectors. Such a representation of the bands is called the reduced zone scheme.

Fig. 12.8 shows the energy bands of Fig. 12.5 in the reduced zone scheme. This scheme is widely used in the literature

as one can represent a number of bands in a compact way.

From Eqs. (12.89), (12.90) it is evident that the electron energy bands depend on two physical quantities, the crystal

potential V(r) and the electron wave function j ck(r)i. Therefore, the use of different wave functions and crystal potentials
yield different methods for determining the energy bands, such as the orthogonalized plane wave method and the aug-

mented plane wave method. Another extreme state occurs when the electrons are considered tightly bound to the nucleus.

The determination of energy bands in the tight-binding approximation is of interest here as the Schrodinger wave equation

in this approximation can be solved analytically.

FIG. 12.7 The band energy Ek as a function of wave vector k

for the first three bands, labeled as 1, 2, and 3, in all of the BZs

of the linear lattice (periodic zone scheme) in the nearly free-

electron theory.
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Problem 12.2

Let the atomic potential Va(r) be represented by a screened Coulomb potential of the type

Va rð Þ ¼� Ze2

er
where e is the dielectric screening constant. Prove that the Fourier transform VGp

a of this potential is given by

Va
Gp

¼� 4pZe2

eV0G
2
p

Problem 12.3

Draw the free-electron energy bands in the reduced band scheme.

12.5 TIGHT-BINDING THEORY

An atom is associated with a localized wave function, which has maximum amplitude and, hence, maximum probability

density, at the atomic position. The wave functions of two neutral hydrogen (H) atoms separated by a large distance do not

overlap (Fig. 4.8A). As the H atoms are brought closer, their wave functions start to overlap and so do their charge dis-

tributions. The overlap can be described by a linear combination of the wave functions as follows:

c +j i ¼ cAj i+ cBj i (12.136)

c�j i¼ cAj i� cBj i (12.137)

The wave functions for the above combinations are shown in Fig. 4.8B and C. Each combination shares electrons equally

between the two protons. An electron in the state jcAi+ jcBi will possess somewhat lower energy than in the state

jcAi�jcBi for the following reason: In the state jcAi+ jcBi, an electron spends part of its time in the region midway

between the protons and is under the influence of the finite attractive potential of both protons, thereby increasing the

binding energy of the state. But in the state jcAi�jcBi, the potential is zero midway between the protons and, hence, the

extra contribution to the binding energy does not appear. We know that for greater binding, the energy eigenvalue is

FIG. 12.8 The band energy Ek as a function of wave vector k for the first three bands, labeled as 1, 2, and 3, in the 1BZ of a linear lattice (reduced zone

scheme) in the nearly free-electron theory.
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lower and, hence, the state is more stable. So jcAi+ jcBi represents a more stable state as compared with the state

jcAi�jcBi. It is for this reason that jcAi+ jcBi is called the bonding state, while jcAi�jcBi is called the antibond-
ing state. Thus, as the two atoms are brought closer, the single energy state is split up into two states jcAi+ jcBi and
jcAi�jcBi with different energies. In general, when N atoms are brought closer to form a solid, each energy level of an

isolated atom is split into N closely spaced levels, which collectively form an energy band. Thus, all of the energy levels

of an atom become energy bands in a solid. In other words, a state with quantum number n of a free atom is spread out into

a band of energies in a solid. The s-, p-, d-, and higher states of an atom form energy bands and the width of these bands is

proportional to the strength of the overlap interaction between the neighboring atoms.

Consider the case of a lithium (3Li
7) atom in the ground state. The sharp energy levels of a free 3Li

7 atom are shown in

the left part of Fig. 12.9. In the 1s2 state of a 3Li
7 atom, there are two electrons with opposite spins. Therefore, the 1s2 state

forms a degenerate state and the degeneracy can be broken if a magnetic field is applied. The 2s1 state contains only a single

electron. Let there be a number N of 3Li
7 atoms with no interaction between them. In this case, the 1s2 state each inde-

pendent 3Li
7 atom has the same energy and, hence, is N-fold degenerate. Similarly, the 2s1 state of the independent atoms

is also N-fold degenerate. As the atoms are brought closer, their charge distributions start to overlap and the interaction

energy comes into play. The N-fold degeneracy is broken in each of the 1s2 and 2s1 states due to the Pauli exclusion prin-

ciple and they get split into N states. The 1s2 band will have 2N electrons (each atom contributes two electrons) and will be

completely filled, while the 2s1 band has only got N electrons and is half filled (see Fig. 12.9).

The nature of the energy bands of electrons tightly bound to the nuclei of atoms in a solid form another limiting case. The

wave function of an electron in a free atom is usually called an atomic orbital and the atomic orbitals with different energies

and belonging to different atoms are orthonormal. The Bloch wave function, which fully describes an electron in the

periodic field of the crystal, can be constructed by taking the linear combination of atomic orbitals (LCAO) belonging

to different atoms. This is called the LCAO method and is more suitable for electrons in the inner shells of an atom.

Let Va(r) be the self-consistent atomic potential experienced by an atomic electron at a distance r from the nucleus of

the atom to which it belongs (dashed line in Fig. 12.1). Let the wave function of the electron in a free atom be represented by

the atomic orbital jca(r)i with energy E0. The Schrodinger wave equation for the atomic electron is given by

H
_

a ca rð Þj i ¼E0 ca rð Þj i (12.138)

where H
_

a is the Hamiltonian of an atomic electron and is given by

H
_

a ¼� ħ2

2me

r2 +Va rð Þ (12.139)

Suppose a number N of similar atoms are brought together to form a crystal. The crystal potential is obtained by the super-

position of the atomic potentials and is shown by the continuous curve in Fig. 12.1. Assume that the origin is at the position

of a particular atom, then Rn gives the position of the nth atom. In the tight-binding approximation, it is assumed that an

electron belonging to the nth atom is only slightly influenced by the presence of other atoms. In this approximation, the

wave function of the electron with position vector r and belonging to the nth atom (Fig. 12.10) is given by the atomic orbital

FIG. 12.9 The electronic band structure of a 3Li
7 atom. The left-hand side of the figure shows the sharp energy states of a 3Li

7 atom, while the right side

shows the energy bands in a solid made of 3Li
7 atoms.
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jca(r�Rn)i. The energy of the electron is very close to E0 and, ideally speaking, it is taken to be E0. Now the electronic

wave function with wave vector k in the crystal is the linear combination of the form

ck rð Þj i¼
X
n

Cn kð Þ ca r�Rnð Þj i (12.140)

Here r lies very close to Rn, therefore, all the contributions to the sum will be small except for that from jca(r�Rn)i with
the smallest value of r�Rn. In a crystalline solid an electron experiences a periodic potential, so the wave function must be

of the form of the Bloch function, which restricts the value of Cn(k) to eik�Rn. Therefore, the wave function given by

Eq. (12.140) becomes

ck rð Þj i¼
X
n

eik �Rn ca r�Rnð Þj i (12.141)

Eq. (12.141) satisfies the properties of the Bloch functions. This can be realized by translating the above wave function by a

lattice vector Rm, that is,

ck r +Rmð Þj i¼
X
n

eik �Rn ca r+Rm�Rnð Þj i

which, after simplification, can be written as

ck r+Rmð Þj i¼ eik �Rm ck rð Þj i (12.142)

Eq. (12.142) is nothing but the Bloch condition. The wave function given by Eq. (12.141) can be normalized to unity. Let C

be the normalizing factor, then

ck rð Þj i¼C
X
n

eik �Rn ca r�Rnð Þj i (12.143)

The normalization condition demands that

ck rð Þh jck rð Þi¼ 1¼C2
X
n,m

eik � Rn�Rmð Þ ca r�Rmð Þh jca r�Rnð Þi
" #

¼C2
X
n

ca r�Rnð Þh jca r �Rnð Þi
" #

+ C2
X

n,m n 6¼mð Þ
eik � Rn�Rmð Þ ca r�Rmð Þh jca r�Rnð Þ

2
4

3
5

(12.144)

FIG. 12.10 Showing the position vector r of an electron belonging to an atom at position Rn.
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As the electrons are assumed to be tightly bound to the nucleus, their wave functions are highly localized about the nucleus.

Therefore, the overlap of wave functions of electrons belonging to different nuclei is negligible. To the lowest order approx-

imation, neglecting the overlap of electronic wave functions, the second term on the right-hand side in Eq. (12.144)

becomes zero and each integral of first term of Eq. (12.144) gives unity. With these approximations, Eq. (12.144) gives

C¼ 1ffiffiffiffi
N

p (12.145)

Hence the normalized wave function from Eq. (12.143) becomes

ck rð Þj i ¼ 1ffiffiffiffi
N

p
X
n

eik �Rn ca r�Rnð Þj i (12.146)

The expectation value of energy of an electron with wave vector k is given by

Ek ¼ ck rð Þh jH_e ck rð Þj i (12.147)

Here, H
_

e is the Hamiltonian of an electron in a crystal. Substituting Eq. (12.146) into Eq. (12.147), one can write

Ek ¼
1

N

X
n,m

eik � Rn�Rmð Þ ca r�Rmð Þh jH_e c
a r�Rnð Þj i (12.148)

The Hamiltonian H
_

e can be written as

H
_

e ¼� ħ2

2me

r2 +V rð Þ

¼� ħ2

2me

r2 +Va r�Rnð Þ +V0 r�Rnð Þ
(12.149)

where

V0 r�Rnð Þ¼V rð Þ�Va r�Rnð Þ (12.150)

Va(r�Rn) is the potential seen by an electron at position r due to the atom at positionRn. V
0
(r�Rn) is the difference of self-

consistent potential seen by an electron when all atoms are present and the atomic potential due to the single atom at

position Rn. In other words, V
0
(r�Rn) represents the potential seen by the electron at r resulting from all of the atoms

except the one located at position Rn. Therefore, V
0
(r�Rn) is a weak potential as the overlap is negligible in the

LCAO approximation and can be treated as a perturbation. Further, V
0
(r�Rn) is a negative quantity as the crystal

potential is smaller than the atomic potential (see Fig. 12.1). Substituting Eq. (12.149) into Eq. (12.148) and using

Eq. (12.138), we get

Ek ¼E0�
1

N

X
n,m

eik � Rn�Rmð Þ gmn (12.151)

where

gmn ¼� ca r�Rmð Þh jV0 r�Rnð Þ ca r�Rnð Þj i (12.152)

The summation in Eq. (12.151) can be split into two parts as

Ek ¼E0�
1

N

X
n

gnn�
1

N

X
n,m n6¼mð Þ

eik � Rn�Rmð Þgmn (12.153)

In order to solve the above equation, we make some simplifying approximations. First, we assume that only the 1NN inter-

actions are significant and so we sum over the 1NNs in the last term of Eq. (12.153). Second, it is assumed that the atomic

orbitals are spherically symmetric, that is, that they depend on the magnitude of r�Rn. In this approximation, all the inte-

grals in the last term of Eq. (12.153) become equal and so this term is equal to the magnitude of the single integral multiplied

by the number of the 1NNs. To simplify the notation, we write

g0 ¼ gnn and gmn ¼ g1 (12.154)
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which allows us to write Eq. (12.153) as

Ek ¼E0� g0� g1
X
m

eik � Rn�Rmð Þ (12.155)

The quantities g0 and g1 are positive because V
0
(r�Rn) is always negative. From Eq. (12.155) it is evident that the energy of

an electron in a crystal differs from its energy in a free atom by a constant factor g0 plus a term that depends on the wave

vector and the crystal structure. It is the last contribution in Eq. (12.155) that transforms the discrete energy levels into

energy bands in a solid. Eq. (12.155) gives the general expression for energy in the tight-binding approximation and

one can apply it to different structures.

12.5.1 Linear Monatomic Lattice

Consider a linear monatomic lattice along the x-direction with “a” as its periodicity. Therefore, an atom at Rn (assumed to

be the origin) has two 1NNs with coordinates given by

Rn�Rm ¼ �a, 0, 0ð Þ (12.156)

Substituting the coordinates of the 1NNs in Eq. (12.155), we get

Ekx
¼E0� g0� g1 eikx a + e�ikx a

� �
which can be written as

Ekx
¼E0� g0�2g1 cos kxa (12.157)

The parameters g0 and g1 are given by

g0 ¼� ca xð Þh jV0 xð Þ ca xð Þj i (12.158)

g1 ¼� ca x� að Þh jV0 xð Þ ca xð Þj i (12.159)

The slope of the energy band is given by

dEkx

dkx
¼ 2g1 a sin kxa (12.160)

The value of g1 depends on both the magnitude and sign of jca(x)i and jca(x�a)i. First, we consider the case when both

jca(x)i and jca(x�a)i have the same sign, which yields a positive value of g1. The energy band given by Eq. (12.157) is

plotted in Fig. 12.11A in the 1BZ. In this band, the energy is minimum at kx ¼ 0 and maximum at kx¼p/a. As the value of

FIG. 12.11 The energy band Ekx
as a function of kx for a monatomic linear lattice with periodicity “a” in the tight-binding approximation. In (A) the

parameter g1 is positive, but in (B) g1 is negative.
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cos kxa ranges from�1 to 1, therefore, the width of the energy band is 4g1. In this case the energy is lower so it corresponds
to the state given by Eq. (12.136). The details of the energy band can be investigated from Eqs. (12.157), (12.160). At small

values of kx, the cosine term of Eq. (12.157) can be expanded in a series to write

Ekx
¼E0� g0�2g1 1� kxað Þ2

2
+⋯

 !

¼E0� g0�2g1 + g1 a
2k2x

(12.161)

At small values of kx the band is a parabola with a positive slope, which increases with an increase in kx, but becomes

maximum at kx¼p/2a. After this, the slope becomes negative and decreases, going to zero at the BZ boundary with

kx¼p/a (see Fig. 12.11A). This shows that there is a point of inflection in the energy curve at the midpoint of the 1BZ

with kx¼p/2a. Further, the energy Ekx
is periodic with a periodicity of 2p/a. Hence the unique values of kx are defined

only in the 1BZ. It is noteworthy that apart from the position of zero of energy, Eq. (12.161) is similar to the free electron

energy. To point out the similarity we sometimes write

g1 a
2 ¼ ħ2

2m∗
e

(12.162)

where me
∗ is the effective mass of the electron near kx ¼ 0.

In the second case, jca(x)i and jca(x�a)i have opposite signs, so g1 becomes negative. In this case the parabola is

inverted, that is, the energy is maximum at kx ¼ 0 and minimum at the BZ boundary with kx¼p/a (see Fig. 12.11B). Here
the energy band corresponds to the state given by Eq. (12.137), which has an energy a little more than that of the state

described by Eq. (12.136). There is an important difference between the bands obtained in the nearly free-electron and

tight-binding approximations. In the nearly free-electron approximation, the band is almost a parabola except near the

BZ boundary where it is an inverted parabola. But in the tight-binding approximation, the band has the same symmetry

around the midpoint, at which it exhibits a point of inflection.

12.5.2 Two-Dimensional Square Lattice

In a square lattice the atoms are arranged on a square matrix with “a” as the periodicity. The 1NNs along the x- and y-

direction are (�a,0,0) and (0,�a,0), respectively. So, one can write

Rn�Rm ¼ �a, 0, 0ð Þ, 0, � a, 0ð Þ (12.163)

Substituting Eq. (12.163) into Eq. (12.155) and simplifying, one gets

Ek ¼E0� g0�2g1 cos kxa + cos kya
h i

(12.164)

From Eq. (12.164), the bottom of the energy band is given by

Ek ¼E0� g0�4g1 (12.165)

and the top of the energy band is given by

Ek ¼E0� g0 + 4g1 (12.166)

Therefore, the width of the energy band in a two-dimensional solid is 8g1. The reciprocal lattice of the square lattice is again
a square lattice but with periodicity 2p/a. Therefore, the 1BZ is a square with side 2p/a. From Eq. (12.164) it is evident that

the energy is a periodic function of k. The unique values of the Cartesian components of k in the 1BZ are given as

�p
a
� kx, ky �

p
a

(12.167)

Let us examine the nature of the constant energy surfaces in the tight-binding approximation. For very small values of

k the cosine terms in Eq. (12.164) can be expanded in terms of series and, retaining only the lowest order terms in k,

one can write

Ek ¼E0� g0�4g1 + g1 a
2k2 (12.168)
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Again, near the bottom of the band, the energy bands are parabolic, as in the case of free electrons. Therefore, for small k

values the constant energy surfaces are circular in nature. In this region the electrons can be assumed to be free with an

effective mass me
∗
. From Eq. (12.168) one can write

m∗
e ¼

ħ2

2g1 a2
(12.169)

which is the same result as in the case of a one-dimensional solid. In the tight-binding approximation, the value of me
∗ is

large because of the small value of g1, which is a measure of the overlap of the wave functions of the 1NNs. In other words,

the electrons cannot move freely in the bands with small bandwidths. At the top of the first band (1BZ boundary),

kx¼ky¼ �p/a and this gives

cos kxa¼ cos kya¼ �1 (12.170)

In the reduced zone scheme, the corners correspond to the states at the top of the band. In the vicinity of these corners one

can expand the cosine term in a series. The expansion of the coskxa term around a corner can be written as

cos kxa¼ cos p� p
a
�kx


 �
a

h i
¼ cos p�k0x a

� �¼�cos k0x a (12.171)

where

k0x ¼
p
a
�kx (12.172)

Here kx
0 is measured relative to the corner. Therefore, for small values of kx

0, one can expand the cosine term as

cos kxa¼�cos k0x a¼�1 +
k0x a
� �2

2
+⋯ (12.173)

Similarly, one can expand coskya. Substituting these expansions into Eq. (12.164), one can write

Ek0 ¼E0� g0 + 4g1� g1 a
2k02 (12.174)

where

k02 ¼ k02x + k
02
y (12.175)

Eq. (12.174) shows that the energy bands near the top are also parabolic in shape, giving rise to circular constant energy

surfaces. The nature of the bands away from the bottom and top of the band can also be studied. Suppose we are interested in

the constant energy bands having energy

Ek ¼E0� g0 (12.176)

Then, from Eq. (12.164), we have

cos kxa + cos kya¼ 0

From the above equation kx can be written in terms of ky and vice versa as follows:

cos kxa¼�cos kya¼ cos � p�kya

 �n o

(12.177)

cos kya¼ cos � p�kxað Þf g (12.178)

Eqs. (12.177), (12.178) yield

kx ¼�p
a
�ky (12.179)

ky ¼�p
a
�kx (12.180)

Note that Eq. (12.179) represents a straight line passing through the points (p/a,0) and (0,p/a) and the second set of points are
(�p/a,0) and (0,p/a). Similarly, Eq. (12.180) represents straight lines passing through the two sets of points (0,p/a), (p/a,0)
and (0,�p/a), (p/a,0). With the knowledge of these points, one can draw constant energy straight lines having value E0�g0.
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The constant energy curves in the 1BZ of the square lattice are shown in Fig. 12.12A in the tight-binding approximation. This

clearly shows that the energy bands are circular near the bottom and top of the band, but become flat as we move toward the

center of the band. Fig. 12.12B shows the constant energy curves obtained in the nearly free-electron theory. It is noteworthy

that in the nearly free-electron approximation, the k2 dependence of the bands (and hence the circular constant energy lines)

extend to much larger values of the wave vector than in the tight-binding approximation. The circular constant energy lines

near the top of the band (near the corners of the BZ) extend to only small values of the wave vectors.

12.5.3 Three-Dimensional sc Lattice

In a solid with sc structure, there are six 1NNs with coordinates given by

Rn�Rm ¼ �a, 0, 0ð Þ, 0, � a, 0ð Þ, 0, 0, � að Þ (12.181)

Substituting the coordinates of 1NNs from Eq. (12.181) into Eq. (12.155), one can write

Ek ¼E0� g0�2g1 cos kxa + cos kya + cos kza
h i

(12.182)

The width of the energy band in a three-dimensional solid is 12g1 and all the energy levels are contained in it. In the tight-
binding approximation, the value of g1 is small due to the small overlap of the wave functions, which yields narrow bands

(bands with small bandwidths). The inner electron energy levels give rise to very narrow bands in a solid because of further

decreases in the overlap. The reciprocal lattice of an sc structure with periodicity “a” is again an sc lattice but with peri-

odicity 2p/a. Therefore, the 1BZ is a cube of edge 2p/a. The energy is a periodic function of k (Eq. 12.182) and its values

are uniquely defined in the 1BZ as

�p
a
� kx,ky,kz �

p
a

(12.183)

FIG. 12.12 The constant energy surfaces in the (kx,ky) plane for a square lattice in (A) the tight-binding approximation; and (B) the nearly free-electron

approximation. (Modified from Dekker, A. J. (1971). Solid state physics (p. 262). London: Macmillan Press.)
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The nature of the constant energy surfaces in a three-dimensional solid can be examined in the same way as in a two-

dimensional solid. For very small values of k, one can expand the cosine terms in series and can retain only the lowest

order terms in k to write

Ek ¼E0� g0�6g1 + g1 a
2k2 (12.184)

So, near the bottom of the band, the energy bands are parabolic, as in the case of free electrons, and the constant energy

surfaces are spherical. In this region electrons can be assumed to be free with an effective mass me
∗ given by (Eq. 12.184)

m∗
e ¼

ħ2

2g1 a2
(12.185)

The value of me
∗ is large because of the small value of g1. At the top of the first band, kx¼ky¼kz¼ �p/a, giving

cos kxa¼ cos kya¼ cos kza¼�1 (12.186)

By defining the Cartesian components of the wave vector relative to the corners of the 1BZ, it can easily be proved that

Ek0 ¼E0� g0 + 6g1� g1 a
2k02 (12.187)

where

k02 ¼ k02x + k
02
y + k

02
z (12.188)

and

k0x ¼
p
a
�kx (12.189)

k0y ¼
p
a
�ky (12.190)

k0z ¼
p
a
�kz (12.191)

Eq. (12.187) shows that near the top the energy bands are also parabolic in shape, giving rise to spherical constant energy

surfaces. The nature of all of the bands and the constant energy surfaces in an sc solid can be calculated in the xy-, yz-, and

zx-planes of the 1BZ in exactly the same manner as in the two-dimensional solid. It is found that the energy bands are

parabolic near the bottom and top of the band, but become flat as we move toward the midpoint of the band. In other words,

one can say that the constant energy surfaces are spherical near the center and the corners of the 1BZ and become flat as one

moves away from them.

Problem 12.4

Show that in the tight-binding approximation, the energy Ek for

(a) a bcc lattice is given by

Ek ¼ E0� g0�8g1 cos kxað Þ cos kya

 �

cos kzað Þ (12.192)

(b) an fcc lattice is given by

Ek ¼ E0� g0�4g1 cos kxað Þ cos kya

 �

+ cos kya

 �

cos kzað Þ+ cos kzað Þ cos kxað Þ
h i

(12.193)

Here 2a is the cube edge. Also show that for small values of k the energy is proportional to k2. Further, discuss the shape of the

constant energy surfaces in the k-space.

The real wave function in a crystalline solid is shown in Fig. 12.13. It is evident from the figure that the real wave function is

oscillatory in nature near an atom (more precisely within the ion core) due to the localized core states, but behaves like a

plane wave midway between the atoms. This shows that an electron is neither free nor tightly bound. Further, Fig. 12.13

suggests that the conduction electron wave function can be obtained by taking a linear combination of the plane waves and

core states. There are different ways to have a linear combination of the plane waves and the core states, thus yielding

different methods for the determination of the energy bands in solids.
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12.6 ORTHOGONALIZED PLANE WAVE (OPW) METHOD

In a metallic solid there are conduction states, represented by plane waves jki and core states jfc(r)i. The subscript c

denotes the quantum numbers along with the position of the ion. The core states are orthogonal to each other, which is

represented mathematically as

fc rð Þh jfc0 rð Þi¼ dcc0 (12.194)

Both the conduction and core states are eigenfunctions of the same one-electron Hamiltonian H
_

e, so

H
_

e kj i ¼Ek kj i (12.195)

H
_

e fc rð Þj i¼Ec fc rð Þj i (12.196)

where Ec is the energy of a core state in the crystalline solid, which is different from the core energy in an isolated ion. The

real conduction electron wave function is constructed by taking a linear combination of the plane waves and core states in

such a way that it is orthogonal to the core states. Such a conduction state is called an orthogonalized plane wave (OPW) and

is defined as

kOPW
�� �¼ kj i�

X
c

fc rð Þj i fc rð Þh kj i (12.197)

Eq. (12.197) can be written as

kOPW
�� �¼ 1�Pð Þ kj i (12.198)

where

P¼
X
c

fc rð Þj i fc rð Þh j (12.199)

P is the projection operator onto the core states. Now it is straightforward to prove the orthogonality of the OPWs and the

core states, that is,

kOPW
� ��fc rð Þi¼ 0 (12.200)

But the OPWs are not orthogonal to each other. One can easily prove that

k0OPW
� ��kOPW�¼ dk0 k�

X
c

k0h jfc rð Þi fc rð Þh jki (12.201)

In a crystalline solid the general conduction electron wave function jc(r)i is taken as a linear combination of OPWs, that is,

c rð Þj i ¼
X
k

ak kOPW
�� �¼ 1�Pð Þ cs rð Þj i (12.202)

where

cs rð Þj i¼
X
k

ak kj i (12.203)

jcs(r)i is a linear combination of plane waves and is called a pseudowave function. Due to the presence of core states, an

OPW decreases much faster with an increase in the value of k and, therefore, gives a significant contribution only at small

FIG. 12.13 The Bloch wave function jck(r)i oscillates near the
atomic sites due to the presence of localized core states, while,

between the atomic sites, the wave function behaves like a plane

wave. Near the atomic sites the crystal potential V(r) is strong

and attractive, but between the atomic sites the potential is weak

and flat in nature. The dashed line shows the pseudowave function

jcs(r)i.
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values of k. jcs(r)i is a smooth wave function and is shown in Fig. 12.13 by a dashed line. Note that jcs(r)i is equal
in magnitude to the true wave function (except possibly for normalization) outside the core because the operator P is

zero there. So, the real wave function may be obtained simply by orthogonalizing the pseudowave function to the core

states with the operator 1�P and then renormalizing it. The one-electron Schrodinger wave equation satisfied by jc(r)i
is written as

� ħ2

2me

r2 + V rð Þ

 �

c rð Þj i¼E c rð Þj i (12.204)

Substituting Eq. (12.202) into Eq. (12.204) and rearranging the terms, we get

� ħ2

2me

r2 + W rð Þ

 �

cs rð Þj i¼E cs rð Þj i (12.205)

where

W rð Þ¼V rð Þ+
X
c

E�Ecð Þ fc rð Þj i fc rð Þh j ¼V rð Þ+ E� H
_

e


 �
P (12.206)

W(r) is called the pseudopotential, which is nonlocal in nature, and Eq. (12.205) is called the pseudowave equation, with

jcs(r)i as the pseudowave function. In writing Eq. (12.205) the effect of orthogonality has been transferred from the wave

function to the crystal potential. The energy of the core states Ec is always negative; therefore, the second term of W(r) is

always positive and represents the repulsive contribution to the potential. The repulsive term originates from the orthog-

onality condition, which is frequently ascribed to the Pauli exclusion principle. Therefore, the pseudopotential W(r), which

is the sum of attractive and repulsive contributions, is a weak potential. The noteworthy feature here is that Eq. (12.205) is

the Schrodinger wave equation with a weak potential as in the nearly free-electron theory. Hence, perturbation theory can

be applied to study the electronic properties of solids.

Problem 12.5: Nonuniqueness in Pseudowave Function

The pseudowave function jcs(r)i, given by Eq. (12.203), is the eigenfunction of the pseudowave equation given by Eq. (12.205).

Add a linear combination of core states jfc0i to jcs(r)i to obtain a new pseudowave function jcs
0

(r)i written as

cs0 rð Þ
��� E

¼ cs rð Þj i+
X
c0

ac0 fc0j i (12.207)

where ac0 is a constant. Prove that jcs
0

(r)i is also the eigenfunction of Eq. (12.205) with the same energy.

Problem 12.6

Operate hkOPW

0 j from the left side on Eq. (12.205) and show that

X
k

ak
ħ2k2

2me

�E

 !
dk0 k�

X
c0

k0
� ��fc0 rð Þi fc0 rð Þh jki

( )
+ k0
� ��W rð Þ kj i

" #
¼ 0 (12.208)

From Eq. (12.206) it is evident that the pseudopotential W(r) depends on energy E and vice versa. Therefore, W(r) must be

obtained self-consistently. Solving Eq. (12.205) or Eq. (12.208) one can obtain the energy bands in the OPWmethod. It has

already been pointed out that the OPWs decay much faster with an increase in k value. Therefore, in this method, one uses

either one OPW or two OPWs for the evaluation of the electronic energy bands.

Because of nonuniqueness in the pseudowave function there can be many forms of the pseudopotential. If

in Eq. (12.206) the positive quantity E�Ec is replaced by any function f(E, c), then the pseudopotential W(r) can be

written as

W rð Þ¼V rð Þ+
X
c

f E, cð Þ fc rð Þj i fc rð Þh j (12.209)

With this new pseudopotential, the pseudowave equation (12.205) becomes
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� ħ2

2me

r2 + V rð Þ

 �

cs rð Þj i +
X
c

f E, cð Þ fc rð Þj i fc rð Þh jcs rð Þi¼E0 cs rð Þj i (12.210)

where E
0
is the energy eigenvalue of the new pseudopotential equation. Operating the true wave function hc(r)j from the left

side on Eq. (12.210), one can easily prove that

E0 c rð Þh jcs rð Þi¼ E c rð Þh jcs rð Þi (12.211)

In order for Eq. (12.211) to hold, either the true wave function should be orthogonal to the pseudowave function,

which is not true, or their energies should be equal, which is the case here. It is important to note that all forms

of the repulsive part f(E, c) give the correct energy eigenvalues and eigenfunctions if the pseudowave equation is

solved exactly. In other words, it means that there is no correct pseudopotential, but there are many valid forms

of it. This leads to the formulation of a number of self-consistent pseudopotentials, which are used to study the elec-

tronic properties of the crystalline solids. Another class of pseudopotentials comprises model potentials in which the

fact that the repulsive part f(E, c) can have any form is exploited. There exist a number of model potentials for metals

with different forms of the repulsive contribution and the reader is referred to Harrison (1966) and Galsin (2002) for

further study.

12.7 AUGMENTED PLANE WAVE (APW) METHOD

The actual crystal potential V(r) shown in Fig. 12.13 can be accurately described by a screened Coulomb potential near an

ion, which can be assumed to be spherically symmetric in nature. But, between the ions, V(r) is flat and weak. It should be

noted that V(r) is consistent with the nature of the real wave function, which is oscillatory within the ion core and a plane

wave outside. It has already been pointed out in Chapter 3 that the exact evaluation of V(r) in a crystalline solid is difficult;

therefore, it is usually estimated in some justifiable approximation.

It was discussed in Chapter 1 that a crystalline solid can be divided into identical WS cells with an atom (ion) at the

center. One can draw a sphere of radius RMT, with its center at the center of the WS cell, so that it lies well within the WS

cell (see Fig. 12.14A). Such a sphere is called a muffin-tin (MT) sphere. The radius RMT is such that, within the MT sphere,

the potential can be approximated by a screened Coulomb potential Vion(r) of an ion. But outside the MT sphere, V(r) is
assumed to be constant and preferably zero (by shifting the zero of the energy scale). Such a potential is called an MT

potential. Mathematically, one can write

V rð Þ¼Vion rð Þ for r�RMT

¼ 0 for r iRMT

(12.212)

The MT potential is shown in Fig. 12.14B. In the literature there exist more refined and sophisticated forms of the MT

potential. The wave function jck(r)i is assumed to be spherically symmetric inside the MT sphere, but outside it is in

the form of a plane wave. Both of these wave functions must be continuous on the surface of the MT sphere, that is,

the wave functions and their derivatives must be the same at r¼RMT. In the muffin-tin approximation for the potential,

the wave function is given by

ck rð Þj i ¼
X
‘,m

A‘mR‘ krð ÞYm
‘ y, fð Þ for r�RMT

¼ eik � r for r iRMT

(12.213)

Here R‘(k r) is the radial wave function and Y‘
m(y,f) are spherical harmonics. The wave function defined by Eq. (12.213) is

usually called the augmented plane wave (APW) function and the method of determining the energy eigenvalues using this

wave function is called the APWmethod. The constants A‘m can be obtained from the expansion of a plane wave in terms of

spherical harmonics Y‘
m(y,f) given as

eik � r ¼ 4p
X
‘,m

i‘ j‘ krð ÞYm
‘ y, fð ÞYm∗

‘ y0, f0ð Þ (12.214)

where j‘(k r) is the spherical Bessel function for orbital quantum number ‘. The continuity condition of the wave functions,
given by Eqs. (12.213), (2.214), at r¼RMT gives
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A‘m ¼ 4pi‘
j‘ krð Þ
R‘ krð Þ Y

m
‘
� y0, f0ð Þ (12.215)

The radial wave function R‘(k r) is obtained by solving the radial part of the Schrodinger wave equation given by

� 1

r2
d

dr
r2
dR‘

dr

� �
+

‘ ‘+ 1ð Þ
r2

+
2me

ħ2
V rð Þ


 �
R‘ krð Þ ¼ 2meE

ħ2
R‘ krð Þ (12.216)

for a given energy E. The electron wave function is obtained by taking a linear combination of jck(r)i, that is,
c rð Þj i¼

X
k

Ck ck rð Þj i (12.217)

The coefficients Ck are chosen to minimize the energy of jc(r)i. The energy eigenvalues can be obtained by solving the

Schrodinger wave equation

H
_

e c rð Þj i¼E c rð Þj i (12.218)

Substituting Eq. (12.217) into Eq. (12.218), we obtain

X
k

Ck H
_

e ck rð Þj i�Ek ck rð Þj i
h i

¼ 0 (12.219)

FIG. 12.14 (A) The square lattice is divided intoWS cells having an atom at their centers. TheMT sphere is shown in eachWS cell with the center of the

MT sphere coinciding with the center of the WS cell. (B) The MT potential for a crystalline solid.
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Operating hck
0(r)j on Eq. (12.219) from the left side, we get

X
k

Ck H
_

k0 k�Ek Ik0 k

h i
¼ 0 (12.220)

where

H
_

k0 k ¼ ck0 rð Þh jH_e ck rð Þj i (12.221)

Ik0 k ¼ ck0 rð Þh jck rð Þi (12.222)

The energy eigenvalues for each value of k can be obtained by solving the determinant equation

det H
_

k0 k�Ek Ik0 k

��� ��� ¼ 0 (12.223)

Knowing the values of the energy eigenvalues Ek, the coefficients Ck can be determined from Eq. (12.220). Note that the

matrix elementsH
_

k0 k and Ik0
k depend on Ek and vice versa. Therefore, one has to start with some trial energy eigenvalue Ek

0

and then determine the energy self-consistently. Fig. 12.15 shows energy bands in Cu metal obtained using the APW

method (Snow 1968). It is evident from the figure that the shape of the energy bands is very much different from those

obtained in the nearly free-electron and tight-binding theories. Further, the energy bands along the two symmetry directions

have different values and different shapes.

There are a number of other methods for determining the energy eigenvalues in crystalline solids. One method worth

mentioning here is the Korringa-Kohn-Rostoker (KKR) method. The KKRmethod makes use of the Green’s function tech-

nique for determining the energy bands in a solid, but it is not in the scope of this book. The interested reader may consult

Galsin (2002) and Callaway (1974) for a brief account of this method.

12.8 DYNAMICS OF ELECTRONS IN ENERGY BANDS

An electron in a bandmay not be free tomove, but rather its motion depends on the energy state occupied by it in a particular

energy band. In other words, the velocity and effective mass of the electron may not remain constant throughout the energy

band. In the previous sections, the band energy Ek has been calculated using different methods, but here we calculate the

effective mass of an electron using a simple form of energy band, as shown in Fig. 12.16. For simplicity it is assumed that

the BZ under consideration contains only one electron. From the wave mechanical theory, the velocity of an electron is

equal to the group velocity of the wave packet that is given by the standard relation as

FIG. 12.15 Energy bands in Cu metal along the symmetry directions [100] and [111], calculated using the APW method. The dashed line denotes the

Fermi energy EF. (After Snow, E. C. (1968). Self-consistent energy bands of metallic copper by the augmented plane wave method II. Physical Review, 171,

785–789.)
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vk ¼
do kð Þ
dk

¼ 1

ħ
dEk

dk
(12.224)

where o(k) is the angular frequency for the wave vector k. From Eq. (12.224) it is evident that vk depends on the first

derivative of the energy curve and acceleration, therefore, on the second derivative. Fig. 12.16 shows vk as a function

of k for a one-dimensional solid. The velocity vk of an electron increases with an increase in the value of Ek and becomes

maximum at the point of inflection occurring at k¼k0. With a further increase in the k value, the velocity decreases and

goes to zero at the BZ boundary. It is evident that vk is zero either at the center of the band or at the BZ boundaries.

The effective mass of the electron mk* can be calculated as a function of k from an energy band. If an electric field E is

applied to the material, then the energy gained by an electron in an energy band is given by

dEk ¼F � dS¼�eE vkdtð Þ (12.225)

where F¼ �eE. Using Eq. (12.224) for vk in Eq. (12.225), one obtains

dk

dt
¼�eE

ħ
(12.226)

Now the acceleration ak∗ can be written as

a∗k ¼
dvk
dt

¼ 1

ħ
d2Ek

dk2
dk

dt
(12.227)

FIG. 12.16 Schematic representation of energy Ek, velocity vk, effective mass mk
∗, and the parameter fk as a function of wave vector k. Here k0 is the

wave vector at the point of inflection in the Ek curves and kBZ is the wave vector at the 1BZ boundary.
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Substituting Eq. (12.226) into Eq. (12.227), one gets

a∗k ¼�eE

ħ2
d2Ek

dk2
(12.228)

With the knowledge of ak∗, mk
∗ of an electron can be estimated from Newton’s law as

m∗
k ¼

F

a∗k
¼ ħ2

d2Ek=dk
2

(12.229)

Eqs. (12.228), (12.229) show the importance of the energy eigenvalue curves derived from band theory. Fig. 12.16

shows that the electron at the center of an energy band (k¼0) has mass equal to the mass of a free electron me, that is,

mk
∗¼me. With an increase in the value of k, the effective mass mk

∗ increases and becomes infinity at the point

of inflection at wave vector k0. With an increase in the value of k compared with k0, the effective mass becomes

very large but negative in sign. With a further increase in k, the mass decreases and reaches the mass of a free elec-

tron but with negative sign at the BZ boundary (Fig. 12.16). These results can be interpreted according to the

discussion below.

From the foregoing, it is evident that an electron behaves as a free particle at the center of a band and that the degree of

freeness decreases with an increase in the value of k. At k¼k0 the electron becomes tightly bound to the nucleus. With a

further increase in the value of k, the degree of freeness of the electron increases again and it becomes completely free at the

BZ boundary. A factor of fk, which measures the degree of freeness of an electron in an energy state with wave vector k in a

three-dimensional solid, can be introduced and is defined as

fk ¼
me

m∗
k

¼me

ħ2
d2Ek

dk2
(12.230)

For a free electron mk
∗¼me, which gives fk¼1, but in the case of a tightly bound electron mk

∗¼∞ and fk¼0. For a one-

dimensional solid, the value of fk as a function of k is plotted in Fig. 12.16 for the given energy band. It is evident from the

figure that fk is positive for the lower part of the band, that is, from k¼0 to k¼k0, and becomes negative in the upper part of

the band.

12.8.1 Behavior of Electrons in Free-Electron Theory

In the free-electron theory the energy is given by

Ek ¼
ħ2k2

2me

(12.231)

Using Eq. (12.231) in Eqs. (12.224), (12.229), one gets

vk ¼
ħk
me

¼ p

me

(12.232)

m∗
k ¼me (12.233)

Therefore, in the free-electron approximation, an electron behaves as a free particle for all values of k, but the velocity

increases linearly with wave vector k. In this approximation

fk ¼ 1 (12.234)

12.8.2 Behavior of Electrons in Tight-Binding Approximation

In the tight-binding approximation (one-dimensional case), the energy is given by

Ek ¼E0� g0�2g1 cos ka (12.235)

Now the velocity in this approximation becomes

vk ¼
2g1 a
ħ

sin ka (12.236)

274 Solid State Physics



So, the velocity varies sinusoidally as shown in Fig. 12.17. The effective mass is given by

m∗
k ¼

ħ2

2g1 a2 cos ka
(12.237)

Eq. (12.237) gives the variation of mk
∗ as a function of k, which is similar to that shown in Fig. 12.16 with the value of mk

∗ at

k¼0 as

m∗
0 ¼

ħ2

2g1 a2
(12.238)

The variation of vk and mk
∗ in the tight-binding approximation is shown in Fig. 12.17. The only difference in the Figs. 12.16

and 12.17 is that the mass at k¼ 0 is different in the two cases. It is noteworthy that in a realistic energy band structure the

point of inflection may not be exactly in the middle of the BZ as it is in the tight-binding approximation. The factor fk, in the

tight-binding approximation, is given as

fk ¼
me

m∗
0

cos ka (12.239)

Here we have used Eqs. (12.230), (12.237), and (12.238). If m0
∗¼me, then

fk ¼ cos ka (12.240)

Eq. (12.240) gives the variation of fk with k, which is similar to that shown in Fig. 12.16. The above treatment of effective

mass can be extended to the three-dimensional case in which mk
∗ is given by (see Eq. 12.229)

1

m∗
k

¼ 1

ħ2
rk � rkEk (12.241)

Eq. (12.241) gives a tensor with nine components of the general form ∂
2Ek/∂ka∂kb.

12.9 DISTINCTION BETWEEN METALS, INSULATORS, AND SEMICONDUCTORS

The classification of elements as metals, insulators, and semiconductors is done on the basis of electrical conductivity,

which in turn depends on the number of free electrons present. The energy band theory employing the periodic potential

FIG. 12.17 Variation of the velocity vk and effective mass mk
∗ in the tight-binding approximation (one-dimensional case).
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of the lattice allows us to distinguish between metals, insulators, and intrinsic semiconductors. The factor fk, which gives

the degree of freeness of an electron in the k state, plays an important role in making this distinction.

We demonstrate the classification of elements, considering only a single band in one dimension, in Fig. 12.18. Let this

energy band be partially filled with electrons up to the wave vector k1 and let it contain a number Ne of electrons, which may

be partially free. The number of free electrons, Nfree, in the band can be expressed in terms of fk as follows:

Nfree ¼
X
k

fknk ¼
ðk1
�k1

fk nkdk (12.242)

where the summation is over all the occupied states in the band and nk is the density of electron states with wave vector k.

The number of k-states per unit length in the reciprocal space is nk¼L/2p. So, the number of k-states lying between k and k

+dk is given by

nkdk¼ 2
L

2p
dk (12.243)

Here the factor of 2 takes care of the spin degeneracy of the electron states. Hence, the number of free electrons is obtained

by substituting Eqs. (12.230), (12.243) in Eq. (12.242), that is,

Nfree ¼L

p
me

ħ2

ðk1
�k1

d2Ek

dk2
dk (12.244)

The above integral is even; therefore, one can write

Nfree ¼
2meL

pħ2

ðk1
0

d2Ek

dk2
dk ¼ 2meL

pħ2
dEk

dk

����
k1

(12.245)

From Eq. (12.245) it is evident that Nfree depends on the first derivative of Ek at the topmost filled state in the band. This

result allows us to draw the following conclusions:

1. There are no free electrons in a completely filled (completely empty) band because dEk/dk vanishes at the top (bottom)

of the band. Consider a solid in which some energy bands are completely filled while others are completely empty. The

topmost filled band is called the valence band as it contains the valence electrons. The next higher band is empty and

represents the first excited state, usually called the conduction band. In such a solid the conduction and valence bands

are separated by an energy gap Eg, as shown in Fig. 12.19. There are two equivalent representations of the energy bands,

the choice of which is based on convenience. In Fig. 12.19A the energy Ek of the parabolic bands is plotted as a function

of k. Such a representation is useful when the maximum of the valence band and the minimum of the conduction band

occur at different values of k in the BZ. But Fig. 12.19B shows only the energy Ek of the bands and does not give

information about the positions of the maximum andminimum of the bands in the BZ. One should note that the situation

shown in Fig. 12.19 is true only at 0K. At finite temperature, some electrons from the valence band may get excited to

the conduction band, resulting in finite conductivity. If the forbidden energy gap Eg is of the order of several electron

volts (e.g., in diamond Egffi7.0 eV), then the electrons cannot jump from the valence to the conduction band, yielding

FIG. 12.18 Schematic representation of Ek as a function of k for a parabolic energy band filled up to the wave vector k1 in the 1BZ.
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zero conductivity. Such a solid is an insulator for all practical purposes. But for small values of the energy gap, the

number of thermally excited electrons may become appreciable, which is the case in intrinsic semiconductors, such

as Ge (Eg¼0.7 eV) and Si (Eg¼1.1 eV). Therefore, the distinction between insulators and semiconductors is only

a quantitative one. In fact, all of the semiconductors are insulators at T¼0K, whereas all the insulators may behave

as semiconductors at finite temperatures.

2. The value of Nfree increases with an increase in k-value and acquires a maximum value for a band filled up to the point of

inflection, as dEk/dk has its maximum value at this point. Therefore, a solid with a partially filled band exhibits metallic

character. In such solids the electrons may get excited to the higher energy states in the same partially filled band at

finite temperatures (see Fig. 12.20). Alkali metals, such as Na and K, in which the valence band is half filled, are

examples of such solids. It is well known that Ca, Ba, and Sr are also good conductors in which the energy bands

are completely filled. It is because the valence and conduction bands overlap in such solids (see Fig. 12.21) and that

the electrons can move without any hindrance from the valence to the conduction band by receiving even a very small

thermal energy. The overlap of the valence and conduction bands may occur in one or more directions, which will

become clear only by studying from ab initio the energy band structure of a solid in three dimensions. Hence, there

is a possibility that a solid that is an insulator in a one-dimensional study may turn out to be a metal in a three-

dimensional energy band study. It is interesting to note that the conductivity of semiconductors increases with an

increase in temperature, whereas that of metals decreases with an increase in temperature.

FIG. 12.19 (A) The energy Ek is plotted as a function of k for

parabolic valence and conduction bands in a solid separated by a

band gap Eg. The valence band is completely full, while the con-

duction band is completely empty. (B) The valence band with

energy Ev at its top and the conduction band with energy Ec at

its bottom. The valence band is completely full (shown by the

shaded region), while the conduction band is empty. Eg is the

energy band gap between them.

FIG. 12.20 (A) The energy Ek is plotted as a function of k for

parabolic valence and conduction bands in a solid separated by

a band gap Eg. Here the valence band is partially filled, while

the conduction band is empty. (B) Ev and Ec are the energies at

the top and bottom of the valence and conduction bands, respec-

tively, with band gap Eg between them. The electrons in the par-

tially filled valence band make transitions from the filled states

to the empty states. The occupancy of the states in the valence

band is given by the tone of the shade (occupancy increases

with an increase in the tone of the shade). The conduction band

is completely empty.
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13.1 CONSTANT ENERGY SURFACES

The locus of all the points at which the energy Ek has a constant value is called a constant energy surface. The shape of the

constant energy surface depends on the nature of the energy bands. One can define any number of constant energy surfaces

for different values of Ek. In a one-dimensional free-electron gas the energy bands are parabolic in nature and are given by

Ek ¼
ħ2k2

2me

(13.1)

In this case one can define points with constant energy and Fig. 13.1A shows two equidistant points with constant energy

Ek. In a two-dimensional solid, one can define constant energy contours. Fig. 13.1B shows circles as the constant energy
contours in a two-dimensional free-electron gas. But in a three-dimensional solid one can define constant energy surfaces.

In a three-dimensional free-electron gas, the energy bands are parabolic, just as defined by Eq. (13.1), and they yield

spherical constant energy surfaces (see Fig. 13.1C).

13.2 THE FERMI SURFACES

The Fermi surface (FS) is a special constant energy surface and is defined as the locus of all of the points at which the value

of energy is EF. In the preceding chapters, we have discussed the fact that it is the electron states very near the FS that

determine most of the electronic properties of crystalline solids. This is because the electrons in these states can be easily

excited to the vacant states above the FS by the application of a small external field. Hence the nature of energy bands in the

neighborhood of the FS is of primary importance and requires our special attention.

13.3 THE FERMI SURFACE IN THE FREE-ELECTRON APPROXIMATION

In a one-dimensional free-electron gas, the Fermi energy is given by (Eq. 9.50)

EF ¼
ħ2k2F
2me

¼ p2ħ2n2e
2me

(13.2)

where ne is the linear density of electrons. The points at which energy has value EF are equidistant from the center of the

1BZ and are symmetrically spaced on both sides of it (see Fig. 13.1A). In a two-dimensional free-electron gas the Fermi

energy is given by (see Eq. 9.41)
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EF ¼
ħ2k2F
2me

¼ pħ2ne
me

(13.3)

where ne is the surface electron density. The Fermi circle with its center as the center of the 1BZ and radius kF is shown in

Fig. 13.1B. In the three-dimensional free-electron gas the Fermi energy, from Eqs. (9.16), (9.19), is given by

EF ¼ ħ2

2me

3p2
Z

V0

� �2=3

(13.4)

The components of the wave vector k at the 1BZ boundary are given by

kX ¼ ky ¼ kZ ¼�p
a

(13.5)

The FS is a sphere with radius kF having center at the center of the 1BZ of the lattice and is shown in Fig. 13.1C. In the free-

electron approximation, three distinct classes of the Fermi surface are observed.

13.3.1 Type I Fermi Surface

It is evident from Eq. (13.4) that in the free-electron approximation, the value of kF depends upon the electron concen-

tration. In solids with a low electron concentration, the entire FS may lie in the 1BZ. In this case, only the first band (which

FIG. 13.1 (A) Two points having constant energy Ek in a one-dimensional

free-electron gas. The figure also shows two points having Fermi energy EF

lying within the 1BZ. (B) The constant energy circular contours with different

values of energy Ek in the square lattice of a two-dimensional free-electron gas.

The figure also shows the circular contour having Fermi energy EF. (C) The

spherical Fermi surface with constant energy EF in a three-dimensional

free-electron gas.
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lies in the 1BZ) is partially filled, the others are empty. Fig. 13.2 shows, for simplicity, a circular FS for a two-dimensional

square lattice with low electron density.

13.3.2 Type II Fermi Surface

In crystalline solids with a reasonably large concentration of electrons, the FS may extend to the higher order BZs.

Fig. 13.3A shows the FS of a square lattice, which extends to the 2BZ. Here the FS exhibits two partially filled bands:

the first band lies in the 1BZ and the second in the 2BZ. It has already been discussed that all of the significant values

of k lie in the 1BZ. Therefore, it is the usual practice to reduce the FS to the 1BZ (reduced zone scheme).

Fig. 13.3B and C shows the first and second bands in the reduced zone scheme, that is, in the 1BZ. Fig. 13.4A and B

shows the first and second bands of the square lattice in the periodic zone scheme, which are repeated periodically. From

Fig. 13.4A it is evident that the FS for the first band consists of pockets of holes at the corners of the 1BZ, while the FS of the

second band (Fig. 13.4B) exhibits electron pockets at the middle of the sides of the 1BZ. It should be noted that both the

bands in Fig. 13.4 are plotted in the 1BZ and the pieces of the FS that stick out of the zone must be interpreted in the periodic

zone scheme.

13.3.2.1 Electron Orbits

For a changing electron state, the k point with a particular energy changes its position with time. The closed path of the k

point in the reciprocal space is called an orbit and the periodic zone scheme is more suitable (not essential) for its repre-

sentation. It is of particular interest to consider orbits along which the energy is constant and has a value equal to EF. These

orbits provide very useful information about the shape of the FS as they lie on the FS. Moreover, such orbits are exper-

imentally accessible. In two-dimensional crystals such orbits just coincide with the FS itself. Fig. 13.5A shows the part of

the FS for the first energy band in the 1BZ of a two-dimensional electron gas. The orbit corresponding to the hole pockets of

the first band in the reduced zone scheme is a discontinuous one. The motion of an electron in this orbit can be described as

follows:

1. Let an electron start from the state represented by point A and go from state A to state B. The electron is then Bragg

reflected at B and goes to state C. The state C is identical to the state B as it differs from state B by a reciprocal lattice

vector, k¼G.

FIG. 13.2 The Fermi circle of a gas of low-electron-density

free electrons in a square lattice. The dots represent the lattice

points in the reciprocal lattice of a square lattice with periodicity

a. The 1BZ is a square with side 2p/a.
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2. The electron goes from state C to state D and is then Bragg reflected at D and goes to state E.

3. The electron from state E goes to state F and is then Bragg reflected at F and goes to state G.

4. Finally, the electron moves from state G to state H and is then Bragg reflected from here to state A.

The same process can be shown in the periodic zone scheme in which the hole orbit is a continuous one (see Fig. 13.5B).

The reader is also referred to Fig. 13.4A. It is evident that the continuous orbits in the periodic zone scheme are more

appealing and easier to understand than the discontinuous orbits in the reduced zone scheme.

Fig. 13.6A and B shows the electron orbits for the second band in the reduced zone and periodic zone schemes. Again,

the discontinuous orbit in the reduced zone scheme can be visualized as a continuous electron orbit in the periodic zone

scheme. Further, the representation of the electron pockets (situated at the midpoint of each side of the 1BZ) is more

appealing in the periodic zone scheme (also see Fig. 13.4B).

13.3.3 Type III Fermi Surface

In crystalline solids with higher electron concentration, the FS may extend to the higher order BZs. Fig. 13.7A shows a

square lattice in k-space with its FS extending to the 4BZ. The portions of the FS in the 1BZ, 2BZ, 3BZ, and 4BZ, which

show, respectively, the FS sections due to the first, second, third, and fourth bands, can be reduced to the 1BZ (Fig. 13.7B).

It is evident that the FS due to the second band exhibits the orbit of a hole pocket around the center of the 1BZ. The FS

corresponding to the third and fourth bands is disconnected in the reduced zone scheme. The discontinuous electron orbits

for the third and fourth energy bands, in the reduced zone scheme, are shown in Fig. 13.8.

Any band can be plotted in the periodic zone scheme by translating its plot in the reduced zone scheme by all possible

reciprocal lattice vectors. The plot of the second band and its hole orbit in the periodic zone scheme remain the same, as

shown in Fig. 13.7B. Plots of the third and fourth bands are shown in Fig. 13.9, in which the discontinuous electron orbits

FIG. 13.3 (A) The Fermi surface extending to the 2BZ in the square

lattice of a two-dimensional free-electron gas with reasonably large

electron density. (B) The Fermi surface of the first energy band in

the 1BZ of a two-dimensional free-electron gas. (C) The Fermi

surface of the second energy band reduced to the 1BZ in a two-

dimensional free-electron gas.
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are represented by continuous electron orbits. The third and fourth band Fermi surfaces exhibit electron pockets centered at

the corners of the 1BZ. It is noteworthy that the hole orbit corresponding to the second band FS is continuous, even in the

reduced band scheme, in contrast to the third and fourth band FS sections.

13.4 HARRISON’S CONSTRUCTION OF THE FERMI SURFACE

Harrison (1960) gave an elegant method for the construction of an FS corresponding to different bands of a crystalline solid

in the periodic zone scheme. In this method, the reciprocal lattice corresponding to the crystal structure is determined and

the free electron Fermi sphere is drawn around each lattice point. The problem is how to assign the various segments to the

bands. Within each Fermi sphere all the states are occupied, while the states are empty outside. Now if some point, in the

reduced zone scheme, lies within n spheres, then there are n occupied energy bands at that point in the reduced zone scheme

and these bands are ordered in increasing energy. Therefore, the spherical segments, which separate regions of the reduced

zone within n spheres from regions within (n+1) spheres are segments of the FS arising from the nth band, that is, these

FIG. 13.4 The Fermi surface of the (A) first and (B) second energy bands in the periodic zone scheme in a two-dimensional free-electron gas having a

square lattice.
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segments separate occupied regions from unoccupied ones in the nth band. For example, points in the reciprocal space that

lie within at least one sphere correspond to occupied states in the first zone (1st band). Points within at least two spheres

correspond to occupied states in the second zone (2nd band), with similar results for points in three or more spheres. Hence,

the construction of the FS arising from the various bands is reduced to the construction of Fermi spheres and counting them

at a particular point or region.

Fig. 13.10 shows Harrison’s construction of the FS for a square lattice in the free-electron approximation when the

Fermi sphere extends to the 4BZ. It shows the second, third, and fourth bands in the periodic zone scheme. Here the

1BZ has been constructed in two ways. The first is the usual 1BZ, which contains one lattice point at its center and is called

the 1BZ of type (a) for convenience. The second construction of the 1BZ has lattice points at the corners and is called the

1BZ of type (b). The first band fills the whole of the 1BZ. The FS of the second band in the 1BZ of type (a) represents a hole

pocket with a lattice point at its center, while in the 1BZ of type (b) it consists of hole pockets at the corners of the 1BZ (see

Fig. 13.10). The FS of the third band consists of four electron pockets, each at the corner of the 1BZ of type (a), but forming

a rosette at the center of the 1BZ of type (b). The FS of the fourth band consists of four electron pockets at the corners of the

FIG. 13.5 (A) The discontinuous hole orbit of the first band in the 1BZ of a

square lattice in a two-dimensional free-electron gas. (B) The continuous hole

orbit of the first band in the periodic zone scheme of a square lattice in a two-

dimensional free-electron gas.
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1BZ of type (a) but forms a single electron pocket at the center of the 1BZ of type (b). Fig. 13.11 shows the FS of the first

four bands drawn in the 1BZ of type (a), while Fig. 13.12 shows the FS of the third and fourth bands drawn in the 1BZ of

type (b). It is evident from Fig. 13.11 that one gets the same FS as shown in Fig. 13.7.

13.5 NEARLY FREE-ELECTRON APPROXIMATION

In the previous section the effect of the periodic lattice potential on the motion of an electron and on the FS has been

neglected. In reality, an electron experiences the periodic potential of the lattice, which modifies its motion significantly,

and hence modifies the electron energy bands and the Fermi surface in a crystalline solid. In Chapter 12, the nearly free-

electron approximation, which yielded the lowest order improvement in the energy bands, was discussed. Therefore, it is

worthwhile to construct the FS in this approximation and compare the results with those obtained in the free-electron

approximation. In the nearly free-electron approximation the energy bands are modified as the zone boundary is reached

in the following fashion:

1. The energy bands cut the BZ boundary in a perpendicular direction.

2. The bands exhibit an energy band gap at the zone boundary due to the rounding off of the energy bands.

FIG. 13.6 (A) The discontinuous electron orbit of the second band, in the reduced

zone scheme, of a square lattice in a two-dimensional free-electron gas. (B) The con-

tinuous electron orbit of the second band, in the periodic zone scheme, of a square

lattice in a two-dimensional free-electron gas.
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The FS in the nearly free-electron approximation, which extends to the 2BZ, is shown in Fig. 13.13. The FS in the reduced

zone scheme is shown in Fig. 13.14 and in the periodic zone scheme in Fig. 13.15. A comparison of Figs. 13.4 and 13.15

shows that the Fermi surfaces for both the first and second bands, in the nearly free-electron approximation, are rounded off

at the corners. Further, the FS intersects the BZ boundary in the perpendicular direction. It is noteworthy that the total

volume enclosed by the FS depends only on the electron concentration and is independent of the details of the periodic

potential.

FIG. 13.7 (A) The Fermi surface extending up to the 4BZ of the square lattice in a two-dimensional free-electron gas. (B) The Fermi surfaces of the first

four bands, in the reduced zone scheme, of a square lattice in a two-dimensional free-electron gas.
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13.6 THE ACTUAL FERMI SURFACES

Metal is a three-dimensional crystalline solid in which there can be more than one electron energy band lying on or crossing

the FS. Each of these bands will yield a part of the FS, which separates the occupied states from the unoccupied ones. Here

we shall consider only simple metals, which exhibit simple Fermi surfaces.

13.6.1 Monovalent Metals

Monovalent free-electron metals with conduction electrons possessing the s-character constitute the simplest of the metals:

the alkali metals, such as Na and K, constitute such a category. Na metal has a bcc crystal structure with the 1NN distance asffiffiffi
3

p
a=2 and the volume per atom V0¼a3/2. The reciprocal lattice of Na metal has fcc symmetry with the shortest reciprocal

lattice vectors given by (2p/a) (�1,�1,0), (2p/a) (�1,0,�1), (2p/a) (0,�1,�1). The boundary of the 1BZ is at a distance

FIG. 13.8 The discontinuous electron orbits for the (A) third and (B) fourth

bands, in the reduced zone scheme, of a square lattice in a free-electron gas.
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d¼ ffiffiffi
2

p
p=a, which is half of the distance of the 1NN in the reciprocal lattice. For a monovalent metal one can get from

Eq. (9.19)

kF ¼
3p2

V0

� �1=3

(13.6)

For Na metal with a bcc structure one can write, from Eq. (13.6),

kF ¼
6p2ð Þ1=3

a
(13.7)

Hence,

FIG. 13.9 The continuous electron orbits for the (A) third and (B) fourth

bands, in the periodic zone scheme, of a square lattice in the free-electron

approximation.
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FIG. 13.10 Harrison’s construction for the Fermi surface of the

second, third, and fourth bands of a square lattice in a two-

dimensional free-electron metal (the periodic zone scheme).

FIG. 13.11 The Fermi surfaces for the first four bands in the 1BZ of type (a) of the square lattice obtained fromHarrison’s construction in a free-electron

metal (the reduced zone scheme).
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FIG. 13.13 The Fermi surface for a two-dimensional nearly free-electron metal with a square lattice that extends to the 2BZ.

FIG. 13.14 The Fermi surface of the first and second energy bands in a square lattice for a two-dimensional nearly free-electron metal (the reduced zone

scheme).

FIG. 13.12 The Fermi surfaces for the third and fourth bands in the 1BZ of type (b), obtained from Harrison’s construction, which lie at the center of

the 1BZ.

290 Solid State Physics



kF
d
¼ 3ffiffiffi

2
p

p

� �1=3

¼ 0:876 (13.8)

From Eq. (13.8), it is evident that kF<d. Hence, if the Na metal is treated as a free-electron metal, then the whole of the

Fermi sphere will be well within the 1BZ as in Fig. 13.2. But, if Na is assumed to be a nearly free-electron metal, then there

are zone boundary effects, that is, the bands bulge in the outward direction near the zone boundary and intersect it perpen-

dicularly. Because of zone boundary effects, the FS of Na exhibits necks at the centers of the BZ faces (the points at which

the FS reaches out to the zone boundary).

Consider nearly free-electron monovalent metals with fcc crystal structure, such as Cu, Ag, and others. Here the 1NN

distance is
ffiffiffi
2

p
a and the atomic volume is V0¼a3/4. The reciprocal lattice of fcc is bcc and, therefore, the shortest reciprocal

lattice vectors of Cu metal are (2p/a) (�1,�1,�1) and the faces of the 1BZ lie midway to the points (2p/a) (�1,�1,�1),

etc. The distance of the zone face from the center of the 1BZ becomes d¼ ffiffiffi
3

p
p=a. Hence for monovalent Cu metal

kF
d
¼ 4ffiffiffi

3
p

p

� �1=3

¼ 0:91 (13.9)

Again in Cu, kF<d and the FS exhibits necks at the center of the BZ hexagonal faces due to the zone boundary effects. The

FS for Cu in the reduced zone scheme is shown in Fig. 13.16. The figure shows two constant energy orbits: the first one is a

belly orbit labeled as H100, which should appear in the de Haas-van Alphen effect when a magnetic fieldH is applied along

the [100] direction, and the second is a neck orbit labeled as N, which should appear withH along the [111] direction. Note

that in Cu, d-electrons are well below EF except for one d-subband. Therefore, the effect of the d-electrons on the FS is

negligible. But, in general, the d-electrons give rise to strong and anisotropic localized potentials, which make the periodic

lattice potential strong and anisotropic. As a result, the FS suffers large deviations from the nearly free-electron shape.

Problem 13.1

Show that in a monovalent metal with sc structure

kF
d
¼ 3

p

� �1=3

(13.10)

Discuss the FS for such a metal.

13.6.2 Polyvalent Metals

Consider a divalent metal in the free-electron approximation. Using Eq. (9.19), the ratio kF/d is given by

kF
d
¼ 1

d

6p2

V0

� �1=3

(13.11)

Therefore, for divalent metals with different structures, one can write

FIG. 13.15 The Fermi surface of the first and second energy bands in a square lattice for a two-dimensional nearly free-electron metal (in the periodic

zone scheme).
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kF
d
¼ 8ffiffiffi

3
p

p

� �1=3

for fcc structure

¼ 3
ffiffiffi
2

p

p

� �1=3

for bcc structure

¼ 6

p

� �1=3

for sc stucture

(13.12)

Similarly, one can find the ratio kF/d for trivalent metals in the free-electron approximation:

kF
d
¼ 4

ffiffiffi
3

p

p

� �1=3

for fcc structure

kF
d
¼ 9ffiffiffi

2
p

p

� �1=3

for bcc structure

kF
d
¼ 9

p

� �1=3

for sc structure

(13.13)

From Eqs. (13.12), (13.13) it is evident that kF>d; therefore, in the polyvalent metals, the occupied bands extend to the

higher-order BZs. As a result, the FS of polyvalent metals extends to the higher-order BZs. For example, Al, which is tri-

valent, is a nearly free-electron metal as is evident from its electron energy bands. The lower band exhibits 3s character,

while the upper valence bands exhibit 3p character. Further, in Al, the lower 3s band is completely filled with 2N electrons,

while the rest of the N valence electrons are distributed in the 3p bands.

FIG. 13.16 The Fermi surface of the nearly free-electron metal Cu showing necks at the center of the zone faces. X and L are the symmetry points at the

centers of the square and hexagonal faces, respectively, and W is the symmetry point at the corner of the face. (After Burdick, G. A. (1963). Energy band

structure of copper. Physical Review, 129, 138–150.)

292 Solid State Physics



Harrison (1960) studied the FS of Al in the free-electron approximation, which extends to the 4BZ in the extended zone

scheme (Fig. 13.17). It is evident that the first band is completely full with 2N electrons in it. The rest of the N valence

electrons are distributed in the second, third, and fourth bands: in the second band the region around the zone faces is full,

while in the third and fourth bands small electron pockets are formed around the edges and corners, respectively. The

occupied region of the third band, when reduced to the 1BZ, forms a monster-like shape (see Fig. 13.17). The three-

dimensional view of the FS of metals is complex and is still more complex for metals with geometry of low symmetry.

13.7 EXPERIMENTAL METHODS IN FERMI SURFACE STUDIES

A number of powerful experimental techniques have been developed for the study of the FS of metallic solids. Some of

these methods are:

1. de Haas-van Alphen effect

2. Cyclotron resonance

3. Anomalous skin effect

4. Magnetoresistance

5. Ultrasonic propagation in magnetic fields

The de Haas-van Alphen effect and cyclotron resonance exhibit quantization of electronic states in the presence of a mag-

netic field. In these methods the effect of a uniform magnetic field on the electronic motion in k-space can be visualized. It

is from this insight that the shape of the FS in k-space can be determined.

13.7.1 de Haas-van Alphen Effect

DeHaas and Van Alphen, in 1931, discovered that, at low temperatures, the diamagnetic susceptibility wM of pure Bi shows

periodic oscillations when plotted against the high values of an applied magnetic field H. These oscillations display a

FIG. 13.17 The Fermi surface of Al metal in the free-electron model (Harrison, 1960). The first (I) band is completely full. In the second band (II) the

region around the faces is full. In the third band (III) a complex region around the edges with many narrow areas is full. These narrow regions may be

translated and put together to form a monster. In the fourth band there are small pockets around the W points that are full.
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remarkable periodicity when susceptibility is plotted against the inverse of magnetic field (Fig. 13.18). This effect has been

used successfully in determining the extremal cross-sectional areas of the FS. It is a quantummechanical effect arising from

the quantization of the electron orbits in the magnetic field. It is noteworthy that more precise measurements exhibit similar

oscillatory behavior in other properties also, such as conductivity and magnetic resistance. Very weak oscillations have also

been observed in the high-field Hall effect.

We begin by considering the motion of electrons in a uniform magnetic field H, which according to Newton’s second

law of motion gives

ħ
dk

dt
¼ � e

c
v�H (13.14)

According to Eq. (13.14) the electron will travel in an orbit with a shape determined by v andH in real space and the rate of

change of k is a vector normal toH. Therefore, in k-space, the electron wave vector moves in an orbit with its plane normal

to H. Integrating Eq. (13.14) one gets

k¼� e

cħ
r�H (13.15)

This implies that the orbits in k-space and in real space are identical: k-space is obtained from real space by a rotation

through p/2 about the axis of H and multiplication by a numerical factor eH/cħ.
The orbits may be closed or open, but here we consider only the properties of the closed orbits. In a closed orbit, the

electron wave vector k will execute a periodic motion in k-space and the frequency of this motion is called the cyclotron

frequency. A convenient expression for the cyclotron frequency may be obtained by constructing two orbits in k-space in a
plane perpendicular toH and having slightly different energies. Two such adjacent orbits are shown in Fig. J2 of Appendix

J. The time period T of an electron orbit in a magnetic field is given by

T¼
þ
dt¼

þ
dr

v
(13.16)

where v is the velocity of the electron in a band with energy E in k-space and is given by

v¼ dr

dt
¼ 1

ħ
dE

dk
¼ 1

ħ
dE

dk?
(13.17)

where dk? is the normal distance in k-space between constant energy surfaces of energy E and E+dE. Substituting v from

Eq. (13.17) into Eq. (13.16), we find

FIG. 13.18 The diamagnetic susceptibility of Bi as a function of 1/H at high magnetic field H.
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T¼ ħ
þ
dr�dk?

dE
¼ cħ2

eH

þ
dk�dk?j j

dE
¼ cħ2

eH

dAe

dE
(13.18)

Here dk is an infinitesimal change in the wave vector along the orbit in an infinitesimal time dt. Therefore, the termÞjdk�dk?j is simply the area dAe between the two orbits in wave vector space. The cyclotron frequency is given by

oc ¼
2p
T

¼ 2peH
cħ2

dE

dAe

(13.19)

The derivative of the orbital area with respect to energy is taken at a constant component of k parallel to the magnetic field.

The cyclotron frequency from Eq. (10.24) can be written as

oc ¼
eH

m∗
c c

(13.20)

where mc* is the effective cyclotron mass. Comparing Eqs. (13.19), (13.20), mc* can be written as

m�
c ¼

ħ2

2p
dAe

dE
(13.21)

So far, the discussion of electron motion has been classical. Even under such conditions, the Bohr correspondence principle

provides the quantization condition as þ
p � dr¼ 2pħ n +

1

2

� �
(13.22)

The momentum of a free electron in the presence of a magnetic field changes as

p! p�e

c
A (13.23)

where A is the vector potential defined as

H¼r�A (13.24)

Substituting for k from Eq. (13.15) in Eq. (13.23) and then p in Eq. (13.22), we getþ
H � r�drð Þ�

þ
A � dr ¼ 2pħc

e
n +

1

2

� �

Here the integral
Þ
r�dr gives twice the area of the orbit, so that

Þ
H � (r�dr) is twice the magnetic fluxF. The term

Þ
A �dr

also gives magnetic flux F. Therefore, the above equation, in terms of the magnetic flux F, can be written as

F¼ 2pħc
e

n +
1

2

� �
(13.25)

Eq. (13.25) implies that the magnetic flux through an electron orbit in real space is quantized in units of 2pħc/e. The mag-

netic flux is given byF¼HAr where Ar is the area of the orbit in real space. We have seen before, in this section itself, that

the radius of the orbit in k-space is eH/cħ larger than that of the orbit in r-space. Therefore

Ae ¼
eH

cħ

� �2

Ar (13.26)

One should note that Ae represents the extremal cross-sectional area of the FS in a plane normal to the magnetic fieldH. The

extremal area is either a maximum or minimum area of the cross section of the FS; therefore, the derivative of Ae with

respect to k must be zero at that point. Substituting the value of Ar, one gets the magnetic flux as

F¼ c2ħ2

e2H
Ae ¼

2pħc
e

n +
1

2

� �

From the above expression one gets
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Ae ¼
2peH
cħ

n +
1

2

� �
(13.27)

This is known as the Onsager-Lifshitz quantization condition and this is the basis of the de Haas-van Alphen effect. Thus,

the quantum condition allows only a certain discrete set of orbital areas in k-space. The size of these orbits is directly pro-

portional to the magnetic field. The effect of a magnetic field has already been described in Chapter 10. In the absence of a

magnetic field, the allowed states in two dimensions are shown in Fig. 10.7A, while they are shown in Fig. 10.7B in the

presence of a magnetic field. Evidently the effect of the magnetic field is to create quantized circles in the k-space and cause

the free electron states to condense into the nearest circle. These are the familiar Landau levels, as discussed in Chapter 10.

The successive Landau levels correspond to successive values for the quantum number n. The reciprocal of the magnetic

field, from Eq. (13.27), is given by

1

H
¼ 2pe
Aeħc

n +
1

2

� �
(13.28)

The reciprocal of the magnetic field induces fluctuations in the magnetic susceptibility. The period of oscillation is

inversely proportional to the cross-sectional area of the FS. In three dimensions the allowed states lie in tubes in k-space

each of which has constant cross section in the planes perpendicular to the magnetic field. Such sets of tubes or cylinders are

shown in Fig. 10.5B. Each tube has been cut off at a constant energy surface corresponding to the FS.

In the determination of the FS, a magnetic field is applied at different angles to the axis of the single crystal and time

period T is measured as a function of H. It then becomes possible to measure the extremal area of the FS normal to the

direction of H using Eq. (13.28). The extremal areas for simple shapes of the Fermi surface are shown in Fig. 13.19. In a

spherical Fermi surface there is only one extremal (maximum) area for all the directions of the H field and that is a circle

having area pkF
2 (Fig. 13.19A). In the case of an ellipsoidal Fermi surface with kmax and kmin as the major and minor axes,

the magnitude and shape of the extremal area depends on the direction of the H field. If the H field is applied along the z-

direction, then the extremal area is a circle with area pkmin
2 (see Fig. 13.19B). But if theH field is along the y-direction, the

extremal area is an ellipse with area pkmaxkmin. For a dumbbell-shaped Fermi surface, the extremal areas are shown in

Fig. 13.19C. If the H field is applied in the z-direction, then there are three extremal areas: two circular orbits with

maximum area (labeled as 1 and 2) and one circular orbit (labeled as 3) with minimum area. But if the H field is in

the y-direction, then there is one extremal area having a dumbbell shape.

The oscillatory behavior of the magnetic susceptibility and other related properties can be explained as follows. The

quantum condition produces a sharp oscillatory structure in the electron density of states, with its peak occurring at the

energy corresponding to the extremal orbit satisfying the quantum condition. At the extremal orbit, the area of the portion

of the tube is enormously enhanced as a result of the slow variation of the energy along the tube near the given orbit.

13.7.2 Cyclotron Resonance

The cyclotron resonance method makes use of the fact that, if an rf electric field is applied to a metallic solid, it penetrates at

the surface by a small distance (skin depth). The Azbel-Kaner geometry is often employed for the study of cyclotron

FIG. 13.19 The extremal areas of cross section in spherical, ellipsoidal, and dumbbell shaped Fermi surfaces.
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resonances in metals: here an rf electric field E and static magnetic field H are applied parallel to the surface of a metallic

slab. In this geometry two types of studies are performed: first when E and H are perpendicular to each other (transverse

geometry) and second when E and H are parallel to each other (longitudinal geometry). Fig. 13.20 shows the longitudinal

geometry in which E and H are in the same direction. Note that if E and H are parallel but in opposite directions, then the

direction of motion of the electrons is reversed. The shading in the figure near the surface of the solid indicates the pen-

etration depth of the rf field. Under the combined effect of both the E and H fields, the electron moves in a helical path.

Fig. 13.20 also shows the circular path of the electrons perpendicular to the direction of H in the front face of the metallic

slab. The frequency of circular motion, called the cyclotron frequency, is given by Eq. (13.20). The time period T of the

electron orbit is defined by

T¼ 2p
oc

¼ 2pm∗
c c

eH
(13.29)

The radius of the orbit of an electron in a magnetic field of 10kilogauss is on the order of 10�3 cm, which is much larger

than the skin depth at radio frequencies in a pure metal at low temperatures. Electrons in orbits, such as those shown in

Fig. 13.20, will see the rf field only for a small part (near the top) of each cycle of their motion. The electrons are accelerated

in each cycle if the phase of the electrons when they arrive in the skin depth part of each cycle is the same as that of the rf

field. This will happen only when the frequency of the rf field o is equal to an integral multiple of the cyclotron frequency,

that is,

o¼ noc (13.30)

Here n is an integer 1, 2, 3,… and it defines the harmonics of the cyclotron frequency. This is called the Azbel-Kaner

resonance or cyclotron resonance and in this condition the electrons absorb the maximum energy. Substituting the value

of oc from Eq. (13.20) into Eq. (13.30), we find

o¼ neH

m∗
c c

(13.31)

which gives

H¼om∗
c c

ne
(13.32)

One can express this resonance condition in terms of the extremal areas of cross section by substituting mc
∗ from Eq. (13.21)

into Eq. (13.32) to get

1

H
¼ 2pne
cħ2o

dE

dAe

(13.33)

Fig. 13.21 represents the Azbel-Kaner cyclotron resonance spectrum for Cu metal at 4.2 K. The ordinate of the curve rep-

resents the derivative of the surface resistivity with respect to the field. In general, the electrons in different regions of the

surface have different cyclotron frequencies. But the frequency that is most pronounced in absorption is the frequency

FIG. 13.20 The Azbel-Kaner geometry for cyclotron resonance

in a metallic slab with H and E fields parallel to each other and in

the same direction (longitudinal geometry). The circular motion of

the electrons is shown in the front face of the metallic slab, which is

perpendicular to H field. The shaded region shows the extent of

penetration of the field inside the slab.
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appropriate to the extremal orbit in which the FS cross section perpendicular toH is maximum or minimum. Therefore, by

varying the orientation of H, one can measure the extremal sections in various directions and reconstruct the FS. One can

determine the various electronic properties and their oscillatory behavior in the same way as described in the de Haas-van

Alphen effect.
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Semiconductors are of immense value from both the technological and industrial point of view and the band gap in them is

usually less than 2eV. They can be classified into two categories. The first category comprises pure semiconductors called

intrinsic semiconductors. In these semiconductors most of the properties are structure dependent. At absolute zero the

intrinsic semiconductors behave as insulators and their conductivity increases with an increase in temperature. But these

semiconductors remain poor conductors of electricity at temperatures of interest. The most common examples of intrinsic

semiconductors are Si and Ge, which possess energy band gaps of the order of 1.1 and 0.72 eV, respectively. The properties

of semiconductors change drastically with the presence of even very small amounts of impurities and other imperfections

(�100–1000ppm). For example, the electrical conductivity of Si and Ge increases many-fold with the addition of a very

small As impurity. The second category constitutes semiconductors with impurities, which are called extrinsic semicon-
ductors, and these have brought a revolution in electronics and condensed matter physics. Common examples of extrinsic

semiconductors are SiAs, SiIn, GeAs, and GeIn, in which the first element represents the host semiconductor and the second

element the impurity. In this chapter, we will present the basics of semiconductors and their properties in terms of the

energy band theory.

14.1 INTRINSIC SEMICONDUCTORS

The intrinsic semiconductor Si possesses the following electronic structure:

Si : 1s22s22p63s23p2

A Si atom exhibits valency 4 and forms pure covalent bonds by sharing its four valence electrons with its four neighboring

Si atoms. Fig. 14.1A presents a schematic representation for the formation of four covalent bonds. One should note that the

four neighboring Si atoms are not coplanar with the given Si atom, as shown in Fig. 14.1A. In reality the Si atom forms four

hybrid sp3 orbitals with its four neighboring Si atoms situated at the corners of a tetrahedron, as shown in Fig. 14.1B. With

the formation of the covalent bonds, the valence band of each Si atom becomes full with 8 electrons in it. The binding

energy of each electron in Si is 1.1eV. The energy band diagram of Si is shown in Fig. 14.2. At absolute zero the valence

band is completely full, while the conduction band is completely empty, and both are separated by an energy band gap Eg of

1.1eV. Further, at absolute zero, the Fermi energy EF lies exactly in the middle of Eg. With an increase in temperature, a

small fraction of the electrons in the valence band gets excited to the conduction band, giving rise to finite conductivity. At

room temperature (300 K), the thermal energy ET has a value of 0.026eV, which is very small compared with the band gap.
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So, at room temperature an intrinsic Si semiconductor behaves nearly as an insulator. With a further increase in temper-

ature, more and more electrons go to the conduction band, thereby increasing the conductivity of the intrinsic semicon-

ductor. The excitation of an electron from the valence to conduction band leaves behind a hole (absence of an

electron) in the valence band (Fig. 14.2). For all practical purposes the hole acts as a particle with negative mass and having

a charge equal and opposite to that of an electron. Therefore, in an intrinsic semiconductor, the number density of free

electrons ne in the conduction band is equal to the number density of holes nh in the valence, that is,

ne ¼ nh (14.1)

In the presence of an external electric field, the electrons move in the conduction band, while the holes move in the valence

band but in the opposite direction, and both contribute toward the conductivity.

There are two categories of intrinsic semiconductors: direct band gap and indirect band gap semiconductors. A semi-

conductor with a valence band maximum and conduction band minimum at the center of the BZ (see Fig. 14.3A) is called a

direct band gap semiconductor. Fig. 14.3B shows explicitly that the motion of the hole in the valence band is equivalent to

the motion of the valence electron in the reverse direction. But there is no physical reason why both the valence band

maximum and the conduction band minimum should lie at the center of the BZ. The minimum of the conduction band

could lie at any point inside the BZ (even at the boundary of the BZ), as shown in Fig. 14.4. A semiconductor with valence

band maximum and conduction band minimum situated at different values of the wave vector in the 1BZ is called an

indirect band gap semiconductor. In this class of semiconductors an electron can jump from the valence band to the con-

duction band in two ways. First, an electron can follow the path PQR (path 1) in which both the momentum and energy of

the electron change: the momentum of the electron in the valence band increases by ħk0 in going from P to Q and then it

FIG. 14.1 (A) A schematic representation of the covalent bond formation of a Si atom with its four 1NN Si atoms in an intrinsic semiconductor. The two

dots between the two Si atoms represent the shared electrons forming a covalent bond. (B) The four sp3-hybrid bonding orbitals in a crystalline solid of Si.

FIG. 14.2 Schematic energy bandmodel of a crystalline solid of Si. The valence band is completely filled, with Ev as the energy of its topmost filled state.

The conduction band is completely empty, with Ec as its lowest state.
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gains energy (¼Eg) in going from Q to R. Second, an electron in the valence band can be promoted directly upward to a

higher energy state at the same momentum along the path PS, then the excited electron falls down into the conduction band

minimum along the path SR by gaining momentum but losing energy (path 2), as seen in Fig. 14.4.

14.2 EXTRINSIC SEMICONDUCTORS

One of the methods to increase conductivity is to introduce a substitutional impurity in small amounts in the lattice of an

intrinsic semiconductor. The introduction of a substitutional impurity in an otherwise pure semiconductor is called doping.
It has been observed that even a very small level of impurity (100–1000ppm) drastically changes the conductivity of a

semiconductor. Either a pentavalent or a trivalent impurity is introduced in a semiconductor, which creates an imbalance

between electrons in the conduction band and holes in the valence band. The extrinsic semiconductors are of two types:

1. Semiconductors with pentavalent impurities are called n-type semiconductors. Common examples are SiAs and GeAs.

2. Semiconductors with trivalent impurities are called p-type semiconductors. Common examples are SiIn and GeIn.

FIG. 14.3 Schematic representation of the band structure of a

semiconductor near the zone center. (A) The electron at position

1 makes a jump from the completely full valence band to the con-

duction band leaving behind a hole (empty space) (B) In the

valence band the motion of a hole in the k-space in one direction

is equivalent to the motion of an electron in the opposite direction.

Here an electron from position 2 moves to position 1, thereby

filling the hole in position 1. It is equivalent to the motion of

the hole from position 1 to position 2.

FIG. 14.4 Schematic representation of the band structure of an indirect gap semiconductor. Two paths are shown, labeled 1 and 2, for the excitation of an

electron from the valence band to the conduction band.
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14.2.1 n-Type Semiconductors

Consider a Si crystal with the pentavalent substitutional impurity As making SiAs semiconductor. The valence bond model

of SiAs is shown in Fig. 14.5A. Four electrons of As impurity participate in the formation of covalent bonds with the neigh-

boring Si atoms, while the fifth electron does not participate in covalent bonding and is loosely bound to the As atom. As a

result of weak binding, this electron moves away from the impurity, making it a positively charged ion, that is, As+1. The

force of attraction between the electron and the impurity ion As+1 makes the electron orbit around the As+1 ion. The distance

of the fifth electron from the As+1 impurity is such that its ground state energy is below but very close to the conduction

band of Si (see Fig. 14.5B). Such an impurity band is called a donor band and the electrons in it are called the donor elec-
trons. The energy difference between the bottom of the conduction band and the donor band is DE�0.01 eV, which is

smaller than the thermal energy at room temperature. On the other hand, the energy difference between the donor band

and the top of the valence band is on the order of 1.09eV, which is quite large. Therefore, at room temperature, the electrons

in the donor band jump to the conduction band, yielding appreciable electrical conductivity. Such a semiconductor is called

an n-type semiconductor, in which the number of electrons in the conduction band is greater than the number of holes in the

valence band, that is, ne>nh. Therefore, the electrons constitute the majority charge carriers and the holes the minority

charge carriers in n-type semiconductors.

14.2.2 p-Type Semiconductors

Trivalent impurities, such as B, Al, Ga, and In, can also be substituted in a semiconductor. Fig. 14.6A shows the bond model

of an In impurity in a Si semiconductor. The three valence electrons of an In atom form three covalent bonds with three Si

atoms, while the fourth bond contains one electron and one hole forming an unsaturated bond. The hole moves away from

the In impurity when the neighboring electron occupies its position. In this process the fourth bond also becomes saturated

and the In impurity acquires negative charge, that is, In�1, thereby attracting the hole toward it. The force of attraction

between the hole and the In�1 impurity ion makes the hole move around the In�1 in an orbit. The distance of the hole from

the In�1 ion is such that its energy band lies above, but very near, the valence band. The band model of SiIn semiconductor

is shown in Fig. 14.6B. At room temperature the electrons from the top of the valence band jump to fill the empty states of

the impurity band, thereby creating holes in the valence band. The impurity band, therefore, is called the accepter band.
Such a semiconductor is called a p-type semiconductor as the number of holes in the valence band is greater than the number

of electrons in the conduction band, that is, nh>ne. Therefore, the holes constitute the majority carriers and the electrons the

minority carriers in a p-type semiconductor. Both the electrons in the conduction band and the holes in the valence band

FIG. 14.5 (A) The bond model of the n-type crystalline semiconductor Si with pentavalent impurity As. (B) The band model of the n-type crystalline

semiconductor Si with pentavalent impurity As.
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contribute toward the conduction properties, such as the electrical conductivity, of the extrinsic semiconductors. From the

above discussion we conclude that the extrinsic semiconductors are materials with mixed bonding: partly ionic and partly

covalent.

It is important to note that donor impurities, such as P, Sb, and As, are used in doping because the donor bands formed by

these impurities are close to the conduction band and, therefore, yield a significant carrier concentration at room temper-

ature. Similarly, B, Al, Ga, and In are used as acceptor impurities as the acceptor bands formed by these impurities lie close

to the valence band. It is noteworthy that transition metals, such as Fe, Ni, Co, and Cu, if added to Si or Ge, form impurity

bands far removed from the edges of the valence and conduction bands and, therefore, are not suitable doping materials.

14.3 IONIZATION ENERGY OF IMPURITY

In Section 14.2.1 it was assumed that the donor electron orbits in a circle around the donor ion embedded in a semicon-

ductor. The energy of the donor electron depends on the radius of the orbit. The energy required to raise the donor electron

to the conduction band is usually called the ionization energy of the donor atom or impurity. As the simplest approximation,

one can make use of the Bohr model to estimate the ionization energy of the donor atom. One should keep in mind that the

use of the Bohr model is reasonably justified if the radius of the orbit of the donor electron is on the order of the Bohr radius

a0.

If the donor electron is assumed to move in a circular orbit of radius rn around the donor ion, then its electrostatic

attractive force must be balanced by the centripetal force, that is,

e2

er2n
¼m∗

e v
2

rn
(14.2)

where me
∗ and v are the effective mass and velocity of the donor electron. As the donor atom is embedded in a semiconductor

with dielectric constant e, the electrostatic force is decreased by a factor of e. In the Bohr model the angular momentum of

the donor electron is quantized and is given as

m∗
e vrn ¼ nħ (14.3)

where n is a positive integer. Substituting the value of v from Eq. (14.3) into Eq. (14.2) and simplifying, one gets

rn ¼ e
n2ħ2

m∗
e e2

(14.4)

The Bohr radius for a free electron in a hydrogen atom is given by

a0 ¼
ħ2

mee
2

(14.5)

FIG. 14.6 (A) The bond model of the p-type crystalline semiconductor Si with trivalent impurity In. (B) The band model of the p-type crystalline semi-

conductor Si with trivalent impurity In.
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Here me is the mass of a free electron. From Eqs. (14.4), (14.5) one gets

rn
a0

¼ en2
me

m∗
e

� �
(14.6)

For Si, e¼11.7 and me
∗/me¼0.26, therefore, for a Si-based semiconductor the radius r1 of the first orbit is given by

r1
a0

¼ 45 (14.7)

The above equation gives r1¼23.9 Å. This radius is roughly on the order of the lattice constant of Si. One unit cell of Si

contains effectively eight atoms, so the radius of the orbiting donor electron encompasses many Si atoms. The total energy

of the donor electron E is given by

E¼T+V (14.8)

where T is the kinetic energy and V is the potential energy given by the relations

T¼ 1

2
m∗

e v
2 (14.9)

V¼� e2

ern
(14.10)

Substituting the value of v from Eq. (14.3) into Eq. (14.9), one can write

T¼ m∗
e e

4

2e2n2ħ2
(14.11)

Similarly, substituting the value of rn from Eq. (14.4) into Eq. (14.10), we get

V¼� m∗
e e

4

e2n2ħ2
(14.12)

From Eqs. (14.8), (14.11), and (14.12), the total energy of the donor electron is given by

E¼� m∗
e e

4

2 e2n2ħ2
(14.13)

For a hydrogen atom, one can write me
∗¼me and e¼1 for vacuum. The energy of the lowest orbit of the hydrogen atom is

given by

E0 ¼�mee
4

2ħ2
¼�13:6 eV (14.14)

The energy of the lowest state of Si is obtained by substituting its values for e and me
∗ to give

E0 Sið Þ¼�0:0258 eV (14.15)

which is much less than the energy gap Eg in Si. So, a small energy of 0.0258eV is required by the electron in the donor band

to make the transition to the conduction band. This simple calculation based on the Bohr model shows two facts:

1. The donor energy band is very close to the conduction band.

2. The donor electron can be excited to the conduction band at room temperature (300K)

The Bohr model can also be applied to evaluate the ionization energy for the acceptor impurities in Si and Ge. The exper-

imental values of the ionization energies of some of the donor and acceptor impurities in Si and Ge are given in Table 14.1.

14.4 CARRIER MOBILITY

In an intrinsic or extrinsic semiconductor, there are two types of charge carriers: electrons in the conduction band and holes

in the valence band. When an electric field E is applied, both the charge carriers move in opposite directions. Both the

electrons and holes lose energy through collisions among themselves and acquire some constant velocity, usually called

304 Solid State Physics



the drift velocity. In Chapter 11, expressions were derived for the drift velocity and mobility of both the electrons and holes.

The total conductivity in a semiconductor is the sum of electronic and hole contributions and is given by (see Eq. 11.179)

s¼ se + sh ¼ neeme + nhemh (14.16)

where me and mh are the mobilities of the electrons and holes, respectively. The reciprocal of conductivity is resistivity r,
that is,

r¼ 1

s
¼ 1

neme + nhmhð Þ e (14.17)

and is measured inO cm. It is evident from Eqs. (14.16), (14.17) that knowledge of ne , me, nh , and mh is required to evaluate
the conductivity or resistivity of a semiconductor. It has been observed experimentally that resistivity r is not a linear

function of the impurity concentration in extrinsic semiconductors.

In the laboratory we measure current I and voltage V; therefore, one should express Eqs. (14.16), (14.17) in terms of I

and V. Consider a bar of semiconducting material (Fig. 14.7) with A as the area of cross section and L as the length, then

J¼ I

A
, E¼V

L
(14.18)

TABLE 14.1 Impurity Ionization Energies in Semiconductors Si and Ge

Impurity Ionization Energy (eV)

Si Ge

Donors

P 0.045 0.012

As 0.050 0.0127

Acceptors

B 0.045 0.0104

Al 0.060 0.0102

FIG. 14.7 A bar of a semiconducting material,

having length L and area of cross section A, acts

as a resistor. The current I flows through the material

when a voltage V is applied across it.
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The expression for the current density is given by

J¼ sE (14.19)

Substituting Eq. (14.18) into Eq. (14.19), one can write

V¼ IR (14.20)

where

R¼ r
L

A
¼ L

As
(14.21)

Eq. (14.20) is the famous Ohm’s law. Eq. (14.21) shows that the resistance is a function of resistivity (conductivity) as well

as the geometry of the sample of the semiconductor.

14.5 THEORY OF INTRINSIC SEMICONDUCTORS

Consider a semiconductor with a number N electron states per unit volume. At absolute zero, in an intrinsic semiconductor,

the conduction band is completely empty and the valence band is completely filled (see Fig. 14.2). At finite temperature,

some electrons from the valence band get excited to the conduction band and the number of electrons in the conduction band

is equal to the number of holes in the valence band in an intrinsic semiconductor. Further, the holes are created near the top

of the valence band in a small energy range, while the electrons accumulate near the bottom of the conduction band and their

energy range is considered to be much smaller than the energy gap Eg. Let Ec be the energy at the bottom of the conduction

band and Ev the energy at the top of the valence band. The Fermi energy EF lies somewhere in the middle of Ec and Ev.The

probability of occupation of an electron state with energy Ek is given by the Fermi distribution function defined as

fe Ekð Þ¼ 1

e Ek�EFð Þ=kB T + 1
(14.22)

The Fermi-Dirac distribution function for the holes becomes fh(Ek)¼1� fe(Ek). The density of electrons ne at Ec and of

holes nh at Ev are given by

ne ¼Nfe Ecð Þ¼ N

e Ec�EFð Þ=kB T + 1
(14.23)

nh ¼Nfh Evð Þ¼ N

e� Ev�EFð Þ=kB T + 1
(14.24)

Substituting Eqs. (14.23), (14.24) into Eq. (14.1), we find

e Ec + Ev�2EFð Þ=kB T ¼ 1

Taking the logarithm of both sides of the above equation, one gets

EF ¼
Ec +Ev

2
(14.25)

Eq. (14.25) shows that in an intrinsic semiconductor the Fermi energy lies exactly in the middle of the conduction and

valence bands. If zero energy is taken as the energy at the top of the valence band, then Ev¼0 and Ec¼Eg (Fig. 14.2);

therefore, one can write

EF ¼
Eg

2
(14.26)

14.5.1 Concentration of Charge Carriers

In the preceding section it was assumed that the valence and conduction bands are narrow compared with the energy gap Eg.

If they are not narrow, then one has to use an improved model. Consider an intrinsic semiconductor in which the electrons

and holes are distributed over an appreciable energy range in the conduction and the valence bands, respectively. At tem-

peratures of interest (say room temperature), one can easily suppose that Ek�EF≫kBT and, therefore, Eq. (14.22) yields

fe Ekð Þ¼ e EF�Ekð Þ=kB T (14.27)
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Near the bottom of the conduction band the energy of the electrons is a quadratic function of the wave vector k and is

therefore given by

Ek ¼Ec +
ħk2

2m∗
e

(14.28)

where me
∗ is the effective mass of an electron. The density of electron states per unit energy per unit volume at absolute zero

is given by (Eq. 9.23)

ge Ekð Þ¼ 1

2p2
2m∗

e

ħ2

� �3=2

Ek�Ecð Þ1=2 (14.29)

Therefore, the density of electrons per unit volume in the conduction band at finite temperature T is given by

ne ¼
ðtop
Ec

dEk fe Ekð Þge Ekð Þ (14.30)

Substituting Eq. (14.27), (14.29) into Eq. (14.30), one gets

ne ¼
1

2p2
2m∗

e

ħ2

� �3=2

eEF=kB T

ð∞
Ec

dEk Ek�Ecð Þ1=2 e�Ek=kB T (14.31)

Here we have used the fact that fe(Ek) decreases very quickly with an increase in Ek; therefore, in Eq. (14.30) the upper limit

can safely be taken as infinity. Now substituting

Ek�Ec ¼ x (14.32)

one can write Eq. (14.31) as

ne ¼
1

2p2
2m∗

e

ħ2

� �3=2

e EF�Ecð Þ=kB T
ð∞
0

dxx1=2 e�x=kB T (14.33)

Again substituting

y¼ x

kBT
(14.34)

in Eq. (14.33), one can write

ne ¼
1

2p2
2m∗

e

ħ2

� �3=2

e EF�Ecð Þ=kB T kBTð Þ3=2
ð∞
0

dyy1=2 e�y (14.35)

The integral in Eq. (14.35) is a standard integral whose value is
ffiffiffi
p

p
=2. Therefore, Eq. (14.35) finally gives the density of

electrons in the conduction band as

ne ¼Nee
EF�Ecð Þ=kB T (14.36)

where

Ne ¼ 2
m∗

e kBT

2pħ2

� �3=2

(14.37)

Here Ne gives the density of the electron states in the conduction band.

One can also calculate the density of holes in a similar way. The probability of occupation of a hole state with energy Ek,

at the temperatures of interest, is given by

fh Ekð Þ¼ 1� fe Ekð Þ¼ e Ek�EFð Þ=kB T (14.38)

The holes near the top of the valence band behave as particles with effective mass mh
∗. The density of hole states per unit

energy per unit volume near the top of the valence band is given by

gh Ekð Þ¼ 1

2p2
2m∗

h

ħ2

� �3=2

Ev�Ekð Þ1=2 (14.39)
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The density of holes per unit volume in the valence band, therefore, is given by

nh ¼
ðEv

bottom

fh Ekð Þgh Ekð Þ dEk (14.40)

Further, fh(Ek) decreases rapidly as one goes down below the top of the valence band and, therefore, the lower limit in

Eq. (14.40) can safely be taken as �∞, that is,

nh ¼
ðEv

�∞
fh Ekð Þgh Ekð ÞdEk

¼ 1

2p2
2m∗

h

ħ2

� �3=2

e�EF=kB T

ðEv

�∞
Ev�Ekð Þ1=2 eEk=kB TdEk

(14.41)

Putting Ev� Ek¼x, the integral becomes

nh ¼
1

2p2
2m∗

h

ħ2

� �3=2

e Ev�EFð Þ=kB T
ð∞
0

x1=2 e�x=kB T dx

which can be solved to write

nh ¼Nh e
Ev�EFð Þ=kB T (14.42)

where

Nh ¼ 2
m∗

hkBT

2pħ2

� �3=2

(14.43)

Here Nh gives the density of hole states in the valence band. Now multiplying Eqs. (14.36), (14.42), one can write

nenh ¼ 4 m∗
em

∗
h

� �3=2 kBT

2pħ2

� �3

e� Ec�Evð Þ=kB T (14.44)

The above equation can also be written as

nenh ¼NeNh e
� Ec�Evð Þ=kB T (14.45)

Note that Eq. (14.45) does not involve the Fermi energy, which means that it does not depend on the particular substance.

This expression is sometimes called the law of mass action. The only assumption that we have made here is that the Fermi

energy is well away from the conduction and valence bands, which is true in an intrinsic semiconductor. In an intrinsic

semiconductor ne¼nh, therefore, the density of conduction electrons and holes is given from Eq. (14.44) as

ne ¼ nh ¼ 2
kBT

2pħ2

� �3=2

m∗
em

∗
h

� �3=4
e
�Ec�Ev

2kB T (14.46)

The position of EF can be evaluated from the values of ne and nh. Dividing Eq. (14.36) by Eq. (14.42) and taking the log-

arithm of both sides, one gets

EF ¼
Ec +Ev

2
+
1

2
kBT

3

2
ln
m∗

h

m∗
e

+ ln
ne
nh

� �
(14.47)

In an intrinsic semiconductor ne¼nh, so the last term in Eq. (14.47) goes to zero reducing it to

EF ¼
Ec +Ev

2
+
3

4
kBT ln

m∗
h

m∗
e

� �
(14.48)

If the masses of an electron in the conduction band and a hole in the valence band are also equal, that is, me
∗¼mh

∗, then

Eq. (14.48) reduces to

EF ¼
Ec +Ev

2
(14.49)
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In this case the Fermi energy lies exactly in the middle of the conduction and valence bands. As a special case, if the zero of

energy is taken at the top of the valence band, that is, Ev¼0, then Eqs. (14.44), (14.46), and (14.48) become

nenh ¼ 4 m∗
em

∗
h

� �3=2 kBT

2pħ2

� �3

e�Eg=kbT (14.50)

ne ¼ nh ¼ 2
kBT

2pħ2

� �3=2

m∗
em

∗
h

� �3=4
e
� Eg

2kB T (14.51)

EF ¼
Eg

2
+

3

4
kBT ln

m∗
h

m∗
e

� �
(14.52)

14.6 MODEL FOR EXTRINSIC SEMICONDUCTORS

14.6.1 n-Type Semiconductors

The band model for an n-type semiconductor is shown in Fig. 14.5B, in which the donor band having energy Ed lies close to

the conduction band. Let Nd be the density of donor states per unit volume in the donor band. At absolute zero the donor

band is assumed to be full while the conduction band is completely empty. But at low temperatures a fraction of the elec-

trons from the donor band jumps to the conduction band. At such temperatures the Fermi energy EF lies about halfway

between the donor band and the bottom of the conduction band. We further assume that EF of the n-type semiconductor

lies below the bottom of the conduction band and above the donor band by about an energy of a few kBT. In this approx-

imation, the density of electrons in the conduction band of an n-type semiconductor is given by Eq. (14.36), that is,

ne ¼Ne e
EF�Ecð Þ=kB T (14.53)

Eq. (14.53) also gives the number of holes in the donor band nh, which is equal to the number of ionized donors. Now the

number of holes in the donor band is given by

nh ¼Ndfh Edð Þ¼Nd 1� fe Edð Þ½ � ¼Nde
Ed�EFð Þ=kB T (14.54)

In writing the above equation we have used Eq. (14.38). If no electron is excited from the valence to the conduction band,

which is possible only at low temperatures, then the number of electrons in the conduction bandmust be equal to the number

of holes in the donor band, that is, ne¼nh. So

Nde
Ed�EFð Þ=kB T ¼Ne e

EF�Ecð Þ=kB T (14.55)

Rearranging the terms, we get

e 2EF�Ec�Edð Þ=kB T ¼Nd

Ne

(14.56)

Taking the logarithm of the above equation and solving for EF, we get

EF ¼
Ec + Ed

2
+

kBT

2
ln

Nd

Ne

� �
(14.57)

The above equation describes the variation of EF with temperature. At T¼0, Eq. (14.57) gives

EF ¼
Ec + Ed

2
(14.58)

which is exactly in the middle of the bottom of the conduction band and the donor band. As the temperature increases, EF

falls and approaches the donor band. With a further increase in temperature, the Fermi energy continuously goes down and

at very high temperatures it approaches the middle of the valence and conduction bands (Fig. 4.8).
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From Eq. (14.53) it is evident that the density of electrons in the conduction band depends on EF, which in turn depends

on the temperature and density of the donor states (Eq. 14.57). To evaluate ne in an extrinsic semiconductor, we substitute

EF from Eq. (14.57) into Eq. (14.53) and simplify to get

ne ¼
ffiffiffiffiffiffiffiffiffiffiffi
NdNe

p
e�DEcd=kB T (14.59)

where

DEcd ¼Ec�Ed (14.60)

Here DEcd represents the ionization energy (excitation energy) of the donor electron from the donor band to the conduction

band.We see that the number of electrons in the conduction band depends on the square root of the density of donor states in

the impurity band. Therefore, nh is also proportional to the square root of the donor concentration.

14.6.2 p-Type Semiconductors

In a p-type semiconductor the acceptor band is empty and lies close to the completely filled valence band (see Fig. 14.6B).

At low temperatures some of the electrons from the valence band jump to the acceptor band, thereby creating holes in the

valence band. At low temperatures the Fermi energy lies between the valence band and the acceptor band. Further, we

assume that EF lies below the acceptor band and above the valence band by an energy of a few kBT. In this approximation

the number of holes in the valence band is given by Eq. (14.42) and is written as

nh ¼Nhe
Ev�EFð Þ=kB T (14.61)

This number must be equal to the number of electrons in the acceptor band. If Na is the density of acceptor states per unit

volume, then the number of electrons in the acceptor band is given by

ne ¼Nafe Eað ÞffiNae
EF�Eað Þ=kB T (14.62)

where Ea is the energy of the acceptor band. If no electron is excited from the valence band to the conduction band, which is

possible only at low temperatures, then the number of electrons in the accepter band must be equal to the number of holes in

the valence band. Therefore, from Eqs. (14.61), (14.62), one can write

Na e
EF�Eað Þ=kB T ¼Nh e

Ev�EFð Þ=kB T (14.63)

Solving the above equation for EF, we get

EF ¼
Ea +Ev

2
�kBT

2
ln

Na

Nh

� �
(14.64)

At absolute zero, Eq. (14.64) gives

EF ¼
Ea +Ev

2
(14.65)

Therefore, at absolute zero, EF lies exactly in the middle between the top of the valence band and the acceptor band.With an

increase in temperature, EF increases and ultimately, at very high temperatures, it approaches the middle of the valence and

conduction bands. The variation of EF with temperature for n- and p-type semiconductors is shown in Fig. 14.8.

At a particular temperature, the number of holes in the valence band is obtained by substituting Eq. (14.64) into

Eq. (14.61) and simplifying to get

nh ¼
ffiffiffiffiffiffiffiffiffiffiffi
NaNh

p
e�DEav=kB T (14.66)

where

DEav ¼Ea�Ev (14.67)

DEav represents the excitation energy of an electron from the valence band to the acceptor band. It is evident that the number

of holes in the valence band depends on the square root of the density of acceptor states in the acceptor band. In other words,

nh is proportional to the square root of the acceptor concentration.

It is noteworthy that, within the model considered above, the expressions for electrons in n-type semiconductors and

holes in p-type semiconductors are similar and depend on the concentration of the doping.
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14.7 EFFECT OF TEMPERATURE ON CARRIER DENSITY

At absolute zero the extrinsic semiconductors behave as insulators as there are no free charge carriers in the conduction

band. In an n-type semiconductor, with an increase in temperature some electrons get excited from the donor to the con-

duction band, yielding a finite electron density ne. At room temperature the thermal energy is sufficient to excite most of the

electrons from the donor band to the conduction band. In this temperature range the charge carriers are extrinsic in nature

and this is usually called the extrinsic range or impurity range (Fig. 14.9). For example, in Ge the upper limit of the extrinsic

range is 100°C, while in Si it is about 200°C. Ultimately, the donor band gets exhausted and remains exhausted for a certain

range of temperature (exhaustion range). In the exhaustion range the direct excitation of an electron from the valence band

to the conduction band is almost zero and the value of ne becomes independent of temperature. It is noteworthy that in the

extrinsic and exhaustion ranges the concentration of majority carriers is far greater than that of minority carriers. With a

further increase in temperature, the electrons start getting excited from the valence to the conduction band in large numbers.

At these temperatures an equal number of electrons and holes are liberated, which ultimately exceed the number of extrinsic

carriers. The carrier density ne increases much faster and, therefore, the conduction becomes intrinsic in nature. This is

FIG. 14.8 Schematic representation of the vari-

ation of EF with temperature T in intrinsic, n-type

and p-type semiconductors. The dashed lines in

the left part of the figure show the Fermi energy

in the intrinsic, n-type and p-type semiconductors

at 0 Κ. The right part of the figure shows the vari-
ation of the Fermi energy with temperature in the

three types of semiconductors.

FIG. 14.9 Variation of the density of electrons (holes) as a function of temperature showing the extrinsic, exhaustion, and intrinsic ranges in an n- (p-)

type semiconductor.
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called the intrinsic range. The temperature for the onset of intrinsic conduction depends on the energy band gap of the

semiconductor. Note that in the intrinsic range the density of majority andminority carriers becomes nearly equal. A similar

variation of hole density nh with temperature is obtained in a p-type semiconductor.

Let us examine what happens when a semiconductor is irradiated. Consider an n-type semiconductor in which the elec-

trons from the donor band go to the conduction band and the charge carriers are basically extrinsic in nature: majority

charge carriers. Let an n-type semiconductor be irradiated with radiation having energy Eg¼hn. The radiation energy

is absorbed by the electrons in the valence band as a result of which they get excited to the conduction band. These intrinsic

charge carriers are called the excess charge carriers and contain an equal number of electrons in the conduction band and

holes in the valence band. When the radiation is stopped, the excess conduction electrons return to the valence band and

combine with the excess holes. This process is called recombination. If the incident radiation is weak, then the excess

charge carriers will be much fewer in number than the majority charge carriers in thermal equilibrium. In this sense

the extrinsic charge carriers become the majority charge carriers, while the excess charge carriers become the minority

charge carriers. For weak incident radiation, it is reasonable to assume that the rate of recombination is proportional to

the number of excess charge carriers (excess electrons or holes) Nex present. In mathematical language, one can write

dNex

dt
¼�Nex

τm
(14.68)

The factor 1/τm is the proportionality constant and τm is called the minority carrier lifetime. If the radiation stops at t¼0, the

above equation gives

ð
dNex

Nex

¼ � 1

τm

ð
dt

Solving the above integral, one gets

Nex tð Þ¼Nex 0ð Þ e�t=τm (14.69)

Eq. (14.69) describes the exponential decay of the excess minority carrier density. In time τm the density is reduced by a

factor e�1.

14.8 TEMPERATURE DEPENDENCE OF MOBILITY

The mobility m is a measure of the drift velocity vd of electrons or holes in a semiconductor and depends on the scattering

processes. In a semiconductor two scattering processes take place: the first is the lattice scattering (or the scattering of

charge carriers due to phonons) and the second is scattering from the ionized impurity atoms (donors or acceptors). Other

imperfections, such as dislocations and surface effects, also contribute toward the mobility but to a much lesser extent. The

scattering processes and hence the mobility exhibit temperature dependence. The mobility due to lattice scattering mL and
due to the scattering from ionized impurity atoms mI exhibit the following temperature dependence:

mL ¼ALT
�3=2 (14.70)

mI ¼ BIT
3=2 (14.71)

where AL and BI are constants for a given material. The resistivity r offered to the flow of electrons in an n-type semi-

conductor due to the phonons and impurities can be defined as

rL ¼
1

sL
¼ 1

neemL
(14.72)

rI ¼
1

sI
¼ 1

neemI
(14.73)

The total resistivity is the sum of the two contributions and is given by

r¼ rL + rI ¼
1

neem
(14.74)
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where m is the total mobility in a semiconductor. Substituting Eqs. (14.72), (14.73) into Eq. (14.74), one gets

1

m
¼ 1

mL
+
1

mI
(14.75)

From Eqs. (14.70), (14.71), and (14.75) one can immediately write

m¼ 1

1

BI

T�3=2 +
1

AL

T3=2
(14.76)

At low values of T the term T�3/2 dominates in the denominator of Eq. (14.76) and, therefore, reduces the mobility to

m¼BI T
3=2 (14.77)

Therefore, at low temperatures, the impurity scattering dominates due to the fact that the number of phonons is very small at

low temperatures. But at high values of T, the term T3/2 dominates in the denominator of Eq. (14.76), which gives

m¼AL T
�3=2 (14.78)

Hence, phonon scattering is mainly responsible for the mobility at high temperatures due to the presence of a large number

of phonons. In an intrinsic semiconductor, impurity scattering is absent; therefore, Eq. (14.70) applies directly. Fig. 14.10

shows the variation of mobility m as a function of T.

14.9 THE HALL EFFECT

The Hall effect in semiconductors describes the effect of a magnetic field on moving charge carriers. As an example, let us

consider a p-type semiconducting slab in which the current density Jx is passed along the x-direction (Fig. 14.11A). The

current density Jx is constituted by the motion of holes in the positive x-direction. Let a magnetic field H be applied along

the z-direction, then the magnetic force acting on the hole is given by

Fm ¼ e

c
v�H (14.79)

FIG. 14.10 The variation of mobility m as a function of temperature T in an extrinsic semiconductor is shown by the continuous line. The dashed line

shows the variation of mobility with T in an intrinsic semiconductor.
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The above equation gives the magnetic force in the y-direction as

Fmy ¼�e

c
vxH (14.80)

As a result of the magnetic force the holes move along the negative y-direction and accumulate on the front face of the slab

(Fig. 14.11A). Due to the shifting of the holes, an electric field Ey develops in the positive y-direction, generally called the

Hall field EH. In order to evaluate EH, consider the total force acting on the hole, which is given by

F¼ eE +
e

c
v�H (14.81)

The above equation gives the total force in the y-direction as

Fy ¼ e Ey�
1

c
vxH

� �
(14.82)

In the equilibrium state the net force acting on the hole due to both the electric and magnetic fields must vanish and,

therefore, the Hall voltage from Eq. (14.82) is given by

EH ¼Ey ¼
1

c
vxH (14.83)

The current density Jx due to the holes is defined as

Jx ¼ nhevd (14.84)

FIG. 14.11 (A) Geometry for measuring the Hall effect in a p-type

semiconductor. (B) Geometry for measuring the Hall effect in an n-

type semiconductor.
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The drift velocity vd of the holes is equal to vx in the present situation. So,

vx ¼ vd ¼
Jx
nhe

(14.85)

From Eqs. (14.83), (14.85) the Hall field becomes

EH ¼ JxH

nhec
(14.86)

Hence, the density of holes from the above equation becomes

nh ¼
JxH

ecEH

(14.87)

The Hall coefficient is defined as the Hall field per unit current density and per unit magnetic field and is given by

RH ¼ EH

JxH
¼ 1

nhec
(14.88)

The mobility of charge carriers can be estimated from the geometry of the Hall effect setup for a p-type semiconductor. The

drift velocity is given by

vd ¼ mhEx (14.89)

Substituting Eq. (14.89) into Eq. (14.84), the mobility of the holes is given by

mh ¼
Jx

nheEx

(14.90)

The mobility of charge carriers can also be calculated if one knows the conductivity and the Hall coefficient of a semi-

conductor. Consider a semiconductor with one type of charge carrier, say a p-type semiconductor with holes as the majority

charge carriers. The conductivity of the semiconductor is given as

sh ¼ nhemh (14.91)

The measurement of sh of the semiconductor gives information about the product nhmh, but it does not allow the separate

determination of nh and mh. From Eqs. (14.88), (14.91) one can write

mh ¼ cshRH (14.92)

If sh and RH of a semiconductor are measured experimentally, one can find mh and, knowing mh, one can calculate nh from
Eq. (14.91). The above discussion shows that for the individual determination of nh and mh in a semiconductor, the exper-

imental measurement of both sh and RH is required.

From Eqs. (14.86), (14.88) we see that the Hall field and the Hall coefficient are positive for a p-type semiconductor. It is

important to note that in an actual experiment the Hall voltage VH and current Ix are measured instead of the Hall field and

current density. Therefore, one should express the results in terms of these measurable physical quantities. Let A be the area

of the face at which the current enters the semiconducting slab (see Fig. 14.11A), then

EH ¼VH

W
, Jx ¼

Ix
A
¼ Ix
Wd

, Ex ¼
Vx

L
(14.93)

Substituting the values of Jx and EH, in terms of Ix and VH, in Eqs. (14.86), (14.87) one can write

VH ¼ 1

nhec

IxH

d
(14.94)

nh ¼
1

ec

IxH

VHd
(14.95)

In order to calculate the mobility in terms of the measurable quantities, we substitute Ex and Jx from Eq. (14.93) in

Eq. (14.90) to get

mh ¼
IxL

nheVxWd
(14.96)
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One can also study the Hall effect in an n-type semiconductor. Proceeding in exactly the same manner, one can write the

Lorentz force as

F¼�e E+
1

c
v�H

� �
(14.97)

In the equilibrium state one gets

E¼�1

c
v�H (14.98)

The geometry of the setup for studying the Hall effect is shown in Fig. 14.11B. The electrons accumulate on the front face of

the slab and the Hall field is set up in the negative y-direction. From Eq. (14.98) one can write

EH ¼Ey ¼
1

c
vxH (14.99)

Now the current density Jx due to the flow of electrons is given as

Jx ¼�neevd (14.100)

The drift velocity of the electrons is equal to vx and is given by

vx ¼ vd ¼� Jx
ne e

(14.101)

Substituting Eq. (14.101) into Eq. (14.99), the Hall field is given by

EH ¼� JxH

neec
(14.102)

From this equation the electron density can be written as

ne ¼� JxH

ecEH

(14.103)

The Hall coefficient for an n-type semiconductor is given by

RH ¼ EH

Jx H
¼� 1

neec
(14.104)

From Eqs. (14.102), (14.104) it is evident that the Hall field and Hall coefficient are negative for an n-type semiconductor in

which the majority carriers are the electrons. Use Eq. (14.93) in Eqs. (14.102), (14.103), one gets

VH ¼� 1

neec

IxH

d
(14.105)

ne ¼� 1

ec

IxH

VHd
(14.106)

One can calculate the mobility me for an n-type semiconductor in exactly the same way as for a p-type semiconductor. It is

given by

me ¼
IxL

neeVxWd
(14.107)

Here we have neglected the negative sign. The mobility of charge carriers can also be calculated if one knows the con-

ductivity and the Hall coefficient of a semiconductor. In an n-type semiconductor, the conductivity is given as

se ¼ neeme (14.108)

If one measures se, it gives information about the product neme. Eqs. (14.104), (14.108) allow us to write (neglecting the

negative sign)

me ¼ cseRH (14.109)

If se and RH of a semiconductor are measured experimentally, one can find me and ne from Eqs. (14.108), (14.109).
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14.10 ELECTRICAL CONDUCTIVITY IN SEMICONDUCTORS

After describing the temperature dependence of the mobility of charge carriers, one can obtain explicit expressions for the

electrical conductivity of semiconductors.

14.10.1 Intrinsic Semiconductors

The general expression for the conductivity of a semiconductor is given by Eq. (14.16). In an intrinsic semiconductor

ne¼nh, therefore, Eq. (14.16) reduces to

s¼ nee me + mhð Þ (14.110)

Substituting for ne from Eq. (14.51), we find

s¼ s0 e
� Eg

2kB T (14.111)

where

s0 ¼ 2e me + mhð Þ kBT

2pħ2

� �3=2

m∗
em

∗
h

� �3=4
(14.112)

From Eq. (14.76) it is evident that in an intrinsic semiconductor the mobility m decreases with an increase in temperature as

m ¼ me + mhð Þ¼ALT
�3=2 (14.113)

Substituting Eq. (14.113) into Eq. (14.112), one gets

s0 ¼ 2eAL

kB

2pħ2

� �3=2

m∗
em

∗
h

� �3=4
(14.114)

Therefore, s0 is independent of temperature. Taking the logarithm of Eq. (14.111), one gets

lns¼ ln s0�
Eg

2kBT
(14.115)

Taking the reciprocal of Eq. (14.111) one can straightway write the expression for resistivity r of an intrinsic

semiconductor as

r¼ r0 e
Eg

2kBT (14.116)

where r¼1/s and r0¼1/s0. The logarithm of Eq. (14.116) yields

ln r¼ ln r0 +
Eg

2kBT
(14.117)

The plot of lns or lnr as a function of T is a straight line whose slope gives the energy band gap Eg. Therefore, if one

measures the conductivity s or resistivity r as a function of temperature T, the band gap Eg of the intrinsic semiconductor

can be determined.

14.10.2 Extrinsic Semiconductors

The derivation of the general expression for conductivity s of an extrinsic semiconductor is difficult, but one can calculate s
in limiting cases. At low temperatures the electrons from the valence band cannot be excited to the conduction band. On the

other hand, the electrons from the donor band get excited to the conduction band and behave as the charge carriers. Hence,

at low temperatures, the conductivity is given as

s¼ neeme (14.118)

where ne is given by Eq. (14.59). From Eqs. (14.59), (14.118) one can write

s¼ eme
ffiffiffiffiffiffiffiffiffiffiffi
NdNe

p
e�DEcd=kBT (14.119)
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Substituting the value of Ne from Eq. (14.37) into the above equation, we get

s¼ s0ee
�DEcd=kBT (14.120)

where

s0e ¼ eme
ffiffiffiffiffiffiffiffiffi
2Nd

p m∗
e kBT

2pħ2

� �3=4

(14.121)

The mobility me is here due to the impurity ions, which exhibit T3/2 dependence (Eq. 14.77); therefore, s0e is temperature

dependent.

At high temperatures, most of the electrons in the conduction band are excited from the valence band as the impurity

concentration in a semiconductor is low. Therefore, at such temperatures, an n-type semiconductor behaves like an intrinsic

semiconductor with ne¼nh given by Eq. (14.51) and conductivity given by Eq. (14.111).

Problem 14.1

Show that at low temperatures, the electrical conductivity of a p-type semiconductor is given by

s¼ s0he
�DEav=kBT (14.122)

where

s0h ¼ emh
ffiffiffiffiffiffiffiffiffi
2Na

p m∗
hkBT

2pħ2

� �3=4

(14.123)

Problem 14.2

A Ge crystal has the dimensions of L¼1.0cm, W¼0.12cm, and d¼0.2cm (see Fig. 14.11A). In the Hall effect measurements, a

current of Ix ¼2.4mA flows when voltage Vx ¼1.0V and magnetic field Hz¼5000gauss is applied. The Hall voltage developed in

the crystal is V¼10mV. Calculate the conductivity of the crystal and the mobility of the charge carriers.

14.11 NONDEGENERATE SEMICONDUCTORS

In an extrinsic semiconductor the concentration of impurity (trivalent or pentavalent) is generally very small. Therefore, in

a conventional extrinsic semiconductor, the separation between the impurity atoms is large, as a result of which the

impurity-impurity interaction is negligible. Therefore, in an ordinary n- or p-type semiconductor, the impurity (donor

or acceptor) states are discrete and one can talk about impurity levels instead of bands. Such types of extrinsic semicon-

ductors are called nondegenerate semiconductors.

14.12 DEGENERATE SEMICONDUCTORS

With an increase in the impurity concentration in an extrinsic semiconductor, the impurity-impurity interaction becomes

finite. This interaction splits the discrete impurity states, forming an impurity band. With a further increase in the impurity

concentration, the width of the impurity band increases and, ultimately, it may overlap either with the conduction band in an

n-type semiconductor or with the valence band in a p-type semiconductor (see Fig. 14.12). The overlap occurs when the

impurity concentration becomes comparable with the effective density of states, or rather increases compared with the

density of states. Such types of semiconductors are called degenerate semiconductors. In an n-type degenerate semicon-

ductor the Fermi energy EF lies in the conduction band, while in a p-type degenerate semiconductor, EF lies inside the

valence band (see Fig. 14.12). In an n-type degenerate semiconductor, the energy states below EF are mostly filled and

above EF they are mostly empty. Therefore, in an n-type degenerate semiconductor, the energy states between EF and

Ec are mostly filled with electrons; thus, the electron concentration in the conduction band is very large. On the other hand,

in a p-type degenerate semiconductor, the energy states between Ev and EF are mostly empty (have holes in them) and the

hole concentration in the valence band is very large.
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14.13 COMPENSATED SEMICONDUCTORS

A compensated semiconductor is one that contains both donor and acceptor impurity atoms in the same region. A com-

pensated semiconductor can be formed either by diffusing acceptor impurities into an n-type semiconductor or by diffusing

donor impurities into a p-type semiconductor. Let Nd and Na be the density of states in the donor and acceptor levels, respec-

tively. In an n-type compensated semiconductor Na<Nd and in a p-type compensated semiconductor Nd<Na. If Na¼Nd

one gets a completely compensated semiconductor, which exhibits the characteristics of an intrinsic semiconductor. Com-

pensated semiconductors are created quite naturally during device fabrication.

Problem 14.3

In an intrinsic semiconductor the energy bands for both the conduction and valence bands are ellipsoidal in shape and are defined

as

E¼ Ec +
ħ2

2

k2x
m∗

x
+

k2y

m∗
y
+

k2z
m∗

z

 !
(14.124)

E¼ Ev�
ħ2

2

k2x
m∗

x
+

k2y

m∗
y
+

k2z
m∗

z

 !
(14.125)

where Ec is the energy value at the bottom of the conduction band and Ev is the energy at the top of the valence band. Here mx
∗, my

∗,

andmz
∗ are the effective component masses along the x-, y-, and z-directions. Find expressions for the density of states in the valence

and conduction bands.

Problem 14.4

Suppose that the effective mass of holes in an intrinsic semiconductor with Eg ¼ 1eV is four times that of the electrons. Find the

temperature at which the Fermi energy will be shifted by 5% from the middle of the energy gap.
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conductors. The shaded region shows the filled
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The properties of conducting and semiconducting solids have already been studied in the preceding chapters. In this

chapter, both the macroscopic and microscopic descriptions of the properties of nonconducting solids, particularly the

dielectric solids, will be presented. A microscopic study provides more insight into the dielectric properties of solids.

The nonconducting solids can be classified into two categories:

1. Nonpolar solids

2. Polar solids

15.1 NONPOLAR SOLIDS

In a nonpolar solid, an atom/molecule does not possess an intrinsic electric dipole moment. In such a solid the centers of

negative and positive charges in each atom/molecule coincide (Fig. 15.1A). If an external electric field E0 is applied to a

nonpolar solid, then two situations may arise:

1. In the presence of an external electric field E0, each atom/molecule may become polarized due to the shifting of the

centers of positive and negative charges (Fig. 15.1B). In other words, the electric field induces an electric dipole

moment in each atom/molecule. Such solids are called dielectric solids in analogy with diamagnetic solids.

2. The atoms/molecules do not suffer any polarization at all and such solids are called ideal insulators.

15.2 POLAR SOLIDS

A solid in which each atom/molecule possesses intrinsic electric dipole moment is called a polar solid. In such solids the

centers of positive and negative charge of an atom/molecule do not coincide, yielding a finite electric dipole moment

(Fig. 15.2). These solids can further be classified into two categories.

1. Solids that exhibit net zero electric dipole moment in the absence of an external electric field but a finite dipole moment

in the presence of an applied electric field. Such solids are called paraelectric solids.
2. Solids that exhibit net finite electric dipole moment even in the absence of an external electric field are called ferro-

electric solids.
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15.3 ELECTRIC DIPOLE MOMENT

An electric dipole consists of two equal and opposite charges separated by a finite distance. The moment of an electric

dipole p is defined as the product of the magnitude of the charge and the distance between the two charges (Fig. 15.3).

The direction of p is from the negative to the positive charge. Therefore

p¼ qr (15.1)

FIG. 15.3 Electric field due to an electric dipole with dipole moment p, which is

directed from negative to positive charge.

FIG. 15.1 (A) Atomwith spherical shape: The electron cloud is

spherical in shape with the nucleus N represented by a dot at its

center. Here the centers of negative and positive charges

coincide. (B) Spherical atom in the presence of an applied electric

fieldE0. It is assumed that there is no distortion in the shape of the

electron cloud in the presence of E0. The electron cloud as such

moves in a direction opposite to that of the field E0, while the

nucleus N moves in the direction of the field, causing dis-

placement r in the centers of the negative and positive charges.

FIG. 15.2 An atom with an elliptical electron cloud has the nucleus at one of its foci. The

centers of negative and positive charges are separated by distance r.
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Here r is a vector directed from the negative to the positive charge. The electric field of the electric dipole is directed from

the positive to the negative charge, as shown in Fig. 15.3. If there are a number of discrete charges present in the system,

then the total electric dipole moment is given by

p¼
X
i

qiri (15.2)

In the presence of a continuous electron charge distribution, with charge density re(r), the electric dipole moment of the

system is defined as

p¼
ð
rre rð Þd3r (15.3)

Polarization P in a solid is defined as the electric dipole moment per unit volume and is written as

P¼ p

V
(15.4)

where V is the volume of the solid. The polarization is a macroscopic property so the average is taken over the macroscopic

volume of the solid. The electric field due to a dipole moment p varies inversely as the cube of the distance and is given by

E rð Þ¼ 3 p � r̂ð Þ r̂�p

r3
(15.5)

Here r̂ is a unit vector in the direction of r.

15.4 MACROSCOPIC ELECTRIC FIELD

Experimental measurements of different physical properties, such as electric field, magnetic field, and electrical resistivity,

of a bulk material yield some sort of average value of the property. On the other hand, at the position of an atom/molecule

inside the solid, the physical property may be significantly different, both in magnitude and direction, from the measured

value for the bulk material. Here we consider a macroscopic electric field inside a dielectric material. Fig. 15.4 shows the

bulk material in the presence of an externally applied electric field E0. The dielectric material gets polarized with P as the

polarization and EP as the electric field resulting from it. The macroscopic (average) field inside the material becomes

E¼E0 +EP (15.6)

Let Eloc(r) be the local (microscopic) electric field at an atom/molecule situated at r, which may have different values at

different atoms/molecules. One can express the macroscopic electric field per unit volume at the position r0, i.e., E(r0), in

terms of the local field as

FIG. 15.4 Bulk dielectric material placed in the

external electric field E0. EP is the electric field due

to the polarization P produced inside the material.
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E r0ð Þ¼ 1

V

ð
Eloc r� r0ð Þd3r (15.7)

The field E(r) is quite smooth compared with Eloc(r).

15.5 POTENTIAL DUE TO AN ELECTRIC DIPOLE

From elementary electrostatics it is well known that the potential due to an electric dipole moment distribution with polar-

ization P is given by

V rð Þ¼
ð
d3rP � r1

r
(15.8)

Applying the vector identity

r � 1

r
P

� �
¼r 1

r

� �
�P+

1

r
r �P (15.9)

one can write Eq. (15.8) as

V rð Þ¼
ð
r � 1

r
P

� �
d3r (15.10)

Here we have assumed constant polarization, so that — � P 5 0. Applying the divergence theorem to Eq. (15.10) one gets

V rð Þ¼
ð
dS

n̂ �P
r

¼
ð
dS

Pn
r

(15.11)

Here dS is an infinitesimal surface element and n̂ is a unit vector normal to the surface and is directed away from the

dielectric material. Comparing the above equation with.

V rð Þ¼
ð
dS

sn
r

(15.12)

the surface charge density normal to the surface sn becomes

sn ¼ n̂ �P¼ Pn (15.13)

Fig. 15.5 shows E0, EP, P, and n̂ �P in a dielectric material in the form of a cuboid. With the help of Eq. (15.13), the electric

field due to the polarization of the dielectric material can be evaluated.

15.6 DEPOLARIZATION FIELD DUE TO CUBOID

Consider a dielectric material in the form of a cuboid (Fig. 15.5) to which is applied the external electric field E0. The

dielectric material is equivalent to two charged sheets: one surface has charge density n̂ �P, while the other opposite to

it has �n̂ �P, as shown in the figure. From Gauss’s law in an electrostatic, the field due to polarization EP is given by

FIG. 15.5 Bulk dielectric material in the form of a cuboid placed in the presence of an

external electric field E0. EP gives the electric field and n̂ �P the surface charge density

due to the polarization produced inside the material.
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EP ¼�2pn̂ �P�2pn̂ �P¼�4pn̂ �P
¼�4pPn ¼�4psn

In the vector form one can write.
EP ¼�4pP (15.14)

EP is called the depolarization field because it opposes the applied electric field E0.

Problem 15.1

Prove that the depolarization field EP in a bulk dielectric material in the form of a sphere is given by

EP ¼�4p
3
P: (15.15)

Hence, the macroscopic field in a dielectric material in the form of a cuboid, from Eqs. (15.6) and (15.14), is given by

E¼E0�4pP (15.16)

In the above derivation the discrete lattice of the dipoles has been replaced by a smoothly varying polarization P, therefore,

EP and E are smoothly varying fields. From Eq. (15.14) it is evident that the constant factor in the depolarization field

depends on the shape of the bulk material, therefore, in general the Cartesian components of the depolarization field

can be written as

EPx
¼�NxPx, EPy

¼�NyPy, EPz
¼�NzPz (15.17)

Here Nx, Ny, and Nz are the depolarization factors and their values depend on the shape of the bulk material. For a solid in

the form of an ellipsoid, the values of Nx, Ny, and Nz depend on the ratio of the major to minor axes and satisfy the following

condition

Nx +Ny +Nz ¼ 4p (15.18)

E0 and P are parallel to each other and in the same direction. Further, EP is parallel to P but in the opposite direction,

therefore, one can write
EP ¼�NP (15.19)

Hence, the macroscopic field in this case becomes
E¼E0�NP (15.20)

15.7 POLARIZATION

In general, a crystalline solid is anisotropic in nature. In such solids, when a macroscopic electric field E(r, t) is applied at

position r at time t, the polarization P(r0, t0) may be produced at all possible values of position r0 and time t0. The reverse is
also true, that is, the polarization P(r, t) at position r and time t is produced when macroscopic field E(r0, t0) is applied at all
possible positions r0 at time t0. In the linear response approximation, this fact can be represented mathematically as follows

P r, tð Þ¼
X
r0, t0

wE r, t; r0, t0ð ÞE r0, t0ð Þ (15.21)

wE(r, t;r0, t0) is the linear response function and is usually called the electric susceptibility matrix. In reciprocal space

Eq. (15.21) is given by

P K,oð Þ¼
X
K0,o0

wE K,o;K0,o0ð ÞE K0,o0ð Þ (15.22)

One is usually interested in the equal-time response function, i.e., for t¼ t0 oro¼o0. Therefore, for equal time, Eqs. (15.21)

and (15.22) can be written as

P r, tð Þ¼
X
r0

wE r, r0, tð ÞE r0, tð Þ (15.23)

P K,oð Þ¼
X
K0

wE K,K0,oð ÞE K0,oð Þ (15.24)
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Here we have written wE(r, t;r0, t)¼ wE(r,r0, t) and wE(K,o;K0,o)¼ wE(K,K0,o). The frequency-dependent susceptibility
wE(K,K0,o) is generally called the dynamical susceptibility matrix. In a homogeneous and isotropic solid, the polarization

is produced in the direction of the applied field and in this case Eqs. (15.23) and (15.24) reduce to

P r, tð Þ¼ wE r, tð ÞE r, tð Þ (15.25)

P K,oð Þ¼ wE K,oð ÞE K,oð Þ (15.26)

Here the dynamical electric susceptibility wE(K,o) is a scalar quantity. The time-independent polarization (static polari-

zation) for a homogeneous material is obtained by substituting t¼0 and o¼0 in Eqs. (15.25) and (15.26) and is given by

P rð Þ¼ wE rð ÞE rð Þ (15.27)

P Kð Þ¼ wE Kð ÞE Kð Þ (15.28)

wE(K) is the static electric susceptibility function. If a constant electric field is applied to the solid, the above equation can be

written as

P¼ wEE (15.29)

The electric susceptibility wE becomes a constant. With the help of Eq. (15.20) the polarization P can also be expressed in

terms of the applied field E0. Substituting Eq. (15.20) into Eq. (15.29), one can write

P¼ wE
1 +NwE

E0 (15.30)

In the limiting case of very large wE the above equation reduces to

P�E0

N
(15.31)

Hence, the polarization is determined purely by the shape of the material in the limit of very large wE. Such a situation must

be avoided in the experimental determination of the electrical susceptibility of a solid.

15.8 DIELECTRIC MATRIX

From elementary electricity, the displacement field D(r, t) is defined as

D r, tð Þ¼E r, tð Þ+ 4pP r, tð Þ (15.32)

Substituting the value of P(r, t) from Eq. (15.23) into Eq. (15.32), one writes.

D r, tð Þ¼E r, tð Þ+ 4p
X
r0

wE r, r0, tð ÞE r0, tð Þ (15.33)

Here we have used the equal-time expression for P(r, t). The above equation can be written as

D r, tð Þ¼
X
r0

e r, r0, tð ÞE r0, tð Þ (15.34)

where

e r, r0, tð Þ¼ dr,r0 + 4pwE r, r0, tð Þ (15.35)

e(r,r0, t) is the response function and is called the dielectric matrix. In reciprocal space Eqs. (15.34) and (15.35) can be

written as

D K,oð Þ¼
X
K0

e K,K0,oð ÞE K0,oð Þ (15.36)

e K,K0,oð Þ¼ dK,K0 + 4pwE K,K0,oð Þ (15.37)

For a homogeneous and isotropic solid, Eqs. (15.35) and (15.37) reduce to scalar equations given by

e r, tð Þ¼ 1 + 4pwE r, tð Þ (15.38)
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e K,oð Þ¼ 1 + 4pwE K,oð Þ (15.39)

e(r, t) and e(K,o) represent the scalar dynamical dielectric function in the direct and reciprocal spaces. The time-

independent (static) dielectric function for a homogeneous material is obtained by substituting t¼0 and o¼0 in

Eqs. (15.38) and (15.39), respectively, and is given by

e rð Þ¼ 1 + 4pwE rð Þ (15.40)

e Kð Þ ¼ 1 + 4pwE Kð Þ (15.41)

The frequency-dependent dielectric function at K¼0, i.e., e(o), from Eq. (15.39) becomes

e oð Þ¼ 1 + 4pwE oð Þ (15.42)

e(o) gives the dielectric function at very long wavelengths. For a uniform electric field, Eqs. (15.40) and (15.41) reduce to

e¼ 1 + 4pwE (15.43)

e defines the dielectric constant of a material.

15.9 EXPERIMENTAL MEASUREMENT OF DIELECTRIC CONSTANT

The dielectric constant can be defined as the ratio of the capacity of a capacitor with dielectric material Cdielc to the capacity

of the same capacitor when empty, Cvac, i.e.,

e¼Cdielc

Cvac

(15.44)

Experimental measurements of the dielectric constant can be performed using Eq. (15.44). The capacity of a capacitor can

be calculated with the help of an LC resonant circuit, as shown in Fig. 15.6. Here L is an inductor, C is an experimental

capacitor, and CG is a variable (gang) capacitor. It should be noted that Fig. 15.6 illustrates just the principle, but there are a

number of actual circuits employed to determine the dielectric constant. The resonance frequency of an LC circuit is given

by

n0 ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L C+CGð Þ

s
(15.45)

By varying the capacity CG, the resonance frequency of the LC circuit is determined when the capacitor C is empty. From

the total capacity, Cvac+CG, one can find Cvac, i.e., the capacity when there is vacuum inside the experimental capacitor.

Now the dielectric material is placed inside the experimental capacitor and CG is again varied to obtain the same resonance

frequency, yielding the total capacity of the circuit as Cdielc+CG. From the total capacity one can calculate Cdielc, i.e., the

capacity of the experimental capacitor with the dielectric inside it. With knowledge of Cdielc and Cvac, one can find the

dielectric constant of the material.

In this chapter we shall present an atomic view (microscopic description) of the properties of a dielectric material. To

study the dielectric properties on the atomic scale, one should know that the electric field experienced by an atom may be

much different from the macroscopic field.

FIG. 15.6 The LC circuit used to measure the dielectric constant of

a solid. Here C is a parallel plate capacitor in which the specimen of

the given solid is used as a dielectric and CG is a variable (gang)

capacitor.
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15.10 LOCAL ELECTRIC FIELD AT AN ATOM

The actual electric field at the site of an atom is called the local electric field Eloc, which may be significantly different from

the macroscopic electric field E. Let us find the general expression for Eloc at the atomic site as it forms the backbone of a

microscopic study of the dielectric properties of solids. Consider a solid in ellipsoidal form (Fig. 15.7) in which the external

electric field E0 is applied along the major axis. It is assumed that all the electric dipoles are oriented parallel to the external

field. Let us evaluate Eloc at an atom situated at the center of the ellipsoidal solid. The exact value of Eloc at the position of

the atom is the sum of the external electric field and the field arising from all the atomic dipoles of the solid, i.e.,

Eloc ¼E0 +
X
i

3 pi � r̂ið Þ r̂i�pi
r3i

(15.46)

Here the summation is over all the atomic dipoles of the solid, an operation that may be difficult to perform. Therefore, the

following simplified procedure is adopted to estimate Eloc. The maximum contribution to Eloc at the atom is expected to

come from its neighboring atomic dipoles and their contribution should be accounted for exactly. The contribution from the

rest of the atomic dipoles of the solid can be averaged out. To achieve this, a small hypothetical spherical solid with the atom

under consideration at its center is cut from the solid (see Figs. 15.7 and 15.8). The spherical solid is large enough to contain

very many atomic dipoles in it. After removing this spherical portion, a cavity, usually called the Lorentz cavity, is created

at the center of the ellipsoidal solid. Leaving aside the spherical portion, one is left with an ellipsoidal dielectric solid having

finite charge density at its outer surface and also finite charge density on the inner surface of the Lorentz cavity (see

Fig. 15.8). Now Eloc at the center of the cavity can be split into four contributions as follows:

FIG. 15.7 Polarization produced in a solid in the presence of an applied

electric fieldE0. The sphere in the center of the solid shows a small portion

of the solid, which contains a sufficiently large number of atomic dipoles.

By removing this small portion of the solid a cavity is produced, usually

called the Lorentz cavity.

FIG. 15.8 The dipole moments inside the solid cancel the effects of each

other; therefore, the surface of the solid is charged as shown. The inner

surface of the Lorentz cavity is also charged but opposite to that of the

outer surface of the solid.
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Eloc ¼E0 +EP +EC +ED (15.47)

ED is the net electric field at the center of the Lorentz cavity due to the fields of all of the electric dipoles inside the spherical

portion (Lorentz cavity) and is given by

ED ¼
X

j cavityð Þ

3 pj � r̂j
� �

r̂j�pj

r3j
(15.48)

Here EP is the depolarization field due to the charge density on the outer surface of the solid and its value depends on the

shape of the solid (Section 15.6).EC is the field arising from the charge density appearing on the inner surface of the Lorentz

cavity and is calculated according to what follows.

The Lorentz cavity with radius “a” has a finite charge density�n̂ �P¼�P cosy on its inner surface (Fig. 15.9). Let the
charge on the circular ring be dq, which, from the figure, is given by

dq¼ 2pa siny adyð Þ �P cosyð Þ (15.49)

The electric field due to the circular ring at the center O of the cavity dE is given by

dE¼ dq

a2
¼�2pP cosy sinydy (15.50)

The component of the electric field in the direction of polarization becomes

dEC ¼ dEcos p�yð Þ¼�2pP cosy sinydycos 180�yð Þ
Hence the total field at the center of the cavity becomes

EC ¼ 2pP
ðp

0

cos2y sinydy¼ 4p
3

P (15.51)

Using Eqs. (15.48) and (15.51) in Eq. (15.47), one gets

Eloc ¼E0 +EP +
4p
3

P +
X

j cavityð Þ

3 pj � r̂j
� �

r̂j�pj

r3j
(15.52)

The equation above gives the local electric field for any structure. The evaluation of the last term of Eq. (15.52) is difficult

for a complex structure, so here we evaluate Eloc for an sc structure. From Eq. (15.48), ED can be written as

ED ¼
X

j cavityð Þ

3 pj � rj
� �

rj� r2j pj

r5j
(15.53)

If all of the electric dipoles are oriented in the z-direction, i.e., pj ¼ pj ẑ, then ED(¼ED
z ) in the z-direction is given by

FIG. 15.9 The Lorentz cavity with origin at its center O. The

polarization and electric field produced by the charge density

on the inner surface of the cavity are shown.
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Ez
D ¼

X
j cavityð Þ

pj
3z2j � r2j

r5j
¼

X
j cavityð Þ

pj
2z2j �x2j �y2j

r5j
(15.54)

For a cubic crystal with a spherical cavity all three directions are equivalent and, therefore,

X
j

x2j

r5j
¼
X
j

y2j

r5j
¼
X
j

z2j

r5j
(15.55)

Substituting Eq. (15.55) into Eq. (15.54), one gets.

Ez
D ¼ 0 (15.56)

The result above can also be proved from Eq. (15.48) using the definition of r̂j. Therefore, for a cubic crystal of any shape,

the local field at the site of an atom is given by

Eloc ¼E0 +EP +
4p
3

P (15.57)

The equation above can be written in terms of the macroscopic field E as

Eloc ¼E +
4p
3

P (15.58)

If the cubic crystal has a spherical shape instead of an ellipsoidal one, then the depolarization fieldEP [given by Eq. (15.15)]

cancels the Lorentz cavity field EC and, therefore, the local field reduces to the applied field, i.e.,

Eloc ¼E0 (15.59)

15.11 POLARIZABILITY

The electric dipole moment of an atom/molecule p depends on the local electric field experienced by it. Therefore, in the

linear response approximation, p is given by

p¼ aaEloc (15.60)

where aa is a constant of proportionally called the atomic polarizability. The dimensions of aa are L3.

15.12 POLARIZATION

For a microscopic description of dielectric properties, the polarization should be expressed in terms of the atomic dipole

moments. In general, a solid may contain more than one type of atom. Let ri
a be the number of the ith type of atom per unit

volume in the solid, with pi as the atomic dipole moment. The polarization of such a solid is given by

P ¼
X
i

rai pi (15.61)

From Eqs. (15.60) and (15.61) one can write.

P¼
X
i

rai a
a
i E

i
loc (15.62)

Here ai
a and Eloc

i are the polarizability and local electric field experienced by the ith type of atom. Substituting the value of

Eloc
i from Eq. (15.58) into Eq. (15.62), we get

P¼
X
i

rai a
a
i E +

4p
3

P

� �
(15.63)
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From the above equation the electric susceptibility becomes

wE ¼
P

E
¼

X
i

rai a
a
i

1� 4p
3

X
i

rai a
a
i

(15.64)

Using Eq. (15.43) in Eq. (15.64), one obtains a relation between e and ai
a as

e�1

e+ 2
¼ 4p

3

X
i

rai a
a
i (15.65)

Eq. (15.65) is called the Clausius-Mossotti relation and represents the macroscopic physical quantities in terms of micro-

scopic quantities. This relation can be written in terms of conventional quantities. Let ni
a be the number of the ith type of

atom in a unit cell of volume V0. Then the number of the ith type of atom per unit volume becomes ri
a¼ni

a/V0. Substituting

the value of ri
a in Eq. (15.65), we find

X
i

nai a
a
i ¼

3V0

4p
e�1

e + 2
(15.66)

Eq. (15.66) can be used to find the polarizability of the solid. For example, consider a solid with na identical atoms in a unit

cell. The polarizability aa from Eq. (15.66) becomes

aa ¼ 3V0

4pna
e�1

e+ 2
(15.67)

If, in a solid, there are two types of atoms with polarizabilities a1
a and a2

a, but with the same number of atoms per unit cell,

i.e., n1
a¼n2

a¼na, then X
i

nai a
a
i ¼ na aa1 + a

a
2

� �
(15.68)

Eqs. (15.66) and (15.68) give the sum of the polarizabilities of two types of atoms by

aa1 + a
a
2 ¼

3V0

4pna
e�1

e + 2
(15.69)

15.13 TYPES OF POLARIZABILITIES

The polarizability of an atom comprises three possible contributions, namely

1. Electronic polarizability aE
a

2. Ionic polarizability aI
a

3. Dipolar or orientational polarizability aD
a

The total atomic polarizability is the sum of the three contributions and is given by

aa ¼ aaE + a
a
I + a

a
D (15.70)

Fig. 15.10A shows a free spherical atom. When an electric field E0 is applied, the electron cloud of the atom not only shifts

toward the positive side but also suffers distortion (Fig. 15.10B). This causes the centers of negative and positive charges to

shift away from each other, thereby producing a finite electric dipole moment. This physical effect contributes to the polar-

izability, generally called the electronic polarizability.

Fig. 15.11A shows a linear ionic solid in which the distance between the nearest neighbors is the same. In the ionic solid

the adjacent electric dipole moments are equal and opposite, yielding net zero polarization. When an electric field is

applied, the positive and negative ions move in opposite directions (Fig. 15.11B), thereby producing oppositely directed

unequal electric dipole moments causing finite ionic polarization and hence ionic polarizability.
Consider a solid in which each atom possesses a finite intrinsic electric dipole moment. In the absence of an electric

field, all of the dipoles are randomly oriented, yielding zero polarization. When an electric field is applied, the dipole
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moments tend to align in the direction of the field, producing finite polarization. The polarizability thus produced is called

dipolar or orientational polarizability. The electronic and ionic polarizabilities are produced in both polar and nonpolar

solids, but the dipolar polarizability is produced only in polar solids.

15.14 VARIATION OF POLARIZABILITY WITH FREQUENCY

At very low frequencies the ions, electrons, and intrinsic dipole moments all respond to the applied electric field; therefore,

the total polarizability is the sum of the three contributions (Eq. 15.70). With an increase in frequency the reorientation of

the intrinsic dipole moments becomes difficult as atoms are heavy particles that interact with one another. Ultimately, the

atomic dipole moments stop responding at some particular frequency. With a further increase in frequency, the response of

the ions also decreases due to the large inertia and goes to zero at some higher frequency. At very high frequencies only

electrons, being very light particles, respond to the applied electric field, yielding finite electronic polarizability. At optical

frequencies, only the electronic polarizability is finite. Fig. 15.12 shows the variation of aa as a function of frequency. The
peaks appearing in the figure are due to resonance absorption at certain frequencies and are not of interest to us. At optical

frequencies e¼n2 where n is the refractive index of the material. Therefore, in the optical range, Eq. (15.65) reduces to.

n2�1

n2 + 2
¼ 4p

3

X
i

rai a
a
i (15.71)

Here ai
a corresponds to the electronic polarizability of the i-th type of atom. This equation can be used to evaluate the elec-

tronic polarizability as the refractive index of most materials is known to a fair degree of accuracy.

FIG. 15.10 (A) A free spherical atom. (B) An atom

in the presence of an external electric field E0. In the

presence of E0 the shape of the electron cloud gets dis-

torted in addition to the shifting of the centers of neg-

ative and positive charges.

FIG. 15.11 (A) A linear ionic solid with period-

icity 2a yields no polarization. (B) A linear ionic

solid in the presence of an applied electric fieldE0

produces finite ionic polarization.
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15.15 ORIENTATIONAL POLARIZABILITY

The orientational or dipolar polarizability is shown bymaterials in which each atom/molecule possesses an intrinsic electric

dipole moment. At finite temperature, in the presence of an external electric field E0, there are two forces acting on each

electric dipole:

1. First is the electric force, which tends to align the dipole moments along the direction of the electric field.

2. Second is the thermal force, which tries to destroy the alignment.

Under the action of these two competing forces, some electric dipole moments align in the direction of the applied electric

field and others make some angle y, which may vary from 0 to p radians for different dipole moments (see Fig. 15.13).

Therefore, the specimen shows finite polarization in the direction of the electric field. The polarization increases either with

an increase in the strength of the electric field or with a decrease in temperature. The saturation polarization is reached when

all the dipole moments align along the direction of the electric field.

FIG. 15.12 Variation of dipolar, ionic, and electronic

polarizabilities of an atom/molecule as a function of

frequency.

FIG. 15.13 The orientation of the electric dipole moment p with respect to an applied electric field E0.
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In the presence of an electric field, the potential energy E of the electric dipole moment is

E¼�p �E0 ¼�pE0 cosy (15.72)

According to classical statistical mechanics, the probability F of an electric dipole moment to occupy a state making an

angle y with the electric field is given by

F∝ exp � E

kBT

� �
∝ exp

pE0

kBT
cosy

� �
(15.73)

The component of an electric dipole moment along the direction of the electric field is p � Ê0 ¼ p cosy where Ê0 is the unit

vector in the direction of the external electric field. Hence the average component of the dipole moment in the direction of

the electric field is given by

pavg ¼

ð
p � Ê0

� �
exp

pE0

kBT
cosy

� �
dOsð

exp
pE0

kBT
cosy

� �
dOs

(15.74)

Here dOs is the solid angle. Solving the above integral one gets

pavg ¼ pL
pE0

kBT

� �
(15.75)

where

L yð Þ¼ cothy�1

y
(15.76)

Here L(y) is called the Langevin function. If ra is the number of atoms per unit volume, then the electric polarization is

given by

P Tð Þ ¼ rapL
pE0

kBT

� �
(15.77)

The electric susceptibility, in the linear response approximation, becomes

wE Tð Þ¼ P Tð Þ
E0

¼ rap
E0

L
pE0

kBT

� �
(15.78)

Simple expressions can be obtained for polarization and susceptibility in the limiting cases. If

pE0 ≫ kBT (15.79)

then

L
pE0

kBT

� �
¼ 1 (15.80)

Therefore,

P¼ rap (15.81)

which gives the saturation polarization. Hence, the saturation polarization is obtained either at very low temperatures or at

very high electric field. If

pE0 ≪ kBT (15.82)

then, for small values of y, cothy can be expanded as

coth y¼ 1

y
+
y

3
� y3

45
+⋯: (15.83)
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Therefore, for small y, L(y) can be written as

L yð Þ¼ 1

y
+
y

3
+⋯⋯

� �
�1

y
� y

3
(15.84)

The behavior of the Langevin function L(y) is shown in Fig. 15.14. L(y) has a slope of 1/3 at y ¼0 and attains the saturation

value of one at very large y. Hence, at small values of y, the polarization and electric susceptibility are given by

P Tð Þ¼ rap2

3kBT
E0 (15.85)

wE Tð Þ¼CE

T
(15.86)

where CE is called the Curie constant and is given by

CE ¼
rap2

3kB
(15.87)

Eq. (15.86) is usually called the Curie law. From Eqs. (15.60) and (15.75) the dipolar contribution to the polarizability is

given by

aaD Tð Þ¼ pavg

Eloc

¼ p

E0

L
pE0

kBT

� �
(15.88)

At weak field E0 and high temperature T (paramagnetic region), Eq. (15.88) reduces to

aaD Tð Þ¼ p2

3kBT
(15.89)

15.16 CLASSICAL THEORY OF ELECTRONIC POLARIZABILITY

Suppose an electron is bound harmonically to the nucleus of an atom in a dielectric material. A frequency-dependent

electric field E0(o) is applied to the material, given by

FIG. 15.14 Plot of the Langevin function L(y) as a

function of the parameter y ¼pE0/kBT. The dashed line is

tangent to the curve at the origin and its slope is 1/3.
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E0 oð Þ¼E0 sinot (15.90)

The local field Eloc(o) acting on the electron of the atom is given by

Eloc oð Þ¼Eloc sinot (15.91)

The equation of motion of the harmonically bound electron is given by

me

dr2

dt
+meo

2
0r¼�eEloc sinot (15.92)

Here o0 is the resonance frequency of vibration of the electron. The displacement of the electron is given as

r¼ r0 sinot (15.93)

Substituting Eq. (15.93) into Eq. (15.92) and solving for r0, we get.

r0 ¼
�eEloc

me o2
0�o2

� � (15.94)

Therefore, the dipole moment of the electron becomes

p¼�er0 ¼
e2Eloc

me o2
0�o2

� � (15.95)

The electronic polarizability aE
a (o) becomes

aaE oð Þ¼ p

Eloc

¼ e2

me o2
0�o2

� � (15.96)

The static polarizability is obtained by applying a static electric field to the material. Therefore, from Eq. (15.96), the static

polarizability becomes

aaE ¼ aaE 0ð Þ¼ e2

meo
2
0

(15.97)

The electronic polarizability can also be treated quantum mechanically and the expression is given by

aaE oð Þ¼ e2

me

X
j

fij

o2
ij�o2

(15.98)

where fij is called the oscillator strength of the electric dipole transition between the atomic states i and j. Eq. (15.98) is

derived for atoms and must be modified for dielectric solids. Note that Eq. (15.98) is quite similar to the classical result

given by Eq. (15.96).

Problem 15.2

The Hartree dielectric screening function e(K) for wave vector K is defined as

e Kð Þ¼ 1�v Kð ÞwE Kð Þ (15.99)

where

v Kð Þ¼ 4pe2

VK2 (15.100)

and

wE Kð Þ¼
X
k

f Ek, Tð Þ� f Ek+K, Tð Þ
Ek�Ek+K

(15.101)

Here V is the volume of the solid and v(K) is the electron–electron interaction potential in the reciprocal space. Derive the expres-

sions for wE(K) and e(K) at absolute zero in the free-electron approximation.
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Problem 15.3

The bare-ion Coulomb potential in the reciprocal space as seen by an electron is given by

Vb Kð Þ¼�4pZe2

V0K
2 (15.102)

If the screened ion potential is defined as

V Kð Þ¼Vb Kð Þ
e Kð Þ (15.103)

where e(K) is the Hartree dielectric function (Problem 5.2). Prove that in the limit K!0, the screened potential reduces to.

limK!0V Kð Þ¼�2

3
EF (15.104)

Problem 15.4

The dielectric function in the Thomas-Fermi approximation is given by

e Kð Þ ¼ 1+K2
TF=K

2 (15.105)

where KTF is the Thomas-Fermi wave vector defined as

KTF ¼
6pnee

2

EF

� �1=2

(15.106)

The bare-ion potential as seen by an electron is given as

Vb Kð Þ¼�4pZe2

V0K
2 (15.107)

Find the expression for the screened potential in the crystal space.

Problem 15.5

Find the expression for the electronic polarizability of an atom.

Problem 15.6

Consider the one-dimensional ionic lattice shown in Fig. 15.11. If the external electric field E0 is applied in the positive x-direction,

derive an expression for the ionic polarizability assuming harmonic forces between the ions.
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A number of dielectric materials exist in which the electric polarization depends nonlinearly on the applied electric field

and that exhibit a hysteresis effect. Such materials are called ferroelectric materials and the phenomenon is called ferro-

electricity. Ferroelectric crystal can be divided into a large number of regions, called ferroelectric domains. In each domain

all the electric dipoles are directed in one direction, yielding a finite net electric dipole within it. The spontaneous polar-

ization Ps is the polarization in the absence of an electric field. The magnitude of Ps is determined by the vector sum of the

electric dipole moments in an individual domain and, therefore, is a cooperative phenomenon. The different domains have

polarizations in different directions. In the absence of an applied electric field all the domains are randomly oriented,

yielding net zero polarization. When an electric field E0 is applied, the domains with polarization in the direction of

the field grow, while those with polarization opposite to the direction of the field diminish in size and, ultimately, vanish.

When all the dipoles are oriented in the direction of the applied field, then a single domain exists in the solid and saturation

polarization is obtained. A plot of polarization P as a function of the applied fieldE0 is shown in Fig. 16.1. From the figure it

is evident that the polarization P always lags behind the applied electric field E0 and this phenomenon is called hysteresis.

The figure shows that the polarization does not retrace its path, resulting in a hysteresis loop whose area gives the loss of

electrostatic energy. When the applied electric field is switched off, there exists a finite polarization in the solid, which is

called the remnant polarization Pr. To reduce the polarization to zero, one has to apply the electric field to the solid in the

reverse direction; this is called the coercive field Ec. The value of Ps is obtained by extrapolating the linear part BC of the

hysteresis loop to zero electric field. The spontaneous polarization Ps, remnant polarization Pr, and coercive field Ec are

shown in Fig. 16.1. The material shows ferroelectric properties only at low temperatures and makes a transition from the

ferroelectric state to the paraelectric state at a particular temperature TC called the transition temperature.We should remark

here that the spontaneous polarization in a ferroelectric material arises due to electrostrictive strains in the crystal; therefore,

the ferroelectric state has lower symmetry than the paraelectric state.

The dielectric constant e is given by the slope of the curve OA (see Fig. 16.1) at very small fields so that no motion of the

domain boundaries occurs. The dielectric function e is a function of temperature and above TC, it satisfies the relation

e¼ C0

T�y
+ e0 (16.1)

C
0
is a constant and y is the characteristic temperature, which is usually less than TC. Near TC, the electric susceptibility wE is

given by

wE ¼
C

T�y
(16.2)
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where

C¼ C0

4p
(16.3)

Eq. (16.2) is usually called the Curie-Weiss law.

16.1 CLASSIFICATION OF FERROELECTRIC SOLIDS

The ferroelectric solids can be classified broadly into three categories.

16.1.1 Tartrate Group

Rochelle salt is a sodium potassium salt of tartaric acid with the formula NaKC4H4O6 �4H2O and is one of the first materials

in which ferroelectricity was observed. The other ferroelectric materials of this group can be prepared by partially replacing

K by NH4, Rb, or Tl. Lithium ammonium tartrate and lithium tantalum tartrate are also members of this group. Rochelle salt

exhibits ferroelectric behavior in the temperature range from �18°C (255 K) to 23°C (296 K), which means it has two

transition temperatures. Rochelle salt exhibits orthorhombic structure (a1 6¼a2 6¼a3, a¼b¼g¼90o), but in the ferroelectric

state it has monoclinic structure (a1 6¼a2 6¼a3, a¼ g¼90o 6¼b). The spontaneous polarization occurs along the original

a-direction, i.e., positive and negative directions along the a-axis. There are three components of dielectric constant e1,
e2, and e3 along the three lattice vectors a1, a2, and a3. The dielectric constant e1 exhibits two peaks at the transition

temperatures, while e2 and e3 are found to vary smoothly with temperature (Fig. 16.2). The susceptibility function in

Rochelle salt obeys the Curie law in the nonferroelectric state as

w1E ¼
C1

T�TC1

for T>TC1
¼ 296K (16.4)

and

w2E ¼
C2

TC2
�T

forT<TC2
¼ 255K (16.5)

where C1¼178 K and C2¼93.8 K. The spontaneous polarization Ps(T) as a function of temperature T is shown in Fig. 16.3

for Rochelle salt and deuterated Rochelle salt. It is noteworthy that the replacement of an H atom by D (deuterium) has a

marked influence on both Ps(T) and TC, which indicates the important role of H-bonds. But X-ray and neutron studies show

that H and D are not at all involved in the mechanism of ferroelectricity.

FIG. 16.1 Schematic representation of electric polarization P as a function of applied

electric field E in ferroelectric solids (hysteresis loop).
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16.1.2 Dihydrophosphates and Arsenates

In the second type of ferroelectrics, the most important is potassium dihydrophosphate with the formula KH2PO4, which

exhibits ferroelectric behavior below TC¼123K. It possesses orthorhombic structure (a1 6¼a2 6¼a3, a¼b¼g¼90o) below

TC but tetragonal structure (a1¼a2 6¼a3, a¼b¼g¼90o) above TC. Ps(T) in KH2PO4 occurs in the a3-direction, the only

polar direction, and its temperature variation is shown in Fig. 16.4. The temperature variation of e(T) is shown in Fig. 16.5
and exhibits the same behavior as given by Eq. (16.1) (see Fig. 16.2). In KH2PO4, the phosphate group contains four oxygen

atoms at the corners of a tetrahedron with a phosphorus atom at its center. The phosphate groups are bound together by the

H-bond. It has been observed that if the H-atom is replaced by a D-atom, then TC changes from 123 K to 213K, i.e., by 90K.

This again indicates that H-bonds might be playing an important role in ferroelectricity in this class of ferroelectric solids.

FIG. 16.2 The logarithm of the dielectric constant ea of

Rochelle salt along the three lattice vectors aa (a ¼1, 2, and 3)

as a function of temperature. (Modified from Halblutzel, J.

(1939). Helv. Phys. Acta. 12, 489.)

FIG. 16.3 The spontaneous polarization Ps(T) as a function of tem-

perature T. The lower curve corresponds to Rochelle salt, while the

upper curve corresponds to deuterated Rochelle salt. (Modified from
Halblutzel, J. (1939). Helv. Phys. Acta. 12, 489.)
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16.1.3 Perovskite Structure

The general formula for perovskite structure is ABO3, where A and B represent metallic elements. Many of these materials

are ferroelectric in nature. The salient features of perovskite structure were presented in Chapter 1. The most important

material belonging to this class is barium titanate with the formula BaTiO3. The structure of BaTiO3, in which the oxygen

atoms form an octahedron, is shown in Fig. 1.33. In the unpolarized state it has cubic symmetry: Ba+2 ions occupy the

corners of the cubic unit cell, O�2 ions are at the centers of the faces, and a Ti+4 ion lies at the center of the unit cell.

In this structure O�2 ions are highly polarizable, producing finite spontaneous polarization. When an electric field is

applied, the unit cell of BaTiO3 expands along the a3-direction and contracts perpendicular to it, thereby producing finite

polarization. The spontaneous polarization is measured along the [001] direction. BaTiO3 has a TC of 120°C (393 K) below

which it is ferroelectric with tetragonal structure, but above TC it is nonferroelectric in nature. As the temperature is

decreased, two structural changes take place: at 278K it acquires orthorhombic structure, while at 193K its structure

changes to a rhombohedral one. Figs. 16.6 and 16.7 show the variation of e(T) and Ps(T) with T as measured along the

[001] direction and the structural transitions are evident from the graphs.

There are other groups of ferroelectric materials but they are not of much interest here.

FIG. 16.4 The spontaneous polarization Ps(T) as a function of temperature T for

KH2PO4. (Modified from Von Arx, A. and Bantle, W. (1943). Helv. Phys. Acta. 16, 211.)

FIG. 16.5 The logarithm of the dielectric constant as a function of temper-

ature T for KH2PO4 along the a1 and a3 axes. (Modified from Busch, G. and

Scherrer, P. (1935). Naturwiss., 23, 737.)
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16.2 THEORIES OF FERROELECTRICITY

Two types of theories for ferroelectricity have been put forward:

1. Atomic models, which depend on the crystal structure of the solid.

2. A thermodynamic description, which is independent of the structure of the solid.

16.2.1 Atomic Models

16.2.1.1 Electric Dipole Theory

In the electric dipole theory, the following two assumptions are made:

1. In a ferroelectric substance there exists finite spontaneous polarization P(T), which is a function of temperature T. Note

here that we have used P(T) as the symbol for spontaneous polarization instead of Ps(T).

2. Within a ferroelectric solid there exists some internal interaction, which tends to align all the electric dipole moments

parallel to each other. This interaction gives rise to a finite temperature-dependent internal electric field Eint(T) and it is

assumed to be linearly proportional to the spontaneous polarization, i.e.,

Eint Tð Þ¼ giP Tð Þ (16.6)

FIG. 16.6 The dielectric constant ea of BaTiO3 along the a1 and a3
axes as a function of temperature T. (Modified from Merz, W. J.

(1949) Physical Review, 76, 1221.)

FIG. 16.7 The spontaneous polarization Ps(T) measured

along the [001] direction as a function of temperature T

for BaTiO3. (Modified from Merz, W. J. (1949) Physical
Review, 76, 1221.)
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Here gi is the internal field constant, which is independent of temperature. In this approximation, each electric dipole

moment sees the average polarization of all other dipole moments.

IfE0 is the applied electric field, the total electric field E experienced by an electric dipole moment in a solid is given by

E¼E0 +Eint ¼E0 + giP (16.7)

In a ferroelectric solid there are two competing forces acting on each electric dipole moment: the applied electric field,

which tries to align the dipole moments along its own direction, and the thermal field, which tries to randomize them. Under

the action of these two fields the average dipole moment becomes (Eq. 15.75)

pavg ¼ pL yð Þ (16.8)

where

L yð Þ¼ cothy�1

y
(16.9)

and

y¼ pE

kBT
(16.10)

Here L(y) is the Langevin function. If ra is the number of atoms per unit volume, then the average electric polarization is

given by

P Tð Þ ¼ rapL yð Þ (16.11)

The saturation polarization Psat is obtained for pE≫kBT, in which case L(y)¼1 and, therefore,

Psat ¼ rap (16.12)

Hence Psat is obtained either at very low temperatures or at very high electric fields. From Eq. (16.11) one can write

P Tð Þ
Psat

¼L yð Þ (16.13)

Substituting the value of E from Eq. (16.7) into Eq. (16.10), we obtain

y¼ p

kBT
E0 + gi Pð Þ (16.14)

From Eqs. (16.13) and (16.14) one can write

P Tð Þ
Psat

¼L
p

kBT
E0 + gi Pð Þ

� �
(16.15)

The spontaneous polarization is obtained by substituting E0¼0 in the above expression to get

P Tð Þ
Psat

¼L xð Þ (16.16)

where

x¼ gi pP
kBT

(16.17)

A graph of the spontaneous polarization P/Psat as a function of x is shown in Fig. 16.8. The expression for P(T) can also be

obtained from Eq. (16.14) and is given by

P Tð Þ¼ kBT

gi p
y � E0

gi
(16.18)

For spontaneous polarization, we put E0¼0 in Eq. (16.18) (y goes to x in this case) to get

P Tð Þ¼ kBT

gi p
x (16.19)
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From the above expression

P Tð Þ
Psat

¼ kBT

ragi p2
x (16.20)

which represents a straight line passing through the origin. The spontaneous polarization is given by the point of inter-

section of the curves represented by Eqs. (16.16) and (16.20), as shown in Fig. 16.8. It is evident that the slope of the straight

line, represented by Eq. (16.20), increases with an increase in temperature and, at a particular temperature TC, the straight

line becomes a tangent at the origin to the curve represented by Eq. (16.16). From the figure it is evident that for T<TC the

point of intersection yields a finite spontaneous polarization P(T), while for T>TC, P(T) is zero. Therefore, the solid

exhibits ferroelectric behavior below TC, but is paraelectric in nature above TC. Hence TC represents the transition tem-

perature between the two states of the solid. For T hTC, the spontaneous polarization can be evaluated at different temper-

atures by the method of intersection as described above. Fig. 16.9 shows the temperature dependence of the spontaneous

FIG. 16.8 The spontaneous polarization P/Psat
is plotted as a function of x where x¼gi p P/kBT.
The solid line represents the Langevin function L

(x) as a function of x. The dashed lines show

plots of Eq. (16.20) for different temperatures.

FIG. 16.9 Schematic representation of spontaneous polarization P/Psat as a

function of temperature T/TC. The value of P/Psat corresponds to the point of

intersection as explained in Fig. 16.8.
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polarization. It is evident that P(T) increases very quickly near TC and approaches the saturation value with a decrease in

temperature.

At very small values of x, L(x)¼x/3, therefore, Eq. (16.16) gives

P Tð Þ
Psat

� x

3
(16.21)

At T¼TC, the slopes of Eqs. (16.20) and (16.21) become the same, giving rise to

TC ¼ ragi p
2

3kB
(16.22)

A simplified expression for the electric polarization and susceptibility can be obtained in the limiting case for which

pE≪kBT (16.23)

Eq. (16.23) is equivalent to y≪1 and in this limit

L yð Þ � y

3
(16.24)

The polarization from Eqs. (16.11) and (16.24) is given by

P Tð Þ¼ 1

3

ra p2

kBT
E¼ 1

3

ra p2

kBT
E0 + gi Pð Þ (16.25)

The above equation yields the electric susceptibility as

wE ¼
P

E0

¼ TC=gi
T�TC

¼ CE

T�TC

(16.26)

where CE is the Curie constant and is written as

CE ¼TC

gi
(16.27)

Using the value of TC from Eq. (16.22) in the above equation, one gets

CE ¼ ra p2

3kB
(16.28)

Therefore, the electric susceptibility in ferroelectric solids obeys the Curie-Weiss law, as is observed experimentally. There

are some objections to the dipole theory. First, the dipole theory is not able to explain the existence of two transition tem-

peratures. Second, if the dipole theory is correct, then most of the polar materials should exhibit ferroelectric behavior,

which is contrary to fact. Lastly, the dipole theory yields a very high value of saturated polarization Psat, about 40 times

the observed value in Rochelle salt, which creates some doubts regarding the dipole theory.

16.2.1.2 Polarization Catastrophe

In nonpolar solids the dielectric constant e arises mainly from the electronic and ionic contributions. Assuming the

Clausius-Mossotti relation to be valid in a nonpolar solid, one can write the expression for e from Eq. (15.65) as

e¼
1 +

8p
3

X
i

rai a
a
i

1�4p
3

X
i

rai a
a
i

(16.29)

In ferroelectric solids the value of the dielectric constant e is large. For finite spontaneous polarization P, in zero electric

field, e goes to infinity if

1�4p
3

X
i

rai a
a
i ¼ 0 (16.30)
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The above equation can be written as

X
i

rai a
a
i ¼

3

4p
(16.31)

We know that

wE ¼
P

E
¼ e�1

4p
(16.32)

For e≫1, the above equation gives

P¼ e
4p

E (16.33)

The above equation says that if e is very large, the polarization P is also very large. The polarization will become infinite

when condition (16.31) is satisfied. So, Eq. (16.31) yields the condition for a polarization catastrophe. Fig. 16.10 shows the
variation of e with polarizability. For large values of e the left hand side of Eq. (15.65) approaches unity, therefore, a small

change in polarizability 4p=3ð ÞPir
a
i a

a
i leads to a large change in e (Eq. 16.29). Consider a very small departure of mag-

nitude S from unity in the value of 4p=3ð ÞPir
a
i a

a
i , which can be written as

4p
3

X
i

rai a
a
i ¼ 1�S (16.34)

where S≪1. Substituting Eq. (16.34) into Eq. (16.29), one gets

e¼ 3

S
�2

which can be written approximately as

e� 3

S
(16.35)

FIG. 16.10 The logarithm of the dielectric function e
as a function of polarizability of the solid.
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As S is very small, e is very large. Note that if e�10 or smaller, then any change in ri
a resulting from the thermal expansion

will not greatly affect the value of e.
It can be shown that in solids with a large value of e, one can obtain the Curie-Weiss behavior. Differentiating

Eq. (15.65) with respect to T, we get

3

e + 2ð Þ2
de
dT

¼ 4p
3

X
i

aai
drai
dT

(16.36)

Dividing Eq. (16.36) by Eq. (15.65) and simplifying, we obtain

3

e�1ð Þ e+ 2ð Þ
de
dT

¼ d

dT
ln

X
i

rai a
a
i

 !" #
(16.37)

It is not easy to solve the above expression. The solution to Eq. (16.37) becomes simple if all of the atoms in the unit cell are

assumed to be identical, with atomic density ra and atomic polarizability aa. Under this approximation Eq. (16.37)

reduces to

3

e�1ð Þ e+ 2ð Þ
de
dT

¼ 1

ra
dra

dT
¼�3GTH (16.38)

GTH is the coefficient of linear expansion of the solid. For e≫1, the above equation reduces to

1

e2
de
dT

¼�GTH (16.39)

Integrating the above equation, we find

1

GTH

ð
de
e2

¼�
ð
dT+ y (16.40)

Here y is the constant of integration. The solution of the above equation gives

e¼ 1=GTH

T�y
(16.41)

which is the usual form of the Curie-Weiss law.

16.3 THERMODYNAMICS OF FERROELECTRIC SOLIDS

It has been observed that in a ferroelectric solid there is a structural phase transition at TC and, therefore, it of interest to

study the behavior of the solid near TC. It is well known that thermodynamics is most suitable to study the phase transitions

in solids. The phase transition in a ferroelectric solid can be of either first or second order. A first-order phase transition is

characterized by a discontinuous jump in the saturation polarization at TC and involves latent heat. In a second-order phase

transition there is a continuous variation in polarization. Further, a second-order transition does not involve latent heat but

exhibits a discontinuous jump in specific heat. Let F0 be the free energy in the unpolarized state of the solid when no

external pressure or electric field is applied. The free energy of a ferroelectric solid is a function of polarization and tem-

perature, i.e., F(P,T), and can be expanded in powers of polarization as

F P, Tð Þ¼ F0 +
1

2
C1P

2 +
1

4
C2P

4 +
1

6
C3P

6 +⋯ (16.42)

Here the coefficients Cn depend on temperature. In writing the above equation, it is assumed that a center of symmetry

exists in the crystal structure of a ferroelectric solid, which means that the free energy of the crystal should be the same

for positive and negative polarizations along the polar axis. In this approximation, the terms with odd powers of polarization

reduce to zero. In the thermal equilibrium state, the free energy of a ferroelectric solid must be minimum, i.e.,

dF

dP

� �
T

¼ 0 (16.43)
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Substituting Eq. (16.42) into Eq. (16.43), one gets

Ps C1 +C2P
2
s + C3P

4
s

� �¼ 0 (16.44)

Here Ps is the spontaneous polarization. For Ps 6¼0 the above equation gives

C1 +C2P
2
s + C3P

4
s ¼ 0 (16.45)

One can calculate the susceptibility function from thermodynamic considerations. Let a weak electric field E0 be applied to

the system. Then the electric susceptibility wE is given by

1

wE
¼ ∂E0

∂P
(16.46)

From thermodynamics one can write a small change in free energy as

dF¼� SdT� pdV+E0dP (16.47)

Here S, p, and V are the entropy, pressure, and volume of the system at temperature T. Under zero pressure the above

equation becomes

dF¼� SdT +E0dP (16.48)

At constant temperature the applied electric field becomes

E0 ¼ ∂F
∂P

� �
T

(16.49)

From Eqs. (16.46) and (16.49) one can write

1

wE
¼ ∂

2F

∂P2

� �
T

(16.50)

16.3.1 Second-Order Transition in Ferroelectric Solids

From Eq. (16.42), F�F0 can be plotted as a function of P for different values (negative, positive, or zero) of the constant C1,

the other constants being positive, and the plot is shown in Fig. 16.11A. The spontaneous polarization Ps as a function of C1

is shown in Fig. 16.11B. It shows that Ps is finite for C1<0 and is zero for C1>0 and, therefore, C1¼0 is the value at the

transition temperature TC. The polarization P varies continuously with temperature, but the slope of P and hence P2 has a

FIG. 16.11 (A) Schematic representation of the free energy F�F0 as a function of the polarization P for various values of C1, negative, positive, and

zero. (B) The spontaneous polarization Ps as a function of the parameter C1 for a second-order transition.
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discontinuity at TC. Therefore, there should be a discontinuity in the specific heat at TC resulting in a second-order tran-

sition. If, for simplicity, the term with C3 is assumed to be negligible, then from Eq. (16.42) one can write

F¼ F0 +
1

2
C1P

2 +
1

4
C2P

4 (16.51)

Therefore, spontaneous polarization satisfies the equation

C1 +C2P
2
s ¼ 0 (16.52)

which gives

P2s ¼�C1

C2

(16.53)

According to the above equation Ps
2 is positive only if C1 is negative. Note that Ps is a continuous function of T; therefore, it

corresponds to a second-order transition and exhibits a discontinuous jump in specific heat. One can calculate wE above and
below TC. Above TC the polarization is small, so retaining the first two terms in Eq. (16.51) of free energy allows us to write

F�F0 ¼ 1

2
C1P

2 (16.54)

From Eqs. (16.50) and (16.54) one obtains

1

wE
¼C1 ¼T�TC

CE

(16.55)

Here we have used the fact that wE above TC exhibits the Curie behavior given by Eq. (16.26). From the above equation the

constant C1 is given in terms of the Curie constant CE as

C1 ¼T�TC

CE

(16.56)

In the ferroelectric phase below TC the polarization is appreciable, so retaining the first two terms of Eq. (16.42) allows us to

write the free energy as

F¼ F0 +
1

2
C1P

2 +
1

4
C2P

4 (16.57)

From Eqs. (16.50) and (16.57) the electric susceptibility becomes

1

wE
¼C1 + 3C2P

2 (16.58)

For a weak applied electric field, P¼Ps, therefore, from the above equation

1

wE
¼C1 + 3C2P

2
s (16.59)

Using Eq. (16.53) in the above equation, one gets

1

wE
¼�2C1 (16.60)

Assuming that the temperature variation of C1 is the same as that given by Eq. (16.56), one can obtain wE in the ferroelectric
state from Eq. (16.60) as

1

wE
¼ 2 TC�Tð Þ

CE

(16.61)

The temperature dependence of 1/wE above and below TC, given by Eqs. (16.55) and (16.61), is shown in Fig. 16.12. It is

evident that the slope in the ferroelectric region is twice that in the paraelectric region. One can also calculate entropy S in a

second-order phase transition. From Eq. (16.48), the entropy at constant pressure is given by

S¼� ∂F
∂T

� �
P

(16.62)
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Substituting Eq. (16.42) into Eq. (16.62), one obtains, to a first-order approximation, the change in entropy as

S�S0 ¼�1

2

∂C1

∂T
P2 (16.63)

Here S0 is the entropy in the unpolarized state. The polarization P varies continuously with temperature, but the slope of P

and hence P2 has a discontinuity at TC. Therefore, there should be a discontinuity in the specific heat at TC and the transition

should be of second order.

16.3.2 First-Order Transition in Ferroelectric Solids

Consider the case when C2 is negative but C3 is positive. In this approximation, the free energy is plotted as a function of P

for different values of C1 ranging from negative to positive values in Fig. 16.13A. In this case, the free energy becomes

minimum for finite values of the spontaneous polarization Ps. This corresponds to a transition from the unpolarized to the

polarized state. Fig. 16.13B shows a plot of Ps as a function of temperature T and there is a discontinuity (jump) in the value

of Ps at TC. So, according to Eq. (16.63), there is a discontinuity in the entropy S and, therefore, latent heat is involved in the

transition; thus, this is a first-order transition. In a first-order transition at TC,

F TCð Þ¼ F0 TCð Þ (16.64)

Substituting Eq. (16.42) into Eq. (16.64), one can write

C1 +
1

2
C2P

2
s TCð Þ+ 1

3
C3P

4
s TCð Þ¼ 0 (16.65)

At T¼TC, Eq. (16.45) gives

C1 + C2P
2
s TCð Þ+C3P

4
s TCð Þ¼ 0 (16.66)

Subtracting Eq. (16.65) from Eq. (16.66), we get

P2s TCð Þ 1

2
C2 +

2

3
C3P

2
s TCð Þ

� �
¼ 0 (16.67)

For nonzero spontaneous polarization, Eq. (16.67) gives

1

2
C2 +

2

3
C3P

2
S TCð Þ¼ 0 (16.68)

FIG. 16.12 Plot of the reciprocal of susceptibility 1/wE as a function of temperature

near the critical temperature TC for a second-order transition. The spontaneous polar-

ization Ps is shown by the dashed line.
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From this equation Ps
2(TC) is given by

P2s TCð Þ¼�3

4

C2

C3

(16.69)

Multiplying Eq. (16.65) by 2 and subtracting from Eq. (16.66), we get

P4s TCð Þ¼ 3C1

C3

(16.70)

Substituting Eqs. (16.69) and (16.70) into Eq. (16.66), one can write

C1 ¼ 3

16

C2
2

C3

(16.71)

For T>TC, the polarization is very small and the free energy is given by Eq. (16.54). From Eqs. (16.50) and (16.54) one

obtains

1

wE
¼C1 ¼T�TC

CE

(16.72)

which is the same equation as Eq. (16.55) in the second-order phase transition. For T<TC, the polarization is appreciable

and so all the terms should be retained. From Eqs. (16.42) and (16.50) one can write

1

wE
¼C1 + 3C2P

2 + 5C3P
4 (16.73)

For a weak electric field P¼Ps, therefore, the susceptibility becomes

1

wE
¼C1 + 3C2P

2
s + 5C3P

4
s (16.74)

FIG. 16.13 (A) Schematic representation of the free energy F�F0 as a function of polarization P for positive and negative values of C1 for a first-order

transition. (B) The spontaneous polarization Ps as a function of temperature T for a first-order transition.
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Substituting Eqs. (16.69), (16.70), and (16.71) into Eq. (16.74), one obtains

1

wE
¼ 4C1 ¼ 4

TC�T

CE

(16.75)

The variation of 1/wE as a function of T is shown in Fig. 16.14. From Eqs. (16.72) and (16.75) it is evident that the slope of 1/

wE in a ferroelectric state is four times the slope in a paraelectric state in a first-order phase transition. Further, the slope of 1/

wE in a ferroelectric crystal with a first-order phase transition is twice the slope in a ferroelectric crystal with a second-order
transition.

A thermodynamic study has some advantages over other approaches used in ferroelectric materials. First, it is inde-

pendent of the structure of the ferroelectric solid. Second, it is independent of any atomic model. Therefore, a thermody-

namic study gives general results in ferroelectric solids. The deficiency of the thermodynamic theory is that it does not

provide any physical insight into the mechanism responsible for the existence of a ferroelectric state in a solid.

16.4 FERROELECTRIC DOMAINS

As the ferroelectric material is cooled to below TC, some regions appear that are polarized along a particular direction, while

others are polarized exactly in the opposite direction. In other words, the ferroelectric crystal gets divided into regions that

are polarized in only two directions, which are along the same line but opposite in direction. Such regions are called

domains and the boundaries between these regions are called domain walls. Further, the direction of polarization of

domains is different in different materials. In contrast to ferroelectric materials, the domains in a ferromagnetic material

have magnetization in all possible directions (see Chapter 19) and, with a decrease in temperature, there is growth in

domains that possess magnetization along the direction of the magnetic field.

Rochelle salt has an orthorhombic structure and some domains are polarized along the positive a1 direction, while others
are polarized along the negative a1 direction with net polarization along the a1 axis. If an electric field E0 is applied along

the positive a1 direction, then the number and size of the domains with polarization along the positive a1 direction increase

until saturation polarization is achieved. If the electric field E0 is switched off and then applied in the reverse direction, then

hysteresis is produced, which is evident from the variation of P with E0 in Fig. 16.1. The hysteresis gives rise to a dielectric

loss, which is proportional to the area of the hysteresis loop. The ferroelectric material KH2PO4 possesses tetragonal

structure and the domains are polarized either along the positive or negative a3 direction, yielding a net polarization along

the a3 direction. The material BaTiO3 possesses cubic structure and spontaneous polarization may occur along any of the

three Cartesian directions (three edges of the unit cell), leading to six possible directions for spontaneous polarization.

FIG. 16.14 Plot of the reciprocal of susceptibility 1/wE as a function of temperature T

around the critical temperature TC for a first-order transition. The spontaneous polari-

zation Ps is shown by the dashed line.
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Luster and color, which have been known to mankind from ancient times, are the most important properties of solids, par-

ticularly metals. Because of these properties, metals have been used in jewelry and mirrors for ages. The entire electro-

magnetic spectrum ranges from radio waves to microwaves, infrared, visible, ultraviolet, and X-rays up to g-rays (see
Fig. 17.1) with wavelengths ranging from zero to infinity. The optical region forms a very small part of the electromagnetic

spectrum, with wavelengths ranging from about 4000 to 7000 Å. The measurable optical properties are the refractive index,

reflectance, and transmittance, among others, and they will be dealt with in this chapter both classically and quantum

mechanically. Today, optical methods are among the most important tools for studying the electronic structure of solids

through their interaction with light. Recently, a number of optical devices, such as lasers, photodetectors, optical fibers,

waveguides, light-emitting diodes, and flat-panel displays, have gained considerable technological importance. They are

used in communication, medical diagnostics, night viewing, solar applications, optical computing, and for other optoelec-

tronic purposes. Some other traditional uses of optical materials include manufacturing windows, antireflection coatings,

lenses, and mirrors.

17.1 PLANE WAVES IN A NONCONDUCTING MEDIUM

The macroscopic Maxwell equations for a nonconducting medium, in the absence of free charges, with magnetic perme-

ability m and electric permittivity e are given by

r �D¼ 0 (17.1)

r�H¼ 1

c

∂D
∂t

(17.2)

r �B¼ 0 (17.3)

r�E+
1

c

∂B

∂t
¼ 0 (17.4)

where

D¼ eE (17.5)

and

B¼ mH (17.6)
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For constant values of e and m, Eqs. (17.1)–(17.4) reduce to

r �E¼ 0 (17.7)

r�E+
1

c

∂B

∂t
¼ 0 (17.8)

r �B¼ 0 (17.9)

r�B¼ me
c

∂E

∂t
(17.10)

Taking the curl of Eq. (17.8) and using Eq. (17.10), one gets

r2E� 1

v2
∂
2E

∂t2
¼ 0 (17.11)

where

v¼ cffiffiffiffiffi
me

p ¼ c

n
(17.12)

with

n¼ ffiffiffiffiffi
me

p
(17.13)

Here v is the velocity of electromagnetic waves in the medium and n is its refractive index. Similarly, one can obtain

r2B� 1

v2
∂
2B

∂t2
¼ 0 (17.14)

The solutions of Eqs. (17.11) and (17.14) are plane waves defined by

E r, tð Þ¼ ÊE0e
i K � r�o tð Þ (17.15)

B r, tð Þ¼ B̂B0e
i K � r�o tð Þ (17.16)

where Ê and B̂ are unit vectors and define the polarization of the electric and magnetic fields. The physical electric and

magnetic fields are obtained by taking the real parts of the complex fields. The wave vector K gives the direction of prop-

agation of the electromagnetic wave. The orientation of E, B, andK can be obtained from Eqs. (17.7)–(17.10), (17.15), and
(17.16). Substituting Eqs. (17.15) and (17.16) into Eqs. (17.7) and (17.9), one gets

K � Ê¼K � B̂¼ 0 (17.17)

FIG. 17.1 Electromagnetic wave spectrum from gamma rays to radio waves: l represents the wavelength of the waves. Magnified view of the visible

spectrum is shown separately.
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It is evident from Eq. (17.17) that K is perpendicular to both Ê and B̂ but it does not give any information about the ori-

entation of Ê and B̂. Substituting Eqs. (17.15) and (17.16) into Eq. (17.8), one gets

K� Ê E0 ¼ B̂
o

v
ffiffiffiffiffi
me

p B0 (17.18)

We know that

Kj j ¼o
v

(17.19)

Using Eq. (17.19) one can write Eq. (17.18) as

K̂� ÊE0 ¼ B̂
B0ffiffiffiffiffi
me

p (17.20)

Here K̂ is a unit vector in the direction of the propagation wave vector K. The above equation is valid if both the direction

and magnitude are the same on both sides, i.e.,

K̂� Ê¼ B̂ (17.21)

and

B0 ¼ ffiffiffiffiffi
me

p
E0 (17.22)

Eq. (17.21) shows that B̂ is perpendicular to both K̂ and Ê. Hence Ê,B̂, and K̂ form an orthogonal triad and the

electromagnetic plane wave is a transverse wave. Eq. (17.22) gives the relation between the electric and magnetic field

amplitudes.

17.2 REFLECTION AND REFRACTION AT A PLANE INTERFACE

Reflection and refraction at a plane surface are familiar phenomena and each has two aspects:

1. Kinematic properties
These constitute the laws of reflection and refraction.

2. Dynamic properties
Dynamic properties provide information about the intensities of the reflected and refracted waves. They also give

the phase changes and polarizations after reflection and refraction.

17.2.1 Kinematic Properties

Let the media below and above the z¼0 plane have permeability and permittivity m, e and m0, e0 (Fig. 17.2), respectively.
A plane wave with wave vectorK and frequency o is incident from the medium m, e. The reflected and refracted rays have
wave vectorsK

00
andK0, respectively. Let n̂ be a unit vector normal to the z¼0 plane and directed from the medium m, e to

the medium m0, e0. The incident, reflected, and refracted waves are now represented as follows:

Incident wave:

E¼E0 e
i K � r�o tð Þ (17.23)

B¼ ffiffiffiffiffi
me

p K�E

K
(17.24)

Refracted wave:

E0 ¼E0
0 e

i K0 � r�o tð Þ (17.25)

B0 ¼
ffiffiffiffiffiffiffiffi
m0 e0

p K0 �E0

K0 (17.26)

Reflected wave:

E00 ¼E00
0 e

i K00 � r�o tð Þ (17.27)
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B00 ¼ ffiffiffiffiffi
me

p K00 �E00

K
(17.28)

The wave vector of the reflected wave has the same magnitude as that of the incident wave and can be defined as

K¼o
v
¼o

c

ffiffiffiffiffi
me

p ¼o
c
n (17.29)

But the wave vector K0 has the magnitude

K0 ¼ K0j j ¼o
c

ffiffiffiffiffiffiffi
m0e0

p
¼o

c
n0 (17.30)

Here n and n0 are the refractive indices of the two media defined by

n ¼ ffiffiffiffiffi
me

p
,n0 ¼

ffiffiffiffiffiffiffiffi
m0 e0

p
(17.31)

To prove the kinematic properties the boundary conditions at the interface must be satisfied at all points and for all times,

which implies that the spatial and time variation of all the fields must be the same at the z¼0 plane. It also implies that the

phase factors at z¼0 must be the same for all the waves, i.e.,

i K � r�otð Þz¼0 ¼ i K0 � r�otð Þz¼0 ¼ i K00 � r�otð Þz¼0 (17.32)

or

K � rð Þz¼0 ¼ K0 � rð Þz¼0 ¼ K00 � rð Þz¼0 (17.33)

Let us first consider refraction, for which

K � rð Þz¼0 ¼ K0 � rð Þz¼0

This can be written as

K r cosy¼K0 r cosy0

From Fig. 17.2, the above equation can be written as

K cos 90� ið Þ¼K0 cos 90� rð Þ

FIG. 17.2 Incident plane electromagnetic wave with wave vectorK strikes a

plane interface between two different media. The incident plane wave gives

rise to a reflected wave with wave vector K
00
and a refracted wave with wave

vector K0. Here n̂ is a unit vector perpendicular to the interface (z¼0 plane)

separating the two media and is directed from medium 1 to medium 2. The

angles of incidence and refraction are represented by i and r. y, y0, and y
00

are the angles made by the incident, refracted, and reflected rays with the

interface.
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which gives

sin i

sin r
¼K0

K
¼ l
l0
¼

ffiffiffiffiffiffiffiffi
m0 e0

p
ffiffiffiffiffi
me

p ¼ n0

n
(17.34)

Eq. (17.34) is nothing but the Snell’s law of refraction. In the case of reflection, the boundary condition from Eq. (17.33) can

be written as

K � rð Þz¼0 ¼ K00 � rð Þz¼0 (17.35)

From Fig. 17.2 the above equation can be written as

K cos y¼K cos y00

or

i¼ r0 (17.36)

i.e., the angle of incidence is equal to the angle of reflection (law of reflection). Further, K, K0, and K
00
all lie in the same

plane and, therefore, the incident, reflected, and refracted rays all lie in the same plane.

17.2.2 Dynamic Properties

The dynamic properties can be studied by considering the boundary conditions satisfied by the fields. The first two

boundary conditions are that the normal components of D and B should be continuous at the interface, i.e.,

D � n̂ð Þ1 ¼ D � n̂ð Þ2 (17.37)

B � n̂ð Þ1 ¼ B � n̂ð Þ2 (17.38)

The subscripts 1 and 2 denote the two media represented by m, e and m0, e0. The other two boundary conditions are that the
tangential components of E and H should be continuous at the interface, i.e.,

E� n̂ð Þ1 ¼ E� n̂ð Þ2 (17.39)

H� n̂ð Þ1 ¼ H� n̂ð Þ2 (17.40)

In medium 1 the electric field is E+E
00
(of the incident and reflected waves) and in the medium 2 it is E0. The case with

magnetic fields is similar, so Eqs. (17.37) and (17.38), in terms of E and B, can be written as

e E+E00ð Þ � n̂¼ e0E0 � n̂ (17.41)

B +B00ð Þ � n̂¼B0 � n̂ (17.42)

Substituting the values of the E and B fields from Eqs. (17.23) to (17.28) and simplifying, one gets

e E0 +E
00
0

� �� e0E0
0

� � � n̂¼ 0 (17.43)

K�E0 +K
00 �E00

0 �K0 �E0
0

� � � n̂¼ 0 (17.44)

Now the boundary condition represented by Eqs. (17.39) and (17.40) can be simplified in the same way as Eqs. (17.37) and

(17.38) and one can write

E0 +E
00
0 �E0

0

� �� n̂¼ 0 (17.45)

1

m
K�E0 +K

00 �E00
0

� �� 1

m0
K0 �E0

0

� �
� n̂¼ 0 (17.46)

The boundary conditions represented by Eqs. (17.43)–(17.46) can be applied in two different situations for plane polarized
electromagnetic waves:

1. When the electric field vector E is perpendicular to the plane of incidence.

2. When the electric field vector E is parallel to the plane of incidence.
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17.2.2.1 Electric Field Perpendicular to Plane of Incidence

Fig. 17.3 shows an electric field perpendicular to the plane of incidence and directed away from the viewer. The directions

of the B fields are chosen to give a positive flow of energy in the direction of propagation, i.e., in the direction of the wave

vectors. As the electric field vectors are parallel to the interface, the boundary condition (17.43) becomes redundant (normal

components of E fields are zero). One can easily show that the boundary conditions (17.44) and (17.45) are equivalent

and yield

E0 +E
00
0 �E0

0 ¼ 0 (17.47)

The boundary condition (17.46) can be simplified to finally obtain

ffiffiffi
e
m

r
E0�E00

0

� �
cos i�

ffiffiffiffi
e0

m0

s
E0
0 cos r¼ 0 (17.48)

In obtaining Eq. (17.48), the angles in the clockwise direction are taken to be positive, while those in the counterclockwise

direction are negative. From Eqs. (17.47) and (17.48) one can solve for E0
0 in terms of E0 to get

E0
0

E0

¼ 2 cos i

cos i +
m
m0

ffiffiffiffiffiffiffi
m0e0

me

s
cos r

¼ 2 cos i

cos i +
m
m0

n0

n
cos r

(17.49)

For normal incidence (i¼ r ¼0) the above equation becomes

E0
0

E0

¼ 2

1 +
m
m0

n0

n

(17.50)

For two media with the same permeability (m¼m0) one can write

n0

n
¼

ffiffiffi
e0

e

r
(17.51)

FIG. 17.3 Reflection and refraction of a plane electromagnetic wave with

polarization perpendicular the plane of incidence. The rest of the description

of the figure is the same as that of Fig. 17.2.
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From Eqs. (17.50) and (17.51) one gets

E0
0

E0

¼ 2n

n + n0
¼ 2

ffiffi
e

p
ffiffi
e

p
+
ffiffiffi
e0

p (17.52)

If m¼m0 ¼1, then

n¼ ffiffi
e

p
and n0 ¼

ffiffiffi
e0

p
(17.53)

Now the amplitude of the electric field vector of the incident wave must be equal to the sum of the amplitudes of the field

vectors of the reflected and refracted waves, i.e.,

E0 ¼E0
0 + E

00
0 (17.54)

From Eqs. (17.52) and (17.54) one can write

E00
0

E0

¼ n0 �n

n0 + n
(17.55)

Reflectivity R is defined as the ratio of the intensity of the reflected light IR to the intensity of the incident light I0 and from

Eq. (17.55) is given by

R¼ IR

I0
¼ E00

0

		 		2
E0j j2 ¼

n0 �n

n0 + n

				
				
2

(17.56)

If medium 1, in which the incident and reflected waves are traveling, is vacuum, then n ¼1 and so Eq. (17.56) reduces to

R¼ n�1

n + 1

				
				
2

(17.57)

Similarly, the ratio of the intensity of transmitted light IT to the intensity of incident light I0 is defined as transmissivity or
transmittance T and is given by

T¼ IT

I0
¼ E0

0

		 		2
E0j j2 ¼

4n2

n0 + nð Þ2 (17.58)

For n ¼1 (vacuum) one can write

T¼ 4

n + 1ð Þ2 (17.59)

Both R and T are dimensionless quantities and are measured in percent.

Problem 17.1

Consider a plane wave incident at the interface of two media having the same permeability and represented by m, e and m, e0. If the
electric field is parallel to the plane of incidence (see Fig. 17.4) prove that

E00
E0

¼ 2 cos i sin r

sin i + rð Þ cos i� rð Þ (17.60)

E000
E0

¼ tan i� rð Þ
tan i + rð Þ (17.61)

Further, prove that the values of R and T for normal incidence are given by Eqs. (17.57) and (17.59).
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17.3 ELECTROMAGNETIC WAVES IN A CONDUCTING MEDIUM

Consider a transverse plane electromagnetic wave traveling in a medium with finite conductivity s. The current density J is
defined by

J¼ sE (17.62)

The Maxwell equations for a conducting medium in the absence of free charges are given by

r �D¼ 0 (17.63)

r�E +
1

c

∂B

∂t
¼ 0 (17.64)

r �B¼ 0 (17.65)

r�H¼ 1

c

∂D

∂t
+
4p
c

J (17.66)

Substituting the values of D and B from Eqs. (17.5) and (17.6), we write the Maxwell equations as

r �E¼ 0 (17.67)

r�E +
m
c

∂H

∂t
¼ 0 (17.68)

r �H¼ 0 (17.69)

r�H� e
c

∂E

∂t
�4ps

c
E¼ 0 (17.70)

Taking the curl of Eq. (17.68) and using Eq. (17.70), we get

r2E�me
c2

∂
2E

∂t2
�4psm

c2
∂E

∂t
¼ 0 (17.71)

FIG. 17.4 Reflection and refraction of a plane electromagnetic wave with

electric polarization parallel to the plane of incidence. The rest of the

description of the figure is the same as that of Fig. 17.2.
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Similarly, we can obtain

r2H� me
c2

∂
2H

∂t2
�4psm

c2
∂H

∂t
¼ 0 (17.72)

The plane wave solutions of the E and H fields for Eqs. (17.71) and (17.72) are defined as

E r, tð Þ¼E0 exp i K � r�otð Þ½ � (17.73)

H r, tð Þ¼H0 exp i K � r�otð Þ½ � (17.74)

Consider an electromagnetic wave traveling in the z-direction with its electric field vector in the x-direction (see Fig. 17.5).

Such a wave is represented as

Ex z, tð Þ¼E0 exp i Kz�otð Þ½ � ¼E0 exp io
nc

c
z� t


 �h i
(17.75)

Here we have used the symbol nc for the complex refractive index. Eq. (17.29) has been used in writing the above equation.

Then, Eq. (17.71) becomes

∂
2Ex

∂z2
�me
c2

∂
2Ex

∂t2
�4psm

c2
∂Ex

∂t
¼ 0 (17.76)

Substituting Eq. (17.75) into Eq. (17.76), we obtain

n2c ¼ me+ i
4psm
o

(17.77)

The complex refractive index can, in general, be written as

nc ¼ n1 + in2 (17.78)

n1 and n2 are the real and imaginary components of nc. The imaginary part of the refractive index n2 is usually called the

damping factor and gives the absorption of electromagnetic waves. The square of nc, from Eq. (17.78), becomes

n2c ¼ n21�n22 + 2in1n2 (17.79)

Comparing Eqs. (17.77) and (17.79), we find

n21�n22 ¼ me (17.80)

and

2n1n2 ¼ 4psm
o

(17.81)

A system of particular interest is one with m¼1, for which Eq. (17.77) becomes

n2c ¼ e+ i
4ps
o

¼ e+ i
2s
n

(17.82)

FIG. 17.5 A snapshot of a plane electromagnetic (em) wave Ex(z, t) traveling

in the z-direction. The electric field of the wave is in the x-direction with

amplitude E0.
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Here n is the frequency. In this case nc
2 can be written as

n2c ¼ ec ¼ e1 + ie2 (17.83)

Here e1 and e2 are the real and imaginary parts of the complex dielectric function ec and are given, from Eqs. (17.79),

(17.82), and (17.83), as

e1 ¼ e¼ n21�n22 (17.84)

and

e2 ¼ 2n1n2 ¼ 4ps
o

¼ 2s
n

(17.85)

For an insulator s ¼0, so from Eq. (17.85) one can write

e2 n2ð Þ¼ 0 (17.86)

assuming finite refractive index n1. Now from Eq. (17.84)

n2 ¼ e1 ¼ e (17.87)

which is the expected result from the Maxwell equations. In defining Eqs. (17.84) and (17.87) we have written n1¼n, the

real part of the refractive index.

Let us investigate the effect of a complex refractive index on an electromagnetic wave. Substituting nc from Eq. (17.78)

into Eq. (17.75), one writes

Ex z, tð Þ¼Ed
0 exp io

n

c
z� t


 �h i
(17.88)

where

Ed
0 ¼E0 e

�on2
c

z (17.89)

Eq. (17.88) represents a damped wave in which the amplitude E0
d decreases exponentially with increasing z (see Fig. 17.6).

The decrease in amplitude is determined by both n2 and o. For fixed o, the damping is greater for greater values of n2 and

that is why n2 is usually called the damping constant. Therefore, high-frequency electromagnetic waves conduct only near

the outer surface of the wire (normal skin effect).

FIG. 17.6 The exponential decrease in amplitude E0
d of a plane electromag-

netic (em) wave traveling in the z-direction in a metal.
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It is difficult to measure the amplitude of the electric field, but easier to measure its intensity, which is the square of the

modulus of the field amplitude. The intensity Id corresponding to the damped electric field, from Eqs. (17.88) and (17.89), is

given by

Id ¼ Ed
0

		 		2 ¼ I0 e
�2on2

c
z (17.90)

where

I0 ¼ E0j j2 (17.91)

It is customary to define the characteristic penetration depth Zp as the distance at which the intensity of the electric field

reduces to e�1 times the original value, i.e.,

Id

I0
¼ e�1 (17.92)

From Eqs. (17.90) and (17.92) one can write

Zp ¼ c

2on2
¼ c

4pnn2
¼ l
4pn2

(17.93)

Further, the absorbance or attenuation ap is defined as the reciprocal of Zp, i.e.,

ap ¼ 1

Zp

¼ 4pn2
l

(17.94)

Substituting the value of n2 from Eq. (17.85), one can write (for m¼1)

ap ¼ 4ps
nc

(17.95)

Substituting the value of n2 in terms of e2, from Eq. (17.85) one gets

ap ¼ 2pe2
ln

(17.96)

Hence one can write

ap ¼ 4pn2
l

¼ 4ps
nc

¼ 2pe2
ln

¼ 2on2

c
(17.97)

17.4 REFLECTIVITY FROM METALLIC SOLIDS

In a metallic solid the refractive index nc is a complex quantity. Thus, by replacing n by nc in Eq. (17.57) and substituting

Eq. (17.78) into it, one can write

R¼ n + in2�1

n + in2 + 1

				
				
2

(17.98)

The above equation can be written as

R¼ n�1ð Þ2 + n22
n + 1ð Þ2 + n22

(17.99)

Eq. (17.99) is called the Beer equation. If nc is imaginary, then its real part goes to zero, i.e., n¼0. In this case R¼1, which

means the reflectivity is 100%. But if nc is real and positive (n2 ¼0), then Eq. (17.98) reduces to

R¼ n�1

n + 1

� 
2

(17.100)

which is same as Eq. (17.57). In this case the material is essentially transparent to these wavelengths (for perpendicular

incidence) and behaves optically like an insulator.
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Problem 17.2

For a medium with unit permeability (m ¼1), prove the following relations

n2 + n22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

q
(17.101)

n2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

q
+ e1

� �
(17.102)

n22 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

q
� e1

� �
(17.103)

2n¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

q
+ e1

� 
s
(17.104)

Problem 17.3

Using Eq. (17.99), prove that for a medium with unit permeability (m ¼1),

R¼
1+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p
+ e1


 �
 �1=2

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + e22

p
+ e1


 �
 �1=2 (17.105)

17.5 REFLECTIVITY AND CONDUCTIVITY

In a metallic solid it is interesting to examine the relationship between reflectivity and conductivity. Substituting the value

of e2 from Eq. (17.85) into Eqs. (17.102) and (17.103), one can write

n2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 +

2s
n

� 
2
s

+ e1

2
4

3
5 (17.106)

n22 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 +

2s
n

� 
2
s

� e1

2
4

3
5 (17.107)

For low frequencies, i.e., n<1013 s�1 (in the infrared region) for a metal with s�1017 s�1 and e1�10, one can write

e21 +
2s
n

� 
2

� 2s
n

� 
2

� 1017

1013

� 
2

� 108

Hence, from Eqs. (17.106) and (17.107), it is easy to write

n2 ¼ n22 ¼
s
n

(17.108)

The reflectivity from Eq. (17.99) is given by

R ¼ 1� 4n

2n2 + 2n + 1
(17.109)

Here we have used Eq. (17.108). For metallic solids with n>1, one can neglect the factor 2n+1 in comparison with 2n2 to

yield
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R¼ 1�2

n
(17.110)

Substituting the value of n from Eq. (17.108), one gets

R¼ 1�2

ffiffiffi
n
s

r
(17.111)

For small frequencies (say in the infrared region), s can be replaced by the dc conductivity s0 to write

R¼ 1�2

ffiffiffiffiffi
n
s0

r
(17.112)

Eq. (17.112) is usually called the Hagen-Rubens equation as this relation was found empirically by Hagen and Rubens

from experimental measurements of reflectivity in the infrared region (l>30nm). However. Drude derived Eq. (17.112) the-

oretically. Further,Eq. (17.112) shows that goodmetals (with larges0) act as verygood reflectors in the infrared regionasR�1.

17.6 KRAMERS-KRONIG RELATIONS

In this and the previous chapters it has been found that, in the linear approximation, the response functions, such as reflec-

tance, absorption, and electrical susceptibility, are functions of variable o. A general linear response function N(o) can be
written as

N oð Þ¼N1 oð Þ+ iN2 oð Þ (17.113)

whereN1(o) andN2(o) are the real and imaginary parts of N(o). To obtainN1(o) andN2(o) one can apply complex variable

calculus. The response function may have one or more resonances (poles) and its total value is the sum of the contributions

arising from the various resonances. One of the most important methods to sum the contributions arising from all the reso-

nances is Cauchy’s integral theorem inwhich we calculate the integral in the upper half of the complex plane. The contour in

the upper half of the complex plane consists of four parts as shown in Fig. 17.7. Cauchy’s integral can be written as

N oð Þ¼ 1

pi
P

ð∞

�∞

N o0ð Þ
o0 �o

do (17.114)

Here P stands for the principal part of the integral. In order to apply Cauchy’s integral theorem, the response function must

satisfy the following conditions:

1. The poles of N(o) lie in the upper half of the complex plane.

2. The integral of N(o)/o vanishes when calculated around the infinite semicircular contour in the upper half on the

complex plane. In this approximation the integral over part 4 of the contour will go to zero.

3. Function N1(o) must be even, but N2(o) must be odd with respect to the variable o.

FIG. 17.7 The semicircular contour in the upper

half of the complex plane.
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Separating the real and imaginary parts in Eq. (17.114), one can write

N1 oð Þ¼ 1

p
P

ð∞

�∞

N2 o0ð Þ
o0 �o

do0 (17.115)

N2 oð Þ¼�1

p
P

ð∞

�∞

N1 o0ð Þ
o0 �o

do0 (17.116)

The integral over parts 1, 2, and 3 of the contour, by definition, forms the principal part of the integral. Eq. (17.115) can

further be split into two integrals as follows:

N1 oð Þ¼ 1

p
P

ð∞

0

N2 o0ð Þ
o0 �o

do0 +
1

p
P

ð0

�∞

N2 o0ð Þ
o0 �o

do0 ¼ 2

p
P

ð∞

0

o0N2 o0ð Þ
o02�o2

do0 (17.117)

Similarly, from Eq. (17.116) one can obtain

N2 oð Þ¼�2o
p

P

ð∞

0

N1 o0ð Þ
o02�o2

do0 (17.118)

Eqs. (17.117) and (17.118) are known as theKramers-Kronig relations. It is clear from Eqs. (17.117) and (17.118) that these

relations allow us to find the real part of the response function if its imaginary part is known over all the frequencies and vice

versa. As an example, take the case of a complex dielectric function of a material written as

e oð Þ¼ e1 oð Þ+ ie2 oð Þ (17.119)

The imaginary part of the dielectric function e2(o) gives the absorption spectrum, while the real part e1(o) gives the

refractive index n(o) of the material. Therefore, if n(o) is known over the whole of the frequency range, one can calculate
the absorption spectrum without any additional information and vice versa. This shows that refraction and absorption are

not independent properties of a material but originate from the same physical effect. But in practice, the refractive index and

the absorption spectrum are measured experimentally over a certain finite frequency range. Therefore, the value of the

refractive index or the absorption spectrum evaluated using the Kramers-Kronig relations may involve some error. We

want to remark here that reflectivity also depends on the refractive index. Therefore, the reflectivity and absorption spectra

are also not independent, but rather can be calculated from each other. Note that if the absorption is strong, the transmission

through a thick slab may be too weak to measure, but the reflectivity can still be measured.

Other important quantity is the wave vector and the frequency-dependent susceptibility w(q,o), which can be written as

w q,oð Þ¼ w1 q,oð Þ+ iw2 q,oð Þ (17.120)

The imaginary part of susceptibility w2(q,o) gives the absorption spectrum of the solid. Therefore,the static susceptibility

w1(q, 0) may be obtained by integrating the absorption spectrum. This is, in fact, an experimental technique used to obtain

the static susceptibility of certain materials.

17.7 OPTICAL MODELS

It has become evident by now that the optical properties of solids are determined by the refractive index nc(o), which in turn
depends on the dielectric function e(o). In Chapter 15, we have seen that e(o) depends on three polarization processes: the
electronic, ionic, and dipolar polarizations. In different materials different polarizations play a significant role in different

frequency ranges. For example, in the optical frequency range, e(o) arises almost entirely from the electronic polarization.

Fig. 17.8 shows a schematic representation of the real and imaginary parts of e(o). There is a sharp decrease in e1(o)when any
one of the polarization contributions ceases to exist. This gives rise to the energy loss indicated by the absorption peak in e2(o)
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in that frequency range. The first absorption peak occurs in the ultrahigh-frequency to microwave-frequency range, the

secondpeak occurs near the infrared region, and the third sharp peak occurs in the ultraviolet region near the visible frequency

range. From a comparison of Figs. 15.12 and 17.8 it is evident that the behavior of e1(o) is similar to that of the polarizability

aa(o). The optical properties, such as reflectivity, transmission, and absorption, can be evaluated using different models

depending on the nature of the solid. In this text, we describe simple models for metals, insulators, and ionic solids.

17.7.1 Drude Model

Drude gave a simple model for the dielectric function and optical conductivity of an electron gas. Let ne be the electron

density of the electron gas. In the absence of any collisions, the electrons are free to move (free-electron gas). The equation

of motion of a free electron moving in the x-direction is given by

me

d2x

dt2
¼�eE (17.121)

Let both the position x and electric field E have the same time dependence defined as

x¼ x0e
�io t (17.122)

E¼E0e
�io t (17.123)

Substituting Eqs. (17.122) and (17.123) into Eq. (17.121), one gets

x¼ eE

meo2
(17.124)

FIG. 17.8 The real part e1(o) and imaginary part e2(o) of the dielectric function in a solid as a function of frequency o.

Optical Properties of Solids Chapter 17 369



Now consider the situation in which the electrons are colliding with one another. If v and τe are the mean velocity and

relaxation time of the electron, then the distance traveled between two consecutive collisions is given by x¼vτe. The
current density J due to the moving electrons is given by

J¼�neev¼�nee
x

τe
¼� nee

2

meo2 τe
E (17.125)

Because J ¼ sE, the optical conductivity is given by

s¼ nee
2

meo2 τe
(17.126)

Eq. (17.126) is known as the Drude formula for the optical conductivity. The polarization of the electron gas is given by

P¼ wEE¼�ne e x (17.127)

Substituting the value of x from Eq. (17.124) into Eq. (17.127), we get

P oð Þ¼ wE oð ÞE¼ � nee
2

meo2
E (17.128)

From the above equation the susceptibility wE(o) is given as

wE oð Þ¼� nee
2

meo2
(17.129)

Therefore, the real part of the dielectric function e(o)¼1+4pwE(o) is given as

e oð Þ¼ 1�o2
P

o2
(17.130)

where the plasma frequency op is defined as

oP ¼ 4pnee2

me

� 
1=2

(17.131)

The dielectric function due to Drude, given by Eq. (17.130), is shown in Fig. 17.9. The refractive index n(o) for a material

with m¼1 is given by

FIG. 17.9 The dielectric function e(o) as a function of frequencyo for a free-electron gas

in the Drude model. The crossover from negative to positive values occurs at the plasma

frequency oP.
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n oð Þ¼ ffiffi
e

p ¼ 1�o2
P

o2

� 
1=2

(17.132)

The behavior of the propagation vector can be studied in a free-electron gas. The equation of motion for the wave is given by

Eq. (17.11), which can be written for a nonmagnetic system (m ¼ 1) as

r2E� e
c2

∂
2E

∂t2
¼ 0 (17.133)

We are looking for plane wave solutions of the type

E¼E0 e
i K � r�o tð Þ (17.134)

Substituting Eq. (17.134) into Eq. (17.133), one gets the dispersion relation

o2 e oð Þ ¼ K2c2 (17.135)

Substituting the value of e(o) from Eq. (17.130) into Eq. (17.135), the dispersion for e(o) becomes

o2�o2
P ¼K2c2 (17.136)

The dispersion relation defined by Eq. (17.136) is shown in Fig. 17.10 and it describes the transverse electromagnetic waves

in a plasma.

The physical meaning of n(o) given by Eq. (17.132) is as follows. From Eq. (17.132) it is evident that the behavior of a

metal depends on the frequency of the applied field. Ifo2 i oP
2, the propagation vector is real and the refractive index is real

and positive but less than unity. In this case the reflectivity is given by Eq. (17.100) and the metal, therefore, is

transparent to normally incident light, but there exists a critical angle of incidence above which total reflection takes place

at the surface of the metal. This happen at large frequencies or short wavelengths. On the other hand, ifo2<oP
2 (large wave-

lengths), both the propagation vector and refractive index become imaginary so the value of reflectivity R becomes unity and

total reflection takes place at all angles of incidence. The reflectivity R as a function of wavelength l/lP is shown in

Fig. 17.11A. The plasma wavelength lP acts as a dividing line between propagation though the medium and total reflection

at the surface of the medium (see Fig. 17.11B). AtoP the medium becomes transparent to light of wavelength lP¼2pc/oP.

For example, in alkalimetals, the electron density is 1023 per c.c., which yields anoP on the order of 1016rad/s and a lP on the
order of 0.1 mm. For this reason, alkali metal reflects visible light but is transparent to ultraviolet light.

Let us examine how Eq. (17.130) is modified when the electromagnetic wave propagates in a metal. In the Jellium

model of metal, there is a sea of free electrons in a uniform positive background. The uniform positive background gives

a constant contribution to the dielectric constant, denoted as e(∞), up to frequencies well above oP. Now the dielectric

constant from Eq. (17.130) can be written as

FIG. 17.10 A plot of o/oP as a function of cK/oP (dispersion relation)

corresponding to the equation o2¼oP
2 +c2K2.
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ee oð Þ¼ e ∞ð Þ�o2
P

o2
¼ e ∞ð Þ 1� eo2

P

o2

" #
(17.137)

where

eoP ¼ 4pnee2

me e ∞ð Þ
� �1=2

(17.138)

eoP is the normalized plasma frequency. One can find the refractive index and the propagation vector in the metal in the

same way as was done above, yielding

en oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiee oð Þ

p
¼ e ∞ð Þ½ �1=2 1� eo2

P

o2

 !1=2

(17.139)

o2� eo2
P ¼ c2K2=e ∞ð Þ (17.140)

Eqs. (17.139) and (17.140) can be interpreted in the same way as in the case of a free-electron gas. Eq. (17.140) gives the

dispersion relation of a transverse electromagnetic wave in the electron plasma of a metal.

Let us examine the behavior of a metal in the case of electromagnetic waves at intermediate wavelengths. In a

metal, the electrons interact with each other and with the ions, giving rise to a finite mean free path and causing the

FIG. 17.11 (A) The reflectance R of a free-electron gas as a function of

wavelength l. (B) Schematic representation of the frequency dependence

of reflectivity R for an alkali metal in the free-electron theory without

damping. (A: From Zener, C. (1933). Nature, 23, 968.)

372 Solid State Physics



absorption of energy by the metal. The equation of motion of an electron in the presence of a finite mean free path is

given by

me

d2x

dt2
+
me

τe

dx

dt
¼�eE (17.141)

The second term in the above equation is a damping term with 1/τe as the damping coefficient. Substituting Eqs. (17.122)

and (17.123) into Eq. (17.141), one gets

x¼ eE

meo o + i=τe½ � (17.142)

Further, substituting the value of x from Eq. (17.142) into Eq. (17.127), one can easily obtain

wE oð Þ¼� nee
2

meo o + i=τe½ � (17.143)

Hence the dielectric function becomes

e oð Þ¼ 1� o2
P

o o+ i=τeð Þ (17.144)

It is evident that in the limit τe!∞, Eq. (17.144) reduces to Eq. (17.130) given by Drude. Separating the real and imaginary

parts of Eq. (17.144), we write

e1 oð Þ¼ 1� o2
P

o2 + 1=τ2e
(17.145)

e2 oð Þ¼ o2
P=oτe

o2 + 1=τ2e
(17.146)

From Eq. (17.145) the refractive index of the metal is given by

n oð Þ¼
ffiffiffiffiffiffiffiffiffiffiffi
e1 oð Þ

p
¼ 1 � o2

P

o2 + 1=τ2e

� 
1=2

(17.147)

In the limit oτe≫1, the real part e1(o) gives the same expression as Eq. (17.130), while the imaginary part e2(o) reduces,
from Eq. (17.146), to

e2 oð Þ¼ o2
P

o3 τe
¼ 4ps

o
(17.148)

Here we have used Eq. (17.85). From the above equation the magnitude of the photoconductivity is given by

s oð Þ¼ nee
2

meo2 τe
¼ oe2 oð Þ

4p

which is the same equation as given by Eq. (17.126). The function s(o) decreases with an increase in o, as shown in

Fig. 17.12. Another quantity of interest is �Im e�1, which is proportional to the absorption spectrum, and is given from

Eq. (17.119) as

� Ime�1 ¼ e2
e21 + e

2
2

(17.149)

The function�Im e�1, plotted in Fig. 17.12, is peaked about the plasma frequency. The effect of introducing a finite mean

free path or damping coefficient 1/τe is that the electrons vibrate freely for a finite time only and then give up their energy to

the lattice. For oP
2/o2>1 the reflecting power becomes slightly less than unity because some energy is absorbed in the

surface. On the other hand, for oP
2/o2<1, the wave in the metal is damped so that the metal is opaque except for relatively

thin films. The behavior of the metal in the two cases is shown in Fig. 17.13.

To express Eqs. (17.145) and (17.146) in terms of wavelength, we define the following quantities

o¼ 2p
c

l
,
1

τe
¼ 2pc

lT
,l0 ¼ pmec

2

nee2

� 
1=2

(17.150)
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Using Eq. (17.150) in Eqs. (17.145) and (17.146) one can immediately write

e1 lð Þ¼ 1� l
l0

� 
2
1

1 + l=lTð Þ2 (17.151)

e2 lð Þ¼ l
l0

� 
2 l
lT

1

1 + l=lTð Þ2 (17.152)

FIG. 17.12 The optical conductivity s(o) and the negative
of the imaginary part of the inverse of the dielectric function

�Im e-1(o), are plotted as a function of frequency o.

FIG. 17.13 The electric vector E of an electromagnetic

wave incident on a metal for (A) oP
2/o2>1 and (B) oP

2/

o2<1.
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Fig. 17.14 shows the value of reflectivity R, calculated from Eqs. (17.151) and (17.152) in the transition region where 1/

o� τe, and also from the Hagen-Rubens relation defined by Eq. (17.112). In the limiting case of 1/o≪τe, i.e., l/lT≪1,

Eqs. (17.151) reduces to

e1 lð Þ¼ 1� l
l0

� 
2

(17.153)

which is actually the same as Eq. (17.130) due to Drude.

Problem 17.4

Consider a free-electron metal in which there is a damping of the electron motion due to collisions with the atoms. The damping

term is assumed to be gdx/dt, which is proportional to the electron velocity. The vibration equation is given by

me
d2x

dt2
+ g

dx

dt
¼ eE¼ eE0e

i o t (17.154)

Prove that the damping factor is inversely proportional to the conductivity of the metal s0 and is given as

g¼ nee
2

s0
(17.155)

Here ne is the electron density.

17.7.2 Lorentz Model for Insulators

Lorentz provided a model to explain the optical properties of nonferromagnetic insulators. He assumed that the major con-

tribution to polarization in an insulator is due to the bound electrons in an atom oscillating with natural frequency o0.

According to Lorentz, the equation of motion of a bound atomic electron in an insulator is given by

me

d2x

dt2
+
me

τe

dx

dt
+ ks x¼�eE (17.156)

FIG. 17.14 Reflectivity R for Pt metal as a function of wavelength l in

the infrared region. Curve I gives the results obtained from Eqs. (17.151)

and (17.152), while Curve II gives the results obtained from the Hagen-

Rubens relation given by Eq. (17.112). Here s0 has been taken as the

observed conductivity at room temperature.
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The third term on the left side of Eq. (17.156) represents a harmonic force with spring constant ks given by

ks ¼meo2
0 (17.157)

Substituting Eqs. (17.122), (17.123), and (17.157) into Eq. (17.156), one can write

x¼�eE

me

1

o2
0�o2� io=τe

(17.158)

The dipole moment induced on the atom is given by

p¼� ex¼ e2E

me

1

o2
0�o2� io=τe

(17.159)

From the above equation the electronic polarizability becomes

aaE ¼
e2

me

1

o2
0�o2� io=τe

(17.160)

Eqs. (17.159) and (17.160) exhibit a resonance at the natural frequency o0. Quantum mechanically, ħo0 gives the energy

difference before and after the transition.

Consider the material for which the permeability is unity, that is, m¼1. The dielectric constant in an insulator is given by

the expression (see Eq. 16.29)

ee oð Þ¼
1 +

8p
3

raaaE

1�4p
3

raaaE

(17.161)

where ra is the atomic density. Substituting the value of aE
a from Eq. (17.160) into Eq. (17.161) and separating the real and

imaginary parts of the dielectric function, one gets

e1 oð Þ¼
o2

0�o2 +
2

3
o2

P

� 

o2

0�o2�1

3
o2

P

� 

+

o
τe

� 
2

o2
0�o2�1

3
o2

P

� 
2

+
o
τe

� 
2
(17.162)

e2 oð Þ¼
o2

P

o
τe

� 


o2
0�o2�1

3
o2

P

� 
2

+
o
τe

� 
2
(17.163)

The refractive index can be evaluated from Eq. (17.162) with the help of Eq. (17.87). In covalent Si crystals, the dielectric

function e(o) simply equals the static dielectric function e0¼ e1(0) below the frequency of visible light. So, at o ¼ 0,

Eq. (17.162) reduces to

e0 ¼
o2

0 +
2

3
o2

P

o2
0�

1

3
o2

P

(17.164)

In Si, o0¼7.2 and oP¼11, which gives o0/oP¼0.654. With these values one obtains e0¼11. Fig. 17.15 shows the cal-

culated values of e1(o) and e2(o) versus the scaled frequency o/o0 for Si.

The Lorentz model can also be applied to explain the polarization in ionic solids or covalent solids with ionic bonding.

In the presence of an electric field, the equation of motion of an ionic solid can be written as

M
d2x

dt2
+
M

G
dx

dt
+ kSx¼ qE (17.165)
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where M is the mass of an ion having charge q. Here 1/G is the damping factor and kS is the spring constant

defined as

kS ¼Mo2
0i (17.166)

Hereo0i is the resonance frequency of the ionic polarization. Substituting Eqs. (17.122) and (17.123) into Eq. (17.165), one

obtains the displacement as

x oð Þ¼ q

M

1

o2
0i�o2� io=G

E (17.167)

Hence the ionic polarizability is given by

aaI oð Þ¼ qx oð Þ
E

¼ q2

M

1

o2
0i�o2� io=G

(17.168)

It is known that o0i is the frequency of the optical branches oj(0) (see Chapter 6), i.e., o0i¼oj(0). In NaCl, the real part

of the dielectric constant e1(o) ranges from about 2.8 to 3.0 in the microwave frequency range of 0.4–4GHz but the static
dielectric constant is 5.895. The reduction in e1(o) at radio frequency (rf) must be due to the dipolar polarization of

defects. But in the covalent crystals, such as diamond or silicon, there is no dipolar contribution as there are very

few defects in these crystals. As a result, the refractive index of a covalent crystal is almost constant below infrared

frequency.

It is interesting to compare the validity of different models as regards the frequency. Fig. 17.16 shows the frequency

dependence of the reflectivity R obtained from different models for metals compared with the experimental results. The

theoretical results obtained from the Hagen-Rubens relation (Eq. 17.112) exhibit good agreement with the experimental

results in the infrared (IR) region (up to frequency of 1013 s�1 and below). It is noteworthy that electromagnetic waves of

such low frequencies (long wavelengths) are not able to see the atomic structure of the solid. Therefore, the Hagen-Rubens

relation is for a continuous material and is not able to explain the values of R at higher frequencies. With an increase in

frequency, the electromagnetic waves start interacting with the atoms of the solid and, therefore, one needs an atomistic

model to explain the experimental results for R. The first atomistic model was given by Drude for a free-electron gas, which

was then improved by including collisions between the electrons, which cause damping of the electron motion. Drude’s

model explains the reflectivity in the near-infrared and visible regions (see Fig. 17.16). At still higher frequencies the exper-

imental value of R increases and then decreases, as shown in the figure, giving rise to an absorption band. Lorentz assumed

that the electron is bound to an atom and that it oscillates harmonically about its position. The Lorentz model explains the

peak in reflectivity R in metals in the ultraviolet (UV) region. Fig. 17.17 shows the results of reflectivity R as a function of

frequency in dielectrics in which there are no free electrons. The experimental results exhibit two peaks in the ultraviolet

region, which are well explained by the Lorentz model.

FIG. 17.15 e1 and e2 are plotted as a function of frequency o for Si.
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17.8 LYDDANE-SACHS-TELLER RELATION

In Chapter 6 it was explained that the amplitudes of vibration of the two types of ions in an ionic solid are affected by the

presence of electromagnetic radiation, particularly IR radiation, that produces a finite dipole moment on the ionic molecule.

The polarization and dielectric function of the ionic solid depend on the intensity of the IR radiation. Therefore, it is of

interest to study the optical properties of ionic solids in the IR region.

The dipole moment on a molecule of an ionic solid is given by e(u2�u1) where u1 and u2 are the amplitudes of vibration

of the two types of ions given by Eqs. (6.86) and (6.88). If there are ni molecules per unit volume, i.e., ni positive and ni
negative ions, then the ionic polarization is given by

Pi ¼ ni e u2�u1ð Þ (17.169)

Substituting the values of u1 and u2 from Eqs. (6.86) and (6.88) into the above equation, one can write

FIG. 17.16 The frequency dependence of reflectivity R for a metal. The solid line shows the experimental results, while the dashed and dotted lines

show the theoretical results obtained from the Drude and Lorentz models. The figure also depicts the results obtained from the Hagen-Rubens equation

(dash-dot line). (Modified from Hummel, R. E. (2001) Electronic properties of materials, Springer-Verlag, Berlin.)

FIG. 17.17 The frequency dependence of reflectivity R for a dielectric solid. The solid line shows the experimental results, while the dashed line shows

the theoretical results obtained from the Lorentz model. (Modified fromHummel, R. E. (2001) Electronic properties of materials, Springer-Verlag, Berlin.)
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Pi ¼ ni e
2E0

�o2

mM
+

8aF
M1M2

sin2 Ka=2ð Þ

o2 o2�o2
0

� �
+

4a2F
M1M2

sin2Ka

2
664

3
775 (17.170)

where mM is the reduced mass of the ionic molecule and is defined as

1

mM
¼ 1

M1

+
1

M2

(17.171)

In the IR region the wave vector K is small, so in the limit of Ka≪1, Eq. (17.170) reduces to

Pi ¼ ni e
2

mM o2
0�o2

� � E0 (17.172)

We know that the dielectric function e(o) is given by

e oð Þ�1¼ 4p
P

E0

(17.173)

In ionic solids the polarization comprises ionic and electronic contributions because the dipolar contribution is negligible.

Therefore, for ionic solids the above equation becomes

e oð Þ�1¼ 4p
Pi

E0

+ 4p
Pe

E0

(17.174)

where Pi and Pe are the ionic and electronic contributions to the polarization. At low frequencies both Pi and Pe are finite, but

at high frequencies Pi is zero due to the large ion mass. As o!∞ the above equation can be written as

e ∞ð Þ�1¼ 4p
Pe

E0

(17.175)

Substituting Eq. (17.175) into Eq. (17.174), one gets

e oð Þ¼ e ∞ð Þ+ 4p
Pi

E0

(17.176)

From Eqs. (17.172) and (17.176) one can write

e oð Þ¼ e ∞ð Þ� o2
Pi

o2�o2
0

(17.177)

where

oPi ¼ 4pni e2

mM

� 
1=2

(17.178)

From Eq. (17.177) the dielectric function is positive if

o2
Pi

o2�o2
0

< e ∞ð Þ (17.179)

If the above condition is satisfied, then e(o) and hence the refractive index n(o) is positive and the electromagnetic wave

passes through the ionic solid. On the other hand, if

o2
Pi

o2�o2
0

> e ∞ð Þ (17.180)

then e(o) is negative and n(o) is imaginary and, therefore, the electromagnetic wave is reflected from the solid. The above

equation can be written as

o2 o2
Pi

e ∞ð Þ +o
2
0

�
(17.181)

Optical Properties of Solids Chapter 17 379



In writing the above condition we have assumed the second term of Eq. (17.177) to be positive. Therefore, n(o) is imag-

inary if the frequency satisfies the following condition

o2
0 o2 o2

Pi

e ∞ð Þ +o
2
0

��
(17.182)

Hence the electromagnetic waves cannot propagate through the ionic solid in the range of frequencies defined by

Eq. (17.182). In an ionic solid the frequencies of transverse and longitudinal waves are given by

o2
T ¼o2

0,o
2
L ¼o2

0 +
o2

Pi

e ∞ð Þ (17.183)

Using Eq. (17.183), Eq. (17.182) becomes

o2
T <o2 <o2

L (17.184)

From Eq. (17.177) the static dielectric function e(0) is given by

e 0ð Þ¼ e ∞ð Þ+ o2
Pi

o2
0

(17.185)

Dividing Eq. (17.185) by e(∞) and rearranging the terms, one gets

e 0ð Þ
e ∞ð Þ¼

o2
L

o2
T

(17.186)

Eq. (17.186) is known as the Lyddane-Sachs-Teller relation. The upper limit for the forbidden band of frequencies

(reflected waves) falls at oL. Therefore, the dielectric function at oL should go to zero (the upper limit for the negative

values of e), i.e.,

e oLð Þ¼ 0: (17.187)

Eq. (17.187) can be taken as the definition for the longitudinal optical phonon frequency for small K values.

Problem 17.5

Using Eqs. (17.177) and (17.185) prove that

e oð Þ� e ∞ð Þ¼ e 0ð Þ� e ∞ð Þ½ � o2
0

o2
0�o2

(17.188)

Problem 17.6

From Eqs. (17.177), (17.185), and (17.186) prove that

e oð Þ
e ∞ð Þ¼

o2
L �o2

o2
T�o2

(17.189)

Problem 17.7

The equation of motion of an electron in the presence of finite mean free path is given by (see Eq. 17.141)

me
d2x

dt2
+

me

τe

dx

dt
¼ �eE

Prove that the above equation in terms of current density becomes

dJ

dt
¼ nee2

me
E� J

s0

� 

(17.190)
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Magnetism was discovered inMagnesia, a place in Greece, around 800BCE and that is the origin of its name. The writing of

Thales, a Greek writer, shows that magnetite or loadstone was known to attract iron pieces. The Chinese made a magnetic

compass sometime around 200BCE.Today,we can observe thatmost of the elements in the periodic table exhibitmagnetism

of varying strength. The type of magnetization that occurs when an external magnetic field is applied to an element varies:

1. In some elements of the periodic table, magnetization is induced in a direction opposite to the applied magnetic field.

The induced magnetization lasts only for the time the applied magnetic field exists. Such elements are called diamag-

netic elements and are repelled by the magnetic field.

2. In many elements, weak magnetization is produced in the direction of the applied magnetic field. Moreover, the mag-

netization lasts so long as the applied field is finite. Such elements are called paramagnetic elements and are weakly

attracted by the magnetic field.

3. In some elements, remarkably strong magnetization is produced in the direction of the applied magnetic field. Further,

the magnetization exists even in the absence of the applied field. Such elements are called ferromagnetic elements and

are strongly attracted by the magnetic field.

In addition, there exist antiferromagnetic and ferrimagnetic elements, which will be discussed in reasonable detail in the

coming chapters. The atomic magnetic dipole moment, induced or intrinsic, is basically responsible for the existence of

magnetism in the various elements.

18.1 ATOMIC MAGNETIC DIPOLE MOMENT

In an atom, electrons revolve around the nucleus and the nucleus contains protons and neutrons. An atom as a whole is

electrically neutral, but it consists of moving charged particles that may behave as magnetic dipoles. An electron in an

atom has two motions: orbital and spin. Similarly, protons and neutrons also possess orbital and spin motions inside

the nucleus. Therefore, the magnetic moment of an electron has two principal contributions, which are the orbital and spin

magnetic moments. There is also a third contribution to the magnetic moment arising from the spin-orbit interaction. If the

spin and orbital motions are assumed to be independent of each other, then the spin-orbit contribution vanishes and the total

magnetic moment of the ith electron m!ei is the vector sum of its orbital and spin contributions, i.e.,

m!ei ¼ m!eil + m!eis (18.1)
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where m!eil and m!eis are the orbital and spin contributions to the magnetic moment of the ith electron. The total electronic

contribution to the magnetic moment of an atom m!e, therefore, is the vector sum of the magnetic moments of all the elec-

trons, i.e.,

m!e ¼
X
i

m!ei (18.2)

The protons in a nucleus, being charged particles, possess both orbital and spin magnetic moments, just like electrons. The

neutrons, being neutral particles, do not possess an orbital magnetic moment in spite of their orbital motion, but they do

possess an intrinsic spin magnetic moment. The total magnetic moment of a nucleus m!N is the vector sum of the magnetic

moments of the neutrons and protons and is given by

mN ¼
X
j

mpj +
X
k

mnk (18.3)

where mpj and m
!
nk are the total magnetic moment of the jth proton and kth neutron. From Eqs. (18.2) and (18.3) the magnetic

moment of an atom is given by

m!¼ m!e + m!N (18.4)

We shall see later that the magnetic moment of a nucleus is negligible compared with the electronic contribution (about

2000 times smaller); therefore, the magnetic moment of an atom is determined mainly by the electrons. In the coming

discussion the magnetic moment of an atom m! is assumed to include only the electronic contribution.

18.1.1 Orbital Magnetic Moment

Consider an atom in which an electron is moving in an elliptical orbit with a nucleus at one of its foci, say O (Fig. 18.1). Let

T be the time period of revolution of the electron around the nucleus. The revolving electron constitutes an electric current

IL given by

IL ¼� e

T
(18.5)

The total area of the elliptical orbit swept by the electron in time T is given by

A¼ 1

2

ð2p

0

r2d’ (18.6)

where ’ is the angle formed by the major axis of the ellipse with the radius vector r (from the focus) of the electron at any

time t. From elementary electricity, the orbital magnetic moment arising from the current IL is given by

mL ¼
ILA

c
(18.7)

where c is the velocity of light. The angular momentum of the electron is given by

FIG. 18.1 Motion of an atomic electron in an elliptical orbit with a nucleus at

one of its foci O. The electron with position vector r is moving with velocity v

in the orbit.
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p’ ¼mer
2o’ ¼mer

2 d’

dt
(18.8)

where me is the mass and o’ is the angular velocity of the electron. Substituting the value of r2 from Eq. (18.8) into

Eq. (18.6), we write

A¼ 1

2

ð2p

0

p’

me

1
d’
�
dt

d’¼ 1

2

p’

me

ðT

0

dt¼ 1

2

p’T

me

(18.9)

Substituting Eqs. (18.5) and (18.9) into Eq. (18.7), we get

mL ¼� e

2mec
p’ (18.10)

From Bohr’s quantization rule for orbits, the angular momentum p’ can be written as

p’ ¼ ħL (18.11)

Here L is called the orbital quantum number and has integral values 1, 2, 3,… Sometimes L is also called the orbital angular

momentum in units of ħ ¼h/2p where h is the Planck constant. From Eqs. (18.10) and (18.11) one can write

mL ¼�mBL (18.12)

where mB is called the Bohr magnetron defined as

mB ¼
eħ

2mec
(18.13)

In vector notation Eq. (18.12) can be written as

m!L ¼�mBL (18.14)

The negative sign indicates that the orbital magnetic moment is in a direction opposite to the orbital angular momentum and

is basically due to the negative charge of the electron. The above expression is valid only for orbital motion. An alternate

method for calculating mL for an electron moving in a circular orbit is given in Appendix L.

18.1.2 Spin Magnetic Moment

The orbital theory does not explain the multiplicity of atomic spectra, e.g., the doublet of d-states. In addition, it also does

not explain the Zeeman levels in some of the elements. These difficulties were resolved by assuming that an electron pos-

sesses intrinsic spin angular momentum S, which has eigenvalues�(1/2) in units of ħ. Note that spin is purely a relativistic
property of an electron and arises from quantum effects. The magnetic moment arising from the spin angular momentum is

given by

m!S ¼�2mBS (18.15)

From Eq. (18.15) the value of the spin magnetic moment is numerically equal to the Bohr magnetron. Hence the total mag-

netic moment of an electron becomes

m!J ¼ m!L + m!S

¼�mB J+ Sð Þ (18.16)

where the total angular momentum J of an electron is given by

J¼L + S (18.17)

The vector S is spinning around the direction of J (see Fig. 18.2). So, the average value of the magnetic moment m!J is

obtained by substituting the average value of S along the direction of J, that is, hSi in Eq. (18.16), allowing us to write

m!J ¼�mB J + Sh i½ � (18.18)
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Here J+ hSi gives the diagonal element of J+S. The average value of hSi is given by

Sh i¼ J � S
Jj j Ĵ¼ J � S

Jj j2 J (18.19)

where Ĵ is a unit vector in the direction of J. From Eq. (18.17) we write

J�S¼L (18.20)

Squaring both sides, we find

J � S¼ 1

2
J2 + S2�L2
� �

(18.21)

From Eqs. (18.19) and (18.21) the average value of the spin becomes

Sh i¼ J2 + S2�L2

2J2
J (18.22)

The eigenvalues of L2, S2, and J2 are L(L+1), S(S+1) and J (J+1). Therefore, the average value of spin along the direction

of J is given by

Sh i¼ J J + 1ð Þ +S S+ 1ð Þ�L L+ 1ð Þ
2J J + 1ð Þ J (18.23)

Substituting the value of hSi from Eq. (18.23) into Eq. (18.18), we get the average value of the magnetic moment as

m!J ¼�gJmBJ (18.24)

where

gJ ¼ 1 +
J J + 1ð Þ+ S S + 1ð Þ�L L+ 1ð Þ

2J J + 1ð Þ (18.25)

FIG. 18.2 The spinning of an electron spin S around the total angular momentum J of the electron. The vector hSi gives the average value of spin S along
the J vector.
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The factor gJ is usually called Lande’s splitting factor. The above expression gives the magnetic moment of an electron due

to its total angular momentum J. It can be easily proved from Eq. (18.25) that gJ¼2 if there is only the spin motion and that

it is equal to 1 if there is only the orbital motion. From experiments, the actual value of gJ for electron spin is found to be

2.0023.

18.1.3 Nuclear Magnetic Moment

One can also calculate the magnetic moment of a proton m!p and neutron m!n in exactly the same way as for an electron. The

expressions for the magnetic moments are

m!p ¼ mBp Ip (18.26)

and

m!n ¼ mBn In (18.27)

where

mBp ¼
eħ

2Mpc
, mBn ¼

eħ
2Mnc

(18.28)

Ip and In are the total angular momenta for the proton and neutron, respectively. Ip arises from both the orbital and spin

motions, while In arises from the spin motion only. From Eq. (18.26) it is evident that the angular momentum and magnetic

moment of a proton are in the same direction, in contrast with an electron, and this is because of the positive charge on the

proton. In the case of a neutron, the angular momentum and magnetic moment are also in the same direction, although the

neutron is a neutral particle. Further, due to the large mass of the proton, the Bohr magnetron of a proton mBp is about 2000
times smaller than the Bohr magnetron of an electron mB. The same applies to the neutron Bohr magnetron mBn. Therefore,
the nuclear magnetic moment is very small compared with the electronic magnetic moment in an atom. In other words, the

atomic magnetic moment arises mainly from the electron contribution.

18.2 MAGNETIZATION

When a solid is placed in a magnetic field, it gets magnetized. Therefore, one can talk about the strength of magnetism

produced inside the solid, which is determined by a physical quantity called magnetization. Magnetization is defined
as the atomic/molecular magnetic moment per unit volume. For weak magnetic fields, magnetizationM(r) is linearly pro-

portional to the applied magnetic field H(r). For inhomogeneous and anisotropic solids.

M rð Þ¼
X
r0

wM r, r0ð ÞH r0ð Þ (18.29)

M(r) is the magnetization produced in the r direction, while the magnetic field H(r
0
) is applied in the r

0
direction. Here

wM(r,r
0
) is the proportionality constant and is, in general, a tensor for an inhomogeneous and anisotropic solid. wM(r,r

0
) is

usually called the magnetic susceptibility tensor. According to the above expression, the magnetic field applied in all pos-

sible directions of r
0
, contributes to magnetization along the r direction. If the solid is homogeneous and isotropic, then both

the magnetic field and magnetization are in the same direction and one can write

M rð Þ¼ wM rð ÞH rð Þ (18.30)

For such solids the magnetic susceptibility wM(r) becomes a scalar quantity. A uniform magnetic field produces a constant

magnetization and, therefore, the magnetic susceptibility wM becomes a constant. It can easily be shown from the above

expression that the magnetic susceptibility is dimensionless.

18.3 MAGNETIC INDUCTION

In the presence of an externally applied magnetic field, a solid is magnetized. Therefore, the magnetic field inside the solid

B(r), usually called the magnetic induction, is different than the applied field and is given by

B rð Þ¼H rð Þ+ 4pM rð Þ (18.31)
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Substituting the value of M(r) from Eq. (18.29) into Eq. (18.31), one gets

B rð Þ¼H rð Þ+ 4p
X
r0

wM r, r0ð ÞH r0ð Þ (18.32)

The above expression can be written as

B rð Þ¼
X
r0

m r, r0ð ÞH r0ð Þ (18.33)

where

m r, r0ð Þ ¼ dr,r0 + 4pwM r, r0ð Þ (18.34)

Here m(r,r
0
) is called the magnetic permeability tensor of the material. As already discussed, for a homogeneous and iso-

tropic material the magnetic susceptibility is a scalar, therefore, from Eq. (18.34) the magnetic permeability also becomes a

scalar and is given as

m rð Þ¼ 1 + 4pwM rð Þ (18.35)

As the magnetic susceptibility is dimensionless, the magnetic permeability is also dimensionless.

18.4 POTENTIAL ENERGY OF MAGNETIC DIPOLE MOMENT

Consider an electron moving in an elliptical orbit with its magnetic dipole moment always perpendicular to it. Let a uniform

magnetic fieldH be applied in the z-direction, as shown in Fig. 18.3. In the presence ofH, torque will act on the current loop

or the magnetic dipole moment, which is given by

τ
!¼m!�H (18.36)

The magnitude of the torque is given by

τ¼ mH sin y (18.37)

Work will be done by the torque on the magnetic moment, which will change the orientation of the dipole moment. The

work done will be stored as the potential energy of the magnetic dipole moment. The zero of the potential energy (reference

level) may be taken in any direction of the dipole moment. To be consistent with Eq. (18.37) we usually assume potential

energy to be zero when m! andH are perpendicular to each other. The potential energy of the magnetic dipole moment in the

FIG. 18.3 The torque τ
!

acting on the magnetic moment m!, arising from a current loop, in the presence of applied magnetic field H.
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presence of a magnetic field is the work required to rotate the magnetic dipole from the zero energy position (y¼ 90°) to an
angle y, i.e.,

E¼
ðy

90

τdy¼ mH
ðy

90

sinydy (18.38)

The above integral can easily be solved to get

E¼� m! �H (18.39)

It should be noted that the choice of the zero energy configuration for E is arbitrary as one is usually interested in the

changes in potential energy that occur when a dipole moment is rotated.

18.5 LARMOR PRECESSION

Consider an orbital magnetic moment m!L, associated with an electron, in a uniformmagnetic fieldH, as shown in Fig. 18.4.

The torque acting on the magnetic moment, from Eqs. (18.14) and (18.36), is given by

τ
!
L ¼ m!L�H¼�mBL�H (18.40)

So, the magnitude of the torque is given by

τL ¼ mBHL siny (18.41)

Depending on the direction of motion, the torque will either accelerate or retard the electron in motion, thereby inducing

additional current in the current loop. According to Newton’s second law of motion the torque produces a change in the

orbital angular momentum L, which is at a right angle to itself. Torque can also be defined as the rate of change of angular

momentum and is given by

τ
!
L ¼

dp’

dt
¼ ħ

dL

dt
(18.42)

So, the torque causes L to precess about the direction of H with an angular frequency oL. The precession of the orbital

angular momentum about the direction of a magnetic field is called the Larmor precession and oL is called the Larmor

frequency. An alternate simple method for calculatingoL is presented in AppendixM. From Fig. 18.4, the change in orbital

angular momentum L in time dt is given by

dL¼L siny oLdtð Þ
The above equation gives the torque τL as

τL ¼ ħ
dL

dt
¼ ħoLL sin y (18.43)

From Eqs. (18.41) and (18.43) one can immediately write

ħoL ¼ mBH (18.44)

From this equation the Larmor precession frequency becomes

oL ¼
eH

2mec
(18.45)

Diamagnetism is related to the Larmor precession of the electrons. Diamagnetism is the tendency of electrical charges to

partially shield the interior of the solid from the applied magnetic field. The basic principle of diamagnetic behavior can be

illustrated with the Lenz law of electricity. Consider an atom with Z electrons revolving around its nucleus in different

orbits. When an external magnetic field H is applied, the magnetic force acts on every electron. The magnetic force accel-

erates some of the electrons, while others are retarded depending on the direction of their motion. The change in velocity of
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the electrons gives rise to an induced current that opposes the applied magnetic field (Lenz law). The induced current is

responsible for inducing an orbital magnetic moment m!L on the atom. If TL is the time period for Larmor precession of the

electrons around the magnetic field, the induced current IL is given by

IL ¼� Ze

TL

(18.46)

But the Larmor frequency is given by

oL ¼
2p
TL

¼ eH

2mec
(18.47)

Substituting the value of TL from Eq. (18.47) into Eq. (18.46), we find

IL ¼� Ze2H

4pmec
(18.48)

FIG. 18.4 The torque τ
!
L acting on an orbital magnetic moment m!L in the presence of an applied magnetic field H in the z-direction. The figure also

depicts the change in orbital angular momentum dL due to the torque.

390 Solid State Physics



Let hr?2 i be the average of the square of the radius of the electron from the nucleus perpendicular to the direction of the

magnetic field. Then the average area of the electron orbit perpendicular to the magnetic field becomes

A ¼ p r2?
� �

(18.49)

As the magnetic field is in the z-direction, hr?2 i is in the xy-plane. One can write

r2?
� �¼ x2

� �
+ y2
� �

(18.50)

In general, the mean square distance hr2i of the electrons from the nucleus in three dimensions is given by

r2
� �¼ x2

� �
+ y2
� �

+ z2
� �

(18.51)

In order to estimate the induced magnetic moment, we consider a simple case in which the charge distribution is spherically

symmetric, that is,

x2
� �¼ y2

� �¼ z2
� �

(18.52)

From Eqs. (18.50), (18.51), and (18.52) one can easily write

r2?
� �¼¼ 2

3
r2
� �

(18.53)

Substituting Eqs. (18.48), (18.49), and (18.53) into Eq. (18.7), the induced magnetic moment due to the Larmor precession

is given by

mL ¼� Ze2H

6mec
2

r2
� �

(18.54)

If there are ra atoms per unit volume, the diamagnetic susceptibility is given by

wd ¼
M

H
¼ ramL

H
¼�Ze2ra

6mec
2

r2
� �

(18.55)

This is called the Langevin result. From Eq. (18.55) it is evident that the problem of calculating the diamagnetic suscep-

tibility is reduced to the calculation of hr2i for the atomic electron distribution in an atom, which can be estimated using a

quantum mechanical approach.

The units of wd can be calculated from Eq. (18.55). Z is a number but ra, as the density of atoms, has dimensions of 1/L3

and so, from Eq. (18.55), one can write

wd ¼
1

L3

e2

M LT�1
� �2 L2 ¼ e2

L

1

ML2T�2
(18.56)

Now e2/L have the units of energy (work) with dimensions

e2

L
¼maS¼M LT�2

� �
L¼ML2T�2 (18.57)

FromEqs. (18.56) and (18.57), wd is found to be dimensionless. The value of wd is specified in the same way as the density ra

is defined. If the density ra is defined per unit volume, then the values of wd are listed per unit volume, but if ra is taken per
gram mole, then wd is specified per gram mole.

Problem 18.1

Calculate the diamagnetic susceptibility for a He atom in the ground state, i.e., the 1s state, taking its radius as the Bohr radius a0.

The density of He atoms is given by ra¼2.7�1024cm�3.
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18.6 QUANTUM THEORY OF DIAMAGNETISM

The Hamiltonian of an electron in an atom (say the Bohr atom) is given by

H
_

0 ¼
p2

2me

+V (18.58)

where p and me are the momentum and mass of the electron, respectively. If the atom is placed in electric and magnetic

fields represented by E and H, respectively, then the Lorentz force acting on the electron is given by

F¼�eE� e

c
v�H (18.59)

The magnetic field in terms of the vector potential A is given by

H¼r�A (18.60)

The momentum of an electron in the presence of an electromagnetic field changes as follows:

p! p� e

c
A (18.61)

Therefore, the Hamiltonian of an electron in the presence of a magnetic field becomes

H
_¼ 1

2me

p� e

c
A

� �2
+V (18.62)

H
_

can be split up into two parts as

H
_¼H

_

0 +H
_

1 (18.63)

where

H
_

0 ¼
p2

2me

+V (18.64)

H
_

1 ¼� e

2mec
p �A +A � pð Þ+ e2

2mec
2
A2 (18.65)

Here H
_

0 is the unperturbed Hamiltonian andH
_

1 is the perturbation. Suppose H is uniform and is applied in the z-direction,

then the components of the magnetic field from Eq. (18.60) are given as

Hx ¼
∂Az

∂y
�∂Ay

∂z
¼ 0 (18.66)

Hy ¼
∂Ax

∂z
�∂Az

∂x
¼ 0 (18.67)

Hz ¼
∂Ay

∂x
�∂Ax

∂y
¼H (18.68)

The above equations are satisfied if the components of the vector potential are given by

Ax ¼�1

2
yH,Ay ¼

1

2
xH,Az ¼ 0 (18.69)

This can be written in vector form as

A¼ 1

2
H� r (18.70)

Substituting p¼ � iħr into Eq. (18.65), H
_

1 can be written as

H
_

1 ¼
iħe
2mec

r �A +A � rð Þ+ e2

2mec
2
A2 (18.71)
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In terms of Cartesian components H
_

1, from Eq. (18.65), can be written as

H
_

1 ¼� e

2mec
pxAx + pyAy +Axpx +Aypy

� �
+

e2

2mec
2

A2
x +A

2
y

� �
(18.72)

From Eqs. (18.69) and (18.72) it is straightforward to write

H
_

1 ¼� eH

2mec
xpy�ypx

� �
+

e2H2

8mec
2

x2 + y2
� �

(18.73)

The orbital angular momentum, defined as L¼r�p, can be used to write

H
_

1 ¼� eH

2mec
Lz +

e2H2

8mec
2

x2 + y2
� �

or

H
_

1 ¼�mzH +
e2H2

8mec
2

x2 + y2
� �

or

H
_

1 ¼� m! �H +
e2H2

8mec
2

x2 + y2
� �

(18.74)

The expectation value of H
_

1 gives us the change in energy due to the application of the magnetic field. The lowest order

change in energy is given by the first-order correction in perturbation theory. Let jc0i¼j0i represent the ground state of the
system. For diamagnetic substances the atomic or molecular magnetic moment is zero in the ground state, therefore,

0h jmz 0j i ¼ 0 (18.75)

Hence the first-order correction to energy in a diamagnetic substance comes from the expectation value of the second term

in Eq. (18.74), i.e.,

E1 ¼
e2H2

8mec
2

0h jx2 + y2 0j i (18.76)

h0 j x2+y2 j0i is the average value of the area of the electron loop perpendicular to the direction of the magnetic field and is

given by

0h jx2 + y2 0j i ¼ r2?
� �¼ 2

3
r2
� �

(18.77)

Substituting Eq. (18.77) into Eq. (18.76), we obtain

E1 ¼
e2H2

12mec
2

r2
� �

(18.78)

We know that the magnetic energy is given by

E¼� m! �H¼�mzH (18.79)

Therefore, the magnetic moment is given by

mz ¼� ∂E
∂H

(18.80)

Substituting Eq. (18.78) into Eq. (18.80), one gets

mz ¼� e2H

6mec
2

r2
� �

(18.81)

This is the same result for the magnetic moment as that obtained classically.
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Let us find the expectation value of the Hamiltonian of the perturbed ground state. Suppose jni represents the nth state of
the unperturbed system with energy En. The matrix element of the magnetic moment between the ground state j0i and the
nth state jni is hn j mz j0i. When a magnetic field H is applied, the perturbed ground state of the system is written as

00j i ¼ 0j i +
X
n6¼0

nh jmzH 0j i
En�E0

nj i (18.82)

The first-order correction to the magnetic moment with respect to the perturbed ground state of the system, neglecting terms

of second and higher order in H, is given by

Dm¼ 00h jmz 00j i ¼ 0h jmz 0j i+H
X
n 6¼0

0h jmz nj i nh jmz 0j i
En�E0

+H
X
n0 6¼0

0h jmz n0j i n0h jmz 0j i
En0 �E0

(18.83)

The first term on the right side of Eq. (18.83) is zero. Further, the second and third terms are equal, yielding

Dm¼ 2H
X
n 6¼0

nh jmz 0j ij j2
En�E0

(18.84)

If there are ra atoms or molecules per unit volume of the solid, then the magnetization produced is given by

△M¼ raDm¼ 2raH
X
n6¼0

njmz 0j ij j2
En�E0

(18.85)

Therefore, the magnetic susceptibility contribution is given by

DwM ¼DM
H

¼ 2ra
X
n 6¼0

nh jmz 0j ij j2
En�E0

(18.86)

Here En>E0, therefore, Dm and hence DwM is positive. With respect to En�E0 two cases arise:

1. If En�E0≫kBT, i.e., the excited state has energy much greater than the thermal energy, then most of the electrons will

be in the ground state. In this case, DwM is positive and independent of temperature. This type of contribution to the

magnetic susceptibility of a diamagnetic substance is known as Van Vleck paramagnetism.
2. If En�E0≪kBT, the excited state has an energy much less than the thermal energy. In this situation, both the ground

and excited states are occupied with electrons, but the ground state has a higher population compared with the excited

state. The excess population in the ground state is ra (En�E0)/2kBT. Hence the resultant magnetization in the ground

state of the system is given by

DM¼ raDm En�E0ð Þ=2kBT

Substituting the value of Dm from Eq. (18.84) into the above equation, we find

DM¼ raH
kBT

X
n6¼0

nh jmz 0j ij j2 (18.87)

Hence the magnetic susceptibility becomes

DwM ¼ ra

kBT

X
n 6¼0

nh jmz 0j ij j2 (18.88)

DwM has a behavior similar to that of the Curie susceptibility, but the origin of this contribution is entirely different: DwM
arises due to the polarization of the states of the system. It should be noted that the energy separation En�E0 does not enter

in Eq. (18.88). We should also note that if En!E0, then the electrons become free and the solid becomes a metal; in this

case, Eq. (18.88) is not valid.
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The above treatment can be generalized for the nth perturbed excited state given by

n0j i ¼ nj i�
X
n6¼0

0h jmzH nj i
En�E0

0j i

The expectation value of the magnetic moment in the perturbed state is given by

Dm0 ¼ n0h jmz n0j i ¼�2H
X
n6¼0

nh jmz 0j ij j2
En�E0

18.7 PARAMAGNETISM

In a paramagnetic substance each atom or molecule possesses an intrinsic magnetic dipole moment m!. At finite temperature,

all of the magnetic dipole moments are oriented randomly in the form of closed chains yielding zero magnetization. In the

presence of an applied magnetic field, two opposing forces act on each atomic dipole moment in a paramagnetic substance:

1. The magnetic field tries to align the dipole moments in the direction of the field, thereby producing finite magnetization

along the magnetic field.

2. At finite temperature, the thermal energy tries to randomize the magnetic moments to form closed chains and hence

tends to decrease magnetization.

18.7.1 Classical Theory of Paramagnetism

In the classical description, the magnetic dipole moment m! is taken to be a constant physical quantity independent of the

quantum numbers. Under the action of the competing forces mentioned above, some dipole moments align in the direction

of the applied magnetic field, while others make some angle y, which is different for different dipole moments. Therefore, a

solid shows finite magnetic dipole moment and hence finite magnetization in the direction of the magnetic field. The

maximum magnetization is produced when all of the dipole moments align along the direction of the applied field. In

the presence of a magnetic field, the potential energy of the magnetic dipole moment is given by

E¼� m! �H¼�mHcosy (18.89)

According to classical statistics, the probability P of a dipole moment making an angle ywith the magnetic field is given by

P∝ exp � E

kBT

	 

∝ exp

mH
kBT

cosy
	 


(18.90)

The component of the magnetic moment along the direction of the magnetic field is m! � Ĥ¼ m cosywhere Ĥ is a unit vector

in the direction of the field. Hence the average component of magnetic moment in the direction of the magnetic field is

given by

mavg ¼

ð
m! � Ĥ
� �

exp
mH
kBT

cosy
	 


dOsð
exp

mH
kBT

cosy
	 


dOs

(18.91)

Here dOs is the elemental solid angle. Solving the above integral, one gets

mavg ¼ mL
mH
kBT

	 

(18.92)

where

L yð Þ¼ cothy�1

y
(18.93)
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L(y) is the Langevin function (see Section 15.15). If ra is the number of atoms per unit volume, then the magnetization is

given by

M ¼ ramL
mH
kBT

	 

(18.94)

The magnetic susceptibility wM becomes

wM ¼ ram
H

L
mH
kBT

	 

(18.95)

It is interesting to study M and wM in limiting cases. If the magnetic field is very high and the temperature is very low then,

mH≫kBT (18.96)

In this limiting case the Langevin function goes to unity, i.e., L(mH/kBT) ¼ 1 and therefore

M¼ ram (18.97)

which is the saturation magnetization when all the magnetic dipole moments are aligned in the direction of the magnetic

field. Hence saturation magnetization is obtained either at very low temperatures or at very high magnetic field values. The

other limiting case occurs when the magnetic field is low, but the temperature is high and, according to this.

mH≪kBT (18.98)

If y is small, L(y)�y/3 [see Eq. (15.84)] and hence the magnetization from Eq. (18.94) becomes

M Tð Þ¼ ram
mH
3kBT

¼ m2ra

3kBT
H (18.99)

The behavior of the magnetization M(y) as a function of y is shown in Fig. 18.5. M(y) acquires the saturated value ram at

very large values of y, but the slope of the M(y) curve at y¼ 0 is ram/3. From Eq. (18.99) the paramagnetic susceptibility is

given by

wM Tð Þ¼CM

T
(18.100)

FIG. 18.5 The magnetization M(y) in a para-

magnetic solid as a function of parameter

y¼mH/kBT in the classical theory. The slope

of the magnetization curve at the origin is

shown by the dashed line.
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where CM is the Curie constant and is given by

CM ¼ m2ra

3kB
(18.101)

Eq. (18.100) is the usual Curie law. The limitation of the classical theory is that the distribution of magnetic dipole moments

is assumed to be continuous, i.e., all values of y are allowed. But according to quantum mechanics, the distribution of mag-

netic dipoles must be discrete.

Problem 18.2

Let the paramagnetic susceptibility be given by

wM ¼ ram2B
3kBT

where mB is the Bohr magnetron. If the density of atoms is ra¼2�1022 atoms/cm3, find the paramagnetic susceptibility at room

temperature taken as T¼300K.

Problem 18.3

If one retains the first two terms in the series expansion of the Langevin theory of paramagnetism, prove that the susceptibility is

given by

wM ¼ M

H
¼ ram2

3kBT
1� 1

15

mH
kBT

	 
2
" #

18.7.2 Quantum Theory of Paramagnetism

Eq. (18.14) yields discrete values for the orbital magnetic moment m!L, which means that it is quantized. Similarly, the spin

magnetic moment m!S is also discrete, having two values [Eq. (18.15)]: mB and �mB. Therefore, the total magnetic moment

m!J has discrete values. The general expression for the magnetic moment of an atom or an ion in free space is given by

m!J ¼ gJħJ (18.102)

where J is the total angular momentum. The constant gJ is the ratio of the magnetic moment to the angular momentum and is

called the magneto-mechanical or gyromagnetic ratio. Comparing Eq. (18.102) with Eq. (18.24), one can write

gJmB ¼�gJħ (18.103)

Lande’s spectroscopic splitting factor gJ represents the ratio of the number of Bohr magnetrons to the angular momentum in

units of ħ.
Suppose a magnetic fieldH is applied to a paramagnetic substance along the z-direction. The Hamiltonian of the system

is given by

H
_¼�m!J �H¼ gJmBJzH (18.104)

Jz is the z-component of the angular momentum J. If MJ is the eigenvalue of Jz, the interaction energy is given by

E¼ gJmBHMJ (18.105)

MJ is the azimuthal quantum number having the values�J,� (J�1), ………�1, 0, 1, ……(J�1), J, which are 2J+1 in

number. In a paramagnetic substance the occupation probability is given by the Boltzmann distribution as

P∝ exp � E

kBT

	 

∝ exp �b0gJmBHMJð Þ (18.106)
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The constant b0 is given by Eq. (8.22). The component of the magnetic moment in the direction of the magnetic field is

mz ¼ m!J � ẑ¼�gJmBMJ (18.107)

Hence the average magnetic moment in the direction of the magnetic field is given by

mavg ¼

X
J

�gJmBMJð Þ exp �b0gJmBHMJð Þ
X
J

exp �b0gJmBHMJð Þ (18.108)

Substituting

y¼ b0gJmBH (18.109)

Eq. (18.108) can be written as

mavg ¼
�gJmB

X
J

MJ exp �yMJð Þ
X
J

exp �yMJð Þ

¼ gJmB
d

dy
ln

X
J

exp �yMJð Þ
 ! (18.110)

It can easily be shown that

X
J

exp �yMJð Þ¼
exp

2J + 1

2
y

	 

� exp �2J + 1

2
y

	 


exp
y

2

� �
� exp �y

2

� � (18.111)

Substituting Eq. (18.111) into Eq. (18.110) and simplifying, we obtain

mavg ¼ gJmBJBJ xð Þ (18.112)

where

BJ xð Þ¼ 2J + 1

2J
coth

2J + 1

2J
x

	 

� 1

2J
coth

1

2J
x

	 

(18.113)

and

x¼ yJ¼ b0gJmBHJ (18.114)

The function BJ(x) is called the Brillouin function. If ra is the number of dipole moments per unit volume, the magneti-

zation is given by

MJ xð Þ ¼ ragJmBJBJ xð Þ (18.115)

One can study the particular case in which there is only spin (L¼0). In the case of spin J¼S¼1/2 and gJ¼ gS¼2, we find

x¼ mBH
kBT

(18.116)

Substituting the above mentioned values, the Brillouin function for spin becomes

B1=2

mBH
kBT

	 

¼ 2 coth 2

mBH
kBT

	 

� coth

mBH
kBT

	 

(18.117)

which can be simplified to get

B1=2

mBH
kBT

	 

¼ tanh

mBH
kBT

	 

(18.118)
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Substituting Eq. (18.118) into Eq. (18.115) one can write

M1=2 ¼ ramB tanh
mBH
kBT

	 

(18.119)

The value of the magnetization and magnetic susceptibility can be obtained in a simpler form in the limiting cases. From

Eq. (18.114) one can write

x¼ gJmBHJ

kBT
(18.120)

In the limit x!0, i.e., when the magnetic field is very small or the temperature is very large, one can expand coth x as in

Eq. (15.83) and use this in Eq. (18.113) to get

BJ xð Þ¼ J + 1

J

x

3
(18.121)

Therefore, in the limit x!0, the magnetization from Eq. (18.115) is given by

MJ xð Þ¼ rag2Jm
2
B J J + 1ð Þ

3kBT
H ¼ ragJmB

J + 1

3
x (18.122)

Hence the magnetic susceptibility becomes

wM ¼CJ

T
(18.123)

where

CJ ¼
rag2Jm

2
B J J + 1ð Þ
3kB

(18.124)

Eq. (18.123) is just the Curie law with Curie constant CJ, which depends on the total quantum number J. If we compare

Eq. (18.124) with Eq. (18.101), we can say that the magnetic moment mJ associated with an atom having quantum number J

is

mJ ¼ mBpJ (18.125)

where

pJ ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
(18.126)

Here pJ gives the effective number of Bohr magnetrons in an atom. The Curie constant in terms of mJ is given by

CJ ¼
ram2J
3kB

(18.127)

In the limiting case of x!∞, either the magnetic field is very high or the temperature is very low. In this limit the Brillouin

function (Eq. 18.113) goes to unity and, therefore, the magnetization from Eq. (18.115) is given by

MJ ¼ ra gJmBJ (18.128)

which gives the saturation magnetization of the substance. The variation of MJ(x), given by Eq. (18.115) as a function of x,

is shown in Fig. 18.6, which is similar to the magnetization curve obtained in the classical case. MJ(x) increases with an

increase in x and approaches the saturation value for large values of magnetic fields.

One can obtain the classical result of paramagnetism from the quantum theory in the limiting case. Let us suppose that

the angular momentum J makes an angle y with the direction of H (Fig. 18.7). The eigenvalue of J is [J(J+1)]1/2 and,

therefore, the value of the z-component of J, i.e., Jz, is given by

Jz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
cosy (18.129)
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From quantum mechanics Jz has 2J+1 eigenvalues ranging from �J to J through zero. Therefore, the values of cosy are

given by

cosy¼� Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þp ¼� 1

1 +
1

J

	 
1=2
(18.130)

As the values of J are discrete, so are the values of y. If J has an infinite number of values, then J becomes very large. Hence

from Eq. (18.130) cosy has an infinite number of values lying between �1 and+1. In other words, the value of y becomes

FIG. 18.6 The magnetization MJ(x) for a

paramagnetic solid as a function of parameter

x¼b0gmBJH. The magnetization curve is

similar to that shown in Fig. 18.5 except that

the saturation magnetization and slope of the

curve at the origin are different.

FIG. 18.7 Orientation of total angular momentum J with respect to the applied magnetic field H in the z-direction.
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continuous, that is, the distribution becomes continuous (classical case). In the limit of J!∞, it is easy to prove from

Eq. (18.113) that

LimJ!∞ BJ xð Þ¼ coth x�1

x
¼L xð Þ (18.131)

Hence the magnetization from Eq. (18.115) in the limit J!∞ is given by

MJ ¼ ramJL xð Þ (18.132)

where

mJ ¼ gJmBJ (18.133)

and

x¼ mJH
kBT

(18.134)

Eq. (18.132) gives the familiar Langevin paramagnetism.

Problem 18.4

Consider an ion with a partially filled shell of angular momentum J and Z additional electrons in filled shells. Show that the ratio of

paramagnetic susceptibility at high temperatures (Curie law) to the diamagnetic susceptibility is given by

wM
wd

¼ gJ
2

4

2J J + 1ð Þ
ZkBT

ħ2

me r2h i

18.8 HUND’S RULE

The magnetic moment of an atom can be predicted using the knowledge of quantum mechanics in combination with the

Pauli exclusion principle and Hund’s rule. The Pauli principle says that, in a paramagnetic substance, an electron state can

be occupied by two electrons with the same principal (n), orbital (‘), andmagnetic (m‘) quantum numbers, but with opposite

spins (s). In an atom the filled electron states do not contribute to the magnetic moment, but rather its finite value results

from the partially filled states.

Hund’s rule states that in the ground state of an atom

1. The electron spins add to give the maximum possible total spin S consistent with the Pauli exclusion principle. This rule

has its origin in the Coulomb repulsive interaction energy between two electrons.

2. The orbital angular momenta of electrons combine to give the maximum possible total angular momentum L that is

consistent with point 1. This rule is based on model calculations of spectral terms.

3. For a partially filled shell, the total angular momentum is given as follows:

J¼jL�S j for a shell less than half filled

¼L+S for a shell more than half filled: (18.135)

This rule is a consequence of the spin-orbit interaction.

18.8.1 Applications of Hund’s Rule

In the paramagnetic elements each atom or molecule has a finite intrinsic magnetic moment. In the periodic table most of

the paramagnetic elements are either d-shell or f-shell elements, which possess partially filled electron shells. For example,

elements of the iron group, with atomic number Z ranging from 21 to 28, possess incomplete 3d-shells. The elements of the

palladium group, with Z ranging from 39 to 46, possess incomplete 4d- shells, while the platinum group elements, with Z

ranging from 71 to 78, possess incomplete 5d-shells. The rare-earth elements, with Z ranging from 57 to 72, possess incom-

plete 4f-shells. The uranium group elements, with Z ranging from 89 to 103, possess incomplete 5f and 6d-shells. To illus-

trate the method of calculating the atomic magnetic moment, we consider a few different elements.
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18.8.1.1 Rare-Earth Group

The rare-earth element Ce58 is paramagnetic in nature and has the following electronic configuration.

Ce58 : 4f25s25p66s2

In the above representation the electronic configuration starting from the first partially filled shells is written. Here the 4f-

shell is partially filled and is responsible for the magnetic moment. The ion of Ce58 is trivalent and has the configuration.

Ce+3 : 4f15s25p6

The valence is contributed by one electron in the 4f-shell and two electrons in 6s-shell. The 4f-shell has 7 subshells with

orbital magnetic quantum number m‘ from �3 to 3, while the spin quantum number ms has two values 1/2 and �1/2. The

distribution of 4f-electrons in the subshells is given below:

m‘ : 3 2 1 0 �1 �2 �3

ms" :
1

2

The above distribution gives as a maximum value of the orbital quantum number L¼ 3 and a maximum value of spin S¼ 1/

2 consistent with Hund’s rule. As the 4f-shell is less than half filled, the total angular momentum J is given as

J¼ L�Sj j ¼ 3�½¼ 5=2

With these values of J, L, and S, the value of gJ can be calculated using Eq. (18.25) yielding

gJ ¼ 1 +

5

2
� 7
2
+
1

2
� 3
2
�3�4

2 � 5
2
� 7
2

¼ 6

7

Hence the effective number of Bohr magnetrons from Eq. (18.126) becomes

pJ ¼
3

7

ffiffiffiffiffi
35

p
ffi 2:5

The experimental value of the effective number of Bohr magnetrons is pexp ¼ 2.4, which is in good agreement with the

calculated value.

Another interesting example of the rare-earth elements is Pr59 with the following electronic configuration.

Pr59 : 4f25s25p66s26p1

Here the 4f-shell is partially filled and is responsible for the magnetic moment in paramagnetic Pr. The ion of Pr59 is tri-

valent and has the configuration.

Pr+3 : 4f25s25p6

The distribution of electrons of Pr+3 in the 4f-subshells is given below:

m‘ : 3 2 1 0 �1 �2 �3

ms" :
1

2

1

2

According to Hund’s rule, L ¼ 3+2¼5 and S ¼ ½+½¼1. As the f-shell is less than half filled, therefore,

J¼ L�Sj j ¼ 4

The value of Lande’s splitting factor becomes

gJ ¼ 1�1

5
¼ 4

5

The effective number of Bohr magnetrons pJ can be found immediately and has the value

pJ ¼
4

5
�
ffiffiffiffiffi
20

p
¼ 3:58
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The experimental value is pexp ¼ 3.50, which is in reasonable agreement with theory. The agreement between theory

and experiment in the ionic magnetic moment of Ce and Pr is good, but there is a large discrepancy in the case of Eu+3 and

Sm+3 ions.

18.8.1.2 Iron Group

Mn is an important element of the iron group with its atom having the electronic configuration:

Mn : 3d54s2

Here the 3d-shell is incomplete and is expected to contribute to the magnetic moment. The electronic configuration of a

divalent Mn ion becomes

Mn+2 : 3d5

The distribution of electrons among the d-subshells is given below:

m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

1

2

1

2

Hund’s rule yields the following values for the quantum numbers L andS:

L¼ 0, S¼ 5=2

One should note that the 3d-shell is half filled and the value of J is the same using both formulas: one for a shell less than half

filled and the other for a shell more than half filled, that is,

J¼ L�Sj j ¼ L+Sj j ¼ 5=2:

The gJ factor has the value 2 because this is a case with spin only.With the above values one can easily find the value of pJ as

pJ ¼ gJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J J + 1ð Þ

p
¼ gS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S + 1ð Þ

p
¼

ffiffiffiffiffi
35

p
¼ 5:9

The experimental value is also the same, that is, pexp¼ 5.9. Hence both the calculated and experimental values agree with

each other.

Another peculiar element of the iron group is Cr24 with the following electronic configuration:

Cr24 : 3d54s1

If the valence of Cr is taken to be three, then the electronic configuration of Cr+3 becomes

Cr+3 : 3d3

Here two d-electrons and one s-electron contribute to the valence. The three electrons in the d-subshells of Cr+3 contribute

to the magnetic moment and their arrangement is given below:

m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

The values of L, S, and J become 3, 3/2, and 3/2, which yield a value of gJ ¼ 2/5. The value of pJ becomes

pJ ¼
1

5

ffiffiffiffiffi
15

p
¼ 0:77

But pexp¼ 3.8, which clearly shows a disagreement between theory and experiment. The disagreement may possibly be due

to the valence as the Cr atom exhibits variable valence. Let us take the Cr atom as divalent with electronic configuration

Cr+2 : 3d4
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In this case the distribution of electrons is given below:

m‘ : 2 1 0 �1 �2

ms" :
1

2

1

2

1

2

1

2

The above distribution yields values of L¼2, S¼2 and J¼0 (d-shell is less than half filled). These values yield zero

magnetic moment (pJ¼0) for the Cr+2 ion, which is again in disagreement with the experimental value. This shows that

there is some other factor that may yield the correct value of the magnetic moment in Cr. Let us examine the case of Cr+3

assuming that only the spin contributes to the magnetic moment of the ion. Then

pS ¼ gS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S S + 1ð Þ

p
¼ 2

ffiffiffiffiffiffiffiffiffi
3

2
� 5
2

r
¼

ffiffiffiffiffi
15

p
¼ 3:87

The value of pS is in reasonable agreement with pexp¼ 3.8. Therefore, a Cr+3 ion behaves as if it had zero orbital angular

momentum. Similarly, it can be shown that in the Fe+3 ion, the magnetic moment turns out to be 5.9 if the orbital angular

momentum is assumed to be zero, which agrees with the experimental value. One should note that, in general, the ions from

the iron group behave as if there were no orbital angular momentum associated with them. In other words, one can say that

the orbital angular momentum is quenched in iron group elements.

18.9 CRYSTAL FIELD SPLITTING

Inside a crystal, every atom or molecule experiences a crystal field, which has a significant effect on the atomic/molecular

magnetic moment. The 4f-shell in the rare-earth elements is responsible for paramagnetism and lies deep inside the ion.

Therefore, the 4f-shell is well shielded from the crystal field by the 5s- and 5p-shells. On the other hand, in the iron group

elements, the 3d-shell is responsible for paramagnetism. The 3d-shell is the outermost shell in an ion and experiences an

intense local crystal field produced by the neighboring ions, which is generally inhomogeneous in nature. The interaction of

ions with the inhomogeneous crystal field has two major effects.

1. The coupling of the L and S vectors (L�S coupling) is largely broken, so the states can no longer be specified by the

total angular momentum J.

2. The 2L+1 sublevels (given by m‘) belonging to a given L value are degenerate in a free ion, but they get split up by the

inhomogeneous crystal field. The splitting diminishes the contribution of the orbital magnetic moment.

18.9.1 Quenching of Orbital Angular Momentum

In a central field directed toward the nucleus, the plane of the electron orbit is fixed in space, yielding constant components

of orbital angular momentum Lx, Ly, and Lz. According to quantum mechanics, in the central field approximation,

H
_
,Lz,andL

2 are constants of motion, which means that they commute with one another. On the other hand, in the presence

of a noncentral crystal field, the plane of the electron orbit is not fixed, but rather it is moving about its center in all possible

directions. As a result, the components of orbital angular momentum are continuously changing and they may average out

to zero. In such a situationH
_
andLz are no longer constants of motion, although L2 may continue to be a constant of motion.

In other words, H
_
andLz do not commute with each other, i.e.,

H
_
, Lz

h i
6¼ 0 (18.136)

In this case Lz may average out to zero, leading to quenching of the orbital angular momentum.

The magnetic moment of an atom or molecule depends on the magnetic moment operator mB(L+2S). If a magnetic field

is applied in the z-direction, the orbital magnetic moment is proportional to the expectation value of Lz. If Lz is quenched,

the orbital magnetic moment is also quenched. In such elements, the magnetic moment arises from the spin angular

momentum only.

Problem 18.5

Derive the expression for the paramagnetic susceptibility in a metal with free electrons contributing to magnetization.
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A large number of elements can be magnetized with the application of an external magnetic field. But there exist some

elements that show magnetism even when the external magnetic field is switched off. Finite magnetization in the absence

of a magnetic field is called spontaneous magnetization. The elements that show finite spontaneous magnetization

are called ferromagnetic elements and the phenomenon is called ferromagnetism. The spontaneous magnetization suggests

that the electron spins and hence the magnetic moments are aligned in a regular manner. Therefore, a ferromagnetic state is

an ordered state and ferromagnetism is a cooperative phenomenon. Some common ferromagnetic elements are Fe26, Ni27,

Co28, Gd64, and Dy66. In addition to these there are a large number of ferromagnetic materials that are either oxides or alloys

of the elements listed above.

At very low temperatures, a ferromagnetic material shows spontaneous magnetization M(T), which is a function of

temperature T. With an increase in temperature, M(T) decreases and at a particular temperature Tc, spontaneous magne-

tization vanishes. Tc is called the ferromagnetic transition temperature above which the material behaves as a paramagnetic

material. Therefore, Tc separates the ordered ferromagnetic state from the disordered paramagnetic state.

19.1 WEISS MOLECULAR FIELD THEORY

Weiss was the first to explain ferromagnetic behavior in solids. He made two assumptions

1. A ferromagnetic substance of macroscopic dimensions contains, in general, a large number of small regions, called

ferromagnetic domains, which show spontaneous magnetization M(T) as a function of temperature T. In one domain

all the magnetic moments are aligned in one direction, but the direction of alignment may be different in different

domains. The spontaneous magnetization in a domain is defined as the vector sum of the magnetic dipole moments

of all the atoms in that domain divided by the volume. From the above facts, it is evident that spontaneous magnetization

is a cooperative phenomenon of all the atomic dipoles within a single domain.

2. Within each domain there is some internal interaction tending to align all the magnetic moments parallel to each other.

This internal interaction gives rise to a field, which was called the molecular field by Weiss, though perhaps more

appropriately it should be called the exchange field Hex (see Section 19.5). Weiss assumed that the molecular field

is proportional to the magnetization, that is,

Hex Tð Þ¼ lMM Tð Þ (19.1)

Here lM is called the molecular (or Weiss) constant and is independent of temperature. According to Eq. (19.1) the

molecular field is a function of temperature. In this approximation, each magnetic moment sees the average magnetization

of all other magnetic moments.
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In the absence of an applied magnetic field, all of the domains in a ferromagnetic substance are randomly oriented,

thereby yielding zero magnetization. When an external magnetic field H is applied the domains try to orient themselves

in the direction of the field, yielding finite magnetization. Therefore, in a ferromagnetic substance, the total magnetic field

Ht is given by

Ht ¼H +Hex ¼H + lMM Tð Þ (19.2)

If the applied magnetic field is weak, M(T) is linearly proportional to the field Ht (linear approximation), that is,

M Tð Þ¼ wM H +Hexð Þ (19.3)

where wM is called the magnetic susceptibility. One can calculate wM of a ferromagnetic substance above Tc (in the para-

magnetic region) by assuming the Curie form of the susceptibility for a paramagnetic substance, that is,

wM ¼CM

T
(19.4)

Substituting Eq. (19.1), (19.4) into Eq. (19.3), one gets

wM ¼M Tð Þ
H

¼ CM

T �Tc

(19.5)

where

Tc ¼ lMCM (19.6)

Eq. (19.5) is called the Weiss-Curie formula. wM as a function of T is shown in Fig. 19.1.

19.2 CLASSICAL THEORY OF FERROMAGNETISM

The magnetization produced in a paramagnetic substance, according to the Langevin theory, is given by

M Tð Þ ¼ ramL xð Þ (19.7)

where

x¼ b0mH (19.8)

FIG. 19.1 The temperature variation of the magnetic suscepti-

bility wM of a ferromagnetic solid for T i Tc.
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Aplot of Eq. (19.7) is shown in Fig. 19.2. In a ferromagnetic substance the total field is the sum of the appliedmagnetic field

and the molecular field. One can derive an expression for the magnetization of a ferromagnetic substance by replacing H

by Ht in Eq. (19.8). In doing so one gets the same relation as was obtained in Eq. (19.7) in which

x¼ b0m H+ lMMð Þ (19.9)

M¼ kBT

mlM
x� H

lM
(19.10)

The plot of Eq. (19.10) gives a straight line with kBT/mlM as the slope and (�H/lM) as the intercept. The spontaneous

magnetization from Eq. (19.10) is given by

M¼ kBT

mlM
x (19.11)

which is a straight line with slope kBT/mlM and that passes through the origin. In a ferromagnetic substance M must satisfy

both Eqs. (19.7), (19.11); therefore, the value of M is given by the point of intersection of these equations (see Fig. 19.2).

The slope of Eq. (19.11) increases with an increase in temperature and, at a particular temperature represented by Tc, the

straight line becomes a tangent to the curve represented by Eq. (19.7) at the origin. At T i Tc, the straight line intersects the

curve only at the origin, yielding a zero value for the spontaneous magnetization M (paramagnetic state). But for T h Tc

the straight line intersects the curve at two points: one at the origin and the other at a finite value of M, which indicates that

the material shows ferromagnetism in this temperature range. There must be some relation between lM and Tc. At very

small values of x, Eq. (19.7) gives

M¼ ram
x

3
(19.12)

FIG. 19.2 Magnetization M(x) as a function of the parameter x¼mH/kBT in the classical theory of a paramagnetic solid. The finite spontaneous mag-

netization is given by the point of intersection of the curve corresponding to Eq. (19.7) and the straight line corresponding to Eq. (19.11) for T h Tc.
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When the straight line represented by Eq. (19.11) becomes a tangent to the curve represented by Eq. (19.7) at the origin,

then the slopes of Eqs. (19.11), (19.12) at T¼Tc become the same, that is,

kBTc

mlM
¼ ram

3

This gives the transition temperature Tc as

Tc ¼CMlM (19.13)

Here we have used Eq. (18.101). Let us find the magnetic susceptibility in the paramagnetic region, that is, for T i Tc. In this

region magnetization occurs only in the presence of an applied magnetic field. For very small values of x, that is, at low

fields and high temperatures, the magnetization is given by Eq. (19.12) from which one can write

x¼ 3M

ram
(19.14)

Substituting the value of x from Eq. (19.14) into Eq. (19.10) and further using Eq. (19.13), we get

M¼TM

Tc

� H

lM
(19.15)

The above equation can be simplified to give

wM ¼ CM

T�Tc

(19.16)

Eq. (19.16) is the Curie-Weiss law.

19.3 QUANTUM THEORY OF FERROMAGNETISM

Consider a ferromagnetic solid with ra number of atoms per unit volume. According to the quantum theory of paramag-

netism, the magnetization is given by

MJ xð Þ¼ ragJmBJBJ xð Þ (19.17)

with

x¼ b0gJmBJH (19.18)

[see Eq. (18.115)]. A plot of MJ(x) as a function of x from Eq. (19.17), which approaches its saturation value ragJmBJ at
large values of x, is shown by the curve in Fig. 19.3. One obtains different curves at different temperatures but the form of

the curve remains the same. For a ferromagnetic substance the expression for MJ(x) remains the same except that H is

replaced by Ht in the expression for x, that is,

x¼ b0gJmBJHt (19.19)

Substituting the value of Ht from Eq. (19.2) into Eq. (19.19) and solving for MJ(x), we get

MJ xð Þ¼ kBT

lMgJmBJ
x � H

lM
(19.20)

Therefore, the magnetization in a ferromagnetic substance, given by Eq. (19.20), is a straight line. The spontaneous mag-

netization MJ(x) from Eq. (19.20) is given by

MJ xð Þ¼ kBT

lMgJmBJ
x (19.21)

Eq. (19.21) represents a straight line passing through the origin whose slope increases with an increase in T. Because MJ(x)

must satisfy both Eqs. (19.17), (19.21), the value of MJ(x) is given by the points of intersection of the curve and the straight

line (see Fig. 19.3).With a decrease in T the slope of the straight line decreases and at a particular value, say Tc, it becomes a

tangent to the curve at the origin. For T i Tc, the straight line does not intersect the curve except at the origin, yielding a zero

value for MJ(x). But for T h Tc, the straight line intersects the curve at two points, one at the origin and the other at finite

magnetization. Therefore, a finite value of magnetization in the absence of a magnetic field is obtained only for T h Tc.
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Let us investigate the relationship between Tc and lM. For very small values of x, the magnetization from Eq. (19.17) is

given by

MJ xð Þ¼ ragJmB
J + 1

3
x (19.22)

At T¼Tc, the slopes of both Eqs. (19.21), (19.22), representing straight lines, become the same, therefore

kBTc

lMgJmBJ
¼ ragJmB

J + 1

3

which gives

Tc ¼CJlM (19.23)

Here CJ is the Curie constant already defined by Eq. (18.124). Eq. (19.23) says that Tc is large if lM is large, that is, the

molecular field is large. If there is spin only, then J¼1/2 and gJ¼2 and in that case CJ¼C1/2. Therefore, for the case of spin

only, Eq. (19.23) reduces to

Tc ¼
ram2B
kB

lM (19.24)

As a limiting case, the magnetic susceptibility can be calculated in the paramagnetic region, which occurs either at high

temperatures or at low magnetic fields, that is, at very small values of x. In this limit, substituting the value of x from

Eq. (19.22) into Eq. (19.20), we find

MJ ¼
TMJ

Tc

� H

lM
(19.25)

FIG. 19.3 Magnetization M(x) as a function of the parameter x¼gJmBJH/kBT in the quantum mechanical theory of a paramagnetic solid. The finite

spontaneous magnetization is given by the point of intersection of the curve, corresponding to Eq. (19.17), and the straight line, corresponding to

Eq. (19.21), for T h Tc.

Ferromagnetism Chapter 19 411



From the above equation one can calculate the value of magnetization as

MJ ¼
CJ

T�Tc

H (19.26)

Therefore, the magnetic susceptibility can immediately be written as

wM ¼ CJ

T�Tc

(19.27)

which is the same expression as given by Weiss in the paramagnetic region.

19.4 COMPARISON OF WEISS THEORY WITH EXPERIMENT

Magnetization is measured experimentally as a function of temperature. Therefore, M(T) should be calculated as a function

of T to compare the theoretical results with experiment. In the classical Weiss molecular theory, M(T) is given by

Eq. (19.7), which has its maximum value at T¼0. From Eq. (19.7) one can write

M 0ð Þ¼ ram (19.28)

Hence, from Eqs. (19.7) and (19.28) one can write

M Tð Þ
M 0ð Þ ¼L xð Þ (19.29)

where x is given by Eq. (19.8). In the absence of an appliedmagnetic field, M(T) is given by Eq. (19.11) and, therefore, from

Eqs. (19.28), (19.11) one can write

M Tð Þ
M 0ð Þ ¼

kBT

ra m2lM
x¼ T

3Tc

x (19.30)

The quantityM(T)/M(0) for a particular value of T can be calculated from the point of intersection of the curves represented

by Eqs. (19.29), (19.30). A plot of magnetization as a function of temperature is shown in Fig. 19.4 for the classical case. It

is evident from the figure that the classical theory is not able to explain the experimental results of spontaneous

magnetization.

FIG. 19.4 The theoretical values of magnetization M(T)/M(0) as a

function of temperature T/Tc for total angular momentum J ¼ ½, 1, and
∞ along with the experimental values. The values of magnetization for

J¼∞ correspond to the classical Langevin theory.
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Let us apply the quantum theory of ferromagnetism to examine the behavior of MJ(T). From Eq. (19.17) the saturation

magnetization is given as

MJ 0ð Þ¼ ragJmBJ (19.31)

From Eqs. (19.17), (19.31) one can write

MJ Tð Þ
MJ 0ð Þ ¼BJ xð Þ (19.32)

The magnetization in a ferromagnetic substance in the absence of an applied magnetic field is given by Eq. (19.21). So,

from Eqs. (19.21), (19.31), one can write

MJ Tð Þ
MJ 0ð Þ ¼

T J + 1ð Þ
3Tc J

x¼ 1 +
1

J

� �
T

3Tc

x (19.33)

Eq. (19.33) shows that MJ(T) depends on the total angular momentum quantum number J, which is contrary to the classical

Weiss theory. As a result, one obtains different curves of MJ(T) as a function of T for different values of J. The value of the

quantity MJ(T)/MJ(0) is obtained from the point of intersection of Eqs. (19.32), (19.33). Fig. 19.4 shows graphs for MJ(T)/

MJ(0) as a function of T/Tc for J¼ 1/2, 1, and ∞ along with the experimental values. The graph for J¼∞ assumes a con-

tinuous distribution of magnetic dipoles (classical case). Fig. 19.4 shows that MJ(T)/MJ(0) decreases smoothly with an

increase in T and becomes zero at T¼Tc. This behavior shows that a ferromagnetic-to-paramagnetic transition or vice

versa is of second order. From the figure it is evident that the curve for J¼1/2 fits the experimental data best, which shows

that the magnetization in Fe, Ni, and Co basically arises from the electron spins.

The above result is also confirmed by gyromagnetic experiments. In these experiments one either reverses the magne-

tization of a freely suspended magnetic material and observes the resulting rotation or one rotates the specimen and

observes the resulting magnetization: the former is called the Einstein-de Haas method and the latter the Barnett method.

From such experiments the value of the gyromagnetic ratio is found to be two, that is, gJ¼ 2, which confirms that the

magnetization is largely due to electron spin.

As a limiting case, one can study the variation of magnetization at very low temperatures. Consider the variation for

J ¼1/2 for which

B1=2 xð Þ¼ tanhx and x¼ mBH
kBT

(19.34)

Therefore, from Eq. (19.32) one gets, for ½ spin,

M1=2 Tð Þ
M1=2 0ð Þ ¼ tanh x (19.35)

From Eq. (19.33) for J¼1/2, one can write

x¼Tc

T

M1=2 Tð Þ
M1=2 0ð Þ (19.36)

Substituting the value of x from Eq. (19.36) into Eq. (19.35), we find

M1=2 Tð Þ
M1=2 0ð Þ � 1�2 exp �2Tc

T

M1=2 Tð Þ
M1=2 0ð Þ

 !
(19.37)

At very low temperatures the second term on the right side of Eq. (19.37) is very small compared with unity, therefore,

M1/2(T) is independent of temperature and is nearly equal to the saturation value, that is,

M1=2 Tð Þ�M1=2 0ð Þ (19.38)

On the other hand, the experimental results exhibit T3/2 dependence as follows:

M Tð Þ
M 0ð Þ ¼ 1�AT3=2 (19.39)
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where A is a constant. Eq. (19.39) is known as the Bloch T3/2 law. The change in magnetization with temperature is

defined as

DM Tð Þ¼M 0ð Þ�M Tð Þ (19.40)

From Eq. (19.37) one can write

DM1=2 Tð Þ
M1=2 0ð Þ � 2 exp �2Tc

T

M1=2 Tð Þ
M1=2 0ð Þ

 !
(19.41)

In the case of spin, one can write from Eq. (19.35)

M1=2 Tð Þ
M1=2 0ð Þ ¼ tanh

mBH
kBT

� �
¼ 1 +

mBH
kBT

(19.42)

Substituting Eq. (19.42) into the right side of Eq. (19.41), we obtain

DM1=2 Tð Þ
M1=2 0ð Þ � 2 exp �2Tc

T

� �
(19.43)

Order of Magnitude of Molecular Field

From Eqs. (19.23) and (18.124) we write

Tc ¼
lMr

ag2Jm
2
B J J + 1ð Þ

3kB
(19.44)

For J¼1, gJ¼2 , and TC ¼ 1000 K the factor lM has the value

lM ¼ 104

For M ¼ 1700, the molecular field becomes

Hex ¼ lMM� 107gauss

We know that the local field due to magnetization is (4p/3)M, which is very small compared with the molecular field. This

shows that the origin of the molecular field is very much different from that of the local magnetic field.

The order of magnitude of the molecular field can also be obtained from a different argument. The energy due to the

Bohr magnetron in the molecular field is mBHex and its maximum value is equal to the thermal energy at Tc, that is, kBTc.

Therefore,

mBHex ¼ kBTc (19.45)

For a Curie temperature of Tc�1000 K, we get Hex¼107 gauss. The magnetic field arising from the dipole-dipole inter-

action between neighboring dipoles is

Hdp ¼
mB
a3

� 103gauss (19.46)

where a is the interdipole distance. Therefore, in a ferromagnetic substance, the molecular field constant lM is given by

lM ¼Hex

Hdp

¼ 104 (19.47)

which is the same value as obtained above. Further, it is very large compared with the Lorentz field constant, which is on the

order of 4p/3.

19.5 HEISENBERG THEORY OF FERROMAGNETISM

The Weiss molecular field theory explains some aspects of ferromagnetism satisfactorily but does not provide any expla-

nation for the origin of the molecular field. In 1928 Heisenberg showed that the molecular field can be explained in terms of
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the so-called exchange interactions between the electrons. The concept of exchange interactions can be explained by con-

sidering a hydrogen molecule, as shown in Fig. 19.5. Let the nuclei in a hydrogen molecule be denoted as a and b and the

wave functions of the electrons associated with these nuclei be jcai and jcbi. Here it is assumed that the wave functions of

these electrons do not contain orbital angular momentum. In other words, all of the magnetic moments arise from spin

angular momentum. The net electrostatic interaction potential between the two atoms is given by

Vab ¼ e2
1

rab
+

1

r12
� 1

r1a
� 1

r2b

� �
(19.48)

According to the Heitler-London theory the energy of the system can be written as

E¼Ec�Eex (19.49)

where

Ec ¼ 2E0 + ca 1ð Þcb 2ð Þh jVab ca 1ð Þcb 2ð Þj i (19.50)

Eex ¼ ca 1ð Þcb 2ð Þh jVab ca 2ð Þcb 1ð Þj i (19.51)

Here E0 is the energy of a free atom (kinetic energy), Ec is the Coulomb interaction energy between the two atoms, and Eex is

the exchange energy. In Eq. (19.49) the plus sign refers to the nonmagnetic state in which the spins of the electrons are

antiparallel, while the negative sign corresponds to the magnetic state of the molecule with parallel spins.

To illustrate the formation of magnetic and nonmagnetic states, let us consider the case of C12 with an electronic con-

figuration given by

C12 : 1s22s22p2

In C12 there are two possible distributions of electrons in the p-state. The first distribution is given below:

m‘ : 1 0 �1

ms" :
1

2

ms# : �1

2

In the distribution above, the same p-sublevel contains two electrons with opposite spins and it yields net zero spin and,

therefore, zero magnetic moment on the carbon atom (nonmagnetic state). Here the spin wave function is antisymmetric,

but the orbital wave function is symmetric because the total wave function has to be antisymmetric. In the nonmagnetic

state two electrons can come very close to each other giving rise to large potential energy Vab. The second distribution of

electrons is as follows:

m‘ : 1 0 �1

ms" :
1

2

1

2

Here the two electrons have parallel spins and are in two different sublevels of the p-state, yielding total spin one and hence

a finite magnetic moment (magnetic state). In the magnetic state the two electrons cannot come very close to each other due

FIG. 19.5 Hydrogen molecule; a and b are nuclei of two hydrogen atoms. Electron 1 belongs to nucleus a, while electron 2 belongs to nucleus b. The

distances between the nuclei and electrons are shown in the figure.
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to Pauli’s exclusion principle, giving a comparatively small potential energy Vab. The difference between the potential

energies of the magnetic and nonmagnetic states is called the exchange energy. From Eq. (19.49) the energy of the magnetic

state is given by

E¼Ec�Eex (19.52)

Therefore, the magnetic state is stable if Eex is positive. Bethe has done a simple qualitative analysis of the condition under

which Eex is most likely to be positive. Let us suppose that jcai and jcbi have no nodes in the region where they overlap

appreciably, then the product jca(1) cb(1)i or jca(1) cb(2)i may be assumed to be positive everywhere. This condition is

always satisfied if jcai and jcbi are s-wave functions that have no nodes close to the nuclei. This condition may also be

satisfied in other cases if the nodal surfaces do not lie near the midpoint of the line joining the centers of the two atoms

where there is maximum overlap. Under these conditions the positive terms

e2

rab
+
e2

r12

favor magnetism, whereas the negative terms

� e2

r1a
� e2

r2b

do not favor magnetism. The exchange energy Eex is most likely positive if

1. The distance rab is fairly large compared with the orbital radii.

2. The wave functions are comparatively small near the nuclei.

The second condition is most fully satisfied when the orbital quantum number ‘ is high because the wave function varies as
r‘. Therefore, Eex is expected to be positive for interactions between electrons in the partially filled d- and f-shells when the

interatomic distance is large compared with the atomic radius. These conditions are actually satisfied by the pairs of atoms

of the iron group metals and rare-earth metals in which the internuclear distances are primarily determined by the s-p

valence electrons. The calculated values of Eex are shown in Fig. 19.6. It is found that Eex is negative for small values

of rab/r0 (r0 is the atomic radius) but that it becomes positive for reasonably large values. According to Slater, the ratio

rab/r0 should be larger than 3, but not much larger. Eex is negative for Mn and g�Fe (fcc), which are antiferromagnets

with rab/r0h3, and positive for a�Fe(bcc), Co, and Ni, which are ferromagnets with 3.0hrab/r0h5.0. Eex decreases rapidly

FIG. 19.6 The exchange energy Eex( or exchange

integral J), given by Eq. (19.51), is plotted as a

function of the internuclear distance rab/r0.
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for rab/r0i5.0, which indicates that only the interaction between the 1NNs is important for strong ferromagnetism. The

values of rab/r0 for some of the elements are given below:

Element Fe Co Ni Cr Mn Gd

rab/r0 3.26 3.64 3.96 2.60 2.94 3.10

Note that Cr and Mn are not ferromagnets but exhibit antiferromagnetism. Here a question arises as to whether an

element with uncompensated spins, which itself is not a ferromagnet because the ratio rab/r0 is not favorable, can be com-

bined with another nonferromagnetic element to form a compound for which rab/r0 is suitable for ferromagnetism. The

answer is yes, it is indeed possible, because MnAs and MnSb are ferromagnetic materials, whereas their components

are individually nonferromagnetic in nature.

Let us derive the expression for the exchange interaction theoretically. For simplicity consider two electrons with spins

s1 and s2. The total spin of the two electrons is given by

s¼ s1 + s2 (19.53)

Squaring both sides, we write

s2 ¼ s21 + s
2
2 + 2s1 � s2 (19.54)

The eigenvalues of the operator s2 are s(s+1) in units of ħ2, with similar relations for s1
2 and s2

2. Therefore, from the above

equation, the eigenvalues of s1 � s2 are given by

2s1 � s2 ¼ s s + 1ð Þ� s1 s1 + 1ð Þ� s2 s2 + 1ð Þ (19.55)

But s1 and s2 have the same value (1/2); therefore, one can write

2s1 � s2 ¼ s s + 1ð Þ�2 s1 s1 + 1ð Þ (19.56)

The operators s2, s1
2, and s2

2 are constants of motion and, therefore, s1 � s2 is also a constant of motion. Now s has values 0 and

1, which gives values of 0 and 2 for s(s+1) for antiparallel-spin (nonmagnetic) and parallel-spin (magnetic) states, respec-

tively. The spin s1 has value ½, which gives s1(s1+1) ¼ ¾. Substituting these values into Eq. (19.56), one gets

2 s1 � s2 ¼�3=2 for s¼ 0 (19.57)

and

2 s1 � s2 ¼ 1=2 for s¼ 2 (19.58)

Hence the Hamiltonian corresponding to Eq. (19.49) can is given by

H
_¼Ec�

Eex

2
�2Eex s1 � s2 (19.59)

The Hamiltonian given by Eq. (19.59) is called the Heisenberg Hamiltonian. The last term in Eq. (19.59) is called the

exchange energy and represents the direct coupling between the two spins. It must be emphasized that the exchange inter-

action is fundamentally electrostatic in nature and the spins enter into the energy expression as a consequence of the Pauli

exclusion principle.

The above arguments can be generalized to a system with a large number of electrons. Let there be two atoms each with

a number of electrons. The exchange Hamiltonian for the ith electronH
_i

ex is obtained by summing its interaction with other

neighboring (jth) spins, so one can write the last term of Eq. (19.59) as

H
_i

ex ¼�2
X
j

Eij
ex si � sj (19.60)

Here si and sj are the spins of i
th and jth electrons. The total exchange HamiltonianH

_

ex is obtained by summing over all the ith

spins, that is,

H
_

ex ¼
1

2

X
i

H
_i

ex ¼ �
X
i, j

Eij
ex si � sj (19.61)
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The factor of½ takes care of the fact that in the summation each pair is counted once only. The exchange energy Eex
ij can

be replaced by Jij for convenience of notation and it is called the exchange integral. Therefore, Eqs. (19.60), (19.61) can be

written as

H
_i

ex ¼�2
X
j

Jij si � sj (19.62)

H
_

ex ¼
1

2

X
i

H
_i

ex ¼ �
X
i, j

Jij si � sj (19.63)

Eq. (19.63) also includes the interaction of a spin with itself, which does not give the exchange interaction and, therefore,

should be excluded. The total Hamiltonian of the system can be written as

H
_

ex ¼E0�
X

i, j i6¼jð Þ
Jij si � sj (19.64)

Here E0 represent the first two terms of Eq. (19.59). The exact solution of the Heisenberg Hamiltonian is very difficult and

most attempts at doing so are directed toward simplified model calculations. One such simplified form is the Ising model in
which all the spins are directed along the z-direction. In this approximation the exchange Hamiltonian becomes

H
_

ex ¼�
X

i, j i6¼jð Þ
Jij s

z
i s

z
j (19.65)

where sz is the z-component of the spin, which is a scalar.

The exchange integral is of central importance in ferromagnetism. Therefore, one would like to relate it to the molecular

field constant lM and the ferromagnetic transition temperature Tc. For simplicity it is assumed that only the 1NN interac-

tions are dominant in the exchange integral and that it has the same value J0 for all of the 1NNs. With these assumptions the

exchange Hamiltonian H
_i

ex from Eq. (19.62) can be written as

H
_i

ex ¼�2J0

X
j

si � sj (19.66)

In Eq. (19.66) the summation is over the 1NNs. Assuming the magnetization to be along the z-direction and, hence,

assuming the spins to be in the z-direction with magnitude s, Eq. (19.66) becomes

H
_i

ex ¼�2J0n s
2 (19.67)

for the spins aligned parallel to each other. Here n is the number of 1NNs. If the spins are aligned opposite to each other, then

H
_i

ex ¼ 2J0n s
2 (19.68)

Eq. (19.67) gives the ground state for ferromagnetism as it yields minimum energy. The energy given by Eq. (19.67) is

equivalent to the energy of the magnetic moment m! in the exchange field Hex, that is,

�2J0ns
2 ¼� m! �Hex (19.69)

Substituting the value of m! and considering spin only, one writes

�2J0ns
2 ¼�gsmBs �Hex (19.70)

Substituting Hex from Eq. (19.1) into the above equation and assuming thatM and s are in the same direction, one obtains

�2J0ns
2 ¼�gsmBslMM (19.71)

Therefore, the exchange integral is given by

J0 ¼
gsmBlMM

2ns
(19.72)
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The saturation value of magnetization M, the Curie constant Cs, and the transition temperature Tc are given by

M¼ ragsmBs (19.73)

Cs ¼
rag2s m

2
B s s + 1ð Þ
3kB

(19.74)

Tc ¼ lMCs (19.75)

Substituting Eqs. (19.73), (19.74), and (19.75) into Eq. (19.72), one obtains

J0
kBTc

¼ 3

2ns s + 1ð Þ (19.76)

For an sc lattice, n ¼ 6 and s ¼ ½; therefore, for an sc lattice Eq. (19.76) reduces to

J0
kBTc

¼ 1

3
� 0:33 (19.77)

But more detailed calculations for an sc lattice give 0.518 and 0.540 values for the above ratio.

19.6 SPIN WAVES

We have discussed in detail that ferromagnetism basically arises from the atomic or molecular spin magnetic moments.

Further, the various spins interact with each other (spin-spin interaction), giving rise to an exchange field. Let us examine

the effect of the spin-spin interaction on the spin system. Suppose there is a system in which N spins are aligned periodically

on a line with a as the distance between the adjacent spins. In the ground state of the system, all of the N spins are parallel to

each other, as shown in Fig. 19.7A. The field arising from the spins is given by the Heisenberg Hamiltonian defined as

H
_

ex ¼�2J
X
i

si � si + 1 (19.78)

The exchange integral J is assumed to be the same for all the NNs. For simplicity assume that the spin-spin interaction is

appreciable only between adjacent spins. At absolute zero all the spins are aligned along one direction, say the z-direction.

In this situation sx¼ sy¼ 0 and sz¼ s. Therefore,

si � si + 1 ¼ s2 (19.79)

From Eqs. (19.78), (19.79) the exchange energy becomes

E¼�2NJs2 (19.80)

If J is positive, then H
_

ex gives the ground state of the system with the lowest energy eigenvalue (negative). But if J is neg-

ative, then H
_

ex does not correspond to the ground state as it yields positive energy (higher energy).

FIG. 19.7 (A) Monatomic linear magnetic solid along the x-direction with periodicity a. The spins of all of the atoms are parallel and are directed along

the z-direction. (B) The direction of one of the spins, say the ith spin, is reversed and it represents the excited state of the magnetic linear lattice.
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Consider an excited state in which a particular spin, say the ith spin, is reversed, assuming all other spins to remain

unaffected, as shown in Fig. 19.7B. In this state the spins adjacent to the ith spin are oppositely directed and, therefore,

si�1 � si ¼�s2 ¼ si � si + 1 (19.81)

The total energy in this excited state is given by

E1 ¼�2J N�2ð Þs2� s2� s2
� �

¼�2NJs2 + 8Js2
(19.82)

From Eqs. (19.80), (19.82) it is evident that to reverse one spin, one requires energy of magnitude 8Js2, which gives the first

excited state. Actually, all of the spins interact with each other via the Heisenberg spin-spin interaction. Therefore, when

one spin is reversed, the effect will be seen by all other spins. One can show that much lower excitation energy is required if

all the spins share in the reversal of a particular spin. In this situation all the spins start precessing about the z-axis, setting up

a wave between the spins, as shown in Fig. 19.8. The elementary excitations of a spin system, therefore, have a wave-like

form and are called spin waves. The quantization of spin waves yields magnons as the quanta of energy. There are magnon

dispersion relations inmagnetic materials analogous to the lattice dispersion relations. The spin waves are oscillations in the

relative orientations of the spins on the lattice, while the lattice vibrations are oscillations in the relative positions of atoms

on a lattice.

19.6.1 Bloch Theory of Spin Waves

The exchange Hamiltonian of a system can be written as

H
_

ex ¼
X
R

H
_

R (19.83)

where

H
_

R ¼�2J
X
d
!

sR � s
R + d

! (19.84)

Here R denotes the central atom, which is connected to a number n of 1NNs because only the 1NNs are assumed to be

significant. The expression for the Hamiltonian of a magnetic dipole m!R at the position R that experiences magnetic field

HR is given by

H
_

R ¼�m!R �HR (19.85)

¼ gJmB sR �HR (19.86)

where

m!R ¼�gJmB sR (19.87)

FIG. 19.8 (A) The various atomic spins precess about the original z-direction when one of the spins is reversed. (B) The precession of the spins as viewed

from above. The tips of the various precessing spins form a wave called a spin wave.
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Eq. (19.84) can be written as

H
_

R ¼ gJmB sR � � 2J

gJmB

X
d
!
s
R+ d

!

0
@

1
A (19.88)

Comparing Eqs. (19.86), (19.88), the effective magnetic field acting on the Rth atom can be written as

HR ¼� 2J

gJmB

X
d
!

s
R + d

! (19.89)

The angular momentum associated with the atom at the Rth site is ħ sR. The rate of change angular momentum gives the

torque, that is,

ħ
dsR
dt

¼ m!R�HR (19.90)

Substituting Eqs. (19.87), (19.89) into Eq. (19.90), one can write

dsR
dt

¼ 2J

ħ

X
d
!

sR� s
R+ d

! (19.91)

From quantum mechanics the equation of motion for spin sR is given as

iħ
dsR
dt

¼ sR,H
_

R

h i
(19.92)

From Eqs. (19.91), (19.92) one can write

dsR
dt

¼ 1

iħ
sR,H

_

R

h i
¼ 2J

ħ

X
d
!

sR� s
R+ d

! (19.93)

From Eq. (19.93), the equations for the components of spin are given as

dsxR
dt

¼ 2J

ħ
s
y
R

X
d
!
sz
R+ d

!� szR

X
d
!

s
y

R+ d
!

2
4

3
5 (19.94)

ds
y
R

dt
¼ 2J

ħ
szR

X
d
!
sx
R+ d

!� sxR

X
d
!

sz
R+ d

!

2
4

3
5 (19.95)

dszR
dt

¼ 2J

ħ
sxR

X
d
!
s
y

R+ d
!� s

y
R

X
d
!

sx
R+ d

!

2
4

3
5 (19.96)

Eqs. (19.94)–(19.96) represent nonlinear differential equations, which should be linearized in order to obtain solutions. Let
us suppose that at absolute zero all the spins are aligned along the z-direction, so

szR ¼ sR, sxR ¼ s
y
R ¼ 0 (19.97)

But as the temperature increases, there is a deviation in the spin direction and, as a result, the components sR
x and sR

y acquire

finite values. If the variation in the spin direction is small, then sR
x and sR

y are small and their products can be neglected.With

these approximations, Eqs. (19.94)–(19.96) give

dsxR
dt

¼ 2J

ħ
nsR s

y
R� sR

X
d
!
s
y

R+ d
!

2
4

3
5 (19.98)
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ds
y
R

dt
¼ 2J

ħ
sR

X
d
!
sx
R+ d

!�nsR s
x
R

2
4

3
5 (19.99)

dszR
dt

¼ 0 (19.100)

The above equations can be written as

dsxR
dt

¼ 2JsR
ħ

ns
y
R�

X
d
!
s
y

R+ d
!

2
4

3
5 (19.101)

ds
y
R

dt
¼ 2JsR

ħ

X
d
!
sx
R+ d

!�nsxR

2
4

3
5 (19.102)

dszR
dt

¼ 0 (19.103)

In analogy with the phonon problem, we look for a travelling wave solution of the above equations written as

sx
R+ d

! ¼ uK exp i K � R+ d
!� �

�ot
n oh i

(19.104)

s
y

R+ d
! ¼ vK exp i K � R+ d

!� �
�ot

n oh i
(19.105)

Here uK and vK are the amplitudes, which can be calculated from the boundary conditions of the solutions. Substituting

Eqs. (19.104), (19.105) into Eqs. (19.101)–(19.103), we get

iouK +
2JsR
ħ

n �
X
d
!

exp iK � d!
� �2

4
3
5vK ¼ 0 (19.106)

�2JsR
ħ

n �
X
d
!

exp iK � d!
� �2

4
3
5uK + iovK ¼ 0 (19.107)

Eqs. (19.106), (19.107) have nontrivial solutions only if the determinant of the coefficients of uK and vK is zero, that is,

io
2JsR
ħ

n�
X
d
!

exp iK � d!
� �2

4
3
5

�2JsR
ħ

n�
X
d
!

exp iK � d!
� �2

4
3
5 io

�������������

�������������

¼ 0 (19.108)

The above determinant can be expanded to write

ħo¼ ħoK ¼ 2JsR n�
X
d
!

exp iK � d!
� �2

4
3
5 (19.109)

Here we have put o asoK because the right-hand side of Eq. (19.109) is a function ofK. Eq. (19.109) is called the magnon

dispersion relation and gives the relation between o and K. Substituting Eq. (19.109) into Eq. (19.107), one immediately

gets

vK ¼�iuK (19.110)

which corresponds to circular motion of each spin about the z-axis. Let us calculate the magnon dispersion relations in

different crystal structures.
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19.6.2 Magnons in Monatomic Linear Lattice

Consider a one-dimensional magnetic lattice along the X-axis with periodicity a. Let each atom have spin in the z-direction

(see Fig. 19.7A). Here each atom has two 1NNs at d
!¼�a î1. Substituting the values of d

!
into Eq. (19.109), we find

ħoK ¼ 2Js 2� eiKx a� e�iKx a
� �

(19.111)

Here we have assumed sR¼ s as all the atoms are identical with the same spin. The above equation can be simplified to get

ħok

4Js
¼ 1� cos Kxa (19.112)

Eq. (19.112) gives the magnon dispersion relation in a one-dimensional lattice. For long wavelengths Kxa hh 1, the above
equation reduces to

ħok

2Js
¼ K2

xa
2 (19.113)

Fig. 19.9 shows the magnon frequency as a function of wave vector. It is noteworthy that at large wavelengths the magnon

frequency is proportional to Kx
2, whereas the phonon frequency is proportional to Kx (Chapter 6).

19.6.3 Magnons in Square Lattice

A magnetic square lattice with periodicity a in which each atom has four 1NNs with coordinates d
!¼ �a î1, 0

� �
and

0, � a î2

� �
is shown in Fig. 19.10. Substituting the coordinates of the 1NNs in Eq. (19.109) and simplifying, we get

ħok

4Js
¼ 2� cos Kxa � cos Kya
h i

(19.114)

which gives the magnon dispersion relation in a square lattice. For long wavelengths the above relation reduces to

ħok

2Js
¼K2a2 (19.115)

where

K2 ¼K2
x +K

2
y (19.116)

FIG. 19.9 Magnon frequencyok as a function of Kxa in the one-dimensional

lattice shown in Fig. 19.7.
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19.6.4 Magnons in sc Lattice

In the sc lattice there are six 1NNs at the positions d
! ¼ �a î1, 0, 0

� �
, 0, � a î2, 0
� �

and 0, 0, � î3 a
� �

(see Fig. 19.11).

Substituting the values of d
!

in Eq. (19.109) and simplifying, one gets the magnon dispersion relation as

ħok

4Js
¼ 3� cos Kxa� cos Kya � cos Kza (19.117)

In the long wavelength limit, one gets the same relation as Eq. (19.115) but the wave vector is in three dimensions.

FIG. 19.10 Amagnetic square lattice in the xy-plane with periodicity a. The

magnetic moments of all of the atoms are parallel to each other and are along

the z-direction.

FIG. 19.11 A magnetic sc lattice with periodicity a. The magnetic moments of all of

the atoms are parallel to each other and are along the z-direction.
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Problem 19.1

Find the magnon dispersion relations for a crystal with (a) fcc structure and (b) bcc structure. Discuss the results in the long

wavelength limit.

19.7 QUANTIZATION OF SPIN WAVES

If there are N spins in a lattice then according to the quantum mechanics of angular momentum the total spin quantum

number has the values Ns, Ns�1,…, 0, ……, �Ns+1, �Ns. In the ferromagnetic ground state, the total spin quantum

number is Ns as all the spins are parallel in the ground state. The excitation of a spin wave lowers the total spin because

the spins no longer remain parallel. Therefore, there is a relationship between the amplitude of the spin wave and the

reduction in the z-component of the total spin quantum number. Substituting Eq. (19.110) into Eqs. (19.104), (19.105),

one gets

sx
R+ d

! ¼
X
K

uK exp i K � R + d
!� �

�ot
n oh i

(19.118)

s
y

R+ d
! ¼

X
K

�iuKð Þ exp i K � R + d
!� �

�ot
n oh i

(19.119)

As the spins are real, we take only the real part of Eqs. (19.118), (19.119) to write

sx
R+ d

! ¼
X
K

uK cos K � R + d
!� �

� ot
h i

(19.120)

s
y

R+ d
! ¼

X
K

uK sin K � R + d
!� �

�ot
h i

(19.121)

Therefore, for the Rth atom, one can write

sxR
	 
2

+ s
y
R

	 
2 ¼X
K

u2K ¼ u2 (19.122)

But

s2R ¼ sxR
	 
2

+ s
y
R

	 
2
+ szR
	 
2 ¼X

K

u2K + szR
	 
2 ¼ u2 + szR

	 
2
(19.123)

From the above equation one can write

szR ¼ s2R�
X
K

u2K

 !1=2

(19.124)

For small amplitudes

uK
sR

1hh

therefore Eq. (19.124) reduces to

szR ¼ sR�
1

2sR

X
K

u2K ¼ sR�
u2

2sR
(19.125)

The above equation can be written as

sR� szR ¼ 1

2sR

X
K

u2K ¼ u2

2sR
(19.126)
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The quantum theory allows only integral values for sR� sR
z . For N spins the above equation becomes

NsR�NszR ¼
X
K

nK (19.127)

where

nK ¼Nu2K
2sR

(19.128)

Eq. (19.127) can also be written as

NsR�
X
K

nK ¼ s
zt
R (19.129)

where

s
zt
R ¼NszR (19.130)

Eq. (19.129) is the quantum condition for N spins in which a spin wave with wave vector K is excited; one may write

NsR� s
zt
R ¼

X
K

nK (19.131)

Here nK is an integer and is equal to the number of magnons of wave vectorK that are excited. Each magnon lowers the z-

component of the total spin by unity. Let us find the quantum of energy in the case of a magnetic material. The exchange

energy is given by

Eex ¼�J
X
R

X
d
!

sR � s
R+ d

! (19.132)

Eq. (19.132) shows that the exchange energy depends on the cosine of the angle between the spins at the adjacent sites

represented by R and R + d
!
. Therefore, the difference in phase at time t between the two successive spins is K � d!, as

is evident from the equations

sxR ¼
X
K

uKe
i K �R�o tð Þ (19.133)

sx
R+ d

! ¼
X
K

uKe
i K � R+ d

!	 

�o t

� �
(19.134)

The tips of the two spins are separated by a distance 2uK sin K � d! =2
� �

for a particular wave vector (see Fig. 19.12).

Therefore, the angle between the two spin vectors is given by

sin
1

2
f

d
!

� �
¼ uK

sR
sin

1

2
K � d!

� �
(19.135)

Therefore,

cosf
d
!¼ 1�2 sin2 1

2
f

d
!

¼ 1�2
u2K
s2R

sin2 1

2
K � d!

� � (19.136)

Now the exchange energy from Eq. (19.132) is given by

Eex ¼�J
X
R

X
d
!

sRj j s
R+ d

!

��� ��� cosf
d
!

¼�J
X
R

s2R

 !X
d
!

1�2
u2K
s2R

sin2 1

2
K � d!

� �
 � (19.137)
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The summation over all spins gives N times the square of the spin and the summation over the 1NNs gives n in the first

term in the square brackets. So, the above equation can be written as

Eex ¼�JNs2R n�2u2K
s2R

X
d
!

sin2 1

2
K � d!

� �2
4

3
5 (19.138)

The above equation can be written as

Eex ¼�nNJs2 + EK (19.139)

where

EK ¼ 2JNu2K

X
d
!

sin2 1

2
K � d!

� �
(19.140)

Here EK is the excitation energy of a spin wave of amplitude uK and can be written as

EK ¼ 2JsRnK

X
d
!

1� cos K � d!
� �h i

¼ 2JsRnK n�
X
d
!

cos K � d!
� �2

4
3
5 (19.141)

Here we have used Eq. (19.128). Using Eq. (19.109) in the above equation one can write

EK ¼ nK eK (19.142)

where

eK ¼ ħoK ¼ 2JsR n�
X
d
!

cos K � d!
� �2

4
3
5 (19.143)

FIG. 19.12 Two consecutive spin vectors sR and s
R+ d

! with ’
d
! as the

angle between them. The figure depicts the relation between’
d
!, spin wave

amplitude uK, and the phase angle K � d!.
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The above equation shows that the energy EK is quantized and the quantum of energy is called a magnon with the energy

given by Eq. (19.143).

19.8 THERMAL EXCITATION OF MAGNONS

Magnons are bosons and they obey the Bose-Einstein distribution. Therefore, in thermal equilibrium, the average of the

number nK is given by

nKh i¼ 1

eb0 ħoK �1
(19.144)

Here b0 is defined by Eq. (8.22). From Eq. (19.129) one can write

s
zt
R ¼NsR�

X
K

nKh i (19.145)

Multiplying the above equation by gJmB, one can write

M Tð Þ¼M 0ð Þ�gJmB
X
K

nKh i (19.146)

where

M 0ð Þ¼ gJmBNsR (19.147)

and

M Tð Þ¼ gJmBs
zt
R (19.148)

Eq. (19.147) gives a summation over all parallel spins and, therefore, corresponds to saturation magnetization, that is, mag-

netization at absolute zero. Eq. (19.148) gives magnetization at T degrees absolute. From Eq. (19.146) it is evident that M

(T) can be calculated if
P

K nKh i is known. From Eq. (19.144) one can write

X
K

nKh i¼
ðKmax

0

d3K

2pð Þ3 nKh i¼ 1

2p2

ðKmax

0

K2dK

eb0 ħoK �1
(19.149)

If T is very small, then the exponential term on the right side of Eq. (19.149) is large, approaching infinity. Hence

Eq. (19.149) gives a very small contribution. At very small temperatures and at very small K values, the integral in

Eq. (19.149) gives some finite contribution because if K¼0 then oK¼0. Hence we see that the integral gives a finite con-

tribution at T�0 for very small values of K. At small values of K, Eq. (19.113) or (19.115) gives

ħok ¼ 2JsRK
2a2 (19.150)

Substituting Eq. (19.150) into Eq. (19.149), one can write

X
K

nKh i¼ 1

2p2

ð∞

0

K2dK

e2b0 JsRK
2 a2 �1

(19.151)

In the above integral the limits are taken from 0 to ∞ as we do not know the cutoff value of K. Substituting

x¼ 2b0 JsRK
2a2 (19.152)

one can immediately write

X
K

nKh i¼ 1

4p2
1

2b0 JsRa2

� �3=2 ð∞

0

x1=2dx

ex�1
(19.153)

428 Solid State Physics



From the standard tables the value of the above integral is 0.0587(4p2). Therefore, one gets

X
K

nKh i¼ 0:0587
kBT

2JsRa
2

� �3=2

(19.154)

Substituting Eq. (19.154) into Eq. (19.146), we find

DM Tð Þ¼M 0ð Þ�M Tð Þ¼ 0:0587gJmB
kBT

2JsRa
2

� �3=2

(19.155)

Dividing Eq. (19.155) by M(0) and using Eq. (19.147), one gets

DM Tð Þ
M 0ð Þ ¼ 0:0587

Na3sR

kBT

2JsR

� �3=2

(19.156)

Eq. (19.156) gives the T3/2 law for the magnetization as is observed experimentally [see Eq. (19.39)].

19.9 HYSTERESIS CURVE

The application of a magnetic field H magnetizes a ferromagnetic material and the magnetization M increases in a

nonlinear fashion with an increase in H. Therefore, the magnetic induction B, which is a measure of M, increases along

the line OA and then reaches a constant value corresponding to the point B (the state of saturation magnetization) in a

ferromagnetic material. The variation of magnetization M along the line OAB can be explained in terms of the growth

of magnetic domains with magnetization along the direction of the applied field H in the same way as we did in the case

of a ferroelectric material. The B -H curve does not retrace its path, but instead follows the path BCDE when the fieldH is

decreased and the path EFGBwhenH is increased, as in the case of a ferroelectric material (see Fig. 16.1). Therefore, a plot

of B as a function of H forms a loop, as shown in Fig. 19.13. A finite magnetic induction Br (residual magnetic induction)

corresponding to the point C is obtained when the external fieldH is switched off. This means that a residual magnetization

Mr is obtained in the absence of H. Mr is usually called the remnant magnetization. To reduce B or M to zero, one has to

apply a magnetic field Hc corresponding to the point D, called the coercive magnetic field, in the reverse direction.

From Fig. 19.13 it is evident that the magnetic induction B or the magnetizationM lags behind the applied field H and

this phenomenon is called hysteresis. When a ferromagnetic material is taken through the cycle of the B -H curve, there is a

FIG. 19.13 Schematic representation of the magnetic induction B in a ferromag-

netic material as a function of the applied magnetic field H.
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loss of energy, generally called the hysteresis loss. The hysteresis loss is proportional to the area of one cycle of the B -H

curve. On the basis of hysteresis loss, ferromagnetic materials are classified into two categories:

1. Ferromagnetic materials in which the area enclosed by the hysteresis loop is small and hence the energy loss is also

small. Such materials are called soft ferromagnetic materials as they can easily be magnetized or demagnetized (low

coercivity). These materials cannot be permanently magnetized and are used in making transformer cores.

2. The second type of ferromagnetic material is characterized by a hysteresis loop of large area, thus having a large energy

loss. Such materials are called hard ferromagnetic materials as they cannot easily be magnetized or demagnetized (high

coercivity). These materials retain a considerable amount of magnetization after the fieldH is switched off and are used

in making permanent magnets.
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X-ray diffraction studies of MnO crystal at 80 and 293K show an fcc structure with lattice constant a ¼ 4.43Å at both

temperatures. The unit cell in MnO crystal, obtained from X-ray studies and generally called the chemical unit cell,

has a NaCl structure with a ¼ 4.43 Å. Neutron diffraction studies on MnO crystal at 293K yield the same results as those

obtained from X-ray diffraction. But one obtains extra neutron reflections at 80K, which correspond to a unit cell, usually

called a magnetic unit cell, with a ¼ 8.85 Å (exactly double the value at 293K). Further, it is observed that the intensity of

the extra lines decreases with an increase in temperature and, at some critical temperature TN (called the Neel temperature),

the extra lines disappear. If the ordering were ferromagnetic, then the chemical and magnetic cells would give the same

neutron reflection, yielding the same value of a. Therefore, it is argued that the magnetic moments of Mn+2 ions are ordered

in some nonferromagnetic arrangement. Fig. 20.1 shows the ordering of the spins of the Mn+2 ions in MnO crystal as deter-

mined from neutron diffraction experiments. It is evident from the figure that all of the spins in a single (111) plane are

parallel, but they are antiparallel to the spins in the adjacent (111) plane. Thus, MnO has a spin order that is the opposite of

ferromagnetic order. This is, therefore, called antiferromagnetic order and the phenomenon is called antiferromagnetism. A

solid that exhibits antiferromagnetic order is called an antiferromagnetic solid. A schematic diagram of antiferromagnetic

order is shown in Fig. 20.2. According to the Heisenberg theory, the exchange integral J>0 favors the parallel alignment of

spins (ferromagnetism), but J<0 favors the antiparallel alignment of spins (antiferromagnetism). The most interesting

property of an antiferromagnetic solid is that its magnetic susceptibility wM shows a maximum at the Neel temperature

TN (Fig. 20.3). Such behavior can be explained by using a two-sublattice model.

There is another class of solids called ferrimagnetic solids that contain a mixture of antiferromagnetic and ferromagnetic

orders. But on the whole these solids behave as ferromagnetic solids. Ferrimagnetic behavior can also be explained on the

basis of the two-sublattice model.

20.1 ANTIFERROMAGNETISM

20.1.1 Two-Sublattice Model

Consider a crystal comprising two interpenetrating lattices called sublattices A and B (see Fig. 20.2): atoms in sublattice A

are named A atoms, while those in sublattice B are named B atoms. All of the atoms in sublattice A have up spins, while

those in sublattice B have down spins. It is evident from the figure that the two sublattices have the same amount of sat-

uration magnetization in the antiferromagnetic order. Further, let the interaction between the atoms be such that the A spins

tend to align antiparallel to the B spins (usually called antiferromagnetic alignment). At very low temperatures the anti-

ferromagnetic interaction is large compared with the thermal energy, which results in nearly perfect antiferromagnetic

alignment and yields very small magnetization. With an increase in temperature, the thermal energy increases, which

increasingly disturbs the antiferromagnetic alignment, resulting in an increase in magnetization and hence an increase

in the magnetic susceptibility wM. Finally, at TN a transition takes place from the antiferromagnetic to the paramagnetic

phase and the spins become free. Therefore, above TN, wM decreases with increasing T.

Solid State Physics. https://doi.org/10.1016/B978-0-12-817103-5.00020-7
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FIG. 20.2 The spin ordering in (A) a ferromagnetic solid with J>0 and (B) an antiferromagnetic solid with J<0.

FIG. 20.3 Schematic representation of the experimental magnetic susceptibility wM as a function of temperature T in an antiferromagnetic solid. wM
exhibit a maximum at the Neel temperature TN.

FIG. 20.1 Ordering of the spins of theMn+2 ions in the compoundMnO as determined from neutron diffraction experiments. The O�2 ions are not shown

in the figure.
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From Fig. 20.2 it is evident that the 1NNs of an A atom are the B atoms and vice versa. In the lattice, in addition to AB

antiferromagnetic interactions, there exist AA and BB ferromagnetic interactions. Further, we assume that

JAA ¼ JBB > 0 and JAB ¼ JBA < 0 (20.1)

where J is the exchange integral. LetMA andMB be the magnetizations of the sublattices A and B. The net magnetic field

acting on sublattice A is denoted by HA and is given by

HA ¼H�lAAMA�lABMB (20.2)

HereH is the applied magnetic field. An atom in sublattice A experiences the molecular fields due to both sublattices A and

B: the second term in Eq. (20.2) gives the molecular field of sublattice A, while the third term gives the molecular field due

to sublattice B. Here we have taken the negative sign before the molecular field because J is taken to be positive (actually

the value of J is negative in antiferromagnetic solids). Similarly, the net magnetic field acting on sublattice B, denoted by

HB, is given by

HB ¼H�lBBMB�lBAMA (20.3)

Because the two sublattices are identical, it is reasonable to assume that

lAA ¼ lBB and lAB ¼ lBA (20.4)

With these assumptions, Eqs. (20.2), (20.3) reduce to

HA ¼H�lAAMA�lABMB (20.5)

HB ¼H�lAAMB�lABMA (20.6)

The magnetization and the magnetic susceptibility are studied in two limiting cases.

20.1.1.1 Susceptibility for T>TN
For T greater than TN the magnetization shows Curie behavior and, therefore,

MA ¼ raAg
2
Jm

2
B J J + 1ð Þ

3kBT
HA ¼ raAm

2
J

3kBT
HA (20.7)

MB ¼
raBg

2
Jm

2
B J J + 1ð Þ

3kBT
HB ¼

raBm
2
J

3kBT
HB (20.8)

Here rA
a and rB

a are the number of spins (atoms) per unit volume of the A and B sublattices, respectively. In an antifer-

romagnetic substance rA
a ¼ rB

a . Substituting the values of HA and HB from Eqs. (20.5), (20.6) into Eqs. (20.7), (20.8),

one gets

MA ¼ raAm
2
J

3kBT
H�lAAMA�lABMBð Þ (20.9)

MB ¼
raAm

2
J

3kBT
H�lAAMB�lABMAð Þ (20.10)

From Eqs. (20.9), (20.10) the total magnetization is given by

M¼MA +MB

¼ raAm
2
J

3kBT
2H� lAA + lABð ÞM½ � (20.11)

From the above equation one can calculate the magnetic susceptibility given by

wM ¼M

H
¼ 2CA

T+ y
(20.12)
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where

CA ¼ raAm
2
J

3kB
and y¼ raAm

2
J

3kB
lAA + lABð Þ¼CA lAA + lABð Þ (20.13)

Eq. (20.12) shows Curie-type behavior for wM and a schematic of this behavior is shown in Fig. 20.4. One can compare

Eq. (20.12) with the equation obtained for ferromagnetic behavior (see Eq. 19.5). Let us find the magnetization in the

absence of an applied magnetic field. Putting H¼ 0 in Eqs. (20.9), (20.10), one obtains

MA ¼CA

T
�lAAMA�lABMBð Þ (20.14)

MB ¼
CA

T
�lAAMB�lABMAð Þ (20.15)

At the Neel temperature TN the above equations can be arranged to write

1 +
CA

TN

lAA

� �
MA +

CA

TN

lABMB ¼ 0 (20.16)

CA

TN

lABMA + 1 +
CA

TN

lAA

� �
MB ¼ 0 (20.17)

A nontrivial solution of Eqs. (20.16), (20.17) is obtained by equating the determinant of the coefficients ofMA andMB to

zero, that is,

1 +
CA

TN

lAA
CA

TN

lAB

CA

TN

lAB 1 +
CA

TN

lAA

��������

��������
¼ 0 (20.18)

Solving the above determinant, one gets

TN ¼CA lAB�lAAð Þ (20.19)

which defines the Neel temperature. From Eqs. (20.13), (20.19) one can write

TN

y
¼ lAB�lAA

lAA + lAB
(20.20)

Eqs. (20.13), (20.19), (20.20) show that TN and y are different in the high-temperature limit. From experiment it has been

found that TN h y, indicating that lAA is positive. The above derivation includes ferromagnetic interactions among the spins

of sublattice A (also among the spins of sublattice B). If one includes only antiferromagnetic interactions among the spins,

that is, lAA¼0, then Eqs. (20.19), (20.20) reduce to

TN ¼ y¼ lABCA (20.21)

FIG. 20.4 Schematic representation of the theoretical magnetic susceptibility wM as a function of temperature T in an antiferromagnetic solid based on

the two-sublattice model (solid line). The dashed line shows the experimental trend below the Neel temperature TN.
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20.1.1.2 Susceptibility for T<TN
There are two situations at low temperatures: first when the applied magnetic field is parallel to the axis of the spins

(Fig. 20.5A) and second when it is perpendicular to the axis of the spins (Fig. 20.5B). In the first case, when the applied

magnetic field is parallel to the spins, the susceptibility obtained is denoted as wk(T). At very low temperatures there is

perfect antiferromagnetic alignment as a magnetic field parallel to the spins does not disturb the alignment. In other words,

the spins do not respond to the magnetic field as they are already in the direction of the field. Therefore, wk(T) approaches
zero at very low temperatures and will be exactly zero at absolute zero. With an increase in temperature, the thermal energy

increases, which disturbs the antiferromagnetic alignment. As a result, the value of wk(T) increases. But the calculation of

wk(T) at a finite temperature is much more complicated and is a function of the total angular momentum J. The results of the

calculation of Van Vleck (1941) are shown schematically in Fig. 20.6 for different values of spin. They show that wk(T)
increases with an increase in T.

In the second case the magnetic field is applied in a direction perpendicular to the spins (see Fig. 20.5B). The magnetic

force acts on each spin, as a result of which the spins acquire the equilibrium positions determined by the balance of the

external magnetic force and the internal restoring force. The angle made by the equilibrium positions of the two types of

magnetizations MA and MB with the original directions (dashed lines) is the same, say f, because MA and MB have the

same magnitude and, therefore, experience the same external force. The net interaction energy per unit volume due to the

applied magnetic field is given by

E¼�MA �HA�MB �HB (20.22)

Substituting the values of HA and HB from Eqs. (20.5), (20.6) into Eq. (20.22), we find

E¼� MA +MBð Þ �H + lAAM
2
A + lAAM

2
B + lABMA �MB + lABMB �MA (20.23)

The last two terms in Eq. (20.23) are equal and each represents the interaction energy between the two sublattices. This

means that the interaction energy is included twice; therefore, the correct magnetic energy is given by

E¼� MA +MBð Þ �H + lAA M2
A +M2

B

� �
+ lABMA �MB (20.24)

lAAMA
2 and lAAMB

2 are constant terms as they are independent of f. Therefore, Eq. (20.24) can be written as

FIG. 20.5 (A) Magnetizations MA and MB of sublattices A and B are parallel to each other but opposite in direction. Both of the magnetizations are

parallel to the applied magnetic field H. (B) Magnetizations MA and MB of sublattices A and B perpendicular to the applied magnetic field H.
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E¼� MA +MBð Þ �H + lABMA �MB + constant (20.25)

In an antiferromagnetic solid

MAj j ¼ MBj j ¼M (20.26)

With this fact the magnetic energy from Eq. (20.25) is given by

E¼�2MH sinf + lABM
2 cos 180�2fð Þ+ constant

¼�2MH sinf�lABM
2 1�2 sin2f
� �

+ constant
(20.27)

If the angle f is very small, then sinf�f and in this approximation

E ¼�2MHf�lABM
2 1�2f2
� �

+ constant (20.28)

In the equilibrium state of the spins, the magnetic energy is minimum, that is,

dE

df
¼ 0 (20.29)

From Eqs. (20.28), (20.29) one gets

f¼ H

2lABM
(20.30)

In order to find the magnetic susceptibility in the perpendicular direction, that is, w?(T), one requires the component of

magnetization along the direction of the applied magnetic field, which, from Fig. 20.5B, is given by

M? ¼ MA +MBð Þ sinf¼ 2M sinf (20.31)

For small angles

M? ¼ 2Mf (20.32)

From Eq. (20.32) the magnetic susceptibility is given by

w? ¼ 2M

H
f¼ 1

lAB
(20.33)

FIG. 20.6 Themagnetic susceptibility [both wk(T) and
w?(T)] of an antiferromagnetic material as a function of

temperature for spin values of ½, 3/2, and 5/2.Modified

from Van Vleck, J. H. (1941). On the theory of antifer-
romagnetism. The Journal of Chemical Physics, 9, 85.
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Eq. (20.33) shows that w?(T) is constant below the Neel temperature (see Fig. 20.6). Fig. 20.7 shows experimental mea-

surements for both wjj(T) and w?(T) for MnF2 and the behavior is found to be similar to that shown in Fig. 20.6. The sus-

ceptibility below TN is given by some average value lying between wjj(T) and w?(T). The simple average, which usually fits

the experimental results, is defined as

wM Tð Þ ¼ 1

3
w jj Tð Þ+ 2

3
w? Tð Þ (20.34)

20.1.2 Spin Waves in Antiferromagnetism

In an antiferromagnetic substance, suppose that sublattice A consists of up spins (s) with even numbers and sublattice B

consists of down spins (�s) with odd numbers. For sublattice A, Eqs. (19.94), (19.95), (19.96) can be written as

dsx2p

dt
¼ 2J

ħ
s
y
2p

X
d
!
sz
2p, d

!� sz2p

X
d
!

s
y

2p, d
!

2
4

3
5 (20.35)

ds
y
2p

dt
¼ 2J

ħ
sz2p

X
d
!
sx
2p, d

!� sx2p

X
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!

sz
2p, d

!

2
4

3
5 (20.36)

dsz2p

dt
¼ 2J

ħ
sx2p

X
d
!
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y

2p, d
! � s
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X
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!

sx
2p, d

!

2
4

3
5 (20.37)

For sublattice B one can straightway write

dsx2p + 1

dt
¼ 2J

ħ
s
y
2p + 1

X
d
!
sz
2p + 1, d

!� sz2p + 1

X
d
!

s
y

2p + 1, d
!

2
4

3
5 (20.38)

ds
y
2p + 1

dt
¼ 2J

ħ
sz2p + 1

X
d
!
sx
2p + 1, d

!� sx2p + 1

X
d
!

sz
2p + 1, d

!

2
4

3
5 (20.39)

FIG. 20.7 Experimental values of the magnetic susceptibility

wM of antiferromagnetic MnF2 parallel and perpendicular to the

tetragonal axis.
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dsz2p + 1

dt
¼ 2J

ħ
sx2p + 1

X
d
!
s
y

2p + 1, d
!� s

y
2p + 1

X
d
!

sx
2p + 1, d

!

2
4
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5 (20.40)

For even-numbered spins s2p
z ¼ s and for odd-numbered spins s2p+1

z ¼ � s. Further, we assume that the sx and sy components

are very small, so their product can be neglected. With these approximations, Eqs. (20.35), (20.36), (20.37) for the A lattice

become

dsx2p

dt
¼ 2J

ħ
�ns s

y
2p� s

X
d
!
s
y

2p, d
!

2
4

3
5 (20.41)
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¼ 2J

ħ
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X
d
!
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! + ns sx2p

2
4

3
5 (20.42)

dsz2p

dt
¼ 0 (20.43)

and for lattice B one can write

dsx2p + 1

dt
¼ 2J

ħ
ns s

y
2p + 1 + s

X
d
!
s
y

2p + 1, d
!

2
4

3
5 (20.44)

ds
y
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¼ 2J

ħ
�s

X
d
!
sx
2p + 1, d

!�ns sx2p + 1

2
4

3
5 (20.45)

dsz2p + 1

dt
¼ 0 (20.46)

Let us define an operator

s+ ¼ sx + isy (20.47)

From Eq. (20.47) the equations of motion of the even and odd spins can be written as

ds +2p

dt
¼ dsx2p

dt
+ i

ds
y
2p

dt
(20.48)

ds +2p + 1

dt
¼ dsx2p + 1

dt
+ i

ds
y
2p + 1

dt
(20.49)

Using Eqs. (20.41)–(20.46) in Eqs. (20.48), (20.49), one can straightway write

ds+2p

dt
¼ 2iJs

ħ
ns+2p +

X
d
!
s +
2p, d

!

0
@

1
A (20.50)

ds +2p + 1

dt
¼� 2iJs

ħ
ns+2p + 1 +

X
d
!
s+
2p + 1, d

!

0
@

1
A (20.51)

For spin waves one is looking for running-wave solutions of the form

s+
2p, d

! ¼ uKe
i K � R2p + d

!� �
�o t

� �
(20.52)

s+
2p + 1, d

! ¼ vKe
i K � R2p + 1 + d

!� �
�o t

� �
(20.53)

Substituting Eqs. (20.52), (20.53) into Eqs. (20.50), (20.51), we obtain
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1

2
noex�o

� �
uK +

1

2
oex

X
d
!
eiK � d!

0
@

1
AvK ¼ 0 (20.54)

1

2
oex

X
d
!
eiK � d!

0
@

1
AuK +

1

2
noex +o

� �
vK ¼ 0 (20.55)

whereoex ¼� 4Js

ħ
(20.56)

Eqs. (20.54), (20.55) have a nontrivial solution only if

1

2
noex�o

1

2
oex

X
d
!
eiK:d

!

1

2
oex

X
d
!
eiK:d

!

1

2
noex +o

���������

���������
¼ 0 (20.57)

Expanding the above determinant, we obtain the value of o2 as

o2 ¼ 1

4
o2

ex n2�
X
d
!
eiK � d!

0
@

1
A

22
4

3
5 (20.58)

This is a general solution of the spin wave for any crystal structure. The spin wave frequencyo can be calculated for simple

crystal structures.

20.1.2.1 Linear Monatomic Lattice

In a monatomic linear lattice n¼ 2 and d
!¼�a î1. Substituting these values into Eq. (20.58), one gets

o2 ¼o2
ex�

1

4
o2

ex eiKx a + e�iKx a
� �2

¼o2
ex 1� cos2Kxa
� � (20.59)

Therefore, the frequency of the spin waves is given by

o¼oex sin Kxaj j (20.60)

For small values of Kx the above equation yields

o¼oex Kxaj j (20.61)

Eq. (20.61) shows that the magnon frequency is linearly proportional to Kx for small values of the wave vector. The magnon

dispersion relation for an antiferromagnetic linear lattice is shown in Fig. 20.8 and it is different from that for a ferromag-

netic substance.

FIG. 20.8 Magnon dispersion relation for a monatomic linear lattice described by Eq. (20.60).

In the figure, we have replaced Kx by K for convenience. The dashed line is a tangent to the

magnon dispersion curve at the origin and shows that the magnon frequency o, at small values

of the wave vector K, is linearly proportional to K (see Eq. 20.61).
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20.1.2.2 Square Lattice

Consider a square lattice with periodicity a in which d
! ¼ �a î1, 0

	 

, 0, � a î2

	 

(see Fig. 20.9). Substituting the values of

d
!

into Eq. (20.58), one can write

o2 ¼o2
ex 4� cos2Kxa� cos2Kya �2 cos Kxa cos Kya
h i

(20.62)

Simplifying the above equation, one can write

o¼oex 2 + sin2Kxa + sin2Kya�2 cos Kxa cos Kya
h i1=2

(20.63)

For very small values of Kx and Ky the trigonometric functions can be expanded to yield

o¼
ffiffiffi
2

p
oexKa (20.64)

Problem 20.1

Find the magnon dispersion relation in an sc structure with antiferromagnetic order (see Fig. 20.10) and show that, at very small

values of the wave vector K, it is given by

o¼
ffiffiffi
3

p
oexKa (20.65)

FIG. 20.9 A square lattice with an antiferromagnetic order of atomic spins and having

periodicity a.

FIG. 20.10 An sc lattice with an antiferromagnetic order of atomic spins and having periodicity a.
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Problem 20.2

Find the magnon dispersion relation for an antiferromagnetic material with bcc structure.

From Eqs. (20.61), (20.64), (20.65) it is evident that the magnon dispersion relations in an antiferromagnetic material

with cubic structure are linearly proportional to K, while in a ferromagnetic substance they are proportional to K2. This

shows that the magnon dispersion relations in these two types of solids are basically different. Further, from

Eqs. (20.61), (20.64), (20.65) we can generalize the expression for the effective magnon frequency as

o¼ ffiffi
r

p
oexKa (20.66)

where r is the dimensionality of the crystal under consideration.

20.2 FERRIMAGNETISM

Magnetite, generally called load stone, is perhaps the oldest ferromagnetic material known to humans. The chemical

formula for magnetite is Fe3O4 and, more specifically, FeO �Fe2O3. The oxide ferromagnetic solids form a special class,

generally called ferrimagnetic solids and, more frequently, ferrites. One can produce a number of ferrites by replacing an

Fe+2 ion by a divalent metal ion M+2, thus yielding the chemical formula MOFe2O3 or MFe2O4, in which M can be any of

the metals, such as Mn, Co, Ni, Cu, Mg, Zn , Cd, or others. Ferrites with the formula MOFe2O3 are called mixed ferrites.

One of the important and useful mixed ferrites is ZnOFe2O3. Zn
+2 is diamagnetic in nature but ZnOFe2O3 shows a mag-

netization that is larger than Fe3O4 for small concentrations of Zn.

20.2.1 Structure of Ferrites

The physical properties of ferrites are very much structure dependent. The ferrites are ionic solids and the magnetic moment

of one molecule depends on the unpaired spins in the individual ions. The ions Fe+2 and Fe+3 contribute to the magnetic

moment of Fe3O4. The electronic configuration of an Fe atom is given by

Fe : 3d64s2

Therefore, the electronic configurations of the Fe+2 and Fe+3 ions are as follows:

Fe+2 : 3d6

Fe+3 : 3d5

In an Fe+2 ion the two d-electrons are paired, but the rest of the four d-electrons are unpaired, yielding amagnetic moment of

4mB, while in Fe+3 all five d-electrons are unpaired, giving rise to a magnetic moment of 5mB. The unit cell of magnetite

contains eight FeO. Fe2O3 molecules forming a close-packed cubic structure. In other words, the unit cell contains eight

Fe+2 ions, sixteen Fe+3 ions, and twenty-four O�2 ions. The twenty four O�2 ions form a close-packed cubic structure that

has sixteen octahedral interstitial sites and eight tetrahedral interstitial sites. Two types of distributions can occur for the

Fe+2 and Fe+3 ions on the interstitial sites.

Spinel structure: In the first distribution all the Fe+3 ions occupy the sixteen octahedral interstitial positions, while the

Fe+2 ions occupy the eight tetrahedral positions. Such a structure is generally called spinel structure. If the magnetic

moments of both the Fe+2 and Fe+3 ions are aligned in the same direction, then the total magnetic moment on the

Fe3O4 molecule becomes 5�2+4¼14mB. But if the magnetic moments of the Fe+2 and Fe+3 ions are aligned opposite

to each other, the net magnetic moment on the Fe3O4 molecule becomes 10�4¼6mB. Neither of these values agrees with
the experimental value of 4 �08mB.

Inverse spinel structure: In the second distribution the Fe+2 ions occupy the eight octahedral interstitial positions, while
the Fe+3 ions are distributed equally among the octahedral and tetrahedral positions. It is worthwhile pointing out here that

FeO. Fe2O3 exhibits inverse spinel structure. The schematic representation of the Fe+2 and Fe+3 ions in a unit cell is shown

In Fig. 20.11. In this distribution the magnetic moments of every pair of Fe+3 ions (one at the octahedral site and the other at

the tetrahedral site) are directed opposite to each other and cancel each other’s effect. Therefore, only the Fe+2 ions con-

tribute to the magnetic moment of the molecule, which is found to be 4 �0mB, close to the experimental value.
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The ferrites exhibit spontaneous magnetization at low temperatures. But at a particular temperature Tc (transition tem-

perature), the solid makes a transition from the ferromagnetic to paramagnetic phase.

20.2.2 Two-Sublattice Model

From Fig. 20.11 it is evident that in a ferrimagnetic solid there are two sublattices with different magnetizations: sublattice

A consists of up spins with magnetizationMA and sublattice B has down spins with magnetizationMB. Therefore, one can

use the two-sublattice model for studying the susceptibility and transition temperature in a ferrimagnetic solid. The mag-

netic field experienced by an atom in the sublattices A and B, from Eqs. (20.2), (20.3), is given by

HA ¼H�lAAMA�lABMB (20.67)

HB ¼H�lBBMB�lABMA (20.68)

Here we have assumed that lAB¼lBA. Above Tc the solid is paramagnetic in nature and the susceptibility obeys the Curie

law. Therefore, the magnetizations of sublattices A and B above Tc are given by

MA ¼ wAHA ¼CA

T
HA (20.69)

MB ¼ wBHB ¼
CB

T
HB (20.70)

Substituting Eqs. (20.67), (20.68) into Eqs. (20.69), (20.70), we find

T +CAlAAð ÞMA +CA lABMB�Hð Þ¼ 0 (20.71)

CB lABMA�Hð Þ+ T+CBlBBð ÞMB ¼ 0 (20.72)

At the transition temperature Tc, the spontaneous magnetization is obtained by putting H¼0 in Eqs. (20.71), (20.72) to

yield

Tc +CAlAAð ÞMA +CAlABMB ¼ 0 (20.73)

CBlABMA + Tc +CBlBBð ÞMB ¼ 0 (20.74)

A nontrivial solution of Eqs. (20.73), (20.74) is obtained by setting the determinant of the coefficients of MA and MB to

zero, that is,

Tc +CAlAA CA lAB

CBlAB Tc +CBlBB

������
������¼ 0 (20.75)

The determinant gives a second order equation in Tc whose value is given by

Tc ¼
1

2
� CAlAA +CBlBBð Þ� CAlAA�CBlBBð Þ2 + 4CACBl

2
AB

n o1=2
� 


(20.76)

FIG. 20.11 Schematic representation of the spins of the sixteen Fe+3 ions and

eight Fe+2 ions contained in the unit cell of magnetite Fe3O4.
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From Fig. 20.11 it is evident that there are ferromagnetic interactions among the spins of sublattice A. Similarly, there are

ferromagnetic interactions among the spins of sublattice B. If only the antiferromagnetic interactions between the spins of

sublattices A and B are retained, then lAA¼lBB¼0. In this approximation Eq. (20.76) reduces to

Tc ¼ CACBð Þ1=2lAB (20.77)

The magnetic susceptibility of a ferrimagnetic solid can be calculated by retaining only the antiferromagnetic interactions.

Substituting Eqs. (20.67), (20.68) into Eqs. (20.69), (20.70) and retaining only the antiferromagnetic interactions, one

can write

MAT¼ CA H� lABMB½ � (20.78)

MBT¼ CB H� lABMA½ � (20.79)

Multiplying Eq. (20.78) by T and using Eq. (20.79), we get

MA ¼ CAT�CACBlAB
T2�T2

c

H (20.80)

Similarly, one can obtain from Eq. (20.79) the expression for MB as

MB ¼
CBT�CACBlAB

T2�T2
c

H (20.81)

Adding Eqs. (20.80), (20.81), the magnetic susceptibility is given by

wM ¼MA +MB

H
¼ CA +CBð ÞT�2CACBlAB

T2�T2
c

(20.82)

One can study antiferromagnetism as a particular case of ferrimagnetism. The Neel temperature in an antiferromagnetic

substance can be obtained from Eq. (20.76). In an antiferromagnetic substance the two sublattices are identical and thus

have the same magnetizations and Curie constants. Substituting CA¼CB and lAA¼lBB into Eq. (20.76), one gets

Tc ¼TN ¼ lAB�lAAð ÞCA (20.83)

which is nothing but the Neel temperature in an antiferromagnetic material (see Eq. 20.19). If only the antiferromagnetic

interactions are retained, then lAA¼0 and Eq. (20.83) reduces to

TN ¼ lABCA (20.84)

Substituting CA¼CB into Eq.(20.82) and using Eq. (20.84), one gets

wM ¼ 2CA

T+TN

(20.85)

which is same as Eq. (20.12). It is worth mentioning here that in the mixed ferrite ZnOFe2O3 all the Zn
+2 ions occupy the

tetrahedral interstitial positions, but the Fe+3 ions occupy the octahedral interstitial positions. In other words, all the Zn+2

ions occupy the positions on one sublattice, say A. But this may not be the case with other divalent metallic ions. In general

M+2 ions may occupy both the tetrahedral and octahedral positions and, therefore, the mixed ferrite MOFe2O3 can be

written as Fex
+3M1�x

+2 [Fe2�x
+3 Mx

+2]O4: here a portion 1�x of the M+2 ions occupy positions on sublattice A, while a portion

x of the M+2 ions occupy positions on sublattice B.
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In solids, both the electrons and nuclei possess intrinsic spin angular momenta, which give rise to spin magnetic dipole

moments. We have seen in the previous chapters that a static magnetic field produces magnetization, which yields

important information about solids. A great deal of information about magnetic solids can be obtained from the nuclear

magnetic resonance (NMR) technique in which an alternating magnetic field is also applied. The basic principle of an NMR

method is to apply both dc and rf magnetic fields perpendicular to one another. As a result, the nuclear energy states split up

into substates. When the frequency of the applied rf field is equal to the natural frequency in the presence of external mag-

netic field (which corresponds to the frequency of gyroscopic precession of the magnetic moments), then resonance takes

place. There are different resonance techniques with which one can study a number of properties, such as the fine structure

of nuclear levels, the electronic structure of an impurity, the interaction between magnetic dipoles, the interaction between

magnetic dipoles and the lattice, and the line widths of nuclear transitions. The basic ideas behind nuclear resonance tech-

niques will be described in this chapter.

21.1 NUCLEAR MAGNETIC MOMENT

In analogy with the magnetic moment of an electron, the magnetic moment of a nucleus with nuclear spin I is defined as

m!I ¼ gIħI (21.1)

Here gI is the ratio of the magnetic moment to the angular momentum and is the gyromagnetic ratio. In the case of a nucleus,

gI satisfies the relation

gIħ¼ gImBp (21.2)

where mBp is the Bohr magnetron of a proton defined by Eq. (2.8) and gI is the nuclear spectroscopic splitting factor.
By substituting Eq. (21.2) into Eq. (21.1), one gets

m!I ¼ gImBp I (21.3)

Eq. (21.3) shows that, for a nucleus, m!I and I are in the same direction, in contrast to an electron. Although the gyromagnetic

ratio is a more useful quantity for discussing magnetic resonance in many respects, nuclear magnetic moments are usually

tabulated in terms of mBp, a natural unit with a value of 5.05�10�24 erg/gauss (see Chapter 2). One can also define the
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magnetic moment of a nucleus m!I with nuclear spin I as the vector sum of the magnetic moments of the nucleons m!n that are

present in it, that is,

m!I ¼
X
n

m!n (21.4)

21.2 ZEEMAN EFFECT

The Hamiltonian of a nucleus with magnetic moment m!I in an external dc magnetic field H is

H
_

M ¼�m!I �H¼�gIħI �H (21.5)

If the magnetic field is applied in the z-direction, that is, H¼ î3H, the Hamiltonian becomes

H
_

M ¼�gIħHIz ¼�gImBpHIz (21.6)

The energy of a nucleus in the state jmIi is given by

EmI
¼ mIh jH_M mIj i ¼ � gIħHmI ¼� gImBpHmI (21.7)

where mI is the eigenvalue of Iz defined as

mIh j Iz mIj i ¼mI (21.8)

Here mI has 2 I+1 values given as I, I�1, … 1, 0,�1, … � (I�1),� I. Hence, each nuclear state splits up into 2 I+1

substates in the presence of a magnetic field and they are equally spaced. Transitions between the substates are allowed only

if the magnetic quantum number mI changes by unity, that is,

DmI ¼�1 (21.9)

Using Eq. (21.7), we can write

ħo¼Em0
I
�EmI

¼ gIħHDmI ¼ gImBpHDmI (21.10)

where
mI�m0

I ¼DmI (21.11)

Using the selection rule (21.9) in Eq. (21.10), the transition frequency is given by

oL ¼ gIH¼ gImBpH=ħ (21.12)

Eq. (21.12) yields a single resonance frequency, usually called the Larmor frequency oL, which gives the fundamental

condition for magnetic resonance absorption. The radiation produced is circularly polarized in a plane perpendicular to

the dc magnetic field H. Therefore, in order to excite such transitions, it is necessary to supply radiation with a magnetic

vector circularly polarized in a plane perpendicular to the dc magnetic field. One can interpret the above result in the fol-

lowing manner: The magnetic dipole moment m!I, when placed in a dc magnetic fieldH, starts precessing about the applied

field with the Larmor frequency (see Fig. 21.1).

As an example, consider a solid with I¼1/2. In the presence of a magnetic field, mI¼ �1/2, which gives the energy of

the two states as E�¼ �(1/2)gIħH (see Fig. 21.2). If ħoL denotes the energy difference between the two energy states, then

oL ¼ gIH¼ gImBpH=ħ (21.13)

which is the same as Eq. (21.12). The Zeeman splitting for a solid with I¼3/2 is also shown in Fig. 21.2.

Problem 21.1

Let the population of a Zeeman state NmI
for a particular value of mI be given as

NmI
∝ exp �EmI

=kBT
� �

(21.14)

Here kB and T are the Boltzmann constant and temperature, respectively. Prove that the average magnetic moment of a nucleus

hmIi in the direction of the magnetic field is given by

mIh i¼ gIħ
2I + 1

2
coth

2I + 1

2
y

� �
�1

2
coth

y

2

� �� �
(21.15)

where

y¼ gIħH
kBT

(21.16)
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Problem 21.2

Using hmIi given by Eq. (21.15), prove that the nuclear magnetic susceptibility in the limit of very high values of T is given by

wM ¼ nnucg
2
I ħ

2 I I + 1ð Þ
3kBT

(21.17)

where nnuc is the number of nuclei per unit volume.

FIG. 21.1 Precession of the magnetic moment m!I about the applied magnetic field H.

FIG. 21.2 Zeeman splitting in a solid with nuclear spin (A) I¼1/2 and (B) I¼3/2.
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21.3 RELAXATION PHENOMENA

In a paramagnetic substance each atom possesses a finite spin, which gives rise to a finite atomic spin magnetic moment. In

the absence of an applied magnetic field the magnetic dipole moments are randomly oriented, giving rise to zero magne-

tization. With the application of a magnetic field, magnetization appears, which takes some finite time to reach its equi-

librium value. When the magnetic field is switched off, the magnetization decreases and goes to zero again in a finite time.

Both the increase and decrease in the magnetization are caused by relaxation phenomena and the time taken to reach the

equilibrium value is called the relaxation time.

In order to have insight into relaxation phenomena, let us consider a system of free magnetic dipoles oriented randomly.

If an external magnetic field is applied, the atomic magnetic dipoles start to precess about it, as shown in Fig. 21.1, but the

component of magnetization along the direction of H remains unchanged. Therefore, no magnetization will appear. For a

finite magnetization to appear, the interaction of an atomic magnetic dipole with other atomic dipoles or with its sur-

roundings is required. Consider a paramagnetic material in which the atoms (magnetic dipoles) form a lattice. The magnetic

field at the position ri of the ith magnetic dipole m!i due to the jth dipole m!j at rj is given by

Hi j ¼
m!j � ri j

� �
ri j� m!j r

2
i j

r5i j
(21.18)

The total magnetic field at the position of m!i due to all of the other magnetic dipoles is obtained by summing over j, that is,

Hi ¼
X
j

Hi j ¼
X
j

m!j � ri j
� �

ri j� m!j r
2
i j

r5i j
(21.19)

Hi is called the internal magnetic field experienced by an atomic magnetic dipole and is on the order of mI/a
3 where a is on

the order of a few angstroms. For example, in iron alum jHi j� 550 gauss. In analogy with the local electric field, Hi is

called the local magnetic field and is represented by Hloc(ri). In a magnetic solid there can be two types of relaxation phe-

nomena depending on the value of the applied magnetic field.

21.3.1 Spin-Lattice Relaxation

Spin-lattice relaxation occurs when the applied dc magnetic field H is much stronger than the local magnetic field Hloc.

Therefore, a small increase in H will change the magnitude of the total magnetic field H+Hloc, but will not change its

direction by very much. In this case the spin interacts with the lattice and exchanges energy with it. The lattice interaction

may cause some of the magnetic dipoles to slip from the antiparallel direction to the parallel one, thereby producing a finite

magnetization M defined as

M¼ î1M1 + î2M2 + î3M3 (21.20)

The time taken by the material to reach the equilibrium value M0 is called the spin-lattice relaxation time tsl and the phe-

nomenon is called the spin-lattice relaxation. The time tsl is also sometimes called the longitudinal relaxation time. When

the magnetic field is switched off the material returns to its initial unmagnetized state.

Let the magnetic field H be applied in the z-direction, that is, H¼ î3H with M0 as the equilibrium magnetization.

Further, let Mz(t) be the magnetization at any time t in the z-direction, which is different from M0. If the rate of change

of Mz(t) is assumed to be proportional to its deviation from M0, then one can write

dMz

dt
¼M0�Mz

tsl
(21.21)

where 1/tsl is the constant of proportionality. The above equation can be written as

ðMz

0

dMz

M0�Mz

¼ 1

tsl

ðt

0

dt (21.22)

Integrating the above equation, one gets

Mz tð Þ¼ M0 1� e�t=tsl

h i
(21.23)
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Fig. 21.3 shows how a precessing magnetizationM (about the z-direction) acquires the equilibrium value of magnetization

M0 in the spin-lattice relaxation phenomenon. The variation of Mz(t) with time is shown in Fig. 21.4. The spin-lattice relax-

ation is measured in strong fields but at low frequencies. It is important to point out that tsl is strongly temperature dependent

and decreases with increasing temperature. This variation is due to an increase in the mobility of the magnetic dipoles with

an increase in temperature. The time tsl, due to the nuclear moments in solids, may have a value from a few seconds to hours.

In solids in which the paramagnetism is due to the electrons, tsl varies between 10�11 and 10�6 s at room temperature.

FIG. 21.3 Spin-lattice and spin-spin relaxation processes. In the spin-lattice relaxation process, the magnetizationM approaches the equilibrium value

M0 along the z-direction. In the spin-spin relaxation process, the magnetizationM0 (in the xy plane) approaches zero, the equilibrium value, in the presence

of magnetic field H0.

FIG. 21.4 The variation of the z-component of magnetizationMz(t)

with time t in the spin-lattice relaxation phenomenon.
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21.3.2 Spin-Spin Relaxation

The nuclear spins also interact among themselves via dipole-dipole interactions. In a paramagnetic solid, each spin expe-

riences a local magnetic field Hloc due to the neighboring magnetic dipoles. The direction and magnitude of Hloc may

differ from nucleus to nucleus depending on the relative positions of the neighboring nuclei. If the external magnetic

field H is much smaller than the local magnetic field Hloc, that is, H≪Hloc, then its effect will be to slightly change the

direction of the field seen by a dipole, but its magnitude will remain essentially unaltered. The magnetic dipoles will thus

precess about a slightly different direction and, as a result, finite magnetization occurs in the direction of H. In this

situation the magnetic force due to the external magnetic field is insufficient to cause the magnetic dipoles to flip over

and, therefore, there will be no exchange of energy between the spins and the lattice. In other words, spin-lattice relax-

ation will be absent. On the other hand, there is a finite energy exchange between the spins, giving rise to what is called

the spin-spin relaxation process. It is convenient to introduce the spin-spin relaxation time tss to describe the lifetime of a

nuclear spin state.

The different values of Hloc at different nuclei cause local irregularities in the magnetic field. Further, the different

values of Hloc make different nuclei precess with different frequencies. So, the precessing nuclei will go out of phase with

each other in a time on the order of tss, yielding zero as the equilibrium values of Mx and My. Let an rf magnetic fieldH0 be

applied in the xy-plane, which is defined as

H0 ¼ î1Hx + î2Hy (21.24)

Here Hx and Hy are the x- and y-components of the magnetic field. The magnetization produced in the xy-plane M0 is
written as

M0 ¼ î1Mx + î2My (21.25)

where Mx and My are the nonequilibrium values of the magnetizations in the x- and y-directions. H0 andM
0 are called the

transverse magnetic field and transverse magnetization, respectively. The rate of change of Mx and My are given as

dMx

dt
¼�Mx

tss
,

dMy

dt
¼ �My

tss
(21.26)

The solution of these differential equations is simple. Solving, we find

Mx ¼M0xe
�t=tss , My ¼M0ye

�t=tss (21.27)

Therefore, Mx and My approach zero exponentially with time. Fig. 21.3 shows the variation of M0 with time, which

ultimately goes to zero (equilibrium value) in the presence of the magnetic field H0. The time tss is measured with small

magnetic fields that have very high frequencies, on the order of many Mc/s. At such high frequencies the spin-lattice

relaxation process is absent. The relaxation time tss is on the order of 10�10 s, which is smaller than the spin-lattice

relaxation time tsl. Further, the spin-spin relaxation process is independent of temperature, which makes tss independent

of temperature.

21.4 EQUATION OF MOTION

Consider a nucleus with spin I and magnetic moment m!I placed in a constant magnetic field H. The rate of change of the

nuclear angular momentum Iħ gives the torque τ
!

acting on the nucleus, that is,

d

dt
Iħð Þ¼ τ

!
(21.28)

with

τ
!¼ m!I�H (21.29)

Using Eqs. (21.1), (21.29) in Eq. (21.28), one can write

1

gI

dm!I

dt
¼ m!I�H (21.30)
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We have already seen that m!I will precess about the magnetic fieldH with the Larmor frequency oL. Consider now a mag-

netic material with weakly interacting nuclear spins. ThemagnetizationM is a vector sum of the nuclear magnetic moments

per unit volume. If ri is the number of nuclei per unit volume in the ith state, then from Eq. (21.30) one can write

dM

dt
¼ gIM�H (21.31)

where

M¼
X
i

ri m
!
I i (21.32)

Here m!I i is the nuclear magnetic moment in the ith state of the nucleus having spin I. The solution of Eq. (21.31) for a

constant magnetic field is the same as that for Eq. (21.30), that is, M will precess about H with the Larmor frequency

oL. If M is along the z-direction, then in the equilibrium state, Mz¼M0 and Mx¼My¼0 and the magnetic susceptibility

w0 satisfies the Curie law, that is,

M0 ¼ w0H (21.33)

where

w0 ¼
CM

T
(21.34)

Here CM is the Curie constant. Hence, in a constant magnetic field H, one observes a resonant Larmor frequency nL¼oL/2p
that is circularly polarized. For H�104gauss one obtains nL ranging from 1–50Mc/s.

To observe the resonance absorption of rf energy, one has to apply two magnetic fields:

1. A dc magnetic field H, which can be varied along the z-direction.

2. An rf magnetic field of amplitude H0 (≪H) perpendicular to the dc magnetic field.

The reason for the application of the rf field can be understood from the following. Consider a magnetic systemwith nuclear

spin I¼1/2, which gives two energy levels (see Fig. 21.2A). The orientation of the magnetic moment m!I in the lower energy

state is shown in Fig. 21.5 and it precesses aboutHwith the Larmor frequencyoL. For resonance absorption to take place, a

FIG. 21.5 Precession of the magnetic moment m!I about the dc magnetic field H in the presence of rf magnetic field H0.
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transition must occur from the lower state to the higher state (see Fig. 21.2A), which involves a change in spin from ½ to

�½. The transition will take place ifH0, applied perpendicular toH, causes the absorption of rf energy atoL¼gIH. Further,
H0 reverses the tip of the dipole from parallel (mI¼1/2) to antiparallel (mI¼ �1/2) alignment and vice versa. Let the rf

magnetic field be applied in the x-direction. Then, one can write

Hx ¼ 2H0 cos o t

Hy ¼Hz ¼ 0 (21.35)

But we know that in the Zeeman effect, the resonance frequency emitted or absorbed is circularly polarized. Therefore, it is

convenient to represent the rf field as a combination of two circularly polarized magnetic fields in the xy-plane: one rf field

rotates clockwise and the other counterclockwise. These two rf fields can be written as

Clockwise : Hx ¼H0 cos ot, Hy ¼H0 sinot (21.36)

Counter-clockwise : Hx ¼H0 cos ot, Hy ¼�H0 sinot (21.37)

AtoL, one of the rotating fields will follow the precessing magnetic dipole and exert a constant torque on it. As a result, the

magnetic dipole tips from parallel (antiparallel) to antiparallel (parallel) alignment. Therefore, the other rotating field

becomes redundant. Hence, in order to observe resonance absorption of rf energy by the spin system, it is essential that

the lower level be more heavily populated than the upper level, which is indeed the case at thermal equilibrium due to

the Boltzmann distribution. A schematic diagram of the nuclear resonance experimental setup is shown in Fig. 21.6.

21.5 MAGNETIC RESONANCE IN THE ABSENCE OF RELAXATION PHENOMENA

In the absence of relaxation phenomena, the equation of motion is given by Eq. (21.31), in which the three components of

magnetization become

dMx

dt
¼ gI MyHz� MzHy

h i
(21.38)

dMy

dt
¼ gI MzHx� MxHz½ � (21.39)

dMz

dt
¼ gI MxHy� MyHx

h i
(21.40)

Let the magnetic field in the xy-plane H0 (with components Hx and Hy) be very small in comparison with the dc magnetic

field H¼ î3H. As a result, the components Mx and My are very small in comparison with Mz. To a first-order approxi-

mation, Eqs. (21.38)–(21.40) reduce to

dMx

dt
¼ gI MyH� MzHy

h i
(21.41)

FIG. 21.6 Schematic representation of the experimental setup

used for studying the magnetic resonance in a solid. The dc mag-

netic field is applied in the z-direction, but the rf magnetic field is

applied in the x-direction.
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dMy

dt
¼ gI MzHx� MxH½ � (21.42)

dMz

dt
¼ 0 (21.43)

The oscillating components of the magnetic field Hx and Hy give rise to oscillating components of magnetization Mx and

My, which can be represented as

Hx ¼H0xe
io t,Mx ¼M0xe

io t (21.44)

Hy ¼H0ye
io t,My ¼M0ye

io t (21.45)

Substituting Eqs. (21.44), (21.45) into Eqs. (21.41), (21.42), one gets

ioMx� gIHMy + gIMzHy ¼ 0 (21.46)

gIHMx + ioMy� gIMzHx ¼ 0 (21.47)

Multiplying Eq. (21.46) by gIH and Eq. (21.47) by io and subtracting, one gets

My ¼
gIMz

o2
L�o2

oLHy + ioHx

� �
(21.48)

Similarly, one can obtain Mx from Eqs. (21.46), (21.47). We find

Mx ¼
gIMz

o2
L�o2

oLHx� ioHy

� �
(21.49)

Eqs. (21.48), (21.49) can be written in matrix form as

Mx

My

0
BBBB@

1
CCCCA ¼

oLgIMz

o2
L�o2

�iogIMz

o2
L�o2

iogIMz

o2
L�o2

oLgIMz

o2
L�o2

0
BBB@

1
CCCA

Hx

Hy

0
BBBB@

1
CCCCA (21.50)

In matrix form the magnetic susceptibility can be written as

Mx

My

0
@

1
A ¼

wxxM wxyM

wyxM wyyM

0
@

1
A Hx

Hy

0
@

1
A (21.51)

Comparing Eqs. (21.50), (21.51), one can write

wxxM ¼ wyyM ¼ oLgIMz

o2
L�o2

(21.52)

wxyM ¼�wyxM ¼ �iogIMz

o2
L�o2

(21.53)

The transverse magnetization M0 and the transverse magnetic field H0 given by Eqs. (21.25), (21.24) exhibit some inter-

esting features. M0 and H0 are not in the same direction, rather M0 lags behind H0. This can be seen by putting Hx ¼ 0 in

Eqs. (21.48), (21.49) and noticing the phase relation and amplitudes of Mx andMy. The second interesting feature is that the

components of the susceptibility tensor (Eqs. 21.52, 21.53) and magnetization (Eqs. 21.48, 21.49) become infinite at

o¼oL, the natural frequency of vibration. But actually, the susceptibility and magnetization become very large at oL

because, in this state, the applied rf field is synchronous with the precessional motion. This is the condition for electron
paramagnetic resonance. The infinite values of susceptibility and magnetization suggest that some kind of relaxation phe-

nomenon exists, which makes them finite but large in value.
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21.6 BLOCH EQUATIONS

Bloch derived equations of motion for the magnetic response taking account of the spin-lattice and spin-spin relaxation

phenomena. From Eqs. (21.21), (21.40) the rate of change of Mz with time is given by

dMz

dt
¼ gI MxHy�MyHx

h i
+
M0�Mz

tsl
(21.54)

Similarly, from Eqs. (21.38), (21.39), (21.26) one can write

dMx

dt
¼ gI MyHz� MzHy

h i
�Mx

tss
(21.55)

dMy

dt
¼ gI MzHx� MxHz½ ��My

tss
(21.56)

Eqs. (21.54)�(21.56) are called Bloch equations. Substituting the values of Hx and Hy from Eq. (21.37) and putting Hz¼H

in Eqs. (21.54)–(21.56), one gets

dMx

dt
¼ gI MyH+ MzH0 sin ot

h i
�Mx

tss
(21.57)

dMy

dt
¼ gI MzH0 cos ot� MxH½ ��My

tss
(21.58)

dMz

dt
¼�gI MxH0 sin ot +MyH0 cosot

h i
+
M0�Mz

tsl
(21.59)

Eqs. (21.57)–(21.59) can be solved for Mx, My, and Mz and the final result is given as

Mx ¼
1

2
w0oL tss

2H0 tss oL�oð Þ cosot + 2H0 sinot

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.60)

My ¼
1

2
w0oL tss

2H0 cosot�2H0 tss oL�oð Þ sinot

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.61)

Mz ¼ w0H
1 + oL�oð Þ2 t2ss

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.62)

In actual experiments the linearly polarized rf magnetic field is applied only in one direction, say in the x-direction

(see Fig. 21.6). In this case, Hx¼2H0 cos o t and Hy¼0. For a linearly polarized rf magnetic field, Eqs. (21.60)–
(21.62) reduce to

Mx ¼
1

2
w0oL tss

2H0 tss oL�oð Þ cosot

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.63)

My ¼
1

2
w0oL tss

2H0 cosot

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.64)

Mz ¼ w0H
1 + oL�oð Þ2 t2ss

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.65)

The dynamical magnetic susceptibility can be written as

wM oð Þ¼ w0M oð Þ+ i w00M oð Þ (21.66)
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wM
0 (o) and wM

00 (o) are the real and imaginary parts, which from Eqs. (21.63), (21.64) are given by

w0M oð Þ¼Mx

Hx

¼ Mx

2H0 cosot
¼ 1

2
w0oL tss

oL�oð Þ tss
1 + oL�oð Þ2 t2ss + g2I H2

0 tsl tss

" #
(21.67)

w00M oð Þ¼My

Hx

¼ My

2H0 cosot
¼ 1

2
w0oL tss

1

1 + oL�oð Þ2 t2ss + g2I H2
0 tsl tss

" #
(21.68)

In the denominators of Eqs. (21.63)–(21.65) and Eqs. (21.67)–(21.68), the term gI
2H0

2 tsl tss is a dimensionless constant that

determines the degree of saturation. If H0 is very small, then saturation is not reached and

g2I H
2
0 tsl tss≪1

This term can be neglected in the denominators of Eqs. (21.63)–(21.65) and Eqs. (21.67)–(21.68). In this approximation the

static magnetic susceptibility from Eq. (21.65) becomes

w0 ¼
Mz

H
(21.69)

The real and imaginary parts of the dynamical magnetic susceptibility, from Eqs. (21.67), (21.68), become

w0M oð Þ¼ 1

2
w0oL tss

oL�oð Þ tss
1 + oL�oð Þ2 t2ss

" #
(21.70)

w00M oð Þ¼ 1

2
w0oL tss

1

1 + oL�oð Þ2 t2ss

" #
(21.71)

The susceptibilities wM
0 (o) and wM

00 (o) are plotted in Fig. 21.7 as a function of (oL � o)tss. Fig. 21.7A shows that wM
00 (o)

exhibits resonance absorption at o¼oL and the peak has Lorentzian shape. Eq. (21.71) can be written as

w00M oð Þ¼ 1=2ð Þw0oL=tss

oL�oð Þ2 + 1=t2ss
(21.72)

From the above equation we see that the halfwidth Do of resonance at half the height is given by

Do¼ 1

tss
(21.73)

The real part of the dynamical magnetic susceptibility wM
0 (o), shown in Fig. 21.7B, exhibits dispersion, which accompanies

the absorption.

21.6.1 Free Precession in Static Magnetic Field

One can solve the Bloch equations for the free precession of the spin system in a static (dc) magnetic field H¼ î3H. In a

static magnetic field the equilibrium magnetization is Mz¼M0. In this case the Bloch equations (21.54) – (21.56) reduce to

dMx

dt
¼ gIHMy�

Mx

tss
(21.74)

dMy

dt
¼�gIHMx�

My

tss
(21.75)

dMz

dt
¼ 0 (21.76)

For Eqs. (21.74)–(21.76), we seek damped-oscillator-like solutions of the form

Mx ¼Me�t=t0 cos ot (21.77)

My ¼�Me�t=t0 sin ot (21.78)
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where t0 is the damping time. Substituting Eqs. (21.77), (21.78) into Eqs. (21.74)–(21.76), one can write

1

t0
� 1

tss

� �
cosot¼ oL�oð Þ sinot (21.79)

1

t0
� 1

tss

� �
sinot¼� oL�oð Þ cosot (21.80)

Eqs. (21.79), (21.80) will be valid only if

t0 ¼ tss (21.81)

and

o¼oL (21.82)

FIG. 21.7 Schematic representation of the real part wM
0 (o) and imaginary part wM

00 (o) of the dynamical magnetic susceptibility wM(o) as a function of the
frequency o in a solid.
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Eq. (21.81) shows that the damping time is equal to the spin-spin relaxation time. Further, using the analogy of the pre-

cession of spins in a static magnetic field with the motion of a damped harmonic oscillator suggests that the spin system

exhibits resonance absorption of energy near the Larmor frequency. The frequency width of the response of the system to

the driving field will be Do¼1/tss.

21.7 MAGNETIC BROADENING OF RESONANCE LINES

It has been observed that resonance absorption of an rf magnetic field is not very sharp, but rather exhibits a peak with finite

width called the linewidth. There are a number of physical phenomena that contribute to the linewidth of resonance

absorption.

1. In a solid, an inhomogeneous magnetic field gives rise to a broadening of the resonance line. Inhomogeneity in a mag-

netic field may arise either because of the presence of impurities or due to different values of Hloc at different nuclei

(crystal structure effect).

2. If a nucleus possesses a finite magnetic quadrupole moment, it gives rise to what are known as quadrupole effects. These

effects destroy the degeneracy of resonance frequencies between nuclear levels with different mI values (Zeeman

effect). Quadrupole effects may give rise to resolved or unresolved splitting of a resonance line. If the quadrupole

effects are very small (which may be the case in a number of solids), one gets unresolved splitting of the resonance

line, which amounts to broadening.

3. Spin-lattice interactions also give rise to a broadening of the resonance lines. This is because the spin-lattice interactions

produce an equilibrium population by balancing the rates of transitions. This puts a limit on the lifetime of the Zeeman

states and hence results in a broadening of the resonance lines.

The coupling between the nuclear magnetic moments in a solid makes a major contribution to the broadening of

resonance lines and is considered here. In addition to the applied magnetic field H, a local magnetic field Hloc(ri) is

produced at the position ri of a nuclear magnetic moment (see Eq. 21.19). In a crystalline solid Hloc(ri) is different at

different lattice positions, yielding an inhomogeneous total magnetic field Htot given by

Htot ¼H+Hloc (21.83)

Considering the interactions between the 1NNs, it is evident from Eq. (21.19) that Hloc � m!I=r
3
1, where r1 is the 1NN dis-

tance. For a nuclear magnetic moment mI¼10�23 erg/gauss and r1¼2 Å, one obtains Hlocffi1 gauss. Therefore, if Htot is

different at different nuclei, then the various nuclei will exhibit resonance at different frequencies. If DHloc is the spread in

the value ofHloc seen by the nuclei, then it will also be the spread inHtot. Thus, the spread in the resonance frequency Do,
that is, oL!oL+Do, is given by

Do¼ gIDHloc (21.84)

Knowing the values of Do and DHloc, one can also find the spin-spin relaxation time tss. For example, in CaF2, DHloc ¼ 2

gauss and Do ¼ 5�104 s�1, therefore,

tss ¼
1

Do
¼ 1

5�104
¼ 2�10�5 s (21.85)

21.8 EFFECT OF MOLECULAR MOTION ON RESONANCE

The broadening of resonance lines depends on the nature of the material. The linewidth in the case of liquids is very small

compared with solids: the linewidth in a liquid can be as narrow as 0.5cps, but in solids it is on the order of 5000cps or more

at room temperature. It has further been observed experimentally that the resonance peaks are narrower for a solid in which

the atoms (nuclei) are in rapid motion. Further, with an increase in the temperature T of a solid, the motion of the atoms

becomes faster and the resonance peaks become narrower. The effect of the motion of the atoms on the width of resonance

peaks is usually called motional narrowing. This effect is much more pronounced in liquids as the atoms can move much

more quickly in random directions. The motional narrowing of resonance peaks can be explained in terms of the local

magnetic field Hloc as follows.

It has already been explained that the width of a resonance peak arises due to the inhomogeneous nature of Hloc, the

crystal structure effect. All of the measurements in a laboratory are made at finite temperatures. At finite temperatures, an
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atom jumps from one lattice position to another, a process similar to the diffusion of atoms. Let us suppose that an atom

remains at a single lattice position for an average time of τm seconds. The atoms in a solid move randomly in different

directions, as a result of which Hloc at a particular lattice point changes very quickly. The time-averaged value of the local

magnetic field hHloci becomes nearly constant and with much smaller spread. In other words, one can say that the random

motion of atoms in different directions makes the solid, and hence hHloci, nearly homogeneous, yielding only a very small

spread inHloc. The decrease in the spread ofHloc yields a smaller width of the resonance absorption line.With an increase in

temperature, the motion of the atoms increases, yielding a smaller value of DHloc, which in turn makes the resonance lines

narrower. In other words, one can say that an increase in the motion (velocity) of atoms decreases the value of τm, which
causes a narrowing of the resonance peaks.

Measurements of the spin-lattice relaxation time tsl are based on the competition between resonance absorption (which

tends to equalize the population of different levels) and the spin-lattice interaction (which tends to maintain the Boltzmann

distribution). The values of tsl obtained experimentally vary between 10�5�104 s: 104 s is the value obtained for ice. The

value of tsl is larger for solids than for liquids or gases. For solids, tsl is rarely smaller than 10�2 s. Rather, it may be very

large at low temperatures. On the other hand, for liquids, tsl may be as short as 10�2�10�3 s and rarely exceeds a few

seconds. This shows that as the atoms in a solid become freer the relaxation time tsl decreases.

It is interesting to note that tsl may reduce strongly when paramagnetic ions are present; these ions have an effective

magnetic moment that is 103 times as large as the nuclear magnetic moments and they form a very efficient medium for

establishing heat contact between the nuclear spins and their surroundings. On the other hand, at low temperatures, there is

no variation in the spin-spin relaxation time tss. With an increase in temperature, tss increases and, at a certain temperature,

tsl and tss may become approximately equal.

21.9 ELECTRON SPIN RESONANCE

In an atom, both the nucleus and the electrons possess intrinsic spin and hence magnetic moment. Let the magnetic moment

of a nucleus with spin I be mI and that of an electron mB. When a magnetic field H is applied to a solid, it splits the energy

levels of both the nuclei and the electrons. The splitting of the energy levels of the nuclei gives rise to NMR and that of the

electrons gives rise to electron spin resonance (ESR). One should note that there are some solids that exhibit ESR.

Consider a solid in which each atom contains only one electron. Let a magnetic field H be applied to the solid in the

z-direction, that is, H¼ î3H. Further, an rf magnetic field H0 is applied perpendicular to H (say in the x-direction).

The magnetic part of the Hamiltonian due to the atomic electron is given by

H
_¼�m!s �H¼ gsmB s �H¼ gsmBHsz (21.86)

Here we have used Eq. (18.24) for the spin magnetic moment of an electron. The energy of the electron states is obtained by

taking the expectation value of the Hamiltonian as

Ems
¼ msh jH_ msj i ¼ gsmBHms (21.87)

According to the above equation the electron states get split up into two substates (see Fig. 21.8). The energy difference

between the two states becomes

DE¼ 2mBH (21.88)

Eq. (21.88) gives the condition for a resonance. If an rf field is applied in the xy-plane, then the resonance frequency o0 is

given by

ħo0 ¼ 2mBH (21.89)

FIG. 21.8 Splitting of an electron energy state with sz¼1/2 into two substates in the presence of a dc magnetic field H applied in the z-direction.
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So, resonance absorption of the rf field takes place at frequencyo0. At resonance, the electrons in energy state E�1/2 absorb

energy and make a transition to the higher energy state E1/2. Note that the frequency o0 is twice the Larmor frequency oL.

If we apply H¼1weber/m2, then o0�30000 Mc/s.

In the discussion above, only a single electron per atom is assumed, but in general there are a number of electrons in an

atom of a solid. Therefore, the resonance frequency is affected by the following interactions:

1. Electron-electron interactions modify the resonance process.

2. The interaction of nuclear magnetic moments with the electronic magnetic moments affects the electron energy levels.

One can say that the nuclear spin can take 2I+1 orientations in the magnetic field and each of these alters the electron

energy levels by different amounts (hyperfine interaction).

These interactions, therefore, broaden a resonance line into a resonance peak, as shown in Fig. 21.9. If the electron-electron

and electron-nucleus interactions are small compared with the splitting of the energy levels of a single electron, then they

can be treated as a perturbation to find the resultant electron states. Thus, one can find the width of the resonance peak.

Other effects, such as the inhomogeneous local electric fields arising from impurities and other crystal defects, also change

the position of the resonance lines. ESR is observed only in those solids in which each atom has unpaired electrons so as to

yield finite electron spin (e.g., paramagnetic substances) because the paired electrons in the valence band produce no effect.

Therefore, ESR is often called electron paramagnetic resonance (EPR).

21.10 HYPERFINE INTERACTIONS

So far, we have studied NMR in which the nuclear energy levels are calculated in the presence of mutually perpendicular dc

and rf magnetic fields. But in a solid there are electrons revolving around every nucleus that possess finite magnetic

moment. Therefore, additional interactions exist between the magnetic moments of electrons and nuclei, usually called

hyperfine interactions, which cause further splitting of the nuclear energy levels.

The motion of electrons around the nucleus produces a finite magnetic field with the following contributions:

1. The electrons revolving around the nucleus are equivalent to current loops, which produce a finite magnetic field at the

nuclear site.

2. The spinning motion of electrons yields spin current about the nucleus. The spin current produces what is called a

contact hyperfine interaction. Even if quenching of the orbital angular momentum, and hence of the orbital magnetic

moment, occurs, there will be a finite contact hyperfine interaction. Therefore, the contact hyperfine interaction is of

special importance in such solids.

The net magnetic field arising from these two contributions interacts with the nucleus to produce the hyperfine interaction.

If the hyperfine interaction is small compared with the splitting of the nuclear energy levels, it may be treated as a per-

turbation in the nuclear resonance phenomenon. The interaction Hamiltonian H
_

sI between the nuclear magnetic moment

and the magnetic moment of the electron can be represented as

H
_

sI ¼ asI s � I (21.90)

FIG. 21.9 The energy absorption at the resonance frequency n0, which broadens into a resonance peak.
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where I and s are the nuclear and electron spins and asI is the hyperfine constant. The energy eigenvalues of Eq. (21.90) are

given by

EsI ¼ asImIms (21.91)

The electron spin quantum number ms has two values,�1/2. For a nucleus with I¼1/2 the quantum number mI also has two

values �1/2. According to Eq. (21.91), each electron state gets split up into two states with mI¼ �1/2, giving rise to four

states as shown in Fig. 21.10. The transitions between the four states take place by satisfying the following selection rules

DmI ¼ 0, Dms ¼�1 (21.92)

The allowed transitions yield two resonance lines, as shown in Fig. 21.10.

21.11 KNIGHT SHIFT

Consider a diamagnetic material with nuclear spin I to which the magnetic field H is applied in the z-direction, that is,

H¼ î3H. The magnetic interaction Hamiltonian is given by

H
_

M ¼�gIħHIz (21.93)

When an rf magnetic fieldH0 is applied in the direction perpendicular toH, nuclear resonance absorption is observed at the

Larmor frequency oL¼gIH. Now consider a metallic solid with the same nuclear spin I to which the same magnetic field

H0 is applied in the xy-plane. It is found that nuclear resonance absorption in the metallic solid is observed at a slightly

different value of the dc magnetic field. This effect is known as the Knight shift and it yields knowledge about the distri-

bution of conduction electrons in a metal. In a metallic solid there exists, in addition, the hyperfine interaction given by

H
_

sI ¼ asI Iz szh i (21.94)

where hszi is the average value of the conduction electron spin in a metal. The total interaction Hamiltonian in a metallic

solid is the sum of the two Hamiltonians given by Eqs. (21.93), (21.94), that is,

H
_¼H

_

M +H
_

sI ¼ �gIħH+ asI szh i½ � Iz (21.95)

hszi is related to the Pauli spin susceptibility wP of the conduction electrons as

Mz ¼DnsgsmB szh i¼ wPH (21.96)

where Dns is the difference of the up and down spin densities per unit volume. From the above equation hszi is given by

szh i¼ wP
DnsgsmB

H (21.97)

Substituting Eq. (21.97) into Eq. (21.95), we obtain

H
_¼� gIħH 1�K½ � Iz (21.98)

FIG. 21.10 Splitting of an electron state, in a nucleus with spin I ¼ ½, into four states in the presence of hyperfine interactions. Two transitions with

frequencies o1 and o2 are allowed by the selection rules.
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where

K¼�DH
H

¼ asI wP
gIħDnsgsmB

(21.99)

The energy corresponding to the Hamiltonian given by Eq. (21.98) becomes

E¼� gIħH 1�K½ �mI (21.100)

Here the constant K is called the Knight shift and gives the fractional change in magnetic field due to the presence of

conduction electrons in a metal. It is also a measure of the shift in energy and hence the resonance frequency. The constant

asI depends on the electron density at the nuclear site, that is, j c(0) j2 where jc(r)i is the electron wave function and the

nucleus is assumed to be situated at the origin. Therefore, by making a reasonable estimate of the hyperfine coupling

constant asI, one can get information about the conduction electron density at the nuclear site. The Knight shift K can

be measured experimentally and from it one can find wP (see Eq. 21.99).

21.12 QUADRUPOLE INTERACTIONS IN MAGNETIC RESONANCE

If a nucleus is not spherical in shape, which is the case in general, it possesses a multipole character, that is, it has a dipole

moment, quadrupole moment, etc. A nucleus having spin I greater than or equal to one possesses a quadrupole moment

whose ab-component can be defined as

Qab ¼
ð

3 ra rb� r2dab
� �

rN rð Þd3r (21.101)

where rN(r) is the nuclear charge density. The diagonal components of the quadrupole moment tensor are defined as

Qxx ¼
ð

3x2� r2
� 	

rN rð Þd3r,Qyy ¼
ð

3y2� r2
� 	

rN rð Þd3r (21.102)

Q¼Qzz ¼
ð

3 z2� r2
� 	

rN rð Þd3r (21.103)

The quadrupole moment of a nucleus Q is usually defined by the z-component of the quadrupole tensor.

Problem 21.3

Prove that the quadrupole moment of a nucleus with spherical shape is zero.

Consider a nucleus, situated at the origin, in a solid that experiences crystal potential V(r). If the energy of the nucleus is

expanded in terms of multipoles, we get

E¼ qV 0ð Þ�
X
a

paEa 0ð Þ +
1

6

X
a,b

QabVab 0ð Þ+⋯ (21.104)

This equation shows that the nuclear charge interacts with the crystal potential, the nuclear dipole moment interacts with the

derivative of the crystal potential (electric field E¼ �rV), and the nuclear quadrupole moment interacts with the double

derivative of the crystal potential Vab(0). The quantity Vab(0) is usually called the electric field gradient. From the equation

above the quadrupole interaction energy is given by

EQI ¼
1

6

X
a,b

QabVab 0ð Þ (21.105)

The quantum mechanical expression for the Hamiltonian of the quadrupole interactions H
_

QI in terms of the principal com-

ponents of the electric field gradient , that is, Vaa(0), is given by (Galsin, 2002)

H
_

QI ¼
eQ

4I 2I�1ð Þ Vzz 3I2z � I2
� 	

+ Vxx�Vyy

� �
I2x� I2y

� �h i
(21.106)
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If, for simplicity, the electric field gradient is assumed to be cylindrically symmetric, then the field gradient eq is

defined as

eq¼Vzz, Vxx ¼Vyy (21.107)

Therefore, for a cylindrically symmetric field gradient H
_

QI becomes

H
_

QI ¼
e2qQ

4I 2I�1ð Þ 3I2z � I2
� 	
 �

(21.108)

The total Hamiltonian of a nucleus in the presence of both a magnetic dipole and a quadrupole moment becomes

H
_¼H

_

M +H
_

QI

¼�gImBp I �H +
e2qQ

4I 2I�1ð Þ 3I2z � I2
� 	 (21.109)

In a number of metals and their alloys, the Zeeman splitting is large, at least 10 times larger than the quadrupole splitting. In

such crystalline solids, the quadrupole interactions can be treated as a perturbation. If the magnetic field is applied along the

z-direction, that is, along the direction of the principal component of the electric field gradient, then Eq. (21.109) can be

written as

H
_¼�gImBpHIz +

3e2qQ

4I 2I�1ð Þ I2z �
I2

3

� �
(21.110)

The energy eigenvalue of the nucleus corresponding to the Hamiltonian given by Eq. (21.110) is

EmI
¼ E0

mI
+ E1

mI

¼�gImBpHmI +
3 e2qQ

4I 2I�1ð Þ m2
I �

1

3
I I + 1ð Þ

� �
(21.111)

The first term in Eq. (21.111) gives the equally spaced 2I +1 nuclear sublevels due to the Zeeman splitting. The second

term gives the first-order contribution to the energy due to the quadrupole interactions and further shifts the energy levels.

For a nucleus with I¼1/2, there are two Zeeman levels with mI¼ �1/2. The quadrupole interaction term is zero for

mI¼ �1/2. Hence, for a nucleus with I¼1/2, there is no splitting due to the quadrupole interactions and the transition

frequency remains unchanged, that is, nL. For a nucleus with I¼3/2, Eq. (21.111) gives

EmI
¼�gImBpHmI +

e2qQ

4
m2

I �
5

4

� �
(21.112)

The term (mI
2�5/4) is �1 for mI¼ �1/2 and +1 for mI¼ �3/2; therefore, Eq. (21.112) can be written as

EmI
¼�gImBpHmI + �1ð Þ mIj j + 1=2 e2qQ

4
(21.113)

The magnetic sublevels for I¼1/2, 3/2 in the presence of quadrupole interactions are shown in Fig. 21.11. From the figure it

is evident that for I¼3/2 the spectrum becomes asymmetrical about the centroid due to the presence of quadrupole

interactions.

21.12.1 Nuclear Quadrupole Resonance

If the applied magnetic field is very small, then the Zeeman splitting is quite small compared with the quadrupole splitting.

Therefore, the Hamiltonian corresponding to the Zeeman energy can be treated as a perturbation with respect to the Ham-

iltonian for the quadrupole interactions. In the limit of zero magnetic field, the total Hamiltonian reduces to the quadrupole

interaction Hamiltonian HQI and it is called pure nuclear quadrupole resonance (NQR). So, for NQR the Hamiltonian, from

Eq. (21.109) becomes

H
_¼H

_

QI ¼
e2qQ

4 I I + 1ð Þ 3I2z � I2

 �

(21.114)
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The energy eigenvalues for the Hamiltonian in Eq. (21.114) are given by

EmI
¼ hnmI

¼ e2qQ

4I 2I�1ð Þ 3m2
I � I I + 1ð Þ
 �

(21.115)

Eq. (21.115) exhibits twofold degeneracy of energy levels due to the quadrupole interactions: energy levels with Iz¼ �mI

have the same energy. The quadrupole splitting of the energy levels for nuclei with I ¼ 1/2, 3/2, and 5/2 is shown in

Fig. 21.12. It is evident from the figure that there is no quadrupole splitting in a nucleus with I ¼ 1/2. It becomes finite

if I is equal to or greater than one. Further, if the magnetic field is finite but very weak, the doubly degenerate levels split up

but lie very close to each other. Transitions between the split nuclear levels occur according to the selection ruleDmI¼ �1.

These transitions can be induced by applying an rf magnetic field of the correct frequency.

There are a number of other resonance processes also, such as ferromagnetic resonance, spin wave resonance, and anti-

ferromagnetic resonance.

FIG. 21.11 Quadrupole interaction (QI) in the presence of a magnetic interaction (MI) in a nuclear system with symmetry axis parallel to the applied

magnetic field H for (A) I¼1/2 and (B) I¼3/2.

FIG. 21.12 Energy level splitting in the pure quadrupole interaction (QI) for (A) I¼5/2, (B) I¼3/2, and (C) I¼1/2.
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21.13 FERROMAGNETIC RESONANCE

In a ferromagnetic solid the magnetization and susceptibility are large. In these solids the shape and structure of the

specimen is important in determining the magnetization or the internal magnetic field and hence the resonance frequency.

For example, in a solid (having cubic symmetry) in the form of a sphere, the resonance frequency o0 is given by

o0 ¼ gIH (21.116)

If the solid is in the form of a plate with an applied magnetic field H perpendicular to the surface of the plate, then one gets

o0 ¼ gI H�4pMð Þ (21.117)

21.14 SPIN WAVE RESONANCE

Consider a thin film of a ferromagnetic solid as in the previous section. The condition for a spin wave in the thin film can be

achieved if the spins on the surface of the film experience different anisotropic fields than the spins within the film. Suppose

a uniform magnetic field is applied perpendicular to the surface of the film, then the spins on the surface are pinned by

surface anisotropic interactions. The field will excite the waves with an odd number of half wavelengths within the

thickness of the film. This is called the spin wave resonance (SWR). The condition for the SWR is obtained by adding

the exchange contribution, represented as DK2, to Eq. (21.117) to write

o0 ¼ gI H�4pMð Þ+DK2 (21.118)

Here K¼np/L for the mode of a wave with n half wavelengths.

21.15 ANTIFERROMAGNETIC RESONANCE

In an antiferromagnetic solid, one can use the two-sublattice model to study the antiferromagnetic resonance. If the mag-

netic field is applied in the z-direction (HA is the magnetic field for sublattice A and �HA for sublattice B), then the res-

onance condition becomes

o2
0 ¼ g2I HA HA + 2HEð Þ (21.119)

where HE is the exchange magnetic field given by

HE ¼ lAAMA (21.120)

MA is the magnetization in the sublattice A.
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In normal metals the resistivity depends on two interactions: electron-ion (electron-phonon) and electron-electron inter-

actions. The major contribution to resistivity in metals comes from electron-phonon (e-p) interactions. The e-p interaction

decreases linearly with a decrease in temperature due to the linear decrease in the number of phonons with temperature.

Therefore, the resistivity in metals decreases linearly with a decrease in temperature and approaches zero at absolute zero.

In other words, one can say that the conductivity in metals increases linearly with a decrease in temperature and goes to very

high values at absolute zero. Onnes (1911) studied the properties of solids at low temperatures and found that the resistivity

of Hg decreased suddenly to very small values at T�4.2K. In other words, the conductivity of Hg increased suddenly by a

very large amount at a particular temperature Tc called the critical temperature. His original measurements on Hg are shown

in Fig. 22.1. Due to the large increase in conductivity, the state of the metal below Tc is called the superconducting state and
the metal in this state is called a superconductor. The phenomenon of a sudden and large increase in conductivity at Tc is

called superconductivity. Since the discovery of superconductivity, scientists have made efforts to increase the value of Tc.

The highest value of Tc that has been reached in pure elements is�9.26K in the case of Nb. In an effort to further increase

Tc, a number of alloys and compounds that exhibit superconductivity have been synthesized. The highest Tc that had been

reached up until 1973 was 23.2K in the case of Nb3Ge. Fig. 22.2 shows the increase in Tc over time. As seen in the figure,

until 1986 the increase in Tc per year was about 0.25K. In 1986, a new class of superconductors, usually called high- Tc

superconductors, was discovered, in which the value of Tc suddenly increased. These materials then became a subject of

great interest for scientists.

22.1 EXPERIMENTAL SURVEY

22.1.1 Electrical Properties

In a superconductor the electrical resistivity decreases greatly at or below Tc and it is not certain whether the electrical

resistivity is exactly zero or very close to zero. For this reason, persistent electrical currents have been observed to flow

for several years in superconductors. The decay of supercurrents has been studied in a solenoid of Nb0.75Zn0.25 using a
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precision NMR method in which the magnetic field associated with the supercurrent was measured. It was found that the

decay time of the supercurrent is not less than 105 years. In some superconducting materials, particularly those used for

making superconducting magnets, finite decay times are observed because of an irreversible redistribution of magnetic flux

in thesematerials. The superconducting state is known to be an ordered state of the conduction electrons of the metal and the

order is in the formation of loosely bound pairs of electrons below Tc (discussed in detail later).

22.1.2 Magnetic Properties

The magnetic properties shown by superconductors are just as dramatic as their electrical properties. In 1933, Meissner and

Ochsenfeld discovered that a superconductor invariably expels all the magnetic flux penetrating it. When a specimen is first

placed in a magnetic field and cooled through the Tc for superconductivity, the magnetic flux originally present in the

specimen is ejected out of the specimen (see Fig. 22.3). This is called the Meissner effect. The more important aspect

of the Meissner effect is the discovery of the fact that the magnetic field penetrates a small distance into the specimen near

the surface, generally several hundred to several thousand angstroms. Hence, one cannot characterize superconductivity as

a state of perfect diamagnetism.

22.1.3 Thermal Properties

22.1.3.1 Entropy

Entropy is a measure of disorder in a system. In a normal metal the entropy decreases linearly with decreasing temperature

T. But in a superconductor the entropy decreases markedly on cooling below Tc. The entropy for a metal in the normal state

Sn and superconducting state Ss is shown in Fig. 22.4. The lower value of entropy below Tc indicates that the supercon-

ducting state is more ordered than the normal state. So, some or all of the electrons thermally excited in a normal metal are

ordered in a superconductor.

22.1.3.2 Specific Heat

The specific heat at constant volume of a normal metal Cn is usually the sum of two contributions, one from the lattice C‘

and the other from the conduction electrons Ce. At low temperatures it may be expressed as (see Eq. 8.133)

Cn ¼Ce +C‘ ¼ geT + b‘T
3 (22.1)

where ge and b‘ are constants. The constant ge is a measure of the density of electron states at the Fermi energy (see

Eq. 9.107). The properties of the lattice are assumed to be the same in both the normal and the superconducting states.

Although this assumption has never been proved rigorously, it appears to be valid on the basis of a determination of

the Debye-Waller factor in normal and superconducting states of Sn by means of the Mossbauer effect. Therefore, only

FIG. 22.1 Temperature variation of the resistance R of the

metal Hg. The transition from the normal to the supercon-

ducting state takes place at Tc�4.2K. (Modified from Onnes,

H. K. (1911). The superconductivity of mercury (pp. 122–124).
Leiden: Communications Physics Laboratory, University of

Leiden.)
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the electronic contribution to the specific heat in the superconducting and the normal states, denoted by Ces and Cen, respec-

tively, is considered here.

The electronic specific heat shows two striking features when the transition from the normal to the superconducting state

occurs in zero magnetic field. First, there is a discontinuous jump in the specific heat at Tc with Ces Tcð Þ� 3Cen Tcð Þ and
then for T<Tc, Ces decreases exponentially to zero at T¼ 0 (see Fig. 22.5A). The specific heat of a superconductor can be

fit into an expression of the form

Ces ¼Ce�D=kBT (22.2)

where D is a parameter that is related to the energy gap produced in a superconductor. Fig. 22.5B shows a plot of ln(Ces/

geTc) as a function of Tc/T, which is linear with negative slope. This behavior was first clearly demonstrated by Keeson and

Kok in Sn and was later observed in other superconductors. It is a transition of the second order because it is characterized

by a jump in the specific heat and no latent heat is involved in the transition. If a magnetic field is applied to the material, the

transition to the superconducting state occurs at T<Tc and latent heat is associated with the transition, corresponding to the

absorption of heat when the sample goes to normal. It is a first-order phase transition.

FIG. 22.2 The increase in Tc of a superconductor with time (in years) since the discovery of superconductivity. (Modified from Bednorz, J. G., &Muller,

K. A. (1988). Perovskite type oxides–The new approach to high Tc superconductivity. Reviews of Modern Physics, 60, 585–600.)
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In insulators, the energy gap is a lattice property. It arises due to the difference between the binding energies of the two

atomic states, which are strongly modified by the periodic arrangement of the atoms in a lattice. In normal metals, the lattice

effects completely overwhelm the difference in binding energies of the atomic states, yielding no energy band gap. On the

other hand, in superconductors, the energy band gap is an electronic property and is tied to the Fermi electron gas. Just as in

the case of insulators, it may be expected that the superconducting energy gap is due to some kind of binding energy

between the electrons. The existence of an attractive interaction between two electrons with equal and opposite momenta

and opposite spins forms an electron pair. The binding energy required to bind two electrons of opposite spins in a pair is

taken from the system itself, thereby decreasing the highest filled energy level of the system. This gives rise to a finite

energy gap. One can also argue that the electrons forming bound pairs behave as bosons and, therefore, can be accommo-

dated in fewer states, giving rise to a finite energy gap in the system.

The argumentD in the exponential of the specific heat (Eq. 22.2) is found to be one-half of the energy gap. The variation

of the specific heat of Ga is given by Eq. (22.2) withD� 1:4 kBTc. Thus, the gap is Eg ¼ 2D¼ 2:8kBTc, which comes out to

be 1:6�10�4 eV. The parameter D(T) depends on temperature and its temperature dependence is given as follows:

D Tð Þ¼D 0ð Þ 1� T

Tc

� �1=2
(22.3)

Fig. 22.6 shows the variation of D(T)/D(0) with T/Tc.

FIG. 22.4 Entropy, both in the normal state Sn and the superconducting state Ss, as a function of temperature T.

FIG. 22.3 (A) The appliedmagnetic fieldH in the normal

state (T>Tc) penetrates a solid, producing magnetization

in it and thus generating magnetic induction B inside the

solid. (B) The magnetic field is expelled out of the solid

in the superconducting state with T<Tc.
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22.1.4 Isotopic Effect

It has been observed that the Tc of a superconductor varies with isotopic massM, that is, Tc is different for different isotopes

of a superconducting material. In Hg, Tc varies from 4.185 to 4.146K with a variation of atomic mass M from 199.5 to

203.4amu. Further, Tc changes smoothly when different isotopes of the same element are mixed together. Fig. 22.7 shows

that log10Tc varies linearly with log10M with a slope of �a for Hg. In other words,

log10Tc ¼�a log10M (22.4)

Taking the antilogarithm, the above equation gives

Tc ¼M�a (22.5)

The dependence of Tc on the isotopic mass M allows us to draw the very important conclusion that lattice vibrations and

hence electron-ion interactions may play an important role in superconductivity.

FIG. 22.5 (A) The electronic contribution to the specific heat Ce as a function of temperature both in the normal state (Cen) and the superconducting state

(Ces). (B) ln (Ces/geTc) as a function of Tc/T in the superconducting state.
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22.2 OCCURRENCE OF SUPERCONDUCTIVITY

Superconductivity occurs in many metallic elements, their alloys, and in intermetallic compounds. At present, the range of

transition temperature extends from about 23K for the alloy Nb3Ge to 0.01K for the semiconductor SrTiO3, excluding the

high-Tc copper oxide superconductors. In many metals, superconductivity has not been found down to a temperature of 1K.

For example, in Li, Na, and K metals, superconductivity has not been found even at 0.08, 0.09, and 0.08K, respectively.

Similarly, Cu, Ag, and Au are normal metals down to 0.05, 0.35, and 0.05K, respectively. The semiconductors Ge and Si

are also found to be in the normal state even at 0.05 and 0.07K, respectively. Theoretically, it has been predicted that if Na

and K are superconductors at all, their Tc will be much less than 10�5 K at a pressure of 110kilobars, after several phase

transformations.

FIG. 22.6 The energy gap parameter D(T)/D(0) as a function of T/Tc.

FIG. 22.7 log10Tc as a function of log10M of isotopic mass in Hg metal.
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It is not known whether every nonmagnetic element will become a superconductor at sufficiently low temperature.

Experimentally, it is found that even trace quantities of foreign paramagnetic elements can lower Tc severely. Pure Mo

becomes a superconductor at Tc ¼ 0:92K. Experimentally, it has been observed that a few parts per million (ppm) of

Fe destroys the superconductivity of Mo completely. Further, one atomic percent of Gd lowers the Tc of La from 5.6

to 0.6K. Nonmagnetic impurities do not have much effect on Tc, although they may affect the behavior of the supercon-

ductor in strong magnetic fields.

None of the monovalent metals, except Cs under pressure, is known to be a superconductor. Further, none of the fer-

romagnetic metals and none of the rare-earth metals except La (which has an entirely empty 4f electron shell) are

superconductors.

22.3 THEORETICAL ASPECTS OF SUPERCONDUCTIVITY

22.3.1 Failure of Ohm’s Law in Superconductors

According to Ohm’s law

E¼ rJ (22.6)

In a superconductor the resistivity r goes to zero, while the current density J is held finite. Therefore, from Eq. (22.6), the

electric field E should go to zero at and below Tc. One of the Maxwell equations relating E and B is written as

r�E¼�1

c

∂B

∂t
(22.7)

Substituting E¼ 0 into Eq. (22.7), one gets

∂B

∂t
¼ 0 (22.8)

The above equation says thatB is constant in time. This, in turn, implies that the electrodynamic state of a superconductor is

a function of its past history. This can be understood through the following examples. Consider two experiments A and B as

shown in Fig. 22.8. In experiment A, the superconductor is first cooled below Tc and then placed in a magnetic field. As the

magnetic induction within the superconductor must remain the same with time, it follows that no magnetic flux will pen-

etrate into the superconductor. Therefore, the magnetic lines of force must bend away from the superconductor.

In the second experiment B, the opposite situation is presented. Here the specimen in the normal state is first placed in

the magnetic field and then cooled below Tc. As a result, magnetic flux will now be frozen inside the superconductor. Thus,

FIG. 22.8 According to Ohm’s law, the behavior of a magnetic field in a solid exhibiting superconductivity when (A) the temperature of the solid is first

reduced below Tc and then the magnetic fieldH is applied. (B) the solid is first placed in the magnetic fieldH and then the temperature is reduced below Tc.
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according to Ohm’s law, the specimen can exist in two different states with the same external conditions, which is not

allowed physically as the system must have a unique equilibrium state. In other words, this means that Ohm’s law is

not valid in a superconductor. It is for this reason that many theorists felt, prior to the discovery of the Meissner effect,

that a successful theory of superconductivity would not be forthcoming.

Meissner and Ochsenfeld proved that the magnetic flux expulsion is reversible, that is, experiments A and B result in the

same final state, as demonstrated in Fig. 22.9. Therefore, theMeissner effect showed that superconductivity is a state of true

thermodynamic equilibrium, that is, the superconducting state is a single-valued function of H and T.

22.3.2 London Theory

London, for the first time, studied the electrodynamics of superconductors. He gave a two-fluid theory in which the elec-

trons are classified into two categories: normal electrons and superelectrons. The normal electrons form a normal fluid with

density nn and the superelectrons form a superfluid with density ns. The electrons in the normal fluid possess normal prop-

erties, that is, they respond to an external field in approximately the same way as electrons in a normal metal. On the other

hand, the electrons locked in the superfluid are endowed with rather remarkable properties. For example, the persistent

current in a superconductor is due to the flow of superelectrons because they experience no resistance. The equation of

motion of superelectrons with mass me and charge �e in the presence of an electric field E is

F¼me _vs ¼ � eE (22.9)

which gives

_vs ¼� e

me

E (22.10)

where vs is the velocity of the superelectrons. The current density due to the flow of superelectrons is given by

Js ¼�nsevs (22.11)

Therefore, the derivative of the supercurrent density becomes

_Js ¼�nse _vs (22.12)

FIG. 22.9 The behavior of the magnetic field in the two cases presented in Fig. 22.8 according to the Meissner effect.
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Substituting _vs from Eq. (22.10) into Eq. (22.12), one gets

_Js ¼
nse

2

me

E (22.13)

The magnetic field B, inside the superconductor, can be expressed in terms of the vector potential A as

B¼r�A (22.14)

Substituting Eq. (22.14) into Eq. (22.7), we get

E¼�1

c

∂A

∂t
(22.15)

Substituting the value of E from Eq. (22.15) into Eq. (22.13), we get

_Js ¼�nse
2

mec

∂A

∂t
(22.16)

In a stationary frame of reference, the partial derivative of time is the same as the total derivative. Therefore, Eq. (22.16) can

be written as

d

dt
Js +

nse
2

mec
A

� �
¼ 0 (22.17)

The above equation gives

Js +
nse

2

mec
A¼C (22.18)

where C is a constant of integration independent of time. The main assumption of the London theory is that C is taken to be

zero for a superconductor, which gives

Js ¼�nse
2

mec
A (22.19)

The variation of B with distance can be studied from the Maxwell equation given by

r�B¼ 4p
c
Js (22.20)

This is nothing but Ampere’s law. Taking the curl of the above equation, we can write

r�r�B¼ 4p
c
r�Js (22.21)

In the above equation one can use the standard identity defined by

r�r�a¼r r � að Þ�r2a (22.22)

where a is a vector. So, Eq. (22.21) becomes

r2B¼�4p
c
r�Js (22.23)

Here we have used the Maxwell equation defined by

r �B¼ 0 (22.24)

Substituting Eqs. (22.19), (22.14) into Eq. (22.23), we get

r2B¼ 1

d2L
B (22.25)

where
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dL ¼
mec

2

4pnse2

� �1=2

(22.26)

Consider a superconductor with one of its faces parallel to the y-axis (see Fig. 22.10). If we apply a magnetic field parallel to

the face of the superconductor, then its variation along the x-direction, from Eq. (22.25), is given by

d2B

dx2
¼ 1

d2L
B (22.27)

The solution of Eq. (22.27) is given by

B xð Þ¼B 0ð Þ e�x=dL (22.28)

for x�0. At x¼0, which corresponds to the face of the superconductor, the magnetic field is equal to the applied field

B(0) ¼ H, but at finite x inside the superconductor, the magnetic field decreases exponentially. At x¼dL,

B dLð Þ
B 0ð Þ ¼ e�1 (22.29)

The parameter dL measures the depth of penetration of the magnetic field and is known as the London penetration depth.

Therefore, the London theory explains the Meissner effect. It has been found experimentally that the value of dL for

Sn0.97I0.03 alloy increases to nearly twice its value for pure Sn. But according to Eq. (22.26), dL should change only slightly

because the addition of a very small impurity should only change the values of me and ns slightly. Therefore, one of the

shortcomings of the London theory is that the expression for dL does not give any indication at all that it changes signif-

icantly in dilute alloys.

Physical insight into the London equation can be obtained from the following simple consideration. Let n and v be the
density and velocity, respectively, of carriers with charge q. Then the current density is given by

J¼ nqv (22.30)

In the presence of magnetic field B, described by vector potential A, the momentum is given by

p¼mv+
q

c
A (22.31)

Substituting the value of v from Eq. (22.31) into Eq. (22.30), one gets

J¼ nq

m
p�nq2

mc
A (22.32)

FIG. 22.10 The exponential decay of magnetic field B(x)

on entering a superconducting solid. The dashed line gives

the London penetration depth dL in the solid.
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Eq. (22.32) can be reduced to the London equation by substituting p¼0, that is

J¼�nq2

mc
A¼� c

4p
A

d2
(22.33)

where

d¼ mc2

4pnq2

� �1=2

(22.34)

If the charge carriers are pairs of electrons with equal and opposite momenta, then these carriers possess charge q¼ �2e

and mass m¼ 2me, and their density is half that of the conduction electrons, that is, n¼ns/2. Substituting these values into

Eq. (22.33), one gets the same expression as given by Eq. (22.19) and the parameter d reduces to dL (Eq. 22.26). Eq. (22.19)

can be written as

Js ¼ � c

4p
A

d2L
(22.35)

Hence the London theory predicts the existence of electron pairs with equal and opposite momenta as the charge carriers in

a superconductor.

Problem 22.1

A monovalent metal has an electron density of 6:0�1022 electrons=cm3. Find the London penetration depth.

Problem 22.2

Consider a superconducting plate having thickness d such that d≪dL, the London penetration depth. If a magnetic field H is applied

parallel to the surface of the plate, find the magnetization produced inside the plate using the London equation.

22.3.3 Penetration Depth

It has been observed that a superconductor is a diamagnetic material; therefore, it prevents electric current from flowing

through the body of a material. But a superconductor cannot be a perfect diamagnetic material because, in this case, the

current would be confined to the surface only. If this were so, the current density would become infinite, which is physically

impossible. According to the Meissner effect the magnetic field penetrates the superconductor by a small distance near the

surface. As a result, the current flows in a very thin surface layer whose thickness is on the order of 10�5 cm, although the

exact value varies in different materials. Although this thickness is very small, it plays a very important role in determining

the properties of superconductors. The depth within which the current flows is called the penetration depth and it is this

depth to which the magnetic flux (magnetic field) appears to penetrate in a superconductor. The decrease in the flux density

inside a superconductor is shown in Fig. 22.10. The penetration depth in a superconductor is somewhat like the “skin depth”

to which high-frequency alternating fields penetrate in a normal metal. The penetration depth can be defined in a number of

ways, but the usual definition is given below. If, at a distance x into the metal, the flux density falls to a value B(x), the

penetration depth d can be defined as ð∞
0

B xð Þdx¼ dB 0ð Þ (22.36)

where B(0) is the flux density at the surface of the metal. In other words, there would be the same amount of flux inside the

superconductor if the flux density of the external field remained constant to a distance d into the metal. Because the pen-

etration depth is very small, we do not notice the flux penetration in magnetic measurements on ordinary-sized specimens.

The penetration depth d(T) does not have a fixed value but varies with temperature T as shown in Fig. 22.11. At low

temperatures, it is nearly independent of T with a value d0 that is characteristic of the particular metal. Above 0.8Tc, d

increases rapidly and approaches infinity as T approaches Tc. The variation of d(T) with T is described reasonably well

by the relation
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d Tð Þ¼ d0

1� T

Tc

� �4
" #1=2

(22.37)

Perfect diamagnetism, therefore, does not occur in specimens that are very close to their Tc values. The decrease in d(T) is,

however, very rapid as the temperature falls below Tc. The small departure from perfect diamagnetism would be extremely

difficult to detect in bulk specimens because of the difficulty of holding the temperature sufficiently constant during a

measurement.

22.3.4 Coherence Length

It has been seen that when a superconductor is cooled below Tc, some extra order sets in among the conduction electrons.

So, the idea that a superconductor can be regarded as consisting of two interpenetrating fluids, a normal fluid and a super-

fluid, has been introduced. The superelectrons in some ways possess greater order than the normal electrons, and the degree

of order can be related to their density ns. Considering several aspects of the behavior of superconductors, Pippard was led

to the idea that ns cannot change rapidly with position. An appreciable change in ns can occur within a distance on the order

of 10�4 cm for pure superconductors. This distance is generally called the Pippard coherence length xP.
An important property of xP is that it depends on the purity of the metal; the value 10�4 cm is representative of a pure

superconductor. If impurities are present, xP is reduced and, in the case of very impure metals, which are characterized by a

very short electron mean free path ‘e, xP becomes approximately equal to ‘e. The value of xP in a perfectly pure supercon-
ductor, which is an intrinsic property, is usually denoted by x0 and is a function of ‘e in superconductors containing

impurities.

To study the influence of impurity atoms (acting as scattering centers for the electrons) on the coherence length, Pippard

measured the penetration depth dP, generally called the Pippard penetration depth, as a function of ‘e and obtained the

results shown in Fig. 22.12. A rapid variation of dP begins when its value is comparable with the mean free path ‘e. Pippard
modified Eq. (22.35) due to London to write

Js ¼� c

4p
A

d2P
(22.38)

where dP is given by

dP ¼ dL
x0
xP

� �1=2

if x3P≪ x0d
2
L

¼ d∞ ¼ dL
31=6

2pð Þ2=3
x0
dL

� �1=3

if x3P≫ x0d
2
L

(22.39)

FIG. 22.11 The variation of penetration depth d(T) with T in a superconducting solid. d0 gives the penetration depth at absolute zero.
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The Pippard’s coherence length xP(‘e) is given by

1

xP ‘eð Þ¼
1

x0
+

1

bP‘e
(22.40)

xP(‘e) is fitted with the experimental results assuming x0¼1.2�10�4 and bP ¼ 0:8. Thus, Pippard’s model solved the long-

standing puzzle with dL, namely, why the measured penetration depths were always a few times larger than those computed

from dL for pure superconductors.

A basic point of the London theory was the absolute rigidity of the superconducting wave function in the presence of a

field. Pippard abandoned this point and suggested instead that the perturbing force acting at one point in the superconductor

would be felt over a distance xP(‘e). Conversely, the response at a point due to a spatially extended perturbation would be

obtained by integrating over a finite region surrounding that point. Thus, the coherence length is a measure of the distance

within which the gap parameter does not change drastically in a spatially varying magnetic field. Therefore, the coherence

length is a measure of the range over which we should averageA to obtain Js (see Eq. 22.38). One can compare the London

and Pippard theories by writing down their kernels as follows:

KL qð Þ¼ 1

d2L
(22.41)

KP qð Þ¼ 1

d2L

xP
x0

1�q2x2P
5

+⋯
� �

for qxP≪1

¼ 1

d2L

p
4qx0

1� 4

pqxP
+⋯

� �
for qxP≫1

(22.42)

where q � 1=lð Þ is the wave vector. KL(q) and KP(q) are kernels due to the London and Pippard theories. A comparison of

Eqs. (22.41), (22.42) shows that KL(q) is independent of q, while KP(q) varies with q. KP(q) goes over to KL(q) with a

modified penetration depth for qxP≪1 (xP≪l). This condition may be satisfied for q! 0, that is, at large distances.

The other limiting case of qxP≫1 (xP≫l) is obviously favored by ‘e!∞, leading to xP¼x0. We are thus led to the con-

clusion that there are two types of superconductors. The first is the Pippard type or type I superconductor having long mean

free paths and the second is the London type or type II superconductor with xP<l (qxP<1), exemplified by certain tran-

sition metals that have high Tc and, therefore, small x0, or superconducting alloys for which xPffi‘e<l.

22.3.5 Destruction of Superconductivity by Magnetic Field

Onnes found that a sufficiently strong magnetic field destroys superconductivity. The threshold or critical value of the

applied magnetic field for the destruction of superconductivity is denoted by Hc(T). The temperature variation of Hc(T)

follows Tuyn’s law, defined as

FIG. 22.12 The Pippard’s penetration depth dP as a function of the

electron mean free path ‘e.
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Hc Tð Þ¼Hc 0ð Þ 1� T

Tc

� �2
" #

(22.43)

Fig. 22.13 shows the variation of Hc(T) with temperature T. At Tc, the critical field Hc(Tc) is zero. The threshold curves

separate the superconducting state, in the lower left of the figure, from the normal state in the upper right. The detailed

Bardeen-Cooper-Schrieffer (BCS) theory showed that there are variations from Tuyn’s law, as shown in Fig. 22.14.

Problem 22.3

A superconducting metal, Sn has a critical temperature Tc¼3.7K at zero magnetic field and a critical field Hc of 310gauss at 0K.

Find the critical magnetic field at 2K.

22.3.6 Stabilization Energy

The stabilization energy of a superconducting state with respect to a normal state can be determined calorimetrically or

magnetically. The direct measurement of specific heat is made for a normal metal in finite magnetic fields and for a super-

conductor in zero magnetic field. The energy difference of the two measurements at absolute zero gives the stabilization

FIG. 22.14 The temperature variation of the deviation of Hc(T) from Tuyn’s law for Sn and Pb.

FIG. 22.13 The variation of Hc(T) with T for Pb and Hg metals.
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energy of the superconducting state. It is also possible to obtain the stabilization and free energies simply from the critical

value of the applied magnetic field Hc that destroys the superconducting state and brings the specimen to the normal state.

The first law of thermodynamics gives the conservation of total energy of the system. If dE is the change in the internal

energy of a system and dW is the work done by it, then the heat supplied dQ is given by

dQ¼ dE + dW (22.44)

The second law of thermodynamics gives

dQ¼TdS (22.45)

So, from Eqs. (22.44), (22.45), the first law of thermodynamics takes the form

dE¼TdS�dW (22.46)

The work done per unit volume by an applied magnetic field dH is

dW¼ M � dH (22.47)

where M is the magnetization. The applied field may be due to a permanent magnet, which is brought from infinity to the

position r. Substituting for dW in Eq. (22.46), we have

dE¼TdS � M � dH (22.48)

The magnetic induction B in the material is given by

B¼H + 4pM (22.49)

In a superconductor B is zero, which gives

M¼ � H

4p
(22.50)

From Eqs. (22.48), (22.50) one writes

dE¼TdS +
H � dH
4p

(22.51)

At absolute zero the increase in energy density of a superconductor in going from infinity to a position r, from the above

equation, becomes.

Es Hð Þ�Es 0ð Þ¼H2

8p
(22.52)

Now consider a normal nonmagnetic metal. If we neglect the small magnetic susceptibility of a metal in the normal state,

then M¼ 0 and the internal energy is independent of the field H. Therefore, the value of the internal energy in a normal

metal at H¼0 and H¼Hc are equal, that is,

En Hcð Þ¼En 0ð Þ (22.53)

Further, at Hc, the internal energies are equal in both the normal and superconducting states and one can write

En Hcð Þ¼Es Hcð Þ¼Es 0ð Þ+ H2
c

8p
(22.54)

The specimen is stable in either state when the applied field is equal to Hc. From Eqs. (22.53), (22.54) we have

DE¼En 0ð Þ�Es 0ð Þ¼ H2
c

8p
(22.55)

DE is called the stabilization energy density of the superconducting state of the specimen at absolute zero. As an example,

for Al metal Hc ¼ 105 gauss at T¼ 0, so the stabilization energy of Al metal is given by

DE¼ 105ð Þ2
8�3:142

¼ 440 ergs=cm3 (22.56)

which is in excellent agreement with the experimental result of 430ergs/cm3.
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22.3.7 Classification of Superconductors

Normal metals (excluding the ferromagnetic metals, such as iron) are virtually nonmagnetic so the magnetic induction B

inside them is linearly proportional to the applied field, that is,

B¼ mH (22.57)

Fig. 22.15 shows B as a function of H. The magnetic behavior of a superconductor can also be described in terms of the

magnetization M. A bulk superconductor behaves, in the presence of an externally applied magnetic field, as if the mag-

netic induction B is zero. In this case, the magnetization M is given by Eq. (22.50) and, therefore, the magnetic suscep-

tibility wM becomes

wM ¼M

H
¼ � 1

4p
(22.58)

The magnetic behavior of a superconductor can be described in another way. Substituting Eq. (22.49) into Eq. (22.57), we

find

m¼ 1 + 4pwM (22.59)

Substituting wM from Eq. (22.58) into Eq. (22.59), the permeability reduces to zero, that is,

m¼ 0 (22.60)

Therefore, the superconducting material can be considered to have zero permeability and hence the flux density inside the

material is zero. One can show that these two ways of describing perfect diamagnetism are entirely equivalent. Fig. 22.16

shows the variation of �4pM with H. Below the critical magnetic field Hc, �4pM is finite and varies linearly with the

magnetic field H as given by Eq. (22.58). At magnetic fields greater thanHc, the material is in the normal state with virtually

no magnetization. It is noteworthy that the magnetization curve is reversible. A superconductor that exhibits such behavior

is called a type I superconductor or a soft superconductor or an ideal superconductor or a pure superconductor. Type I

superconductors possess a sharply defined value of Hc. Type I superconductivity is shown by a specimen in the form

of a long solid cylinder placed in a longitudinal magnetic field. In other geometries, the field may not be homogeneous

around the specimen and it may penetrate below Hc. For example, in a sphere, the field penetrates at (2/3)Hc as a conse-

quence of the nonzero demagnetization factor of the sphere. Pure specimens of many materials exhibit this property.

The other superconducting materials exhibit magnetization curves of the form shown in Fig. 22.17 and are known as

type II superconductors or hard superconductors. In these superconductors the critical magnetic field is not sharply defined.

The magnetic flux starts penetrating at a field Hc1
, which is lower than the thermodynamic critical field Hc. For higher

values of magnetic field, the material is in a vortex or mixed state between Hc1
and Hc2

, which are the lower and upper

critical fields, respectively, and the magnetic flux B 6¼0. One can say that the Meissner effect is incomplete between

Hc1
and Hc2

, but the material has superconducting electrical properties up to Hc2
. Above Hc2

, the material is a normal

FIG. 22.15 The variation of magnetic induction B in a superconducting solid as a function of applied magnetic field H.
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conductor in every respect, except for possible surface effects. The value ofHc2
may be 100 times or more than the value of

Hc. Furthermore, the magnetization is not reversible and gives rise to what is called hysteresis. When the applied magnetic

field is switched off, there remains some finite magnetization in the material, giving rise to a residual flux density BR and

magnetization MR. Therefore, the material has trapped some magnetic flux and the superconductor behaves like a per-

manent magnet. The transition metals or alloys with high values of electrical resistivity in the normal state usually exhibit

type II superconductivity. A field Hc2
of 410kG has been attained in an alloy of Nb, Al, and Ge at the boiling point of He.

22.3.8 Persistent Currents

It has been observed experimentally that the electrical current in a superconducting material may persist for hundreds or

thousands of years. Several arguments can be given for the stability of the persistent current, but here we explain this fact

through analogy with electricity. Let us take a material in the form of a circular ring, as shown in Fig. 22.18A. It has got both

resistance R and inductance L and is equivalent to an electrical circuit, as shown in Fig 22.18B. Suppose current I0 is

allowed to flow through the ring at time t¼ 0 and then the current source is switched off. The equation for the flow of

current I at time t in the ring is given by

L
dI

dt
+RI¼ 0 (22.61)

Integration of the above equation gives

FIG. 22.16 A plot of �4pM as a function of applied magnetic field H in a type I superconductor. Hc is the critical magnetic field.

FIG. 22.17 A plot of �4pM as a function of applied magnetic field H in a type II superconductor. Hc1
and Hc2

are the critical magnetic fields.
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I¼ I0 e
�R
L
t (22.62)

Eq. (2.62) gives the decay of current I with time t. The factor L/R is called the time constant. In a superconductor, R is very

small and, therefore, the decay of current is very slow and persists for a long time, as is evident from Eq. (22.62). Hence, the

persistent current exists in a superconducting ring for a long time. An ammeter cannot be inserted in the superconducting

circuit to measure the current, but the magnetic field due to the current and its decay with time can be measured without

disturbing the circuit. From the decay of the magnetic field one is able to find the decay of the current in the circuit.

A closed circuit, such as a superconducting ring, has an important and useful property resulting from its zero resistance:

the total magnetic flux threading a closed resistanceless circuit cannot change. Suppose a ring of normal metal is cooled

below Tc in an applied magnetic field of uniform flux densityH. If the area enclosed by the ring is A, then the magnetic flux

linked with the ring is AH (see Fig. 22.19A). Suppose the applied field is now changed to a new value. By Lenz’s law, the

induced current produced in the ring is in such a direction as to create a magnetic flux inside the ring, which tends to cancel

the flux change due to the change in the applied field. The induced emf of magnitude �A(dH/dt) is related to the induced

current I as

�A
dH

dt
¼RI +L

dI

dt
(22.63)

In a superconducting circuit, however, R¼ 0 and so

A
dH

dt
+ L

dI

dt
¼ 0 (22.64)

Integrating the above equation, we find

LI +AH¼ 0 (22.65)

Here the constant of integration is assumed to be zero. Here LI is the flux linked with the ring due to the induced current I

and AH is the flux due to the applied magnetic field. So, according to Eq. (22.65), the total magnetic flux linked with the

superconducting ring is constant with time. If the applied magnetic field strength is changed, an induced current is set up of

such a magnitude that it creates a flux that exactly compensates the change in the flux from the applied magnetic field.

Because the superconducting ring is resistanceless, the induced current flows forever and the original amount of flux is

maintained indefinitely. Note that although the total amount of flux enclosed in a resistanceless circuit remains constant,

there can be a change in the flux density H at any point due to a redistribution of the flux within the circuit. In Fig. 22.19B

the flux density has become stronger near the wire and weaker in the center of the enclosed space compared with the

uniform distribution in Fig. 22.19A. In both cases, however, the total flux (
Ð
H �dA) is the same. This property can be used

to produce constant magnetic fields with the help of solenoids made from superconducting wires. The property of persistent

currents can be used to make superconducting switches.

FIG. 22.18 (A) Conducting wire in the form of a ring. (B) Equivalent circuit of the conducting ring with R and L as its resistance and inductance,

respectively.
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One can also consider a second case as follows. Suppose no magnetic field is applied initially and then the ring is cooled

down below Tc to become a superconductor. So, the magnetic flux linked with the superconducting ring is zero to start with.

Now, if an external magnetic field is applied, subsequently, the net internal flux remains zero in spite of the presence of the

external field. This property enables us to use hollow superconducting cylinders to shield enclosures from external mag-

netic fields. The shielding is perfect only in the case of a long hollow cylinder, in which case the induced currents generate a

uniform compensating flux density throughout the interior. For other cases, such as a short ring, it is only the total flux that

is maintained at zero and the local magnetic flux density generated by the induced current will not be uniform within the

ring. Hence, the flux density due to the persistent current will be stronger than that due to the applied field in some places

and weaker in other places, and there will not be an exact cancellation everywhere. In mathematical language one can writeð
A

H � dA¼ 0 (22.66)

where H itself may not necessarily be zero everywhere.

22.3.9 Thermodynamics of Superconductors

It has already been pointed out that the thermal properties, such as the entropy and specific heat, show anomalous features as

a normal metal makes the transition to the superconducting state. It has been observed that the state of magnetization of a

superconductor depends on the values of the applied magnetic field and temperature and not the way that they are applied.

This fact implies that whether or not there is an applied magnetic field, the transition from the superconducting to the

normal state is reversible in the thermodynamic sense. Therefore, one can apply thermodynamic arguments to a supercon-

ductor taking temperature and magnetic field strength as the thermodynamic variables.

FIG. 22.19 (A) Magnetic flux F linked with the normal conducting ring in the presence of a uniform applied magnetic field H. (B) Magnetic flux

redistribution in the ring in the superconducting state.
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In a normal sate, metal is nonmagnetic and the Gibb’s free energy is independent of the strength of the applied magnetic

field. So, the Gibb’s free energy in the normal state Gn(P,V,T) is given by

Gn P, V, Tð Þ¼E�TSn + PV (22.67)

where E and Sn are internal energy and entropy in the normal state of a metal. T, V, and P are the temperature, volume, and

pressure of the metal. In a solid, practically, the volume does not change, so the Gibb’s free energy is independent of volume

and one can write

Gn P, V, Tð Þ ¼ Gn P, Tð Þ (22.68)

At constant pressure, a small change in the Gibb’s free energy becomes

dGn ¼ dE�TdSn�SndT + PdV (22.69)

The first law of thermodynamics states that

dE¼TdSn�PdV (22.70)

Using Eq. (22.70) in Eq. (22.69), the change in the Gibb’s free energy becomes

dGn ¼�SndT (22.71)

Therefore, the Gibb’s free energy in a normal state becomes

Gn P, Tð Þ¼ �
ð
SndT (22.72)

Eq. (22.71) allows us to write the entropy as

Sn ¼� ∂Gn

∂T

� �
P

(22.73)

In the superconducting state of a metal, the Gibb’s free energy is also a function of the applied magnetic field. With the

application of a magnetic field H, magnetization M is produced in the superconducting material. The work done by the

magnetic field on the superconductor isM �H. Therefore, the work done by the superconducting material is the negative of

this, that is,�M �H. IfM andH are in the same direction, then the work done is�MHwhereM andH are the magnitudes of

M and H. Including the magnetic energy, one gets the Gibb’s free energy in the superconducting state as (see Eq. 22.67)

Gs P, T, Hð Þ¼E�TSs + PV�MH (22.74)

Here Ss is the entropy in the superconducting state. At constant pressure, the change in Gs is given by

dGs ¼ dE�TdSs�SsdT + PdV�MdH�HdM (22.75)

According to the first law of thermodynamics, the internal energy is given by

dE¼TdSs�PdV+HdM (22.76)

In Eq. (22.76), the work done due to the increase in the magnetic field in vacuum has been neglected. Using Eq. (22.76) in

Eq. (22.75), we get

dGs ¼�SsdT�MdH (22.77)

From the above equation the entropy in the superconducting state is given by

Ss ¼� ∂Gs

∂T

� �
p

�M
∂H
∂T

(22.78)

In a superconductor, the value of magnetization is given by Eq. (22.50). Substituting the value of M from Eq. (22.50) into

Eq. (22.77), we obtain

dGs ¼�SsdT +
1

4p
HdH (22.79)

The Gibb’s free energy in a superconducting material is obtained by integrating the above equation, that is,
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Gs P, T, Hð Þ¼�
ð
SsdT +

H2

8p
(22.80)

The first term gives the Gibb’s free energy of a superconductor in the absence of a magnetic field, written as Gs(P,T,0),

while the second term is the contribution due to an applied magnetic field. Therefore, Eq. (22.80) can be written as

Gs P, T, Hð Þ¼Gs P, T, 0ð Þ+ H2

8p
(22.81)

where

Gs P, T, 0ð Þ¼�
ð
SsdT (22.82)

The magnetic field dependence of Gs is shown in Fig. 22.20. At absolute zero a transition occurs from the superconducting

to the normal state at H¼Hc. Therefore, at T¼0K, Gs(P,0,Hc)¼Gn(P,0) and Ss¼Sn, that is, the entropy in the supercon-

ducting state becomes the same as in the normal state. It is noteworthy that Hc is a function of temperature. So, the dif-

ference in the Gibb’s energy at H¼0 and at H¼Hc at T¼0K is given by

DG¼Gs P, 0, Hcð Þ�Gn P, 0ð Þ

¼ �
ð
SndT +

H2
c

8p

� �
� �

ð
SndT

� �
(22.83)

which gives

DG¼ H2
c

8p
� 10�7 eV=electron (22.84)

(kBTc�10�4eV). It is, therefore, difficult to calculate DG because the difference is very small. Note that Eq. (22.84) is

equal in magnitude to the stabilization energy at Hc with T¼0K (Section 22.3.6).

22.3.9.1 Entropy

With the knowledge of the Gibb’s free energy, one can calculate entropy for both the normal and superconducting states. In

the normal state, the entropy Sn is given by Eq. (22.73), while in the superconducting state it is given by Eq. (22.78). But

here our interest lies in the discontinuity (abrupt change) in entropy at the normal-superconducting phase boundary. At the

phase boundary, Gn¼Gs and H¼Hc, therefore,

FIG. 22.20 Gibb’s free energy of a superconductor Gs(P,T,H) as a function of applied magnetic field H. At absolute zero the solid makes a transition

from the superconducting to the normal state at H¼Hc.
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dGn½ 	H¼Hc
¼ dGs½ 	H¼Hc

(22.85)

Substituting Eqs. (22.71), (22.79) into the above equation, we get

Ss�Sn ¼
1

8p
d

dT
H2

c (22.86)

Because the slope dHc/dT (see Fig. 22.13) is negative, Ss�Sn is negative. Therefore, the entropy in the normal state is

always greater than the entropy in the superconducting state. This shows that the superconducting phase is more ordered

than the normal phase.

Alternate Proof

The expression for entropy can also be derived in a slightly different way from Eq. (22.81) for the Gibb’s free energy of a

superconductor. At H¼Hc, the Gibb’s free energy of a superconductor becomes

Gs P, T, Hcð Þ¼Gs P, T, 0ð Þ+ H2
c

8p
(22.87)

which is equal to Gn(P,T). Therefore, the difference between Gs(P,T,H) and Gn(P,T) becomes

Gs P, T, Hð Þ�Gn P, Tð Þ¼ 1

8p
H2�H2

c

� 	
(22.88)

With the help of Eq. (22.73), the difference in entropies between the superconducting and normal states can be written as

Ss�Sn ¼� ∂

∂T
Gs�Gnð Þ

� �
P,H

(22.89)

Substituting Eq. (22.88) into Eq. (22.89), one can write

Ss� Sn ¼
1

8p
d

dT
H2

c (22.90)

which is the same as Eq. (22.86). Here H is assumed to be independent of T.

Problem 22.4

With the help of Eq. (22.86), prove that the temperature dependence of the change in entropy of a superconductor is described by

the expression

Ss�Sn ¼� Hc 0ð Þ½ 	2
2pT2c

T 1� T

Tc

� �2
" #

Further, calculate the value of Ss�Sn at T¼Tc/2.

22.3.9.2 Specific Heat

There are two contributions to the specific heat of a metal: the lattice contribution C‘ and the electronic contribution Ce (see

Eq. 22.1). One can prove that the lattice properties, such as the crystal structure and Debye temperature, do not change as a

metal becomes a superconductor. This means that C‘ must be the same in both the superconducting and normal states.

Hence, the discontinuous jump in the specific heat at Tc arises from the change in the electronic specific heat, that is,

Cs�Cn ¼Ces�Cen (22.91)

The discontinuous jump in the specific heat at Tc can also be explained from the behavior of the entropy. The specific heat is

defined by

C¼T
∂S
∂T

� �
V

(22.92)

From Fig. 22.4 it is evident that there is a sudden change in the entropy at Tc and that the entropy below Tc decreases faster

with respect to T in the superconducting state. In other words, the slope dS/dT increases as the transition from the normal to
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the superconducting state takes place. From this fact it is evident that some extra electron order must appear in the

superconducting state.

Here our interest lies in the electronic specific heat at the normal-superconducting phase boundary. The change in elec-

tronic specific heat is given by

Cs�Cn ¼T
∂

∂T
Ss�Snð Þ (22.93)

Using Eq. (22.86) in the above expression, one gets

Cs�Cn ¼
T

4p
dHc

dT

� �2

+Hc

d2Hc

dT2

" #
(22.94)

Eq. (22.94) gives the general expression for the change in specific heat in the presence of a magnetic field. Note that here the

temperature T is less than Tc. From Eq. (22.43), it is straightforward to write

dHc

dT
¼�2Hc 0ð Þ T

T2
c

,
d2Hc

dT2
¼�2Hc 0ð Þ

T2
c

(22.95)

Substituting the above derivatives along with the value of Hc(T) from Eq. (22.43) into Eq. (22.94), we get

Cs�Cn ¼
Hc 0ð Þ½ 	2
2pTc

3
T3

T3
c

� T

Tc

� �
(22.96)

Eq. (22.96) gives the temperature dependence of the change in electronic specific heat below Tc. At T¼Tc, the above

expression reduces to

Cs� Cn ¼
Hc 0ð Þ½ 	2
pTc

(22.97)

To estimate the jump in specific heat at Tc consider Al metal for which ge ¼ 1:35�104 ergs=molK2 in the normal state and

Tc ¼ 1:18K. At Tc, in the presence of magnetic field Hc 0ð Þ¼ 99gauss, one gets

DC
Cn

¼Cs�Cn

Cn

¼ Hc 0ð Þ½ 	2=pTc

geTc

¼ 0:17 (22.98)

22.3.9.3 First-Order and Second-Order Phase Transitions

It has been found that Sn is equal to Ss at Tc. Using Eq. (22.73) for entropy, one can write for the superconducting-normal

phase transition at Tc,

∂Gn

∂T
¼ ∂Gs

∂T
(22.99)

A phase transition is second order if both G and ∂G/∂T are continuous at the transition temperature. A second-order tran-

sition exhibits two important characteristics: first there is no latent heat involved and second there is a jump in the specific

heat at the transition. According to the second law of thermodynamics, heat is given by dQ¼TdS in a reversible process.

Therefore, a small change in latent heat dL for the superconducting-normal transition is given as

dL¼ dQð Þn� dQð Þs
¼T dSn� dSsð Þ (22.100)

Therefore, the latent heat L is given by

L¼T Sn�Ssð Þ (22.101)

The first characteristic follows from the fact that Ss¼Sn at Tc, yielding L¼ 0 at the transition. The second characteristic is

already proved by the fact that there is a discontinuous jump in specific heat at Tc. Therefore, the superconducting-normal

state transition is of second order.
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Though there is no latent heat when a metal undergoes the superconducting-normal transition in the absence of a mag-

netic field, the latent heat is finite in the presence of a magnetic field. Substituting the value of Sn�Ss from Eq. (22.86) into

Eq. (22.101), we find

L¼� 1

4p
T Hc

dHc

dT

� �
(22.102)

In the absence of a magnetic field, the transition occurs at Tc and Hc Tcð Þ¼ 0; hence, no latent heat is involved. In the

presence of an applied magnetic field the transition occurs at some lower temperature T at which Hc Tð Þ> 0. Thus, latent

heat arises because at temperatures between 0K and Tc, the entropy of the normal state is greater than that of the super-

conducting state. So, latent heat must be supplied if the transition is to take place from the superconducting-normal state at

constant temperature T. In the presence of an applied magnetic field, therefore, the superconducting-normal transition is

first order, that is, although G is continuous, ∂G/∂T is not.

22.3.10 Bardeen-Cooper-Schrieffer (BCS) Theory

A rigorous mathematical treatment of the Bardeen-Cooper-Schrieffer (BCS) theory (Bardeen, Cooper, & Schrieffer, 1957)

is not in the scope of this book as it requires knowledge of quantum field theory. Therefore, the BCS theory will be

described qualitatively. Let us first restate the problem of superconductivity. A microscopic theory of superconductivity

must be able to explain the following facts:

1. In superconducting materials there is a drastic change in the behavior of the conduction electrons, which is marked by

the appearance of long-range order (evident from the existence of positive surface energy) and a gap in their energy

spectrum1 (� 10�4 eV).
2. The crystal lattice does not show any change in its properties, but nevertheless plays an important role in establishing

superconductivity because Tc depends on the atomic mass (isotopic effect).

3. The transition from the superconducting to normal state is a phase transition of second order.

The long-range order noted in point 1 clearly means that the electrons must behave as if there were no interaction between

them and that they are randomly oriented. But the conduction electrons in a metal are known to interact strongly through the

Coulomb repulsive forces. It is surprising to note that the ordinary free-electron theory, in which the Coulomb repulsion is

neglected, works well in metals and semiconductors. Moreover, there is no knownmechanism by which the repulsive inter-

action can lead to an energy gap. On the other hand, an attractive interaction between the electrons can lead to an energy

gap. Further, to yield an energy gap of the correct order (�10�4 eV), the attractive interaction between the electrons should

be weak. The apparent lack of any mechanism for a weak attractive interaction between electrons is the main stumbling

block in the way of any microscopic theory of superconductivity.

22.3.10.1 Electron-Phonon Interactions

Electrons in a perfect lattice may be represented by waves, which, at absolute zero, propagate freely through the lattice

without any attenuation in the same way as an electric wave can pass along a lossless periodic filter without attenuation.

However, if the periodicity of the lattice were destroyed by thermal vibrations, then the electrons would interact with the

lattice, yielding a finite electron-ion (electron-lattice) interaction. It is this electron-ion interaction that determines the resis-

tivity of pure metals and semiconductors at room temperature. Because both the energy and momentum must be conserved

when an electron is scattered, one of the vibrational modes of the lattice must be excited in the scattering process. This

vibrational mode is quantized and an emission (or absorption) of a phonon takes place. Therefore, the electron-ion inter-

action is usually called the electron-phonon (e-p) interaction.

In 1950, Frohlich postulated the concept of an e-p interaction that is able to couple two electrons together in such a way

that they behave as if there were a direct interaction between them. In this interaction one electron emits a phonon, which is

then immediately absorbed by another electron. Frohlich was able to show that such an electron-phonon interaction could

give rise to a weak attraction between the electrons, which may lead to an energy gap of the right order of magnitude. The

Frohlich interaction is schematically represented in Fig. 22.21 in which the straight lines represent electron paths and the

1. It should be noted, however, that there is a very special category of the superconductor indium containing about 1% iron, which does not possess any

energy gap as revealed by tunneling experiments. It is believed that in these superconductors, the density of states at the Fermi level is minimum, but there

is no actual gap.
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wavy line represents a phonon. During the process of emission of a phonon, momentum is conserved, and this can be

written as

p1 ¼ p01 + q (22.103)

where p1 and p1
0 are the momenta of an electron at A before and after scattering and q is the phonon momentum (in units of

ħ), which is given in magnitude by q¼hnq/vs where nq is the frequency of the phonon with momentum q and vs the velocity

of sound. In the same way, when the emitted phonon is absorbed by the second electron at B, the momentum of the electron

changes from p2 to p2
0 such that

p2 + q¼ p02 (22.104)

Adding Eqs. (22.103), (22.104), we get

p1 + p2 ¼ p01 + p
0
2 (22.105)

Eq. (22.105) shows that momentum is conserved between the initial and final states, as expected. But the energy does not

have to be conserved between the initial and intermediate states, that is, the state in which the first electron has emitted a

phonon but the second electron has not yet absorbed it, or between the intermediate and final states. This is because there is

an uncertainty relationship between energy and time defined as

DEDt� ħ (22.106)

The lifetime of the intermediate state Dt is very short, which gives a very large uncertainty in energy DE. Therefore, the
energy does not have to be conserved in the emission and absorption processes. Such processes, in which energy is not

conserved, are known as virtual processes. The virtual emission of a phonon is possible only if there is a second electron

ready to absorb it almost instantaneously.

Let E1 and E1
0 be the energies of the first electron before and after the virtual emission of a phonon. The quantum

mechanical treatment of the process shows that if

E1�E2 ¼ hnq (22.107)

then the process of emission of a phonon and its subsequent absorption gives rise to an attractive interaction between the

two electrons. One can also view the whole process as follows: An electron interacts with an ion of the lattice through an

attractive electron-ion interaction. In this process an electron loses energy by emitting a phonon, which is immediately

absorbed by the lattice ion producing a distortion in the lattice. This lattice distortion is seen by another electron via

the electron-ion interaction and the lattice ion under consideration loses energy by emitting a phonon, which is immediately

absorbed by the second electron. This indirect electron-electron interaction via the ion is attractive in nature. Of course, the

Coulomb repulsive interaction between the two electrons also exists. But if the indirect electron-electron attractive inter-

action exceeds the repulsive Coulomb interaction, it yields a weak attractive interaction.

Using the e-p interaction, Frohlich predicted the isotopic effect before it had been discovered experimentally. The fact

that the e-p interaction is responsible for superconductivity also explains why superconductors are not good conductors in

the normal state, namely, because the e-p interaction is a measure of resistivity. For example, Pb with a reasonably high Tc

must have a fairly strong e-p interaction and, therefore, be a poor conductor at room temperature. On the other hand, noble

metals (Cu, Ag, and Au) are very good conductors at room temperature and, therefore, must be characterized by a weak e-p

interaction. It has been found that the noble metals do not become superconductors, even at the lowest temperature yet

attained.

FIG. 22.21 The Feynman diagram for the e-p interaction in a superconductor. p1 and p2 represent themomenta for two electrons before interaction, while

p1
0 and p2

0 are the corresponding momenta after interaction. Here q is the momentum (in units of ħ) of a phonon emitted at A and then instantaneously

absorbed at B.
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22.3.10.2 Cooper Pairs

Let us first consider a normal metal in which the conduction electrons are nearly free and individually possess energy E and

momentum p. The probability of occupation of a given energy state by an electron is given by the Fermi-Dirac distribution

function.

f E, Tð Þ¼ 1

e
E�EF

kBT + 1

(22.108)

where EF is the Fermi energy. At absolute zero, the Fermi-Dirac function takes the form of a step function, as shown by the

dashed line in Fig. 9.6. In the momentum space, the filled electron states lie in the Fermi sphere with radius pF where

pF¼ (2meEF)
1/2. Suppose two extra electrons are added to a metal at absolute zero. They are forced by the Pauli exclusion

principle to occupy states with p> pF, as shown in Fig. 22.22. Cooper has shown that if an attractive interaction between the

two electrons exists, however weak, they are able to form a bound state with a total energy less than 2EF. To prove this fact

some elementary ideas from quantum mechanics will be used here without performing a rigorous mathematical derivation.

Consider two noninteracting electrons with positions r1 and r2 and momenta p1 and p2. Let jc(r1,p1;r2,p2)i be the two
electron wave function that gives the probability that one electron is at r1, p1, while the other at r2, p2. jc(r1,p1;r2,p2)imay

be taken as the product of the single-electron wave functions jc(r1,p1)i and jc(r2,p2)i and can be written mathematically

as

c r1, p1; r2, p2ð Þj i¼ c r1, p1ð Þj i c r2, p2ð Þj i (22.109)

As the electrons are free, the wave functions will simply be plane waves or, more precisely, Bloch waves. If there is an

interaction between the pair of electrons, it causes repeated scattering of the electrons accompanied by changes in their

momenta. Therefore, the two-electron wave function becomes a mixture of the wave functions obtained after each scat-

tering, which comprise a wide range of momenta. The two-electron wave function then has the form

c r1, r2ð Þj i¼
X
i, j

aij c r1, pi; r2, pj


 ���� E

¼
X
i, j

aij c r1, pið Þj i c r2, pj


 ���� E (22.110)

The wave function jc(r1,r2)i gives the probability of finding an electron at r1 when there is another electron at r2 regardless
of their momenta. Further, jc(r1,r2)i contains wave functions jc(r1,pi)i and jc(r2,pj)i such that in each electron scattering
the individual momenta pi and pj are constantly changing but the total momentum is conserved, that is,

pi + pj ¼P (22.111)

where P is constant (Fig. 22.22). The element j aij j2 gives the probability of finding the electrons at any instant with indi-

vidual momenta pi and pj. In the actual scattering process, the electrons experience a mutual interaction potential. If the

FIG. 22.22 The Fermi sphere with radius pF in which all the states are filled. Two electrons are added to the free electron gas whose momenta p1 and p2
lie outside the Fermi sphere. These two electrons suffer interactions in which their momenta get changed to p1

0 and p2
0 in such a way that the total

momentum of the two electrons P remains unchanged.
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mutual interaction is attractive, then the potential energy resulting from it is negative. Hence, over a period of time during

which there are many scattering events, the energy of the two electrons decreases by the time average of this negative

potential energy and the amount of decrease is proportional to the number of scattering events that take place, that is, pro-

portional to the number of ways in which two terms can be chosen from the wave function jc(r1,r2)i. It is a good approx-
imation to assume that each scattering event contributes an equal amount of �V to the potential energy. In quantum

mechanical language, �V is the matrix element of the attractive interaction potential connecting the two electron states,

which have same total momentum P that is assumed to be independent of the individual momenta of the electrons.

So far nothing has been said about the nature of the interaction, apart from requiring it to be attractive. If it is the

electron-ion interaction arising from the actual emission and absorption of a phonon, it turns out from the detailed theory

that the probability of scattering is appreciable only if the energy deficit between the initial and intermediate states

(E1
0 +hnq�E1) is small, that is,

E1�E0
1 � hnq (22.112)

If two electrons are added to a metal at absolute zero, then they will individually possess energy greater than EF as all the

states up to EF are already filled: E1 and E1
0 are both greater than EF and, at the same time, E1�E1

0 �hnq. So, the lower
energy state between E1 and E1

0 lies within energy hnq of EF where nq is an “average” phonon frequency and is about half
the Debye frequency (see Fig. 22.23). The difference in energy is given by

E1�E0
1 ¼

p21
2me

� p021
2me

¼ hnq (22.113)

The above equation can be simplified to give

Dp¼mehnq
pF

(22.114)

where

Dp¼ p1�p01 (22.115)

p1 ¼ p01 � pF (22.116)

Therefore, the momenta p1 and p1
0 must lie within Dp of the Fermi momentum pF. Because the allowed values of pi and pj

satisfy Eq. (22.111), the allowed values of pi and pj will be in the shaded region of Fig. 22.24, that is, these momenta begin

or end in a ring whose cross section is the shaded region. The number of such pairs is proportional to the volume of this ring.

The volume (and hence the number of such pairs) becomes maximum when P¼ 0, in which case the ring becomes a

spherical shell of thickness Dp and Eq. (22.111) gives

pi ¼�pj (22.117)

FIG. 22.23 The Fermi sphere with radius EF is shown by the dashed line. The difference between the energies before interaction E1 and after interaction

E1
0 lie within energy hnq of the Fermi energy EF where nq is the phonon frequency.
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Thus, the largest number of allowed scattering processes, yielding the maximum decrease of the energy, is obtained by

pairing electrons with equal and opposite momenta. Further, a quantum mechanical treatment shows that if the two elec-

trons have opposite spins, then the matrix elements V are largest and, therefore, the decrease in the energy is maximum.

With the condition (22.117) the wave function jc(r1,r2)i with the lowest possible energy is given by (from Eq. 22.110)

c r1, r2ð Þj i¼
X
i

ai c r1, pi " ; r2, �pi #ð Þj i

¼
X
i

ai c r1, pi "ð Þj i c r2, �pi #ð Þj i
(22.118)

Here we have written ai instead of aii. The wave function j c(r1,r2)i describes what is known as a Cooper pair.
The total energy of an electron pair is the sum of the kinetic and potential energies. As the two electrons added to a metal

have p> pF, the kinetic energy of the electron pair is> 2EF (each electron has kinetic energy greater than EF). If the inter-

action between the electron pair is attractive, the resulting potential energy will be negative, thereby lowering the total

energy in comparison with the kinetic energy. In the case of a Cooper pair, the decrease in energy due to the attractive

interaction exceeds the amount by which the kinetic energy is in excess of 2EF. Thus, the total energy Ecp of a Cooper

pair is less than 2EF, which results in a small energy gap of magnitude equal to (1/2) (2EF�Ecp).

22.3.10.3 Generalization of Cooper Pair Formation

The problem treated by Cooper is a somewhat unrealistic one in the sense that it involves only two interacting electrons,

whereas in a metal, there are about 1023 conduction electrons per cm3. Cooper’s theory is clearly an improvement over those

that completely ignore interactions among the electrons. In the generalization of the Cooper theory, one should also include

interactions between three or more electrons. Bardeen, Cooper, and Schrieffer showed that Cooper’s simple idea could be

applied to a many-electron interacting system. The fundamental assumption of BCS theory is that only the interactions

between electron pairs are important. The effect of the presence of other electrons on any one pair is simply to limit, through

the Pauli principle, those states into which the interacting pair may be scattered, because some of the states are already

occupied.

In a metal, electrons lie in a sphere of radius pF. Cooper’s result may be applied to electrons in a metal with momenta

infinitesimally below pF as these may be transformed into a Cooper pair. If this can be done for one electron pair, the same

can also be done for many electron pairs, resulting in lower energy. This is possible because more than one pair of electrons

can be represented by the same function jci, as given by Eq. (22.118). In this case, all the superconducting electrons can be
represented together by the many-electron wave function jcnp

(r1,r2,…,rnp)i, which is a product of the pair wave functions,
that is,

cnp
r1, r2,…, rnp


 ���� E
¼ c r1, r2ð Þj i c r3, r4ð Þ�� 


… c rnp�1, rnp


 ���� E
(22.119)

where np/2 is the total number of Cooper pairs. The fact that many-electron wave functions can be written in the form of

Eq. (22.119) shows that there is no limit to the number of Cooper pairs that may be represented by a wave function. The

Cooper pair behaves as a composite particle with zero momentum, zero spin, and having a mass twice that of the electron.

FIG. 22.24 pi and pj are themomenta of two interacting electrons,

when both lie in states within a shell of thickness Dp above pF. The
total momentum of the two electrons is given by P¼pi +pj
(Eq. 22.111).
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Thus, a Cooper pair behaves as a Boson particle obeying the Bose-Einstein statistics. The property that all of the Cooper

pairs are in the same quantum state with the same energy will prove to be of great importance.

It is well established now that the electrons that have momenta within the range Dp, given by Eq. (22.114), about pF, are
coupled together to form Cooper pairs. So, the electrons with momenta p<pF may be raised to states with p>pF to form

Cooper pairs, resulting in a decrease in the total energy. The electrons may also go from p>pF to states with p<pF. There is

a limit to the number of electrons that can be raised from p<pF to states with p>pF to form Cooper pairs and it can be

understood as follows.

A pair of electrons may be scattered from (r1,pi";r2,�pi#) to (r1,pj";r2,�pj#) if the states (r1,pi";r2,�pi#) are
occupied and the states (r1,pj";r2,�pj#) are empty. As more and more electrons with p> pF form Cooper pairs, the chance

of finding the states (r1,pj";r2,�pj#) empty becomes progressively smaller and smaller. So, the number of scattering pro-

cesses that may take place is reduced with a constant decrease in the magnitude of the negative potential energy. Eventually

a condition is reached in which the decrease in potential energy is insufficient to outweigh the increase in kinetic energy,

and it is no longer possible to further lower the total energy of the electrons by forming Cooper pairs. There will be an

optimum arrangement, which gives the lowest overall energy, and this arrangement can be described by specifying the

probability hi of the pair state (r1,pi";r2,�pi#), which is related to the coefficient ai occurring in Eq. (22.118). The Pauli

principle as applied to Cooper pairs requires that hi
1 and, according to the BCS theory, it is given by

hi ¼
1

2
1� Ei�EF

Ei�EFð Þ2 +D2
n o1=2

2
64

3
75 (22.120)

where Ei¼pi
2/2me and the positive square root is taken. The quantity D, which has the dimensions of energy, turns out to be

of fundamental importance and is given by

D¼ 2hnqe
� 1

Ne EFð ÞV
n o

(22.121)

where Ne(EF) is the density of electron states at EF and �V are the matrix elements of the scattering interaction.

The probability hi(E), as given by the BCS theory for the state jcnp
(r1,r2,…,rnp)i, is shown in Fig. 22.25 and gives the

lowest energy (the ground state). The dashed line shows the probability of a single-electron state at 0K. The important

feature of the figure is that even at absolute zero, the momentum distribution of the electrons in a superconductor does

not show an abrupt discontinuity as it does in the case of normal metals. The ground state in a superconductor is the state

of lowest energy, in which all the electrons with momenta within the range ofDp about pF are coupled to form Cooper pairs.

This state is often referred to as a condensed state because the electrons are bound together to form a state of lower energy,

as happens to the atoms of a gas when they condense to form a liquid.

22.3.10.4 The Energy Gap

A superconductor may be excited to a higher state either by raising the temperature or by illuminating it with light of an

appropriate wavelength. In a superconductor, there are Cooper pairs in the momentum range of Dp around pF (EF) and each

pair has zero total momentum and zero spin. The energy of a pair cannot be increased simply by increasing the momenta of

the electrons and at the same time maintaining the condition that their momenta are equal and opposite. However, a pair

may break up with the constituent electrons no longer having equal and opposite momenta, in which case the attractive

potential energy resulting from their interaction becomes almost negligible. The electrons behave almost like free electrons

and for this reason are referred to as “quasiparticles.” Furthermore, it is not meaningful to talk of the momenta of the indi-

vidual electrons before the pair is broken up because the momenta of the individual electrons cannot be specified. The

second question is how much energy is necessary to break up a pair so as to produce electrons, or more precisely quasi-

particles with unequal momenta pi and pj. According to the BCS theory, the amount of energy required is

E¼Ei + Ej ¼ Ei�EFð Þ2 +D2
h i1=2

+ Ej�EF


 �2

+D2

� �1=2
(22.122)

Hence, the minimum energy required is 2Dwhen pi¼pj¼pF or Ei¼Ej¼EF. There is, thus, an energy gap of magnitude 2D
in the excitation spectrum of a superconductor, and radiation of frequency n is absorbed if hn>2D. The BCS theory is also

able to explain macroscopic properties, such as critical temperature, critical magnetic field, and latent heat, among others.
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22.3.11 Criterion for the Existence of Superconductivity

An important question is whether all metals would exhibit superconductivity if cooled to a low enough temperature.

According to the BCS theory this may not necessarily be so. Metals will show superconducting behavior only if the

net interaction resulting from the competition between the repulsive Coulomb and e-p interactions is attractive. This is

the reason that good conductors, such as Cu, Ag, and Au, which have a weak e-p interaction, do not exhibit

superconductivity.

22.3.12 Why Do Magnetic Impurities Lower Tc?

The sharp decrease in Tc due to the presence of magnetic impurities can be explained in terms of the exchange interactions

between the conduction electrons and the impurity atoms. The exchange interactions produce spin-flip scattering, which

destroys the time reversal correlation of the Cooper pairs. The scattering time for a spin-flip process is obtained by assuming

that the impurity spin sI is coupled to the conduction electron spin s by an exchange interaction integral J(sI � s). In contrast,
with nonmagnetic impurities, the spin-exchange scattering is not time-reversal invariant. This results in a finite lifetime for

the Cooper pairs and, therefore, severely reduces Tc. Furthermore, a remarkable conclusion is arrived that there exists a

range of magnetic impurity concentrations above which the energy gap in the excitation spectrum becomes zero, yet the

specimen remains a superconductor in the sense of having pair correlation and nonzero Tc. The possibility of a gapless
superconductor was surprising, at first, because the BCS theory contains the energy gap parameter D.

22.4 SUPERCONDUCTING QUANTUM TUNNELING

Consider two metals M1 and M2 separated by a thin oxide (insulating) layer between them (see Fig. 22.26A). Such a

junction is usually called a metal-oxide-metal (MOM) junction. Quantum mechanical theory gives a finite probability

for an electron of metal M1 to be found on the other side of the oxide layer if the thickness of the oxide layer is on the

order of or less than the mean free path of the electron. In other words, under such conditions, an electron may tunnel

through the oxide layer at constant energy. Tunneling can, however, occur if there are empty states available for an electron

to occupy on the other side of the junction. Electron tunneling can also take place when a thin oxide layer separates a super-

conductor and a normal metal or two superconductors. Tunneling experiments play an important role in determining the

following properties of a superconductor:

1. The energy gap 2D in a superconductor.

2. The empirical basis for the e-p interaction spectrum as a function of energy.

22.4.1 Single-Electron Superconducting Tunneling

Superconducting single particle tunneling was discovered by Giaever (1960, 1974). Here the junction consists essentially of

two superconductors (namely S1 and S2) separated by a thin oxide layer (30 Å) as shown in Fig. 22.26B. The length and

width of the junction are denoted by L and W, respectively. To understand the tunneling process the energy band diagrams

FIG. 22.25 The probability hi(E) as a function of energy E for the ground state of a superconductor as given by the BCS theory.
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for the different systems will be considered. Fig. 22.27 represents the energy band diagram for a MOM junction. In the

equilibrium state the Fermi energy of both the metals is equal (Fig. 22.27A). Were it not so, the electrons would flow from

the higher Fermi energy to the lower one to equalize them. When a voltage V is applied to the junction, the electrons on the

negative side gain energy eV and, therefore, they tunnel in the direction of the arrow in Fig. 22.27B. The current versus

voltage (I -V) characteristic in this case will be linear (see Fig. 22.27C).

The second type of tunneling junction is the metal-oxide-superconductor (MOS) junction for which the energy band

diagram is shown in Fig. 22.28A. The Fermi energies for both the superconductor and metal are assumed to be the same in

the equilibrium state. The Fermi energy EF of a superconductor is in the middle of the energy gap. At T¼0K, the energy

states at the same energy are either completely empty or filled on the two sides. However, when a voltage V is applied across

the oxide junction, the potential energy of the electrons on the negatively charged side is raised; thus, the energy eV sep-

arates the Fermi levels on the two sides (Fig. 22.28B). Therefore, at 0K, a tunneling current flows for eV�D, which then

increases rapidly (see Fig. 22.28C) because a large number of states are available for occupation just above D. But when
T>0K, a few electrons are already in states above EF on both sides (Fig. 22.29A and B), so some tunnel current flows even

for eV<D (see Fig. 22.29C). The variation of current with voltage above the value D/e depends on the density of electron
states and the tunneling probability.

A superconductor-oxide-superconductor (SOS) junction in the equilibrium state is shown in Fig. 22.30A in which the

Fermi energy on both sides has the same value. The application of a voltage raises the potential energy of electrons on the

FIG. 22.26 (A) Metal-oxide-metal (MOM) junction

where M1 and M2 represent two metallic elements. (B)

The geometry of a superconductor-oxide-superconductor

(SOS) junction. S1 and S2 represent two superconductors.
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FIG. 22.27 The energy band diagram for (A) aMOM junction at absolute zero in the absence of electric potential. (B) aMOM junction at absolute zero in

the presence of electric potential V such that the electrons on the negative side gain energy eV. (C) The current versus potential in a MOM junction at

absolute zero, which exhibits linear behavior.

FIG. 22.28 (A) Energy band diagram for aMOS junction at absolute zero. (B) Energy band diagram for aMOS junction at absolute zero when an electric

potential V is applied, which raises EF by eV on the negative side. (C) The current-voltage characteristics of a MOS junction at absolute zero.
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negatively charged side. At T>0K, there are some conduction electrons above EF in both the superconductors. Therefore,

the tunneling current is weak for small voltages and it reaches a maximum for

eV1 ¼D1�D2 (22.123)

(see Fig. 22.30B). In this situation the upper edges of the energy gaps of both the superconductors coincide (when the

maxima of the density of states [DOS] of two distributions coincide). When we increase the voltage further, the tunneling

current increases much faster for

eV2 ¼D1 +D2 (22.124)

and for larger voltages. When the condition given by Eq. (22.124) is satisfied, the bottom of the energy gap of one super-

conductor coincides with the upper edge of the energy gap of the second superconductor (see Fig. 22.30C). At absolute zero

the tunneling current will begin only when Eq. (22.124) is satisfied. Fig. 22.30D shows the I -V characteristics of the SOS

junction. From Eqs. (22.123), (22.124) one gets

D1 ¼
1

2
e V1 +V2ð Þ

D2 ¼
1

2
e V2�V1ð Þ

(22.125)

Thus, the tunneling experiment provides the simplest and most direct method for determining the energy gap in supercon-

ductors and has been widely used. With the help of tunneling experiments, one can also study the temperature variation of

FIG. 22.29 (A) Energy band diagram for a MOS junction at finite temperature. The shade above EF on the metal side and above the band gap on the

superconductor side show excited electrons at finite temperature. (B) MOS junction at finite temperature with applied electric potential V in which the

Fermi energy EF is raised by eV on the negative side. The shaded region above EF represents the excited electrons at finite temperature. (C) The current-

voltage characteristics of a MOS junction.
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the energy gap in a superconductor. The energy gap in a superconductor can also be measured by other methods, such as

ultrasonic attenuation and optical absorption.

Let us evaluate the general expression for the tunneling current in the junction shown in Fig. 22.31 in which L denotes

the left-hand side and R the right-hand side of the junction separated by an oxide layer (the two sides may be metals, one

may be metal and the other a superconductor, or both may be superconductors). In the superconducting state, the BCS

theory gives the energy of a quasiparticle as

E¼ E2
k + D Eð Þf g2

h i1=2
(22.126)

where Ek¼ħ2k2/2me is the energy of each electron in a pair. When the material goes to the superconducting state, the

electron states remain the same, that is, there is a one-to-one correspondence between E and Ek. Therefore,

Ns Eð ÞdE¼N Ekð ÞdEk (22.127)

FIG. 22.31 MOS junction in which the material on the right (R) side is a metal and on the left (L) side is a superconductor.

FIG. 22.30 (A) The energy band diagram for a SOS junction at finite temperature. The two superconductors have different energy band gaps with values

2D1 and 2D2. The shade above the band gaps shows the excited electrons at finite temperature. (B) The energy band diagram of a SOS junction at finite

temperature in the presence of an applied potential V such that eV ¼D1�D2. (C) The energy band diagram of a SOS junction at finite temperature in the

presence of an applied potential V such that eV>D1+D2. (D) The current I as a function of the potential V in a SOS junction at finite temperature.
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where Ns(E) and N(Ek) are the density of states (DOS) of the superconducting and normal states. To simplify the notation,

here and in this remaining chapter we use N(Ek) for the electron DOS in place of Ne(Ek). Eq. (22.127) gives

Ns Eð Þ¼ N Ekð Þ dEk

dE
(22.128)

From Eq. (22.126) one can write

Ek ¼ E2� D Eð Þf g2
h i1=2

(22.129)

Differentiating the above equation, we find

dEk

dE
¼

E�D Eð Þ dD Eð Þ
dE

E2� D Eð Þf g2
h i1=2 (22.130)

Substituting Eq. (22.130) into Eq. (22.128), we get

Ns Eð Þ¼N 0ð Þ
E�D Eð Þ dD Eð Þ

dE

E2� D Eð Þf g2
h i1=2 (22.131)

Here N(0) is the value of N(E) at E¼0 and is assumed to be constant. If D is independent of energy, then

Ns Eð Þ¼ N 0ð Þ E

E2�D2
� �1=2 : (22.132)

The electronic DOS for the MOS junction at finite temperature with and without the application of voltage is shown in

Fig. 22.32.

The tunneling current can be calculated in terms of the tunneling probability. The probability of an electron tunneling

from side L to side R is represented by pL!R and depends on the following parameters:

1. pL!R depends on the probability of occupation of state L, given by fL(E), where fL(E) is the Fermi-Dirac distribution

function for the L state.

2. pL!R depends on 1� fR(E), which gives the probability that state R is vacant. Here fR(E) is the Fermi-Dirac distribution

function for the R state.

3. pL!R depends on the square of the tunneling matrix element T.

The Fermi distribution functions fL(E) and fR(E) are given as

FIG. 22.32 (A) The electronic density of states

(DOS) at T>0K in a MOS junction in the absence

of applied potential. (B) The electronic DOS at

T>0K when voltage V is applied across the

MOS junction.
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fL Eð Þ¼ e

E�EFL

kBT

� �
+ 1

2
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3
75
�1

(22.133)

fR Eð Þ¼ e
E�EFR

kBT + 1

� ��1

(22.134)

Hence, the probability of an electron tunneling from left to right is given as.

pL!R ¼
2p
ħ

Tj j2 fL Eð ÞNR Eð Þ 1� fR Eð Þ½ 	 (22.135)

2p/ħ is the constant of proportionality and NR(E) is the electron DOS on the right side. An electron from the left can occupy

any of the vacant states on the right side and the density of vacant states on the right side is given by NR(E) [1� fR(E)]. The

total probability of tunneling from L to R, denoted by PL!R, is obtained by multiplying Eq. (22.135) by NL(E) and inte-

grating over all energies. The factor NL(E) fL(E) allows an electron from all possible occupied states on the left to tunnel

toward the right. Therefore, one can write

PL!R ¼
2p
ħ

ð∞
�∞

Tj j2NL Eð ÞNR Eð Þ fL Eð Þ 1� fR Eð Þ½ 	dE (22.136)

For simplicity, the matrix element T can be assumed to be a constant, which gives

PL!R ¼
2p
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR Eð Þ fL Eð Þ 1� fR Eð Þ½ 	dE (22.137)

In exactly the same way, one can calculate the probability of tunneling from right to left and this is given by

PR!L ¼
2p
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR Eð Þ fR Eð Þ 1� fL Eð Þ½ 	dE (22.138)

The tunneling current is obtained by multiplying the probability by the electron charge to write

IL!R ¼
2pe
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR Eð Þ fL Eð Þ 1� fR Eð Þ½ 	dE (22.139)

IR!L ¼
2pe
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR Eð Þ fR Eð Þ 1� fL Eð Þ½ 	dE (22.140)

Hence, the net tunneling current from right to left is obtained by subtracting Eq. (22.139) from Eq. (22.140), that is,

I¼ IR!L� IL!R

¼ 2pe
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR Eð Þ fR Eð Þ� fL Eð Þ½ 	dE (22.141)

The important feature of this formula is that it contains the electron DOS of both sides of the tunneling junction. If voltage V

is applied across the junction (Fig. 22.32B), then

I¼ 2pe
ħ

Tj j2
ð∞
�∞

NL Eð ÞNR E+ eVð Þ fR E + eVð Þ� fL Eð Þ½ 	 dE (22.142)

Let us calculate the tunneling current I for different cases.

22.4.1.1 MOM Tunneling Junction

In the case of aMOM junction, NL(E) and NR(E) are constants at the energies of interest and equal to N(EF), that is, NL(E)¼
NR(E+eV)¼N(EF) and fL¼ fR¼ f (Fig. 22.27). Hence, from Eq. (22.142), the tunneling current across the MOM junction

becomes
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INN ¼ 2pe
ħ

Tj j2 N EFð Þ½ 	2
ð∞
�∞

f E + eVð Þ� f Eð Þ½ 	dE

¼ 2pe
ħ

Tj j2 N EFð Þ½ 	2 eV
ð∞
�∞

∂f
∂E

dE

(22.143)

The above equation can also be written as

INN ¼ sNV (22.144)

where

sN ¼ 2pe2

ħ
Tj j2 N EFð Þ½ 	2

ð∞
�∞

∂f
∂E

dE (22.145)

The constant sN can be regarded as the normal conductance. Eq. (22.144) gives a linear relation between I and V

(Fig. 22.27C), that is, Ohm’s law.

22.4.1.2 MOS Tunneling Junction

In aMOS junction, a metal is on the right side (see Fig. 22.28), which has a constant electron DOS, that is, NR(E+eV)¼C, a

constant. So, Eq. (22.142) gives

ISN ¼ 2pe
ħ

Tj j2C
ð∞
�∞

NSL Eð Þ fR E + eVð Þ� fL Eð Þ½ 	dE (22.146)

Here NSL(E) is the electron DOS of a superconductor on the left side. We are interested in NSL(E) in a small region of

energy, on the order of eV. Therefore,

ISN ¼ 2pe
ħ

Tj j2C
ðeV
0

NSL Eð Þ fR E + eVð Þ� fL Eð Þ½ 	 dE (22.147)

The density of states NSL(E) is independent of energy E in the range of interest (a few meV). Hence, one can approximately

write

ISN∝
ðeV
0

NSL Eð ÞdE (22.148)

From Eq. (22.148) one can write

dISN
dV

∝NSL eVð Þ (22.149)

But

dINN
dV

∝NNN (22.150)

NNN is the electron DOS in a normal metal. From Eqs. (22.149), (22.150) one can write

dISN=dVð Þ
dINN=dVð Þ¼

dI=dVð ÞSN
dI=dVð ÞNN

¼ NSL

NNN

(22.151)

Eqs. (22.149)–(22.151) show that the conductance in a MOS junction is proportional to the electronic DOS in a supercon-

ductor, while in a MOM junction it is proportional to the electronic DOS in the normal metal. Eq. (22.151) is the central

result of single electron tunneling.

22.4.1.3 SOS Tunneling Junction

When the two materials in a junction are superconductors the situation is greatly altered. Eq. (22.142) gives
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ISS ¼
2pe
ħ

Tj j2
ð∞
�∞

NSL Eð ÞNSR E+ eVð Þ fR E + eVð Þ� fL Eð Þ½ 	dE

¼C1

ð
Ej j

E2�D2
L

� 	1=2 E + eVj j
E+ eVð Þ2�D2

R

h i1=2 fR E + eVð Þ� fL Eð Þ½ 	dE (22.152)

where C1 is a constant. The integral in Eq. (22.152) can be solved numerically with the help of a computer. It is found that

for T 6¼0K, ISS exhibits a logarithmic singularity at V1¼ �jDL�DR j/e and a finite discontinuity at V2¼ �jDL+DR j/e (see
Fig. 22.33).

22.4.2 Josephson Tunneling

Consider two superconductors SL and SR separated by a thin metal oxide (insulating) layer (see Fig. 22.34). When the

thickness of the oxide layer is on the order of the electron mean free path (about 30Å or more), the Cooper pairs break

into quasiparticles (electrons) that can tunnel from one superconductor to the other through the oxide layer. If the thickness

of the oxide layer is reduced down to, say, 10Å, then the Cooper pairs as such can tunnel from one superconductor to the

other. The tunneling of the Cooper pairs through the thin potential barrier is called Josephson tunneling (Josephson 1962).
In this case, the long-range order is transmitted across the boundary. Therefore, the whole system consisting of two super-

conductors separated by a thin (10Å) oxide layer behaves, to some extent, as a single superconductor. Unlike ordinary

superconductivity, this phenomenon is often called “weak superconductivity” because of the much lower values of the

critical parameters involved.

Consider an SOS junction with cL and cR as the pair wave functions for the superconductors on the left and right sides

(see Fig. 22.34). The wave functions cL and cR are associated with a macroscopic number of electrons, which are assumed

to condense in the same quantum state. In this sense, the superconducting state cL (cR) can be regarded as a macroscopic

quantum state, so that j cL j2 (jcR j2) represents the actual Cooper pair density rL (rR). The wave functions cL and cR can

be represented as

cL ¼ r1=2L eifL

cR ¼ r1=2R eifR

(22.153)

where ’L (’R) is the phase common to all of the particles on the L (R) side. rL (rR) represents the actual density of the

Cooper pairs in the basis state jLi (jRi), that is,
rL ¼ Lh jc∗

LcL Lj i
rR ¼ Rh jc∗

RcR Rj i (22.154)

jLi and jRi are two orthonormal basis states. Suppose there exists a weak coupling between the two superconductors, then

the two macroscopic wave functions cL and cR overlap with each other to a small extent (see Fig. 22.34). Therefore,

FIG. 22.33 The current-voltage (I -V) characteristics of a SOS tunneling junction.
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transitions between the states jLi and jRi can occur. The general state vector with jLi and jRi as the basis states can be

written as

cj i ¼cL Lj i +cR Rj i (22.155)

Eq. (22.155) says that the particle can either be in the “left” or “right” state with amplitudes cL and cR, respectively. It can

be easily proved that

ch jci¼ rL + rR (22.156)

The Schrodinger wave equation for the system is defined by

iħ
∂

∂t
cj i ¼H

_
cj i (22.157)

with the Hamiltonian given by

H
_¼H

_

L +H
_

R +H
_

T (22.158)

where

H
_

L ¼EL Lj i Lh j (22.159)

H
_

R ¼ER Rj i Rh j (22.160)

H
_

T ¼K Lj i Rh j+ Rj i Lh j½ 	 (22.161)

H
_

L andH
_

R are the Hamiltonians for the left and right sides andH
_

T gives the interaction term, which mixes the jLi and jRi
states. H

_

T is also called the tunneling Hamiltonian. EL and ER are the ground state energies of superconductors SL and SR
and K is the coupling amplitude of the two-state system. K is a measure of the interaction energy between SL and SR and

depends on the specific junction structure (electrode geometry and tunneling barrier, etc.). Substituting Eqs. (22.155),

(22.158) into Eq. (22.157) and using the orthonormality condition between jLi and jRi, we get

iħ
∂cL

∂t
Lj i+ iħ ∂cR

∂t
Rj i ¼ELcL Lj i+ERcR Rj i+cRK Lj i +cLK Rj i (22.162)

Comparing the terms with basis states jLi and jRi on both sides of Eq. (22.162) separately, we find

iħ
∂cL

∂t
¼ELcL +KcR (22.163)

iħ
∂cR

∂t
¼ERcR +KcL (22.164)

FIG. 22.34 SOS junction with very thin oxide layer. SL and SR are the superconductors on the left and right sides and cL and cR are the corresponding

electron-pair wave functions.
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The binding energy in a Cooper pair is 2EF as the two electrons in it have energies corresponding to�kF and kF. If the two
superconductors are isolated, the energy terms are given by ER¼2EFR and EL¼2EFL where EFR and EFL are the Fermi

energies of superconductors SR and SL. When voltage V is applied to the SOS junction, the Fermi energies shift by eV, that

is, EFR�EFL¼eV (see Fig. 22.35). Therefore,

ER�EL ¼ 2eV (22.165)

If the zero of energy (reference level of energy) is chosen to be halfway between the two values EL and ER, then

EL ¼�eV, ER ¼ eV (22.166)

Substituting the values of EL and ER from Eq. (22.166) into Eqs. (22.163), (22.164), one gets

iħ
∂cL

∂t
¼�eVcL +KcR (22.167)

iħ
∂cR

∂t
¼ eVcR +KcL (22.168)

Substituting cL and cR from Eq. (22.153) into Eq. (11.167) and comparing the real and imaginary parts separately, we get

�1

2

∂rL
∂t

sinfL�rL
∂fL

∂t
cosfL ¼� eV

ħ
rL cosfL +

K

ħ
rLrRð Þ1=2 cosfR (22.169)

1

2

∂rL
∂t

cosfL�rL
∂fL

∂t
sinfL ¼�eV

ħ
rL sinfL +

K

ħ
rLrRð Þ1=2 sinfR (22.170)

Eqs. (22.169), (22.170) are the real and imaginary parts, respectively. Multiplying Eq. (22.169) by sin’L and Eq. (22.170)

by cos’L and subtracting, we obtain

∂rL
∂t

¼� 2K

ħ
rLrRð Þ1=2 sinf (22.171)

where

f¼fL�fR (22.172)

Similarly, multiplying Eq. (22.169) by cos’L and Eq. (22.170) by sin’L and adding, we get

∂fL

∂t
¼ eV

ħ
�K

ħ
rR
rL

� �1=2

cosf (22.173)

In exactly the same manner cL and cR can be substituted from Eq. (22.153) into Eq. (22.168) and the real and imaginary

parts can be separated. Further, they can be solved for ∂rR/∂t and ∂’R/∂t, which are given by

∂rR
∂t

¼ 2K

ħ
rLrRð Þ1=2 sinf (22.174)

FIG. 22.35 SOS junction with electric voltage V applied across the junction.
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∂fR

∂t
¼�eV

ħ
�K

ħ
rL
rR

� �1=2

cosf (22.175)

From Eqs. (22.173), (22.175) the relative phase ’ is given by

∂f
∂t

¼ ∂

∂t
fL�fRð Þ¼ 2eV

ħ
+
K

ħ
rL
rR

� �1=2

� rR
rL

� �1=2
" #

cosf (22.176)

The current density J is given by

J¼�∂rL
∂t

¼ ∂rR
∂t

¼ 2K

ħ
rLrRð Þ1=2 sinf

(22.177)

In a SOS junction, if the tunnel geometry of both the superconductors is the same, then rL¼rR¼r0. Therefore,
Eqs. (22.176), (22.177) give

J¼ J0 sinf (22.178)

where

J0 ¼
2Kr0
ħ

(22.179)

∂f
∂t

¼ 2eV

ħ
(22.180)

Eqs. (22.178), (22.180) are the basic relations of Josephson tunneling. For V¼0 the phase difference ’ becomes constant

and not necessarily zero. Therefore, the Cooper pairs can tunnel even when no voltage is applied to the SOS junction,

yielding a finite current density J. This is the central result of the dc Josephson effect and is different from single-electron

tunneling in which the current flows only when the voltage is applied. The I -V characteristic curve in a Sn-SnO-Sn

Josephson junction is shown in Fig. 22.36, which clearly shows a finite current at zero voltage. When the current flowing

through the junction at zero voltage becomes maximum, a finite voltage suddenly appears across the junction. Indeed, a

switching from the zero voltage state to the quasiparticle branch of the I -V curve occurs.

If a constant voltage is applied, then from Eq. (22.180) the relative phase can be written as

f¼f0 +
2eV

ħ
t (22.181)

where ’0 is the initial phase difference. Substituting Eq. (22.181) into Eq. (22.178), we get

FIG. 22.36 The current-voltage (I -V) characteristics for the Josephson effect in a Sn-SnO-Sn junction.
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J¼ J0 sin f0 +
2eV

ħ
t

� �
(22.182)

with a frequencyo¼ 2pn¼ 2eV=ħ. The current density J given by Eq. (22.182) shows a sinusoidal variation and it is called
the ac Josephson effect. From Eq. (22.182)

n¼ 2eV

h
¼ 483:6 THz=V (22.183)

The relationship between the voltage and frequency of the phonon emitted when an electron pair crosses the barrier allows

the determination of e/h.

22.5 HIGH-TC SUPERCONDUCTIVITY

Since the discovery of superconductivity efforts have been made to increase the value of Tc. A family of ternary sulfides,

usually called Chevrel phases was discovered, which exhibit a reasonably high value of Tc. Later, high-Tc superconduc-

tivity was found in materials with perovskite structure. Bednorz andMuller (1986, 1988) discovered oxide superconductors

with Tc � 35K. The high-Tc superconducting cuprates (copper oxides) evolved from materials related to the perovskite

family. The interesting aspect of the oxide superconductors is that all these materials contain copper oxide layers. In this

section, the various high-Tc superconducting materials are described in brief.

22.5.1 Chevrel Phases and Superconductivity

Chevrel phases are described by the general chemical formulaeMyMo6X8 andMyMo6X12 in which y is usually one. HereM

is one of the metallic elements and X is usually a chalcogenide (S, Se, or Te) or occasionally a heavy and strongly polar-

izable halide (Br or I). The most common Chevrel phases are PbMo6S8 and SnMo6S8. The novel feature of these materials is

the presence of one or two fundamental cubic structural units, such as Mo6X8 or Mo6X12, as shown in Fig. 22.37. The

internal bonding of Mo6X8 or Mo6X12 is very strong, which is due to the fact that the energy E of the valence electrons

is far below EF. These building blocks contribute most of the valence electrons per formula unit (e.g., 95% in the case of

PbMo6S8 with Tc ¼ 15:2K). The clusters Mo6X8 or Mo6X12 are then combined with M atoms to form the CsCl structure in

which M occupies the positions of Cs and Mo6X8 or Mo6X12 occupies the positions of Cl. But the structure of MMo6X8 or

MMo6X12 is slightly uniaxially distorted along its [111] axis compared with the CsCl structure. The structure of PbMo6S8 is

shown in Fig. 22.38. Here Pb provides a soft mechanical link between the clusters of Mo6S8. PbMo6S12 has a similar

structure.

Because Mo6X8 contributes most of the valence electrons, one expects that most of the physical properties, such as the

electron DOS at the Fermi energy N(EF), the electrical resistivity r(T), the transition temperature Tc, and the critical field

Hc2
, depend mainly on Mo6X8 with M playing a passive role. But if one carefully examines the Chevrel phases, it is found

FIG. 22.37 The nearest neighbors of Mo in Mo6X8 and Mo6X12 clusters. The shaded spheres represent Mo atoms while the white spheres represent

X atoms. (Modified from Phillips, J. C. (1989). Physics of high temperature superconductors (p. 61). San Diego: Academic Press.)
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that the valence structure ofM is more important in determining all the physical properties. In these phases, regardless of the

valence electrons in M, M+2 is required in forming the structure and the remaining valence electrons with energy near EF

play an important role in producing an electrical bridge between the clusters of Mo6X8. For example, Sn and Pb have four

valence electrons each. Two electrons are detached to give Sn+2 or Pb+2 ions and the remaining two electrons have energy

near EF. It is found that for Mo6S8, Tc ¼ 1:8K so that direct cluster-cluster electron transfer and intracluster e-p interactions

alone produce a low Tc. With the introduction of Pb metal in PbMo6S8, the intercluster Mo-Mo spacing inMo6S8 increases

by �6% and Tc increases to 15.2K. The bridge element serves two functions: first it produces an electrical bridge and

second it provides a mechanical soft link with a strong local e-p interaction.

An interesting aspect of the Chevrel phases is that as X goes from S to Te through Se, band narrowing takes place, which

increases N(EF), all other things being equal, and hence increases Tc. Such behavior is attributed to random internal strains.

Further, the Chevrel phases form the first examples of open structure in which M atoms are so weakly bound that they can

diffuse readily in and out of the samples, much as ions do in solid electrolytes. This characteristic is used to prepare the high-

Tc compounds MMo6S8 or MMo6Se8 with M¼Hg, In, and Tl by low-temperature diffusion (T< 500°C). Here Hg+2, In+2,
and Tl+2 retain only one valence electron (not two as in the case of Sn+2 and Pb+2).

22.5.2 Perovskite Superconductivity

The perovskite structure with formula ABX3 was discussed in Chapter 1 (see Fig. 1.33). Most of these materials exhibit

ferroelectric behavior and, therefore, are important from a technological point of view. The most common examples are

BaTiO3, BaBiO3, and CaTiO3 and these materials generally have low carrier density. In ABO3, when the metallic ion A or

B is partially replaced by another metallic ion C, the material exhibits high-Tc superconductivity: for example, BaPb1�-

yBiyO3 is a superconductor with Tc � 13K. The conductivity of these elements depends upon the concentration y. In the

normal state, with a decrease in T, the sample becomes less metallic as dr/dT!0. For y>0.35 these alloys are semicon-

ducting in nature and for y<0.35 they are metallic in nature: the data reported for BaPb1�yBiyO3 alloy refer to powder

samples. In the preparation of these alloys it is very difficult to control the parameter y. The resultant samples exhibit

a large variation in Tc with y. But the variation in Tc is the smallest near y¼ 0:25, which suggests that the internal stress

is minimum for this composition.

There are many differences between the old metallic superconductors and the new high-Tc superconductors, but one

factor that remains the same is the presence of lattice instabilities. In the vibrational spectrum of a superconductor, the

optical branches in the [0xx] and [xxx] directions exhibit a great deal of softening of the phonons near the M and R points

at the BZ faces. This softening is assigned to the rotation of MO6 octahedra with M as Pb or Bi.

FIG. 22.38 The structure of PbMo6S8.
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In Chapter 1, it was pointed out that K1�yBayBiO3 exhibits Tc � 30K, but here 30% or less of the sample exhibits the

Meissner effect beginning near 30K. So, replacing Ba+2 by K+1 is likely to generate oxygen vacancies O. In a small fraction

of the sample volume (say 30%), these O vacancies, together with K+1, may order to form domains with typical dimensions

on the order of 100 Å. The superlattice in these domains will have a natural tetragonal configuration with an xy-plane of

partial O vacancies bounded by K-enriched sheets. The oxygen deficiency is responsible for the enhancement of the e-p

interactions. The defect states associated with the layer may form a defect band with defect-enhanced e-p interactions,

which may yield high-Tc behavior.

22.5.3 Cu-Oxide Superconductors

The phrase high-Tc superconductivity was formally coined with the discovery of copper oxide superconductors by Bednorz

andMuller (1986): a new class of superconductors. In Chapter 1, the copper oxide superconductors were grouped into three

categories that exhibit reasonably high values of Tc. The first category of superconductors has K2NiO4-type crystal

structure, the second category has 123 structure and the third category has 2212 structure (see Fig. 1.34). All of these cat-

egories are high-Tc superconductors, as explained in Chapter 1. All of the oxide superconductors with a perovskite-like

structure show metallic conductivity and a nonzero partial DOS of oxygen at EF. Therefore, historically one can say that

the high-Tc superconducting cuprates have evolved from materials related to the perovskite family ABX3.

22.5.4 A2BX4 Superconductors

There are several families of high-Tc superconductors that possess A2BX4 (AX. ABX3) structure and among these the most

famous are the ferrites having a magnetic cubic spinel structure. Here A and B are cations that are small in size compared

with the X anions and they form a close-packed lattice. A and B cations occupy 1/8th of the tetrahedral and 1/2 of the

octahedral interstitial positions. Here the B atoms lie in planes and are octahedrally coordinated with the X atoms, while

the A atoms are approximately nine-fold coordinated. In such an interstitial ionic compound, the lattice constant depends

primarily on the anion size and the anion-anion contacts. The A2BX4 superconductor has the tetragonal structure of K2NiO4

or K2NiF4. Examples of the A2BX4 superconductors are La2CuO4 and La2�yBayCuO4. Fig. 22.39 shows a comparison of

the ABX3 and A2BX4 structures.

In the tetragonal ionic superconductors, the packing along the a3-axis is usually very tight as shown by the abnormally

short A-X distance in all of them. The shape of the octahedra around the B atoms is usually nearly regular, with a very small

distortion. The distortion of the octahedra, as expected, is greatest for Cu+2(d9) because an odd number of d-electrons gives

the largest Jahn-Teller effect. However, the distortion can have either sign when X is replaced by F (ionic bonding) or by O

(covalent bonding). The distortion also occurs when Cu+2(d9) is replaced by Ni+2(d8).

FIG. 22.39 A comparison of ABX3 and AX(ABX3) structures in high-Tc superconductors.
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22.5.5 Quaternary Copper Oxides

The discovery of La2�yBayCuO4 with Tc > 30K started a world-wide search for related oxides with higher Tc. Chu et al.

(1987) and Wu et al. (1987) made the very important observation that the pressure derivative of the transition temperature,

that is, dTc/dP, is positive and very large in (La,Ba)2CuO4. This suggested the possibility of immensely increasing the value

of Tc through the internal pressure generated by the large A-B size difference in ABCuO compounds, with possibly a new

crystal structure. The above mentioned possibility became a reality with the discovery of YBa2Cu3O7 (123 superconductor)

having Tc ¼ 93K and La(La2�yBay)Cu3O7 having Tc ¼ 80K and possessing an entirely different structure. This is appar-

ently the first true quaternary metallic structure, all previous metallic compounds being binaries, pseudobinaries, ternaries,

and pseudoternaries. All of these compounds belong to the 123 family of high-Tc superconductors. Another compound of

interest is YBa2Cu3O7�y, which can have both orthorhombic and tetragonal structures.

A very important difference between (La,Sr)2CuO4 and YBa2Cu3O7 is the role played by the orthorhombic and

tetragonal phases. The orthorhombic phase of (La,Sr)2CuO4 is a semiconductor and becomes a superconductor by doping

with Sr, Ba, and Ca, which eventually produces a tetragonal structure. Just the reverse is true inYBa2Cu3O7�y: the

tetragonal phase for y> 0:7 is a semiconductor and Tc is maximized by reducing y to <0.1 and obtaining a fully ortho-

rhombic phase. In these superconductors the following points are noteworthy:

1. Fig. 1.34A and B shows the ideal crystallographic structures of (La,Sr)2CuO4 and YBa2Cu3O7, but the actual structure

in either superconductor does not necessarily exhibit complete order in the atomic structure. There are regions of the

samples that are less ordered (or distorted) and they form a substantial volume fraction of the sample. These regions

contribute only a small background to the measured neutron spectra. With three metallic components, there is no reason

to expect such a perfect ordering.

2. An additional effect in YBa2Cu3O7�y is that Tc is very sensitive to the concentration of oxygen vacancies: Tc changes

drastically by adding or removing oxygen to these superconductors.

3. The most remarkable aspect of YBa2Cu3O7�y is the easy diffusion of oxygen into the sample and also its evaporation.

This facile anion diffusion is correlated with high-Tc superconductivity, especially if the diffused O ions form part of the

metallic and superconductive regions embedded in the complex structure of these materials.

22.5.6 Bismates and Thallates

The third type of oxide superconductor includes bismates and thallates. One of the members of the bismates is Bi2Sr2-
CaCu2O8 with 2212 structure (Fig. 1.34C). The symmetry of the 2212 structure is more evident from Fig. 22.40. Here

the CuO2 layers are separated by Ca layers alternating with a group of SrO-BiO-BiO-SrO layers. The composition of

the cation and the O ion can change from sample to sample. For example, one of the superconductors has the composition

Bi2.2Sr2Ca0.8Cu2O8+y. In this structure every cation plane contains nearly coplanar O ions, except for the Ca0.8Bi0.2 plane.

Actually, the cation planes are strongly bent or bulged by the modulation displacements. Normal to the planes, these dis-

placements are 0.2 Å (Bi,Sr) and 0.3 Å (Cu).

In a bismate compound, Bi is trivalent, that is, Bi+3. This naturally suggests that replacing Bi by Tl results in similar

compounds with small but interesting differences in structure. Buckling of the CuO2 sheets decreases in going from

YBa2Cu3O7 to Bi2Sr2CaCu2O8 and then to Tl2Ba2CaCu2O8. However, at the same time, the O ions in the Tl plane appear

to have moved off the center (along the x-axis) and the Tl atom apparently has a large in-plane vibrational amplitude. It is

hard to say whether this is evidence for anharmonicity in Tl vacancies. In that case, it might be evidence for increasing

electronic localization and marginal two-dimensionality in the CuO2 planes.

In bismates and thallates the stacking of superlattices leads to the grouping of CuO2 planes separated by Ca+2 layers

bounded by BaO layers. These superlattices form an interesting homologous family written as (Bi,Tl)2(Sr,Ca,Ba)n+1CunO2

(n+2)�y. This general formula gives rise to the following families of superconductors:

(a) For n¼ 1 one gets the family of superconductors with chemical formula (Bi,Tl)2(Sr,Ca,Ba)2CuO6�y. The familiar

members of the series are Bi2(Bi,Sr)2CuO6, which is a semiconductor, and Tl2Ba2CuO6, which is a superconductor

with Tc ¼ 80K.
(b) For n¼2, the series has the general formula (Bi,Tl)2(Sr,Ca,Ba)3Cu2O8�y. The high-Tc superconducting family

members of the series are Bi2Sr2CaCu2O8 with Tc ¼ 85K and Tl2Ba2CaCu2O8 with Tc ¼ 100K.
(c) For n¼ 3, the general formula for high-Tc superconductors becomes (Bi,Tl)2(Sr,Ca,Ba)4Cu3O10�y. The important

family members of this series are (Bi,Tl)2(Sr,Ca)4Cu3O10 with Tc ¼ 110K and Tl2Ba2Ca2Cu3O10 with Tc ¼ 125K.
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It is evident that a greater number of CuO2 layers (with no CuO planes) results in a higher value of Tc. For example, a greater

number of CuO2 layers in Tl compared with Bi increases the value of Tc. All of the oxide superconductors show metallic

conductivity and nonzero partial DOS of oxygen at EF. The common structure of all oxide superconductors is a CuO2 layer,

which is formed by antibonding bonds between 3d states of Cu having x2�y2 symmetry and 2p states of O in the x- and y-

directions. The structure of CuO2 planes in high-Tc materials is more or less the same and is shown in Fig. 22.41. The other

layers are also important because:

(a) They provide a polarizable medium that determines the lattice constant and separates the CuO2 layers.

(b) They can be doped with other atoms to increase the value of Tc.

Tc and other physical properties depend very strongly on the oxygen deficiency denoted by the parameter y, which gives the

deviation from the stoichiometry in the structure formula. The layer structure is responsible for strong anisotropies in elec-

trical conductivity and in the parameters of superconductivity.

The exact mechanism of high-Tc superconductivity is still unclear. It has been shown experimentally that electron pairs

are responsible for high-Tc superconductivity. In comparison with the knownmetallic systems, the finite DOS for O sites at

EF is an important new feature. It implies that oscillations of the light O atoms contribute to the e-p interactions. It has been

observed that the isotopic effect in high-Tc superconductors is much weaker than in conventional superconductors.

Therefore, it has been proposed that nonphononic mechanisms, such as the anisotropy and anharmonicity of lattice vibra-

tions, may also contribute to high-Tc superconductivity. It has been found that the Tc of the La2CuO4 structure may be

understood within these assumptions. However, the experimental results from 123 superconductors cannot be explained

with the help of these assumptions. At present, no single theory exists that is able to explain high-Tc superconductivity in the

various systems discussed above. The high-Tc superconductors are of great practical importance because they can be

operated with liquid nitrogen as the cooling medium (cooling temperature �77K), which reduces the cost considerably.

Usually it is assumed that for technical applications Tc should exceed the cooling temperature by a factor of 1.5 at least

(Tc > 115K). To use the oxide superconductors in technical applications, the following problems must be solved.

1. Processing of flexible wires or tapes from the brittle oxide superconductors.

2. The density of critical current in the high-Tc superconductors produced by ceramic technology should be increased to

values above 105 A/cm2.

FIG. 22.40 The structure of the high-Tc superconductor Bi2Sr2CaCu2O8. (Modified from Phillips, J. C. (1989). Physics of high temperature supercon-

ductors. New York: Academic Press.)
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In the end we want to point out that an enormous amount of development is still required in the field of high-Tc

superconductivity.

Problem 22.5

The London penetration depth is found to depend on temperature as follows:

dL Tð Þ¼ dL 0ð Þ 1� T

Tc

� �4
" #�1=2

(22.184)

If the penetration depth for Pb is 396Å at 3K and 1730Å at 7.1K, calculate the critical temperature for Pb.
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The most important feature of crystalline solids is their regular atomic arrangement, but no crystalline solid actually

exhibits perfect order: real crystalline solids contain defects to some extent. The defects can be classified into two cate-

gories: electronic defects and atomic defects. Electronic defects are related to the excess electrons in the conduction band

and the holes in the valence band. In materials with low conduction electron density, such as semiconductors and insulators,

a small change in electron density has a pronounced influence on the electronic properties. A familiar example is an

extrinsic semiconductor in which a small amount of either pentavalent or trivalent impurities are added to increase the

conductivity. The effect of the electronic defects in semiconductors has already been discussed in Chapter 14. But in

metallic solids, the conduction electron density is nearly equal to the density of atoms. Therefore, the addition of a small

number of extra electrons is not expected to bring about any appreciable change in the electronic properties of metallic

solids. On the other hand, atomic defects play an important role in the electronic properties of metallic solids. In this

chapter, we shall discuss atomic defects, usually called lattice defects, in crystalline solids. A lattice defect is a state in

which the atomic arrangement has departed from regularity in a small region. Here a small region means small in com-

parison with the dimensions of the crystalline solid: a lattice defect may extend to a few lattice constants. The lattice defects

can be classified into three categories.

1. Point defects: A lattice defect that spreads out very little in all three dimensions is called a point defect. Examples

include an atomic vacancy, an interstitial atom, and a substitutional atom.

2. Line defects: If a lattice defect is confined to a small region in only one dimension, it is called a line defect. Dislocations

are a good example of a line defect.

3. Planar defects: If a lattice defect is confined to a small region in two dimensions, it is called a planar defect. A twin

boundary and an extended dislocation are examples of planar defects.

Defects influence the properties of crystalline solids in many ways. For example, they scatter the conduction electrons in a

metal, thereby increasing its electrical resistance. This increase is several percent at most in many pure metals, but it may be

as much as several tens of percent in the case of alloys.

23.1 POINT DEFECTS IN SOLIDS

A point defect is the simplest imperfection that involves only a single lattice point in a crystalline solid. Solid solutions are
good examples of point defects in a crystalline solid. Therefore, before discussing the various types of point defects, let us

first introduce the concept of solid solutions.
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23.1.1 Solid Solutions

A solid solution is formed by mixing a foreign element B (called an impurity or solute) with a perfect crystalline element A

(called the host or solvent) such that the atoms of B share the various crystal sites of element A. Such a solid solution is

written as ABwhere the first underlined symbol denotes the host element and the second symbol the impurity. For example,

if we add atoms of the element Zn to a pure Al crystal, a solid solution of AlZn is formed. A solid solution is prepared as

follows: Elements A and B are mixed in definite proportions and then heated to melt. The crystal is allowed to grow by

slowly cooling the molten mixture. The solid solution so prepared acquires some crystal structure depending on the con-

centration of the impurity. In preparing the solid solution some heat may be required, called the heat of mixing, and there

may also be a change in the molar volume.Metallic alloys can be considered as special solid solutions in which the electrons

are easily excited.

23.1.1.1 Types of Solid Solutions

Solid solutions can be categorized on the basis of some of the physical parameters, such as structure, concentration, sol-

ubility and order.

Structure: A solid solution ABmay acquire the same crystal structure as that of the host element. Such a solid solution is

called a primary solid solution. But if the solid solution acquires a crystal structure quite different from either of the ele-

ments A or B, then one obtains what is called an intermediate solid solution.
Concentration: If the concentration of the impurity atoms B is very low, we obtain the so-called dilute solid solution. If

the sizes of atoms A and B are nearly equal, then the heat of mixing is zero in the limit of very small concentration and the

molar volume remains unchanged. Such a solid solution is called an ideal solid solution.
If the concentration of the impurity atoms is large enough, one obtains a concentrated solid solution. With an increase in

concentration of the impurity, structural changes may appear: a phase change may occur in a solid solution. Consider for

example a solid solution AlFe: Al has fcc structure, while Fe has bcc structure. For a very small concentration of Fe

impurity, the lattice of the solid solution has fcc structure and this is designated as the a-phase or fcc phase. As the con-
centration of Fe is increased, the lattice becomes distorted but it is still recognizable as the fcc phase and consists primarily

of Al atoms with some Fe atoms. At a particular composition, however, the energy of the solid solution becomes so large

that a further addition of Fe atoms changes the phase from fcc to bcc. This is designated the b-phase and consists primarily

of Fe atoms with some Al atoms in the solid solution.

Solubility: If the components of a solid solution AB are soluble at all concentrations, it is called a completely soluble
solid solution. For example, Ni dissolves in Cu at all concentrations without a change in structure, giving rise to complete

solubility and a continuum of solid solutions. It usually occurs if the sizes of the atoms of the two components are nearly

equal (differing in size by less than 15%). If two or more elements dissolve only for restricted concentrations, we get what is

called a restricted solid solution.
Ordering: Solid solutions are sometimes categorized according to the order among the distribution of the atoms of the

different elements on the lattice sites. Consider a solid solution ABwith an equal number of A and B atoms. First possibility

is that the atoms A and B are distributed randomly on the lattice. Such a solid solution is called a random solid solution. The
second possibility is that the distribution of A and B atoms on the lattice may be partially or completely ordered. This is

called an ordered solid solution. In an ordered solid solution A and B atoms have regular periodic structure with respect to

each other, forming a superlattice in which the two types of atoms have a preference for being the 1NNs of one another. In a

partially ordered solid solution one can define the degree of order. One should note that a solid solution is completely

ordered at absolute zero. With an increase in temperature it becomes less ordered until a transition temperature is reached,

above which the structure is fully disordered. If a solid solution in the molten state is cooled rapidly to a temperature below

the transition temperature, a metastable state may be produced in which a nonequilibrium disorder is frozen into the lattice.

A solid solution may also be named after the nature of the impurity, which will be discussed in the coming section.

23.1.2 Types of Point Defects

As regards point defects, one can ask the following two questions:

1. What is the nature and position of a point defect in a crystalline solid?

2. What is the electronic structure of a crystalline solid for a given nature and position of the point defect?

The different types of atomic defects and their geometry are described below.
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23.1.2.1 Substitutional Point Defects

Consider a crystalline solid A in which impurity atoms B knock out the atoms A and take their positions, thus forming a

solid solution AB. The positions of atoms B, which were earlier occupied by atoms A, are called substitutional positions and

the impurity is called a substitutional impurity (substitutional point defect). It is found that the impurity atoms that have a

size comparable to that of the host atoms occupy the substitutional positions. The reason is that much larger impurities do

not have sufficient space to occupy the substitutional positions, while much smaller impurities are not able to knock out the

host atoms. Substitutional impurities in the fcc and bcc structures are shown in Fig. 23.1. The positions and distances of the

1NNs and 2NNs of a substitutional impurity are the same as given in Table 1.1. For the formation of substitutional impu-

rities certain conditions called the Hume-Rothery rules should be satisfied. These conditions are stated below:

1. Elements corresponding to both the host and impurity should have the same structure.

2. The radii of the two types of atoms should be approximately the same (within about 15%).

3. Besides the geometrical factors, other factors, such as the valence, should be the same.

4. The two components of the solid solution AB should have nearly the same electronegativity.

If the Hume-Rothery rules are not satisfied, an intermediate phase having a different crystal structure than either of the two

elements is formed.

23.1.2.2 Vacancies

In a perfect crystal, if one of the atoms is removed from the lattice and taken out of the crystal or to its surface, then the

defect formed is called a vacancy. The geometry of the vacancy in fcc and bcc structures is shown in Fig. 23.2. As a sub-

stitutional point defect, the positions and distances of the 1NNs and 2NNs of a vacancy are the same as for a substitutional

impurity. In an ionic crystal, there are an equal number of negatively and positively charged ions. Therefore, the number of

vacancies created by the positively and negatively charged ions must be the same. This is so because, if the positive ions

migrate out of the crystal to the surface, the surface becomes positively charged and opposes the migration of additional

positive ions out to the crystal surface. On the other hand, the excess negative charge created inside the crystal is favorable

for the formation of negative vacancies. In the absence of external forces, therefore, the number of oppositely charged

vacancies inside an ionic crystal tends to be equal, forming pairs of vacancies.

23.1.2.3 Interstitial Point Defects

A crystalline solid consists of a periodic array of atoms with finite empty spacings between them called voids (Chapter 1). In

most of the solids the atoms are closely packed. Out of the large number of possible close packings, only a few are found to

occur in nature, such as cubic and hexagonal close packings, among others. In all types of close packings, the voids can be

FIG. 23.1 Substitutional impurity in (A) fcc and (B) bcc crystal structures. The bigger atomwith the dark shade represents an impurity at the origin,while

smaller shaded atoms represent the host atoms. (Modified from Galsin, J. S. (2002). Impurity scattering in metallic alloys (p. 28). New York: Kluwer

Academic/Plenum Publishers.)
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classified into only two categories: tetrahedral and octahedral voids. If the atoms are considered to be hard spheres, then

triangular empty spaces exist in each close-packed layer of atoms (Fig. 23.3). If there is a sphere directly over a triangular

space, then there results a void with four atoms around it. The four atoms can be arranged at the corners of a regular tet-

rahedron (Fig. 23.3a), resulting in a void called a tetrahedral void. The center of the tetrahedral void is called the tetrahedral
interstitial position or tetrahedral interstice. Each tetrahedral interstitial position is surrounded by four atoms and each

atom is surrounded by eight tetrahedral interstitial positions. Therefore, on average there are two tetrahedral interstitial

positions per atom. If a triangular void pointing up in one close-packed layer is covered by a triangular void pointing down

in the adjacent layer, then the void that is formed is called an octahedral void which is surrounded by six atoms

FIG. 23.2 A vacancy in (A) fcc and (B) bcc crystal structures. The hollow dashed sphere at the origin represents the vacancy and the shaded spheres

represent the host atoms. (Modified from Galsin, J. S. (2002). Impurity scattering in metallic alloys (p. 29). New York: Kluwer Academic/Plenum

Publishers.)

FIG. 23.3 Two types of voids in a crystal structure with (a) tetrahedral symmetry and (b) octahedral symmetry.
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(see Fig. 23.3b). The center of the octahedral void is called the octahedral interstitial position or octahedral interstice. Each
octahedral interstitial position is surrounded by six atoms and each atom is surrounded by six octahedral interstitial posi-

tions. Therefore, the average number of octahedral interstitial positions per atom is one.

It is found that the light elements, such as H, O, N, B, and C, when mixed with metals, take either the tetrahedral or

octahedral interstitial positions. This is because the light atoms are not able to knock out the heavy atoms of the metal but

can easily accommodate themselves in the voids due to their small size. Fig. 23.4 shows two types of interstitial voids in the

case of an fcc structure. The octahedral interstitial positions are the midpoints of the edges of the unit cell, that is, at (0, 0, 1/

2), (0, 1/2, 0), (1/2, 0,0), and at (1/2, 1/2, 1/2), which is the center of the unit cell. The tetrahedral interstitial positions are at

(1/4, 1/4, 1/4), (1/4, 1/4, 3/4), (3/4, 3/4, 1/4), and (3/4, 3/4, 3/4). The 1NNs and 2NNs of the octahedral and tetrahedral

positions in a crystal with fcc structure are given in Table 23.1. The two types of voids in a crystal with bcc structure

FIG. 23.4 Interstitial impurity in the (A) octahedral void and (B) tetrahedral void in the fcc crystal structure. (Modified fromGalsin, J. S. (2002). Impurity

scattering in metallic alloys (p. 31). New York: Kluwer Academic/Plenum Publishers.)

TABLE 23.1 Positions, Distances, and Number of 1NNs and 2NNs of Octahedral and Tetrahedral Interstitial Positions in a

Host With fcc Crystal Structure

nNN Positiona Number Distance

Octahedral site

1NN (�1/2, 0, 0)a 6 a/2

(0, �1/2, 0)a

(0, 0, �1/2)a

2NN (�1/2,�1/2,�1/2)a 8
ffiffiffi
3

p
a=2

Tetrahedral site

1NN (1/4, 1/4, 1/4)a 4
ffiffiffi
3

p
a=4

(�1/4,�1/4,�1/4)a

(1/4, �1/4, �1/4)a

(�1/4, 1/4, �1/4)a

2NN (�1/4,�3/4,�1/4)a 12
ffiffiffiffiffiffi
11

p
a=4

(�1/4,�1/4,�3/4)a

(�3/4,�1/4,�1/4)a

aWe choose � such that the parity is odd.
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are shown in Fig. 23.5. The 1NNs and 2NNs of the tetrahedral and octahedral voids in a bcc crystal are given in Table 23.2.

It is noteworthy that in an fcc crystal, an octahedral void is larger than a tetrahedral void, while the reverse is true in a crystal

with bcc structure.

One should note that every symmetry operation of a cube is not a symmetry operation of a regular tetrahedron. For

example, a rotation through p/2 about an axis passing through the center of the cube and parallel to one of its edges takes

the cube into itself, but not for a tetrahedron. On the other hand, one can show that all the symmetry operations of a cube are

also symmetry operations of a regular octahedron and vice versa. One can classify solid solutions with respect to the nature

of the impurity. For example, substitutional solid solutions are formed by the presence of substitutional impurities, while

interstitial solid solutions are formed by the presence of interstitial impurities in a host element.

23.1.2.4 The Frenkel Defects

A Frenkel defect in a crystalline solid arises due to the migration of an atom at the lattice point to a nearby interstitial position

(Fig. 23.6). When the interstitial does not fall back into the vacancy so produced, either the vacancy or the interstitial or both

may migrate farther away from the point of creation. Ultimately the two components of the Frenkel defect are free from each

other’s influence. In a pure crystalline solid a Frenkel defect can be regarded as a self-interstitial atomic defect.

FIG. 23.5 Interstitial impurity in the (A) octa-

hedral void and (B) tetrahedral void in the bcc crys-

tal structure. (Modified from Galsin, J. S. (2002).

Impurity scattering in metallic alloys (p. 33). New
York: Kluwer Academic/Plenum Publishers.)

TABLE 23.2 Positions, Distances, and Number of 1NNs and 2NNs of Octahedral and Tetrahedral Interstitial Positions in a

Host With bcc Crystal Structure

nNN Position Number Distance

Octahedral site

1NN (0, 0, �1/2)a 2 a/2

2NN (�1/2, �1/2, 0)a 4 a=
ffiffiffi
2

p

Tetrahedral site

1NN (�1/2, �1/4, 0)a 4
ffiffiffi
5

p
a=4

(0, 1/4, �1/2)a

2NN (�1/2, 3/4, 0)a 4
ffiffiffiffiffiffi
13

p
a=4

(0, �3/4, �1/2)a
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23.1.2.5 Color Centers

Ionic crystals, such as NaCl, KCl, and LiF, have forbidden energy gaps on the order of 6eV and, therefore, these crystals are

expected to be transparent to visible light. It is found that the ionic crystals become colored due to the presence of point

defects. For example, NaCl crystal becomes yellow in color due to the presence of point defects. A color center is a lattice
defect that absorbs visible light. There are a number of ways in which an ionic crystals become colored.

1. Crystals become colored with the addition of suitable impurities, such as transition metal ions.

2. The ionic crystals can acquire color by heating in the presence of an alkali metal. The point defects so produced

introduce nonstoichiometry in the ionic solid and are called F-centers.

3. The crystals become colored or their color becomes darker by exposing them to high-energy radiation, such as X-rays or

g-rays, or by bombarding them with high-energy electrons or neutrons.

The simplest andmost studied color center is the F-center. F-centers are generally produced by heating a crystal in an excess

of alkali vapors or by irradiating the crystal by X-rays. For example, when NaCl crystal is heated in the presence of vapors

of Na metal, some Na atoms are deposited on the NaCl crystal. These Na atoms lose their outermost electron, forming

Na+1 ions and occupying the lattice positions. Corresponding to each Na+1 ion, there exists an empty position for the neg-

ative ion Cl�1 and the electron released by the Na atom is bound to the vacancy of the negative ion (see Fig. 23.7), thus

maintaining local charge neutrality. This electron is shared by six positive Na+1 ions adjacent to the vacant negative site.

The excess electron captured at the negative ion site in an alkali halide is called an F-center. The excess electron forms an

absorption band in NaCl at about 4650 Å, which is called the F-band. The F-band is in the frequency range of the color blue,

which is absorbed and, therefore, is responsible for the yellow color of NaCl crystal. It is noteworthy that the F-band is

characteristic of the crystal and not of the alkali vapor in which it is heated.

There also exist more complex color centers. One of the simplest complex color centers is called the FA center.

In general, the FA center is produced if one of the six 1NN atoms of the F-center in an alkali halide crystal is replaced

FIG. 23.6 A Frenkel defect in a square lattice. Shaded spheres represent host atoms, while the hollow sphere represents the vacancy.

FIG. 23.7 An F-center is a negative ion vacancy with one excess electron bound at the vacancy. The distribution of the excess electron charge is largely on

the positive metal ions adjacent to the vacant lattice site.
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by a different alkali ion. For example, if KCl crystal is heated in Na metal vapor, then it may happen that one of the first

nearest neighbor K atoms of the F-center is replaced by a Na atom (Fig. 23.8A). Further, there is a finite possibility of the

formation of a cluster of F-centers. If two adjacent F-centers are formed in an alkali halide crystal, then the color center so

formed is called an M-center. But if three adjacent F-centers are formed, then the color center is called an R-center. The

different color centers are distinguished by their different optical absorption frequencies. Fig. 23.8B and C show theM- and

R-centers in KCl crystal.

Color centers can also be created by trapping holes at a positive ion vacancy. But the hole centers are not as simple as the

electron centers. The formation of a hole is described below. The chlorine ion Cl�1 has the following electron

configuration:

Cl�1 : 1s22s22p63s23p6

The above electronic configuration is usually called the 3p6 configuration and gives a spherically symmetric ion. The cre-

ation of a hole in the Cl�1 ion gives us the following configuration:

Cl : 1s22s22p63s23p5

The 3p5 configuration gives rise to an asymmetric ion and has the same configuration as that of a Cl atom. If one more

electron is added to Cl�1, the electronic configuration of Cl�2 becomes

Cl�2 : 1s22s22p63s23p64s1

The 3p64s1 configuration yields a spherically symmetric ion. Therefore, the states represented by 3p5 and 3p64s1 are dif-

ferent: one is spherically asymmetric, while the other is spherically symmetric. The asymmetric state will immediately

distort the surroundings of the crystal. One can form the molecule of Cl�1 as follows:

Cl�1 +Cl�1 ¼ Cl�1
2 + e�1

Therefore, a hole is trapped in the molecule Cl2
�1 as is evident from the configuration of Cl�1.

23.1.3 Excitons

The concept of an exciton was first proposed by Frenkel in 1931 while describing the excitation of atoms in the lattice of an

insulator. An exciton in a crystalline solid consists of an electron and a positive hole, which attract each other by electro-

static forces (see Fig. 23.9A). The electron and hole may have either parallel or antiparallel spins, which are coupled by

exchange forces. As the electron and hole have equal and opposite charges, the exciton as a whole is an electrically neutral

quasiparticle that exists in insulators, semiconductors, and in some liquids. Frenkel further proposed that the exciton is free

to move throughout a nonmetallic crystal, just like a particle, and transport energy without transporting electrical charge.

The transport of energy by an exciton can be understood as follows.

When an electron in an exciton recombines with a hole, the original atom (molecule) is restored and the exciton van-

ishes. In the recombination process some energy is lost, which gives a finite lifetime to the excitons. The energy of the

exciton during the recombination of the electron and hole may be emitted as light energy, which may get transferred to

the electron in the adjacent atom (molecule). This electron, after acquiring energy, is forced to move away from its atom

(molecule), producing a new exciton at the adjacent atom (molecule) (Fig. 23.9A). It appears as if the exciton has moved

FIG. 23.8 (A) An FA-center in a KCl crystal. One of the six 1NN K+1 ions of the F-center is replaced by Na+1 or in general by another alkali ion. The

dashed circle is used here to denote a vacant negative ion site with a trapped electron. (B) An M-center in a NaCl crystal. It consists of two adjacent F-

centers in the crystal. (C) An R-center in a NaCl crystal. It consists of three adjacent F-centers in the crystal.
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from one atom (molecule) to another along with its energy. In this way the exciton may propagate through the atomic

(molecular) solid. There have been several mechanisms proposed for the transfer of energy but two of them are the most

important.

1. First is the dissipation of exciton energy due to interactions with the lattice of the crystal.

2. The second method is that the exciton energy is carried away by radiation.

The combination of these two processes has also been used. The excitation of an electron from the valence band to the

conduction band in a semiconductor through absorption of a photon provides a simple example of an exciton

(Fig. 23.9B). An electron in the conduction band is attracted by a hole in the valence band by Coulomb forces, thus forming

an exciton. As some of the energy is spent in binding the electron and hole, the exciton has slightly less energy than an

unbound electron and hole in a solid. The wave function of an exciton is said to be hydrogenic, as the excited atomic state is

like that of a hydrogen atom. However, the binding energy of an exciton is much smaller and the particle size is much larger

than in a hydrogen atom.

23.1.3.1 Types of Excitons

Excitons may be categorized with respect to the attractive interaction between the electron and hole, which in turn depends

on the nature of the solid. Excitons are of two types.

Frenkel Excitons

If the Coulomb attraction between the electron and hole is strong enough, one obtains what is called a Frenkel exciton. This

is the case in solids with small values of dielectric constant, such as insulators. Frenkel excitons are localized excitations,

that is, localized on the same atom or molecule, with a binding energy on the order of 0.1–1.0eV. Frenkel excitons are
usually found in alkali halides and organic molecular crystals composed of aromatic molecules.

Wannier-Mott Excitons

If the attractive Coulomb interaction between the electron and hole is weak, one gets aWannier-Mott exciton. For example,

in semiconductors, the dielectric constant is large, which immensely reduces the Coulomb interaction between the electron

and hole. Therefore, the distance between the electron and hole is large, yielding a large radius for the Wannier-Mott

exciton: larger than the lattice spacing. The binding energy of a Wannier-Mott exciton is much larger than that of a

hydrogen atom: it is typically on the order of 0.01eV. Wannier-Mott excitons are found in semiconductors with small

energy band gaps and high values of dielectric constant and in liquids, such as xenon.

Both types of excitons can occur in a single-walled carbon nanotube. This is because of the peculiar nature of the

Coulomb interactions between the electron and hole in one dimension. The dielectric constant inside the carbon nanotube

FIG. 23.9 (A) A representation of an exciton as a combination of an electron and hole. The electron and hole have different energies and so revolve about

the ion in circles with different radii. The exciton can move from one atom to another in the lattice. (B) Schematic energy band representation of a bound

electron-hole pair or an exciton in a semiconductor.
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is large enough, thus favoring the occurrence of a Wannier-Mott exciton. Further, the large value of the dielectric constant

yields a wave function that extends over several nanometers along the axis of the nanotube. On the other hand, poor

screening in vacuum outside the nanotube produces Frenkel excitons with large binding energies (0.4–1.0eV).

Atomic and Molecular Excitons

Excitons may also be produced in an individual atom or molecule, which can be thought of as an excited state of an atom or

molecule.When an atom absorbs a quantum of energy (may be in the form of electromagnetic energy), that corresponds to a

transition from one atomic orbital to another. The resulting electronic excited state is also described as an exciton. The

excited electron occupies the lowest unoccupied orbital and the hole occupies the highest occupied atomic orbital. As

the electron and hole both occur in the same atom, although in different orbitals, the electron-hole state is said to be bound.

The lifetime of an atomic exciton is on the order of nanoseconds. In exactly the same way one can describe the formation of

a molecular exciton when a quantum of electromagnetic radiation is absorbed by a molecule.

The most interesting property of atomic and molecular excitons is the energy transfer process. If one atomic (molecular)

exciton has a proper energy match with the adjoining atom’s (molecule’s) absorption spectrum, then the exciton may

transfer energy from one atom (molecule) to another. In a liquid the transfer of energy is strongly dependent on the intera-

tomic (intermolecular) distance.

23.1.4 Statistical Distribution of Point Defects

The statistical distribution of point defects can be studied using thermodynamics of solids. The thermodynamic study

involves the process of minimizing the energy of a crystal with respect to the formation of point defects. The energy

of a crystalline solid is given by Gibb’ s free energy, defined as

G E, P, V, T, Sð Þ¼E+PV�TS (23.1)

Here P, V, T, S are the pressure, volume, temperature, and entropy. E is the energy of formation of the point defect and

depends on its nature. In a crystalline solid P and V are nearly constant; therefore, the Gibb’s free energy can be replaced by

the Helmholtz free energy F, defined as

F¼E �TS (23.2)

Suppose NP is the number of point defects introduced in a crystalline solid with NL lattice sites. The change in Helmholtz

free energy DF of the crystal due to NP point defects at a particular temperature becomes

DF¼NPE�TDS (23.3)

where DS is the change in entropy. The entropy has two contributions: configurational (or mixing) entropy DSc and vibra-
tional entropy DSv. Therefore,

DS¼DSc +NPDSv (23.4)

DSv arises from the vibrational motion of each point defect about its equilibrium position at finite temperature, but we are

neglecting it in the present discussion. DSc arises due to the distribution of the point defects on the lattice, which produces
disorder in the atomic distribution. From Eqs. (23.3), (23.4) one can write

DF¼NPE�TDSc (23.5)

Let the point defects be distributed on the lattice in a numberW of ways. From statistical considerations, DSc can be related
to W as

DSc ¼ kB ln Wð Þ (23.6)

The equilibrium state of the crystal demands that DF be minimum with respect to the number of point defects, that is,

∂

∂NP

DFð Þ¼E�T
∂

∂NP

DScð Þ¼ 0 (23.7)

From Eq. (23.7) one can calculate the distribution of different point defects on the crystal lattice.
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23.1.4.1 Substitutional Point Defects

Let there be Ns substitutional point defects (which include vacancies) in a crystalline solid with NL atoms or lattice points.

If Es is the energy required to create a substitutional point defect, then Eq. (23.7) becomes

Es�T
∂

∂Ns

DScð Þ¼ 0 (23.8)

The number of ways in which Ns substitutional point defects can be distributed on NL lattice points is given by

W¼ NL!

NL�Nsð Þ!Ns!
(23.9)

From Eqs. (23.6), (23.8), (23.9) one can write

Es�kBT
∂

∂Ns

ln
NL!

NL�Nsð Þ!Ns!

� �
¼ 0 (23.10)

If Ns and NL are large, which is the case in a crystalline solid, then one can apply the Stirling formula defined as

ln N!ð Þ¼N ln Nð Þ�N (23.11)

Using the Stirling formula in Eq. (23.10) and simplifying, one gets

Es + kBT ln
Ns

NL�Ns

� �
¼ 0 (23.12)

The above equation can be solved immediately for Ns to give

Ns ¼NL exp � Es

kBT

� �
(23.13)

A vacancy is also a substitutional point defect so the number of vacancies Nv can be obtained in exactly the sameway as was

done above, that is,

Nv ¼NL exp � Ev

kBT

� �
(23.14)

where Ev is the energy of formation of a vacancy.

It has already been discussed that the vacancies occur in pairs in ionic crystals: an equal number of positive and negative

vacancies. Consider Nvp pairs of vacancies in an ionic crystal. The number of ways in which each kind of vacancy (Nvp in

number) can be arranged is the same as given by Eq. (23.9). Hence the total number of ways in which Nvp pairs of vacancies

can be arranged on the lattice is given by

W¼ NL!

NL�Nvp

� �
!Nvp!

2
4

3
5
2

(23.15)

Substituting Eq. (23.15) into Eq.(23.6), one can calculate DSc. The DSc so obtained is then substituted in the equation

Evp�T
∂

∂Nvp

DScð Þ¼ 0 (23.16)

to evaluate Nvp, which is given by

Nvp ¼NL exp � Evp

2kBT

� �
(23.17)

Here Evp is the energy of formation of a pair of vacancies.

23.1.4.2 Interstitial Point Defects

In a crystalline solid there are NL lattice points and NL

0
interstitial positions. Let EI be the energy of formation of an inter-

stitial point defect. The number of ways in which NI interstitial point defects can be distributed on the NL

0
interstitial posi-

tions is given by
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W¼ N0
L!

N0
L�NI

� �
!NI!

(23.18)

Substituting Eq. (23.18) into Eq. (23.6), we obtain

DSc ¼ kB ln
N0

L!

N0
L�NI

� �
!NI!

 !
(23.19)

The equation of motion for an interstitial point defect, from Eq. (23.7), can be written as

EI�T
∂

∂NI

DScð Þ¼ 0 (23.20)

Using the Stirling formula in Eq. (23.19) to obtain DSc and then substituting into Eq. (23.20), we get

EI + kBT ln
NI

N0
L�NI

� �
¼ 0 (23.21)

Solving Eq. (23.21) for NI, we obtain

NI ¼N0
L exp � EI

kBT

� �
(23.22)

23.1.4.3 The Frenkel Defects

Consider a crystalline solid with Nf Frenkel defects. In other words, there are Nf vacancies and Nf interstitial point defects.

The number of ways in which Nf vacancies can be distributed on the NL lattice points is given by

W0 ¼ NL!

NL�Nfð Þ!Nf !
(23.23)

Further, the number of ways in which Nf interstitial point defects can be distributed on NL

0
interstitial positions is given by

W00 ¼ N0
L!

N0
L�Nf

� �
!Nf !

(23.24)

The total number of ways W in which Nf Frenkel defects can be distributed in the crystalline solid is given by the mul-

tiplication of W
0
and W

00
, giving

W¼W0W00 ¼ NL!

NL�Nfð Þ!Nf !

N0
L!

N0
L�Nf

� �
!Nf !

(23.25)

Substituting Eq. (23.25) into Eq. (23.6), the mixing entropy due to the Frenkel defects becomes

DSc ¼ kB ln
NL!

NL�Nfð Þ!Nf !

N0
L!

N0
L�Nf

� �
!Nf !

 !
(23.26)

The distribution of the Frenkel defects, from Eq. (23.7) is defined as

Ef �T
∂

∂Nf

DScð Þ¼ 0 (23.27)

where Ef is the energy of formation of a Frenkel defect. If Nf is large, then DSc can be simplified using the Stirling formula.

The DSc so obtained is then substituted into Eq. (23.27) to get

� Ef

kBT
¼ ln

N2
f

NL�Nfð Þ N0
L�Nf

� �
" #

(23.28)

If the number of Frenkel defects is much lower than the number of lattice (interstitial) sites, that is, Nf≪NL and Nf≪NL

0
,

then Eq. (23.28) reduces to
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� Ef

kBT
¼ ln

N2
f

NLN
0
L

	 

(23.29)

Eq. (23.29) can be solved for Nf to give

Nf ¼ NLN
0
L

� �1=2
exp � Ef

2kBT

� �
(23.30)

One should note that any of the above defects, at finite temperature, do not remain at one location. After acquiring thermal

energy, the point defects can move from one site to another in the crystalline solid.

Problem 23.1

Energy of 1.1eV is required tomove an atom fromwithin a crystal to its surface.What fraction of vacancies is present in the crystal at

1000 and 500K?

Problem 23.2

Consider a crystal with NL lattice points (atoms) and NP point defects distributed in the lattice. Using the Gibb’s free energy, derive

the equation for the equilibrium state of the crystal. Further, derive an expression for the distribution of substitutional point defects in

the crystal.

23.2 DISLOCATIONS

23.2.1 Plastic Deformation of Crystals

With the application of weak stress, a crystal is deformed elastically and returns to its original state upon removal of the

stress. However, if the applied stress is sufficiently large (larger than some critical value), a certain amount of deformation

remains even after the removal of the stress. Under such conditions the crystal is said to be plastically deformed. It will be

seen that an atomic interpretation of the plastic flow of crystals requires the presence of dislocations.

23.2.2 Definition of Dislocation

Let us consider a crystalline solid, in rectangular form, divided into two halves. The upper half of the crystal is slipped over

the lower half by a distance b (see Fig. 23.10). Suppose the part of the plane in the upper half of the crystal AEFD has

slipped by a distance AA
0
(¼ DD

0
) above the plane of the lower part in the direction shown by the arrow and acquires

the position A
0
EFD

0
, while the remaining part EBCF of this plane is fixed. The plane ABCD is called the slip plane

and the vector b gives the direction and magnitude of the slip, usually called the Burgers vector. The line EF is the boundary

FIG. 23.10 A crystalline solid in which the upper half of the solid has

slipped by length AA
0
with ABCD as the slip plane. The rectangular part

AEFD of the slip plane has already slipped, but the part EBCFis unslipped.

The line EF is an edge dislocation.
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between the slipped and unslipped parts of the plane ABCD. If the distance AA
0
(¼ DD

0
) is equal to the lattice constant

“a” of the crystal, that is, the distance between consecutive atoms, then the slipped part has recovered the regular atomic

arrangement of the crystal. So, the wrinkles caused by the slip converge entirely on the line EF. Because the part of the

crystal along the line EF has shifted from the regular atomic arrangement, this is a line defect. The line defect, which
constitutes the boundary between the slipped and unslipped parts of the slip plane, is called a dislocation. When the

dislocation line moves in the direction of b, the area of the slipped part of the slip plane increases. Ultimately, when

the dislocation line reaches the end of the crystal, the whole of the plane in the upper part of the crystal has slipped

over the slip plane and it is said that a slip of magnitude b has occurred. When the displacement of one lattice plane

over the other equals one lattice constant in the slip plane, the slip is said to be a unit slip and the dislocation is said

to have unit strength.

The slip of a crystal when observed by an optical microscope appears as a slip band on the surface of a single crystal.
A slip band exhibits a fine structure, which consists of a group of unit slips. A realistic slip, of course, comprises n unit

slips taking place successively with length b¼na. Therefore, one can always analyze a slip of length b in terms of

unit slips.

Dislocations may not necessarily be limited to a straight line or to a slip plane. For example, let PQRS be a slip plane

dividing the crystal into two halves, as shown in Fig. 23.11A. In the slip plane, consider an arbitrary closed curve ABC that

encloses the shaded region. This plane, as seen from above, is shown in Fig. 23.11B. Suppose that, by applying a shear

stress, the material located over the shaded area in the upper half of the crystal is displaced by an amount b relative to

the lower half of the crystal. At the same time, the material in the upper half of the crystal lying outside the area ABC

is left in place. Therefore, only a fraction of the upper half of the crystal has slipped relative to the lower half. Let us define

a parameter fs as the ratio of the area slipped ABC to the total area of the slip plane PQRS, that is,

fs ¼
Area enclosed by curveABC

Area of slip plane PQRS
(23.31)

The ratio fs is referred to as the fraction of slip that has occurred in this plane. If the area ABC is made to grow, fs increases

and, ultimately, approaches unity. In the case of fs¼ 1, the whole of the upper half of the crystal would be displaced by an

amount b relative to the lower half, which, in other words, means that a slip of magnitude b has occurred. For fs< 1, the

average displacement of the upper half relative to the lower half is fs j b j.
The line ABC marks the boundary, in the slip plane, between the slipped and unslipped material and by definition it

constitutes the dislocation line. The vector b defines the magnitude and direction of the slip and is the Burgers vector.

Because the atoms always acquire the minimum energy position, the vector b must connect two atomic equilibrium posi-

tions and its value is determined by the crystal structure. The direction of the dislocation line at any given point is described

by a unit vector t̂, which is tangent to the dislocation line. The direction of t̂ changes continuously as one moves along the

dislocation loop (Fig. 23.11C): t̂ is continuous around the dislocation loop. The directions of the vector t̂will be opposite on

opposite sides of the loop. The direction of the unit vector t̂ (clockwise or counterclockwise) is immaterial as it will only

result in a change of sign (plus or minus).

FIG. 23.11 (A) Schematic representation of a closed curved dislocation ABC in the slip plane PQRS in a solid. The slip has occurred only in the shaded

area in the curved dislocation. (B) The slip plane PQRSwith Burgers vector b in the slipped portion ABC. (C) The directions of the unit vector t̂, tangent to

the dislocation line at different points.
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Any model of dislocations must answer a number of questions about the plastic flow:

1. It must explain how the dislocations tend to grow (how the size of the slipped region increases) leading to the motion of

a slip. Moreover, the calculated critical shear stress should agree quantitatively with its observed value.

2. An observed slip may correspond to displacements of the order of 1000 Å. But the dislocation line ABC, after sweeping

through the whole of the slip plane, may produce a slip with j b j�2 Å and then disappear. Therefore, the model must

account for the large number of dislocations taking part in the slip process and also the sources that supply such

dislocations.

3. Besides the plastic flow, the model should explain other physical properties reasonably well in the presence of

dislocations.

To have more insight into the characteristics of dislocations, it is convenient to define dislocations purely geometrically as

follows. In a crystal, the parts having regular atomic arrangement are called good regions, while those having irregular

atomic arrangement are called bad regions. First, we define a Burgers circuit, which is a loop obtained by moving one

atomic distance at a time along the primitive lattice vectors of the crystal structure (Fig. 23.12a). An important property

of the Burgers circuit is that it encloses a bad region, although it itself is always in a good region of the crystal. To under-

stand the Burgers circuit, consider a pure crystal having no bad regions as a reference crystal (Fig. 23.12a). Start from an

arbitrary reference atom at P and move atom by atom to complete a circuit in the crystal. This is usually called a Burgers

circuit and is a closed circuit in a pure crystal. Now introduce a line defect in the same crystal, as a result of which the crystal

is distorted and, therefore, contains both good and bad regions. If one proceeds from the same atom at P in the same way,

connecting the corresponding atoms as in the reference crystal, one ends up at the position Q (see Fig. 23.12b). Therefore,

the Burgers circuit in a crystal with a lattice defect is not closed. The vector b drawn from the end point Q to the starting

point P of the Burgers circuit gives the Burgers vector. The line defect enclosed by the Burgers circuit is called a dislocation.

The above definition of dislocation indicates that the Burgers vector is the most important physical concept. The magnitude

of the Burgers vector gives the strength of the dislocation.

23.2.3 Force Acting on Dislocations

Suppose a uniform shear stress s!s is applied to a crystal, which may not be in the direction of the Burgers vector b. This
leads to a force on the dislocation line such that the slipped area tends to grow. Consider element dl of a dislocation line (see

Fig. 23.13). Suppose this element is displaced in the outward direction by an amount dl? along the direction perpendicular

to dl. The area swept out by the line element is dA¼dldl?. Now the average shear displacement of the upper part of the

crystal relative to the lower part is

fsb¼
dl dl?
A

b¼ dA

A
b (23.32)

where A is the area of the slip plane. The work done by the shear stress is equal to the total shear force F¼ s!sA times the

average shear displacement, that is,

dW¼F � fsbð Þ¼ s!s � b
� �

dldl? (23.33)

Hence, the magnitude of the force acting on the element dl in the normal direction is given by

FIG. 23.12 Burgers circuit (a) in a pure crystal and (b) in a real

crystal containing an edge dislocation. The starting point is

shown by a black dot and the end point by a double arrow. In

a real crystal containing an edge dislocation, the starting and

end points are separated by the Burgers vector b as shown. Here

a1 and a2 represent the primitive translation vectors.
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Fs ¼
dW

dl?
¼ s!s � b
� �

dl (23.34)

Now the magnitude of the force per unit length acting on the dislocation line is

Fd ¼
dW

dldl?
¼ s!s � b
� �

(23.35)

Thus, the applied shear stress produces a force per unit length s!s � b, which is perpendicular to the dislocation line every-

where. If the force is large enough tomake the dislocation line move in the direction of Fd, then the slipped area in Fig. 23.13

will grow and slip will occur under the shear stress.

23.2.4 Critical Shear Stress

The dislocation model described above yields a very small value of the critical shear stress ssc for a slip. Let us consider the
regions near the dislocation line somewhat more closely. The boundary between the slipped and unslipped regions is not

sharp, but is rather vague due to the interatomic forces extending over several atomic distances. Atoms near the dislocation

line, on its inner side, have nearly completed the slip process, but those near the dislocation line, but on the outer side, are

just beginning to slip. As a result of the periodic nature of the potential, the atoms outside but near the dislocation line tend

to push the dislocation line inward, because this would allow them to occupy their initial equilibrium positions (see

Fig. 23.14). On the other hand, the atoms inside but near to the dislocation line tend to push the line outward because this

would make it possible for them to occupy their new equilibrium positions. Far away from the dislocation line, on either

side of it, the atoms occupy their normal lattice positions and are not affected by the dislocation. Thus, to a first-order

FIG. 23.13 The dashed line is the dislocation line in the

slip plane PQRS. The small element dl of the dislocation line

moves, in the outward direction, through a distance dl? due

to the application of shear stress s!s. The shear stress s
!
s may

not be in the direction of the Burgers vector b as shown.

FIG. 23.14 The dislocation line ABCD in the slip plane PQRS. The inward

and outward forces acting on the part BC of the dislocation line are shown. The

inset diagram shows a magnified view of the near completion (startup) of the

slip on the inner (outer) side of a small elemental portion of the dislocation line.
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approximation, the forces on both sides of the dislocation line balance each other and it should start to move under

very small shear forces. Therefore, a first-order approximation will give very low values of s!sc. But in a second-order

approximation one finds that the value of s!sc calculated from this model is of the same order of magnitude as the

observed values.

Fig. 23.15 shows a cylindrical crystal with cross sectional area A to which is applied the tensile force F with the slip

plane shown in the figure. Let the normal to the slip plane make an angle a with F and the angle between the slip direction

and F be b. The force acting on the slip plane per unit area Fs is given by

Fs ¼
F

A=cos a
¼ F

A
cos a (23.36)

The direction of Fs is the same as that of F and can be resolved into two components: one parallel and the other per-

pendicular to the slip plane. The shear stress is the force acting per unit area (of the slip plane) in the slip direction and

is given by

s!s ¼
F

A=cos a
cos b¼ F

A
cos a cos b (23.37)

The tensile stress is the force per unit area normal to the slip plane and is given by

s!n ¼
F

A=cos a
cos a¼ F

A
cos2a (23.38)

FIG. 23.15 Geometry of slip plane, slip direction, and tensile force F acting on a solid in cylindrical form.
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For particular values of a and b, suppose that the force F increases gradually from zero, thereby increasing the magnitudes

of the shear and tensile stresses. Even for relatively small stresses a certain amount of plastic flow occurs, but the rate of

flow is so small that one speaks of creep. It turns out that the rate of flow increases very rapidly whenever the shear stress s!s

reaches a critical value s!sc. For pure crystals, s
!
s lies in the range of 106�107 dynes/sq. cm. At the same time, the results

indicate that s!n has no influence on the mechanism of slip.

23.2.5 Dislocation Density and Shear Strain

It has already been stated that a single dislocation line, when it sweeps across a slip plane, gives rise to a displacement on the

order of a few angstroms. Thus, any macroscopic plastic deformation must be a result of a large number of dislocations

sweeping across many slip planes. The plastic flow will be determined by the rate at which dislocation lines sweep through

the slip planes. In other words, the rate of flow is expected to be proportional to the total length of all active dislocation lines

and the average velocity with which the elements of these lines move. We, therefore, introduce the concept of “dislocation

density,” which is defined as the total length of dislocation lines per unit volume. If Ld is the total length of the dislocation

lines and V is the volume of the crystal, the dislocation density rd is given by

rd ¼
Ld

V
(23.39)

Note that rd has the dimensions of L�2. One can arrive at this concept from the following reasoning.

Let dl be an element of a dislocation line, which moves a distance dl? on the slip plane perpendicular to dl, but in the

outward direction (see Fig. 23.13). Then the area swept out by dl becomes dA¼dldl?. The average displacement of the

upper part relative to the lower part of the crystal is given by fsb (Eq. 23.32). If the thickness of the crystal perpendicular to

the slip plane is h and the shear strain is dg, we can write

dg¼ 1

h

ð
dldl?
A

b (23.40)

The integral over dl gives us Ld, the entire length of the dislocation line inside the volume V¼Ah of the crystal. So,

dg¼ bLd

V

ð
dl? ¼ bLd

V
dl? (23.41)

if dl? is the average value of dl?. Substituting Eq. (23.39) into Eq. (23.41), we get

dg¼ brddl? (23.42)

This is the relation between the average distance moved by the dislocation and the macroscopic strain. The rate of change of

shear strain can be written as

dg
dt

¼ brd
dl?
dt

¼ brdv (23.43)

where v is the average velocity of the element dl in a direction normal to itself. The dislocation density rd is an extremely

important quantity and is related to various phenomena.

23.2.6 Types of Dislocations

Basically, the dislocations are characterized with respect to the directions of the Burgers vector and the dislocation line. The

dislocations can be divided into three categories.

1. Edge dislocations

2. Screw dislocations

3. Mixed dislocations

23.2.6.1 Edge Dislocations

An edge dislocation is defined as a dislocation for which the Burgers vector b is everywhere perpendicular to the dislocation

line. The simplest edge dislocation is that in which the dislocation line is a straight line. The formation of a straight-line

edge dislocation may be visualized in terms of the slip process. Fig. 23.10 shows a solid in which the upper half is pushed
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sideways such that the line A
0
D

0
, which initially coincided with AD, is shifted by an amount b as indicated. If in this position

the two halves are glued together, an edge dislocation is produced. The upper half of the block will clearly be under com-

pression, while the lower half will be under tension. Before the operation, a square network of lines of atoms exists in the

solid. But after the operation, the square network gets distorted and the front face AKLMNA
0
appears as shown in

Fig. 23.16. The strained pattern immediately suggests an alternate method by which an edge dislocation may be produced.

Suppose that the intersection points of the lines of the network represent the positions of atoms in the lattice. Therefore,

each point in Fig. 23.16 represents a row of atoms perpendicular to the plane of the paper. The edge dislocation may then be

obtained by cutting the block along the plane EFGH (Fig. 23.10) and putting the half plane of atoms initially above AD

inside the cut. This gives rise to the “extra” half plane of atoms corresponding to HE in Fig. 23.16, which is typical of an

edge dislocation. If the extra half plane is displaced to the right, the slip will progress, and when HE finally reaches the right-

hand side of the block, the upper half of the block completes the slip by an amount b. The slip process resulting from the

motion of edge dislocation is illustrated in Fig. 23.17A.

The edge dislocations for which the extra half plane lies above the slip plane are called positive edge (?) dislocations. If

the extra half plane lies below the slip plane, it is a negative edge dislocation (Τ). Fig. 23.17A and B show that the slip

resulting from a positive edge dislocation moving to the right is equivalent to the slip resulting from a negative edge dis-

location of the same strength moving to the left. The extra half plane may sometimes have an irregular boundary, which

gives rise to what is known as an irregular edge dislocation. The definition of an edge dislocation does not necessarily imply

FIG. 23.16 The strain pattern on the front face of the crystal KLMN with straight line edge dislo-

cation HE shown in Fig. 23.10. Here the upper part of the crystal has slipped by AA
0
. (Modified from

Cottrell, A. H. (1953). Dislocations and plastic flow in crystals (p. 22). Oxford, New York.)

FIG. 23.17 Motion of (A) a positive edge dislocation to the right and (B) negative edge dislocation to the left, both leading to a slip.
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that the dislocation is a straight line. In fact, any curved line can represent an edge dislocation so long as it is perpendicular

to the Burgers vector. For example, in Fig. 23.11B and C, the vertical portions of the dislocation line denote edge-type

dislocations.

Interstitials or vacancies can be produced as a byproduct of the recombination of a positive and a negative edge dis-

location. Consider, for example, the case in which the slip plane of a positive edge dislocation is parallel to that of a negative

edge dislocation and suppose that the slip plane of the former lies two interatomic distances above that of the latter. When

these dislocations meet, a row of vacancies is left after recombination, as shown in Fig. 23.18A. Fig. 23.18B shows the

formation of two rows of vacancies in the crystal when the two slip planes are separated by three interatomic distances.

Similarly, if the half planes overlap each other, one or more rows of interstitials become available. Edge dislocation is also

sometimes called Taylor-Orowan dislocation.

23.2.6.2 Screw Dislocations

A screw or Burgers dislocation is defined as a dislocation in which the Burgers vector b is everywhere parallel to the dis-

location line. In Fig. 23.11B and C the horizontal portions of the dislocation line represent screw-type dislocations, as the

Burgers vector b is parallel to the dislocation line. Fig. 23.19 shows the atomic configuration in the vicinity of a screw

dislocation piercing the surface of a simple cubic lattice. A screw dislocation is produced if one cuts the block across

the area BFHM and then pushes the upper part into the paper in the direction of the Burgers vector b, as indicated.

The dislocation line BM is parallel to b; note that a screw dislocation is always a straight line, in contrast with an edge

dislocation. As one moves around the dislocation line along a circuit, such as AKLCDE, one advances in the direction

FIG. 23.18 (A) The formation of a row of vacancies, represented by a dashed circle, per-
pendicular to the plane of the paper, upon the recombination of a positive and a negative edge

dislocation; the dislocation lines are also perpendicular to the plane of the paper. (B) The

formation of two rows of vacancies perpendicular to the plane of the paper. The figure

caption is the same as that of part (A) of the figure.

FIG. 23.19 Schematic representation of a screw dislocation in a simple cubic lattice:

the dislocation line BM is parallel to the Burgers vector b. (Modified from Dekker, A. J.

(1971). Solid state physics (p. 91). London: MacMillan).
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of BM by an amount b for every turn, hence the term “screw dislocation.” Note that no extra half plane appears in the screw

dislocation. Thus, the motion of a screw dislocation is more free than that of an edge dislocation. If a screw dislocation

moves along any cylindrical surface, its Burgers vector is along its axis. If, in Fig. 23.19 the dislocation line moves to the

left, then slip proceeds. Thus, screw dislocations, like edge dislocations, can produce plastic flow. Depending on the

motion, screw dislocations can be classified into two categories:

1. If the motion is counterclockwise, it is called a left-handed screw dislocation and is denoted by ///.

2. If the motion is clockwise, it is called a right-handed screw dislocation and is denoted by \\\.

Let us consider a simple example of edge and screw dislocations. Fig. 23.20 shows a rectangular dislocation loop ABCD

produced when the upper part of a crystal slips above the rectangular slip plane. The portion of the crystal above the slip

plane but inside the rectangle ABCD is slipped along the Burgers vector b. In Fig. 23.20, AB and CD are edge dislocations:

AB is a positive edge dislocation and CD is a negative edge dislocation. On the other hand, BC and AD are screw dislo-

cations: BC is a clockwise screw dislocation (\\\) and AD is a counterclockwise screw dislocation (///).

23.2.6.3 Mixed Dislocations

A mixed dislocation is defined as a dislocation in which the angle between the Burgers vector and the dislocation line lies

between 0o and 90o and possesses, therefore, components of both edge and screw dislocations. Such dislocations are also

called compound dislocations. In Fig. 23.11C the curved portions of the dislocation line, which are neither horizontal nor

vertical, form mixed dislocations.

23.2.7 Conservation of the Burgers Vector

Let a Burgers circuit be moved gradually only in the good region of a crystal and then deformed gradually only inside the

good region. If this Burgers circuit happens to overlap with another Burgers circuit, then these Burgers circuits are said to be

equivalent and they possess the same Burgers vector. If a Burgers circuit is moved along a dislocation line (a straight line or

a loop), the new Burgers circuits formed are always equivalent to each other as they overlap. So, the Burgers vector remains

the same everywhere on the dislocation line. This is called the conservation of the Burgers vector. An important thing that

can be inferred from the conservation of the Burgers vector is that the dislocation cannot have an end point inside the

crystal. The dislocation line either forms a closed loop inside the crystal or comes out to the surface of the crystal. The

closure failure of a Burgers circuit surrounding more than one dislocation line is equal to the sum of the Burgers vectors

of the various dislocations.

Consider a dislocation line with the Burgers vector b1, which is split into two dislocation lines (or branches) with the

Burgers vectors b2 and b3, as shown in Fig. 23.21A. Then the conservation of the Burgers vector demands

FIG. 23.20 ABCD is a rectangular loop of a dislocation line in the slip plane. It shows both the edge and screw dislocations in a simple way.

FIG. 23.21 (A) The splitting of the Burgers vector b1 into two Burgers

vectors b2 and b3. (B) Three Burgers vectors b1, b2, and b3 meet at a point

forming a node of dislocation lines.
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b1 ¼ b2 + b3 (23.44)

It is important to determine the relationship between the direction of a dislocation and the Burgers vector. Construct a

Burgers circuit in a clockwise direction and assume that the direction of a dislocation is that of an advancing screw

(see Fig. 23.21B). The direction of the Burgers vector is such that it closes the Burgers circuit (see Fig. 23.12b), starting

from the end point of the Burgers circuit to the starting point.

Whenmore than two dislocation linesmeet at a point, it is called a node. At the node the dislocation lines flow either toward

the node or away from the node. In Fig. 23.21B the signs of b2 and b3 are opposite to that of b1. One can, therefore, write

b1 ¼�b2� b3

or b1 + b2 + b3 ¼ 0 (23.45)

Kirchhoff’s law of dislocations states that the vector sum of the Burgers vectors of all the dislocations flowing into or out of
the node vanishes. It is clear from the above discussion that a dislocation either forms a loop in the crystal or comes out at

the surface of the crystal. The dislocation lines in a node may not necessarily be in the same plane. For example, in the (111)

slip plane of an fcc lattice, the solid can slip along the OX1, OX2, and OX3 directions. So, in an fcc lattice there are three

dislocation lines whose Burgers vectors correspond to OX1¼b1, OX2¼b2, and OX3¼b3 (Fig. 23.22A). If the sum of b1
and b3 is equal to b2, then these Burgers vectors can intersect to form a node, as shown in Fig. 23.22B. These dislocation

lines may not necessarily be in the same plane. In real crystals, a number of nodes may exist that form a dislocation network.

The most stable form of dislocation distribution is found to be a hexagonal network (see Fig. 23.22C) in view of the dis-

location energy. Dislocation networks are easily observed by means of transmission electron microscopy in the case of

metallic foils. A hexagonal network has been observed in microscopic photographs of AgBr crystal. It is noteworthy that

the dislocations are not thermodynamically stable, but they can be mechanically stable.

23.2.8 Dislocation Energy

To produce a dislocation, work is required to be done, which is stored as the energy of the dislocation. The dislocation

energy can be estimated by assuming the crystal to be an elastic solid during the process of creation of the dislocation.

Suppose that a uniform shear stress s!s is applied to the crystal, which produces the Burgers vector b not necessarily in

the direction of s!s (see Fig. 23.13). The shear stress will exert force on the dislocation line causing it to move and thereby

increasing the slipped area. The work done by s!s in causing the displacement b is equal to the energy of the dislocation ED

given from Eq. (23.33) as

ED ¼
ð
dW¼

ð
s!s � b
� �

dA (23.46)

In real systems, the force at a point builds up linearly from zero to a maximum value as the displacement is carried out.

Therefore, one must calculate the average shear force per unit area and use it in Eq. (23.46). The evaluation of the dislo-

cation energy can be illustrated by taking a simple example of a straight screw dislocation, as shown in Fig. 23.23.

Consider a cylindrical shell with length l and thickness dr with r0 and r1 as its inner and outer radii (Fig. 23.23A).

FIG. 23.22 (A) Three Burgers vectors in a slip plane of an fcc crystal network. (B) The intersection of the corresponding Burgers vectors of (A). (C)

Hexagonal dislocation network.
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Let the cylindrical shell be cut lengthwise by applying a force along the cut plane, thereby producing the screw dislocation

(Fig. 23.23B). The magnitude of the shear stress s!s can be obtained by the following simplification. Let the crystal be

considered to be a series of concentric cylindrical shells with a dislocation line along their axis. Each shell is cut along

its cylindrical length where the cut surface intersects the shell. The shell on one side is displaced with respect to the other

side by a distance b. If the thickness of the shell is small, the geometrical configuration of the shell is not important for

calculating the resistive force during the displacement. In particular, the force will be the same if the shell is opened out into

a flat plate. Then the problem is reduced to the calculation of the shearing displacement of the plate, as shown in

Fig. 23.23C. The shear strain y is given by

y¼
ð
dy¼ 1

2pr

ð
dz¼ b

2pr
(23.47)

The integration over dz gives the total displacement b. For a small displacement, according to Hooke’s law, the modulus of

rigidity � is given by

�¼ ss
y
¼ 2pr

b
ss (23.48)

So, the shear stress from the above equation is given by

ss ¼
�b

2pr
(23.49)

The shear stress ss builds up from zero to its maximum value given by Eq. (23.49), so the average value of stress is

sav ¼
1

2
0 +

�b

2pr

	 

¼ �b

4pr
(23.50)

From Eqs. (23.46), (23.50), the energy of dislocation becomes

ED ¼ �b2

4p

ð
dz

ð
dr

r
(23.51)

The integral over dz gives the length of the cylinder l (see Fig. 23.23). Therefore, finally, the dislocation energy becomes

ED ¼ �b2

4p
l ln

r1
r0

� �
(23.52)

The energy calculated using Eq. (23.52) depends upon the values taken for the integration limits on r. For an infinite crystal

(r1!∞ ), the energy of dislocation is infinite. However, an ordinary-sized finite crystal (say 1 cm on edge) contains many

dislocations, which are randomly distributed. Experimental observations show that the mean distance between any two

dislocations in a crystal is about 104 atomic spacings and hence r1 is on this order.

FIG. 23.23 (A) A hollow cylinder with length l and inner and outer radii r0 and r1. (B) By applying the shear stress s
!
s the cylinder is cut along the length,

thereby producing a dislocation line along the axis of the cylinder. (C) The cylindrical shell is opened out into a flat plate.
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As r0!0, Eq. (23.52) becomes divergent.However, because of the finite size of the atoms,we cannot consider any region

of atomic dimensions as an elastic continuum and, therefore, elasticity theory becomes invalid. It is reasonable, therefore,

to consider the region within about one lattice spacing of the center of a dislocation to be a void and to delete it from con-

sideration. Hence r0 is at least on the order of one or two lattice spacings, which gives r1/r0 � 5�103 in Eq. (23.52). If the

Burgers vector j b jffi2.5 Å and � ¼ 1011N/m2, we find ED ¼ 1019 joules (� 6eV) per atom-length of dislocation line.

23.2.9 Growth of Slips: The Frank-Read Source

When the surface of a crystal is deformed plastically, a part of the crystal slips over the other part. The slip may extend to

several hundred atomic spacings and, as a result, the dislocation line moves by the same distance. It has already been

explained that an actual slip may contain a few hundred unit slips, each extending over an atomic spacing. Therefore,

a large number of dislocation lines of unit strength travel over the slip plane one after the other. From the distribution

and density of the dislocation network inside the crystal, it is not possible to understand how such a large number of dis-

location lines with different sources can travel over the slip plane. Therefore, there must exist some mechanism for the

multiplication of dislocations with the help of which a large number of dislocations can be obtained from a single source

and that travel one after the other to constitute the observed slip. A number of mechanisms for the dislocation multiplication

have been proposed, but one of the most common is the Frank-Read source mechanism. To understand the Frank-Read

mechanism, consider part AB of the dislocation network, which always lies in the slip plane P, while the other parts, such

as AC, BE, AD, and BF, lie outside the plane P (see Fig. 23.24). If the slip plane is in the page of the book, then AB appears

as shown in Fig. 23.25A. If a shear stress s!s is applied along the slip plane, the part AB tends to move along with the plane,

while the other part outside the plane tends to remain stationary. In other words, AB is pinned at A and B but the rest of the

dislocation line expands and becomes distorted, as shown in Fig. 23.25B. If the shear stress is applied externally, then the

force acting on the dislocation line per unit length is s!s b and this force acts perpendicularly to the dislocation line. Thus, the

dislocation line continues to expand, as shown in Fig. 23.25B–D.
The expansion of the dislocation line depends on the sign of each part of it. If the dislocation line in Fig 23.25A is

assumed to be a positive edge dislocation, then the sign of each part of the dislocation line when the state labelled d is

FIG. 23.24 The dislocation network consisting of dislocations CAD and EBF connected with dislocation AB. The dislocation line AB lies in the slip

plane P and is called a sweep dislocation. The other parts CAD and EBF lie outside the slip plane and are called pole dislocations.

FIG. 23.25 The figure shows the growth of a slip due to the Frank-Read mechanism. (A) The surface of the page is the slip plane and only the part AB of

the dislocation line lies in the slip plane. The shear force s!sb per unit length always acts perpendicularly to the dislocation line AB. (B) The dislocation line

starts expanding in the slip plane but perpendicular to the shear force. (C) and (D) The continued expansion of the dislocation line. (E) Externally expanding

dislocation loop is formed along with AB dislocation line which becomes straight. (Modified from Kubo, R., & Nagamiya, T. (1969). Solid state physics

(p. 783). New York: McGraw-Hill Book Co.)
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reached is shown in Fig. 23.25D. The parts M and N of the dislocation line face each other and are oppositely wound screw

dislocations. On further expansion, the parts M and N come in contact with each other and vanish, leaving the shape indi-

cated in Fig. 23.25E. Thus, when the parts M and N vanish, a heart-shaped loop along with the mountain-shaped part AB is

left. The part AB becomes straight, acquiring the same shape as in Fig. 23.25A, while the loop is an externally expanding

one. The part AB of the dislocation is called a sweeping dislocation, while the parts CAD and EBF (see Fig. 23.24) are

called pole dislocations. If stress is applied continuously from outside, then, again, the shapes of Fig. 23.25B–E are repeated

and loops are continuously formed. This is the basic concept of the Frank-Read source.

23.2.10 Grain Boundary

A commercially available crystal comprises very small crystals, usually called crystallites or grains. The crystallites join

together to form a bigger crystal and the boundary between the crystallites is called a grain boundary. The formation of a

grain boundary can be understood in a simple way by considering two crystallites in which the mutual inclination angle is

small. Fig. 23.26A shows two crystallites placed side by side having y as the small inclination angle. These are simple cubic

crystals in which the axes perpendicular to the page are parallel. To join the crystallites, they are rotated about the perpen-

dicular axes in the clockwise and counterclockwise directions by an angle y/2. The boundary plane formed is the simplest

and contains a common crystal axis for both the crystallites. Further, the crystal orientation is symmetric on both sides of the

boundary plane. Such a boundary has a vertical arrangement of edge dislocations of like sign, as is clear from Fig. 23.26B.

There are three stable vertical edge dislocations of the positive sign at the boundary.
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FIG. 23.26 (A) Two crystallites with simple cubic structure are placed

close to each other and are inclined to each other by an angle y. (B) Two
crystallites are joined, which forms a set of three positive dislocation lines.

The spacing between the two edge dislocations is given by h¼b/ywhere b
is the Burgers vector of the dislocations. (Modified from Kubo, R., &

Nagamiya, T. (1969). Solid state physics (p. 771). New York: McGraw-

Hill Book Co.)
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Solids can be classified broadly into two categories:

1. Crystalline solids: In crystalline solids the atoms are periodically arranged in the form of an array and exhibit long-

range order. A number of structural and electronic properties of these solids have been discussed in the previous

chapters.

2. Amorphous solids: Amorphous solids do not exhibit long-range order. In these solids the atoms are not purely randomly

distributed, but exhibit a short-range order in the form of a regular coordination number. Long-chain molecules, such as

polymers, also fall into the category of amorphous solids. Sometimes the amorphous solids are referred to as glasses.

Some common examples of amorphous solids are oxide glasses, polymers of high molecular weight, and a few other

inorganic compounds.

To distinguish between crystalline and amorphous solids, one can study the cooling curve of the vapor of a material. Ini-

tially, let the material be in the gaseous state and enclosed in a box with finite volume V. As the vapor is cooled, the volume

decreases with decreasing temperature T and there is a sharp break in the V-versus- T curve, which marks a change in phase

from the gas to the liquid state at the boiling temperature TB (see Fig. 24.1). As the cooling continues, the volume decreases

in a continuous fashion. One can define the coefficient of thermal expansion GTH as

GTH ¼ 1

V

dV

dT

� �
P

(24.1)

With a decrease in temperature, the liquid-to-solid phase transition takes place (with the exception of He, which remains

liquid as T! 0 at zero pressure). The liquid-to-solid phase transition can take place in two ways:

1. If the cooling is carried out slowly, the liquid usually goes to the crystalline solid phase through path 1. There is a

discontinuity in the slope of the V-versus-T curve at the freezing temperature TF and the whole liquid goes to the crys-

talline solid phase at a constant temperature TF.

2. If the cooling is carried out at a very fast rate, there is no discontinuity in volume. Instead the V-versus- T curve acquires

a smaller slope, as shown in path 2. There is a narrow temperature range about TG (shown by shaded region) in which the

liquid goes to the amorphous solid phase. TG is usually called the glass transition temperature because amorphous

solids were called glasses in the early days. One should note that TG<TF, therefore, in path 2 the material remains

in the liquid state even at temperatures lower than TF. The narrow range of temperature around TG in which the liquid

goes to the amorphous state can be explained in terms of the bond energies. All the subunits in an amorphous solid do

not possess identical surroundings, as a result of which they do not have the same bond energies: the spread in bond
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energies may be very small. Therefore, the solidification process is associated with a range of energies for the bonds

between the subunits. As the liquid is cooled, the lowest energy bonds are formed first and the subunits begin to stick

together locally. As the temperature is lowered further, more bonds, in order of increasing energy, are gradually formed

until the material is completely hard. Therefore, the process of solidification is completed over a narrow range of tem-

perature around TG.

It has been found that TG depends on the cooling rate in the transition from the liquid to the amorphous solid state: TG shifts

to lower temperatures when the cooling rate is decreased. For example, in the organic glass polyvinyl acetate

(CH2CHOOCCH3), if the cooling rate is increased by a factor of 5000, the shift in TG is only 8K. The weak dependence

of TG on the cooling rate is due to the temperature dependence of the typical molecular relaxation time.

It can be explained physically why the liquid goes to the amorphous solid state at high cooling rates. In the liquid state,

the molecules are randomly distributed and are in constant motion. As the liquid is cooled slowly, the atoms or molecules

have sufficient time to occupy their lowest energy states (equilibrium states), yielding a crystalline state in the solid. During

the cooling process some nucleation centers are produced, around which the crystal grows in a few hours. On the other hand,

if the liquid is cooled rapidly, the atoms or molecules do not have sufficient time to occupy their equilibrium positions.

Rather, the random distribution of molecules is frozen into the solid state, yielding an amorphous solid. Therefore, the

amorphous state of a solid is not the minimum energy state, but it is still highly stable. The essential aspect of an amorphous

solid is the absence of long-range order.

There is a new class of materials, which possess mechanical and symmetry properties in between those of a liquid and a

crystalline solid. Suchmaterials are called liquid crystals. In going from the liquid to the solid state, certain materials show a

cascade of transitions involving new phases. Therefore, a more appropriate name for a liquid crystal is a mesomorphic

phase (mesomorphic means intermediate form). Liquid crystals exhibit partial periodicity (say in one or two Cartesian

directions), so it is appropriate to discuss these materials in this chapter.

24.1 STRUCTURE OF AMORPHOUS SOLIDS

It is observed that in an amorphous solid there is a continuous random distribution of atoms or molecules with a short-range

order. Three continuous random models are used to describe the structure of amorphous solids.

1. Continuous random network: appropriate to the structure of covalent solids.

2. Random close packing: appropriate to the structure of simple metallic solids.

3. Random coil model: appropriate to the structure of polymers.

Although these models are, to some extent, ideal ones, they represent the best available pictures of the structures of

amorphous solids on the atomic scale.

FIG. 24.1 Variation in volume V as a function of temperature T as

the material is cooled from the gaseous state to the solid state via the

liquid state. Curve 1 is for slow cooling, while curve 2 is for rapid

cooling.
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24.1.1 Continuous Random Network Model

Fig. 24.2A shows a honeycomb lattice in two dimensions corresponding to covalently bonded carbon atoms in graphite. In

this structure each atom has three 1NNs. Fig. 24.2B shows a graph representing a binary compound in which each black

atom is covalently bonded to three white atoms and each white atom is covalently bonded to two black atoms. This is called

a “decorated honeycomb lattice.” This structure can be derived from the honeycomb lattice by replacing each bond by a pair

of bonds with a bridging atom at the center of the original bond. The decorated honeycomb lattice of Fig. 24.2B corresponds

to the graph of the layers that make up crystalline As2S3 and As2Se3. The honeycomb lattices of Fig. 24.2A and B are

periodic structures with the following features:

1. The coordination number z for each atom is 3.

2. The 1NN distances (bond lengths) are constant.

3. Both structures are ideal, assuming no dangling bonds.

In analogy with a honeycomb structure, the continuous random network (CRN) model was proposed to explain the atomic

arrangement in glasses. Fig. 24.3 shows a graph of the atomic arrangement in the CRN model. Each of the noncrystalline

structures has the same short-range order as its crystalline counterpart (Fig. 24.2). There are two fundamental ways in which

the crystalline solids and CRNs distinctly differ from each other:

FIG. 24.2 (A) A honeycomb lattice, which is similar to a graphite layer. (B) A decorated honeycomb lattice.

FIG. 24.3 Schematic diagram of a two-dimensional continuous random network (CRN). (A) Showing the CRN of a threefold coordinated honeycomb

lattice. (B) Zachariasen diagram for the CRN of a decorated honeycomb lattice.
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1. In the CRN model there is a significant spread in bond lengths and bond angles that are not permitted in a

crystalline solid.

2. In the CRN model, the long-range order is absent.

In the decorated honeycomb lattice there is an additional spread in the bond angle that occurs at the bridging atom. Further,

the maximum spread in the bond angle is at the twofold coordinated atom, which is expected to be much softer than that

at the threefold coordinated atom. The spread in the bond lengths is greater in structures with soft bond angles than in

structures with stiff bond angles. For example, in Fig. 24.3A the spread in bond lengths is very small compared with that

in Fig. 24.3B.

In a crystalline solid theWS cell has a definite shape and volume. In an amorphous solid with CRNs one can also construct

WS cells. Fig. 24.4 shows an irregular array of lattice points, which forms the CRN of a solid. The dark dots show the positions

of atoms (which are the same as the lattice points) and each atom has three 1NNs. The WS cells of three atoms in the CRN

model are shown in Fig. 24.4. We see that WS cells containing different lattice points (or atoms) have different shapes and

volumes. A WS cell in an amorphous solid is also called a Voronoi polyhedron. Therefore, in going from a crystalline to an

amorphous solid, the single atomic polyhedron characteristic is replaced by a statistical distribution of distinct polyhedra. The

network formed by the lattice points and the bonds (dots and lines) is called a simplical graph of the array and each cell of the
CRN is called a simplex. The division of space into irregular simplexes is called the Delaunay division.

All theWS cells in a crystalline solid are exactly the same (translational symmetry). Therefore, the electronic and vibra-

tional properties of a crystalline solid are studied in one WS cell and they are expected to be repeated in other WS cells. To

simplify the study further the actual WS cell is replaced by a sphere with radius RWS (WS sphere) having volume equal to

that of the WS cell. On the other hand, in amorphous solids, due to the absence of translational symmetry, one has to con-

sider a much larger volume of the solid to reliably calculate the value of any physical property. Therefore, the theoretical

study of various properties is much more difficult in amorphous solids.

24.1.2 Random Close Packing

As the name suggests, the atoms are positioned randomly on a microscopic scale and are pressed down for close packing. If

the atoms are considered to be hard spheres, then random close packing (RCP) is achieved by positioning the atoms ran-

domly such that each atom touches the adjacent atoms. The best example of RCP is grains or peas in a pot. RCP gives one of

the most satisfactory models for the structure of amorphous metals on a microscopic scale.

The fcc structure is a close-packed structure with a packing fraction of 0.74. In fcc structure, the WS cell is a single

polyhedron with definite shape and size. On the other hand, RCP is also a close-packed structure but with polyhedra of

different sizes and shapes. Therefore, in theoretical calculations, an average size of the RCP atomic polyhedron is used

FIG. 24.4 WS cells having different shapes and sizes for three consecutive atoms in a CRN model.
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whose size is a little bigger than the size of the fcc polyhedron. The packing fraction for RCP is found to be 0.637. This

shows that for atoms of the same size, RCP is about 86% as dense as fcc close packing. Therefore, close packing in crys-

talline solids corresponds to an absolute potential energy minimum in comparison with RCP because it provides the

maximum packing density in amorphous solids.

24.1.3 Long-Chain Molecular Compounds

Compounds in which the smallest units are long-chain molecules instead of atoms are called polymers (or occasionally
resins or plastics). A long-chain molecule consists of atoms distributed along the length of a chain. In addition, there

are side groups (bulky or light) of atoms along the length of the chain. The bonds with which atoms along the length

of the main chain are bound are called primary bonds, while those with which atoms of the side groups are bound are called

secondary bonds. Long-chain molecules are flexible and get tangled on their own, which results in the development of

amorphous structures relatively easily (Fig. 24.5). Polymers are rather loosely packed structures in the solid state because

the primary bonds are completely satisfied within the long-chain molecules but the side groups of atoms interfere with the

close packing. Any atomic arrangement that contributes to the loose packing of molecular chains favors the formation of

amorphous structures. The most important features that favor the formation of amorphous solids are:

1. Long and branched molecular chains.

2. Random arrangement of large side groups along the chains.

3. Copolymer chains: molecular chains that are actually a combination of two or more polymers.

4. Plasticizers: low molecular weight additives that separate the chains from one another.

Small chain paraffins form perfectly crystalline solids, but long-chain paraffins, with molecular weight from a few thousand to

a few million, form partially crystalline solids. They are called linear paraffins or polyethylene. On the other hand, branched-

polyethylene has side molecular chains that are attached to the main molecular chain at positions normally occupied by a

hydrogen atom. As the branches interfere with the crystallization process, the crystallization is partial in branched polyeth-

ylene. Further, a greater number of branches results in a higher degree of noncrystallinity in the polyethylene.

The effect of the side group arrangements can be seen by considering the structure of vinyl polymers. The vinyl

polymers have a repeating unit of the type:

H

H

H

X

C C ð24:2Þ

where X is some monovalent side group. There are three possible arrangements of side groups in vinyl polymers.

1. Polymers with random distribution of side groups are called atactic.
2. Polymers with side groups on the same side of the chain are called isotactic.
3. Polymers with side groups arranged alternately from one side to the other are called syndiotactic.

If the side groups are small (e.g., X¼OH in polyvinyl alcohol), the atomic chains are linear and one obtains a crystalline

polymer. But if the side groups are large (e.g., X¼Cl in polyvinyl chloride) and randomly distributed along the atomic

chain, a polymer with amorphous structure results. In contrast the isotactic and syndiotactic polymers usually crystallize,

even when the side groups are large.

FIG. 24.5 Long-chain molecules in a polymer.

Amorphous Solids and Liquid Crystals Chapter 24 543



24.1.4 Copolymers

A copolymer consists of two or more polymers arranged on a molecular chain. Copolymers can be made in a number

of ways and the simplest ones are illustrated in Fig. 24.6. The process of synthesizing a copolymer is called copolymer-

ization. Copolymerization always decreases the degree of crystallinity of polymer chains and, therefore, promotes the

formation of amorphous solids. Quite often a copolymer is developed because a certain amount of noncrystallinity results

in better properties. The randomness in the distribution of side groups (regardless of their size) in a molecular chain

or in the distribution of atoms in a copolymer is related to the degree of noncrystallinity in a polymer. A greater irreg-

ularity in the distribution of atoms in a molecular chain results in a greater degree of noncrystallinity in the formation

of an amorphous solid.

24.1.5 Plasticizers

Plasticizers are substances that prevent crystallization of polymers by keeping the chains separated from one another. It is

the oldest method to produce amorphous polymers from crystalline polymers. Celluloid is made of nitrocellulose and it is

one of the first synthetic crystalline polymers. Celluloid is plasticized with camphor. Cellophane is another common plastic

composed of cellulose chains with glycerol as the plasticizer. The disadvantage of this process is that plasticizers are usually

of quite low molecular weight and, therefore, they diffuse through the solid and eventually evaporate. Therefore, the intro-

duction of a plasticizer decreases the pliability and increases the tendency to crack with time.

24.1.6 Elastomers

Elastomers are polymers that exhibit a large and reversible extensibility at room temperature. They can be stretched by at

least a hundred or a thousand times by applying an external force and they regain their original dimensions when the force

FIG. 24.6 The different arrangements in a copolymer. (A) A copolymer in which there are units of two types of atoms distributed randomly along the

chain. (B) A copolymer in which two types of atoms are distributed alternately. (C) A polymer in which there are blocks of two types of atoms repeated

alternately. (D) A graft polymer in which the long chain contains the same type of atoms, while the side groups are again polymers but of the other type

of atoms.
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is switched off. Elastomers are all amorphous polymers at room temperature. Actually, they are intermediate between

long-chain molecules and three-dimensional networks. Elastomers satisfy the following criteria in addition to being

amorphous:

1. The molecular chains must be very long with many bends in them.

2. At room temperature the chain segments are in a state of constant motion due to the thermal energy.

3. The chains must be connected to one another after every few hundred atoms by crosslinks, which may consist of atoms

or a group of atoms that form primary bonds between the chains (Fig. 24.7).

It is important to note that the crosslinks are necessary to explain the reversibility in the extension of an elastomer. If there

are no crosslinks, the elastomer will not return to its original shape and size when the external force is switched off. The

crosslinks act as pinning points; without them the polymer would deform permanently. The best known elastomer is natural

rubber. The molecular chains in rubber are not only long, but tangled and bent (coiled) rather than straight, and are in a state

of constant motion at room temperature. The glass temperature TG in elastomers is quite low, lower than room temperature.

If the temperature is lowered below TG, the elastomer becomes brittle.

Some elastomers, such as S and Se, both of which belong to column VI of the periodic table, also exhibit long-chain

structures. In S and Se an amorphous structure can be formed by quenching a viscous melt to room temperature. The

bonding in both of these elements is primarily covalent due to the overlapping of p-orbitals, and this leads to long chains

of atoms. In S and Se, the atomic chains become so tangled in the liquid state that an amorphous structure develops when the

material is quickly cooled. In so-called fibrous S, the long chain S molecules are actually mixed with S8 ring molecules and

the one type of molecule prevents the other type from crystallizing.

24.2 CHARACTERISTICS OF AMORPHOUS SOLIDS

1. Amorphous materials do not possess a sharp solidification temperature as crystalline materials do. They gradually

become more viscous over a narrow range of temperature about TG.

2. Many amorphous materials, such as ordinary window glass, are transparent both in the liquid and solid states. Their

transparency arises because there are no inclusions, holes, or internal surfaces with the right properties to scatter light.

Further, they have no free electrons or ions that can absorb or emit light by changing their energy states.

3. Fig. 24.8A and B shows CP versus T for the amorphous solid As2S3 and the metallic solid glass Au0.8Si0.1Ge0.1, respec-

tively. In As2S3, a sharp increase in CP is seen at TG and it can be followed continuously from a low temperature up

through TG and well into the liquid phase to TF and beyond. In the metallic glass Au0.8Si0.1Ge0.1, CP increases sharply at

TG. The dashed line shows the extrapolated value of CP from just above TG to just below TF. Fig. 24.8B gives the first

historic evidence of the glass transition. The variation of the coefficient of thermal expansion GTH with T is the same as

that of CP (it arises due to the kink in the V versus T curve in Fig. 24.1 at TG). The behavior of CP versus T arises due to

the bend in the entropy S versus T curve near TG.

In a second-order thermodynamic transition there is an abrupt rise in the curves for CP(T) and GTH(T) as a function of T at

the transition temperature. Fig. 24.8A and B shows that a glass transition closely resembles a second-order transition. The

curves for CP(T) and GTH(T) definitely change their values appreciably in passing through TG. However, these changes are

FIG. 24.7 Different types of crosslinks in a polymer. (A) Crosslinked polymer chains in which small chains act as crosslinks. (B) Crosslinked polymer

chains in which foreign atoms or molecules form the crosslinks.
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not as sharp as they should be in a second-order transition, but are instead spread over a small temperature range. Therefore,

one can characterize the liquid, glass transition as an apparent diffused second-order transition. We know that

CP ¼T
dS

dT

� �
P

(24.3)

From Eqs. (24.1), (24.3) it is evident that the kinks or bends in the curves for S and V as a function of T are reflected as an

abrupt increase in CP(T) and GTH(T).

24.3 APPLICATIONS OF AMORPHOUS SOLIDS

Amorphous solids are of immense use in science and technology. Some of the uses of amorphous solids are listed below:

1. Glasses are used as structural materials, such as ordinary window glasses. A large number of ordinary glasses are based

on fused silica (SiO2). As regards the structure, there are two types of glasses:

(a) Amorphous glasses: Amorphous glasses are isotropic as far as the scattering and passage of light is concerned.

These glasses are used as ordinary window glasses. It is very easy and cheap to fabricate amorphous glasses.

(b) Crystalline glasses: The crystalline glasses, such as crystalline quartz glasses, are anisotropic as far as the scattering
and passage of light is concerned. The crystalline glasses have special symmetry directions that allow more light to

pass through compared with other directions. The anisotropy in crystalline glasses is an undesirable property for

their use as window glasses. Further, it is not easy to synthesize large crystals as problems associated with the poly-

crystallinity arise. Therefore, it is very expensive to fabricate large crystalline glasses out of SiO2.

2. Now a days, fiber glasses have been developed for communication purposes. Fiber is a glass in the form of a fine fiber of

very high purity and homogeneity. Fiber glass is very highly transparent to light of certain wavelengths and these wave-

lengths can pass through the fibers without any appreciable attenuation.

3. The above two applications are for oxide glasses. Organic glasses and polymers have a wide variety of uses. Different

kinds of plastics are used in everyday life. Many organic polymers are used as structural materials as they have low cost,

light weight, and high structural strength. These days, more plastics are produced than steel.

4. The chalcogenide glasses, such as Se or As2Se3, are used in the process of xerography.

5. Tellurium-rich semiconducting glass, for example, Te -Ge glass, is used as a computer memory element. The property

used in this application is that crystalline Te -Ge has a small energy band gap, but amorphous Te-Ge has a reasonably

large band gap.

6. Si, in both the crystalline and amorphous forms, exhibits photovoltaic properties, that is, when light falls on Si, an

electric voltage develops. Therefore, Si is used to make solar cells. Large area thin films of amorphous Si (�1 mm

FIG. 24.8 CP is plotted as a function of temperature T for (A) an amorphous solid As2S3, and (B) a metallic glass solid Au0.8Si0.1Ge0.1. (Modified from

Blachnik, R., & Hoppe, A. (1979). Journal of Non-Crystalline Solids, 34, 191; Chen, H. S., & Turnbull, D. (1968). The Journal of Chemical Physics, 48,

2560.)
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thickness), which absorb most of the solar light falling on them, can be synthesized at very low cost. Crystalline Si is

also used in making solar cells: it is usually used in space probes. But much thicker films of crystalline Si (>50 mm) are

required for making solar cells. Therefore, the cost of production of a crystalline layer is far more than the cost of amor-

phous Si. In connection with solar cell technology, the material of interest is amorphous silicon hydride (a -SiH): here a

means amorphous. The role of H is to eliminate electronic defects, which are intrinsic to elemental a -Si.

7. Crystalline ferromagnets are both mechanically andmagnetically soft (low coercivity and easily magnetized by small mag-

netic fields). On the other hand, ferromagnetic glasses, such as Fe0.8B0.2, Fe0.7P0.2Co0.1, and Co0.8Fe0.1B0.1, have high sat-

uration magnetization that is isotropic in nature. These ferromagnetic glasses are mechanically quite hard but magnetically

soft. Thehigh electrical resistivity of amorphousmetals is also helpful in this regard. For these reasons, ferromagnetic glasses

are very useful in producing themagnetic cores of power transformers, inwhich their low-loss properties are very important.

Other important applications of amorphous magnets are in magnetic-disc memories and read/write recorder heads.

24.4 LIQUID CRYSTALS

In a crystal the atoms or molecules are arranged on a three-dimensional periodic array of lattice points. In a liquid the

molecules are randomly distributed and are in constant motion. These two states of matter differ most obviously in their

mechanical properties; for example, a liquid flows easily. The most fundamental difference between a crystal and a liquid is

given by its X-ray diffraction pattern: A crystalline solid exhibits sharp Bragg reflection peaks characteristic of the peri-

odicity of the lattice, while a liquid shows a diffused X-ray diffraction pattern. Liquid crystal is a state that is intermediate

between the liquid and crystal states. In other words, partial order exists in the lattice of a liquid crystal. Therefore, liquid

crystals are also called mesomorphic phases. Liquid crystals can be obtained in two different ways:

1. Liquid crystals can be obtained by imposing positional order in one or two dimensions. If the positional order is imposed

only in the z-direction, the solid can be viewed as a set of two-dimensional liquid layers stacked on each other with a

well-defined spacing along the z-direction (Fig. 24.9). Each layer has disorder in the arrangement of atoms/molecules in

the xy-plane. Such mesophases are usually called smectic.
2. Liquid crystals can also be obtained by introducing degrees of freedom that are different from those of the lattice points.

For example, in nonspherical molecules, the orientation of the molecules may change in a crystal or in a liquid phase or

even in a smectic phase. The orientational change may be of two types.

(a) Many crystals show a transition from a strongly ordered state to a phase in which each molecule can acquire several

equivalent orientations. The high-temperature phase is positionally ordered but orientationally disordered. Such a

phase is sometimes called plastic crystal. Examples of orientational transitions exist in solid hydrogen, ammonium

halides, and also in certain types of organic molecules.

(b) At low temperatures, certain organic liquids exhibit phases in which the molecules are positionally disordered but

orientationally ordered. These are anisotropic liquids called nematics. At higher temperatures they undergo a tran-

sition to the conventional liquid phase, which is isotropic in nature.

FIG. 24.9 Liquid crystal with positional disorder in the xy-plane. Order exists in the z-direction as the adjacent xy-planes are separated from each other

by the distance d.
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The term liquid crystal commonly applies to smectic and nematic phases. These types of liquid crystals are found in mate-

rials in which the constituent molecules or groups of molecules (usually called building blocks) are strongly elongated.

From the above discussion it is evident that liquid crystals are quite different from conventional liquids in the sense that

they are anisotropic in nature and are more ordered phases.

24.4.1 The Building Blocks

As explained above, in order to synthesize a liquid crystal, one should have elongated objects and these can have the fol-

lowing forms:

1. Small organic molecules.

2. Long helical rods, either naturally occurring or artificially made.

3. More complex units, such as associated structures of molecules and ions.

We present below some familiar examples of the building blocks of liquid crystals.

24.4.1.1 Small Organic Molecules

The classical example of a building block is p-azoxyanisole (PAA) with formula

In this molecule the two benzene rings are nearly coplanar. Therefore, it can be viewed as a rigid rod of length �20 Å and

width �5 Å. Another example of practical interest is N-(p-methoxybenzylidene)-p-butylaniline (MBBA) with formula

Both PAA and MBBA are nematogens, which means they give rise to the nematic type of mesophase.

A broad class of organic molecules with the following general chemical formula also gives mesophases

The two benzene rings are rigidly bound by a double or triple A-B bond. R and R0 are short chains, which are partly flexible.
Another favorable class comprises cholesterol esters, of the general formula

Here the rings are not aromatic and the structure is not coplanar. However, the ring system is rigid, while the saturated chain

C and the radical R behave like two somewhat more flexible tails attached to the rigid part. In the pure systems above, the

temperature is varied to induce a transition to the liquid crystal state. For this reason, such solids are called thermotropic.

24.4.1.2 Long Helical Rods

Some materials, such as synthetic polypeptides in suitable solvents, have rod-like building blocks with typical rod lengths

on the order of 300Å and width 20Å. In concentrated solutions these systems yield mesophases. Similar phases are also

found in DNA (deoxyribonucleic acids) and within certain viruses: tobacco mosaic virus with length �3000Å and width

�200Å is the familiar example. One advantage of the viruses is that all rods from one virus species are exactly the same

size. In all of these systems the transitions can be induced easily by changing the concentration of rods rather than the

temperature. For this reason, they are commonly known as lyotropic.
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24.4.1.3 Associated Structures

Typical examples of such structures are found in soap-water solutions.Herewe have an aliphatic anionCH3– (CH2)n�2–CO2
�1

(with n in the range of 12–20) and a positive ion (Na+1,K+1,NH4
+1,etc.). The group –CO2

�1 is the polar head of the acid, which

tends to be in close contact with water molecules, while the nonpolar aliphatic chain avoids water. These two requirements are

typical of amphiphilic materials. A single chain in a solution can’t satisfy these two opposite requirements, but a cluster of

chains can do, as shown in Fig. 24.10. The resulting objects (rods or leaflets) become building blocks of mesomorphic solids.

24.4.2 Nematics and Cholesterics

24.4.2.1 Proper Nematics

A schematic representation of the order in a nematic phase is shown in Fig. 24.11A, which shows the following features:

1. The centers of gravity of the long molecules exhibit no positional order in a nematic. In other words, the positions of

molecules are randomly distributed in nematics and they flow like liquids. Because of this, there is no sharp Bragg’s

peak in the X-ray diffraction pattern. For a typical nematic, such as PAA, the viscosities are of order 0.1Poise.

2. There is some order, however, in the orientation of the molecules. They tend to align parallel to some common axis

labeled by a unit vector n̂. Therefore, a nematic is a uniaxial medium with optical axis along n̂. The difference in the

refractive indices measured with polarization parallel and normal to n̂ is quite large, typically on the order of 0.2 for

PAA. In all known cases, there appears to be a complete rotational symmetry around the n̂ axis.

3. The direction of n̂ is arbitrary in space and is governed by minor forces. For example the direction of n̂ is governed by

the guiding effect of the walls of the container.

4. The states along n̂ and �n̂ are indistinguishable. For example, if the individual molecules carry a permanent electric

dipole moment, then the number of molecules with dipole moment up or down are equal and hence the material does not

exhibit any electric polarization (see Fig. 24.11B).

5. Nematic phases occur only in materials that do not distinguish between right and left, that is, each molecule must be

identical to its mirror image. If it is not so, then the system must be racemic, that is, a 1:1 mixture of right- and left-

handed species.

FIG. 24.10 Typical building blocks for amphiphilic materials

(A) represents rods, and (B) represents sheets for the fatty

acids-water system.

FIG. 24.11 (A) Schematic representation of a nematic

phase. The molecules are just like rigid rods whose centers

of gravity do not show any positional order. But the orien-

tation of the molecules exhibits some order as they point

approximately along the unit vector n̂. (B) Schematic repre-

sentation of the intrinsic electric dipole moments of mole-

cules in a nematic phase.
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24.4.2.2 Cholesterics

If in a nematic liquid, a molecule that is chiral (different from its mirror image) is dissolved, it is found that the structure

undergoes a helical distortion. The same type of distortion is found in pure cholesterol esters, which are also chiral. For this

reason, the helical phase is called cholesteric and is a distorted form of the nematic phase. Locally, a cholesteric is very

similar to a nematic material. The positions of molecules exhibit no long-range order, but the molecular orientation shows a

preferred direction labeled by a unit vector n̂. However, n̂ is not constant in space but varies like a helical about the z-axis

(see Fig. 24.12). Here the z-axis is called the helical axis. The Cartesian components of n̂ can be represented as

nx ¼ cos q0z +’ð Þ
ny ¼ sin q0z +’ð Þ

nz ¼ 0

(24.4)

Both the helical axis and the value of ’ are arbitrary. In Fig. 24.12, the structure is periodic along the z-axis as the states

along n̂ and �n̂ are equivalent and the spatial period L is equal to one half of the pitch, that is,

L¼ p
q0
�� �� (24.5)

The value of L is� 3000Å and is much larger than the molecular dimensions. Because L is comparable to an optical wave-

length, the periodicity results in Bragg scattering of light beams. Both the magnitude and sign of q0 are meaningful. The sign

distinguishes between right- and left-handed helices; a given sample at a given temperature T always produces helices of

the same sign. If we change T, q0 changes and in some particular cases even the sign of q0(T) may change at a particular

temperature T∗. Such materials exhibit interesting features as stated below:

1. At T¼T∗ the material is found to behave like a conventional nematic.

2. When the temperature crosses T∗, it is found that the physical properties, such as the specific heat, remain quite smooth.

Both properties above show that the local molecular arrangement is indeed similar in the nematic and cholesteric states.

FIG. 24.12 Schematic representation of cholesterics with helical structure. n̂ gives the preferred direction of the rod-like molecules in a particular xy-

plane and this direction changes gradually as one moves from one plane to another.
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24.4.3 Smectics

Smectic is a Greek word that means soap. Therefore, smectic applies to those mesophases that have mechanical prop-

erties similar to those of soaps. From a structural point of view, all smectics are layered structures with a well-defined

interlayer spacing that can be measured by X-ray diffraction. Smectics are thus more ordered than nematics. For a

given material, the smectic phases always occur at temperatures below the nematic domain. Smectics can be classified

mainly into three categories labeled by the letters A, B, and C and these categories can be distinguished by optical

techniques.

24.4.3.1 Smectic A

The molecular arrangement in smectic A is shown in Fig. 24.13. It has the following major characteristics:

1. It has a layered structure with layer thickness equal to the length of the constituent molecules.

2. Inside each layer there is no positional long-range order. But there is remarkable one-dimensional orientational order.

3. The system is optically uniaxial, the optical axis being normal to the plane of the layers. Further, there is a complete

rotational symmetry around the optical axis.

4. The z-axis is normal to the plane of the layer and the z and –z directions are equivalent.

24.4.3.2 Smectic C

The structure of a smectic C is defined as follows:

1. Each layer is a two-dimensional liquid.

2. The material is optically biaxial.

The axis of the long molecules is tilted with respect to the z-axis (see Fig. 24.14A). This information has been verified by a

number of X-ray experiments. The layer thickness d is given as

d¼ ‘ cosy (24.6)

where ‘ is the length of the molecule and y is the tilt angle.

3. A simple smectic C is obtained from properties 1 and 2 when the constituent molecules are optically inactive (or with a

racemic mixture). If an optically active molecule is added to smectic C, its structure gets distorted. The direction of tilt

precesses around the z-axis and a helical configuration (smectic C*) is obtained (see Fig. 24.14B).

FIG. 24.13 Schematic representation of smectic A liquid crystal.

Amorphous Solids and Liquid Crystals Chapter 24 551



24.4.3.3 Smectic B

In smectics A and C each layer behaves as a two-dimensional liquid. In smectic B, however, the layers appear to have

the periodicity and rigidity of a two-dimensional solid. The order inside each layer is confirmed by X-ray reflections.

The structure of smectic B liquid crystals can be studied by optical methods using an optical microscope. The texture

of the smectic B phase (the so-called mosaic texture) shows domains inside each layer that are quite flat. This is in con-

tradiction with A and C smectics in which the textures that are observed most often involve a strong curvature of the layers.

Thus, phase B appears as the most ordered one among the A, B, and C phases. If a material is able to display all of the three

phases, then the sequence of phase change with increasing temperature is always found to be

S,B,C,A

Here S stands for the solid phase. In the above sequence the degree of order decreases with an increase in temperature. A

typical material showing all of the phases is terephthal-bis-p-butylaniline) (TBBA) with the formula

It gives the following set of transition temperatures (°C)

S , B , C , A , N , I

113 144 172 200 236

Here N stands for the nematic phase and I stands for the isotropic liquid phase.

24.4.4 Long-Range Order in a System of Long Rods

In the study of polymers with long rod-like molecules and also of certain soap phases we find a set of X-ray reflections that

indicate hexagonal packing of rods. This corresponds to two-dimensional order (Fig. 24.15). Frank has proposed the name

canonic (a Greek word meaning rod) for these phases. As one cannot produce single crystals of such materials, further study

of such systems is limited.

24.4.5 Uses of Liquid Crystals

24.4.5.1 Temperature Sensitivity

Liquid crystals are sensitive to temperature. The pitch of a cholesteric and hence the wavelength of the Bragg reflected light

depends on temperature. Thus, the color of a liquid crystal can change drastically in a temperature interval of a few degrees.

This leads to a number of applications, which are listed below:

(a) Liquid crystals can be used as temperature indicators.

(b) They can be used for the detection of hot points in microcircuits.

FIG. 24.14 (A) Schematic representation of smectic C liquid crystal. (B) Schematic representation of smectic C∗ liquid crystal with helical configuration.
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(c) They are used to locate fractures and tumors in the human body.

(d) They are used for the conversion of infrared images.

24.4.5.2 Optical Properties

The liquid crystals have unusual optical properties as they are uniaxial. Nematics and cholesterics are extremely sensitive to

weak external fields. A change in applied field causes a change in reflectivity of the liquid crystals, making them extremely

suitable for use as passive display devices. Nowadays liquid crystal films are used as display devices. The advantage of

these display systems is that they work under low voltage and low power and are inexpensive. These devices are usually

named liquid crystal display (LCD) devices. Light emitting diodes (LED) are also used for display systems, but they

consume more power as they draw more current. The only disadvantage of LCDs is the speed of response. An LCD is

a relatively slow device, taking at least tens and sometimes hundreds of milliseconds to respond. The seven-segment display

(Fig. 24.16), obtained from a liquid crystal, is used as a numerical display in digital watches and pocket calculators.

On the other hand, smectics have higher viscosity and, therefore, have attracted less attention. However, the amount of

work done on smectics is also increasing steadily in various directions.

24.4.5.3 Membrane Biophysics

Biological membranes are thin sheets (80Å) of lipids and proteins. A lipid is an organic material that is sticky and insoluble

in water. Lipids are soluble in either alcohol or ether. They play a crucial role in many living processes, but very little is

known about their structure. Most physical techniques cannot be used for a single membrane as the amount of matter

available is too small.

FIG. 24.16 Seven-segment liquid crystal display.

FIG. 24.15 Lipid in water with hexagonal symmetry of rods. The figure shows the circular cross sections of the lipid rods.

Amorphous Solids and Liquid Crystals Chapter 24 553



24.4.5.4 Physics of Detergents

Soaps and nonionic detergents show a number of mesophases. The so-called “neat soaps” for instance, correspond to a

lamellar phase with successive sheets of water and lipid (Fig. 24.17).
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FIG. 24.17 The structure of soap with alternate sheets of water and lipid.
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There are 103 stable elements in the periodic table. The different elements possess different properties, such as electrical

and thermal conductivities, magnetism, and superconductivity. All of these properties have been discussed in the previous

chapters and they are understood to a reasonable extent. Over the past few decades, scientists have made serious efforts in

the miniaturization of machines, particularly electronic devices, or in discovering new materials. One of the ways to do this

is to make alloys of different elements, but ultimately scientists discovered nanomaterials. Nano is a Greek word meaning

dwarf or extremely small and one nanometer (nm) is equal to 10�9 m. The diameter of human hair is about 105 times larger

than 1nm. Nanomaterials are solids that are very small in size, in the range of 1–100nm, and the technology involved in

producing these materials and making different nanomachines from them is called nanotechnology. Nanomaterials have

actually been produced and used by humans for hundreds of years. For example:

1. The beautiful red color of glass in some cathedrals is due to gold particles in the glass matrix. The color in stained glass

windows is due to the presence of metal-oxide clusters in the glass.

2. The decorative glaze known as luster, found in some medieval pottery, contains spherical metallic nanoparticles that

give special optical colors.

3. Small colloidal particles of silver are used in image formation in photography.

The techniques used to produce these materials were considered to be trade secrets at the time and are not fully understood

even now. The concept of nanomaterials was raised by Richard Feynman. He delivered a talk to the American Physical

Society in 1959 entitled, “There is plenty of room at the bottom.” In this talk, he said that there are no fundamental

physical reasons why materials cannot be fabricated by maneuvering individual atoms. In this chapter the reader will

be made familiar with different types of nanomaterials, such as nanoparticles, quantum dots, and carbon nanotubes.

25.1 REDUCTION IN DIMENSIONALITY

A solid in which all three dimensions are very large (ideally infinite) is usually called a bulk material (Fig. 25.1A). In

conventional solid state physics, an experimental study on a bulk material yields some sort of average value of the property

under investigation, which may be quite different from the local behavior inside the solid. The concept of nanomaterials can
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be well understood if the dimensions of a bulk material are reduced one by one to the nm range. If one of the dimensions of a

bulk material is reduced to nm size, one obtains what is called a quantum well (Fig. 25.1B). Further, if two dimensions of the

bulk material are reduced to nm size, a quantum wire (nanowire or nanotube) is obtained (Fig. 25.1C). Nanotubes can be

made of any material but the most common are carbon nanotubes, which find immense applications in the electronic

industry: carbon nanotubes are commonly used as connecting wires in nanoelectronic circuits. If a quantum wire is bent

into the form of a ring, one gets a quantum ring (Fig. 25.1D). If all three dimensions of a bulk material are reduced to nm

size, one ultimately gets what is called a quantum dot (Fig. 25.1E). Quantum dots are usually made of semiconductors and

contain tiny droplets of free electrons. Precise control over the shape and size of a quantum dot allows us to have control

over the number of electrons: it can contain from a single electron to several thousand electrons. The motion of an electron

in a quantum dot is confined in all three directions, thus reducing its kinetic energy to a negligible value, which results in

sharp energy levels like those found in atoms. It is for this reason that quantum dots are sometimes called artificial atoms, as
they are much larger than actual atoms. Fig. 25.2 shows the various types of nanosolids with curvilinear geometry.

25.1.1 Quantum Well

Fig. 25.3A shows a solid with its z-direction reduced to nm size. In this case an electron is free to move in the infinite-

dimensional xy-plane, just like the bulk material, but its motion is restricted along the z-direction. Let us define the electron

wave vector k as

FIG. 25.1 Schematic diagram of (A) bulk material, (B) rectangular quantum well, (C) rectangular quantum wire, (D) quantum ring, and (E) rectangular

quantum dot.

FIG. 25.2 Schematic representation of (A) spherical bulk material,

(B) disk-shaped quantum well, (C) cylindrical quantum wire,

(D) spherical quantum dot.
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k¼ î3kz + k? (25.1)

Here k? is the wave vector in the xy-plane and is given by

k? ¼ î1kx + î2ky ¼ î1k1 + î2k2 (25.2)

The motion of the electron in the z-direction is independent of its motion in the xy- plane. Therefore, the electron wave

function jck(r)i can be written as the product of the wave functions in the z-direction jckz
(z)i and in the xy-plane

jck?(r?)i, that is,
ck rð Þj i¼ ��ckz

zð Þ� ��ck?

�
r?
��

(25.3)

where r? is the position vector of the electron in the xy-plane, which is defined as

r? ¼ î1 x + î2y¼ î1 r1 + î2 r2 (25.4)

Let us first consider the motion of an electron along the z-direction. The electron can be assumed to move in a quantum well

of width Lz with walls having very large or infinite potential (see Fig. 25.3B). An electron moving in the positive z-direction

suffers reflection from the wall of the well and reverses its direction. It is for this reason that a solid with one of the dimen-

sions reduced to nm size is usually called a quantum well. The electron wave function outside the quantum well is always

zero due to the confinement of the electron in the well. Therefore, the electron wave function must go to zero at the walls,

that is, at z¼0, Lz (boundary conditions). Otherwise there would be a discontinuity in the wave function at the boundary.

The wave function of an electron moving in the positive z-direction is given by.

c +
kz

zð Þ
��� E

¼Aei kz z (25.5)

Eq. (25.5) gives the wave function of an electron moving with momentum ħkz. One cannot take the wave function given by
Eq. (25.5) because it never goes to zero (in ei kz z when coskzz goes to zero, sinkzz is maximum and vice versa). But the wave

function of an electron moving in the negative z-direction is given by

c�
kz

�zð Þ
��� E

¼Ae�ikz z (25.6)

Eq. (25.6) gives momentum �ħkz for the electron. Therefore, the most general wave function is obtained by taking the

linear combination of wave functions given by Eqs. (25.5), (25.6), that is,

FIG. 25.3 (A) Rectangular solid with width Lz in the

nanorange. (B) Rectangular quantum well with infinite

potential well depth and havingwidth Lz in the nanorange.
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��ckz
zð Þ�¼A ei kzz� e� i kzz

� �
(25.7)

Eq. (25.7) gives two solutions: one is 2A cos(kzz) and the other is 2i A sin(kzz). But the first solution does not satisfy the

boundary condition. Therefore, the second is the allowed solution and is written as��ckz
zð Þ� ¼ 2iA sin kzzð Þ (25.8)

The solution (25.8) satisfies the boundary condition for kz ¼ nz p/Lz where nz is an integer. Hence, the wave function

becomes.

��ckz
zð Þ� ¼Nsin

nzp
Lz

z

� �
(25.9)

with N as the normalization factor. The above wave function can be normalized to unity to give

��ckz
zð Þ� ¼

ffiffiffiffiffiffi
2

Lz

s
sin

nzp
Lz

z

� �
(25.10)

The standing wave associated with the electron is formed by reflection from the walls of the well. The wave functions for

nz ¼ 1, 2, and 3 are shown in Fig. 25.4. From Eq. (25.10) it is evident that nz¼ 0 is not allowed because then the wave

function would be zero for all z values, which means the absence of the electron from the quantum well. The energy of the

electron in the z-direction is given by.

FIG. 25.4 The first three wave functions in increasing order of energy with n¼1, 2, and 3 for a rect-

angular quantum well.
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Ekz
¼ ħ2k2z

2me

(25.11)

Here me is the mass of the electron. Substituting the value of kz, we get

Enz
¼ ħ2

2me

nzp
Lz

� �2

¼ n2z h
2

8meL
2
z

(25.12)

Eq. (25.12) shows that the energies are discrete and the minimum energy is given by.

Emin ¼
h2

8meL
2
z

(25.13)

In the x-y plane, an electron is free to move and its wave function is written as.

ck?
r?ð Þ

��� E
¼ 1ffiffiffiffi

A
p eik? � r? (25.14)

where A ¼ Lx Ly is the area of the crystal in the xy-plane. The values of kx and ky are given by the periodic boundary

conditions as.

kx ¼
2pnx
Lx

and ky ¼
2p ny
Ly

(25.15)

where nx, ny ¼0,�1,�2,… The energy of a free electron moving in the xy-plane is given by.

Ek ¼
ħ2

2me

k2x + k
2
y

	 

¼ ħ2k2?

2me

(25.16)

From Eqs. (25.12), (25.16), the total energy of the quantum well becomes

Enz
kx, ky

	 

¼ h2n2z

8meL
2
z

+
ħ2

2me

k2x + k
2
y

	 

(25.17)

If E0
nz
is the minimum energy in the z-direction, then Eq. (25.17) can be written as.

Enz
kx, ky

	 

¼E0

nz
+

ħ2

2me

nzp
Lz

� �2

+ k2x + k
2
y

" #
(25.18)

Thus, inaquantumwell, corresponding toeachvalueofEnz
there isa subbanddue toxy-motion (seeFig. 25.5).TheFermienergy

EF varieswith the thickness Lz of the slab: the smaller the value of Lz, the higher the value of EF. But in a slab, EFwill always be

higher than it is in the bulk material. It is noteworthy that for an electron wave to be confined within the well, the width of the

potential well must have dimensions comparable to the de Broglie wavelength of the electron, which is given by

ldb ¼ 2pħffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m∗

e kBT
p (25.19)

where me
∗ is the effective electron mass and kBT gives thermal energy. Taking me

∗¼ 0.4me and T¼ 4K, ldb comes out to be

1000Å or 100nm. Therefore, if a potential well is created in a material with a width on the order of nanometers, the electron

waves are confined in the well with discrete energy levels.

It is also of interest to evaluate the density of electron states in a quantum well. Suppose, the number of electron states

per unit energy (around energy E) is denoted as Ne(E), then the number of allowed electron states dNe between energy E and

E+dE is given by Ne(E) dE, that is,

dNe ¼Ne Eð ÞdE (25.20)

The number dNe depends directly on the number of allowed wave vectors within some range k and k+dk. If Ne(k) is

the number of allowed electron states per unit wave vector (around value k), then Ne(k)dk gives the number of

Physics of Nanomaterials Chapter 25 559



allowed states between k and k+dk values. So, Ne(E) dE must be equal to Ne(k)dk, assuming one electron to be in one

state, that is,

Ne Eð ÞdE¼Ne kð Þdk (25.21)

In the xy-plane of the quantum well, the allowed values of k? between two circles with radii k? and k? + dk? is given by.

Ne k?ð Þdk? ¼ 2
Lx Ly

2pð Þ2 2p k? dk? (25.22)

using spherical coordinates. Here the factor of two accounts for the spin degeneracy. From the above equation.

Ne k?ð Þ¼LxLy

p
k? (25.23)

From Eq. (25.21) one can write

Ne Eð Þ¼ N k?ð Þ
dE=dk?

(25.24)

Using Eqs. (25.16), (25.23) in the above expression, we can write.

Ne Eð Þ¼ 1

2p
LxLy

2me

ħ2

� �
(25.25)

Hence the number of electron states per unit energy per unit area in the xy-plane of the quantum well becomes.

ge Eð Þ¼ 1

2p
2me

ħ2

� �
(25.26)

which is independent of energy as in a two-dimensional crystal. The density of electron states for a thin slab becomes con-

stant and can be represented by a step function as shown in Fig. 25.6. The height of each step is given by Ekz
, which depends

inversely on Lz. As the value of Lz becomes smaller, the height of each step becomes larger, that is, the thickness of each

band becomes larger. In a bulk material, ge(E) as a function of E is a parabola. Therefore, if the bulk material is transformed

into a slab (keeping the number of electrons constant), the parabolic band changes into a step function. From Fig. 25.6 it is

clear that all of the electrons of the bulk material cannot be accommodated up to EF if it is transformed into a slab as the

electrons in the empty region are left out. To accommodate these electrons, we need to fill the higher energy states, yielding

FIG. 25.5 The parabolic bands described by Enz
(kx,ky) in the xy-plane in a quantum

well for nz ¼ 0, 1, and 2.
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a higher value of EF. As the value of Lz increases, the thickness of the subbands become smaller and the step function

approaches closer to the parabolic band. In the limit of very large Lz, the step function coincides exactly with the parabolic

band, as expected in a bulk material.

Quantum wells are usually made of semiconducting materials and have many potential applications in modern

electronic devices. They can be realized by producing heterojunctions, which are sandwich structures made from semicon-

ducting materials. As an example, consider semiconducting materials that have the same structure and exactly (or nearly)

the same lattice constant, but different energy gaps, for example, GaAs and AlxGa1�xAs with x ¼ 0.3. Here the band gap

of GaAs is less than that of AlxGa1�xAs. One of the materials, say GaAs, is taken as the substrate and a thin layer of

AlxGa1�xAs is grown over it by using molecular beam epitaxy. The junction created between the two materials is called

a heterojunction and the method is called the heteroepitaxy method. Fig. 25.7A shows one heterojunction between GaAs

and AlxGa1�xAs and Fig 25.7B shows the conduction and valence bands along with the band gaps of the two materials.

Fig. 25.7C shows the change in potential at the heterojunction for both the conduction and valence bands of the two mate-

rials. One can further deposit a GaAs layer on the AlxGa1-xAs layer to create a second heterojunction. Fig. 25.8 shows a

double heterojunction in which a thin layer of GaAs is created between two layers of AlxGa1-xAs. Here GaAs acts as a

quantum well for the conduction electrons. Nearly free electrons exist in these semiconductors, which have a much higher

potential energy in AlxGa1-xAs than in pure GaAs. Thus, the conduction electrons moving in the z-direction in the GaAs

layer become trapped between the two potential walls, just like particles in a one-dimensional square well. But the electrons

can move freely in the x- and y-directions. Here the potential well has finite walls instead of an idealized well with infinite

walls. This fact affects the wave functions and energies to a small extent, but the equations derived for infinite walls still

give reasonably accurate values for the energies. We want to point out here that the holes in the valence band experience a

square barrier potential (see Fig. 25.8B). If a series of heterojunctions are constructed at regular intervals, then the potential

FIG. 25.6 The density of electron states per unit energy per unit volume ge(E) for a

thin slab with width in the nanometer range. The dashed line shows ge(E) for a bulk

material.

FIG. 25.7 (A) The heterojunction between GaAs and AlxGa1-xAs. (B) The valence band (V.B.) and conduction band (C.B.) for GaAs and AlxGa1-xAs in

the heterojunction (A). (C) The change in potential at the heterojunction (A) for both the V.B. and C.B. of the two materials.
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variation in the conduction and valence bands will be periodic, as shown in Fig. 25.9. The conduction electrons experience a

periodic square-well potential, while the holes experience a periodic square-barrier potential.

The existence of discrete energy levels in a quantum well is confirmed by the observation of the selective absorption of

laser light at certain frequencies, which corresponds to the transition of an electron from one energy level to another. The

combination of GaAs and AlxGa1�xAs forms the basis of the semiconductor laser used in compact disc players. The value

of the effective mass me
∗ of an electron is found to be much smaller than the free electron mass me: in the GaAs quantum

well, me
∗ ¼ 0.067me approximately.

Problem 25.1

What is the wavelength of the radiation emitted when an electron in a GaAs quantum well of width 10.0nm drops from the first

excited state to the ground state? The effective mass of the electron in GaAs is 0.067me where me is the mass of a free electron.

25.1.2 Quantum Wire

Fig. 25.10 shows a crystal in which the dimensions along the y- and z-directions are reduced to nm size, but the dimension

along the x-direction is very large or, ideally, infinite. In a quantum wire (nanowire) the electrons are free to move along the

x-direction, while their motion is confined along the y- and z-directions. Therefore, the wave function in a quantum wire is

given by.

ck rð Þj i¼ ckx
xð Þ

��� E
cky

yð Þ
��� E

ckz
zð Þ

��� E
(25.27)

where

ckx
xð Þ

��� E
¼ 1ffiffiffiffiffi

Lx

p eikx x (25.28)

FIG. 25.8 (A) The double heterojunction between GaAs and AlxGa1-xAs. (B) The

quantum well for the electrons in the C.B. and the potential barrier for the holes in

the V.B. in a double heterojunction (A).

FIG. 25.9 The potential experienced by the electrons in

the C.B. and holes in the V.B. in the case of a series of het-

erojunctions created at regular intervals.
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��cky
yð Þ�¼

ffiffiffiffiffi
2

Ly

s
sin

nyp

Ly

y

 !
(25.29)

��ckz
zð Þ�¼

ffiffiffiffiffi
2

Lz

s
sin

nzp
Lz

z

� �
(25.30)

The boundary conditions along the x-direction yield the values of kx as.

kx ¼
2p nx
Lx

(25.31)

where nx¼ 0,�1,�2, …. The energies in the y- and z-directions are quantized due to the confinement of the electron

motion, while in the x-direction the energy is the same as that of a free electron. Proceeding exactly in the same way

as in the quantum well, one gets the x-, y-, and z-components of energy as.

Ekx
¼ ħ2 k2x

2me

(25.32)

Ey ¼
n2yh

2

8meL
2
y

(25.33)

Ez ¼
n2z h

2

8meL
2
z

(25.34)

Hence the total energy of a quantum wire becomes.

Ek ¼
ħ2k2x
2me

+
ħ2

2me

nyp

Ly

 !2

+
nzp
Lz

� �2
2
4

3
5 (25.35)

Fig. 25.11 shows the energy Ek as a function of kx. The lowest energy band has ny¼ nz¼ 1 and is parabolic in nature along

the kx direction. The next band is doubly degenerate (with ny¼ 1, nz ¼ 2 and ny¼ 2, nz¼ 1) for Ly ¼ Lz. The two bands

differ in energy slightly if Ly 6¼ Lz (see Fig. 25.11). Further, the third band is a single band with ny ¼ nz ¼ 2 and so on.

In one dimension (along the x-direction) Eq. (25.21) becomes

FIG. 25.10 Quantum wire (nanowire) with dimensions Ly and Lz along the y- and z-directions on

the order of nm size. The length of the quantum wire along the x-direction is infinite.
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Ne Ekx

	 

dEkx

¼Ne kxð Þdkx (25.36)

According to Eq. (25.31) there is one electron state in a wave vector of length 2p/Lx, therefore, the number of allowed states

per unit wave vector is given by.

Ne kxð Þ¼ 2
Lx

2p
(25.37)

From Eq. (25.36) one can write

Ne Ekx

	 

¼ Ne kxð Þ
dEkx

=dkx
(25.38)

Substituting Eqs. (25.32), (25.37) into the above expression, one gets the density of electron states per unit energy as

Ne Ekx

	 

¼ Lx

2p
2me

ħ2

� �1=2

E
�1=2
kx

(25.39)

The density of electron states per unit energy per unit length becomes.

ge Ekx

	 

¼ 1

2p
2me

ħ2

� �1=2

E
�1=2
kx

(25.40)

Fig. 25.12 shows that ge(Ekx
) decreases with an increase in energy. Therefore, in a quantum wire most of the electrons lie in

the lower energy states.

One important property of a quantum wire is that its conductance is quantized, which can be understood in terms of the

above energy bands. Imagine a quantum wire with large metal crystals (three-dimensional electron gas) at each end. Then

an electron reaching one end of the quantum wire can escape into the metal crystal. If, for simplicity, we assume 100%

transmission, then an electron in the metal crystal at one end flows through the quantumwire and reaches the other end. The

lowest energy state of this composite system will have all of the energy levels filled up to the Fermi energy EF. So, the

electrons in the wire at any energy below EF will be flowing into the metal crystal, but they are certainly flowing into

the wire at the same rate because there is no current flow in the ground state.

In a wire with a unit area of cross section, the current density due to an electron moving with velocity vx and crossing a

particular cross section per unit time is.

Jx ¼�e vx (25.41)

Using Eq. (25.32), one can write.

FIG. 25.11 The energy band structure of a quantum wire.
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vx ¼
1

ħ

dEkx

dkx
(25.42)

Therefore, the general expression for the current density per unit length is

Jx ¼ 2
X
kx

�eð Þ1
ħ

dEkx

dkx

1

Lx

(25.43)

The factor of 2 includes the spin degeneracy of the bands. Here we sum over all positive kx to include all electrons that

contribute to the current. Changing the summation into integration, one gets.

Jx ¼
Lx

2p
2 �eð Þ

ħ

ð
dEkx

dkx

1

Lx

dkx

which can be written as

Jx ¼
�e

pħ

ð
dEkx

(25.44)

If a voltage V is applied across the quantum wire, it produces the required energy difference for the flow of the current,

that is, ð
dEkx

¼Ekx
¼�eV (25.45)

From Eqs. (25.44), (25.45) we get

Jx ¼
2 e2

h
V (25.46)

which is to be added to every subband at EF. So, the conductance contribution to every band at EF is

s¼ 2 e2

h
(25.47)

Eq. (25.47) shows that the conductance in a quantum wire is quantized. The above analysis predicts a minimum conduc-

tivity of 2e2/h, which corresponds to a maximum resistance of.

Rmax ¼
h

2 e2
¼ 6:63�10�34

2� 1:6�10�19
� �2 ¼ 12:95kilo�ohms: (25.48)

FIG. 25.12 The density of electron states for a quantum wire, quantum well and

quantum dot.
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Above this value, the resistance becomes infinite and the material becomes an insulator. In chapter 10 it has already been

proved that the conductance in a two-dimensional solid (quantum Hall effect) is also quantized, but the quantum of con-

ductance is e2/h. This shows that the quantized conductance is an important concept in microscopic devices.

25.1.3 Quantum Dot

In a quantum dot, all three dimensions are reduced to nm size (see Fig. 25.13) and hence the wave function of a quantum dot

becomes.

ck rð Þj i¼ ckx
xð Þ

��� E
cky

yð Þ
��� E

ckz
zð Þ

��� E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

LxLyLz

s
sin

nxp
Lx

x

� �
sin

nyp

Ly

y

 !
sin

nzp
Lz

z

� �
(25.49)

Here the values of kx, ky and kz are given by.

kx ¼
nxp
Lx

,ky ¼
nyp

Ly

and kz ¼
nzp
Lz

(25.50)

The energy eigenvalues in a quantum dot become.

Ek ¼Ekx
+ Eky

+ Ekz
(25.51)

¼ ħ2

2me

nxp
Lx

� �2

+
nyp

Ly

 !2

+
nzp
Lz

� �2
2
4

3
5¼ ħ2k2

2me

(25.52)

If the quantum dot has all three dimensions the same, that is, Lx ¼ Ly ¼ Lz ¼ L (cubic quantum dot), then.

En ¼Ekð Þ¼ ħ2

2me

n2p2

L2
(25.53)

where

n2 ¼ n2x + n
2
y + n

2
z (25.54)

Here En can be written as E(nx, ny, nz) for labeling the states. In a cubic quantum dot, the energy of the ground state of a

system E(1,1,1) has two-fold spin degeneracy. The first excited state, described by E(2,1,1)), E(1,2,1), and E(1,1, 2), is

six-fold degenerate. Interestingly, a cubic dot exhibits the same multiplicity of states as are found in an atom: a two-fold

degenerate s-state and six-fold degenerate p-state, etc.. For this reason, quantum dots are often referred to as artificial
atoms. Because the electronic structure of quantum dots can be tuned by changing their size or shape, they are particularly

attractive building blocks for the development of new nanomaterials and nanotechnologies.

From Eq. (25.50) it is evident that in a volume of p3/LxLyLz ¼ p3/V, there is only one allowed k-state where V is the

volume of the quantum dot. Therefore, the number of states in a spherical shell of radius k and thickness dk is given by.

FIG. 25.13 Quantum dot with dimensions Lx, Ly and Lz along the Cartesian directions in the nm range.
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Ne kð Þdk¼ 2
V

p3
4pk2dk (25.55)

From Eq. (25.21) one can write

Ne Eð Þ¼ Ne kð Þ
dE=dk

(25.56)

Substituting Eqs. (25.52) and (25.55) into the above equation, we get

Ne Eð Þ¼ 4V

p2
2me

ħ2

� �3=2

E1=2 (25.57)

Hence the density of electron states per unit energy per unit volume is given by.

ge Eð Þ¼ 4

p2
2me

ħ2

� �3=2

E1=2 (25.58)

Eq. (25.58) is similar to the expression for the density of electron states in a three-dimensional free-electron gas except for

the constant factor. Fig. 25.12 shows that in a quantum dot the maximum number of electrons lie near EF. Comparison of

Fig. 9.4 and Fig. 25.12 shows that the density of electron states in nanomaterials is similar to that in a free-electron gas.

25.1.4 Quantum Ring

Consider a quantum wire of length L bent into a circular loop of radius R (see Fig. 25.1D). In this case the system repeats

itself after a distance of L¼2pR (periodic boundary condition). So, a quantum ring is a one-dimensional solid with a

periodic boundary condition. If an electron with wave function jck(r)i is moving in a circular ring, then its wave function

satisfies the periodicity condition, that is,

ck rð Þj i¼ ck r + 2pRð Þj i (25.59)

The Schrodinger wave equation for a free electron is given by.

� ħ2

2me

r2 ck rð Þj i¼Ek ck rð Þj i (25.60)

and the wave function by.

ck rð Þj i¼ 2ffiffiffi
L

p ei k r (25.61)

Substituting Eq. (25.61) into Eq. (25.59), we get

eik 2pRð Þ ¼ 1¼ e2pin (25.62)

The above equation gives the values of the wave vector as.

kR¼ n

with n ¼ 0,�1,�2, …. One can also write.

kn ¼
n

R
(25.63)

Here we have labeled the wave vector by the subscript n for convenience. The energy of a free particle moving in the

circular ring becomes

En ¼
ħ2k2n
2me

¼ ħ2

2meR
2
n2 (25.64)

From the above expression it is clear that the energy of an electron moving in a circular ring is different from that of an

electron moving along a particular Cartesian direction and this change is brought about by the periodic boundary condition.
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Problem 25.2

Show that the density of electron states in a quantum ring is given by.

Ne Enð Þ¼meR
2

nħ2

25.2 QUANTUM TUNNELING

It is evident fromFig. 25.9 that a rectangular barrier separates two rectangular quantumwells. If thebarrier is quite thin there is

a significant probability that electronswill tunnel fromone squarewell into the other. This fact influences the allowed energy

levels in a quantum well. Let us study the probability of tunneling from a one-dimensional quantum well into another one

(see Fig. 25.14). Let an electron in region 1with wave vector k be incident from the left side. On reaching the barrier at z¼0,

one part of the wave function is reflected back and the other is transmitted into region 2. Further, on reaching the other end

of the barrier at z¼b, a part of the transmitted wave function may enter region 3, which is called the tunneling component of

the wave function. At the two boundaries (z¼0, b) the wave function and its derivatives should be continuous.

Region 1

If jc1(z)i is the wave function of a free electron in region 1, then the Schrodinger wave equation can be written as.

� ħ2

2me

d2

dz2
c1 zð Þj i¼E c1 zð Þj i (25.65)

or

d2

dz2
+ k20

� �
c1 zð Þj i¼ 0 (25.66)

where

k20 ¼
2me

ħ2
E (25.67)

The solution of Eq. (25.66) comprises incident and reflected waves and, therefore, the most general solution is the linear

combination of the two, that is,

c1 zð Þj i¼Aei k0 z + Be�ik0 z (25.68)

If the intensity of the incident wave is taken as unity (A ¼ 1), then

c1 zð Þj i ¼ ei k0 z + Be�ik0 z (25.69)

Region 2

Let jc2(z)i be the wave function of the electron in region 2. In this region, the electron experiences a constant potential V0,

therefore, its Schrodinger equation becomes.

FIG. 25.14 A potential barrier with width b,

height V0, and a as the distance between two con-

secutive barriers. The tunneling of the incident

wave through the potential barrier is depicted in

the diagram.
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�ħ2

2me

d2

dz2
+V0

� �
c2 zð Þj i¼E c2 zð Þj i (25.70)

which can be written as

d2

dz2
�k2

� �
c2 zð Þj i¼ 0 (25.71)

where

k2 ¼ 2me

ħ2
V0�Eð Þ (25.72)

The solution of Eq. (25.71) is given by

c2 zð Þj i¼Ce�k z +Dek z (25.73)

The wave function jc2(z)i must go to zero in the asymptotic limit, which is so if D ¼ 0. Therefore, jc2(z)i becomes

c2 zð Þj i¼Ce�k z (25.74)

The equality of the wave functions jc1(z)i, jc2(z)i and their derivatives at z¼0 gives the continuity condition, which from

Eqs. (25.69), (25.74) yield.

1 +B¼C (25.75)

i k0 1�Bð Þ¼�kC (25.76)

The values of B and C obtained from Eqs. (25.75), (25.76) are

B¼ k0� ik
k0 + ik

, C¼ 2k0
k0 + ik

(25.77)

The above equation gives

Bj j2 ¼ 1

which means that there is total reflection at z¼0 as in the classical case. However, the relative probability of finding the

electron in region 2 is also finite and is given by.

P2 zð Þ¼ Ce�k z
�� ��2

¼ 4k20
k20 + k

2
e�2k z (25.78)

The probability P2(z) is appreciable near the barrier edge at z¼0 and then decreases exponentially (see Fig. 25.14). The

probability becomes negligible over a distance that is large compared with 1/k. If the thickness of the barrier is small

(smaller than 1/k), then we obtain finite and significant probability for finding the electron at its other end (at z¼b). It

will then propagate to the right as a free electron. From Eq. (25.78) the probability of finding the electron at z¼b becomes.

P3 bð Þ¼ 4k20
k20 + k

2
e�2k b (25.79)

The relative probability of finding the electron at z¼b is

T¼ P3 bð Þ
P2 0ð Þ¼ e�2kb ¼ e

�2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me

ħ2
V0�Eð Þ

q
(25.80)

T gives the coefficient of transmission and is an approximate result for large b. For a narrow barrier there is a considerable

mixture of rising and falling exponentials.

Region 3

In this region the potential is zero, that is, V(z) ¼ 0, so the wave equation is the same as in region 1 but with different

amplitude. The wave equation is written as.
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� ħ2

2me

d2

dz2
c3 zð Þ�� �¼E c3 zð Þ�� �

(25.81)

This equation has a solution similar to that of Eq. (25.65) but the difference is that the wave moves toward the right after

tunneling through the barrier, that is, in the positive direction. The wave function can therefore, be written as

c3 zð Þ�� �¼Deik0 z (25.82)

Here D is the amplitude of the wave in region 3, which is less than the amplitude of the incident wave in region 1, but the

frequency and wave vector are the same. The total wave function is obtained by joining together the wave functions from

the three regions. Fig. 25.14 shows the real parts of the wave functions in the three regions.

Problem 25.3

Consider a barrier having width b¼10�6cm and barrier height Vo¼0.3eV. Calculate the probability of tunneling through the

barrier by an electron having energy (i) 0.1eV, (ii) 0.2eV, and (iii) 0.28eV. Comment on the probability of tunneling with an

increase in the energy of the electron.

25.3 NANOPARTICLES

The smallest particles in a solid that can exist independently are atoms. Therefore, there is a fundamental limit to making

anything arbitrarily small, which is obviously the size of an atom (0.1nm). In reducing the size of a solid, one is able to

produce material particles with size in the nm range. A nanoparticle is considered to be a cluster of atoms (molecules)
bonded together within a diameter of 100nm. A nanoparticle is denoted as An where A is the symbol of the element

and n is the number of atoms (molecules) in it. For example, Al12 denotes a nanoparticle of Al metal with 12 atoms in it.

Note that a cluster is an aggregate of atoms or molecules, with a size somewhere between microscopic and macroscopic

particles. Fig. 25.15 presents the classification of material into molecules, nanoparticles, and bulk material. It is evident that

nanoparticles lie between molecules and bulk materials. This classification is somewhat arbitrary because there are many

biological organic molecules containing a large number of atoms that do not fit into this classification. Therefore, one has to

evolve some working definition of nanoparticles. It has already been explained in the previous chapters that some sort of

critical length characterizes different properties of materials. For example, electrical conductivity is characterized by the

mean free path and superconductivity by the coherence length. So, a nanoparticle can be defined as a cluster of atoms
(molecules) with dimensions ranging from 1 to 100nm forming a very small part of the bulk material with dimensions less
than the characteristic length of the phenomenon to be studied. A quantum dot can be considered as a nanoparticle with a

small number of atoms (molecules).

FIG. 25.15 Classification of molecules, nanoparticles, and bulk material as regards the

radius and number of atoms.
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To have an idea about the number of atoms in a nanoparticle, one can consider the simple example of a solid in the form

of a cube with an edge of 1nm (see Fig. 25.16) and possessing sc structure. The diameter of an atom is usually taken as

10�8 cm (0.1nm). So, in the case of close packing, the number of atoms in a 1-nm cube comes out to be 1000. The number of

atoms in a 1nm cube with fcc and bcc structures should be still higher due to the higher packing fraction in these structures.

But in an actual crystal there are 3–5 atoms lined up in 1nm of distance. So, a real cubic nanoparticle with a 1-nm edge

contains 25–125 atoms. On the other hand, an actual spherical nanoparticle with 1-nm diameter contains 12–65 atoms. This

fact shows that the atoms in a nanoparticle are bonded together with some finite bond length.

25.3.1 Magnetic Nanoparticles

There are a large number of paramagnetic and ferromagnetic elements in which each atom possesses a finite intrinsic mag-

netic dipole moment. Paramagnetic elements exhibit magnetization only in the presence of a magnetic field, while ferro-

magnetic elements exhibit finite magnetization even in the absence of a magnetic field below the critical temperature Tc. In

a bulk paramagnetic element, the intrinsic atomic magnetic moments are randomly oriented, yielding zero magnetization in

the absence of an applied magnetic field. As the size of the material is reduced to nm size, the distribution of the atomic

magnetic moments may not remain completely random and may yield a finite, though small, magnetic moment on a nano-

particle. As the size of the nanoparticle is reduced further, the degree of randomness in the distribution of a smaller number

of atomic magnetic moments may decrease further, thus resulting in a possible increase in the total magnetic moment of the

nanoparticle. If an external magnetic field is applied, the magnetic moment of each atom in the nanoparticle experiences

two competing forces: thermal and magnetic. The result of these competing forces decides the direction of the magnetic

moment of each atom. The vector sum of the magnetic moments of all the atoms gives rise to the net magnetic moment of a

nanoparticle (see Fig. 25.17A). Therefore, in the presence of an external magnetic field, the magnetic moment of a nano-

particle may increase further. Fig. 25.17B shows a perfect alignment of all the atomic magnetic moments in a nanoparticle

along the direction of the magnetic field, yielding the maximum possible magnetic moment. An example worth mentioning

here is that of Rhenium (Re), which is a paramagnetic element in bulk form. However, its nanoparticle Ren shows inter-

esting behavior with respect to a variation in n. It has been found that Ren exhibits a significant increase in net magnetic

moment for n< 20. This example shows that there is a possibility to producemagnetic materials from nanoparticles made of

paramagnetic materials. Investigation of the electronic band structure of crystalline solids shows that ferromagnetic

behavior depends on two factors:

1. Density of electron states at the Fermi energy EF denoted by N(EF).

2. The spin-spin exchange interactions denoted by J.

FIG. 25.16 A cube with 1nm edge and having sc structure being filled

with atoms.
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The condition for the existence of ferromagnetism is

JN EFð Þ� 1

The formation of energy bands has already been discussed in chapter 12. As the size of a solid is decreased, the electronic

energy bands are expected to become narrower, whichmay cause a possible increase in the density of electronic states in the-

band. It is necessary to explore how the spin-spin exchange interactions change with a decrease in the size of a solid. In a

bulk material with a large number of atoms or molecules, the probability of spin flipping is large. But with a decrease in the

size of the material (or with a decrease in the number of atoms), the probability of a spin flip may decrease significantly and

this may be due to an increase in the spin-spin exchange interactions. If the above explanation is accepted, then those nano-

particles made of elements that are nearly ferromagnetic, such as Pd, may exhibit ferromagnetism.

The magnetic moment of a nanoparticle can be measured by the famous Stern-Gerlach experiment (see Fig. 25.18).

In this experiment a narrow beam of nanoparticles passes through a nonuniform magnetic field. The magnetic moment

of each nanoparticle interacts with the applied magnetic field, which splits the beam into two parts, with the nanoparticles

of one magnetic moment orientation moving in the opposite direction to those of the other orientation. An impression of the

beam can be taken either on a photographic plate or on a fluorescent screen. From knowledge of the beam separation and the

strength of the magnetic field, one can estimate the magnetic moment of a nanoparticle.

25.3.2 Structure of Nanoparticles

The ratio of the surface S to the volume V of a solid is defined by the parameter zsv as

zsv ¼ S=V (25.83)

If the solid is in the form of a sphere of radius r, then S¼4p r2 and V¼ (4/3) p r3. Hence the parameter zsv becomes.

FIG. 25.17 (A) Magnetic moments of atoms in

arbitrary directions in a nanoparticle.

(B) Magnetic moments of all the atoms in a nano-

particle are aligned in one direction, the direction

of the applied magnetic field.

FIG. 25.18 The Stern-Gerlach experiment. A collimated beam of nano-

particles passing through a nonuniform magnetic field is split into two

beams. The two beams striking the photographic plate are separated by

a distance d.
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zsv ¼
4pr2

4=3ð Þpr3 ¼ 3

r
(25.84)

Similarly, for a solid in the form of a cube of edge r, the parameter zsv becomes.

zsv ¼
6

r
(25.85)

From Eqs. (25.84), (25.85) it is evident that zsv is inversely proportional to r: zsv increases with a decrease in the size of the
material. This amounts to an increase in the surface forces with a decrease in the size of the material. The effect of an

increase in surface with a decrease in the size of the solid can also be realized physically: for a smaller number of atoms

in a solid, a greater fraction of the atoms is expected to lie on the surface. In a very small nanoparticle, zsv approaches 1 as
most of the atoms lie on its surface. Therefore, in nanomaterials, the surface forces influence the electronic structure sig-

nificantly and must be incorporated in the development of a theoretical model.

In the case of large nanoparticles, the structure is the same as that of the bulk material but with some different lattice

parameter “a”. For example, nanoparticles of Al metal with a size of 80nm possess fcc structure (X-ray diffraction). It has

been observed that the electrostatic interactions between ions and electrons in crystals give rise to a size-dependent intra-

crystalline pressure (ICP): ICP may increase or decrease with a decrease in the size of a nanoparticle. For example, in Cu,

Ag, and Au, the ICP increases with a decrease in the size of the nanoparticle, resulting in a decrease in the lattice parameter.

But in Ni, ICP decreases with a decrease in size and hence the lattice parameter increases. The experimental determination

of the structure of small nanoparticles is difficult. In small nanoparticles, the surface energy is very large and they acquire

the structure having minimum surface energy, which naturally is a sphere in the case of central Coulomb interactions

between the atoms. In Al13 there are three possible arrangements of atoms (see Fig. 25.19). It is noteworthy that all three

possible arrangements of atoms in Al13 produce a nearly spherical shape with most of the atoms at the surface. The spherical

shape significantly affects the properties of nanoparticles, such as their vibrational structure, stability, and reactivity.

Molecular orbital calculations for Al13 in conjunction with density functional theory show that the icosahedral structure

yields the lowest energy compared with the other two structures. The structure of nanoparticles can also be studied with the

help of computer simulation techniques. The above example shows that the structure of a nanoparticle may undergo a sig-

nificant change with a decrease in its size. One can also argue the reverse. Nanoparticles containing a few atoms possess a

geometrical shape that has most of the atoms on the surface. With an increase in the size of a nanoparticle, crystalline order

starts to appear and, ultimately, the atoms exhibit the crystal structure of the bulk material.

Some nanoparticles are highly reactive in air, depending on the nature of the material. For example, if an isolated nano-

particle of Al is exposed to air, its surface atoms react immediately with air to form an oxide of Al, that is,Al2O3. Thus, a

coating of Al2O3 is expected to cover a nanoparticle of Al metal, which will protect it from reacting further with oxygen.

Such metallic nanoparticles are said to be passivated (here Al nanoparticles are oxygen passivated). Nanoparticles can also

be formed in a solution without exposure to air. For example, the decomposition of AlH3 in a heated solution containing

oleic acid produces nanoparticles of Al. In this case the molecules of the oleic acid are bonded to the surface of the nano-

particles. Oleic acid is called a surfactant, which will coat the nanoparticles and prevent them from aggregating and

oxidizing.

FIG. 25.19 Three possible structures of Al13 nanoparticles. (Modified from Poole, C. P., & Owens, F. J. (2006). Introduction to nanotechnology (p. 78).

Asia: John Wiley & Sons.)
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25.3.3 Methods of Synthesis of Nanoparticles

There are a number of methods to synthesize nanoparticles with different sizes. An important aspect of all the methods is to

provide some arrangement for the stability of the nanoparticles as regards the shape and size, which can be achieved by the

passivation and surfactance of the particles. Here we shall concentrate on the synthesis of metallic nanoparticles. Some

commonly used methods to produce metallic nanoparticles are described below.

25.3.3.1 Laser Beam Methods

The basic principle involved in the synthesis of nanoparticles is to evaporate the metal by any means to get constituent

atoms and then to allow them to form clusters under favorable conditions. The various methods to evaporate the metal give

rise to different fabrication methods. Fig. 25.20 shows the experimental set up for producing nanoparticles of metals using

a strong laser beam. It consists of a chamber in which He gas is allowed to enter under pressure from one side (left side).

A circular disc of the desired metal is placed in the chamber. A strong laser beam is allowed to fall on the metal disc, which

causes evaporation of atoms from its surface. The atoms of the metal are carried away, along with He gas, through a narrow

tube into an evacuated container. The sudden expansion of the gas causes cooling, which leads to condensation and hence

the formation of nanoparticles (clusters of atoms) with nm size. The nanoparticles are first ionized by ultraviolet radiation

and then passed through a skimmer into a mass spectrometer for measurement of their charge/mass ratio, which provides

information about the size of the nanoparticles. It is found that nanoparticles An with different values of n are formed.

Fig. 25.21 shows the number of nanoparticles of lead metal Pbn as a function of n. From the figure one concludes that

Pb7 and Pb10 are more likely to form than other nanoparticles. The numbers 7 and 10 are called structural magic numbers.
Metallic nanoparticles can also be produced from a solution of their salts by using a pulsed laser beam. For example,

nanoparticles Agn can be produced from an aqueous solution of AgNO3 by applying periodic laser pulses. The pulsed laser

method employs a container fitted with a rotating sample holder in the middle (see Fig. 25.22) on which is placed a solid

disc. A solution of AgNO3 and a reducing agent are put in the container such that the solid disc dips into the solution.

FIG. 25.21 Number of An particles of Pb metal as a function of n obtained from mass

spectrometry. (Modified from Duncan, M. A., & Rouvray, D. H. (1989). Scientific
American, 110.)

FIG. 25.20 Experimental set up to produce metallic

nanoparticles by laser-induced evaporation of atoms

from the surface of a metal. (Modified from
Owens, F. J., & Poole, C. P. (1999). New Supercon-

ductors. New York: Plenum Press.)

574 Solid State Physics



The solid disc is rotated with a uniform speed and periodic pulses of a strong laser beam are allowed to fall on it, which

create hot spots on the surface of the disc. At the hot spots, AgNO3 and the reducing agent react to release Ag atoms, which

further combine to form Agn, which are then separated from the solution. One advantage of this method is that by varying

the energy of the laser beam and the speed of rotation of the solid disc, the size of the nanoparticles can be varied.

25.3.3.2 Thermal Decomposition

At high temperatures a solid is evaporated into molecules and further heating causes thermal decomposition of molecules

into metal cations and molecular anions. The metallic cations then start aggregating, thereby producing metallic nanopar-

ticles. On the other hand, the anions combine to form a gas that escapes into the air. This process is similar to electrolysis in

which the passage of an electric current through an aqueous solution of a salt splits the molecules into cations and anions.

Therefore, the process of thermal decomposition is sometimes called thermolysis in analogy with electrolysis. The exper-

imental arrangement used for thermal decomposition is shown in Fig. 25.23. It consists of an evacuated quartz tube in which

the sample LiN3 is placed near one end. The other end of the quartz tube is connected to a molecular pump and a fore pump.

A vacuum gauge is connected to the tube to measure the pressure. LiN3 is heated by means of a furnace to 400°C. At this
temperature, LiN3 decomposes into Li cations and N anions and the latter form N2 gas, which can be detected by the

vacuum gauge. Then the N2 gas is removed from the quartz tube. On the other hand, Li cations aggregate to form nano-

particles (h5nm in dimension), which are passivated by a suitable gas. The formation of nanoparticles can be detected by the

EPR spectrum of the conduction electrons of the metallic nanoparticles.

In addition to the above method, radiofrequency plasma is also used for producingmetallic nanoparticles. In this method

metal is heated above the evaporation point using high-voltage rf coils and then the atoms are allowed to condense to form

nanoparticles.

FIG. 25.23 Experimental set up for producing metallic nanopar-

ticles using the method of thermal evaporation. (Modified from
Poole, C. P., & Owens, F. J. (2007). Introduction to Nanotechnology.

New York: J. Wiley & Sons.)

FIG. 25.22 Experimental set up for producing metallic nanoparticles using the

pulsed-laser-beam method. (Modified from Singh, J. (2001). Materials Today, 2, 10.)
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25.3.3.3 Chemical Methods

Chemical methods are most useful and convenient for the production of nanoparticles. Metallic nanoparticles can be pro-

duced from their salts in the presence of suitable reducing agents. Gold particles are produced by reducing an aqueous

solution of chloroauric acid (HAuCl4) with trisodiumcitrate (Na3C6H5O7). The reaction takes place as follows:

HAuCl4 + Na3C6H5O7 !Au+ + C6H5O
�
7 + HCl + 3NaCl

The gold particles are then stabilized by using thiol or some other suitable surfactant. In the same manner, nanoparticles of

other metals, such as Cu, Ag, and Pd, can be synthesized. The nanoparticles of ZnS, a semiconductor, can be synthesized by

adding Na2S to an aqueous solution of ZnCl2 (or ZnNO3) and the reaction proceeds as:

ZnCl2 + Na2S! ZnS + 2NaCl

ZnNO3 + Na2S! ZnS+ Na2NO3

ZnS molecules then aggregate to form nanoparticles of ZnS. The nanoparticles of ZnS tend to aggregate further due to the

attractive forces between them. So, they are surface passivated by adding liquid thiophenol (C6H5SH) or mercaptoethanol

(C2H5OSH) to the aqueous solution and heating it to the desired temperature. Similarly, one can produce nanoparticles of

ZnO by adding NaOH to an aqueous solution of ZnCl2. There are a number of reducing agents, but the choice of agent

depends on the metallic salt used. It is noteworthy that the particle size, size distribution, and shape of the nanoparticles

depend on the reaction parameters, which can be easily controlled.

25.3.3.4 Self-Assembly Techniques

One of the self-assembly techniques is epitaxy, a word that comprises two Greek words. Epi means upon and taxis means

ordered. Therefore, epitaxy is a term applied to the processes used to grow a thin crystalline layer on a crystalline substrate

and the growth of such crystals is called epitaxial growth. In this process the substrate serves as the seed crystal on which a

new material grows. In epitaxy, crystals can be grown considerably below the melting point of the substrate. For epitaxial

growth of a thin crystalline layer on a crystalline substrate, the following conditions should be satisfied:

1. The crystal structures of the deposited materials and the substrate should be the same.

2. The lattice parameters of the two materials should be either exactly or nearly equal.

3. The energy gaps of the two materials should also be nearly the same.

There are two types of epitaxial growth techniques. The first is homoepitaxy in which a material is grown epitaxially on a

substrate of the same material. For example, Si is deposited epitaxially on a Si wafer. In homoepitaxy the conditions out-

lined above are automatically satisfied. If the material to be grown is different than the material of the substrate, it is called

heteroepitaxy. For example, AlxGa1�xAs is grown epitaxially on a substrate of GaAs (see Figs. 25.7 and 25.8). In this

system the lattice parameters of the two materials nearly match each other and they possess the same structure. Further,

the band gap of the material to be deposited (AlxGa1�xAs) is larger than that of the substrate. In heteroepitaxy, the layer

grows with a lattice parameter in compliance with that of the substrate. If the lattice parameter of the crystalline thin layer,

to be grown epitaxially, is slightly different from that of the substrate, then one obtains a strained layer, which may be in

compression or tension along the surface.

The epitaxial growth of alternating layers of crystals with slightly mismatched lattice parameters yields a strained-

layer superlattice in which alternate layers either are in tension or compression. The lattice parameter of a strained-

layer superlattice is an average of the lattice parameters of the two bulk materials. A number of methods are used to

provide the appropriate atoms for growing a crystalline layer. They include chemical vapor deposition (CVD) and

molecular beam epitaxy (MBE). Here we shall describe only the latter method. In the MBE method, atoms of an

element are evaporated in vacuum and deposited in the form of a layer on a substrate. The substrate may be a crys-

talline material or an amorphous one. Both homoepitaxial and heteroepitaxial growths can be obtained using the MBE

method. First, in situ cleaning of the surface of the substrate is performed in one of the following two ways. In the

first method, high-temperature baking, between 1000°C and 1250°C, is carried out for 30min. This decomposes the

native oxide and removes other adsorbed atoms (notably carbon) by evaporation or diffusion into the layer. A better

approach is to use a low-energy beam of an inert gas to sputter clean the surface. A short anneal at 800°C to 900°C is

sufficient to reorder the surface. The substrate should have an ultraclean and perfectly smooth surface. A schematic

diagram for the MBE method is shown in Fig. 25.24. Bringing atoms of a material in contact with the surface of a

substrate may do three things:
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1. The atoms are either desorbed and thereby leave the surface or they are adsorbed and diffuse on the surface until they

join with other adatoms to form an island. Small islands can continue to grow, migrate to other positions, or evaporate.

There is a critical size at which the islands become stable and do not experience much evaporation. Thus, there is an

initial nucleation stage in which the number of islands increases with the coverage.

2. Second is an aggregation state, in which the number of islands level off and the existing ones grow in size.

3. Finally, there is a coalescence stage, which involves the merger of existing islands with each other to form

larger islands. These islands can be converted into quantum dots by covering them with an epitaxial layer.

A three-dimensional array of quantum dots can be produced by repeating the deposition sequence just described.

In practice in situ growth techniques, such as MBE and the metal-organic CVD technique, are used to obtain the requisite

ultraclean conditions and exquisite control over the deposition. Heteroepitaxy is one of the epitaxial growth techniques that

have been widely used for research, as well as in the fabrication of many semiconductor devices. The other methods to

fabricate nanoparticles of semiconductors are lithography, colloidal chemistry, and the radiofrequency plasma method.

However, self-assembly quantum dots have smaller sizes and stronger confinement potentials than lithographically

prepared quantum dots.

25.3.4 Nanostructured Materials

Nanostructured materials are solids in bulk form, with nanoparticles as the basic unit of structure, instead of the atoms or

molecules in conventional elements of the periodic table. Nanostructured materials can be classified into two categories.

25.3.4.1 Crystalline Nanostructured Materials

In crystalline nanostructured materials the nanoparticles are the building blocks and they form a three-dimensional periodic

array with some symmetry: the nanoparticles have the same size and orientation. Fig. 25.25 shows a two-dimensional

ordered lattice of hypothetical nanoparticles. There are two fundamental problems in the synthesis of crystalline nanostruc-

tured materials.

1. No method or technique exists with which one can synthesize nanoparticles of a particular size of an element.

2. Secondly, there is no technique available to arrange nanoparticles of a particular size on a periodic lattice to form a

crystalline material.

Once techniques are developed to perform the two steps outlined above, one will be able to synthesize many nanostructured

crystalline solids from a single element of the periodic table. Hence, we shall be able to produce a large number of nano-

structured materials from the existing elements. Computer calculations predict the possibility of crystalline nanostructured

materials and some of them may possess extraordinary properties, allowing their use in such applications as super strong

FIG. 25.24 Schematic diagram of the molecular beam

epitaxy method.
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magnets and high-Tc superconductors. Researchers expect a breakthrough in this regard in the near future. Therefore, there

is immense scope for crystalline nanostructured materials in industry and technology.

25.3.4.2 Amorphous Nanostructured Materials

In an amorphous nanostructured material, the arrangement of nanoparticles does not exhibit translational periodicity: nano-

particles may have the same size but different orientation, or different size but the same orientation, or both the size and

orientation may be different. Fig. 25.26 shows a two-dimensional disordered nanostructure of hypothetical nanoparticles.

There are a few methods for the production of amorphous nanostructured materials.

The most commonly used method to make amorphous alloys is the compaction and consolidation method. In this

method the different component elements of an alloy are ball-milled to nm size. Themixture is then compacted in a tungsten

carbide die under high pressure (�GPa) for many hours. To bring about consolidation the mixture is further subjected to

compaction under high pressure and at high temperature. For example, in Fe1�xCux alloy one gets an amorphous nano-

material with nanoparticles ranging in size from 20 to 70nm. Another commonly used method is the gas atomization
method. In this method molten metal is made to come out from a fine nozzle under high pressure and this is impacted with

a high-velocity beam of inert gas. The molten material produces a fine dispersion of metallic particles with nanometer size

in the form of a powder. The powder is then subjected to compaction and consolidation to form bulk samples.

25.3.5 Computer Simulation Technique

In computer simulations a nanoparticle of N atoms with some initial structure is considered. The interaction potential V(r)

between the atoms is guessed intuitively. The 3N equations of motion of the N atoms are set. Then, all of the atoms are

allowed to move by a small distance at the same time and the 3N equations are solved simultaneously. The energy of the

nanoparticle corresponding to the new positions of the atoms is found. The atoms are moved in such a way that the energy of

the nanoparticle decreases. The same process is repeated again to further decrease the energy. The atoms are moved bit by

bit until a minimum energy for the nanoparticle is obtained. The final positions of the atoms will yield the actual structure of

the nanoparticle. This method is quite laborious, as is evident from the following example. For a nanoparticle with 100

atoms one has to solve 300 equations simultaneously, which is a tedious task for an ordinary computer. The main

FIG. 25.25 Hypothetical nanoparticles are arranged on a square lattice with

perfect order to give a crystalline nanostructured material.

FIG. 25.26 Hypothetical nanoparticles with different sizes and ori-

entations are arranged on a lattice with no translational periodicity

yielding an amorphous nanostructured material.
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shortcoming of the computer simulation technique is the choice of the interaction potential. If an incorrect interaction

potential V(r) is chosen, one will end up with incorrect results. Therefore, the intelligence of the research worker lies

in the correct choice of the interaction potential.

25.4 NANOMATERIALS OF CARBON

Carbon (C) is one of the most abundant elements on earth and it exists in a number of different solid forms.

1. Crystalline form: brilliant diamond, gray graphite, and its well-known allotropes.

2. Amorphous form: coal and soot.

Kroto, Heath, O’Brien, Curl, and Smalley (1985, 1986) studied the structure of carbon-rich giant stars and found special

spectral lines corresponding to some type of long-chain molecules of carbon or nitrogen. Later they produced clusters of

carbon atoms in the laboratory by the vaporization of solid carbon. The analysis by mass spectrometer exhibited a number

of peaks, but the strongest peak was observed at 60 carbon atoms and the next strongest at 70 carbon atoms. This shows that

carbon clusters (nanoparticles) with 60 and 70 atoms, represented by C60 and C70, are most stable and they are called

C60 and C70 molecules. The C60 molecules are also called buckyballs or fullerenes after the American architect and futurist

Buckminster Fuller who designed a geodesic spherical dome using sticks at the Montreal World Exhibition, which looked

quite similar to the structure of a C60 molecule. Another very interesting class of carbon nanostructure is a carbon nanotube,

which is an example of a quantum wire of carbon.

25.4.1 Nanoparticles of Carbon

25.4.1.1 Structure of C60 Molecule

NMR experiments have established that C60 molecules possess a truncated icosahedral structure, which is like a spherical

cage. A regular truncated icosahedron has 90 edges of equal length, 60 vertices, 20 hexagonal faces, and 12 pentagonal

faces to forma closed shell. In this structureC atoms have nodangling bonds and the pentagons on theC60molecule are isolated

from one another, thereby creating greater chemical and electronic stability. A typical structure of C60 is shown in Fig. 25.27.

For a chemist it corresponds to a three-dimensional aromatic system in which single and double bonds are alternated.

The atomic positions in a C60 molecule can be determined by conventional methods, such as neutron or X-ray diffraction

experiments. The average 1NN distance between two carbon atoms is 1.44Å, which is almost identical to that in graphite

(1.42Å). Further, in graphite, each C atom is trigonally bonded to three other C atoms in a sp2-derived bonding configuration.

In a C60 molecule, there are single bonds along the hexagon-pentagon edges with bond length around 1.46Å, whereas there

are double bonds along the hexagon-hexagon edges having length around 1.40Å. Therefore, there is a slight deviation from

a regular truncated icosahedron.

FIG. 25.27 Structure of a C60 molecule with spheres representing the

C atoms.
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It is found that C60 is a slowly reacting molecule. In general, it has been found that all the carbon nanoparticles with an

even number of carbon atoms ranging from 40 to 80 react equally slowly. Analogously to C60, all these carbon nanoparticles

correspond to entirely closed structures that resemble cage-like structures. The bonding requirements of all the valence

electrons in C60 are satisfied, therefore, it is expected that C60 has filled molecular levels. Because all the C atoms in

C60 are sp
2-hybridized, C60 could be like Benzene C6H6, which is an aromatic molecule, or like ethane, which is a typical

alkene. Note that C60 molecules are very hard. If C60 molecules are shot onto a steel plate with a velocity of 15,000 mph,

they will bounce back unharmed. If a C60 molecule is compressed, it will become twice as hard as diamond.

The truncated icosahedron structure of the C60 molecule possesses the Ih symmetry group, which consists of the

following symmetry operations:

1. Identity operation.

2. Six 5-fold axes through the centers of the 12 pentagonal faces.

3. Ten 3-fold axes through the centers of the 20 hexagonal faces.

4. Fifteen 2-fold axes through the centers of 30 edges joining two hexagons.

5. Each of the 60 rotational symmetry operations can be compounded with the inversion operation to yield 120 symmetry

operations in the icosahedral point group Ih.

From the known lengths of single and double bonds, the diameter of a C60 molecule comes out to be 7.09Å. Experimental

measurements using the NMR technique yield 7.0 Å as the diameter of a C60 molecule, which agrees closely with the

theoretical value. There is also an electron cloud of p-electrons, with an estimated thickness of about 3.35Å, surrounding

the C60 molecule. Hence, accounting for the electron cloud, the outer diameter of a C60 molecule becomes

7.09+3.35¼10.44Å.

25.4.1.2 Structure of C70 Molecule

A C70 molecule can be obtained from a C60 molecule by adding a ring of 10 carbon atoms, or equivalently, adding a belt of

five hexagons around the equatorial plane of the C60 molecule, which is normal to one of the five-fold axes (see Fig. 25.28).

The two hemispheres of C60 molecules are rotated so that they fit continuously on to the belt of hexagons (Dresselhaus,

Dresselhaus, & Eklund, 1996). In a C70 molecule, there are five inequivalent carbon sites and eight distinct bond lengths.

The bond lengths are measured by neutron inelastic scattering experiments and are found to range from 1.356Å to 1.475Å

(Nilolaev, Dennis, Prassides, & Soper, 1994).

A C70 molecule is not spherical in shape but is more like a rugby ball. Knowing the atomic positions in C60 one can find

the atomic positions in a C70 molecule. From the coordinates so obtained the distance of the nearest and farthest C atoms

FIG. 25.28 Structure of a C70 molecule with spheres representing the

C atoms.

580 Solid State Physics



from the center of a C70 molecule are a¼3.498Å and b¼4.112Å and these are taken as the semiminor and semimajor axes

of the C70 molecule. The reader is referred to Ramirez (1994) who compared some physical properties of C60 and C70

molecules.

25.4.1.3 Crystalline C60 Solid

C60 and C70 molecules are produced in a simple experiment consisting of two graphite rods in a container filled with an inert

gas He at a pressure of 100Torr. An arc is passed through the graphite rods with a current of about 200 amps and a black

carbon smoke is produced, which contains fullerenes. Note that fullerenes are best produced at a pressure of 100Torr in an

inert gas. The current is passed intermittently, for a period lasting for about 15s during each step to avoid excessive heating.

Benzene or toluene solution dissolves the fullerene component of the soot to form a colored solution. The color of the

solution depends on the concentration and the type of the fullerenes produced.

A toluene solution of concentrated C60 molecules will have a dark red color, while that of concentrated C70 molecules

has a magenta color. So, the color of a toluene solution can be anywhere from pink to dark red to yellow depending on the

type of fullerenes present. The major problem in the synthesis of a crystalline solid of C60 molecules is that the toluene

solution contains a 9:1 mixture of C60 and C70 molecules and a small number of fullerenes with a higher number of carbon

atoms. Thus, there is a need to separate the C60 molecules from the rest of the molecules, which can be done with the help of

chromatography. Then a single crystal of C60 molecules can be grown by the slow evaporation of the pure C60

toluene solution. The above procedure indicates that the synthesis and purification of C60 fullerenes is difficult and

expensive.

At room temperature C60 molecules are found to crystallize in the fcc structure with lattice parameter a�14.2 Å and it is

an insulator. In chapter 1 it was pointed out that spherical atoms are found to crystallize in the fcc structure. The C60 mol-

ecules have a cage-like structure, which is nearly spherical in nature. Further, the free spinning of C60 molecules at high

temperatures makes them resemble spheres. X-ray diffraction studies show that as the temperature is lowered crystalline

C60 solid exhibits a structural transition to sc structure at Tc ¼ 260K, indicating a hindrance to the free rotation of

C60 molecules.

25.4.1.4 Alkali-Doped Crystalline C60 Solid

In a crystallineC60 solid, 26%of the volume is empty space in the formof voids as the packing fraction of fcc structure is 0.74.

The voids are so large that the alkali atoms can easily settle in them. To synthesize alkali-doped crystalline C60 solid, C60

crystal, along with Kmetal, is placed in an evacuated tube and then heated to 400°C. At this temperature, K metal vaporizes

and its atoms diffuse into the voids of C60 crystal to form a compound K3C60. Fig. 25.29 shows the tetragonal and octahedral

positions occupied by the K atoms. The doping of the C60 solid with K atoms changes its nature from an insulating to

a conducting state. This is because, in K3C60, each K atom is ionized by releasing an electron (K+1) and the electrons of

all the three K atoms become associated with a C60 molecule to give C60
�3, that is,

K3C60 ¼ 3K+1 + C�3
60 (25.86)

The ion C60
�3 has three loosely bound electrons, which get detached and move through the lattice, making C60 solid a

conductor.

K3C60 also exhibits superconductivity with Tc¼ 18K, which is quite high compared with the pure elements. Therefore,

it constitutes a new class of superconductors that have cubic structure and contain only two components, in contrast with the

conventional high-Tc oxide superconductors. Crystalline C60 solid can also be doped with other alkali metals and it has been

found that Tc increases with an increase in the size of the alkali atoms. Fig. 25.30 shows Tc as a function of the lattice

parameter ‘a’ in angstroms. The value of Tc in Cs2RbC60 is 33K and in Tl2.2Rb2.7C60 � 45K.

25.4.2 Carbon Nanotubes

Another very interesting class of nanomaterial is the carbon nanotube (CNT), which constitutes a very good example of a

quantum wire. One can imagine a CNT as a sheet of graphite rolled into a tube. Fig. 25.31 shows the structures of the CNT

formed by rolling a graphite sheet with the axis of the tube along different directions. There are two types of CNT: the

single-walled carbon nanotube (SWCNT) and the multiwalled carbon nanotube (MWCNT). Within a MWCNT there

can be a number of coaxial CNTs.

CNTs can be synthesized by the evaporation of graphite, which can be accomplished by a number of methods. The

advantage of using a laser beam for the evaporation of graphite is that the nanotubes formed are invariably SWCNTs with
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a diameter ranging from 10 to 20nm and a length of about 100 mm. Fig. 25.32 shows an experimental set up for the synthesis

of CNTs. It consists of a quartz tube containing argon (Ar) gas at a pressure of 500Torr and a graphite sample at its center.

The quartz tube is surrounded by a furnace to heat it to very high temperatures (1200°C). At one end of the quartz tube is

placed a strong Nd:YAG laser, while at the other end there is a water-cooled Cu collector. The graphite sample contains

small numbers of Co, Ni, and Fe atoms, which help in the formation of CNTs. A strong laser beam is allowed to fall on the

graphite sample, which evaporates carbon atoms from the surface. These carbon atoms are swept by Ar gas from the high-

temperature zone to the cold Cu collector on which the carbon atoms condense to form CNTs. CNTs can also be produced

by passing an electric arc between two carbon electrodes. In this method MWCNTs are mostly formed with a diameter in

the range 0.7–1.5nm and with a length of a few mm.

FIG. 25.29 The structure of alkali-doped crystalline C60 solid. The dark spheres represent

alkali atoms at octahedral and tetrahedral sites of the unit cell of crystalline C60 solid. (Modified

from Owens, F. J., & Poole, C. P. (1999). New Superconductors. New York: Plenum Press.)

FIG. 25.30 Variation of the superconducting transition temperature Tc with

the lattice parameter a in alkali-doped crystalline C60 solid. (Modified from

Hebard, A. F. (1992). Physics Today, 29.)
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The growth mechanism of CNTs is not fully understood. At such high synthesis temperatures one cannot imagine that

long sheets of graphite are really released and folded. It is probably an atom-by-atom or molecule-by-molecule addition

under favorable conditions that form the CNTs. In the method above it was proposed that atoms of Co, Ni, and Fe may act as

a catalyst in the formation of CNTs.

There are a variety of structures of CNTs, which exhibit different properties. Broadly speaking CNTs can be divided into

three categories:

1. Armchair structure,

2. Chiral structure, and.

3. Zigzag structure.

Fig. 25.31 shows all three structures, which are generally closed at both ends where they are like half of a large fullerene.

These nanotube structures are obtained by rolling the graphite sheet in different ways. Fig. 25.33 shows a graphite sheet in

which Aaxis is a vector about which the graphite sheet is rolled and Bcf is a circumferential vector perpendicular to Aaxis.

When Aaxis is parallel to the CdC bonds of carbon hexagons, the structure obtained is called an armchair structure

(see Fig. 25.31). But if Aaxis is not parallel to the CdC bonds, then it yields zigzag and chiral structures (Fig. 25.31).

As the vector Aaxis can have a number of orientations with respect to the CdC bonds, therefore, a number of chiral

and zigzag structures can be obtained.

The most interesting property of CNTs is that they are either metallic or semiconducting in nature depending on the

diameter and chirality of the tube. CNTs with armchair structure are metallic in nature with a very high conductivity: they

FIG. 25.31 The structure of armchair, chiral, and zigzag CNTs.

FIG. 25.32 Experimental set up for producing carbon nanotubes by the laser

evaporation method. (Modified from Poole, C. P., & Owens, F. J. (2007). Introduction
to nanotechnology. New Delhi: Wiley India.)
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can carry a current of 109 amp/sq.cm. On the other hand, a copper wire can carry a maximum of 106 amp/sq.cm at which

point it melts because of resistive heating. Further, high currents do not heat CNTs as they do in copper wire. CNTs also

have high thermal conductivity with a value that is about two or more times that of a diamond. They are good conductors of

heat. CNTs with finite chirality are semiconducting in nature. Fig. 25.34 shows the energy band gap Eg as a function of

diameter D of a semiconducting CNT. It increases linearly with a decrease in the diameter. It is an important property that

allows semiconducting nanotubes with the desired band gap to be synthesized. This fact allows us to have full control over

the energy band gap by varying the diameter of the tube, whereas in crystalline semiconductors Ge and Si, the band gap is

fixed (0.70eV in Ge and 1.02eV in Si).

From the above discussion it is evident that a single carbon element can exhibit a variety of properties at the nanoscale.

One can produce insulating fullerenes, superconducting doped fullerenes, metallic and semiconducting CNTs, and others.

25.5 MICROSCOPES USED FOR NANOMATERIALS

To view nanomaterials special microscopes are needed, which have atomic-scale resolution. A transmission electron

microscope is one such instrument, which is mostly used to study the structure of materials. Recently, a number of

probe-type microscopes have been invented with which one can study the structure of nanomaterials. In all of these micro-

scopes a probe is placed very close to the surface of the material to measure a local property, such as height, optical

absorption, or magnetization. Both the scanning tunneling microscope (STM) and atomic force microscope (AFM) are

probe-type microscopes that yield images at the atomic scale. STM and AFM are used as the foremost tools for the manip-

ulation of matter at the nanoscale. The special feature of AFM is that it can examine any rigid surface, either in air or

immersed in liquid and can resolve even single atoms that were previously unseen.

FIG. 25.34 The variation of the energy band gap Eg of a semiconducting chiral carbon

nanotube with the diameter D of the tube. (Modified from Dresselhaus et al. (1994) Molecular

Materials, 4, 27.)

FIG. 25.33 The graphite sheet used in making carbon nanotubes.Aaxis represents

the axis about which the sheet is rolled and Bcf is the circumferential vector.
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25.5.1 Scanning Tunneling Microscope

An STMworks on the principle of quantum tunneling: there is always a finite probability for an electron to tunnel through a

potential barrier with potential greater than the energy of the electron (see Fig. 25.14). Fig. 25.35 shows a schematic

diagram of an STM. It consists of a stylus with a very fine metallic tip. The tip consists of a cluster of atoms with a single

atom at the end. It is this atom that is responsible for most of the tunneling current. The tip is attached to a piezoelectric

crystal, which either expands or contracts depending on the direction of the current or direction of the electric field. The tip

is attached to a current amplifier, which is connected to a distance control and scanning unit. The distance control and

scanning unit provide a control voltage to the piezoelectric crystal, and is also connected to the display unit. A small voltage

(� 1.5V), generally called the tunneling voltage, is imparted to the sample.

An STM is used to study conducting or semiconducting surfaces and has important applications in semiconductor

physics and microelectronics. The stylus is lowered toward the sample surface and moved over it. A special robotic

arm does the scanning of the surface. When the separation between the tip and the surface is very small (of the order

of an atomic diameter), a finite tunneling current (� nA) flows either from the tip to the surface or from the surface to

the tip depending on the nature of sample surface. From Eq. (25.80) the probability of tunneling of an electron from

the tip to the sample or vice versa, is given by.

P¼ e
�2L

2me

ħ2
V�Eð Þ

h i1=2
(25.87)

where L is the distance between the tip and the surface, V is the potential barrier, and E the energy of an electron. It is

evident from Eq. (25.87) that the probability of tunneling, and hence the tunneling current, depends on the separation

L. It also depends on the work function ’W of the sample surface, which lies in the range of 4–5eV. The computer software

is then used to translate the scanned tunneling current into an image, which is displayed on a monitor. When the tip is

negatively biased the electrons tunnel from the occupied states of the tip to the unoccupied states of the surface and an

image of the surface is obtained. But if the tip is positively biased, then the electrons tunnel from the occupied states

of the surface to the unoccupied states of the tip and an image of the tip is obtained. It should be noted that the STM does

not probe the nuclear position but probes only the electron density around the nucleus. So, the image does not always show

the position of the atoms.

In a normal mode of operation, the height of the tip is adjusted so as to keep the tunneling current constant. In other

words, the tip is moved over the surface keeping the distance between the tip and the surface constant (see Fig. 25.36). In

this mode one obtains a topographical map of the surface. In the other mode of operation, the tip is moved horizontally,

thereby producing varying tunneling current. The tunneling current is then translated into a topographical map of the

surface. But if the surface is rough, then the tip of the STM may collide with the surface atoms in the horizontal-motion

mode, thereby destroying either the tip or the surface under investigation. The STM gives a very accurate profile of the

surface with a resolution on the order of the size of an atom.

FIG. 25.35 Schematic diagram of a scanning tunneling microscope.
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An innovative application of the STM is the manipulation of atoms, which revolutionized nanotechnology: the for-

mation of a “quantum corral.” In the formation of one of the quantum corrals, Fe atoms are first physisorbed on the

Cu surface at very low temperature (4K). Then the tip is placed directly above a physisorbed Fe atom and lowered to

increase the attractive force by increasing the tunneling current. At the position of maximum tunneling current, an Fe atom

gets attached to the tip, which is dragged by the tip and moved across the surface to a desired position. Then the atom is left

at the desired position by lowering the tunneling current, that is, by lifting the tip above the surface. The quantum corral

formed by Fe atoms is shown in Fig. 25.37. The shortcoming of an STM is that it works best with conducting materials.

But it is also possible to fix organic molecules on a surface and study their structures. For example, this technique has been

used in the study of DNA molecules.

25.5.2 Atomic Force Microscope

An AFM is a very powerful microscope for imaging the topology of a surface as it gives a resolution of 10 picometers.

A schematic diagram of an AFM is shown in Fig. 25.38. It consists of a cantilever with a sharp tip at its end. The tip

is brought very close to the surface of the sample under study and scans the whole surface. The electrostatic force between

the tip and the surface leads to deflection of the cantilever according to Hooke’s law. The deflection is measured using a

laser beam reflected from the top of the cantilever. The angular deflection of the cantilever causes a two-fold larger angular

deflection of the laser beam, which is then reflected from a plane mirror. The reflected laser beam strikes a position-

sensitive photo detector consisting of two photodiodes placed side by side. The difference between the two photodiode

signals indicates the position of the cantilever tip.

Primarily, there are two modes of operation of an AFM.

1. Contact mode.

2. Dynamic mode.

25.5.2.1 Contact Mode

If the tip of the cantilever is fixed at a constant height, then there is a risk that the tip may collide with the surface, causing

damage to it. Hence, usually a feedback mechanism is provided to adjust the tip-to-surface distance so that the force

between the two is constant. This can be achieved by mounting the sample on a piezoelectric crystal. The tip is then made

to scan the sample surface and the vertical distance h(x,y) needed to keep the force constant is recorded. The resulting map

FIG. 25.36 Schematic diagram of the mode of operation of a scanning tunneling

microscope in which the distance between the tip of the stylus and the surface of the

sample is kept constant. In this mode the tunneling current is constant.

FIG. 25.37 A circular array of Fe atoms placed on a copper surface using an

STM tip forming a quantum corral. The ripples inside the corral represent the

surface distribution of the electron density that arises from the quantum

mechanical energy levels of a circular two-dimensional potential well.

(Created by Don Eigler, IBM Almaden Research Center and taken from Wiki-

pedia with link http://nisenet.org/…/scientific image-quantum Corral.)
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of h(x,y) represents the topology of the surface. The force of attraction between the tip and the surface also depends on the

shape of the tip. A normal tip is a 3mm-tall pyramid with an end radius on the order of 30nm. An electron-beam-deposited

(EBD) tip or super tip is also used. Here carbonaceous material is deposited on a normal tip to make it highly pointed (it is

long and thin tip).

Contact mode is the most common method of operation of an AFM. As the name suggests, the tip and sample surface

remain in close contact as the scanning proceeds. In contact mode, the distance between the tip and the surface is in the

repulsive regime of the interatomic force curve (see Fig. 4.3). But sometimes sample surfaces are covered with a layer of

absorbed gas, which is 10–30 monolayers thick. As a result, meniscus forces, capillary forces, and van der Wall forces

increase the force of friction between the tip and the surface substantially, which affects the sample. In other words, it

can sometimes be a destructive mode of imaging.

25.5.2.2 Dynamic Mode

In this mode, the cantilever is made to oscillate close to its resonance frequency (�50–500 KHz) with the help of an

external force. When the tip is brought closer to the sample surface, it interacts with the surface and the oscillations

get modified. These changes in oscillations with respect to the external reference oscillation provide information about

the characteristics of the surface. Further, there are two possible dynamic modes: amplitude modulation and frequency

modulation.

Amplitude Modulation

In the amplitude modulation mode, due to the oscillation of the cantilever, the tip touches the surface for a very short time

and is then raised. This is also known as intermittent contact mode or tapping mode. In tapping mode the oscillation

amplitude changes, which yields topographical information about the surface of the sample. The amplitude of oscillations

increases in valleys and decreases at humps. In this mode there is contact with the sample for a very short time. As the tip

scans the surface the short contact reduces the lateral forces drastically. When imaging soft samples (e.g., biological

samples) tapping mode may be a far better choice than contact mode. One of the most important factors influencing

the resolution is the sharpness of the scanning tip.

The other interesting methods of obtaining image contrast are also possible with tapping mode. In constant force mode,

the feedback loop is adjusted so that the amplitude of the cantilever oscillation remains nearly constant. An image can be

FIG. 25.38 Schematic diagram of an atomic force microscope.
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formed from this signal amplitude as there will be a small variation in the signal oscillation amplitude due to the electronic

control not responding instantaneously to changes or the specimen surface.

Frequency Modulation

In the frequency modulation mode, scanning the surface produces changes in the frequency of an external reference

frequency, which provides information about the sample characteristics. In other words, the changes in frequency are trans-

lated, with the help of computer software, into the topology of the sample surface.

AFM is widely used to solve a number of material problems in a wide range of technologies, such as electronics and

telecommunications, as well as being used in the biological, chemical, automotive, aerospace, and energy industries. It can

investigate thin and thick film coatings, ceramics, composites, glasses, synthetics, metals, polymers, semiconductors, and

biological membranes. AFM is applied to study a number of phenomena, such as abrasion, adhesion, corrosion, etching,

friction, lubrication, plating, and polishing. AFM has several advantages over an electron microscope and some are men-

tioned below:

1. AFM provides a true three-dimensional surface profile, whereas an electron microscope provides a two-dimensional

image of the sample.

2. With AFM one can study a pure sample because it does not require any special sample treatment, which either destroys

or prevents further use of the sample.

3. An electron microscope needs an expensive vacuum environment to operate. On the other hand, AFM can examine a

sample in air or with the sample immersed in a liquid.

The main disadvantage of AFM compared with an electron microscope is its image size. An electron microscope can show

an area on the order of mm�mm and the depth of the field is on the order of mm. On the other hand, an AFM can image a

maximum area of around 100 mm � 100 mm and a depth on the order of mm.

25.5.3 Magnetic Force Microscope

Magnetic materials are very important for making information storage devices. Nanosized magnetic materials also exhibit

magnetic domains, just as the bulk materials do. Therefore, a study of the magnetic structure of nanosized materials is

important. A magnetic force (MF) microscope is used to study the micromagnetic structure of nanomaterials with lateral

resolution down to 30nm, just as an AFM is used to study chemical structure. This technique is usually called MF

microscopy. One of the main advantages of MF microscopy is that thinning or polishing the samples is not necessary.

Moreover, MF microscopy yields information on both the chemical and magnetic structures of the surface of the sample

under investigation. Therefore, the topology and the magnetic domain structure of a sample may be correlated on the

nanometer scale.

The construction and operation of an MF microscope are similar to those of an AFM. A schematic representation of the

tip and the sample in an MF microscope is shown in Fig. 25.39. A microfabricated Si tip (about 15 mm in length), which is

coated with a ferromagnetic material, is used in an MF microscope. Before each experiment, the tip is magnetically sat-

urated along the axis of the tip (taken as the z-axis) with the help of an external magnetic field. The tip is then mounted back

on the microscope in its remnant magnetic state. Here the actual tilt of the tip by an angle of about 10 degrees against the

z-axis is neglected.

FIG. 25.39 Schematic representation of the principle of operation of a magnetic force

microscope, showing the oscillating tip at a distance d above the sample surface.
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AnMFmicroscope is used in both the tapping and lift modes. The oscillating tip is raster-scanned across the surface of a

given sample, that is, each single line is scanned twice, but at two different distances between the tip and the surface of the

sample. In the first scan, a small distance d1 (�10 nm) is chosen. Because the tip oscillates with an amplitude comparable to

d1, it periodically touches the sample (tapping mode). In this way, the topography of the surface is obtained (the AFM

image). In the second scan (called lift mode), a larger distance d2 (> 40nm) is chosen between the tip and the sample surface

and, therefore, the tip oscillates without touching the sample. In the lift mode only the long-range magnetic interactions

between the tip and the field of the sample are important. Depending on the direction of the sample field relative to the

direction of the magnetization of the tip (z-direction), the interaction between the tip and field is either attractive or

repulsive. Thus, one obtains information about the distribution of the field at d2 above the surface of the sample, which

is called an MF microscope image.

With the help of an MF microscope one can estimate the magnetic domain structure within the surface of the sample.

This has been proved with a number of experimental investigations on both magnetic layer systems and nanostructures.

25.6 APPLICATIONS

Nanotechnology is an interdisciplinary subject, which essentially combines physics, chemistry, bioinformatics, and bio-

technology. Therefore, it holds the promise of exciting applications in basic sciences, biosciences, medicine, environment,

electronics, and a host of other related fields. Some of the common applications of nanomaterials are briefly described

below:

25.6.1 Basic Sciences

Quantum dots behave as artificial atoms and electrodes can be connected to them, so one can use them to study atom-like

properties. The effect of a magnetic field on a quantum dot can be studied to investigate the magnetic field and its quan-

tization in an atom. The study of a magnetic field in a quantum dot requires a field of 1 Tesla, while an atom requires a field

of 106 Tesla. Quantum dots can act as a unique laboratory in which fundamental laws of quantum mechanics can be tested.

25.6.2 Nanoelectronics

Nanotubes behave like waveguides for electrons, permitting only a fewmodes just like fiber optics. Nanotubes that are good

conductors can be used as the conducting wires in electronic circuits. There is a possibility of making nanotransistors from

carbon nanotubes and their size is expected to be 1/500th of the size of a conventional transistor. The main hurdle in

inventing a nanotransistor is in separating semiconducting nanotubes from metallic ones. This invention will revolutionize

the electronics industry and will be the ultimate size reduction in electronic components. Further, field-effect transistors

made of carbon nanotubes can act as sensitive sensors for some gases. The additional advantage of carbon nanotubes is that

they have higher strength and are thermally stable up to about 2800K.

Nanolasers can be produced from quantum dots because of their discrete energy levels. The color of the light emitted

varies with the size of the quantum dot. Nanocomputers and nanoscale memory chips can be produced from nanomaterials.

DNA, which is about 2.5nm wide, has been used to produce a biological computer. Organic light emitting diodes (OLED)

have been constructed by Kodak, which are made of nanostructured polymer films, and they are used in car stereos and in

cell phones.

25.6.3 Smart Materials

Nanotechnology may create smart or intelligent nanomaterials that can sense and respond to temperature, pressure, light,

and electricity. Biosensors can be employed to check body temperature, pulse rate, heart rhythm, blood pressure, and sugar

level. Nanosensors can also be used for security and surveillance systems.

25.6.4 Nanocomposite Materials

Nanocomposites of polymers are important from a technological point of view. Dispersing a small number of nanoparticles

in a polymer matrix forms a polymer composite. The following properties of materials are improved:
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1. Mechanical properties: For example, 2% (by volume) of silicate nanoparticles in polyimide resin increases its strength

by 100%.

2. Thermal stability: The thermal stability of the above polymer also increases. The working temperature of the polymer is

raised by 100°C.
3. The degree of flammability decreases.

Aircraft, space ships, and other vehicles require lightweight materials with high strength and stiffness (such as polymer

nanocomposites) among other properties. The polymer-based nanocomposites have been used for anticorrosion coatings.

Nanocomposites have been used in making car bumpers that make them 60% lighter and twice as resistant to denting and

scratching, as well as increasing longevity. Glass coated with nanoparticles makes self-cleaning windows. They have

been used in catalytic converters in automobiles that help to remove pollution. Certain sunscreens and cosmetics that

transparently block harmful radiation have been produced using nanopowders of zinc oxide or titanium oxide.

25.6.5 Nanopharmaceuticals

Nanomaterials are a thousand times smaller than the cells of the human body. Nanodevices are being developed that can slip

inside a cell without being recognized by the immune system. Pharmacological agents can be put into buckyballs to deliver

medicine more effectively inside the cell. Nanomachines might be possible, which could be directed to correct defects in the

cells, to kill cancerous cells without using radiotherapy and chemotherapy, or to repair cell damage.

Radioactive elements can be put into a buckyball, which can then travel through the blood stream and emit radiation.

Because buckyballs are excreted intact, the radiation source is removed from the body, reducing the complication of radio-

active toxicity. Fluorescent dyes are used to tag cells in genetic research. A light source of the same color is required to

illuminate the molecules of the dye, which light up for just for a few seconds. Moreover, dyes have side effects. Quantum

dots can be used in the place of a dye with the color of the quantum dot depending on its size. Quantum dots can be lit for a

longer time, that is, from a few hours to a few days. Quantum dots allow us to tag different biological components, such as

cells and proteins.

Medical monitoring systems, which sound an alert when a diseased organism strikes or appears, can be embedded into a

human body. Artificial bone paste, which shows considerable promise for bone repair, is made with ceramic nanoparticles.

Some general applications of nanomaterials are listed below. Carbon nanotubes can act as electrodes to contain Li in fuel

cells. Nanomembranes can filter toxins from air and water. Nanocoatings on swimsuits repel water, thereby reducing

friction with the water and allowing a swimmer to go faster. Nanomaterials can be used to produce low-density insulation,

such as light-weight bullet-proof jackets.

In general, there is a need to investigate the toxicity of the various nanomaterials. If the nanoparticles of a particular

material happen to be really toxic, then they can create a severe health hazard. Nanoparticles are so small that they can

directly penetrate our skin. The release of toxic nanoparticles in the air can be a serious threat to the life of all living animals

and human beings. In that case, the production of nanomaterials must be performed under strict environmental control.

25.7 FUTURE THRUST

1. Theoretical understanding of the different types of nanomaterials is lacking. Therefore, there is a need to develop sim-

plified models and theories for these quantum systems.

2. The main emphasis in nanotechnology will be in the fabrication of crystalline nanostructured materials. Once we are

able to fabricate these materials, it will open new horizons for both theoretical and experimental studies due to the

availability of a few hundred new nanostructured materials.

3. Nanoscience is still in its infancy and no nanoscale machines exist in practice, not even microscale machines. Indeed,

only mm-scale machines exist at present. But nanotechnology has great potential to produce nanomachines. The future

imperative, therefore, will be to produce nanostructured crystalline bulk materials on one side and nanomachines on the

other. It would not be wrong to say that the 21st century will be the century of nanotechnology.
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Appendix A

A.1 VAN DER WAALS-LONDON INTERACTION

In an inert gas crystal, the individual atoms are neutral and the attractive interaction is due to the Van der Waals-London

interaction. To understand its origin, consider two inert gas atoms labeled as 1 and 2 at a distance R (Fig. A.1). In the

inert gas atom 1 the centers of negative and positive charges coincide, yielding an electrically neutral atom. But the neg-

atively charged electrons revolving around the nucleus of atom 1 possess a finite instantaneous electric dipole moment p1
whose time-average is zero. The dipole moment p1 produces an instantaneous electric field E1 at the position of atom 2

given by

E1 ¼ 2p1
R3

(A.1)

The field E1 will induce an instantaneous electric dipole moment p2 on atom 2, which is linearly proportional to E1 and is

given by

p2 ¼ aaE1 ¼ 2aap1
R3

(A.2)

where aa is the atomic polarizability (see Chapter 15). The interaction energy Ua(R) between the two electric dipole

moments is given by

Ua Rð Þ¼�2p1 � p2
R3

¼�4aap21
R6

(A.3)

Eq. (A.3) gives the attractive dipole-dipole interaction energy, which varies as 1/R6. Hence, in general, the Van der Waals

interaction is written as

Ua Rð Þ¼� A

R6
(A.4)

FIG. A.1 Two inert gas atoms labeled as 1 and 2 are separated by dis-

tance R. E1 is the electric field at the position of atom 2 produced by

the instantaneous dipole moment p1 of atom 1.
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where A is a constant given by

A¼ 4aap21 (A.5)

From Eq. (A.2) it is evident that aa has the dimensions of (length)3, that is, r0
3, where r0(�10�8 cm) is the atomic radius and

the dipole moment of an atom is given by p�e r0. Substituting these values into Eq. (A.5), one can obtain

A� 4 r30
� �

er0ð Þ2 ¼ 4e2 r50

¼ 4 5�10�10
� �2

10�8
� �5 � 10�58erg� cm6

(A.6)

Because of the R�6 dependence, the Van der Waals interaction is very small at large distances but increases rapidly as the

distance decreases.

Estimation of aap1
2

From Eqs. (A.4) to (A.6) one can write

Ua Rð Þ¼ �10�58

R6
(A.7)

In the inert gas element Kr, the separation between the atoms is on the order of 4 Å. Therefore, for Kr, the interaction energy

becomes

Ua Rð Þ¼ 10�58

4�10�8
� �6 ¼ 2�10�14 erg

The temperature T corresponding to Ua(R) given by the above equation becomes

T¼Ua Rð Þ
kB

¼ 100°K (A.8)

where kB is the Boltzmann constant.

A.2 REPULSIVE INTERACTION

The derivation of the expression for the repulsive interaction is not in the scope of the present study, but the experimental

data obtained from inert gas crystals can be well fit using the following empirical formula

Ur Rð Þ¼ B

R12
(A.9)

where B is a positive constant. Because of the R�12 dependence, it is a very short-ranged interaction: its range is much

shorter than the Van der Waals interaction. Therefore, the total interaction potential U(R) is the sum of the Van der Waals

and repulsive interactions, that is,

U Rð Þ¼Ua Rð Þ +Ur Rð Þ

¼� A

R6
+

B

R12

(A.10)

Therefore, the interaction potential in an inert gas crystal is obtained by substituting m¼ 6 and n¼ 12 in the general form of

the interaction potential given by Eq. (4.1).

The repulsive interaction can also be fit to the following exponential form:

Ur Rð Þ¼ lRe�R=r (A.11)

Here lR and r are constants: lR gives the strength of the repulsive potential while r is a measure of its range. So, the second

form of the interaction potential in inert gas crystals has an exponential term and is given by

U Rð Þ¼� A

R6
+ lRe�R=r (A.12)
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Appendix B

Consider an ionic solid with Ze and �Ze as the charges on the positively and negatively charged ions. The repulsive

overlap interaction is very short-ranged and, therefore, it is appreciable only with the 1NN ions. On the other hand, the

electrostatic interaction is a long-range one and decreases with an increase in distance, but the dominant interaction is again

with the 1NN ions. Therefore, the net electrostatic interaction of an ion with all other ions can be represented in terms of the

1NN interaction as�AcZ
2e2/R where Ac is a constant that takes care of the effect of all the other ions. The total interaction

potential of an ion can, therefore, be written as

Ui Rð Þ¼�Ac

Z2e2

R
+ n0

B

Rn (B.1)

Here R is the 1NN distance and n0 is the number of 1NNs. If there are N ions in the solid, then the total interaction potential

energy of the solid becomes

U Rð Þ¼NUi Rð Þ¼N n0
B

Rn�Ac

Z2e2

R

� �
(B.2)

In the equilibrium state, Eq. (4.2) of Chapter 4 must be satisfied, which gives the value of the constant B as

B¼Ac

Z2e2

nn0
Rn�1
0 (B.3)

Substituting the value of constant B from Eq. (B.3) into Eq. (B.2), the interaction potential energy of the solid, in the equi-

librium state, becomes

U R0ð Þ¼ �NAc

Z2e2

R0

1�1

n

� �
(B.4)

The constant Ac is to be determined. Comparing Eq. (B.4) with Eq. (4.70), one immediately gets Ac¼aM, that is, Ac is the

Madelung constant, the value of which can be evaluated from the structure of the solid.
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Appendix C

An alternate method for evaluating the eigenfunctions of an elastic wave propagating in the [111] direction is as follows.

The equations of motion for the displacement of elastic waves in the [111] direction, from Eqs. (5.116), (5.118), (5.119), can

be written in matrix form as

C11 +C44�3L C12 +
1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 C11 + C44�3L C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 C11 + C44�3L

0
BBBBBB@

1
CCCCCCA

u1

u2

u3

0
BBBB@

1
CCCCA ¼ 0 (C.1)

For the eigenvalue L2, given by Eq. (5.128), Eq. (C.1) becomes

C11 +C44�3L2 C12 +
1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 C11 +C44�3L2 C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 C11 + C44�3L2

0
BBBBBB@

1
CCCCCCA

u1

u2

u3

0
BBBB@

1
CCCCA ¼ 0 (C.2)

Substituting the value of L2 from Eq. (5.128) into Eq. (C.2), we obtain

�2 C12 +
1

2
C44

� �
C12 +

1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 �2 C12 +

1

2
C44

� �
C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 �2 C12 +

1

2
C44

� �

0
BBBBBB@

1
CCCCCCA

u1

u2

u3

0
BBBB@

1
CCCCA ¼ 0 (C.3)

The above matrix equation gives the following three equations

�2u1 + u2 + u3 ¼ 0

u1�2u2 + u3 ¼ 0

u1 + u2�2u3 ¼ 0

(C.4)

Solving Eq. (C.4), one immediately gets

u1 ¼ u2 ¼ u3 (C.5)

According to Eq. (C.5) the eigenfunction corresponding to L2 is in the [111] direction. Hence the displacement is in the

direction of propagation (K) of the wave, which means that it corresponds to a longitudinal wave.
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Now for the first solution given by L1, Eq. (C.1) becomes

C11 +C44�3L1 C12 +
1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 C11 +C44�3L1 C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 C11 + C44�3L1

0
BBBBBB@

1
CCCCCCA

u1

u2

u3

0
BBBB@

1
CCCCA ¼ 0 (C.6)

Substituting the value of L1 from Eq. (5.134) into Eq. (C.6), one gets

C12 +
1

2
C44 C12 +

1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 C12 +

1

2
C44

C12 +
1

2
C44 C12 +

1

2
C44 C12 +

1

2
C44

0
BBBBBB@

1
CCCCCCA

u1

u2

u3

0
BBBB@

1
CCCCA ¼ 0 (C.7)

The three equations given by Eq. (C.7) yield

u1 + u2 + u3 ¼ 0 (C.8)

Let one of the eigenfunctions corresponding to L1 be given by 110
� �

, which satisfies Eq. (C.8). The other eigenfunction

must be perpendicular to both [111] and 110
� �

and can be shown to be 112
� �

.
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Appendix D: Bose-Einstein Statistics

Bose-Einstein statistics is applicable to bosons: particles with zero or integral spin. Atoms in a solid can be considered to be

quantum harmonic oscillators with no spin. Harmonic oscillators are assumed to obey theMaxwell-Boltzmann distribution,

according to which the probability of occupation of the nth state Pn with energy En is given by

Pn∝e
� En

kBT (D.1)

Here kB is theBoltzmann constant andT is the temperature in absolute degrees. The energy of a quantumoscillator is givenby

En ¼ n +
1

2

� �
ħo (D.2)

where n is an integer or zero and (1/2)ħo is the zero point energy. The average number of quantum oscillators in the nth

state, denoted by hni, is given by

nh i¼

X∞
n¼0

nPn

X∞
n¼0

Pn

(D.3)

Using Eqs. (D.1), (D.2) in Eq. (D.3), one gets

nh i¼

X∞
n¼0

n e�nb0 ħo

X∞
n¼0

e�nb0 ħo

(D.4)

where

b0 ¼
1

kBT
(D.5)

Expanding the series in Eq. (D.4), one can write

nh i¼ d

dx
ln 1 + ex + e2x + e3x +⋯
� �

(D.6)

where

x¼�b0ħo (D.7)

Using the standard identity

1 + x + x2 + x3 +⋯¼ 1

1�x
(D.8)

one can write Eq. (D.6) as

nh i¼ d

dx
ln

1

1� e�b0 ħo

� �
(D.9)
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After simplification, Eq. (D.9) becomes

nh i¼ 1

e
ħo
kBT�1

(D.10)

Eq. (D.10) gives the average occupation number in Bose-Einstein statistics.
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Appendix E: Density of Phonon States

E.1 THREE-DIMENSIONAL SOLID

Consider a three-dimensional lattice in the form of a cube of side L and volume V. At finite temperature, atoms of the lattice

vibrate in different normal modes and each normal mode of vibration is a function of the wave vector K. The dispersion

relation o(K) for a crystal exhibits different branches as has been seen in Chapters 6 and 7. Imposing the cyclic boundary

condition on a crystalline solid shows that there is oneK-state in a volume of (2p)3/V. So, the number of phonon states in an

elemental volume d3K is given by

gp Kð Þd3K¼ V

2pð Þ3 d
3K (E.1)

gp(K)d3K is the number of phonon states lying between K and K+dK. Let the volume element d3K lie between two

constant-frequency surfaces with frequencies o and o+do, as shown in Fig. E.1. The elemental volume d3K can then

be written as

d3K¼ dSo � dK¼ dSon̂ � dK (E.2)

where n̂ is a unit vector perpendicular to the constant-frequency surface with frequency o. If dK? is the component of the

wave vector K in the direction of n̂, then

d3K¼ dSodK? (E.3)

In this approximation, gp(K)d3K can also be interpreted as the number of phonon states lying between frequencies o and

o+do, which is represented as gp(o) do. So, Eq. (E.1) can be written as

FIG. E.1 The two constant-frequency surfaces with frequencies o and o+do in the K-space of a three-dimensional solid. d3K is an elemental volume

lying between the two constant-frequency surfaces having wave vectorsK andK+dK. dSo is an elemental surface on the constant-frequency surface with

frequency o and wave vector K.
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gp oð Þdo¼ V

2pð Þ3
ð
d3K¼ V

2pð Þ3
ð
dSodK? (E.4)

The integral dSo is over the surface of constant frequency o. The dispersion relation makes the frequency a function of the

wave vector K, that is, o(K); therefore,

do¼ ∂o
∂Kx

dKx +
∂o
∂Ky

dKy +
∂o
∂Kz

dKz

¼rKo � dK
(E.5)

The different values of K may give the same frequency o, so rKo defines a surface in the K-space for which o is

constant. So,

do¼ rKoj jdK? (E.6)

which gives

dK? ¼ do
rKoj j (E.7)

Substituting Eq. (E.7) into Eq. (E.4), one can write

gp oð Þdo¼ V

2pð Þ3
ð

So

dSo

rKoj j do (E.8)

From the above expression one can immediately write

gp oð Þ¼ V

2pð Þ3
ð

So

dSo

rKoj j (E.9)

Hence the density of phonon states per unit frequency per unit volume becomes

gp oð Þ¼ 1

2pð Þ3
ð

So

dSo

rKoj j (E.10)

Eqs. (E.9), (E.10) are the general expressions for any type of constant-frequency surface. Because the energy EK¼ħo(K),

therefore, a constant-frequency surface represents a constant-energy surface. For a three-dimensional solid the density of

phonon states gp(o) can be calculated from Eq. (E.9) in the Debye approximation defined by Eq. (8.76). From Eq. (8.76)

one gets

rkoj j ¼ v (E.11)

Substituting Eq. (E.11) into Eq. (E.9), one gets

gp oð Þ¼ V

2pð Þ3
1

v

þ
dSo (E.12)

The integral is over the surface of constant frequency o. In the free-electron approximation, the surface of constant energy

or frequency is spherical in shape. Let K be the radius of a sphere having frequency o on its surface, then

þ
dSo ¼ 4pK2 ¼ 4po2

v2
(E.13)

Here we have used the dispersion relation defined by Eq. (8.76). From Eqs. (E.12), (E.13) one can write the phonon density

of states with frequency o as

gp oð Þ¼ 3V

2p2v3
o2 ¼Ao2 (E.14)

where

A¼ 3V

2p2v3
(E.15)
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The factor of 3 comes from the fact that each atom has associated with it three modes of vibration, one longitudinal, and two

transverse modes. For all modes, the velocity of propagation is assumed to be the same. But in reality, the velocities for the

longitudinal and transverse modes are different and, therefore, give different contributions to gp(o). It is worthwhile to

point out here that real crystals are anisotropic in nature, giving rise to constant energy surfaces that are not spherical

in shape. Therefore, an evaluation of gp(o) involves the ab initio calculation of constant-energy surfaces in a

crystalline solid.

E.2 TWO-DIMENSIONAL SOLID

Consider a two-dimensional crystalline solid having a surface with area A0. To find the density of phonon states, one can

proceed in the same way as in a three-dimensional solid. Fig. E.2 shows an elemental area d2K between vectors K and

K+dK and bounded by contours of constant frequency o and o+do. The number of states in a unit area in the K-space

is A0/(2p)
2. Therefore, the number of phonon states lying between the frequencies o and o+do is given by

gp oð Þdo¼ A0

2pð Þ2
ð

lo

d2K¼ A0

2pð Þ2
ð

lo

dlodK? (E.16)

Here the integration is along the contour lo of constant frequency o. As the frequency is a function of the wave vector, that
is, o(K), therefore,

do¼ ∂o
∂Kx

dKx +
∂o
∂Ky

dKy ¼rKo � dK

¼ rKoj jn̂ � dK¼ rKoj jdK?

(E.17)

From the above expression we get

dK? ¼ do
rKoj j (E.18)

Substituting the value of dK? from the above equation into Eq. (E.16), we get

gp oð Þ¼ A0

2pð Þ2
ð

lo

dlo

rKoj j (E.19)

FIG. E.2 The two constant-frequency contours with frequencies o and o+do in the K-space of a two-dimensional solid. d2K is an elemental surface

lying between the two constant frequency contours having wave vectors K and K+dK. dlo is an elemental line on the constant frequency contour with

frequency o and wave vector K.
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The density of phonon states in two dimensions can be calculated in the Debye approximation. In a two-dimensional

free-electron gas, the integral of dlo over a circle of constant frequency gives a length of 2pK. Therefore, Eq. (E.19) gives

gp oð Þ¼ A0

2pð Þ2
2pK
v

¼ A0

2pv2
o (E.20)

The density of phonon states in a one-dimensional solid has already been evaluated in Chapter 8 on the specific heat of

solids.
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Appendix F: Density of Electron States

F.1 THREE-DIMENSIONAL SOLID

Consider a three-dimensional lattice in the form of a cube of side L and volume V. Imposing the cyclic boundary condition

on a crystalline solid shows that there is one k-state in a volume of (2p)3/V. So, the number of electron states in an elemental

volume d3k is given by

Ne kð Þd3k¼ 2
V

2pð Þ3 d
3k (F.1)

Ne(k)d
3k is the number of electron states lying between k and k+dk. Here the factor of 2 takes account of the spin degen-

eracy of the electron states. Let the volume element d3k lie between two constant-energy surfaces with energies Ek and

Ek+dEk, as shown in Fig. F.1. The elemental volume d3k can then be written as

d3k¼ dSEk
� dk¼ dSEk

n̂ � dk (F.2)

where n̂ is a unit vector perpendicular to dSEk
, a small element of surface with constant energy Ek. If dk? is the component

of the wave vector dk in the direction of n̂, then

d3k¼ dSEk
dk? (F.3)

In this approximation, Ne(k)d
3k can also be interpreted as the number of electron states lying between energies Ek and

Ek+dEk, which is represented as Ne(Ek) dEk. So, Eq. (F.1) can be written as

FIG. F.1 The two constant energy surfaces with energies Ek and

Ek+dEk in the k-space of a three-dimensional solid. d3k is an ele-

mental volume lying between the two constant-energy surfaces

having wave vectors k and k+dk. dSEk
is an elemental surface on

the constant-energy surface with energy Ek and wave vector k.
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Ne Ekð ÞdEk ¼ 2
V

2pð Þ3
ð
SEk

d3k¼ 2
V

2pð Þ3
ð
SEk

dSEk
dk? (F.4)

The integral dSEk
is over the surface of constant energy Ek. The energy derivative is given by

dEk ¼ ∂Ek

∂kx
dkx +

∂Ek

∂ky
dky +

∂Ek

∂kz
dkz

¼ rkEkð Þ � dk¼ rkEkj jdk?
(F.5)

From the above equation one can write

dk? ¼ dEk

rkEkj j (F.6)

Substituting Eq. (F.6) into Eq. (F.4), one can write

Ne Ekð ÞdEk ¼ 2
V

2pð Þ3
ð
SEk

dSEk

rkEkj jdEk (F.7)

Therefore, the density of electron states per unit energy Ne(Ek) is given by

Ne Ekð Þ¼ 2
V

2pð Þ3
ð
SEk

dSEk

rkEkj j (F.8)

Hence the density of electron states per unit energy per unit volume becomes

ge Ekð Þ¼ 2

2pð Þ3
ð
SEk

dSEk

rkEkj j (F.9)

Eqs. (F.8), (F.9) are the general expressions for any type of constant energy surface. In the free-electron approximation, the

energy of an electron is given by

Ek ¼ ħ2k2

2me

(F.10)

Therefore,

rkEkj j ¼ ħ2k
me

(F.11)

The area of the constant-energy surface SEk
is 4pk2. Substituting Eq. (F.11) and the value of SEk

into Eq. (F.8), one can write

Ne Ekð Þ¼ 2
V

2pð Þ3
4pk2

ħ2k=me

¼ V

2p2
2me

ħ2

� �3=2

E
1=2
k (F.12)

which is the same expression as obtained in Eq. (9.22). Therefore, the density of electron states per unit energy per unit

volume becomes

ge Ekð Þ¼ 1

2p2
2me

ħ2

� �3=2

E
1=2
k (F.13)

It is worthwhile to point out here that real crystals are anisotropic, which gives rise to nonspherical constant-energy surfaces.

Therefore, the evaluation of Ne(Ek) involves the ab initio calculation of constant-energy surfaces in a crystalline solid.

F.2 TWO-DIMENSIONAL SOLID

Consider a two-dimensional crystalline solid having a closed surface with area A0. To find the density of electron states,

one can proceed in the same way as in a three-dimensional solid. Fig. F.2 shows an elemental area d2k between vectors
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k and k+dk and bounded by contours of constant energy Ek and Ek+dEk. The number of electron states in a unit area in the

k-space is A0/(2p)
2. Therefore, the number of electron states in d2k is given by

Ne Ekð ÞdEk ¼ 2
A0

2pð Þ2
ð
lEk

d2k

¼ 2
A0

2pð Þ2
ð
lEk

dlEk
dk?

(F.14)

Here the integration is along the contour of constant energy Ek. As the energy is a function of wave vector, therefore,

dEk ¼ ∂Ek

∂kx
dkx +

∂Ek

∂ky
dky

¼ rkEkð Þ � dk¼ rkEkj jdk?
From the above equation one can write

dk? ¼ dEk

rkEkj j (F.15)

Substituting the value of dk? from the above equation into Eq. (F.14), we get

Ne Ekð ÞdEk ¼ 2
A0

2pð Þ2
ð
lEk

dlEk

rkEkj jdEk (F.16)

Therefore, the density of electron states per unit energy is given by

Ne Ekð Þ¼ 2
A0

2pð Þ2
ð
lEk

dlEk

rkEkj j (F.17)

The density of electron states per unit energy per unit area is given by

ge Ekð Þ¼ 2
1

2pð Þ2
ð
lEk

dlEk

rkEkj j (F.18)

FIG. F.2 The two constant-energy contours with energies Ek and Ek+dEk in the k-space of a two-dimensional solid. d2k is an elemental surface lying

between the two constant-energy contours having wave vectors k and k+dk. dlEk
is an elemental portion of the constant-energy contour with energy Ek and

wave vector k.

Appendix F 607

Image of Fig. F.2


In the case of a two-dimensional free-electron gas, the electron energy and its derivative are given by Eqs. (F.10), (F.11),

respectively. The circumference of a circle with constant energy Ek is lEk
¼2pk. Substituting these values into Eq. (F.17),

we get

Ne Ekð Þ¼ 2
A0

2pð Þ2
2pk

ħ2k=me

¼meA0

pħ2
(F.19)

which is the same result as obtained in Eq. (9.44). Hence the density of electron states per unit energy per unit area becomes

ge Ekð Þ¼ me

pħ2
(F.20)

In a one-dimensional solid the contour of integration reduces to two points�k. Therefore, the free electron density of states

become

Ne Ekð Þ¼ 2
L

2p
1

ħ2k=me

¼ L

2p
2me

ħ2

� �1=2

E
�1=2
k (F.21)

which is the same expression as Eq. (9.51). Hence the density of electron states per unit energy per unit length becomes

ge Ekð Þ¼ 1

2p
2me

ħ2

� �1=2

E
�1=2
k (F.22)
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Appendix G: Mean Displacement 

The average value of x, thm is, X. call be calcutated by using the Maxwell-Boltzmann distribution function as 

'" J xe-k�TV(x)dx 

'" (G.]) 

J _-LvI') 
. 

e kilT dx 

-00 

The anharmonic potential in one dimension is given by 

(G.2) 

(see Eq. 8.145). SubSlitUling Eq. (G.2) into Eq. (G. I). one can wrile the integral 

(G.3) 
-00 -00 

Assuming rhe <1nhamlOnic r.erms to be slllall and so using the binomial expansion, the above imegral can be written as 

The fjrsl and the third t.erms in rhe above imegral are z.ero, as the iJuegrands are odd in x, but the second term is finite. So, 

"'I· - ,
'

.,. V('i d  2Ye "'I· 4 - 2" � "· " d (2 )'/2 (kBT)3 /2 
x e R x = -- x e I'l ' x = IT " -'--'<c,,-

3k T 1F 5/2 
. B . ap 

-00 0 

Similarly, one can prove that 

00 00 I f __ I VI'i I· -

_'_ , > , , 

( kBT) 12 

. 
e kilT d.x=2

. 
e 2kllT dx= 2it� 

-00 0 

(GA) 

(G.5) 

609 



610 Appendix G 

Because Ihe integral in Eq. (G.S) is in the denominator of Eq. (G. I), only the harmonic tenn is retained as the anharmonic 
termS are small. The inlegrals (G.4) and (G.5) are evaluulcd using the following s.tandard integnds. 

(211- I)!! fp . . 
( )" 

- for p > 0 2 21' P 

OOJ e-P'" dx -_ fo. f· 0 or p> 
2p 

o 

Subst.ituting the integrals given by Eqs:. (GA), (0.5) into Eq. (G. 1), one can immediat.ely write 

_ kilT E 
X= YP-2-= Y F 2 aF CiF 

where E = kij T is the average energy. Note thai Eq. (0.8) is the same as Eq. (8.152). 

(G.6) 

(G.7) 

(G.8) 



Appendix H

H.1 BOUND STATES FOR ONE-DIMENSIONAL FREE-ELECTRON GAS

Consider a one-dimensional free-electron gas of Ne electrons confined along a line (say along the x-direction) of length L

with infinite potential barriers at the two ends (see Fig. H.1). The electrons occupy different states in the system. Let jcn(x)i
be the wave function for the nth state of the system with energy En. The Schrodinger equation for the nth state in a one-

dimensional free-electron gas is given by

� ħ2

2me

d2

dx2
cn xð Þj i¼En cn xð Þj i (H.1)

The boundary condition of the system demands that the amplitude of the wave at the two ends of the system be zero, that is,

cn 0ð Þj i¼ cn Lð Þj i¼ 0 (H.2)

As the system has finite length L with impenetrable walls, its solution will give stationary states (bound states). The Schro-

dinger equation given by Eq. (H.1) for the one-dimensional free-electron gas can be written as a differential equation of the

form

d2

dx2
cn xð Þj i+ k2n cn xð Þj i¼ 0 (H.3)

where

k2n ¼
2meEn

ħ2
(H.4)

The energy En, therefore, can be written as

En ¼ ħ2k2n
2me

(H.5)

The solution of Eq. (H.3) is given by

cn xð Þj i¼An sin knx +Bn cos knx (H.6)

FIG. H.1 The potential function V(x) in a one-dimensional free-electron gas, which is confined to length L along the x-direction.
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where An and Bn are constants. The boundary condition at x ¼ 0 demands Bn ¼ 0 yielding

cn xð Þj i¼An sin knx (H.7)

Applying the boundary condition at x¼L to Eq. (H.7), we get

sin knL¼ 0

which is satisfied if the electron wave vector kn has the following values

kn ¼ np
L

(H.8)

where n¼0,�1,�2,…. The constant An in Eq. (H.7) can be obtained by normalizing the wave function jcn(x)i to unity,
that is,

cn xð Þh jcn xð Þi¼ 1 (H.9)

Substituting jcn(x)i from Eq. (H.7) into Eq. (H.9), we get

An ¼ 2

L

� �1=2

(H.10)

Therefore, the normalized wave function is given by

cn xð Þj i ¼ 2

L

� �1=2

sin
np
L

x
� �

(H.11)

The wave functions for the lowest three states with n¼ 1, 2, and 3 give the stationary states (Fig. H.2). The energy of the nth

state is obtained by substituting kn from Eq. (H.8) into Eq. (H.5) to write

FIG.H.2 Thewave functions of the first three bound states with n¼ 1, 2, and 3, in the one-dimensional free-electron gas, are shown by the dark lines. The

dashed lines show the energies of these states.
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En ¼ ħ2

2me

np
L

� �2

(H.12)

The above expression for energy can also be obtained by substituting Eq. (H.11) into Eq. (H.3). It shows that the energy in a

one-dimensional gas is a quadratic function of n. The electrons can be arranged in the various states numbered by n until all

the electrons are exhausted. One can define the Fermi level, Fermi energy, Fermi velocity, and the Fermi surface in exactly

the same way as in Section 9.2. Let nF denote the number corresponding to the Fermi state, then

2nF ¼Ne (H.13)

Here the number of electrons Ne in the one-dimensional free-electron gas is assumed to have an even value. The Fermi

energy becomes

EF ¼ ħ2

2me

nFp
L

� �2

¼ h2

2me

nF

2L

� �2

¼ h2

2me

Ne

4L

� �2

(H.14)

The total energy ET in the ground state is given by

ET ¼ 2
XnF
n¼1

En ¼ 2
XNe=2

n¼1

ħ2

2me

np
L

� �2

(H.15)

Here the factor of 2 takes care of the spin degeneracy of the k-states. The above summation can be evaluated by using the

standard series

Xp
n¼1

n2 ¼ 1

6
p 2p2 + 3p + 1
� �ffi 1

3
p3 (H.16)

for p ≫ 1. The ground state energy is now straightway given by

ET ¼ 1

3
NeEF (H.17)

The number of electron states with wave vector less than or equal to kn is given by

n knð Þ¼L

p
kn (H.18)

Therefore, the density of electron states per unit energy becomes

Ne Enð Þ¼ 2
dn knð Þ
dEn

¼ 2
dn knð Þ
dkn

dkn

dEn

(H.19)

Substituting Eqs. (H.18), (H.12) into Eq. (H.19), we get

Ne Enð Þ¼L

p
2me

ħ2

� �1=2

E�1=2
n (H.20)

Therefore, the density of electron states per unit length per unit energy is given by

ge Enð Þ¼ 1

p
2me

ħ2

� �1=2

E�1=2
n (H.21)

H.2 BOUND STATES FOR TWO- AND THREE-DIMENSIONAL FREE-ELECTRON GAS

For a two-dimensional free-electron gas the Schrodinger equation is given by

� ħ2

2me

∂
2

∂x2
+

∂
2

∂y2

� �
cn x, yð Þj i¼En cn x, yð Þj i (H.22)
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If the free-electron gas is confined to a square of side L, then the boundary conditions are

cn x, yð Þj i¼ cn x + L, yð Þj i
cn x, yð Þj i¼ cn x, y + Lð Þj i (H.23)

Eq. (H.22) yields two differential equations: one for the x-coordinate and the other for the y-coordinate. These differential

equations can be solved in exactly the same manner as for a one-dimensional solid. The total normalized wave function can

be written as

cn x, yð Þj i¼ 2

L
sin

nxp
L

x
� �

sin
nyp
L

y
� �

(H.24)

where nx and ny are integers; negative, positive or zero. The energy of the nth state can be obtained by substituting

Eq. (H.24) into Eq. (H.22) to write

En ¼ ħ2

2me

nxp
L

� �2

+
nyp
L

� �2
� 	

(H.25)

Consider a three-dimensional free-electron gas confined to a cubical box of side L. The Schrodinger wave equation can be

written as

� ħ2

2me

∂
2

∂x2
+

∂
2

∂y2
+

∂
2

∂z2

� �
cn x, y, zð Þj i ¼En cn x, y, zð Þj i (H.26)

The boundary conditions on the wavefunction are

cn x, y, zð Þj i¼ cn x + L, y, zð Þj i
cn x, y, zð Þj i¼ cn x, y + L, zð Þj i
cn x, y, zð Þj i¼ cn x, y, z + Lð Þj i

(H.27)

Eq. (H.26) can be solved exactly in the same way as in the two-dimensional free-electron gas and the normalized wave

function becomes

cn x, y, zð Þj i¼ 8

L3

� �1=2

sin
nxp
L

x
� �

sin
nyp
L

y
� �

sin
nyp
L

z
� �

(H.28)

The energy of the nth state can be found in the same way as for the two-dimensional free-electron gas and is given by

En ¼ ħ2

2me

nxp
L

� �2

+
nyp
L

� �2

+
nzp
L

� �2
� 	

(H.29)

Eqs. (H.12), (H.25), (H.29) show that the energies of the bound states are sharp and discrete in a free-electron gas.
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Appendix I: The Fermi Distribution
Function Integral

The general Fermi-Dirac distribution function is given by

f E, m, Tð Þ¼ 1

e
E�m
kB T + 1

(I.1)

which can be written as

f x�yð Þ¼ 1

ex�y + 1
(I.2)

where

x¼ E

kBT
and y ¼ m

kBT
(I.3)

Here m is the chemical potential. In studying the temperature dependent properties of solids, one usually comes across an

integral of the form

I yð Þ¼
ð∞

0

h xð Þ f x�yð Þdx (I.4)

where h(x) is assumed to be a slowly varying function of x such that its integral over x gives a finite function H(x),

that is,

H xð Þ¼
ðx

0

h xð Þdx (I.5)

Integrating Eq. (I.4) by parts, we can write

I yð Þ¼H xð Þ f x�yð Þj∞0 �
ð∞

0

H xð Þ ∂

∂x
f x�yð Þdx (I.6)

The first term in Eq. (I.6) is zero because

Limx¼∞ f x�yð Þ¼ 0 and Limx¼0H xð Þ¼ 0 (I.7)

Therefore, Eq. (I.6) reduces to

I yð Þ¼�
ð∞

0

H xð Þ ∂

∂x
f x�yð Þdx (I.8)
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With suitable substitution the above expression can be written as

I yð Þ¼�
ð∞

�y

H x + yð Þ ∂

∂x
f xð Þdx (I.9)

H(x+y) can be expanded around y using the Taylor series as

H x + yð Þ¼H yð Þ+ x ∂H
∂y

+
1

2!
x2

∂
2H

∂y2
+⋯

¼ exdH yð Þ
(I.10)

where

d¼ ∂

∂y
(I.11)

Using Eqs. (I.10), (I.11), the integral (I.9) becomes

I yð Þ¼�
ð∞

�y

dxexd
∂

∂x
f xð ÞH yð Þ (I.12)

At low temperatures (T≪ TF ), the region with negative values of y contributes negligibly to the above integral. This is due

to the fact that �∂f/∂x or �∂f/∂E is very small for negative values of E. In this approximation Eq. (I.12) can be written as

I yð Þ¼�
ð∞

�∞

dxexd
∂

∂x
f xð ÞH yð Þ (I.13)

The derivative of the Fermi distribution function f(x) is given by

∂

∂x
f xð Þ¼� ex

ex + 1ð Þ2

Using the above expression in Eq. (I.13), we write

I yð Þ¼
ð∞

�∞

dxexd
ex

ex + 1ð Þ2 H yð Þ (I.14)

Putting z ¼ ex in the above integral, we get

I yð Þ¼
ð∞

0

dz
zd

z + 1ð Þ2 H yð Þ (I.15)

This is an integral of a b-function and its value is given by

I yð Þ¼ pd
sin pdð Þ H yð Þ (I.16)

Expanding sin(pd) in terms of pd in the above expression, one finally gets

I yð Þ¼ 1 +
p2

6

∂
2

∂y2
+

7p4

3 5!ð Þ
∂
4

∂y4
+⋯

� �
H yð Þ (I.17)

The form of d from Eq. (I.11) has been substituted in the above expression.
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Appendix J: Electron Motion in
Magnetic Field

Consider an electron, with momentum k, moving in a magnetic field H. The force acting on the electron is

F¼ d

dt
ħkð Þ¼�e

c
v�H

dk

dt
¼� e

cħ
v�H

(J.1)

This means that the wave vector k changes in a direction perpendicular to both v and H. Hence, k must be confined to the

orbit defined by the intersection of the Fermi surface with a plane normal to H (see Fig. J.1). The magnetic field makes a

representative k point move in an orbit (a circular path) without changing its energy.

If the electron is not scattered, the time period of the electron in the orbit, from Eq. ( J.1), is

T¼
ð
dt¼

þ
cħ
e

1

v?H
dk (J.2)

Here v? is the velocity perpendicular toH. We know that T¼ 2p/ocwhereoc is the angular frequency of the electron in the

orbit, usually called the cyclotron frequency. So,

2p
oc

¼ cħ
eH

þ
dk

v?
(J.3)

FIG. J.1 The spherical Fermi surface is cut by a shaded plane perpendicular to the magnetic fieldH. The circular orbit of the electron in the k-space is in

the shaded plane.
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Now ħk?¼mev?, therefore, from Eq. ( J.3) we write

2p
oc

¼mec

eH

þ
dk

k?
(J.4)

The integral in Eq. ( J.4) gives 2p from the elementary geometry of free electrons. So, Eq.( J.4) gives

oc ¼ eH

mec
(J.5)

It is customary to define an effective mass mc
✻ in the magnetic field, which is usually called the effective cyclotron mass.

Therefore,

oc ¼ eH

m✻
c c

(J.6)

Note that mc
✻ is not the dynamical mass of the electron, rather it is the property of an orbit, not of a particular electronic state.

Substituting Eq. ( J.6) into Eq. ( J.3), we can write

m✻
c ¼

ħ
2p

þ
dk

v?
(J.7)

We know that the velocity v is given in terms of the free electron energy E¼ħ2k2/2me as

v¼ 1

ħ
dE

dk

Therefore, v? can be written as

v? ¼ 1

ħ
dE

dk?
(J.8)

Substituting the value of v? from Eq. ( J.8) into Eq. ( J.7), we get

m✻
c ¼

ħ2

2p

þ
dk?
dE

dk (J.9)

From Fig. J.2 we see that dkdk? gives the elemental area between two orbits with energy E and E+dE. Hence the integral in

the above equation gives us the change in area per unit energy. Therefore, mc
✻ can be written as

m✻
c ¼

ħ2

2p
∂A
∂E

(J.10)

∂A is the area in the annular strip between the orbits with energies E and E+dE.

FIG. J.2 Elemental area dA between two constant-energy orbits with energies E and E+dE.
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Appendix K

K.1 ONE-DIMENSIONAL SOLID

The Boltzmann transport equation can be derived considering the motion of particles in detail. The phase space for a

one-dimensional velocity distribution is shown in Fig. K.1 in which the elemental volume is given by

dτ2 ¼ dxdvx (K.1)

(same as Eq. 8.9). f(x, vx, t) is the distribution function in one dimension. Further, it is assumed that the time of interaction is

very small compared with the relaxation time. Let Fx be the force acting on an electron of mass me. In time dt the distance

moved by an electron is vxdt. Hence, in time dt, all the electrons in area ADEF ¼ vxdtdvx enter from the side AD into the

elemental area dxdvx of the phase space, and the number of electrons is given by

dNin
e xð Þ¼ f x, vx, tð Þvxdvxdt (K.2)

The number of electrons leaving the elemental area dxdvx (ABCD) in time dt through the side BC can be written from

Eq. (K.2) as

dNout
e ¼ f x, vx, tð Þvx + ∂

∂x
f x, vx, tð Þvxf gdx

� �
dvxdt (K.3)

Hence, the number of electrons entering into the elemental area dxdvx due to the drift parallel to the x-coordinate is

obtained by subtracting Eq. (K.3) from Eq. (K.2) to get

dNdx
e ¼ �vx

∂

∂x
f x, vx, tð Þ½ �dxdvxdt (K.4)

In exactly the same manner, one can calculate the number of electrons entering into the elemental area ABCD due to drift

along the velocity axis. The number of electrons entering into the elemental volume dxdvx in time dt from the side AB are

contained in area ABGH and are given by

FIG. K.1 The phase space with a one-dimensional velocity distribution function. The shaded region ABCD shows the volume element dτ2.
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dNin
e vxð Þ¼ f x, vx, tð Þ Fx

me

dtdx (K.5)

The number of electrons leaving the elemental area dxdvx in time dt through the side CD is given by

dNout
e vx + dvxð Þ¼ f x, vx, tð Þ Fx

m
+

∂

∂vx
f x, vx, tð Þ Fx

me

� �
dvx

� �
dxdt (K.6)

Hence, the number of electrons entering into the elemental area dxdvx due to the drift parallel to the velocity axis is obtained

by subtracting Eq. (K.6) from Eq. (K.5) and is given by

dNdvx
e ¼ � Fx

me

∂

∂vx
f x, vx, tð Þ½ �dvxdx dt (K.7)

where Fx is assumed to be independent of vx. Now
∂

∂tf x, vx, tð Þ is the rate of increase of the density of electrons in the phase
space. Therefore, the increase in the number of electrons in the elemental area dxdvx in time dt becomes
∂

∂t
f x, vx, tð Þdxdvxdt. Hence, from Eqs. (K.4), (K.7), one can write

∂

∂t
f x, vx, tð Þ

����
drift

dxdvxdt¼ dNdx
e + dNdvx

e ¼� vx
∂

∂x
f x, vx, tð Þ+ Fx

me

∂

∂vx
f x, vx, tð Þ

#
dvxdxdt

"

Hence, the rate of change in the distribution function due to the drift produced by the external field is

∂

∂t
f x, vx, tð Þ

����
drift

¼�vx
∂

∂x
f x, vx, tð Þ� Fx

me

∂

∂vx
f x, vx, tð Þ (K.8)

In time dt, the particles in the range x and x+dx collide with one another only once and their velocities are changed. Some of

the electrons in the range x and x+dx with velocities in the range vx and vx+dvx collide with one another in such a way that

they go out of the velocity range vx and vx+dvx. On the other hand, there are some electrons in the position range x and x

+dx whose initial velocities change during the collision process to enter into the velocity range vx and vx+dvx. Therefore,

as a result of the collision interactions, there is a net increase in the number of electrons in the elemental area ABCD of the

phase space. This increase in the number of electrons is proportional to the time interval dt and the elemental area dxdvx of

the phase space. The increase in the number of electrons in the elemental area ABCD due to the collision process is given by

dNcell
e ¼ ∂f

∂t

����
coll

dxdvxdt (K.9)

Hence the total change in the distribution function f(x,vx, t) is

∂f x, vx, tð Þ
∂t

dxdvxdt¼ ∂f x, vx, tð Þ
∂t

����
drift

dxdvxdt +
∂f x, vx, tð Þ

∂t

����
coll

dxdvxdt

Using Eq. (K.8) in the above equation, we get

∂f x, vx, tð Þ
∂t

¼�vx
∂

∂x
f x, vx, tð Þ� Fx

me

∂

∂vx
f x, vx, tð Þ+ ∂f x, vx, tð Þ

∂t

����
coll

(K.10)

In the equilibrium condition ∂ f/∂t ¼ 0, so

∂f x, vx, tð Þ
∂t

����
coll

¼ vx
∂

∂x
f x, vx, tð Þ+ Fx

me

∂

∂vx
f x, vx, tð Þ (K.11)

which gives the Boltzmann transport equation in one dimension (see Eq. 11.17).

K.2 THREE-DIMENSIONAL SOLID

A similar procedure can be adopted to deduce the Boltzmann transport equation in three dimensions. In a three-dimensional

solid the volume element in the six-dimensional phase space is given by Eq. (8.12). First consider the motion of electrons

moving with velocity vx in the x-direction. The cross-sectional area of elemental volume d3rd3v perpendicular to the x-axis
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is dy dzdvxdvydvz. Hence, the number of electrons entering the elemental volume d3rd3v through the side perpendicular to

the x-axis at x in time dt is given by

dNin
e xð Þ¼ f r, v, tð Þvx½ �dydzdvxdvydvzdt (K.12)

The number of electrons leaving the elemental volume d3rd3v in time dt through the cross-sectional area perpendicular to

the x-axis at x+dx is given by

dNout
e x + dxð Þ¼ f r, v, tð Þvx + ∂

∂x
f r, v, tð Þvxf gdx

� �
dydzdvxdvydvz (K.13)

Hence, the net number of electrons entering into the elemental volume d3rd3v in time dt with velocity distribution along the

x-direction is obtained by subtracting Eq. (K.13) from Eq. (K.12) to give

dNe dxð Þ¼�vx
∂

∂x
f r, v, tð Þf gd3rd3vdt (K.14)

where the velocity vx is assumed to be independent of x. Similar expressions can be obtained for the number of electrons

entering the elemental volume d3rd3v in time dt with velocity distributions only along the y- and z-directions. Hence, the

total number of electrons entering into the elemental volume in time dt and possessing a three-dimensional velocity dis-

tribution is obtained by combining these three expressions and is written as

dNe drð Þ¼� v � rrð Þf r, v, tð Þd3rd3vdt (K.15)

Let us now calculate the number of electrons entering into the volume element d3rd3v due to the drift in velocity through the

side perpendicular to the velocity axis. The cross-sectional area of d3rd3v perpendicular to the vx axis is dxdydzdvydvz.

Therefore, the number of electrons entering into the volume element d3rd3v in time dt through the side perpendicular to the

vx-direction at vx is given by

dNin
e vxð Þ¼ f r, v, tð Þ Fx

me

� �
dx dydzdvydvzdt (K.16)

The number of electrons leaving the elemental volume in time dt through the face perpendicular to the vx-direction at

vx+dvx is given by

dNout
e vx + dvxð Þ¼ f r, v, tð Þ Fx

me

+
∂

∂vx
f r, v, tð Þ Fx

me

� �
dvx

� �
dxdydzdvydvz dt (K.17)

Hence, the net number of electrons entering the elemental volume in time dt through the face of the elemental volume

perpendicular to the vx-direction is obtained by subtracting Eq. (K.17) from Eq. (K.16) and is given by

dNe dvxð Þ¼� Fx

me

∂

∂vx
f r, v, tð Þf gd3rd3vdt (K.18)

Here it is assumed that the force is independent of the electron velocity. Similar expressions can be obtained for the number

of electrons entering into the elemental volume d3rd3v in time dt through the faces perpendicular to the vy- and vz-direc-

tions. Hence the total number of electrons entering into the elemental volume in time dt through the faces perpendicular to

the vx-, vy- and vz-directions is obtained by combining these expressions and, therefore, is given by

dNe dvð Þ¼� F

me

� rv

� �
f r, v, tð Þd3rd3vdt (K.19)

The total number of electrons entering into the volume element d3rd3v in phase space in time dt due to the drift produced by

the external field is obtained by adding Eqs. (K.15), (K.19) to write

dNdrift
e ¼ ∂f

∂t

����
drift

d3rd3vdt¼� v � rrð Þf r, v, tð Þ+ F

me

� rvf r, v, tð Þ
� �

d3rd3vdt (K.20)

Due to the collision interactions between the electrons, there is also a net gain in the number of electrons in the elemental

volume in time dt, which is given by

dNcoll
e ¼ ∂f

∂t

����
coll

d3rd3vdt (K.21)
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The total increase in the number of electrons dNe due to both the external field and the collision interactions is given by

dNe ¼ dNdrift
e + dNcoll

e ¼ ∂f

∂t
d3rd3vdt (K.22)

Substituting Eqs. (K.20), (K.21) into Eq. (K.22), we can write

∂f

∂t
¼� v � rrð Þf r, v, tð Þ� F

me

� rvf r, v, tð Þ+ ∂f
∂t

����
coll

(K.23)

which is the three-dimensional Boltzmann transport equation. In the equilibrium state, ∂ f/∂t ¼ 0, that is, the number of

electrons per unit volume remains constant in time. Therefore, in the equilibrium state, the Boltzmann transport equation

(K.23) assumes the form

∂f

∂t

����
coll

¼�∂f

∂t

����
drift

¼ v � rrð Þf r, v, tð Þ + F

me

� rvf r, v, tð Þ (K.24)

Eq. (K.24) is the same as Eq. (11.18).
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Appendix L: Atomic Magnetic Dipole
Moment

Consider an electron of mass me moving in a circular orbit of radius r around a nucleus (see Fig. L.1). If o0 is the angular

velocity and T is the time period of revolution of the electron, then the orbital current produced by the electron is given by

IL ¼ � e

T
¼� eo0

2p
(L.1)

The area of the circular loop is given by

A¼ pr2 (L.2)

From elementary electricity, the magnetic moment produced by the current loop is given by

mL ¼
ILA

c
(L.3)

where c is the velocity of light. Substituting the values of IL and A from Eqs. (L.1), (L.2) into Eq. (L.3), one gets

mL ¼� e

2mec
pf (L.4)

with

pf ¼meo0 r
2 (L.5)

FIG. L.1 An electron of mass me is moving with velocity v in a circular orbit of radius r around the nucleus in the xy-plane.
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Here pf is the angular momentum of the electron (multiplication of moment of inertia me r
2 and the angular velocity o0 ).

From Bohr’s quantization rule for orbits, one can write the orbital angular momentum as

pf ¼ ħL (L.6)

where L is the orbital angular momentum (in units of ħ) and has integral values as 1, 2, 3,…. From Eqs. (L.4) , (L.6) one can

write

m!L ¼�mBL (L.7)

Here mB is called the Bohr magnetron and is defined as

mB ¼
eħ

2mec
(L.8)

The negative sign in Eq. (L.7) indicates that the orbital magnetic moment is in a direction opposite to the orbital angular

momentum. The above expression is valid only for the orbital motion.
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Appendix M: Larmor Precession

To understand Larmor precession, consider the Bohr atom in which an electron with mass me is moving with velocity v0 in a

circular orbit of radius r0 (in the xy-plane) around a nucleus containing only one proton (see Fig. M.1). The equation of

motion of the electron is

mev
2
0

r0
¼ e2

r20
(M.1)

The angular velocity of the electron is given by

o0 ¼ v0

r0
(M.2)

From Eqs. (M.1), (M.2) one can write

o2
0 ¼

e2

me r
3
0

(M.3)

Apply magnetic field H in a direction perpendicular to the plane of the electron orbit. The electron will experience a

magnetic force given by

F¼�e

c
v�H¼ � e

c
vH (M.4)

Here v is different from v0 because, in the presence of a magnetic field, the velocity of the electron changes and is given by

o¼ v

r0
(M.5)

Therefore, the equation of motion in the presence of a magnetic field becomes

FIG. M.1 The Bohr atom in which an electron with mass me and

charge �e is revolving in the xy-plane around the nucleus, which

contains only one proton having charge e.
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mev
2

r0
¼ e2

r20
� e

c
vH (M.6)

Using Eq. (M.5) in Eq. (M.6), one can write

o2 +
eH

mec
o� e2

mer
3
0

¼ 0 (M.7)

The above equation is quadratic in o and its solution gives

o¼�oL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

L +o
2
0

q
(M.8)

where

oL ¼ eH

2mec
(M.9)

According to Eq. (M.8) the motion of an electron around the nucleus in the presence of a magnetic field is the same as that in

the absence of a magnetic field except for the superposition of a precessional angular frequency oL as shown in Fig. 18.4.

We know that

e

2mec
¼ 1:4�106gauss�1 s�1 (M.10)

Therefore, even for an applied magnetic field of 105 gauss, the Larmor frequencyoL¼1011 s�1 is very small compared with

the frequency of an electron in its orbit (�1014�1015 s�1). Therefore, to a first-order approximation, Eq. (M.8) can be

written as

o¼�oL�o0 (M.11)

According to Eq. (M.11) the angular frequency decreases in some electrons, which suffer retardation, while it increases in

other electrons due to their acceleration in the presence of the magnetic field. Even if the average electron current around

the nucleus is zero in the absence of the magnetic field, it becomes finite after the application of the field, yielding a finite

induced magnetic dipole moment.
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Burgers vector (Continued)

conservation of Burgers vectors, 533–534,
533f

BZs. See Brillouin zones (BZs)
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Collision interactions, 224

change in distribution function, 225–226
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types of, 519–520
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diffraction, 147–148
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541–542, 541–542f
Cooper pairs, 490–492
Cooper pair density, 502

Cooper pair wavefunction, 492–493
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Copper oxide superconductors, 508

Coulomb correlations, 66

Coulomb interactions, 64
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578f
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bulk modulus, 74–75
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elastic energy density, 97–98
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rotational symmetry, 10–13
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space group, 11
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near neighbors, 7, 7t
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Crystalline structures, 17
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18–20f

diamond, 31, 31f

face-centered cubic (fcc) structure, 20–21,
20–22f

hexagonal close-packed structure, 24–25,
24–25f

hexagonal structure, 22–23, 22–23f
perovskite, 31–33, 32f
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Crystallography, 1

Crystal potential, 62, 117–120, 243, 244f, 251,
260–261

CsCl structure, 20f, 78, 81

Cubic crystals, 15

Curie constant, 335, 346, 350, 396–397, 399,
411, 419

Curie law
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in ferroelectric solids, 340, 451

in paramagnetic solids, 396–397, 396f, 399,
400f

Curie temperature, 33, 414

Curie-Weiss law
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Current density, 200–201, 203–205, 313–316,
362, 370

Cyclotron frequency, 202, 212, 294–295, 617
Cyclotron mass, 212, 295, 618

Cyclotron resonance, 293, 296–298

D
Damping factor, 363, 376–377
d-band metal, 197

de Broglie wavelength, 38–39
Debye approximation, 602, 604

Debye frequency, 160, 164

Debye temperature, 161, 173–174
Debye theory of specific heat, 160–167
Debye T3 law, 166–167
Debye-Waller factor, 466–467
Debye wave vector, 164

Decorated honeycomb lattice, 541, 541f

Degenerate semiconductors, 318, 319f

Degree of freeness of electron, 274–276
de Haas-van Alphen effect, 293–296
Delaunay division, 542

d-electrons, 65

Density functional theory, 573
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one-dimensional free-electron gas, 181f, 184,
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in quantum dots, 565f, 567
in quantum well, 559–561, 561f, 565f
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three-dimensional free-electron gas, 180–181,
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two-dimensional free-electron gas, 182–183,
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Density of holes, 307–309
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three-dimensional solid, 164, 601–603, 601f
two-dimensional solid, 162, 603–604, 603f
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Destruction of superconductivity by magnetic

field, 477–478, 478f
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293–294, 294f
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quantum theory, 392–395
Diamond structure, 31
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definition, 327
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370–371, 374f
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Dielectric solids, 321
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electron, 38–39
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X-ray, 37–38
Bragg’s Law of, 38, 38f
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Dilation, 95–96, 102
Dilute solid solutions, 514

Dipolar polarizability, 331–332, 333f
Dipole-dipole interaction, 414, 593

Dirac’s delta function, 139

Direct band gap semiconductor, 300–301
Dislocations, 525–537
definition, 525–527
density and shear strain, 530

edge, 530–532, 531–533f
energy, 534–536
force acting on, 527–528
Kirchhoff law of, 534

mixed, 533

plastic deformation of crystals, 525

screw, 532–533, 532–533f
types of, 530–533

Dislocation density, 530

Dislocation energy, 534–536
Dispersion relations, 105, 115–117, 127,

136–137
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Domain walls, 353

Donor band, 302

Donor electrons, 302

Doping, 301–302
Drift velocity, 304–305
Drude conductivity, 200, 204, 230

Drude formula, 370

Drude model, 369–375
Dulong and Petit’s law of specific heat, 150

Dynamical matrix, 137–139
Dynamical susceptibility matrix, 325–326
Dynamic properties of electromagnetic waves

with electric field parallel to the plane of

incidence, 359, 361, 362f
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of incidence, 360–361
Dynamics of electrons in energy bands, 272–275

E
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negative, 531–532, 531–532f
positive, 531–532, 531–532f

Effective mass of electron, 264, 272–273
Eigen functions, 138

Eigen functions of elastic waves, 597–598
Eigenvalues, 133, 138, 140–141, 210, 216
Einstein-de Haas method, 413

Einstein frequency, 158–159, 164, 165f
Einstein temperature, 159

Einstein theory of specific heat, 158–159
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Elastic wave equation, 105
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in semiconductors, 317–318
static conductivity, 200–201, 223–224
using Boltzmann transport equation, 228

classical theory, 230–231
quantum theory, 231–232
Electrical properties of superconductors,

465–466
Electrical resistivity, 203–204, 213–215, 219
Electric current density, 200, 224, 231–232
Electric dipole moment, 593

definition, 322–323
potential energy due to dipole, 324

Electric dipole theory, 343–346
Electric field

alternating, 206–208
quantum mechanical theory, 208–212
static, 200–201

Electric field due to dipole

local electric field, 328–330
macroscopic electric field, 323–324
microscopic field, 328

Electric field gradient, 461–462
Electric permittivity, 355

Electric polarization, 207, 334, 340f

Electric properties, 321–337
Electric quadrupole energy, 461

Electric quadrupole Hamiltonian, 461–463
Electric quadrupole moment, 461–462
Electric susceptibility matrix, 325

Electric susceptibility of ferroelectric solids,

339–340, 346, 350
Electromagnetic field, 355

Electromagnetic spectrum, 355

Electromagnetic waves, 40f
in conducting medium, 362–365
in nonconducting medium, 355–357

Electrons

in alternating electric field, 206–208
in static electric and magnetic fields, 202–204
in static electric field, 200–201
in static magnetic field, 201–202

Electron correlation interactions, 66–67
Electron density, 184–185, 279–280

periodicity of, 43

Electron density of states605–608. See Density
of electron states

Electron diffraction, 38–39
Electronegative elements, 78

Electronegativity, 78

Electron-electron interaction potential, 62

Electron exchange interactions, 64–66
interatomic, 64–66
intra-atomic, 64

Electronic band structure, 260f

Electronic defects, 513

Electronic magic numbers, 574

Electronic polarizability, 331, 333f, 335–337,
376

Electronic specific heat, 149

one-dimensional free electron gas, 188–189
three-dimensional free electron gas, 190–192
two-dimensional free electron gas, 189–190

Electron-ion interaction potential, 62

Electron momentum, 178–179, 199, 208
Electron motion in magnetic field, 617–618,

617–618f
Electron orbits, 281–282
Electron pair wavefunction, 492, 503f

Electron paramagnetic resonance (EPR), 459,

575

Electron-phonon interactions, 488–489, 489f
Electron pockets, 281–282
Electron spin, 210

Electron spin magnetic moment, 209
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Electron spin resonance (ESR), 458–459, 458f
Electron velocity, 199, 202, 206

Electron wave vector, 179–180, 182–183, 199,
201

Electropositive elements, 78

Electrostatic interactions, 223–224, 595
Elliptical orbit, motion of atomic electron in,

384, 384f

Energy band gap, 277f
direct band gap, 300–301
indirect band gap, 300–301, 301f
in superconductors, 468, 498f

Energy bands

augmented plane wave method, 270–272
Bloch theorem

one-dimensional solid, 243–245
three-dimensional solid, 245–247

distinction between metals, insulators, and

semiconductors, 275–277
dynamics of electrons, 272–275
extended zone scheme, 257

Kronig-Penney model, 247–250, 250f
nearly free-electron theory, 251–257
orthogonalized plane wave method,

268–270
periodic zone scheme, 257–258
reduced zone scheme, 258–259
tight-binding theory, 259

linear monatomic lattice, 263–264
3D sc lattice, 266–267
2D square lattice, 264–266
Energy band structure
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of Si, 299–300, 300f
Entropy, 350–351, 466, 468f, 485–486
Entropy of point defects, 522

Epitaxy, 576

heteroepitaxy, 576–577
homoepitaxy, 576

EPR. See Electron paramagnetic resonance

(EPR)

Equation of motion, 199–200
in static electric and magnetic fields, 203–204,
204f

in static electric field, 200

in static magnetic field, 202, 202f
Equation of motion of lattice, 133–136
Equilibrium distance, 73

Equilibrium lattice constant, 76

Excess charge carriers, 312

Exchange energy, 415–417, 416f, 426
Exchange field, 407, 418–419
Exchange Hamiltonian, 417–418, 420
Exchange integral, 416f, 418–419, 431, 433
Exchange interactions, 64. See also Electron

exchange interactions

conduction electron-conduction electron, 66

Exchange interaction potential, 62, 578–579
Excitons, 520–522, 521f

atomic and molecular, 522

Frenkel, 521

Wannier-Mott, 521–522
Experimental measurement of dielectric

constant, 327

Experimental measurement of elastic constants,

111–113
Exponential repulsive potential, 82–83
Extended zone scheme, 257

External electric field, 225, 227

Extremal cross-sectional areas, of FS, 293–295
Extrinsic semiconductors, 301–303, 317–318

F
Face-centered cubic (fcc) structure, 20–21,

20–22f, 50–51, 50–51f
Failure of Ohm’s law in superconductors,

471–472, 471–472f
F-centers, 519–520, 519–520f
Fermi-Dirac distribution function, 186,

228–229, 239, 615
Fermi distribution function integral, 188–189,

191–192, 194, 615–616
Fermi energy, 179–180, 279
in one-dimensional free-electron gas, 189

in three-dimensional free-electron gas, 180,

180f

in two-dimensional free-electron gas,

182–183
Fermi momentum, 178–179
Fermions, 230

Fermi radius/Fermi wave vector, 180

Fermi sphere, 180, 201f
Fermi surface (FS), 243, 279

actual Fermi surfaces

of Al, 293, 293f
of Cu, 291, 292f

cyclotron resonance method, 293, 296–298
de Haas-van Alphen effect, 293–296
extremal areas, 293–295
free-electron approximation, 279–283,

284–288f
Harrison’s construction, 283–285, 289f
monovalent metals, 287–291, 292f
nearly free-electron approximation, 285–286,

290f

polyvalent metals, 291–293, 293f
types, 280–283

Fermi velocity, 180, 182–183
Fermi wave vector, 179–180, 182, 280, 294–295
Ferrimagnetism, 441–443
ferrites, structure of, 441–442, 442f
two-sublattice model, 442–443

Ferrites, 441–442, 508
inverse spinel structure, 441, 442f
mixed ferrites, 441, 443

spinel structure, 441

Ferroelectric behavior, 31

Ferroelectric domains, 339, 353

Ferroelectricity, 339

electric dipole theory, 343–346
polarization catastrophe, 346–348

Ferroelectric solids, 321, 339

arsenates, 341, 342f

dihydrophosphate, 341, 342f

perovskite structure, 342, 343f
tartrate group, 340, 341f

thermodynamics, 348

first-order transition, 351–353

second-order transition, 349–351
Ferroelectric state, 339

Ferroelectric transition temperature, 339–340
Ferromagnetic domains, 407

Ferromagnetic elements, 383

Ferromagnetic resonance, 463–464
Ferromagnetic transition temperature, 407, 418

Ferromagnetism

classical theory, 408–410 (see also Langevin

theory)

Heisenberg theory, 414–419
hysteresis curve, 429–430
quantum theory, 410–412
spin waves

Bloch theory, 420–422
magnons in monatomic linear lattice, 423

magnons in sc lattice, 424–425, 424f
magnons in square lattice, 423, 424f

quantization, 425–428
thermal excitation of magnons, 428–429
Weiss molecular field theory, 407–408

Fixed harmonic oscillator model, lattice specific

heat

one-dimensional solid, 156–157
three-dimensional solid, 157–158
two-dimensional solid, 157b

Force acting on dislocations, 527–528
Force constant, 119

Fractional quantum Hall effect, 220.

See also Quantum Hall effect (QHE)

Frank-Read source, 536–537, 536f
Free atom model of lattice specific heat

one-dimensional solid, 153–154
three-dimensional solid, 155–156
two-dimensional solid, 154–155

Free-electron approximation, 177.

See also Nearly free-electron

approximation

behavior of electrons, 274

Free-electron Fermi surface, 279

type I, 280–281, 281f
type II, 281–282, 283–285f
type III, 282–283, 286–288f

Free-electron gas, 369, 371–372, 377
paramagnetic susceptibility, 192–196
three-dimensional, 177–182
two-dimensional, 182–184

Free energy, 348–351, 349f, 352f, 522
Frenkel defects, 518, 519f, 524–525
Frenkel excitons, 521

Frequency-dependent dielectric function, 207,

368, 369–370f, 370–371, 374f
Frequency-dependent electrical conductivity,

206

Frequency-dependent polarization, 207, 379

Frequency distribution function, 124, 125f

Frequency of lattice vibrations, 115–117,
122–123, 136–137, 139, 141, 147

FS. See Fermi surface (FS)

Fullerenes, 579, 581, 583

G
Gas atomization, 578

Gas constant R, 149, 154
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Geometrical structure factor, 58–60
bcc crystal structure, 59–60, 59f
fcc crystal structure, 59

sc crystal structure, 58

Gibb’s free energy, 522, 525

Glasses, 539, 546

amorphous, 546

chalcogenide, 546

crystalline, 546

ferromagnetic, 547

fiber, 546

organic, 546

semiconducting, 546

Glass transition temperature, 539

Grain boundary, 537, 537f

Group velocity, 117, 123

Growth of slip, 536–537, 536f
Gruneisen constant, 171

Gyromagnetic ratio, 397

H
Hagen-Rubens equation, 367, 377

Hall coefficient, 204–205, 238, 314–315
Hall conductance, 212–213, 220. See also Hall

resistance

Hall constant, 238

Hall effect, 237–239
in metals, 204–205
in semiconductors, 313–316

Hall field, 204–205, 213, 238, 314–316
Hall resistance, 216–217, 219–220
Hall steps, 219

Hall voltage, 205f, 219
Hamiltonian, 62, 244

of atomic electron, 260

of electrons, 63

of ions, 62–63
of lattice, 134, 140–141
in magnetic field, 392, 458–460

Harmonic approximation, 120, 131, 134

Harmonic force, 120–121, 124–126, 376
Harmonic potential, 120

Harrison’s construction of Fermi surface,

283–285, 289f
Hartree-Fock theory, 66

Health hazard due to nanomaterials, 590

Heat capacity. See Specific heat
Heat current, 225

Heisenberg Hamiltonian, 417–419
Heisenberg theory of ferromagnetism, 414–419,

415–416f
Heitler-London theory, 415

Helmholtz free energy, 522

Heterojunctions, 561–562
Hexagonal close-packed structure, 24–25
Hexagonal crystals, 16–17
Hexagonal crystal structure, 27–28, 28f, 51–54,

52–53f
High-Tc superconductivity, 506–511
High-Tc superconductors, 33, 34f

ABX3 superconductors, 507–508, 508f
A2BX4 superconductors, 508, 508f
Cu oxide superconductors, 508

123 superconductors, 508–511

2212 superconductors, 508–509
Hole pockets, 281–282
Holes, 238, 241, 299–300, 302–303
Honeycomb lattice, 541, 541f

Host element, 514, 518

Hume-Rothery rules, 515

Hund’s rule, 401–404
application to iron group elements, 403–404
application to rare-earth elements, 402–403

Hydrogen bond, 90–91, 90f
Hydrogen molecule, 414–415, 415f
Hydrostatic pressure, 95

Hyperfine coupling constant, 461

Hyperfine interactions, 459–460, 460f
Hysteresis

in ferroelectric solids, 339

in ferromagnetic solids, 429–430

I
Icosahedral structure, 34–36, 573, 579
Icosahedral symmetry, 34–36
Icosahedron, 34–36, 35f, 579–580
Ideal insulators, 321

Ideal phonon gas, 167–168
Ideal solid solutions, 514

Impurities, 513, 515

Incident ray, 358f, 359

Indirect band gap semiconductor, 300–301, 301f
Inelastic scattering, 146

Inert gas crystals, 75–77, 593
attractive interaction, 76

bulk modulus for, 77

cohesive energy of, 76–77
repulsive interaction, 75

Insulators, 275–277
Integral quantum Hall effect, 216–217, 218f,

219–220. See also Quantum Hall effect

(QHE)

Interacting electron gas

dielectric function, 368

Drude model, 369–375
refractive index, 368

Interacting phonon gas, 168–169
Interactions

electron-electron interaction, 62

electron-ion interaction, 62, 66–67
ion-ion interaction, 62, 66

Interaction energy between atoms, 415

Interatomic potentials, 117, 118f

harmonic potential, 120

square-well potential, 119–120
Interatomic spacing, of metal, 184–186
Intermediate solid solutions, 514

Internal electric field, 343

Internal field constant, 343

Interplaner forces, 2–3
Interstitial point defects, 515–518, 523–524
Interstitial positions, 515–518, 523–524

octahedral, 515–518
tetrahedral, 517–518

Interstitial solid solutions, 518

Intracrystalline pressure (ICP), 573

Intraplaner forces, 2–3
Intrinsic semiconductors, 299–301, 317

Ion-core electrons, separation of, 61

Ionic bond energy, 78–79
Ionic bonding, 78–84
Ionic bulk modulus, 80–82
Ionic crystals, 78–84
Ionic lattice energy, 79–80
Ionic lattice in infrared region, 130–131
Ionic polarizability, 331, 333f, 377

Ionic polarization, 368–369, 376–378
Ion-ion interaction potential, 62

Ionization energy of impurity, 303–304, 305t
Ising model, 418

Isotactic, 543

Isotopic effect, 469, 510–511
Isotropic elasticity, 110–111

J
Jellium model, of metal, 177

Josephson tunneling, 502–506, 503–505f

K
Kinematic properties, of electromagnetic wave,

357–359
Kinetic energy (KE), 62

Kinetic energy of lattice, 138

Kirchhoff law of dislocations, 534

Knight shift, 460–461
Korringa-Kohn-Rostoker (KKR) method, 272

Kramers-Kronig relations, 367–368
Kronig-Penney model, 247–250, 250f

L
Lagrangian of lattice, 139

Lame’s coefficients, 113

Landau circle, 211

Landau cylinders, 211

Landau level, 211, 212f, 216, 220

Landau orbits, 212, 212f, 216

Lande’s splitting factor, 387, 402

Langevin function, 334, 335f, 344, 345f, 396

Langevin theory, 397, 408–409
Larmor frequency, 389–390, 446, 451–452,

459–460, 626
Larmor precession, 389–391, 625–626
Laser beam methods, 574–575, 574–575f
Latent heat, 467, 487–488
Lattice dynamics of metals, 133

Lattice energy, 79–80, 141
Lattice equation of motion, 133–136, 141
Lattice Hamiltonian, 134, 140–141
Lattice Lagrangian, 139

Lattice potential energy, 133–135
Lattice scattering, 312

Lattice specific heat, 149

Debye theory

one-dimensional solid, 160–162
three-dimensional solid, 164–167
two-dimensional solid, 162–164

Einstein theory, 158–159
fixed harmonic oscillator model

one-dimensional solid, 156–157
three-dimensional solid, 157–158
two-dimensional solid, 157b
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Lattice specific heat (Continued)

free atom model

one-dimensional solid, 153–154
three-dimensional solid, 155–156
two-dimensional solid, 154–155
Lattice vector, 3–4
Lattice vibrations

diatomic linear lattice, 124–129, 142–143
monatomic linear lattice, 121–124, 141–142
three-dimensional lattice, 144

Laue scattering, 37–38
theory, 40–42

Laue’s diffraction conditions, 42

Law of mass action, 307–309
Laws of reflection, 357, 359

LEED. See Low-energy electron diffraction

(LEED)

Lennard-Jones potential, 76

Lenz law, 389–390
Linear combination of atomic orbitals (LCAO),

260, 262

Linear combination of wave functions, 253

Linear elasticity approximation, 95–98
Linearization of Boltzmann transport equation,

227–228
Linear lattice, 3f, 4–5, 5f

diatomic, 5f, 14, 124–129, 142
monatomic, 3f, 7–9, 46–47, 121–124, 141

Linear thermal expansion coefficient, 169–170
Line defects, 513, 525–527
Line-width of resonance lines, 457

Liquid crystals, 547–554
building blocks, 548–549

associated structures, 549

long helical rods, 548

small organic molecules, 548

cholesterics, 549–550, 550f
long-range order in system of long rods, 552

nematics, 549, 549f
with positional disorder in xy-plane, 547, 547f

smectics, 551–552, 551–552f
uses

detergents, physics of, 554

membrane biophysics, 553

optical properties, 553

temperature sensitivity, 552–553
Local electric field, 328–330
Local magnetic field, 448, 450, 457

London penetration depth, 474–475, 474f, 511
London theory of superconductivity, 472–475
Long chain molecular compounds, 543

Long chain molecules, 539, 543, 543f

Longitudinal elastic waves, 105, 106f, 108f, 112

acoustical modes, 127–128
optical modes, 127–128, 130

Longitudinal magnetoresistivity, 203–204
Lorentz cavity, 328–329, 328–329f
Lorentz field constant, 414

Lorentz force, 199, 392

Lorentz model, 375–377
Lorentz number, 221, 233

Low-energy electron diffraction (LEED), 39

Lyddane-Sachs-Teller relation, 378–380
Lyotropic, 548

M
Macroscopic electric field, 323–324
Madelung constant, 79–80, 83–84, 595
Madelung energy, 80

Magnetic broadening of resonance lines, 457

Magnetic field, 293–298, 383, 387, 407–408,
414, 429, 433, 435, 435f, 442, 445, 448,

457–460, 462–464
classical theory of conductivity, 214–215
electron motion in, 617–618, 617–618f
free electrons in, 201–202
quantum mechanical theory, 208–212
quantum theory of 2D free-electron gas,

215–217
Magnetic flux, 295

Magnetic force microscope, 588–589
Magnetic induction, 387–388, 429
Magnetic moment of an atom

nuclear contribution, 445–446
magnetic moment of neutron, 445

magnetic moment of proton, 445

orbital contribution, 384–385
spin contribution, 385–387

Magnetic nanoparticles, 571–572, 572f
Magnetic permeability, 355

Magnetic properties of superconductors, 466

Magnetic quadrupole effects, 457

Magnetic resonance, 445–464
in absence of relaxation phenomena, 452–453
effect of quadrupole interactions, 461–463

Magnetic scattering amplitude, 41–42
Magnetic susceptibility, 451, 453–455
in diamagnetic solids, 391, 394

in ferromagnetic solids, 408, 408f, 410, 412
free-electron gas, 194

in paramagnetic solids, 396–397
Magnetism, 383–404
atomic magnetic dipole moment, 383–387

nuclear magnetic moment, 387

orbital magnetic moment, 384–385, 384f
spin magnetic moment, 385–387, 386f
crystal field splitting, 404

diamagnetism, 392–395
Hund’s rule, 401–404
Larmor precession, 389–391
magnetic dipole moment, 388–389
magnetic induction, 387–388
magnetization, 387

paramagnetism, 395–401
Magnetite, 441

Magnetization, 193–194, 387, 448–453, 455,
464

in antiferromagnetic solids, 431, 433

in diamagnetic solids, 394

in ferrimagnetic solids, 431, 442

in ferromagnetic solids, 409–410, 413, 429
in paramagnetic solids, 395–396, 396f, 400f
spontaneous, 407

Magnetoconductance, 204

Magnetoconductivity tensor, 204

Magneto-mechanical ratio, 397

Magnetoresistance, 203–204, 221, 293
Magnetoresistivity tensor, 203

Magnons, 439, 439f, 441

in antiferromagnetic materials

in ferromagnetic materials, 420, 439

thermal excitation, 428–429
Magnon dispersion relations

in monatomic lattice, 423, 423f, 439

in sc lattice, 424–425, 424f, 440, 440f
in square lattice, 423, 424f, 441

Magnon frequency, 423, 423f

Matter, 1

Maxwell-Boltzmann distribution, 153, 230, 232,

239, 599, 609

Maxwell equations

in conducting medium, 362

in nonconducting medium, 355

MBE. See Molecular beam epitaxy (MBE)

M-centers, 519–520, 520f
Mean atomic displacement, 609–610
Mean free path, 218, 220, 372–373, 380
of electrons, 174–175
of phonons, 168–169, 173

Meissner effect, 466

Mesomorphic phase, 540, 547–548
Metals, 275–277
cohesive energy, 184–186
Hall effect, 204–205
interatomic spacing, 184–186
jellium model, 177

Metallic bond, 88–90
Metallic solids, 88

refractive index, 365

Metal-oxide-metal (MOM) junction, 494–495,
495–496f, 500–501

Metal-oxide-semiconductor field-effect

transistor (MOSFET), 212–213, 218
Metal-oxide-superconductor (MOS), 495,

496–499f, 499, 501
Microscopes, 584–589
atomic force microscope, 586–588, 587f
magnetic force microscope, 588–589
scanning tunneling microscope, 585–586,

585–586f
Miller-Bravais indices, 28, 29f

Miller indices, 25–30, 26–29f, 38
Mixed bond, 86–88
Mixed dislocations, 533

Mixed ferrites, 441, 443

Mobility

of charge carrier, 239

of electrons, 304–305
of holes, 304–305
temperature dependence, 312–313

Model potentials, 270

Modulus of elasticity, 66–67, 102–103
Molecular beam epitaxy (MBE), 218, 561–562,

576–577, 577f
Molecular field, 407, 414, 433.

See also Exchange field

MOM. See Metal-oxide-metal (MOM) junction

Monatomic linear lattice, 3f, 7–9, 44, 56f,
121–124, 141–142

Monatomic one-dimensional lattice, Brillouin

zones of, 47f

Monatomic square lattice, 4f

Monochromating crystal, 147

636 Index



Monoclinic crystals, 17, 340

Monovalent free-electron metals, 287–291, 292f
MOS. See Metal-oxide-superconductor (MOS)

Motional narrowing of resonance lines, 457

Muffin-tin (MT) approximation, 270

Muffin-tin (MT) potential, 270, 271f
Muffin-tin (MT) sphere, 270, 271f

Multiwalled carbon nanotube (MWCNT), 581

N
NaCl structure, 22f, 84

Nanocomposite materials, 589–590
Nanoelectronics, 589

Nanomachines, 555, 590

Nanomaterials

applications, 589–590
of carbon, 579–584
carbon nanotubes, 581–584
computer simulation technique, 578–579
microscopes used for, 584–589

atomic force microscope, 586–588, 587f
magnetic force microscope, 588–589
scanning tunneling microscope, 585–586,
585–586f
nanocomposite materials, 589–590
nanoelectronics, 589

nanopharmaceuticals, 590

quantum tunneling, 567–568, 568f
reduction in dimensionality

quantum dots, 566–567, 566f
quantum rings, 567–568
quantum well, 556–562, 556–558f, 560f
quantum wires, 562–566, 563–565f
sciences, 589

smart materials, 589

Nanoparticles, 34–36
Al13, 573, 573f

magnetic, 571–572, 572f
structure, 572–573
synthesis methods, 574–577

chemical methods, 576

laser beam methods, 574–575, 574–575f
self-assembly techniques, 576–577
thermal decomposition, 575, 575f
Nanopharmaceuticals, 590

Nanostructured materials

amorphous, 578, 578f
crystalline, 577–578, 578f

Nanotechnology, 555, 590

Nanotubes, 589

Nanowires, 555–556. See also Quantum wires

Nearly free-electron approximation

definition, 251

Fermi surface, 285–286, 290f
one-dimensional solid, 255–257

Near neighbors (NNs), 7

1NNs, 7, 7t, 19, 31

2NNs, 7, 7t, 19, 31
3NNs, 7

Neel temperature, 431, 432f, 434, 434f,

437, 443

Nematics, 547, 549, 549f
Neutron diffraction, 39

in antiferromagnetic solids, 431, 432f

constant momentum method, 147–148
time-of-flight method, 146

Neutron magnetic moment, 384, 387

Neutron scattering amplitude, 41–42
Newton’s second law, 104, 113, 121–122, 199,

389

Nonconducting solids, 321

Nondegenerate semiconductors, 318

Nonpolar solids, 321

Nonprimitive crystals, 133

Nonuniqueness

in pseudopotential, 269–270
in pseudowave equation, 269

in pseudowave function, 269b

Normal coordinates, 136, 139

Normal coordinate transformation, 136–137
Normal mode frequency, 139

Normal modes of vibration

acoustical mode, 127–128, 166–167
of lattice, 115

optical mode, 127–128, 166–167
n-type semiconductors, 301–302, 302f, 309–310,

311f

Hall coefficient, 316

Hall effect, 314f

Nuclear angular momentum, 450

Nuclear magnetic moment, 387, 445–446
Nuclear magnetic susceptibility, 447

Nuclear quadrupole resonance, 462–463
Number operator, 141

O
Octahedron, 342

Ohm’s law, 200, 213, 471–472, 471f, 501
One-dimensional crystals, 13–14, 14f
One-dimensional solids

Bloch theorem, 243–245
Debye theory, 160–162
fixed harmonic oscillator model, 156–157
free atom model, 153–154
free-electron gas, 188–189
heat capacity, 162

nearly free-electron approximation,

255–257
One-electron approximation, 63–64
Onsager-Lifshitz quantization condition,

295–296
Operators

rotational, 10

translational, 6–7, 244–246
Optical branch, 127–128
Optical models, 368–369

Drude model, 369–375
Lorentz model, 375–377

Optical modes, 127–128
Optical properties, 355–380
Orbit, 281–282
Orbital angular momentum, 385, 389, 393, 624

quenching of, 404

Orbital magnetic moment, 384–385, 384f
Ordered solid solutions, 514

Orientational polarizability, 331–335
Orthogonalized plane wave (OPW) method,

268–270

Orthorhombic crystals, 17

Orthorhombic structure, 340, 342, 353

Oxygen vacancies, 508–509

P
Packing fraction, 2

bcc crystal, 21–22
fcc crystal, 21–22
hcp structure, 22–23
sc crystals, 17

Paraelectric solids, 321, 339

Parallel-spin correlations, 66

Paramagnetic elements, 383

Paramagnetic susceptibility, 196f, 396–397, 401,
404

one-dimensional free-electron gas, 195

three-dimensional free-electron gas, 196

two-dimensional free-electron gas, 195–196
Paramagnetism, 395–401

classical theory, 395–397 (see also Langevin

theory)

quantum theory, 397–401
Passivated nanoparticles, 573

Pauli exclusion principle, 66, 69–70, 179–180,
179f, 415–416

Pauling scale of electronegativity, 78

Pauli spin susceptibility, 194, 196, 196f, 460

Penetration depth, 365, 475–476, 476f
Penrose pattern, 34–36
Penrose tiling, 34–36, 35f
Periodicity

of atomic density, 8, 44–46
one-dimensional lattice, 3–4, 3f
three-dimensional lattice, 3–4
two-dimensional lattice, 3–4, 4f

electrostatic, 5

electrostatic periodicity, 243, 244f

structural, 6–10
Periodic zone scheme, 257–258
Perovskite structure, 31–33, 32f, 342, 343f
Perovskite superconductivity, 507–508
Persistent currents in superconductors, 481–483,

482–483f
Phase space, 151–152, 223, 225
Phase transitions

first-order, 351–353, 487–488
second-order, 349–351, 487–488

Phase velocity, 117, 123

Phonon, 141, 168

Phonon density, 161–164, 168, 174, 602
Phonon dispersion relation, 141, 143f
Phonon energy, 141, 168

Phonon frequency, 141

diatomic linear lattice, 124–129, 143
monatomic linear lattice, 121–124, 142
sc lattice, 144–146

Phonon gas

ideal phonon gas, 167–168
interacting phonon gas, 168–169

Phonon mean free path, 168–169, 173
Phonon-phonon scattering, 168–169
Phonon scattering cross section, 168–169
Phonon softening, 507

Photoconductivity, 373
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Pippard’s coherence length, 476–477, 477f
Planar defects, 513

Plane waves, 178, 255

in conducting medium, 362–365
in nonconducting medium, 355–357

Plasma frequency, 207–208
Plastic crystals, 547

Plastic deformation, 525, 530

Plasticizers, 544

Plastics, 543, 546

Plateaus in Hall conductance/resistance,

216–217
Point defects, 513

excitons, 520–522
solid solutions, 514

statistical distribution, 522–525
types, 514–520

Point group, 11

Point symmetries, 10

improper rotations, 10

proper rotations, 10

Polarizability, 330, 593

dipolar, 331–332, 333f
electronic, 331, 333f, 335–337
ionic, 331, 333f

orientational, 331–335
Polarization, 207, 323, 325–326, 330–331

in ferroelectric solids, 339

in ionic solids, 376–378
Polarization catastrophe, 346–348
Polarization field, 329

in ionic solids, 368–369
Polar solids, 321

Polymers, 543

Polyvalent free-electron metals, 291–293, 293f
Potential due to electric dipole, 324

Potential energy (PE)

due to magnetic dipole moment, 388–389,
388f

of electrons, 182

of lattice, 133–135
of magnetic dipole moment, 388–389

Primary solid solutions, 514

Primitive cell, in reciprocal space, 46–54
Primitive crystals, 133

Primitive unit cell, 7–10
Probability of tunneling, 500

Projection operator, 268

Propagation wave vector, 357

Pseudopotentials, 269–270
Pseudowave equation, 269

Pseudowave function, 268–270, 268f, 269b
p-type semiconductors, 301–303, 310, 311f
Hall coefficient, 315–316
Hall effect, 314f

Pure shear, 95

Q
Quadrupole interactions in magnetic resonance,

461–463
Quadrupole moment, 457, 461–462
Quantization of conductance

in quantum Hall effect, 212–220
in quantum wire, 564–566

Quantization of electron orbits, 216, 293–294
Landau levels, 212, 212f, 216

Quantization of lattice Hamiltonian, 140–141
Quantization of spin waves, 425–428, 427f
Quantum corrals, 586

Quantum dots, 566–567, 566f
Quantum Hall effect (QHE), 212–213
classical theory, 214–215
experimental setup

semiconductor heterojunctions, 218

silicon MOSFETs, 217

fractional, 220

integral, 219–220
two-dimensional electron system, 213–214

Quantum mechanical theories, of lattice specific

heat

Debye theory

one-dimensional solid, 160–162
three-dimensional solid, 164–167
two-dimensional solid, 162–164
Einstein theory, 158–159

Quantum mechanical theory, of electrons,

208–212
Quantum rings, 567–568
Quantum theory

of diamagnetism, 392–395
of ferromagnetism, 410–412, 411f
of paramagnetism, 397–401

Quantum tunneling, 567–568, 568f
Quantum well, 556–562, 556–558f, 560f
Quantum wires, 562–566, 563–565f
quantization of conductance, 564–566

Quasicrystals, 33–36, 35f
Quasiperiodicity, 34–36
Quaternary copper oxides, 509

Quenching of orbital angular momentum, 404

R
Racemic, 549, 551

Radiofrequency plasma method, 575, 577

Random close packing (RCP), 540, 542–543
Random coil model, 540

Rare earth metals (REMs), 2, 64–65
R-centers, 519–520, 520f
RCP. See Random close packing (RCP)

Reciprocal lattice, 42–46
Reciprocal lattice vectors, 43–48, 44f, 50–54
in one-dimensional lattice, 44

in three-dimensional lattice, 45–46
in two-dimensional lattice, 44–45

Reciprocal space

construction of, 56f, 57

importance of, 54–57
primitive cell in, 46–54
wave vectors, 56–57, 56f

Recombination, 312

Reduced zone scheme, 258–259
Reduction in dimensionality of solids, 555–568
Reflectance, 355, 367, 372f

Reflected ray, 357, 358f, 359

Reflection

dynamic properties, 359–361
kinematic properties, 357–359
laws of reflection, 357, 359

Reflectivity, 361

and conductivity, 366–367
from metallic solids, 365–366

Refraction, 357–361
Refractive index, 332, 355–356, 363–365, 368,

371–372, 376–377
Relaxation phenomena, 448–450
magnetic resonance in absence of, 452–453
spin-lattice relaxation, 448–449, 449f
spin-spin relaxation, 449f, 450

Relaxation time, 172–173, 199, 226
Remnant polarization, 339

REMs. See Rare earth metals (REMs)

Repulsive interaction potential, 89, 594

exponential form, 82–83, 594
Repulsive overlap interaction, 595

Resistivity

of metals, 203–204, 219
of semiconductor, 304–305, 317

Resonance absorption, 455–460
Resonance experimental set up, 452, 452f

Resonance frequency of electron vibrations, 336

Resonance lines

effect of molecular motion, 457–458
magnetic broadening of resonance lines, 457

Response function, 367–368
Restricted solid solutions, 514

Rigid ion approximation, 61, 135

RKKY interaction. See Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction

Rochelle salt, 340, 353

Rotation

improper rotations, 10

proper rotations, 10

Rotational operator, 10

Rotational symmetry, 10–13
Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction, 65–66

S
Saturation polarization, 344, 348, 353

Scanning tunneling microscope, 585–586,
585–586f

Scattered wave, 40–41, 58
amplitude of, 40

Schrodinger wave equation, 62–63, 611, 613
atomic electron, 260

one-dimensional free-electron gas, 184

one-dimensional solid, 244

three-dimensional free-electron gas, 177–178
three-dimensional solid, 245–246
two-dimensional free-electron gas, 182–183

sc lattice, 47–49, 49f
Screw dislocations, 532–533, 532f
left-handed, 533

right-handed, 533

s-d interaction, 65

Self-assembly techniques, 576–577
Self-consistent approximation, 62

Semiconductors, 275–277
carrier density, 311–312
carrier mobility, 304–306
compensated, 319

concentration of charge carriers, 306–309
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degenerate, 318, 319f

electrical conductivity, 317–318
extrinsic, 301–303
Hall effect, 313–316
impurity ionization energies, 303–304, 305t
intrinsic, 299–301
mobility of charge carriers, 312–313
nondegenerate, 318

Semiconductor heterojunctions, 218

Semiconductor laser, 562

Shear stress on crystals, 526, 534–535
critical value, 530

Significant wave vectors, 56–57, 56f
Silicon MOSFETs (Si-MOSFETs)

energy band diagram, 214f

features, 217

Hall voltage and linear voltage, 219, 219f
systematic diagram, 214f, 217

Simple metals, 61, 89, 89f, 177, 184–185
Simplex, 542

Single electron superconducting tunneling,

494–502
MOM tunneling junction, 494–495, 496f,

500–501
MOS tunneling junction, 495, 496–497f, 501
SOS tunneling junction, 495–497, 498f,

501–502
Single-walled carbon nanotube (SWCNT), 581

Six-dimensional phase space, 152, 152f

Skin effect, 364

Slip band, 526

Slip plane, 527, 528–529f, 529–533, 536
Smart nanomaterials, 589

Smectic liquid crystals, 551–552
smectic A, 551, 551f
smectic B, 552

smectic C, 551, 552f

Snell’s law, 359

Solids

close packing of atoms in, 1–3, 2f
crystalline, 1

Solid solutions, 513–514
types, 514

Solute, 514

Solvent, 514

Space group, 11

sp2 configuration, 86

sp3 configuration, 85–86, 299–300
Specific heat, 149, 466–468
at constant pressure, 149

at constant volume, 149

Debye theory, 160–167
Einstein theory, 158–159
electronic contribution, 167, 167f
experimental facts, 150

lattice contribution, 152–158, 486–487
thermodynamical definition, 150–151

Specific heat of electrons. See Electronic

specific heat

Spherical Bessel function, 270–271
Spherical harmonics, 270–271
Spin, 192, 383–384
Spin angular momentum, 385, 404–405
Spin magnetic moment, 385–387, 386f

of electron, 383–384
of neutron, 384

of proton, 384

Spin-orbit interaction, 383–384
Spin-spin interaction, 419, 571–572
Spin splitting of energy levels, 459–460, 463,

463f

Spin susceptibility, 197

Spin waves

Bloch theory, 420–422
magnons in monatomic linear lattice, 423

magnons in sc lattice, 424–425, 424f
magnons in square lattice, 423, 424f
quantization, 425–428

Spin wave function, 415

Spin wave resonance, 464

Spontaneous magnetization, 407, 409–410, 409f,
411f, 412

Spontaneous polarization, 339–340
for BaTiO3, 343f
for KH2PO4, 342f

of Rochelle salt, 341f

Spring constant, 121

Square barrier potential, 561–562, 562f
Square lattice, 3–5, 4–6f, 8–9, 47, 264–266,

280–281, 280f, 282–283f, 440–441, 440f
magnons in, 423

Square well potential, 119–120, 561–562
Stabilization energy in superconductors,

478–479
Standing waves, 254–256, 256f
Statistical distribution, 522–525

Frenkel defects, 524–525
interstitial point defects, 523–524
substitutional point defects, 523

Strain field, 93–95
Strain tensor, 93–95
Stress

normal stress, 96

shear stress, 96

Stress tensor, 96, 97f

Structural magic numbers, 574

Structural symmetries, 6–10
rotational symmetry, 10–13
translational symmetry, 6–7

Structure factor, 58–60
Structure of nanoparticles, 572–573
Stylus, 585, 586f

Substitutional point defects or impurities, 523

Substitutional solid solutions, 518

Superconducting energy gap, 468

Superconducting quantum tunneling

high-TC superconductivity, 506–511
Josephson, 502–506
single-electron, 494–502

Superconducting state, 465

Superconducting transition temperature, 33, 470

Superconductivity, 33, 555, 570, 581

electrical properties, 465–466
isotopic effect, 469

magnetic properties, 466

occurrence, 470–471
superconducting quantum tunneling

high-TC superconductivity, 506–511

Josephson, 502–506
single-electron, 494–502

theoretical aspects

Bardeen-Cooper-Schrieffer theory, 488–493
classification of superconductors, 480–481
coherence length, 476–477, 477f
destruction by magnetic field, 477–478, 478f
existence, criterion for, 494

failure of Ohm’s law in superconductors,

471–472, 471–472f
London theory, 472–475, 474f
magnetic impurities, 494

penetration depth, 474f, 475–476, 476f
persistent currents, 481–483, 482–483f
stabilization energy, 478–479
thermodynamics of superconductors,

483–488
thermal properties

entropy, 466

specific heat, 466–468
Superconductors

classification of, 480–481
high Tc, 33, 34f, 506–511
normal, 465

type II/hard, 477, 480–481, 481f
type I/soft, 477, 480, 481f

Superelectrons, 472, 476

Superfluid, 472, 476

Surface charge density, 324, 324f

Surface force, 96

Surfactant, 573

Susceptibility, 339–340
dynamical, 368

static, 368

Susceptibility in antiferromagnetic solids,

433–437, 434f, 436–437f
Susceptibility in ferrimagnetic solids,

442–443
Syndiotactic, 543

Synthesis of nanoparticles, 574–577
chemical methods, 576

laser beam methods, 574–575, 574–575f
self-assembly techniques, 576–577
thermal decomposition, 575, 575f

T
Tartrate group, 340, 341f

Taylor-Orowan dislocation. See Edge

dislocations

Temperature dependence

electronic specific heat, 167, 195

lattice specific heat, 158–167
in semiconductors

carrier density, 311–312
mobility of charge carriers, 312–313
Tensile stress, 529–530
Tetragonal crystals, 16

Tetragonal structure, 341–342, 353
Theoretical aspects, of superconductivity

Bardeen-Cooper-Schrieffer theory,

488–493
classification of superconductors, 480–481
coherence length, 476–477, 477f
destruction by magnetic field, 477–478, 478f
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Theoretical aspects, of superconductivity

(Continued)
existence, criterion for, 494

failure of Ohm’s law in superconductors,

471–472, 471–472f
London theory, 472–475, 474f
magnetic impurities, 494

penetration depth, 474f, 475–476, 476f
persistent currents, 481–483, 482–483f
stabilization energy, 478–479
thermodynamics of superconductors, 483–488

Theories of ferroelectricity, 343–348
Thermal conductivity, 171–175, 225

electronic contribution, 174–175, 220
of ideal gas of atoms, 172–173
of insulators and dielectrics, 173–174
of metals, 174–175, 176t
using Boltzmann transport equation

classical (Lorentz) theory, 232–234
quantum (Sommerfeld) theory, 234–237
Thermal decomposition, 575, 575f

Thermal excitation of magnons, 428–429
Thermal expansion, 169–171

coefficient of, 169–170, 539, 545
Thermodynamics of ferroelectric solids,

348–353
Thermolysis, 575

Thermotropic, 548

Three-dimensional crystal, 14–17, 16f
structure of crystals, 17–25

cubic crystals, 15, 17–21
hexagonal crystals, 16–17, 22–23
monoclinic crystals, 17

orthorhombic crystals, 17

tetragonal crystals, 16

triclinic crystals, 17

trigonal crystals, 15

Three-dimensional free-electron gas

paramagnetic susceptibility, 196

specific heat, 190–192
Tight-binding approximation, 274–275
Tight-binding theory, 259

linear monatomic lattice, 263–264
3D sc lattice, 266–267
2D square lattice, 264–266

Time-of-flight method, 146

T3/2 law, 413–414, 429
TMs. See Transition metals (TMs)

Torque due to magnetic dipole, 389, 390f

Total energy of free-electron gas

one-dimensional gas, 189

three-dimensional gas, 181

two-dimensional gas, 183–184
Transition metals (TMs), 64–65
Transition temperature

of antiferromagnetic solids431 (see Neel

temperature)

of ferrimagnetic solids, 442

of ferroelectric solids, 339–340
of ferromagnetic solids, 407, 418

of superconductors, 470, 487, 506–507, 509
Translational operators, 6–7
Translational vectors, 3–4, 6
Transmittance/transmissivity, 355, 361

Transport phenomena

Boltzmann transport equation

classical formulation, 225–227
linearization, 227–228
quantum formulation, 227

collision interactions, 224

electrical conductivity, 228

classical theory, 230–231
quantum theory, 231–232
electrostatic interactions, 224

Hall effect, 237–239
mobility of charge carriers, 239–241
thermal conductivity

classical theory, 232–234
quantum theory, 234–237
velocity distribution function, 223

Transverse elastic waves, 105, 106f, 107, 108f,

145

Transverse magnetoresistivity, 203–204
Triclinic crystals, 17

Trigonal crystals, 15

Triple axis spectrometer, 147, 147f
Tunneling current, 495–501
Tunneling Hamiltonian, 503

Tuyn’s law, 477–478, 478f
Two-dimensional crystals, 14, 15f

Two-dimensional free-electron gas

paramagnetic susceptibility, 195–196
quantum theory, 215–217
specific heat, 189–190

Two-dimensional phase space, 151–152, 151f
Two-dimensional solids

Debye model, 162–164
free atom model of specific heat, 154–155
harmonic oscillator model of specific heat,

157b

Two-sublattice model

in antiferromagnetic solids, 431–437
in ferromagnetic solids, 442–443

U
Ultrasonic propagation in magnetic field, 293

Ultrasonic pulse method, 111, 111f

Unit cell, 6–8, 41–42, 52–54f, 57, 59
Unit slips, 525–526, 536
Unit vectors, 9–10, 40–41, 47, 54, 93–95

V
Vacancies, 515

Valence band, 276

Valence electrons, 177

separation of, 61

Van der Waals interaction, 593–594
Van Vleck paramagnetism, 394

Variation of polarization with frequency, 332

Vector potential, 208–209, 215–216, 295, 392
Velocity

of elastic wave, 105–108, 110
group velocity, 117, 123

phase velocity, 105, 117, 123

Velocity distribution function, 223

in equilibrium state, 227

in the presence of external force, 227

Vibration frequency

discrete lattice

diatomic lattice, 124–129, 143
monatomic lattice, 121–124, 142
sc lattice, 144–146
homogeneous medium, 115–117

Voids

octahedral, 515–517, 516–517f
tetrahedral, 515–517, 517f

Voronoi polyhedron, 542

W
Wannier-Mott excitons, 521–522
Wave function, 62–64
Wave-particle duality nature, 38–39
Wave vectors, 56–57, 56f
Weak superconductivity. See Josephson

tunneling

Weiss-Curie formula, 408

Weiss molecular field theory, 407–408
Wiedemann-Franz-Lorentz law, 220–221, 233,

236

Wigner-Seitz (WS) cell, 4f, 9, 9f, 46

Wigner-Seitz (WS) sphere, 9, 57

WS cell. See Wigner-Seitz (WS) cell

Wurtzite crystal structure, 31, 32f

X
X-ray diffraction, 37–38
in antiferromagnetic solids, 431

Bragg’s Law of, 38

X-ray scattering, amplitude, 41–42

Z
Zeeman effect, 446–447
Zeeman splitting, 446–448, 447f, 462–463
Zener’s s-d interaction, 65–66
Zinc sulfide (ZnS) crystal structure, 30, 30f

Zone schemes

extended, 257

periodic, 257–258, 281–286, 283–284f,
288f

reduced, 258–259, 281–283, 285–287f,
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