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Preface

This volume is the result of academic and scientific collaboration between the
mathematical communities from Spain and Brazil.

In December 2015 the Federal University of Ceará (Brazil) organized the first
meeting between the Brazilian Mathematical Society (SBM), the Brazilian Society
of Applied and Computational Mathematics (SBMAC), and the Real Sociedad
Matemática Española (RSME). As a consequence of the success of that first edition,
the respective national societies decided to host a second meeting in Spain. The
University of Cádiz was chosen to organize the Second Meeting of the Brazilian
and Spanish mathematical societies, which took place from December 11 to 14,
2018. Moreover, in this second edition, the Spanish Society of Applied Mathematics
(SEMA) also participated in the organization of the event.

Of course, the main objective of this second meeting was to continue to
strengthen the collaboration between researchers and institutions from Spain and
Brazil. To this end, plenary conferences, special sessions, and posters were included
on a wide range of topics in Pure and Applied Mathematics. All of them were
submitted to the demands of a Scientific Committee of the highest level, comprising
chosen representatives of the four participating societies.

The meeting took place in the “Constitution of 1812” building and in the Faculty
of Philosophy and Letters of the University of Cádiz, both historical buildings in
the ancient city of Cádiz. It is worth mentioning that Cádiz was chosen as the venue
for this meeting as it is considered by all to be a historical city, with great links to
the other side of the Atlantic and with a university that has innumerable links with
institutions on the American continent.

The Bay of Cádiz, whose beauty could be appreciated by all participants from the
congress venue, has been a place of reference for countless ships and cruises. From
here, trade and maritime transport was practiced with the West and East Indies, the
shores of the Mediterranean Sea, the great Atlantic ports of Europe, and the coasts
of Africa. Cádiz has been a cosmopolitan city since the seventeenth century.

Building upon the success of this second meeting, we launch this volume in
which a varied selection of works presented at the meeting have been included and in
which quality is the predominant note. The lines of the selected works range from

v



vi Preface

abstract algebra, such as Lie algebras, commutative semi-groups, and differential
geometry, to more applied works in which mathematical modeling by means of
boundary value problems governed by PDEs is the subject of study. All the works
in the volume have been submitted to a blind peer review process. In addition, this
collection offers a good summary of the recent activity of the different Spanish and
Brazilian research groups interested in both the applications of mathematics and
pure mathematics.

We would like to conclude this introduction by thanking all those who, in one
way or another, participated in the organization of the congress and especially the
local organizing committee along with all the volunteers. Not only did they make
the congress possible but the publication of this volume is largely the result of their
work. Finally, we would like to thank the authors themselves for submitting their
valuable works.

Puerto Real, Spain Juan Ignacio García García
Puerto Real, Spain Francisco Ortegón Gallego
December 15, 2019
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On the Control of the Navier-Stokes
Equations and Related Systems

Enrique Fernández-Cara

Abstract This contribution relies on two main concepts: the Navier-Stokes equa-
tions and control theory. Our aim is to justify their relevance and, also, to describe
some results that can be obtained by working simultaneously with both them. In
particular, we will recall some recent results concerning related bi-objective optimal
control and controllability problems.

1 Introduction

1.1 The Navier-Stokes Equations

The Navier-Stokes equations describe the behavior of an incompressible fluid under
realistic conditions. Thus, they can be used to model a lot of atmospheric, oceanic,
and climatological phenomena, the flow of a fluid around a body of any kind, flows
in channels and associated jets, etc. See for instance [3, 67, 79] for some details.

In its simplest form, the equations are the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1−ν
(
∂2

1u1+∂2
2u1+∂2

3u1
)+u1∂1u1+u2∂2u1+u3∂3u1+ 1

ρ
∂1p = f1

∂tu2−ν
(
∂2

1u2+∂2
2u2+∂2

3u2
)+u1∂1u2+u2∂2u2+u3∂3u2+ 1

ρ
∂2p = f2

∂tu3−ν
(
∂2

1u3+∂2
2u3+∂2

3u3
)+u1∂1u3+u2∂2u3+u3∂3u3+ 1

ρ
∂3p = f3

∂1u1 + ∂2u2 + ∂3u3 = 0.
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2 E. Fernández-Cara

In a more compact way, the previous system, can be written as follows:
⎧
⎨

⎩

ut − ν�u+ (u · ∇)u+ 1

ρ
∇p = f,

∇ · u = 0.
(1)

The unknowns are u = (u1, u2, u3) (the velocity field of the fluid) and p (the
pressure); u and p are functions of x = (x1, x2, x3) (the spatial variable) and t

(the time) and (1) must be solved for (x, t) ∈ � × (0, T ), where � ⊂ R3 is a
nonempty open set.

In (1), ν and ρ are positive constants, characteristic of the fluid. They are
respectively called the kinematic viscosity and the mass density. On the other hand,
f = (f1, f2, f3) is given; in general, it is also a function of x and t and must be
viewed as a density of external forces.

The first equality in (1) is a formulation of the conservation law of linear
momentum (second Newton’s law); it is usually known as the motion equation. The
second identity indicates that the volume of a set of particles does not change with
time; accordingly, it is called the incompressibility condition; see [12, 62, 66] for
details.

The system (1) is thus composed of 4 scalar partial differential equations. The
three first of them are nonlinear, due to the so called inertia term (u · ∇)u.

As usual, this differential system does not suffice by itself to identify the
unknowns u and p. It has to be complemented with additional conditions of two
kinds:

• Initial conditions at t = 0 and
• Boundary conditions on ∂� along (0, T ).

Generally (but not always) these requirements affect u. Accordingly, the mathe-
matical task is to find a couple (u, p) that satisfies (1) in � × (0, T ) such that the
initial velocity field u|t=0 and the boundary data u|∂�×(0,T ) are prescribed.

1.2 A Little Bit of History

The Navier-Sokes equations were deduced after the work of many people. Among
them, let us mention the following:

Newton [59]
Mainly, he described and modelled internal forces among particles.

A fluid can be viewed as a conglomerate of particles that travel together. Particles
interact; their motion is determined by internal efforts, among other things due to
friction (also called viscosity). Newton claimed that friction forces are proportional
to the spatial derivatives of the velocity. Actually, this is the reason of the occurrence
of the so called viscous term −ν�u.
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Euler [22]
He was the first to use a partial differential system to describe the behavior of u
and p. In particular, he introduced the pressure. Unfortunately, he arrived at an
incomplete system, nowadays called the Euler equations, where he “forgot” the
viscous term:

⎧
⎨

⎩

ut + (u · ∇)u+ 1

ρ
∇p = f,

∇ · u = 0.
(2)

Nevertheless, there are many situations where (2) provides an acceptable descrip-
tion of the behavior of the fluid. This happens in particular when we consider the
flow of a fluid far from solid walls.

Navier and Stokes [57, 72]
They finally deduced, independently of each other, the correct system. To this
purpose, they incorporated Newton’s term to the Euler system and they successfully
interpreted each term separately, to give a complete explanation of all common
realistic fluids: air, water, oil, etc.

Fluids governed by the Navier-Stokes equations are usually called Newtonian.
It should be noted that not all fluids found in nature or resulting from industrial
processes are Newtonian. Indeed, in many cases, the molecular structure of the fluid
is too complex and the particles behave as elastic balls. Accordingly, they deform
after interaction and then try to recover their original shape. This makes it necessary
to account for additional (elastic or memory-like) terms in the equations. This is the
case of magma, blood, shampoos and many other industrial fluids; see more details
for example in [36, 65, 69].

Needless to say, the achievements of these scientists are not reduced to their work
in fluid mechanics.

Newton contributed to many other areas of physics and mathematics. He can
be considered the first applied mathematician of History. Thus, his interest to
understand gravitational forces and planet motion led him to introduce fundamental
mathematical tools (functions, derivatives, differential equations) that serve to us
even today.1

Euler is also at the origin of a lot of mathematical concepts, results and
conjectures. Among them, let us recall the well known Riemann hypothesis, that
could actually be called the Euler hypothesis. It is the following:

Let us set

ζ(x + iy) :=
(

1− 2

2x+iy

)−1 ∑

n≥1

(−1)n

nx+iy
for x > 0.

Then we can have ζ(x + iy) = 0 only for x = 1/2.

1Do not forget, however, his famous dispute with Leibniz, where each of them claimed to be the
“inventor” of differential calculus.
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This is one of the 1900 Hilbert’s Problems and also one of the 2000 Clay
Millenium Problems, see [13, 34]. It has led to more than 140 significative
contributions in 2009–2018.

As first noticed by Euler, a positive answer would imply many interesting results
for prime numbers. For example, if the previous conjecture holds, then one has:

∀x > 2 ∃p (prime) with x − 4

π
x1/2 log x < p ≤ x

(see [20]).
Until now, all computed zeros satisfy x = 1/2, as Table 1 shows.
Navier was a famous French engineer and physicist. Independently of his

scientific career, he was the chief constructor of several bridges in Choisy, Asnières,
Argenteuil and Paris. Also, he contributed to the development of Elasticity. In fact,
he is nowadays considered one of the founders of the field Structural Analysis.

On the other hand, Stokes was an Irish mathematician and physicist specially
characterized by precision and rigor. His numerous contributions to Mathematical
Analysis are well known. It is also well known that he deduced many unpublished
results that were later attributed to others. After being nominated for the Lucassian
Chair, he decided to dedicate all his time to teach and assist lots of students and
colleagues in their work.

After the formulation of the Navier-Stokes equations, it was soon understood
that the computation of explicit solutions was essentially impossible, except in a
very reduced number of cases. Consequently, in order to advance in the description
of fluid flows, something had to be done. The related activities have produced a lot
of benefits in many areas and can be grouped as follows:

1. Research in the theoretical analysis of linear and nonlinear partial differential
equations and close fields (since the 30’s). This favored in a very significant
way works on distributions, Sobolev spaces, integral transforms, etc. The
contributions began with Carl W. Oseen [61] and Jean Leray [49] and were
followed by the work of Hopf, Jacques-Louis and Pierre-Louis Lions, Serrin,
Ladyzhenskaya, Nirenberg and others; see [48] for a complete list.

Table 1 A summary of computed zeros of the ζ function

Year Zeros Found by

1859 3 Riemann

1936 1041 Titchmarsh and Comrie

1983 3 · 108 + 1 Van de Lune and Riele

1988 ∼1012 Odlyzko and Schönhage (introducing fast Fourier transform methods)

2004 ∼1024 Gourdon and Demichel (using the Odlyzko-Schönhage algorithm)

Titchmarsh and Comrie were the last to compute zeros by hand
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2. Research in the numerical analysis and solution of partial differential problems
(since the 50’s). The birth and progress of computers opened new possibilities
in fluid mechanics. Probably, the first significative advances correspond to the
contributions of John Von Neumann [81], considered by many people the father
of computational fluid dynamics. They continued with Greenspan, Hughes,
Chorin, Fortin, Glowinski, Rannacher and others; some information can be found
in [30, 31, 58, 68, 76].

Unfortunately (or not), there are still many things to do in both directions.
In what concerns theoretical advances and, more precisely, on the existence and

uniqueness of a solution to (1) complemented with initial and boundary conditions
on u, we are able to prove completely satisfactory results only in some particular
situations. Specifically, to get this, we have either to simplify the geometrical context
or to impose restrictions on the size of the data. In the early 30’s, Leray proved
the existence of what he called “turbulent” solutions (nowadays known as weak
solutions), but he left open the important questions of uniqueness and regularity.
Since then, a lot of effort has been paid to this and many partial results have been
deduced. However, not much more is known at present!

On the other hand, Von Neumann, was convinced of the success of numerics
in this setting, at the point of believing in 1946 that theoretical analysis and even
physical experimentation would become obsolete in a few years. Unfortunately, he
passed away too soon, before the arrival of parallel and vector computation. Without
any doubt, he would have paid a major role in this direction.

Of course, we know today that Von Neumann’s prediction was false. Indeed,
it has been understood that the resolution of many problems of industrial origin
requires a precision level that cannot be reached with our tools. Moreover, it is
possible to observe experimentally many phenomena that we are not able to explain
with the numerical results we have at hand. However, it is clear that the computation
of approximate solutions is of fundamental help to understand and render useful the
theoretical analysis (Figs. 1 and 2); see [30].

If we speak of the analysis of the Navier-Stokes equations, we must also refer to
the work of Olga A. Ladyzhenskaya, one of the great names in the twentieth century.

She was an outstanding mathematician that contributed to several fields, with
special dedication to the analysis of partial differential equations; see [45, 46].
Being the daughter of a descendent of the Russian noble class, she found severe
difficulties to complete her career. At 1939 she applied to enter Leningrad University
but was not admitted; it was only in 1943 when she was allowed to enter Moscow
University in the difficult period of wartime and, although she had completed her
Thesis in 1951, she still had to wait to defend it for 2 years. She could have easily
been the first female Field medallist in 1958 (the awards finally went to Klaus Roth
and René Thom).

In the context of the Navier-Stokes equations, among other achievements, she
was the first to understand the relevance of the inequalities

‖v‖L4 ≤ C‖v‖1/2
L2 ‖∇v‖1/2

L2 if N = 2
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Fig. 1 Numerical computation of the flow of the air around an aerodynamic body: the velocity
field. Results obtained with the FreeFem++ package (see [33])

and

‖v‖L4 ≤ C‖v‖1/4
L2 ‖∇v‖3/4

L2 if N = 3,

that must hold for any compactly supported smooth function; see [40, 43]. She was
also the first to consider the notion of attractor for infinite dimensional dynamical
systems, see [41, 44]. Also, she explored successfully alternative fluid models,
different from the Navier-Stokes equations, with the aim to model and understand
turbulence, see [42].

As indicated by Michael Struwe in [73], “there is only one explanation why in
spite of such adversity Ladyzhenskaya was able to rise to the top of the Steklov
Institute and become the uncontested head of the Leningrad School of partial
differential equations, and this is her work.”
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Fig. 2 Numerical computation of the flow of the air around an aerodynamic body: the pressure.
Results obtained with the FreeFem++ package (see [33])

1.3 Fundamentals of Control Theory

The second main concept in this paper is control theory. This is a branch of math-
ematics with important connection and interaction with other sciences dedicated to
govern the behavior of models of all kinds.

A typical problem in control theory can be described as follows. We consider a
(linear or onlinear) system of the form

{A(y) = B(f )

+ . . . ,

where f is a datum (the control), y is the solution (the state) and the dots may
contain some additional information. We assume that f can be chosen in a (subset
of a) space F and that, for each f , there exists at least one solution y ∈ Y. Roughly
speaking, the control problem consists of finding f such that an associated solution
y satisfies good properties.
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There are two usual ways to give a sense to the desired “good properties” of y.
They correspond to the following classical approaches (see for instance [15, 51]):

• Optimal control: Find f such that (f , y) minimizes a cost J = J (f , y).
• Controllability: Find f such that R(y) takes a desired value, where R : Y �→ Z

is a prescribed mapping (Z is the space of observations).

Control problems are natural in the real world. For instance, the organisms of
many living species are endowed with task regulating mechanisms to guarantee
optimal regimes, keep the species alive and allow them to grow and reproduce.

The first rigorous mathematical formulation of a control problem was given
by Maxwell in his pioneering paper [54], devoted to describe the behavior of
“governed” steam engines. In that paper, the author considered what he called
centrifugal governors, that had been already conceived for the control of windmills.2

1.4 Some Applications of Control Theory

There are many situations in the real world where the techniques of control theory
can be applied and provide satisfactory results. Let us mention some of them.

Sound Therapies for Speech Problems In many cases, some children cannot
speak correctly because they cannot hear or understand well. Accordingly, a speech
therapy process based on auditory training must be designed to enable hearing and
processing sound accurately, see [6, 38, 75, 78].

Usually, this is accomplished by filtering classical music and spoken stories
through an appropriate electronic ear device.

In order to optimize understanding, we must choose this training program
adequately and this task corresponds to a very interesting control problem.

Control of Diabetes Diabetes is excess of high blood sugar due to the absence
or scarcity of insulin. Unfortunately, in many cases, diabetes leads to other critical
diseases, like heart failure, obesity, etc. It is not curable, but can be controlled (in
the usual sense) with regular exercise, diet plans, etc.

Thus, we find here an important application of control theory to health improve-
ment. Some results can be found in [1, 19, 39, 55, 60]. There, the simulations provide
results that show that a well programmed physical exercise, along with knowledge
about how to modify daily insulin dosage (to prevent hypoglycemia) improves blood
glucose control and enhance insulin sensitivity index.

Control Oriented to Cancer Therapies Since several decades, it has been
possible to model tumor growth with (ordinary or partial) differential systems where

2The notion led him to the most important rule in control theory: the feedback principle. Roughly
speaking, this principle is an inversion-like law asserting that the “good” or “best” control v must
be computed from information furnished by the associated y.



On the Control of the Navier-Stokes Equations and Related Systems 9

some data (right hand sides, boundary data, etc.) can be viewed as therapy actuators;
see for instance [2, 5, 7, 56, 70, 82] and the references therein. For example, this
allows to describe radiotherapy strategies. These may be curative in many types of
cancer if they are applied in a well chosen area of the body. Also, they can be used
as part of an additional or auxiliary therapy, after surgery or in combination with
chemotherapy.

Obviously, if radiation therapy is required, several relevant questions correspond-
ing to specific control problems are in order: Where must it be applied? Which doses
are appropriate? How long should the treatment last?

A more recent technique, still unexplored from the control theory viewpoint, is
nanotherapy. Standard therapy drugs cannot always reach the cancer cells because
of existing barriers. However, after encapsulation in microscale agents, they can
pass, reach and act on the cells, leaving no time for reaction; see [10, 11].

Once more, questions about where, how many and how long nanoparticles must
be placed in a therapy process can be answered or at least clarified after the
formulation and solution of adequate control problems.

2 Controlling the Navier-Stokes System

There are many reasons to consider control problems for the Navier-Stokes equa-
tions (1). Among them, we can find motivations in physics, engineering, environ-
mental sciences, biology, etc. In the following section we will review some of them.
Then, we will recall two particular control problems for which recent achievements
have been obtained.

2.1 Three Motivations

A first class of control problems concerns optimum design.
A classical (general) formulation is the following: find a domain D ⊂ R3 such

that a solution to
⎧
⎪⎪⎨

⎪⎪⎩

ut − ν�u+ (u · ∇)u+ 1

ρ
∇p = f in (� \D)× (0, T ),

∇ · u = 0 in (� \D)× (0, T ),

. . .

(3)

satisfies desired properties.
For instance, if D is viewed as an obstacle to the flow of the fluid, we can look for

a domain that minimizes the drag, electromagnetic and/or turbulence effects, etc.;
see for example [63, 64].
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Another important family of control problems deals with fluid insulating/suction
processes. They belong to the class of boundary optimal control or boundary
controllability problems and their general formulation is as follows: find h in an
appropriate space such that a solution to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − ν�u+ (u · ∇)u+ 1

ρ
∇p = f in �× (0, T ),

∇ · u = 0 in �× (0, T ),

u = h on ∂�× (0, T ),

. . .

has good behavior. Again, we can search for boundary controls leading to minimal
drag, “maximal” stability, etc.

An illustration of three-dimensional suction on a rectangular NACA 0012 wing is
depicted in [83]. For example, the lift to drag ratio can be maximized with a suitable
(optimal) suction jet length. The good choice leads to a “controlled” fluid near the
wing surface.

The control of the Navier-Stokes and other similar equations is also related to
other purposes. For instance, it appears in a natural way when we try to minimize
contamination. An acceptable (simplified) controlled system for a contaminated
fluid is the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − ν�u+ (u · ∇)u+ 1

ρ
∇p = B(f ,ψ),

∇ · u = 0,
ψt − κ�ψ + u · ∇ψ = 0,
. . .

(4)

where ψ = ψ(x, t) is a contamination density function, κ > 0 is the corresponding
diffusion coefficient and f = f (x, t) is a control function that allows to identify
the cleaning strategy. In (4), the equations must be solved in a set of the usual form
� × (0, T ) and the dots contain boundary and initial conditions for u and ψ . The
particular structure of the term B(f ,ψ) changes with the model; for more details,
see [4, 8].

A natural related controllability problem is to find f in an appropriate space such
that ψ is “small” at the final time T .

A very serious environmental problem of our times is plastic trash accumulation
in the oceans. Five giant garbage patches have been identified as a consequence of
the current action. The largest is the Great Pacific Garbage Patch, located between
Hawaii and California, with a surface triplicating the surface of France; see [21, 37,
47, 80].
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In 2013, a solution has been proposed: the Ocean Cleanup System 001 (OCS-
001), by Boyan Slat (see [71]). The main tool is a system consisting of a 600 m-
long floater designed to lie at the surface of the water and a tapered 3 m-deep skirt
attached below. The structure intends to surround the Great Pacific plastic island and
push trash to appropriate locations. It is assumed that, later, trash will be picked up
from boats, transported and then adequately processed.

Clearly, several nontrivial control problems remain behind this proposal: Where
do we have to begin operations? Which is the optimal shape for the OCS-001?
Where should we fix the accumulation points? . . .

Once again, the answers can be furnished by methods and techniques from
control theory.

2.2 A Bi-objective Control Problem

This section is devoted to recall some recent results obtained in [23] for an optimal
control problem where we try to improve simultaneously the values of two different
objective (cost) functions.

For simplicity, we will simplify (1) and we will consider the stationary Navier-
Stokes system:

⎧
⎪⎪⎨

⎪⎪⎩

−ν�u+ (u · ∇)u+ 1

ρ
∇p = f1ω in �,

∇ · u = 0 in �,

u = 0 on ∂�.

(5)

Here, ω ⊂ � is a nonempty open set (the control domain), 1ω is the characteristic
function of ω and f is the control. It is assumed to belong to the space of
controls F := L2(ω)3.

Let us introduce the notation

V := {v ∈ H 1
0 (�)3 : v = 0 on ∂�},

where H 1
0 (�) denotes the usual Sobolev space of functions in L2(�) whose partial

derivatives belong to L2(�) and vanish on ∂�. For each f ∈ F, there exists at least
one state, i.e. one solution (u, p) to (5), with

u ∈ V, p ∈ L2(�).

Unfortunately, it is not known in general whether this solution is unique; see for
instance [50, 77].
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We will consider the cost functionals

Ji(f,u) := 1

2

∫

Oi

|u− uid |2 dx+ μ

2

∫

ω

|f|2 dx, i = 1, 2,

where the Oi ⊂ � are nonempty open sets, the uid ∈ L2(Oi)
3 and μ > 0.

It is in general impossible to look for a couple (f,u) that minimizes simul-
taneously J1 and J2. Therefore, our goal will be to find an equilibrium for J1
and J2. More precisely, we will look for a Pareto equilibrium, that is, a control-
state pair (f,u) ∈ F× V such that there is no other pair (g, v) satisfying (5) and

Ji(g, v) ≤ Ji(f,u) for i = 1, 2, (6)

at least one inequality being strict.
Our goals are to prove the existence of Pareto equilibria, to get a characterization

of them and, also, to set up convergent algorithms for their computation. The
main difficulties found in this control problem are its bi-objective structure and
the multiplicity of the control-to-state mapping. Accordingly, the standard tools of
calculus of variations do not work here.

For each α ∈ [0, 1], let us set J(α) := αJ1 + (1− α)J2. The main results in [23]
are the following.

Theorem 1 For each α ∈ [0, 1], there exists at least one solution to the following
extremal problem:

{
Minimize J(α)(f,u)
Subject to f ∈ F, u ∈ V, (u, p)solves (5).

Each minimizer (fα,uα) is a Pareto equilibrium for J1 and J2.

The proof is not difficult, since the Ji are coercive and lower semicontinuous for
the weak convergence in F× L2(�)3 and the set

{(f,u) ∈ F× V : ∃p ∈ L2(�) such that (u, p) solves (5)}

is nonempty and sequentially weakly closed in the same space.

Theorem 2 Let (f,u) be one of the Pareto equilibria for J1 and J2 furnished
by Theorem 1. Then, (f,u) is also a Pareto quasi-equilibrium, that is, there exists
α ∈ [0, 1] such that (f,u) solves, together with some p ∈ L2(�) and some
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(w, q) ∈ V × L2(�), the following coupled optimality system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ν�u+(u · ∇)u+ 1

ρ
∇p= f1ω in �,

∇ · u = 0 in �,

u = 0 on ∂�,

−ν�w−(u · ∇)w+(∇u)tw+∇q=α(u−u1d)1O1+(1−α)(u−u2d)1O2 in �,

∇ · w = 0 in �,

w = 0 on ∂�,

f = − 1

μ
w1ω.

(7)

The proof is rather technical and relies on the Dubovitsky-Milyoutin formalism
(see [29]). Roughly speaking, we use the fact that, at a minimizer of J(α), the descent
cones of J1 and J2 must be disjoint to the tangent space to (5); see [23] for the
details; see also [9, 28, 74] for other related results.

For the computation of Pareto equilibria, we can use the following algorithm,
based on Newton’s method:

ALG We fix a decreasing factor a ∈ (0, 1) and we do as follows.

(a) Choose f0 ∈ F and ν0 ∈ R+ and compute the solution (u0, p0) to

⎧
⎨

⎩

−ν0�u0 +∇p0 = f01ω, x ∈ �,

∇ · u0 = 0, x ∈ �,

u0 = 0, x ∈ ∂�,

(8)

and the solution (w0, q0) to

⎧
⎨

⎩

−ν0�w0 +∇q0 = α(u0 − u1d)1O1 + (1− α)(u0 − u2d)1O2 , x ∈ �,

∇ ·w0 = 0, x ∈ �,

w0 = 0, x ∈ ∂�

(9)

and take

f0 = − 1

μ
w0
∣
∣
∣
ω
.

(b) For given n ≥ 0, νn and fn ∈ F, (un, pn) and (wn, qn), do the following:

(b.1) Take fn,0 = − 1

μ
wn |ω , un,0 = un, wn,0 = wn and νn+1 = max(aνn, ν).

(b.2) Then, for given k ≥ 0, fn,k,un,k,wn,k , set

Fn,k := −νn+1�un,k + (un,k · ∇)un,k − fn,k1ω
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and

Gn,k := −νn+1�wn,k − (un,k · ∇)wn,k + (∇un,k)twn,k

− α(un,k − u1d)1O1 − (1− α)(un,k − u2d)1O2,

compute the solution (vk, hk, zk, ηk) to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−νn+1�vk + (un,k · ∇)vk + (vk · ∇)un,k + ∇hk = Fn,k, x ∈ �,

∇ · vk = 0, x ∈ �,

−νn+1�zk − (un,k · ∇)zk − (vk · ∇)wn,k

+ (∇un,k)tzk + (∇vk)twn,k +∇ηk = Gn,k, x ∈ �,

∇ · zk = 0, x ∈ �,

vk = 0, zk = 0, x ∈ ∂�

(10)
and take:

un,k+1 = un,k − vk, wn,k+1 = wn,k − zk. (11)

Note that these iterates are conceived to compute a solution to the optimality
system (7) that, maybe, is not a minimizer of J(α). Thus, they are expected to furnish
numerical approximations of Pareto quasi-equilibria.

Let us illustrate the behavior of this algorithm with a numerical experiment in
two spatial dimensions. Specifically, we will try to compute a minimizer of the
functional in (6) for α = 0.5 and μ = 1. The domain � is composed by two
rectangles O1 and O2 and we assume that the controls act on a narrow band ω. In
order to solve numerically the systems (8), (9) and (10), we have to fix a mesh and a
finite element method. We have used to this purpose meshes of the kind indicated in
Fig. 3 and a mixed finite element formulation with continuous piecewise P1-bubble
and P1 functions respectively for the velocity field and the pressure; for details, see
[27, 30].

The data uid are the following: u1d = ∇ × ψ1d, where ψ1d is the solution to the
problem

{−�ψ1d = 1, x ∈ O1,

ψ1d = 0, x ∈ ∂O1

and u2d ≡ 0. That means that the “desired” configuration corresponds to a
uniformly rotating flow in O1 and a fluid at rest in O2 (see Fig. 3).

For the external iterates in the previous Newton algorithm, the stopping test has
been

‖un+1 − un‖L∞ + ‖pn+1 − pn‖L∞ ≤ ε,
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a b

Fig. 3 (a) The domain and the “rough” mesh; � is composed of the band ω, the large rectangle
O1 and the small rectangle O2; number of nodes: 1519; number of triangles: 2876. (b) The target
velocity field u1d ; u2d = 0

with ε = 10−6. For the internal loops, the stopping test has been

‖un,k+1 − un,k‖L∞ + ‖wn,k+1 − wn,k‖L∞ ≤ ε.

The computations have been performed with the FreeFem++ package (see
[33]). We have used three different meshes: a “rough” mesh with 1519 nodes, a
“reasonable” mesh with 3449 nodes and, also, a “fine” mesh with 6003 nodes. Some
results are depicted in Fig. 4.

2.3 A Null Controllability Problem

In the framework of the control of the time-dependent Navier-Stokes system, a
very relevant question is whether one is able to drive any solution to rest working,
i.e. acting, only at the points of a small set ω × (0, T ).

This is the so called null controllability problem for (1). A positive answer was
conjectured by J.-L. Lions in [52, 53]. Since then, a lot of related contributions
have appeared, but the problem still remains open; see [14, 16, 18, 24, 26, 32, 35]
for the best results known at present. In particular, in [32] it is proved that, in the
context of boundary control in a cube, by modifying slightly the right hand side of
the equations, it is possible to find controls and associated states that vanish at the
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Fig. 4 Final velocity field u and adjoint w computed with a Newton-like method for α = 0.5.
Number of nodes: 6003. Number of triangles: 11684

final time t = T . In this section, we are going to recall a similar result for a system
of the kind (4) that is established in [25].

More precisely, let us suppose that � is the unit cube in R
3, �0 is the face {x ∈

∂� : x1 = 0} and �1 = ∂�\�0 and let us consider the so called Boussinesq system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − ν�u+ (u · ∇)u+ 1

ρ
∇p − θk = 0 in �× (0, T ),

∇ · u = 0 in �× (0, T ),

θt − c�θ + u · ∇θ = 0 in �× (0, T ),

u(x, t) = 0, θ(x, t) = 0 on �0 × (0, T ),

u(x, 0) = u0(x), θ(x, 0) = θ0(x) in �,

(12)

where k ∈ R
3, c > 0 and the initial data u0 and θ0 are prescribed.

It will be said that (12) is null-controllable if there exist boundary data for u and θ

on �1 × (0, T ) such that an associated solution satisfies

u(x, T ) = 0 and θ(x, T ) = 0 in �.

The following result holds:

Theorem 3 Let u0 ∈ V and θ0 ∈ L2(�) be given. Then, there exist sequences {fn}
and {gn} with

fn → 0 in Lr(0, T ;H−1(�)3) and gn → 0 in Lr(0, T ;H−1(�)) as n→+∞

for all r ∈ [1, 4/3) such that, for each n, the coupled system (12) with right hand
sides fn and gn respectively in the first and third equation is null-controllable.
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The result says that, although maybe (12) is not null-controllable, we can always
find “small” forces fn and heat sources gn such that, if they are imposed, the resulting
system can be controlled exactly to zero.

The proof is inspired by the ideas in [32]. Essentially, what we have to do is
to design the (fn, gn) and the boundary data in such a way that, at an intermediate
time t = T0, the velocity field possesses a specially simple structure. After this,
in (T0, T ), the task is reduced to the proof of the boundary null controllability of
a linear parabolic system, one-dimensional in space. In view of known results, this
can be established. See [25] for more details; see also [17] for other similar results.

Remark 1 At present, no uniform estimate is known for the cost of controllability
of the modified systems. In other words, it is unknown if the boundary controls
furnished by Theorem 3 are uniformly bounded (independently of n) in a “good”
space. If this were the case, we would probably be able to deduce the desired null
controllability of (12). �

Acknowledgements This work has been partially supported by MINECO (Spain, Grant
MTM2016-76990-P).

References

1. Abedini Najafabadi, H., Shahrokhi, M.: Model predictive control of blood sugar in patients
with type-1 diabetes. Optimal Control Appl. Methods 37(4), 559–573 (2016)

2. Anderson, A.R.A., Maini, P.K.: Mathematical oncology. Bull. Math. Biol. 80(5), 945–953
(2018)

3. Andrews, D.G.: An Introduction to Atmospheric Fluids. Cambridge University Press, Cam-
bridge (2000)

4. Arantes, S.F., Muñoz-Rivera, J.E.: Optimal control theory for ambient pollution. Int. J. Control.
83(11), 2261–2275 (2010)

5. Banks, H.T.: Modeling and control in the biomedical sciences. Lecture Notes in Biomathemat-
ics, vol. 6. Springer, Berlin (1975)

6. Bell, E.: An ethnographic report and evaluation of the implementation of Audio-Psycho-
Phonology (Sound Therapy) in the support of Timothy, a year two child, over a period of
three weeks. Ph.D. Thesis, Griffith University (1991)

7. Belmiloudi, A.: Stabilization, Optimal and Robust Control. Theory and Applications In
Biological And Physical Sciences. Springer, London (2008)

8. Bermúdez, A.: Mathematical techniques for some environmental problems related to water
pollution control. In: Mathematics, Climate and Environment, pp. 12–27. RMA Research
Notes in Applied Mathematics, 27. Masson, Paris (1993)

9. Boldrini, J.L., Fernández-Cara, E., Rojas-Medar, M.A.: An optimal control problem for a
generalized Boussinesq model: the time dependent case. Rev. Mat. Complut. 20(2), 339–366
(2007)

10. Bracey, S.S.: Modeling and control of nanoparticle bloodstream concentration for cancer
therapies. Ph.D. Thesis, Louisiana Tech University (2013)

11. Cattaneo, L., Zunino, P.: A computational model of drug delivery through microcirculation to
compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30(11), 1347–1371
(2014)



18 E. Fernández-Cara

12. Chorin, A.J., Marsden, J.E.: A mathematical introduction to fluid mechanics, 3rd edn. Springer,
New York (1993)

13. Clay Institute. http://www.claymath.org/millennium-problems/millennium-prize-problems
14. Coron, J.-M.: On the controllability of the 2-D incompressible Navier-Stokes equations with

the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var. 1, 35–75 (1995/96)
15. Coron, J.-M.: Control and Nonlinearity. American Mathematical Society, Providence (2007)
16. Coron, J.-M., Fursikov, A.V.: Global exact controllability of the 2D Navier-Stokes equations

on a manifold without boundary. Russian J. Math. Phys. 4(4), 429–448 (1996)
17. Coron, J.-M., Marbach, F., Sueur, F., Zhang, P.: On the controllability of the Navier-Stokes

equation in a rectangle, with a little help of a distributed phantom force. Ann PDE 5, Article
number: 17 (2019)

18. Coron, J.-M., Marbach, F., Sueur, F.: Small-time global exact controllability of the Navier-
Stokes equation with Navier slip-with-friction boundary conditions. J. Eur. Math. Soc. (To
appear)

19. Davis, W.K. and others: Psychosocial adjustment to and control of diabetes mellitus: differ-
ences by disease type and treatment. Health Psychol. 6(1), 1–14 (1987)

20. Dudek, A.W.: On the Riemann hypothesis and the difference between primes. Int. J. Number
Theory 11(03), 771–778 (2014)

21. Eriksen, M., and others: Plastic pollution in the world’s oceans: more than 5 trillion plastic
pieces weighing over 250,000 tons afloat at sea. PLOS One 9(12), e111913 (2014)

22. Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’Academie des
Sciences de Berlin (1757)

23. Fernández-Cara, E., Marín-Gayte, I.: Theoretical and numerical results for some bi-objective
optimal control problems. Commun. Pure Appl. Math. 19, 2101–2126 (2020)

24. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Yu., Puel, J.-P.: On the controllability of the
N-dimensional Navier-Stokes and Boussinesq systems with N −1 scalar controls. C. R. Math.
Acad. Sci. Paris 340(4), 275–280 (2005)

25. Fernández-Cara, E., De Sousa, I.T., Viera, F.B.: Remarks concerning the approximate control-
lability of the 3D Navier-Stokes and Boussinesq systems. SeMA J. 74, 237–253 (2017)

26. Fursikov, A.V., Imanuvilov, O.Yu.: Exact controllability of the Navier-Stokes and Boussinesq
equations. Russ. Math. Surv. 54(3), 565–618 (1999)

27. Fursikov, A.V., Pironneau, O.: Finite element methods for Navier-Stokes equations. Annu. Rev.
Fluid Mech. 24, 167–204 (1992)

28. Gayte, I., Guillén-González, F., Rojas-Medar, M.A.: Dubovitskii-Milyutin formalism applied
to optimal control problems with constraints given by the heat equation with final data. IMA J.
Math. Control. Inf. 27(1), 57–76 (2010)

29. Girsanov, I.V.: Lectures on mathematical theory of extremum problems. Lecture Notes in
Economics and Mathematical Systems 67. Springer, Berlin (1972)

30. Glowinski, R.: Finite element methods for incompressible viscous flow. Handbook of Numer-
ical Analysis, vol. IX, pp. 3–1176. Handbook of Numerical Analysis, IX. North-Holland,
Amsterdam (2003)

31. Greenspan, D.: Discrete numerical methods in physics and engineering. Academic Press, New
York (1974)

32. Guerrero, S., Imanuvilov, O.Yu., Puel, J.-P.: A result concerning the global approximate
controllability of the Navier-Stokes system in dimension 3. J. Math. Pures Appl. (9) 98(6),
689–709 (2012)

33. Hecht, F. http://www.freefem.org
34. Hilbert, D. https://www.encyclopediaofmath.org/index.php/Hilbertproblems
35. Imanuvilov, O.Yu.: Remarks on exact controllability for the Navier-Stokes equations. ESAIM

Control Optim. Calc. Var. 6, 39–72 (2001)
36. Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag, New York (1990)
37. Kaiser, J.: The dirt on ocean garbage patches. Science 328(5985), 1506 (2010)
38. Kämpfe, J., Sedlmeier, P., Renkewitz, F.: The impact of background music on adult listeners:

a meta-analysis. Psychol. Music 39(4), 424–448 (2011)

http://www.claymath.org/millennium-problems/millennium-prize-problems
http://www.freefem.org
https://www.encyclopediaofmath.org/index.php/Hilbertproblems


On the Control of the Navier-Stokes Equations and Related Systems 19

39. Kartono, A., and others: The effects of physical exercise on the insulin-dependent diabetes
mellitus subjects using the modified minimal model. Int. J. Pharm. Pharm. Sci. 9(2), 179–186
(2016)

40. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and
Breach, Science Publishers, New York (1969)

41. Ladyzhenskaya, O.A.: Attractors for Semigroups and Evolution Equations. Cambridge Uni-
versity Press, Cambridge (1991)

42. Ladyzhenskaya, O.A.: Some results on modifications of three-dimensional Navier-Stokes
equations. Nonlinear Analysis and Continuum Mechanics (Ferrara, 1992), pp. 73–84. Springer,
New York (1998)

43. Ladyzhenskaya, O.A.: The sixth millennium problem: Navier-Stokes equations, existence and
smoothness (Russian), translated from Uspekhi Mat. Nauk 58, (2) (350), 45–78 (2003). Russ.
Math. Surv. 58(2), 251–286 (2003)

44. Ladyzhenskaya, O.A., Seregin, G.A.: On the smoothness of systems describing flows of
generalized Newtonian fluids, and on the estimation of the dimensions of their attractors
(Russian); translated from Izv. Ross. Akad. Nauk Ser. Mat. 62(1), 59–122 (1998). Izv. Math.
62(1), 55–113 (1998)

45. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic
Press, New York (1968)

46. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of
parabolic type. Translations of Mathematical Monographs, vol. 23. American Mathematical
Society, Providence (1968)

47. Lebreton, L., and others: Evidence that the Great Pacific Garbage Patch is rapidly accumulating
plastic. Sci. Rep. 8(1), Article number: 4666 (2018)

48. LeMarie-Rieusset, J.: The Navier-Stokes problem in the 21st Century. CRC Press, Boca Raton
(2016)

49. Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63,
193–248 (1933)

50. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod,
Gauthier-Villars, Paris (1969)

51. Lions, J.-L.: Optimal control of systems governed by partial differential equations. Springer-
Verlag, New York (1971)

52. Lions, J.-L.: Remarques sur la controlâbilite approchée. In: Spanish-French Conference on
Distributed-Systems Control” (Málaga, 1990), pp. 77–87. University of Málaga Press, Málaga
(1990)

53. Lions, J.-L.: Exact controllability for distributed systems. Some trends and some problems. In:
Applied and Industrial Mathematics (Venice, 1989), pp. 59–84. Kluwer Academic Publishers,
Dordrecht (1991)

54. Maxwell, J.C.: On governors. Proc. R. Soc. London 16, 270–283 (1868)
55. Mei, Y.: Modeling and control to improve blood glucose concentration for people with diabetes.

Ph.D. Thesis. Iowa State University, ProQuest LLC, Ann Arbor (2017)
56. Murray, J.D.: Mathematical Biology, II. Spatial Models and Biomedical Applications, 3rd edn.

Springer, New York (2003)
57. Navier, C.-L.: Résumé des leçons données à l’École des Ponts et Chaussées sur l’application

de la mécanique à l’etablissement des constructions et des machines, vol. 2: Leçons sur le
mouvement et la résistance des fluides, la conduite et la distribution des eaux, 2 éd. Carilian-
Goeury, Paris, années 1833 à 1838

58. Necasova, S.; Kramar, S.: Navier-Stokes flow around a rotating obstacle. Mathematical
analysis of its asymptotic behavior. Atlantis Briefs in Differential Equations, 3. Atlantis Press,
Paris (2016)

59. Newton, I.: Philosophiæ naturalis principia mathematica. University of Cambridge, Cambridge
(1687)

60. Ngo, P.D., and others: Control of blood glucose for type-1 diabetes by using reinforcement
learning with feedforward algorithm. Comput. Math. Methods Med. (2018), Art. ID 4091497, 8



20 E. Fernández-Cara

61. Oseen, C.W.: Newer Methods and Results in Hydrodynamics (German). Akademie Verlag,
Berlin (1927)

62. Panton, R.L.: Incompressible Flow. John Wiley & Sons, Inc., New York (1984)
63. Parolini, N., Quarteroni, A.: Mathematical models and numerical simulations for the America’s

Cup. Comput. Methods Appl. Mech. Eng. 194(9–11), 1001–1026 (2005)
64. Pironneau, O.: Optimal shape design with applications to aerodynamics. In: Shape Opti-

mization and Free Boundaries (Montreal, PQ, 1990), pp. 211–251. NATO Advanced Science
Institutes Series C: Mathematical and Physical Sciences, 380. Kluwer Academic Publishers,
Dordrecht (1992)

65. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. John Wiley
& Sons, New York (1987)

66. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The three-dimensional Navier-Stokes equations.
Classical theory. Cambridge University Press, Cambridge (2016)

67. Rohli, R.V., Vega, A.V.: Climatology, 2nd edn. Jones & and Barlett Learning, London (2012)
68. Salvi, R. (ed.): The Navier-Stokes equations: theory and numerical methods. In: Proceedings

of the International Conference held in Varenna, 2000. Lecture Notes in Pure and Applied
Mathematics, 223. Marcel Dekker, Inc., New York (2002)

69. Saramito, P.: Complex fluids. Modeling and algorithms. Springer, Cham (2016)
70. Schättler, H., Ledzewicz, U.: Optimal control of cancer treatments: mathematical models

for the tumor microenvironment. In: Analysis and Geometry in Control Theory and Its
Applications, pp. 209–235. Springer INdAM Series, 11. Springer, Cham (2015)

71. Slat, B., and others: How the Oceans Can Clean Themselves. The Ocean Cleanup, The
Netherlands (2014)

72. Stokes, G.: On the Theories of the Internal Friction of Fluids in Motion, 1845; reprint by
Cambridge University Press, Cambridge (2009)

73. Struwe, M.: Olga Ladyzhenskaya – A life-long devotion to mathematics. In: Hildebrandt, S.,
Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations. Springer-
Verlag, Heidelberg (2003)

74. Sun, B., Wu, M.-X.: Optimal control of age-structured population dynamics for spread of
universally fatal diseases. Appl. Anal. 92(5), 901–921 (2013)

75. Suresh, B.S., De Oliveira Jr., G.S., Suresh, S.: The effect of audio therapy to treat postoperative
pain in children undergoing major surgery: a randomized controlled trial. Pediatr. Surg. Int.
31(2), 197–201 (2015)

76. Taylor, C., Hughes, T.G.: Finite Element Programming of the Navier-Stokes Equations.
Pineridge Press Ltd., Swansea (1981)

77. Temam, R.: Navier-Stokes equations and nonlinear functional analysis, 2nd edn. CBMS-NSF
Regional Conference Series in Applied Mathematics 66. SIAM, Philadelphia (1995)

78. Tomatis, A.A.: The Ear and Language. Dorval, Ontario (Moulin) (1996)
79. Tritton, D.J.: Physical fluid dynamics. Oxford Science Publications. The Clarendon Press,

Oxford University Press, New York (1988)
80. Van Emmerik, T., and others: A methodology to characterize riverine macroplastic emission

Into the ocean. Front. Mar. Sci. 5, Article 372 (2018)
81. Von Neumann, J.: Collected works. In: Taub, A.H. (ed.) Theory of Games, Astrophysics,

Hydrodynamics and Meteorology, vol. VI. A Pergamon Press Book The Macmillan Co., New
York (1963)

82. Wodarz, D., Komarova, N.L.: Dynamics of Cancer. Mathematical Foundations of Oncology.
World Scientific Publishing Co., Hackensack (2014)

83. Yousefi, K., Reza S.: Three-dimensional suction flow control and suction jet length optimiza-
tion of NACA 0012 wing. Meccanica 50, 1481–1494 (2015)



Asymptotic Stability in Some Generic
Classes of Three-Dimensional
Discontinuous Dynamical Systems

Marco A. Teixeira and Durval J. Tonon

Abstract In this paper aspects of local asymptotic and Lyapunov stability of 3D
piecewise smooth vector fields are studied.

1 Introduction

Asymptotically stability for smooth systems has classically been well developed.
Asymptotic stability questions have probably motivated the introduction of many
mathematical concepts (tools) in engineering, particularly in control engineering
and it has had a stimulating impact on these fields, see [1–3, 7, 10, 12], for example.
However, as far as the authors know, there are no specific or advanced techniques or
tools within the piecewise smooth vector fields, PSVF for short.

This paper is part of a general program involving the study of PSVF in R
n of the

form

u̇ = f (u)+ sign(u1)g(u),

where u = (u1, . . . , un), and f, g : Rn → R
n are smooth vector fields. Note that

we have two distinct differential systems, one in the half-space u1 > 0 and the other
in u1 < 0.

Our main concern is to discuss the local Asymptotic Stability of PSVF on
R

3 around typical singularities. Our strategy is: 1-provide a codimension one
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classification of the systems around the origin and their respective normal forms
and generic unfoldings, 2-exhibit conditions for the stability.

Let Xr be the space of all germs of Cr vector fields on (R3, 0) endowed with the
Cr -topology, with r ≥ 1. It seems natural to think that a qualitative study of stability
of such systems, in general, needs to combine the dynamics of each smooth vector
fields that compose the PSVF with the behavior of sliding modes.

Let Z be a PSVF. In our approach several ingredients and tools are used, such
as elements of the contact between a vector field and the boundary of a manifold,
sliding vector fields, first return map associated to Z and the interaction between
these ingredients. As we are interested in the characterization of the asymptotic or
Lyapunov stability at a typical singularity of Z, only the forward orbits of Z are
considered.

The organization of the paper is as follows: In Sect. 2 some preliminaries,
definitions and the notations are presented. In Sect. 3 the main results of the paper
are discussed, in Sects. 4 and 5 we prove results on the asymptotic and Lyapunov
stability at a typical singularity for a 3D family of PSVF.

2 Preliminaries

2.1 Filippov’s Convention

Let be M = {(x, y, z); z = 0} and we define a PSVF given by

Z(q) =
{
X(q), z ≥ 0
Y (q), z ≤ 0,

where X,Y ∈ Xr . Call �r = Xr × Xr the space of all germs of vector fields Z at 0
endowed with the product topology and we denote Z = (X, Y ). Consider the map
h : (x, y, z) �→ z. For each X ∈ Xr we define a smooth function Xh : R3 → R

by Xh = 〈X,∇h〉 where 〈., .〉 is the canonical inner product in R
3. We denote

Xnh(p) = X(Xn−1h)(p), n ≥ 2. Let be Z = (X, Y ) ∈ �r . In M , we distinguish
the following open regions:

• Sewing Region: Mc = {p ∈ M; (Xh)(p)(Yh)(p) > 0}. We denote Mc+ = {p ∈
M; (Xh)(p) > 0, (Yh)(p) > 0} and Mc− = {p ∈ M; (Xh)(p) < 0, (Yh)(p) <

0}.
• Escaping Region: Me = {p ∈ M; (Xh)(p) > 0, (Yh)(p) < 0}.
• Sliding Region: Ms = {p ∈ M; (Xh)(p) < 0, (Yh)(p) > 0}.
Let O = Mc∪Me∪Ms . Observe that for any p ∈ O we get X(p) �= 0 and Y (p) �= 0
and if p ∈ Ms then 〈(Y − X)(p),∇h(p)〉 > 0.

The following definitions of orbit-solutions at points in the switching manifold
M = {(x, y, z); z = 0} are given by Filippov’s convention (stated in [6]). The
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sliding vector field associated to Z is the vector field ZM tangent to Ms and defined
at q ∈ Ms by

ZM = 1

Y3 − X3
(X1Y3 − Y1X3,X2Y3 − Y2X3), (1)

where X = (X1,X2,X3) and Y = (Y1, Y2, Y3). It is clear that the vector field ZM

is orbitally equivalent, on Ms , to the rescaling sliding vector field given by

Z̃M = (X1Y3 − Y1X3,X2Y3 − Y2X3) (2)

and therefore ZM can be Cr extended beyond the boundary of Ms . Throughout the
paper the forward orbit of Z through a point p ∈ Cl(Ms) is given by the orbit of
Z̃M (and therefore is contained in Ms).

Definition 1 The point p ∈ Ms is said a pseudo-equilibrium if ZM(p) = 0.

As said above, Filippov’s rule describes three basic forms of dynamics that would
occur on the switching manifold: sewing, sliding and escaping. The trajectories of
X and Y are denoted by φX and φY , respectively.

2.2 Contact Between a Smooth Vector Field X and a
Codimension One Submanifold M of R3

Details on the concepts and results treated in this subsection are in [9] and [13].

Definition 2 Let X ∈ Xr . We say that:

(a) 0 is M-regular point of X if Xh(0) �= 0.
(b) 0 is a fold singularity of X if Xh(0) = 0 and X2h(0) �= 0.
(c) 0 is a cusp singularity of X if Xh(0) = X2h(0) = 0,X3h(0) �= 0 and the

vectors dh(0), dXh(0) and dX2h(0) are linearly independent.

Consider SX = {p ∈ M;Xh(p) = 0} the tangential singularities of X. In the
following we characterize the generic behavior of smooth vector fields in (R3, 0)
relative to a codimension one submanifold M .

Definition 3 We call �0 the set of elements X ∈ Xr satisfying one of the following
conditions:

(a) 0 is a M-regular point of X (Xh(0) �= 0).
(b) 0 is a fold singularity of X.
(c) 0 is a cusp singularity of X.

In the following we roughly define the classical notion of codimension of vector
fields.
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Definition 4 Consider �(Z) the set of all small perturbations of Z, defined on a
compact set K such that 0 ∈ K . We say that the codimension of Z at the singularity
0 is k if it appears exactly k distinct topological types of vector fields in �(Z).

In [9], it was proved that the subset �0 is open, dense and it characterizes the
structural stability in Xr . Following the Thom-Smale program the next step is to
study the bifurcation set Xr

1 = Xr − �0. We will follow such strategy in Z =
(X, Y ) ∈ �r . For simplicity, when we say that Z is of codimension k means that
the codimension of Z at the singularity 0 is k. The codimension of Z = (X, Y ) at 0
is, at least, the sum of codimensions of X and Y at 0. This is due to the fact that the
dynamics of Z is composed by the dynamics of X,Y, the sliding vector fields ZM ,
the first return map ϕZ and all the iteration of these ingredients.

As usual, the characterization of �1 ⊂ Xr
1, the subset composed by PSVFs that

are of codimension one, is based in certain issues involving unstable vector fields
without rejecting a generic context. It means that certain conditions imposed on the
definition of �0 are violated but quasi-generic assumptions are considered.

Definition 5 Call �1 the set �1(a) ∪�1(b) ⊂ Xr , where:

1. �1(a) ⊂ Xr is the set of smooth vector fields X such that 0 is a hyperbolic
singular point, the eigenvectors are transverse to M at 0, the eigenvalues of
DX(0) are of algebraic multiplicity 1. Moreover the real parts of the non-
conjugated eigenvalues are distinct, i.e., if λi �= λj and λi �= λj then Re(λi) �=
Re(λj ), where λi, λj are eigenvalues of DX(0) and λj denotes the conjugated
of the number λj .

2. �1(b) ⊂ Xr is the set of smooth vector fields X such that X(0) �= 0, (Xh)(0) =
0 = (X2h)(0) and one of the following conditions are valid:

(b.1) (X3h)(0) �= 0, dim{dh(0), d(Xh)(0), d(X2h)(0)} = 2 and 0 is a non
degenerate critical point (Morse) of Xh |M .

(b.2) (X3h)(0) = 0, (X4h)(0) �= 0 and 0 is a regular point of Xh |M .

Let H(h) be the Hessian matrix of the function h.

Definition 6 If X ∈ �1(a) ⊂ Xr then we distinguish the cases:

(a.1) Node: X(0) = 0, the eigenvalues of DX(0), λj , j = 1, 2, 3 are real distinct,
have the same sign and the corresponding eigenvectors are transversal to M

at 0.
(a.2) Saddle: X(0) = 0, the eigenvalues of DX(0), λj , j = 1, 2, 3 are real

distinct, one of then has opposite sign in relation to the others and the
corresponding eigenvectors are transversal to M at 0.

(a.3) Focus: X(0) = 0, 0 is a hyperbolic critical point of X, the eigenvalues of
DX(0) are λ12 = a ± bi, λ3 = c with a, b, c distinct of zero, a �= c and the
corresponding eigenvector is transversal to M at 0.
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Lips Beak to beak Dove’s tail

Fig. 1 The family �1(b) of 3D PSVF

If X ∈ �1(b) ⊂ Xr then we distinguish the cases:

(b.1.1) Lips given in Definition 5 (b.1) with det(H(Xh |M (0))) > 0, see Fig. 1.
(b.1.2) Beak to beak given in Definition 5 (b.1) with det (H(Xh |M (0))) < 0.
(b.1.3) Dove’s tail given in Definition 5 (b.2).

2.3 Classification of Singularities of Z ∈ �r

Definition 7 We say that 0 ∈ R
3 is:

(a) a two-fold singularity of Z if it is a fold singularity of both vector fields X and
Y .

(b) fold-cusp singularity of Z if it is a fold singularity of X and a cusp singularity
of Y .

Definition 8 We say that the origin is an M-singularity or just a singularity of Z

if:

• either it is a singular point of X or Y (X(0) = 0 or Y (0) = 0).
• or X(0) · Y (0) �= 0 and it is a tangential singularity of X or Y .

Lemma 1 Suppose that X(0) �= 0 and Y (0) �= 0. If 0 is a tangential singularity
of both, X and Y , then Z̃M(0) = 0. On the other hand, if the origin is a tangential
singularity of X and a regular point of Y , or vice-versa, then Z̃M(0) �= 0.

Proof First, we assume that the origin is a tangential singularity of X and Y then
Xh(0) = X3(0) = 0 and Yh(0) = Y3(0) = 0. Therefore, by (2) we get Z̃M(0) =
(X1(0)Y3(0)− Y1(0)X3(0),X2(0)Y3(0)− Y2(0)X3(0)) = (0, 0).

Suppose now that X is tangent and Y is transversal to M at (0, 0, 0). So, Xh(0) =
X3(0) = 0 and Yh(0) = Y3(0) �= 0. From the expression of Z̃M , we get

Z̃M(0) = (X1(0)Y3(0),X2(0)Y3(0)).

In this way, we derive that the origin is a pseudo equilibrium of Z̃M if and only if
X(0) = 0, which contradicts the hypothesis. ��
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2.4 Properties of Some Families of 3D PSVF’s

In the following relevant intrinsic properties of some classes of 3D PSVF’s are
discussed. Consider the subsets �0 =⋃4

i=1 �0(i) and �1 =⋃6
i=1 �1(i) where

• Z = (X, Y ) ∈ �0(1) if 0 is a regular point of both X and Y (regular-regular).
• Z = (X, Y ) ∈ �0(2) if 0 is a fold singularity of X and a regular point of Y

(fold-regular).
• Z = (X, Y ) ∈ �0(3) if 0 is a cusp singularity of X and a regular point of Y

(cusp-regular).
• Z = (X, Y ) ∈ �0(4) if 0 is a two-fold singularity of Z, SX and SY are transverse

at 0, the eigenspaces of Z̃M are transverse to SX and SY at 0 and 0 is a hyperbolic
singular point of Z̃M (two-fold).

• Z = (X, Y ) ∈ �1(1) if 0 is a lips singularity of X0 and a regular point of Y0,
(see Definition 6) (lips-regular).

• Z = (X, Y ) ∈ �1(2) if 0 is a beak to beak singularity of X0 and a regular point
of Y0 (beak to beak-regular).

• Z = (X, Y ) ∈ �1(3) if 0 is a dove’s tail singularity of X0 and a regular point of
Y0 (dove’s tail-regular).

• Z = (X, Y ) ∈ �1(4) if 0 is a two-fold singularity and the contact between
SX0 and SY0 is quadratic at 0, X2

0h(0) �= Y 2
0 h(0). Moreover the eigenspaces of

DZ̃M
0 (0) are transversal to SX0 and SY0 at 0 (1-degenerate two-fold).

• Z = (X, Y ) ∈ �1(5) if 0 is a fold singularity, cusp singularity, resp., of X0, Y0,
resp. and SX0 is transversal to SY0 at 0 (fold-cusp).

• Z = (X, Y ) ∈ �1(6) if 0 is a two-fold singularity such that SX0 is transversal
to SY0 at 0, the origin is a saddle-node singularity of Z̃M

0 , the eigenspaces of
DZ̃M

0 (0) are transversal to SX0 and SY0 at 0 and the center manifold intercepts
Ms (two-fold-saddle-node).

A detailed analysis of such classes can be found in [9] and [11].

2.5 Subclasses of �0 and �1

As usual, we define the sign function on R as sign(0) = 0, sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0. We now make explicit some subclasses of codimension zero
3D PSVF, namely �0. Our purpose is to characterize the asymptotic and Lyapunov
stability at the origin for Z ∈ �0 that is C0 M-equivalent to one of these subclasses.
The approach to get these subclasses is given in [9] and [11]. In [5] are exhibited all
the normal forms of structurally stable piecewise smooth vector fields (codimension
zero). These normal forms are contained in the subsets �̃0(i) ⊂ �0, i = 1, . . . , 4
constituted by Z = (X, Y ) ∈ �0(i) such that:

• �̃0(1): X(x, y, z) = (a, b, c) and Y (x, y, z) = (d, e, f ), where a = X1(0), b =
X2(0), d = Y1(0), e = Y2(0),Xh(0) = c �= 0 and Yh(0) = f �= 0.
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• �̃0(2): X(x, y, z) = (a, 0, x) and Y (x, y, z) = (1, 0, b) where a = X2h(0) �= 0
and b = Yh(0) �= 0.

• �̃0(3): X(x, y, z) = (a, 0, b(y + x2)) and Y (x, y, z) = (1, 0, c) where a =
X1(0), sign(b) = sign(X3h(0)) �= 0 and c = Yh(0) �= 0.

• �̃0(4): X(x, y, z) = (a, b, x) and Y (x, y, z) = (c, d, y) where a = X2h(0) �=
0, b = X(Yh)(0), c = Y (Xh)(0) and d = Y 2h(0) �= 0.

Notice that, as far as the authors know, there is not a complete classification of
3D codimension one singularities, namely �1. In what follows, we exhibit a list
of distinct topological types of codimension one singularities which are obtained
via normal forms tools. However, it is not the main purpose of the present paper,
to exhibit explicitly a complete list of normal forms of codimension one three
dimensional PSVF. Consider the subsets �̃1(i) ⊂ �1(i), i = 1, . . . , 6 constituted
by the PSVF Zλ = (Xλ, Yλ) ∈ �1(i) such that:

• �̃1(1): Xλ(x, y, z) = (a, b, x2 + y2 + λ) and Yλ(x, y, z) = (1, 0, c) where
a2 + b2 = X3

0h(0) �= 0 and c = Y0h(0) �= 0.
• �̃1(2): Xλ(x, y, z) = (a, b, x2 − y2 + λ) and Yλ(x, y, z) = (1, 0, c) where

a2 − b2 = X3
0h(0) �= 0 and c = Y0h(0) �= 0.

• �̃1(3) : Xλ(x, y, z) = (a, 0, x3 + y + λx) and Ỹλ(x, y, z) = (1, 0, b) where
sign(a) = sign(X4

0h(0)) �= 0 and b = Y0h(0) �= 0.
• �̃1(4) : Xλ(x, y, z) = (a, b, ε1(x − (y2 + λ))) and Yλ(x, y, z) = (c, d, ε2(x +

y2)) where a = X2
0h(0) �= 0, b = X2

0(0), c = Y 2
0 (0), d = Y 2

0 h(0) �= 0 and
εi = ±1.

• �̃1(5) : Xλ(x, y, z) = (a, λ, b(y + x2)) and Yλ(x, y, z) = (c, d, x) where a =
X1,0(0) �= 0, sign(b) = sign(X3

0h(0)) �= 0, c = Y 2
0 h(0) �= 0 and d = Y2,0(0).

• �̃1(6) : Xλ(x, y, z) = (a + aλ− a2y, b + cλ− acy, x) and Yλ(x, y, z) = (c +
bλ+b2x−2aby, d+dλ+bdx−2bcy, y) where a = X2

0h(0), b = X0(Y0h)(0),
c = Y0(X0h)(0), d = Y 2

0 h(0) are not zero and ad = bc.

3 Main Results

In this section we provide some results about the asymptotic/Lyapunov stability at
the origin of subsets of �0 and �1 defined in Sect. 2.5.

Theorem 1 Consider Z = (X, Y ) ∈ �0. The following statements are true:

(a) Z ∈ �̃0(1) is asymptotically stable (resp. Lyapunov stable) at 0 if and only
if X(0) and Y (0) are linearly dependent, � = �s and Z̃� is asymptotically
stable (resp. Lyapunov stable) at 0.

(b) If Z ∈ �̃0(2) ∪ �̃0(3) ∪ �̃0(4) then Z is not Lyapunov stable at 0.
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The proof of Theorem 1 is presented in Sect. 4, as consequence of Lemmas 2–4.
Let us define:

�A
0 (4) = {Z ∈ �̃0(4);X2h(0) < 0, Y 2h(0) > 0,X(Yh)(0)− Y (Xh)(0) < 0,

X(Yh)(0)Y (Xh)(0) < X2h(0)Y 2h(0)}.

In the following we characterize the basin of attraction of 0 of Z ∈ �A
0 (4). The

proof of this result is given in Theorem B and Proposition 2 in [8].

Proposition 1 If Z ∈ �A
0 (4) then the basin of attraction of 0 is:

BZ = �s ∪�e ∪ [�c\R0]

where R0 = [{(x, y, 0) ∈ �; x > 0, y < 2X(Yh)(0)[X2h(0)]−1x} ∩�c].
Let � = (a − d)2 + 4c(b− 1). Consider the sets

�A
1 (5) = {Z0 ∈ �̃1(5);X1

0(0) < 0,X3
0h(0) < 0, Y 2

0 h(0) > 0,

Y 2
0 (0) < 0,X1

0(0)+
X3

0h(0)Y
2
0 (0)

2(X1
0(0))

2
> 0},

�A
1 (6) = {Z0 ∈ �̃1(7);X2

0h(0) < 0,X0(Y0h)(0) < 0,
X2

0h(0)Y
2
0 h(0) = X0(Y0h)(0)Y0(X0h)(0),

Y 2
0 h(0) > 0,X0(Y0h)(0)− Y0(X0h)(0) < 0}.

(3)

Next results deal with local asymptotic stability at the origin for some classes of
codimension one PSVFs.

Theorem 2 Let Z0 ∈ �1.

(a) If Z0 ∈ �̃1(1)∪�̃1(2)∪�̃1(3)∪�̃1(4)∪�̃1(6) then Z0 is not Lyapunov stable
at 0.

(b) If Z0 ∈ �A
1 (5) then Z0 is asymptotically stable at 0;

The proof of Theorem 2 follows from Lemmas 5–9. As done in the case of Z ∈
�A

0 (4), the next proposition provides us the basin of attraction of the origin for the
case where Z ∈ �A

1 (6).

Proposition 2 If Z ∈�A
1 (6)⊂ �̃1(6), then the basin of attraction of 0 is expressed

as

BZ0 = �s
⋃{

(x, y, 0); x < [X2
0h(0)][2X0(Y0h)(0)]−1y, y > 0

}

⋃{
(x, y, 0); x < [2X2

0h(0)][X0(Y0h)(0)]−1y, y < 0
}
.

(4)

The proof of Proposition 2 follows by Lemma 9.
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4 Asymptotic Stability in �0 ⊂ �r

In this section, the asymptotic stability of Z ∈ �̃0(1) at the origin is characterized.
If Z ∈ �̃0(2) ∪ �̃0(3) then we prove that Z is not Lyapunov stable at 0. The local
dynamics of Z ∈ �̃0(4) is provided in [8].

Lemma 2

(a) If X(0) and Y (0) are linearly independent then the origin is not an M-
singularity of Z.

(b) Assume that X(0) and Y (0) are linearly dependent. Then

(i) If � = �c ∪�e then Z is not Lyapunov stable at 0.
(ii) If � = �s and Z̃� is asymptotically stable, or Lyapunov stable at 0 then

Z is asymptotically stable, or Lyapunov stable, respectively, at 0.

Proof The switching manifold coincides with the regions �c,�s or �e, according
to the signs of Xh(0) and Yh(0). In fact, if Xh(0)Yh(0) > 0 then � = �c. If
Xh(0) < 0 and Yh(0) > 0 then � = �s and if Xh(0) > 0 and Yh(0) < 0 then
� = �e.

We prove initially Item (a). Consider U ⊂ R
3 an arbitrary neighborhood of the

origin. If X(0) and Y (0) are linearly independent and observing that Xh(0) �= 0
and Yh(0) �= 0 then from Lemma 1 we get that 0 it is not a M-singularity of Z.
Therefore, through the flow box construction we get that any trajectory of Z, with
initial condition in U , leaves U .

Consider now Item (b). If X(0) and Y (0) are linearly dependent and � = �e ∪
�c then any trajectory of Z passing through p ∈ U∩� does not return to � (locally
speaking). Finally, if X(0) and Y (0) are linearly dependent and � = �s then the
origin is a pseudo equilibrium of Z̃� . Therefore, if 0 is an attractor for Z̃� then 0 is
an attractor for Z. ��
Lemma 3 If Z ∈ �̃0(2) then Z is not Lyapunov stable at 0.

Proof The proof follows from Lemma 1 applying the Flow Box Theorem for Z̃M

and considering the contact between X and M at the origin. ��
Lemma 4 If Z ∈ �̃0(3) then Z is not Lyapunov stable at 0.

Proof As the previous case, the proof of this lemma follows from Lemma 1 and
considering the contact between X and M at the origin. ��

The proofs of Theorem 1 and Proposition 1 for the case where Z ∈ �̃0(4) follow
from Theorem B and Proposition 2 in [8]. Finally, the proof of Theorem 1 follows
from Lemmas 2–4.
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5 Asymptotic Stability in �1 ⊂ �r

In summary, the elements in �̃1(1), �̃1(2), �̃1(3) are trivially not Lyapunov stable
at the origin. The analysis of the subclasses �̃1(4), �̃1(5) are provided in [4, 8],
respectively. For the subclass �̃1(6) we are able to show the asymptotic stability or
exhibit at least a basin of attraction at 0.

Lemma 5 If Z0 ∈ �̃1(1) then Z0 is not Lyapunov stable at 0.

Proof Observe that X0h(x, y, 0) = x2+y2 > 0. Therefore, the switching manifold
� coincides with �c or �e, according to the sign of Y0h(0). In this way, applying
the flow box construction for the smooth vector field X0 (in M+) we get that the
trajectories of X0 leave any small neighborhoodU of origin. Therefore, we conclude
that Z0 is not Lyapunov stable at the origin. ��
Lemma 6 If Z0 ∈ �̃1(2) then Z0 is not Lyapunov stable at 0.

Proof We consider the case where Y0h(0) = c > 0. So, by a time rescaling we
can suppose that c = 1. The flow of Z0 is given by: φX0(t, (x, y, z)) = (x +
at, y + bt, z+ (x2 − y2)t + (ax − by)t2 + 1/3(a2− b2)t3) and φY0(t, (x, y, z)) =
(x + t, y, z + t). We get the regions in �: �s = {(x, y, 0); x2 − y2 < 0} and
�c = {(x, y, 0); x2 − y2 > 0}.

By (2) we obtain: Z̃�
0 (x, y) = (a − (x2 − y2), b) which is regular in a

neighborhood of the origin. The dynamics of Z̃�
0 depends on a and b. In fact, we

consider the cases: (i) |a| ≤ |b|; (ii) |a| > |b|.
Given p = (x, y, 0) ∈ �c ⊂ � and if a2 − b2 ≤ 0 (case (i)) then there exists a

positive time of trajectory of X0 passing through p to �: t1(p) = [−3ax + 3by −√
�][2(a2 − b2)]−1 > 0 and φ

X̃0
(t1(p), p) ∈ �, where � = −12(a2 − b2)(x2 −

y2)+ (3ax − 3by)2. Therefore, from Lemma 1, we get that Z̃�
0 is regular at origin

and any trajectory does not intercept the set of �-singularities SX0 . So, we conclude
that all trajectories of Z̃�

0 leave any neighborhood of the origin.
If a2 − b2 = X2

0h(0) > 0 (case (ii)) then there is no forward first return for the
trajectories of X0 passing through p ∈ �. So, applying the flow box construction
for X0 we get that Z0 ∈ �̃1(2) is not Lyapunov stable at 0. ��
Lemma 7 If Z0 ∈ �̃1(3) then Z0 is not Lyapunov stable at 0.

Proof The proof is analogous to the previous lemma and we omit. ��
The proof of Theorem 2 for the case where Z0 ∈ �̃1(4) follows from Theorem C

and Proposition 2 in [8] and finally the proof of Theorem 2 for the case where
Z0 ∈ �̃1(5) follows from Theorem A in [4].

We remain that the subset �A
1 (6) is defined in (3).

Lemma 8 If Z0 ∈ �A
1 (6) ⊂ �̃1(6) then Z̃�

0 is asymptotically stable at 0.



Asymptotic Stability for 3D DDS 31

Proof The linear part of the rescaling sliding vector field is given by (ay−cx, by−
dx). As the origin is a saddle-node for Z̃�

0 , we must require that

ad = bc. (5)

The regions on � are: �s = {(x, y, 0); x < 0, y > 0},�c = {(x, y, 0); xy > 0}
and �e = {(x, y, 0); x > 0, y < 0}. The non zero eigenvalue of DZ̃�

0 (0) is η =
b − c. We suppose that η < 0. Therefore, by a time rescaling procedure we can
suppose that η = −1, i.e.,

Y0(X0h)(0) = X0(Y0h)(0)+ 1. (6)

Observe that the Eqs. (5) and (6) are satisfied since the number ad ∈ (−1/4, 0). In
fact, if b − c = −1 and ad = bc then b = (−1 ± √1+ 4ad)/2 which is a real
positive number since ad ∈ (−1/4, 0).

Let v1 = (1, c/a), v2 = (1, b/a) be the tangent vectors to Wc,Ws where
Wc,Ws are the central, stable, manifold of Z̃�

0 , respectively. If c/a < 0 and
b/a > 0 then Wc intercepts �s and Ws intercepts �c. In this way, we obtain the
subset �A

1 (7) defined in (3). So, we get the asymptotic stability at the origin for Z̃�
0

in this case. ��
We recall that the definition of the basin of attraction of Z0 ∈ �A

1 (6), denoted by
BZ0 ⊂ �, is given in (4).

Lemma 9 If Z0 ∈ �̃1(6) then Z0 is not Lyapunov stable at 0. Moreover, if Z0 ∈
�A

1 (6) then the basin of attraction BZ0 ⊂ � is completely characterized.

Proof Let Z0 ∈ �A
1 (6) and p = (x, y, 0) ∈ �c. We get the flows: φ

X̃0
(t, p) =

(x+ at, y+ bt, z+ xt+ a/2t2)+O(t2, t2, t3) and φ
Ỹ0
(t, p) = (x+ ct, y+ dt, z+

yt + 1/2dt2) + O(t2, t2, t3). We denote t1(p) = −2x/a + O(||(x, y, z)||2) and
t2(p1) = (4bx − 2ay)(ad)−1+O(||(x, y, z)||2). We have φX0

(t1(p), p) = p1 ∈ �

and φY0
(t2(p1), p1) ∈ �. If a = X2

0h(0) < 0 and d = Y 2
0 h(0) > 0 then t1, t2 are

real positive numbers. The first return map is given by:

ϕZ0(x, y) =
(

3x − 2c

d
y,

2b

a
x − y

)
+ O(||(x, y)||2). (7)

We define R1 = {(x, y, 0); x <
a

2b
y, y > 0} ⊂ �c and R2 = {(x, y, 0); x <

2a

b
y, y < 0} ⊂ �c. In Lemma 8 it is proved that Z̃�

0 is asymptotically stable at

origin provided Z0 ∈ �A
1 (6). Now we prove that if p = (x, y, 0) ∈ R1 (resp.

p ∈ R2) then φX0
(t1, p) ∈ �s (resp. φY0

(t2(p), p) ∈ �s ). Note that if p ∈ R1

then φX0
(t1, p) = (−x, y − 2b

a
x) + O(||(x, y)||2) = (x1, y1) = p1, with x1 < 0
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and y1 > 0. Therefore, p1 ∈ �s . Similarly, we get that φY0
(t2(p), p) ∈ �s , with

p ∈ R2. So the basin of attraction is given by BZ0 = �s ∪ R1 ∪ R2.
To prove that Z0 ∈ �̃1(6) is not Lyapunov stable at the origin, we analyse the

behavior of the first return map. Considering the linear part, LZ0(x, y), of expression
(7), we get

Ln
Z0

(x, y) = ((2n+ 1)x − 2an(b)−1y,

2bn(a)−1x − (2n− 1)y) = (xn, yn).
(8)

Consider F = {(x, y, 0); x >
a

b
y, y > 0} ⊂ �c and E = {(x, y, 0); x >

2a

b
y, y >

0} ⊂ F. The iterates of LZ0 satisfies the following properties:

(a) Ln
Z0

(p) ∈ F , for all p ∈ F ;
(b) Consider the sequences of real numbers {xn}n∈N and {yn}n∈N given in (8) where

(x, y, 0) ∈ E. These are monotone and increasing sequences.

We define the half-straight lines: r1 = {(x, y, 0); x = a

b
y, y > 0} and r2 =

{(x, y, 0); x = 2a

b
y, y > 0}, that are the frontiers of the sets F,E, respectively.

Note that the properties (a) and (b) show us that the iterates of LZ0 leave any
neighborhood of the origin. So, if Z0 ∈ �̃1(6) then it is not Lyapunov stable at
0. Recall that ad = bc and a/c < 0 (the center manifold Wc = {(x, y); y =
cx/a + O(x2)} intercepts the �s = {(x, y, 0); x < 0, y > 0}). Therefore,
b = X0(Y0h)(0) < 0 and c = Y0(X0h)(0) > 0.

Now we prove that LZ0 satisfies the property (a). We have yn = 2nb

a
x − (2n−

1)y = 2n
b

a
(x − a

b
y) + y > 0, because (x, y, 0) ∈ F and a = X2

0h(0) < 0, b =
X0(Y0h)(0) < 0. Besides, xn− a

b
yn = (2n+1)x−2n

a

b
y− a

b
(2n

b

a
x−(2n−1)y) =

x − a

b
y > 0, since (x, y) ∈ F . Therefore, the set F is invariant by LZ0 .

To prove (b), we get xn+1− xn = [(2n+ 1)x− 2n
a

b
y] − [2nx− (2n− 1)

a

b
y] =

x− 2a

b
y > 0 and yn+1− yn = [2nb

a
x− 2(n− 1)y]− [2(n− 1)

b

a
x− (2n− 3)y] =

2b

a
(x − a

b
y) > 0, because

b

a
> 0 and (x, y) ∈ E ⊂ F . ��

Finally, the proof of Proposition 2 and Theorem 2 follows from Lemmas 5–9.
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Regularisation in Ejection-Collision
Orbits of the RTBP

Mercè Ollé, Óscar Rodríguez, and Jaume Soler

Abstract Numerical explorations confirm well-known analytical results on the
existence of ejection-collision orbits in the restricted three-body problem for very
restrictive values of the Jacobi constant C. For different values of C some new
types of ejection-collision orbits are found. The concept of n-ejection-collision
orbit is introduced and numerical explorations are carried out which show a very
rich dynamics when Hill regions contain both primaries. Complete details on the
numerical methods and the bifurcations of the different families of orbits are given
in the references.

1 Introduction

The object of this piece of work is to contribute with some results on ejection-
collision (EC) orbits in the restricted three-body problem (RTBP). Orbits which
eject from or collide with one of the primaries are of particular interest because
they are relevant to astronomical problems such as the determination of regions of
capture of irregular moons by giant planets (see [1]) or explaining the formation
of Kuiper-belt binaries by means of physical collisions between the binary and
intruders (see [2]). They are also relevant for some microscopic scale problems.
The study of the hydrogen atom subject to a circularly polarised microwave field,
where the collisions between the electron and the core play an important role to
explain ionisation, is an instance of such an application (see [4] and [14]).
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Concerning analytical studies of EC orbits in the RTBP (planar, spatial, circular
and elliptic cases), a perturbation approach is usually considered and the McGehee
regularisation [13] is typically used. We emphasise that in all the papers published so
far, the EC orbits analysed are what below we will call 1-EC orbits, i.e. orbits that
eject from the primary, reach one maximum distance and come back to collision
with the same primary. The references to be mentioned are: (i) in the planar RTBP,
Llibre [10] (existence of at least two EC orbits for the mass parameter μ > 0 small
enough and the energy H small enough), Lacomba and Llibre [9] (by means of the
existence of transversal EC orbits the authors prove that both the Hill problem and
the RTBP have no C1-extensible regular integrals), and Chenciner and Llibre [5]
(existence of four EC orbits for any value of μ ∈ (0, 0.5] and H small enough).
(ii) In the spatial RTBP, Llibre and Martinez Alfaro [11] (existence of EC orbits for
small enough values of the mass parameter). (iii) In the planar elliptic RTBP, Llibre
and Pinyol [12] and Pinyol [16] (existence of EC orbits for both the mass parameter
and the eccentricity small enough). We remark that in all the mentioned references,
only the case n = 1 is considered. We plan to prove the existence of n-EC orbits,
for n > 1, i.e. EC orbits that reach n maxima in the distance before going back
to collision. This is not done in the present note but will be published in a future
paper.

Focussing on numerical results, there are some isolated computations published:
we mention Henon’s paper (see [7]) about the computation of EC orbits obtained
along the continuation of some families of symmetric periodic—non-collision—
orbits in the Copenhagen problem (that is μ = 0.5) and also for Hill’s problem (see
[8]). Finally, the evolution of 16 particular collision periodic orbits obtained from
the μ = 0.5 case was numerically studied for various values of the mass ratio μ in
[3].

The present piece of work has two main goals. First, it summarises the results
put forward by the authors in [15]: (i) the existence of only four 1-EC orbits for
any value of μ > 0 and very small values of H (known analytical results) is
confirmed and this result is numerically extended to less restrictive values of the
energy. For higher values of the energy the Hill region contains the other primary
and some new EC orbits appear. On the other hand, the concept of a family of
n-EC orbits is introduced and some bifurcations along these families appear. The
reader is referred to [15] for complete details on the numerical methods and the
description of the bifurcations of the different families of orbits (not described here).
We emphasise that in the mentioned paper only the McGehee regularisation was
taken into account and therefore each EC orbit is regarded as a heteroclinic orbit, so
the time from ejection to collision is infinity. However, in the present work, we will
also consider the Levi-Civita regularisation and we will comment on the pros and
cons when comparing both regularisations. This is precisely the second goal of this
note.
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2 Ejection-Collision in the RTBP

In this section, (i) we recall some properties of the RTBP, (ii) we introduce two
regularisations, (iii) we analyse the collision manifold, and (iv) we present some
results for n-EC orbits, n ≥ 1.

2.1 The RTBP

We use the standard setting of the planar restricted three-body problem (RTBP): the
primaries of masses m1 = 1 − μ and m2 = μ occupy, respectively, the positions
(−μ, 0) and (1−μ, 0) on the x-axis of a rotating frame (the synodical frame). With
these assumptions, the equations of motion for the particle in this rotating are given
by

ẍ − 2ẏ = ∂�

∂x
(x, y)

ÿ + 2ẋ = ∂�

∂y
(x, y),

(1)

where˙= d/dt and

�(x, y) = 1

2
(x2 + y2)+ 1− μ

√
(x + μ)2 + y2

+ μ
√
(x + μ− 1)2 + y2

+ 1

2
μ(1− μ).

(2)

It is well known that this system of ODE has the following properties (see [18]
for details).

1. There exists a first integral, the Jacobi integral, given by

C = 2�(x, y)− ẋ2 − ẏ2. (3)

2. The equations of motion are invariant under the symmetry

(t, x, y, ẋ, ẏ) −→ (−t, x,−y,−ẋ, ẏ). (4)

which translates into the well-known symmetry of the orbits.
3. There exist five equilibrium points: the collinear ones, Li , i = 1, 2, 3 on the x

axis, and the triangular ones Li , i = 4, 5 located at the vertices of an equilateral
triangle with the primaries. We denote by xLi the abscissa of point Li . We assume
μ ≤ 1/2 and xL2 ≥ 1 − μ ≥ xL1 ≥ −μ ≥ xL3 , so that L1 is between the
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primaries, L2 is on the right of the small one and L3 on the left of the large one.
We denote by CLi (μ) the value of the Jacobi constant at Li for a given μ.

4. The equations of motion can be written as a Hamiltonian system in the
coordinates (x, y) and associated momenta (px, py). The Hamiltonian function
is

H(x, y, px, py) = 1

2
(p2

x + p2
y)+ ypx − xpy − 1− μ

r1
− μ

r2
− 1

2
μ(1− μ),

with r1 =
√
(x + μ)2 + y2 and r2 =

√
(x + μ− 1)2 + y2, and the relation

between C and H is given by

H = −C

2
. (5)

We denote by HLi(μ), the associated value of the Hamiltonian at Li for a
given μ.

5. Given a value of the Jacobi constant C (or the Hamiltonian H ), the motion is
allowed to take place only in the Hill region defined by

R(C) = {(x, y) ∈ R
2 | 2�(x, y) ≥ C}.

In this paper we will restrict the values of C to the range C ≥ CL2(μ)

(equivalently H ≤ HL2(μ), see in Fig. 1 the corresponding Hill regions). More
precisely, we first study the existence of EC orbits with the big primary for C ≥
CL1(μ) (see Fig. 1 bottom), where only the bounded region around the big primary
is taken into account. Later on, we consider also C ≥ CL2(μ), where the motion can
take place in a bounded region containing both primaries, and therefore, there also
exist orbits that eject from one primary and collide with the other one. Actually, the
dynamics is very rich because of the Lyapunov periodic orbits around L1 and their
associated invariant manifolds. Specific values of H can be translated to values of
C through the relation (5).

2.2 Two Regularisations

As the objective is to study the ejection-collision orbits of the big primary, we
will deal with the singularity r1 = 0 in the equations introducing two types
of regularisations: following the work of McGehee (see [6, 13]) and Levi-Civita
coordinates (see [18]).
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Fig. 1 Hill’s region according to the Jacobi constant C. Top left: C = CL2 ; top right: CL2 < C <

CL1 ; bottom left: C = CL1 ; bottom right: C > CL1

2.2.1 McGehee Regularisation

We apply the translation q1 = x+μ, q2 = y, to locate the primary of mass 1−μ at
the origin of coordinates and that of mass μ at (1, 0) and we introduce the canonical
change of polar coordinates

q1 = r cos θ p1 = pr cos θ − pθ

r
sin θ

q2 = r sin θ p2 = pr sin θ + pθ

r
cos θ
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which changes the Hamiltonian into

H(r, θ, pr, pθ ) = 1

2

(

p2
r +

p2
θ

r2

)

− pθ − 1− μ

r
+ μ

(
pr sin θ + pθ

r
cos θ

)

− μ√
1+ r2 − 2r cos θ

− 1

2
μ(1− μ)

(6)

Then we introduce the new variables

v = ṙr1/2 u = r3/2θ̇ (7)

and a change of time dt/dτ = r3/2, such that the system of ODE becomes

r ′ = vr

θ ′ = u

v′ = 1

2
v2 + u2 + 2ur3/2 + r3 − (1− μ)

− μr2 cos θ − μr2 r − cos θ

(1+ r2 − 2r cos θ)3/2

u′ = −1

2
uv − 2vr3/2 + μr2 sin θ

(

1− 1

(1+ r2 − 2r cos θ)3/2

)

,

(8)

where ′ = d/dτ .

2.2.2 Levi-Civita Regularisation

The Levi-Civita regularisation consists of the transformation (see Fig. 2) given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = −μ+ u2 − v2

y = 2uv

dt

ds
= 4

(
u2 + v2

)
.

(9)

Under this transformation the system (1) becomes (see details in [18]):

⎧
⎪⎨

⎪⎩

u′′ − 8(u2 + v2)v′ =
(

4U(u2 + v2)
)

u

v′′ + 8(u2 + v2)u′ =
(

4U(u2 + v2)
)

v

(10)
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Fig. 2 Levi-Civita transformation for μ = 0.1. Left. (x, y) variables. Right. Levi-Civita ones
(u, v). In light grey the annular forbidden Hill’s region for C = 3.58

where ′ = d/ds and

U = 1

2

[

(1− μ)
(
u2 + v2

)2 + μr2
1

]

+ 1− μ

u2 + v2 +
μ

r1
− C

2
.

with r1 =
√
(−1+ u2 − v2)2 + 4u2v2.

2.3 The Collision Manifold

Two advantages in using McGehee regularisation are that the system of ODE in
these variables is simpler, and that we have the so-called collision manifold that
describes both the motion at the ejection/collision (by means of a blow-up) and it
gives insight into the motion close to ejection/collision.

System (8) has an invariant manifold � defined by r = 0, called the collision
manifold. This manifold � is a torus (see Fig. 3) given by

� = {u2 + v2 = 2(1− μ), θ ∈ [0, 2π]} (11)

and the dynamics on this torus is governed by the equations

θ ′ = u

v′ = 1

2
v2 + u2 − (1− μ)

u′ = −1

2
uv.

(12)
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Fig. 3 The collision
manifold

There exist two circles of equilibrium points on � defined by S+ = {r =
0, θ, v = v0, u = 0, θ ∈ [0, 2π]} and S− = {r = 0, θ, v = −v0, u = 0, θ ∈
[0, 2π]} with v0 = +√2(1− μ).

For a value of the Jacobi constant fixed, each equilibrium point P ∈ S+ has a 1-d
unstable manifold Wu(P) and a 1-d stable one Ws(P ). Similarly, each equilibrium
point Q ∈ S−, has a 1-d stable manifold Ws(Q) and a 1-d unstable one Wu(Q). In
Fig. 3, Wu(P) and Ws(Q) are symbolically represented by arrows.

We distinguish 3 types of orbits: (i) ejection, (ii) collision and (iii) ejection-
collision orbits.

(i) The set of ejection orbits—those which are ejected from collision with the
big primary—is the set of orbits on the unstable manifold Wu(P), for any
P = (0, θ, v0, 0) ∈ S+. So each ejection orbit may be regarded as an orbit
such that r > 0 for all finite time τ and asymptotically tends to an equilibrium
point P ∈ S+ as τ →−∞.

(ii) The set of collision orbits—those which arrive at collision with the big
primary—is the set of orbits on the stable manifold Ws(Q), for any Q =
(0, θ,−v0, 0) ∈ S−. So each collision orbit may be regarded as an orbit such
that r > 0 for all finite time τ and asymptotically tends to an equilibrium point
Q ∈ S− as τ → +∞.

(iii) The set of ejection-collision orbits—those which eject from the big primary
and then collide with it—is the set of orbits obtained from the intersection
Wu(S+) ∩ Ws(S−). So they may be regarded as heteroclinic orbits between
P ∈ S+ and Q ∈ S−.

Finally we define n-ejection-collision orbits, simply denoted by n-EC orbits, as
those orbits that eject from the big primary, reach n times a relative maximum of the
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distance r , with n − 1 close approaches in between, before colliding with the big
primary.

At this point it is worthwhile to compare the two regularisations contemplated in
this note (McGehee and Levi-Civita) when applied to the study of ejection/collision
orbits. When we consider the Levi-Civita regularisation, ejection/collision orbits are
simply orbits that leave from/arrive at the origin, which is now a regular point, so it
takes a finite range of time to describe an EC orbit and we do not have the collision
manifold. By contrast, it takes an infinite time to describe an EC orbit in McGehee
coordinates, since they are asymptotic (heteroclinic) connections. From this point
of view, although the system of ODE in Levi-Civita variables is more intricated,
the numerical computations are really faster. Moreover, the initial conditions of an
ejection orbit are on invariant manifolds of equilibrium points when using McGehee
variables, whereas in Levi-Civita variables, since the collision with the big primary
takes place at u = v = 0 and the relation for the velocity components, u′2 + v′2 =
8(1− μ), must be satisfied, we simply take the set of initial conditions

u = v = 0, u′ = √8(1− μ) cos θ, v′ = √8(1− μ) sin θ, (13)

where, varying θ ∈ [0, 2π], we obtain all the possible initial conditions for an
ejection orbit (see [18]).

A simple numerical method to detect EC orbits in McGehee variables can be
implemented: we take a set of initial conditions on Wu(S+), integrate forward in
time up to the 2n-th crossing with the Poincaré section v = 0 and detect singularities
in time due to the asymptotic behaviour which characterises EC orbits (see [15] for
details).

When using Levi-Civita variables, we integrate the set of initial conditions (13)
up to the n-th crossing with the Poincaré section r = rmax and obtain a curve on this
section. Then we proceed the same way backwards in time, obtaining another curve
(this last task is not actually computed due to the symmetry (4). The intersection
points between both curves belong to EC-orbits.

In summary, McGehee regularisation applied to the study of ejection/collision
orbits has three main drawbacks. First, it requires integrating for a long time,
since ejection/collision orbits are asymptotic orbits. Second, the initial conditions
of ejection/collision orbits should be, ideally, on the unstable/stable manifolds
of S+/S− respectively, but numerically we take initial conditions on the linear
approximation of such manifolds. Therefore such initial conditions are not exactly
on the invariant manifold itself. Finally a third inconvenience is due to the fact
that successive passages through collision are numerically very badly conditioned
because of the impossibility to reach an infinite time. On the other hand, with Levi-
Civita regularisation only finite shorter ranges of time are required, the passage
through collision is a regular point and the initial conditions are exact and there
is no problem at all to consider integration spans with successive collisions. So,
from the numerical point of view, Levi-Civita is really preferable.
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2.4 Results for 1-EC Orbits

2.4.1 Existence of Four 1-EC Orbits

Although the analytical papers concerning the existence of 1-EC orbits typically
consider very restrictive values of H and small values of μ, we have done extensive
numerical explorations on a grid of values of μ in the interval [0.01, 0.5] and θ0 ∈
[0, 2π] for H ≤ HL1(μ). The simulations done confirm the existence of only four
ejection-collision orbits. See in Fig. 4 examples of n-EC orbits for n = 1, 2, 3.
In Fig. 5 left, we plot the four 4-EC orbits existing for particular values of H and
μ = 0.5.

Figure 5 shows the curves Wu(S+)∩�1 and Ws(S−)∩�1 (where �1 denotes the
first intersection with the Poincaré section v = 0) for μ = 0.5 (for other values of μ

Fig. 4 Examples of n-ejection-collision orbits for n = 1, 2, 3 (from left to right). For n = 2
(n = 3), there are 1 (2) close passages to collision between ejection and collision
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Fig. 5 Left. μ = 0.5, Wu(S+) ∩�1 and Ws(S−)∩�1 for values of H −5.25, −3.25, −2.75 and
HL1(μ) (circles from small to large). In black the 1-EC orbits for such values of H . Also shown
are the points of the EC orbits at �1 and the almond-shaped projections of the EC orbits on the
configuration plane (x, y). Right. The four n-ejection-collision orbits for μ = 0.1 (left) and n = 3
for H = −5.05 (small ones) and H = −3.05 (large ones)
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see [17]) and different values of H (Fig. 5 left). Also shown are the corresponding
1-EC orbits on the (x, y)-plane.

The existence of only four 1-EC orbits is no longer true for higher values of the
energy H , since new ones show up. We refer the reader to the paper [15] for the
details and the description of appearing bifurcations.

2.4.2 Results for n-EC Orbits

We have also done extensive numerical simulations on a grid of values for μ ∈
[0.01, 0.5] and energy levels H < HL1(μ) and we can conclude that for all n there
exists a value Ĥ (μ, n) such that for H ≤ Ĥ (μ, n) there are four n-ejection-collision
orbits, which can be characterised in a way similar to the characterisation of the 1-
ejection-collision orbits. For example, see the four 3-EC orbits for μ = 0.1 and
different values of H in Fig. 5 right.

Further details on the bifurcations of n-EC orbits and the numerical methods can
be found in [15].

We remark that for high values of n, applying McGehee or Levi-Civita really
makes a difference: using McGehee variables becomes a problem for large n. This
effect is shown in Fig. 6: on the x axis we take the angle θ to characterise an ejection
orbit, on the y axis the time it takes for such orbit to cross for the 2n-th time the
Poincaré section v = 0 (in McGehee variables). The small cusps on each curve
correspond to very close approaches to collision, so that if the grid of θ values is
refined the spike grows higher and tends to a vertical asymptote (infinite time to
reach the collision). Each singularity (vertical asymptote) in time corresponds to an
EC orbit and for the curve (θ0, T2) only four singularities appear, corresponding to
the four 1-EC orbits. For the curve (θ0, T4) we observe 8 singularities: there are
the previous existing 1-EC orbits and four new ones corresponding to the 2-EC
orbits we are looking for. It is clear that for large n it is really difficult to detect the
new EC orbits and to distinguish them from any previous ones with a smaller n.

Fig. 6 (θ0, T2n), n = 1, . . . , 25 for μ = 0.5 and H = −4
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Fig. 7 μ = 0.5, (x, y) coordinates. An orbit ejecting from the big primary and colliding with the
small one. Left. A direct trajectory. Right. A trajectory describing a turn around the Lyapunov PO

We remark also the big intervals of time needed for the largest values of n. These
drawbacks completely disappear when using Levi-Civita for the same simulation:
one would see almost straight lines, due to the regular ODE, and the ranges of time
are sensitively smaller.

Finally we remark that for higher values of H , say H < HL2(μ), the dynamics
is richer due to two effects. The first one is that the bounded Hill region allows
connections between both primaries. An example is shown in Fig. 7 left, where an
ejection orbit from the big primary collides with the small one. A second effect
is due to the Lyapunov periodic orbit PO around L1 and its stable and unstable
manifolds, which play a role when going from the neighborhood of one primary to
the neighborhood of the other one. In Fig. 7 right we show an orbit which ejects
from the big primary, describes a turn around the PO and collides with the small
primary.

A detailed description of the variety of motions for higher values of H (where
the particle can leave a neighborhood of the primaries and even reach infinity) will
appear in a future paper.
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On Local Algebras of Maximal Algebras
of Jordan Quotients

F. Montaner and I. Paniello

Abstract We study local algebras of maximal algebras of quotients of strongly
prime Jordan algebras at nonzero elements of the Jordan algebra that become von
Neumann regular in the maximal algebra of quotients. We prove that for such
elements both constructions (local algebras and maximal algebras of quotients)
commute. As a consequence we obtain that maximal algebras of quotients of
strongly prime Jordan algebras with nonzero local PI-algebras are rationally
primitive.

1 Introduction

Algebras of quotients of Jordan algebras in the general sense of Utumi’s associative
algebras of quotients were described by Montaner in [19], where a detailed
description of how these algebras generalize the different notions of quotients that
had formerly appeared in the literature can also be found.

Algebras of quotients of Jordan algebras as considered in [19] inherit regularity
conditions [19, 22] as well as many other properties such as being PI or having
nonzero PI-elements [20, 23]. A different question is how algebras of quotients
interact with local algebras [15].
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This problem, how local algebras interact with algebras of quotients, has been
studied by Gómez Lozano and Siles Molina in the associative setting [6]. There the
authors considered the behaviour of different algebras of quotients of semiprime
associative rings when taking local algebras at very particular elements. They
proved that when the element at which the local algebra is considered becomes
von Neumann regular in the algebra of quotients, taking the local algebra at such
an element and considering different constructions of quotients commute. This
result was proved not only for maximal rings of one-sided quotients (Ql

max(R) and
Qr

max(R)) of a semiprime ring R but also for the Martindale symmetric ring of
quotients Qs(R) and the maximal symmetric ring of quotients Qσ (R) [3, 9].

It is in particular this last result, involving local algebras and maximal symmetric
rings of quotients of semiprime associative algebras, the one which motivates
this paper, as maximal symmetric rings of quotients of (semi)prime rings play a
fundamental role in the description of maximal algebras of quotients of some special
Jordan algebras. Indeed the maximal algebra of quotients of any nondegenerate
Jordan algebra having essential hermitian part is nothing else that an ample subspace
of symmetric elements of the maximal symmetric ring of quotients of any of its ∗-
tight associative ∗-envelopes [19, 21].

After a section of preliminaries, Sects. 3 and 4 are devoted to show that a similar
result to that obtained by Gómez Lozano and Siles Molina in [6] for semiprime
associative rings can be achieved for Jordan algebras. We will first consider, in
Sect. 3, the case when the element at which the local algebra is considered does
not produce a Jordan PI-algebra but still becomes von Neumann regular in the
maximal algebra of quotients, considering in Sect. 4 the case when this element
does produce a local Jordan PI-algebra. Despite the more general results given in
[6] for semiprime associative rings, here we will restrict ourselves to the case of
strongly prime Jordan algebras.

Considering strongly prime Jordan algebras will be enough to obtain the last
result of this paper, a Martindale-like theorem for Jordan algebras having nonzero
local PI-algebras. More precisely in the last section we show that maximal algebras
of quotients of strongly prime Jordan algebras with nonzero PI-elements are
rationally primitive [16, 4.1].

2 Preliminaries

We will work with Jordan algebras over a unital commutative ring � which will be
fixed throughout. We refer to [7, 8, 14] for notation, terminology and basic results.

Definition 1 A Jordan algebra J has products Uxy and x2, quadratic in x and linear
in y, whose linearizations are Ux,zy = Vx,yz = {x, y, z} = Ux+zy − Uxy − Uzy

and x ◦ y = Vxy = (x + y)2 − x2 − y2.
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2.1 Essential Ideals

A �-submodule K of a Jordan algebra J is an inner ideal if UkĴ ⊆ K for all
k ∈ K , where Ĵ denotes the free unital hull of J . An inner ideal I ⊆ J is an
ideal if {I, J, Ĵ } + UJ I ⊆ I . An (inner) ideal of J is essential if it has nonzero
intersection with any nonzero (inner) ideal of J . Essential ideals of nondegenerate
Jordan algebras are exactly those having zero annihilator [5, Lemma 1.13(i)]. The
annihilator annJ (I) of an ideal I of a nondegenerate Jordan algebra J is the set
annJ (I) = {x ∈ J | UxI = 0} = {x ∈ J | UIx = 0} (see [13, Proposition 1.7(i)]
and [17, Lemma 1.3]). We denote by I (1) the derived ideal of an ideal I being
I (1) = UII . Similarly we can define I (m) = UI(m−1)I (m−1) for all integers m ≥ 1
(and I (0) = I ). For any ideal I of a nondegenerate Jordan algebra J it holds that
annJ (I) = annJ (I

(m)) for all m [5, Lemma 1.13(ii)]. Therefore if I is an essential
ideal so are all its derived ideals I (m), m ≥ 0. Recall that nonzero ideals of strongly
prime Jordan algebras are essential ideals.

2.2 Special Jordan Algebras

Any associative algebraR gives rise to a Jordan algebra R(+) just by defining Uxy =
xyx and x2 = xx. A Jordan algebra is special if it is isomorphic to a subalgebra of
an algebra of the form R(+) and it is called i-special if it satisfies all the identities
satisfied by all special Jordan algebras.

Examples of special Jordan algebras are algebras of symmetric elements H(R, ∗)
of associative algebras with involution (R, ∗) and their ample subspaces H0(R, ∗)
i.e. subspaces of symmetric elements which contain the traces x + x∗ and norms
xx∗ of all elements x ∈ R and such that xH(R, ∗)x∗ ⊆ H0(R, ∗) for all x ∈ R.

An associative algebra with involution (R, ∗) is an associative ∗-envelope of J

if J ⊆ H(R, ∗) and J generates R as an associative algebra and it is called ∗-tight
if any nonzero ∗-ideal I of R hits J nontrivially i.e. I ∩ J �= 0.

An i-special Jordan algebra J is of hermitian type if annJ (
∑

HH(J )) = 0,
where

∑
H denotes the sum on the set of all hermitian ideals. We will also consider

Jordan algebras hermitian in the stronger sense that there exists a hermitian ideal
H(X) of the free special Jordan algebra FSJ (X) such that annJ (H(J )) = 0,
equivalently, that there exists a hermitian ideal H(X) whose values H(J ) in J give
an essential ideal of J . (See [19, Remark 4.9] and [21, Remark 4.8] for further
details.)

Definition 2 ([19, 1.3]) Let K be an inner ideal of a nondegenerate Jordan algebra
J . For any element a ∈ J the set (K : a) = {x ∈ K | x ◦ a, Uax ∈ K} is an inner
ideal of J and so are the sets

(K : a1 : a2 : . . . : an) = ((K : a1 : a2 : . . . : an−1) : an)
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for all a1, . . . , an ∈ J . An inner ideal K of J is said to be dense if Uc(K : a1 :
a2 : . . . : an) �= 0 for any finite collection of elements a1, . . . , an ∈ J and any
0 �= c ∈ J .

Definition 3 Let J be a subalgebra of a Jordan algebra J̃ and let ã ∈ J̃ . An element
x ∈ J is a J -denominator of ã if the following multiplications take ã back into J :

(Di) Uxã (Dii) Uãx (Diii) UãUxĴ

(Diii’) UxUãĴ (Div) Vx,̃aĴ (Div’) Vã,xĴ .

We will denote the set of J -denominators of ã by DJ (̃a). It was proved in [17,
Lemma 4.2] that DJ (̃a) is an inner ideal of J .

Definition 4 Let J be a subalgebra of a Jordan algebra Q. We will say that Q is an
algebra of quotients of J if the following conditions hold:

(i) DJ (q) is a dense inner ideal of J for all q ∈ Q.
(ii) UqDJ (q) �= 0 for any nonzero q ∈ Q.

Nondegenerate Jordan algebras are its own algebras of quotients. Moreover for
any Jordan algebra the existence of an algebra of quotients implies nondegenerancy.

Definition 5 An algebra of quotients Q of a Jordan algebra J is said to be maximal
if for any other algebra of quotients Q′ of J there exists a homomorphism α : Q′ →
Q whose restriction to J is the identity map.

The existence (up to isomorphism) of maximal algebras of quotients of nonde-
generate Jordan algebras was proved in [19, Theorem 5.8].

Theorem 1 ([19, Theorem 5.8]) Any nondegenerate Jordan algebra J has a
maximal algebra of quotients Qmax(J ).

Remark 1 A similar construction of algebras of quotients, but based on essential
inner ideals of denominators was given in [21] for strongly prime Jordan algebras
satisfying the condition of being strongly nonsingular.

Remark 2 The description of maximal algebras of quotients of nondegenerate
Jordan algebras is given in [19, Theorem 3.11] and [19, Theorem 4.10].

(i) The maximal algebra of quotients of a nondegenerate Jordan PI-algebra is
(isomorphic to) its almost classical algebra of quotients

JE(J ) = lim→ {Hom�(a, J ) | a ∈ E(J )},

the direct limit of the directed system {Hom�(a, J ) | a ∈ E(J )} where E(J )

denotes the set of essential ideals of the centroid � = �(J ) of J . We recall that
if J is a strongly prime Jordan PI-algebra, then Qmax(J ) ∼= �(J )J the central
closure of J .
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(ii) Special nondegenerate Jordan algebras which are hermitian in the strong sense
that there exists a hermitian ideal whose values in the Jordan algebra J

define an essential ideal (see Sect. 2.2) have maximal algebras of quotients
which are ample subspaces of symmetric elements of the maximal algebra of
symmetric quotients Qσ (R) of any ∗-tight associative ∗-envelope R of J [19,
Proposition 4.8, Theorem 4.10]:

Qmax(J ) = H0(Qσ (R), ∗) = {q ∈ H(Qσ(R), ∗) | DJ (q) is dense in J }.

2.3 Algebras of Quotients and Local Algebras

Algebras of quotients inherit regularity conditions such as being nondegenerate
or strongly prime [19, Lemma 2.4]. Moreover maximal algebras of quotients
of nondegenerate Jordan algebras are unital [19, Remark 5.9], and if J is a
nondegenerate unital Jordan algebra, then any algebra of quotients of J has the
same unit as J [21, Lemma 3.2]. It is also known that any nondegenerate Jordan
algebra of finite capacity is its own maximal algebra of quotients [21, Lemma 3.2].

Definition 6 Let J be a Jordan algebra and let a be an element of J . The local
algebra of J at a is the quotient of the a-homotope algebra J (a) by the ideal
KerJ (a) of J (a) of all the elements x ∈ J such that Uax = UaUxa = 0. If J

is nondegenerate, the two previous conditions reduce to Uax = 0.

Local algebras of associative algebras are defined similarly. Jordan and asso-
ciative local algebras inherit regularity conditions as those of being nondegenerate
or strongly prime from the original algebras [1, Theorem 4.1]. Local algebras also
interact well with algebras of quotients.

Lemma 1 ([22, Lemma 2.2]) Let Q be an algebra of quotients of a Jordan algebra
J . For any element a ∈ J , Qa is an algebra of quotients of Ja .

Definition 7 An element a of a Jordan algebra J is said to be a PI-element if the
local algebra of J at a is a PI-algebra.

The set of all PI-elements of a nondegenerate Jordan algebra J is an ideal denoted
by PI (J ) [16, 3.1]. A Jordan algebra having no nonzero PI-elements is said to
be a PI-less Jordan algebra. Nondegenerate PI-less Jordan algebras are special of
hermitian type [19, Lemma 4.4].

2.4 The Socle of Nondegenerate Jordan Algebras

The socle Soc(J ) of a nondegenerate Jordan algebra J was characterized in [16,
Lemma 0.7] as the set of elements a ∈ J whose local algebra Ja has finite capacity.
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Recall that any element a ∈ Soc(J ) is von Neumann regular [12] and that, as a
result, the local algebra Ja is a unital Jordan algebra [4, Regular Example 1.7]

3 Algebras of Quotients of Local Algebras
at Non-PI-elements

In this section we consider local algebras of strongly prime Jordan algebras at
elements which are not PI-elements (that is their local algebras are not PI-algebras),
but which become von Neumann regular in the maximal algebra of quotients. It is
then proved that, in this case, taking the local algebra and considering the maximal
algebra of quotients are commuting constructions. Some of the technical results
contained in this section will be however provided in the more general setting of
nondegenerate Jordan algebras for further application [23].

Strongly prime Jordan algebras having nonzero elements failing to be PI-
elements are special Jordan algebras. Moreover their local algebras at such elements
are special Jordan algebras, hermitian in the strong sense that there exist hermitian
ideals whose values in the local algebras define nonzero, therefore essential, ideals.

For any element a of a special Jordan algebra J with a ∗-tight associative ∗-
envelope R, the local algebra Ra of R at a remains to be an associative ∗-envelope
of Ja , as clearly Ja ⊆ H(Ra, ∗), where (r + KerR(a))

∗ = r∗ + KerR(a) for
all r ∈ R, and Ja still generates Ra . However Ra does not necessarily retain the ∗-
tightness over Ja . This drawback can be nonetheless avoided by restricting ourselves
to suitable subalgebras of the Jordan algebra J containing the element a at which
the local algebra is considered.

Lemma 2 ([23]) Let J be a nondegenerate special Jordan algebra and let R be a
∗-tight associative envelope of J . If H(X) is a hermitian ideal of FSJ (X) such that
annJ (H(J )) = 0, then:

(i) for each a ∈ J the subalgebra S of J generated by the ideal I = H(J )(1)

and the element a is also nondegenerate of hermitian type. Moreover S =
H0(A, ∗), where A = subalgR(S) is a ∗-tight associative envelope of S and a
semiprime associative algebra.

(ii) subalgAa(Sa) is a symmetric subring of Aa and therefore subalgAa(Sa) is
semiprime.

(iii) subalgAa(Sa) is a ∗-tight associative ∗-envelope of Sa .

Proof Since annJ (I) = 0 by [5, Lemma 1.13], a similar proof to that of the first
part of [16, Theorem 6.5] works here to prove (i).

(ii) It follows from [1, Lemma 2.3] that Sa is an ample subspace of Aa , i.e.,
Sa = H0(Aa, ∗). Thus to prove that subalgAa(Sa) is a symmetric subring (see
[10, 11]) of Aa it suffices to check that x subalgAa(Sa) x∗ ⊆ subalgAa(Sa) for
all x ∈ Aa , where the bars denote the projection on the local algebra Aa of A at
a. But this can be found in the proof of [25, Theorem 4.4]. Hence subalgAa(Sa)
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is a symmetric subring of Aa and therefore it is semiprime by [11, Theorem 5,
Theorem 8]. Finally (iii), that is, the ∗-tightness of subalgAa(Sa) over Sa follows as
in [2, Theorem 1.3] and [1, Lemma 2.3]. ��
Lemma 3 Let J be a nondegenerate special Jordan algebra with annJ (H(J )) = 0
for some hermitian ideal H(X) of FSJ (X). Let S be the subalgebra of J generated
by the ideal H(J )(1) and a nonzero element a of J . Then Qmax(S) = Qmax(J ) and
Qmax(Sa) = Qmax(Ja).

Proof We note that S contains the essential ideal H(J )(1) of J since by [5,
Lemma 1.13(ii)] we have annJ (H(J )(1)) = annJ (H(J )) = 0, so that the essen-
tiality of H(J )(1) follows from [5, Lemma 1.13(i)]. Then Qmax(S) = Qmax(J ) as a
result of [22, Lemma 3.3] and [19, Proposition 2.8]. Analogously, as Sa contains the
essential ideal

(H(J )(1) +KerJ (a)
)
/KerJ (a) of Ja , the second assertion holds.

��
Remark 3 Let R be a semiprime ring with maximal symmetric ring of quotients
Qσ(R) [9]. It is known that involutions of R straightforwardly extend to Qσ(R).
Moreover for any a ∈ H(R, ∗), the local algebra Ra inherits an involution, also
denoted by ∗, which again extends to Qσ(Ra). The same applies to Qσ (R)a . If the
element a ∈ R at which the local algebra is considered, is not only symmetric (with
respect to ∗) but also becomes von Neumann regular in Qσ(R), it was proved in [6,
Theorem 4] the existence of an isomorphism between Qσ(Ra) and Qσ(R)a and it
is easy to check that this isomorphism preserves the involution ∗.

Lemma 4 Let (R, ∗) be a ∗-tight associative ∗-envelope of a nondegenerate special
Jordan algebra J and let a ∈ J be such that:

(a) Ra is a ∗-tight associative envelope of Ja ,
(b) H(Ja) is an essential ideal of Ja for some hermitian ideal H(X) of FSJ (X).

Then, if a is von Neumann regular in Qmax(J ), for any dense inner ideal K of Ja ,
we have:

(i) R̂a ·K is a dense left ideal of Ra , where · represents the associative product in
the (associative) local algebra Ra and R̂a the unital hull of Ra .

(ii) RaDa ⊕ lannR(b) is a dense left ideal of R, where b ∈ Qmax(J ) is such that
Uab = a and Uba = b and D = {d ∈ J | d ∈ K}.

Proof (i) follows from [19, Theorem 4.6] and the proof of (ii) is similar to that
of [6, Proposition 2] once one considers that any semiprime associative algebra is
its own algebra of left quotients [28] and taking into account that Qmax(J ) is an
ample subspace of the maximal algebra of symmetric quotients Qσ (R) of R [19,
Proposition 4.8]. ��
Proposition 1 Let J be a strongly prime Jordan algebra. For any (nonzero) element
a ∈ J such that a �∈ PI (J ) the following are equivalent:

(i) a is von Neumann regular in Qmax(J ).
(ii) Qmax(Ja) ∼= Qmax(J )a under an isomorphism extending the identity on Ja .
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Proof Suppose first that (ii) holds. Since Ja is strongly prime and maximal algebras
of quotients of strongly prime Jordan algebras are unital (see Sect. 2.3), to prove the
regularity von Neumann of a in Qmax(J ) it suffices to show that the unit element
x of Qmax(J ) satisfies Uax = a, where we denote with bars − the projection of
Qmax(J ) in Qmax(J )a = Qmax(J ). Otherwise (see [6, Theorem 1 (ii) ⇒ (i)])
y = Uax− a is a nonzero element of Qmax(J ) and then, since Qmax(J ) is strongly
prime (see Sect. 2.3), there exists q ∈ Qmax(J ) such that 0 �= Uyq ∈ UyQmax(J ).
But since x is the unit of Qmax(J ), we have Uyq = UUax−aq = UUaxq + Uaq −
{Uax, q, a} = UaUxUaq+Uaq−Ua{x, a, q} = Ua(U

(a)
x q+q−V

(a)
x q) = 0 which

contradicts the choice of q and gives (i).
Next let a be an element of J such that a �∈ PI (J ) and assume that a becomes

von Neumann regular in Qmax(J ), the maximal algebra of quotients of J .
Since a �∈ PI (J ), neither J nor Ja are PI-algebras, thus both J and Ja are special

Jordan algebras and there exist hermitian ideals whose values in these algebras
produce nonzero (i.e. essential) ideals. Let R be a ∗-tight associative ∗-envelope of
J . By Lemma 2 replacing J by the subalgebra generated by the element a and the
derived ideal of an ideal of the formH(J ) with annJ (H(J )) = 0 (see Lemma 3) we
can also assume that Ra is a ∗-tight associative ∗-envelope of Ja . Then the maximal
algebra of quotients Qmax(J ) of J is an ample subspace of Qσ(R) the maximal
algebra of symmetric quotients of R (see [19, Proposition 4.8]).

On the other hand Qmax(J )a is an algebra of quotients of Ja (see Lemma 1), and
thus, by the maximality of Qmax(Ja), it holds that Qmax(J )a ⊆ Qmax(Ja), where

Qmax(Ja) = H0(Qσ (Ra), ∗) = {y ∈ H(Qσ (Ra), ∗) | DJa (y) is dense in Ja}.

Take now an element p ∈ Qmax(Ja). Being a von Neumann regular in Qmax(J ),
so is in Qσ(R). Hence by [6, Theorem 4] Qσ(Ra) ∼= Qσ(R)a , and there exists an
element q ∈ Qσ(R) such that q = p in Qσ(R)a , where the bar − here denotes the
projection of Qσ (R) in Qσ (R)a .

Finally to prove that q ∈ Qmax(J ) it suffices to combine together Lemma 4, [6,
Theorem 4 (i)⇒ (ii)] and [6, Proposition 2]. ��

4 Algebras of Quotients of Local Algebras at PI-Elements

In this section we first consider maximal algebras of quotients of local algebras of
strongly prime Jordan algebras at nonzero PI-elements, to finally address the first
goal of this paper, that is to prove that when the elements at which the local algebras
are considered become von Neumann regular in Qmax(J ), taking local algebras and
maximal algebras of quotients are commuting constructions.

Definition 8 An element a of a Jordan algebra J is a Lesieur-Croisot element (or
an LC-element, for short) if the local algebra Ja is a Lesieur-Croisot algebra (again
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an LC-algebra), i.e., if Ja is a classical order in a nondegenerate Jordan algebra of
finite capacity [25, Definition 3.2].

The set LC(J ) of all LC-elements of a nondegenerate Jordan algebra J is an
ideal of J [25, Theorem 5.13]. Moreover, if J is strongly prime and has nonzero
PI-elements, then LC(J ) = PI (J ) [25, Proposition 3.3].

Proposition 2 Let J be a strongly prime Jordan algebra. For any nonzero element
a ∈ J such that a ∈ PI (J ) the following are equivalent:

(i) a is von Neumann regular in Qmax(J ).
(ii) Qmax(Ja) ∼= Qmax(J )a under an isomorphism extending the identity on Ja .

Proof The proof that (ii) implies (i) works as in the case when a is not a PI-element
(see Proposition 1).

Assume now that (i) holds, i.e. that a is a nonzero PI-element becoming von
Neumann regular in Qmax(J ). We first recall that for any 0 �= a ∈ J it holds
that Ja ⊆ Qmax(J )a ⊆ Qmax(Ja) by [22, Lemma 2.2] (see Lemma 1) and
[19, Proposition 2.8]. Now since 0 �= a ∈ PI (J ), by [25, Proposition 3.3], the
strong primeness of J implies that a ∈ PI (J ) = LC(J ) and therefore that
a ∈ PI (J ) = LC(J ) = J ∩ Soc(Qmax(J )) as a result of [22, Theorem 3.5].
Thus Ja ⊆ Qmax(J )a , which is an algebra of quotients of Ja by Lemma 1 and has
finite capacity by [16, Lemma 0.7(b)]. Hence, by [21, Lemma 3.2(c)], Qmax(J )a is
its own maximal algebra of quotients, so that Qmax(Ja) ∼= Qmax(J )a , again by [19,
Proposition 2.8]. ��
Theorem 2 Let J be a strongly prime Jordan algebra. For any nonzero element
a ∈ J the following are equivalent:

(i) a is von Neumann regular in Qmax(J ).
(ii) Qmax(Ja) ∼= Qmax(J )a under an isomorphism extending the identity on Ja .

Proof If a is not a PI-element the above equivalence follows from Proposition 1.
Otherwise a is a PI-element and then it follows from Proposition 2. ��

5 Maximal Algebras of Quotients of Jordan Algebras with
Nonzero PI-Elements

In this final section we take advantage of Theorem 2 above to prove that maximal
algebras of quotients of strongly prime Jordan algebras having nonzero PI-elements
are rationally primitive, that is, (see [16, 4.1]), for such a Jordan algebra J , Qmax(J )

is primitive and has nonzero PI-elements. This result can be understood as a version
of Martindale Theorem for associative algebras satisfying generalized polynomial
identities. A different version of Martindale Theorem involving the extended central
closure of strongly prime Jordan algebras with nonzero PI-elements can be found in
[17, Theorem 5.1].
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Definition 9 ([16, 4.1]) A Jordan algebra J is rationally primitive if it is primitive
and has a nonzero PI-element.

The notion of rationally primitive Jordan system was introduced in [16] as a
jordanification of that of strong primitivity for associative algebras [26, p. 48] (also
[27, p. 281]). For associative systems different from algebras, more precisely for
associative pairs, the notion of strong primitivity has been recently considered in
[24]. We refer the reader to [16, p. 317] for motivation about this slightly different
terminology between the associative and Jordan notions.

Rationally primitive Jordan algebras were characterized in [16, Theorem 4.6] as
strongly prime Jordan algebras with nonzero socle equal to the set of PI-elements
or equivalently as strongly prime Jordan algebras having simple unital local PI-
algebras.

Theorem 3 Let J be a strongly prime Jordan algebra with nonzero PI-elements.
Then the maximal algebra of quotients Qmax(J ) of J is rationally primitive.

Proof We first note that it suffices to consider the case when J = PI (J ). Indeed,
being PI (J ) �= 0 and J strongly prime, PI (J ) is an essential ideal of J and
then, by [22, Lemma 3.3], we have Qmax(J ) = Qmax(PI (J )). Moreover, clearly
PI (PI (J )) = PI (J ).

Suppose that J = PI (J ). Then we have J = PI (J ) = LC(J ) = J ∩
Soc(Qmax(J )) as a result of [25, Proposition 3.3] and [22, Theorem 3.5].

Take now an arbitrary nonzero element x ∈ J = PI (J ). Then Jx is a strongly
prime Jordan PI-algebra, moreover Jx is an LC-algebra (see Definition 8). Therefore
Qmax(Jx) ∼= �(Jx)Jx , the central closure �(Jx)Jx of Jx (see Remark 2), is a
simple unital Jordan PI-algebra of finite capacity [18, Theorem 1.10] (see also
[20]). Hence, since by Theorem 2 we have Qmax(J )x ∼= Qmax(Jx), Qmax(J ) is
rationally primitive as a result of the characterization of rational primitivity given in
[16, Theorem 4.6]. ��
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On the Numerical Behavior
of a Chemotaxis Model with Linear
Production Term

F. Guillén-González, M. A. Rodríguez-Bellido, and D. A. Rueda-Gómez

Abstract We consider a chemorepulsion model with production, which is a
nonlinear parabolic system for two variables: the cell density and the chemical
concentration, defined in a bounded domain. Firstly, we comment some properties
of the models considering different production terms of potential type. Afterwards,
for the linear production case, we construct some fully discrete finite element
schemes approaching this model, for which we analyze several properties, such that:
mass-conservation, positivity of the variables, existence and uniqueness of solution,
unconditional energy-stability, and uniform in time energy estimates.

1 The Model

The famous Keller-Segel model for chemotaxis has been widely studied in the liter-
ature, specially from a theoretical point of view. However, the numerical analysis is
more scarce. Here, we want to review and summarize the main results obtained by
the authors in [8], where the analysis of a model of Keller-Segel type with repulsive
chemotaxis is made from a numerical point of view, presenting several schemes
approaching the continuous model and preserving its main properties (although the
positivity is obtained only in the limit). All technical details must be found in [8].

Chemotaxis is the biological process of the movement of living organisms in
response to a chemical stimulus which can be given towards a higher (attractive)
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or lower (repulsive) concentration of a chemical substance. At the same time, the
presence of living organisms can produce or consume chemical substance.

The classical Keller-Segel system (1970–1971, [9]) can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu−Du�u+ χ∇ · (u∇v) = 0 in �, t > 0,
∂t v −Dv�v + v = u in �, t > 0,
∂v
∂n = ∂u

∂n = 0 on ∂�, t > 0,
v(x, 0) = v0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0 in �,

(1)

where v is the chemical concentration and u denotes the cell density. The term χ∇ ·
(u∇v) models the transport of cells towards the higher concentrations of chemical
signal if χ > 0, and towards the lower concentrations of chemical signal if χ < 0.

The classical Keller-Segel model is then an attractive system (χ > 0). A deeper
study on this system reveals that blow-up phenomena can appear. However, the
repulsive model (χ < 0) behaves in such a way that there exist global in time
weak solutions (u, v) (see Cieslak et al. [3]) that tend asymptotically in time to a
constant state. Moreover, for 2D domains, one has the existence and uniqueness of
global in time regular solutions.

1.1 Chemorepulsion Production Systems

Assume now that we are in the repulsive framework considering that the equation of
v has a production term with a potential structure (by simplicity, we take χ = −1).
In this case, the model could be written as:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu−Du�u−∇ · (u∇v) = 0 in �, t > 0,
∂t v −Dv�v + v = f (u) in �, t > 0,
∂v
∂n = ∂u

∂n = 0 on ∂�, t > 0,
v(x, 0) = v0(x) ≥ 0, u(x, 0) = u0(x) ≥ 0 in �,

(2)

where f (u) ≥ 0 if u ≥ 0. The analysis of the existence of solution will be different
depending on the form of f (u). We have considered the following cases:

• f (u) = u: linear term,
• f (u) = u2: quadratic term,
• f (u) = up (p ∈ (1, 2)): potential term.

Although the classical Keller-Segel model corresponds to p = 1, the fact of
considering other kinds of production terms responds to an attempt of comparing
the properties of these models in a variational framework. In this sense, it can be
seen that the existence of a dissipative energy of these models falls in a hilbertianL2-
framework (for the quadratic case), a non-hilbertianLp-framework (for the potential
case) or a logarithmic case (linear case). In fact, although the models have different
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energies, the analytical results are rather similar, namely existence of global weak
solutions in 3D domains and existence and uniqueness of global strong solutions in
2D. Some theoretical results about the potential and quadratic cases can be found in
[4, 6, 7]. These results are based on the properties described in the next Subsection.

1.2 Some Properties

Model (2) possesses some properties, and the main ones are summarized below:

• Positivity: u ≥ 0 and v ≥ 0, as biological variables.
• Blow-up is not expected: if cells move towards low chemical concentration,

thus in the zone of low chemical concentration its quantity increases due to the
production term. In such situation, it is not strange to expect that both variables
tend to a stationary constant regime when time goes to +∞. However, for 3D
domains, there is not a rigorous proof of this fact.

• Mass-conservation: The problem is conservative in u, as we can check integrat-
ing (2)1 in �,

d

dt

(∫

�

u

)

= 0, i.e.
∫

�

u(t) =
∫

�

u0, ∀t > 0.

Also, integrating (2)2 in �, we deduce the following behavior of v,

d

dt

(∫

�

v

)

=
∫

�

f (u)−
∫

�

v.

• Energy inequality: Writing the three cases in a common form, f (u) = up , for
p ∈ [1, 2], the problem satisfies an energy inequality:

E(u(t1), v(t1))− E(u(t0), v(t0))+
∫ t1

t0

D(u(s), v(s)) ds ≤ 0, (3)

for a.e. t0, t1: t1 ≥ t0 ≥ 0, where E(·, ·) and D(·, ·) denote the dissipative energy
and the “physical” dissipation, respectively.

In the linear case (p = 1), the obtention of (3) is made formally using
(ln(u),−�v) as test functions and taking into account that the chemotactic and
production terms vanish. Concretely,

E(u(t), v(t)) =
∫

�

(

F(u(t))+ 1

2
|∇v(t)|2

)

dx (4)
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for F(u) = u ln(u)− u a convex potential function, and

D(u(t), v(t)) =
∫

�

F ′′(u(t)) |∇u(t)|2 dx +
∫

�

(
|∇v(s)|2 + |�v(s)|2

)
.

In the quadratic case (p = 2), using (2u,−�v) as the test functions, (4) is

obtained for F(u) = u2. The potential case (p ∈ (1, 2)) uses
(

p
p−1 up−1,−�v

)

as test functions, and (4) is obtained for F(u) = up/(p − 1). In particular, in all
cases the corresponding energy is time decreasing.

2 Numerical Results

We look for designing some numerical schemes with the aim of conserving at the
discrete level the main theoretical properties of problem (2) for p = 1. A similar
analysis is made in [4–6] for p = 2, and in [7] for p ∈ (1, 2).

2.1 The Numerical Difficulties

When numerical approach of the solution want to be made for a PDE system,
sometimes Finite Element methods (FEM) are used. In this case, the solution is
searched in a locally polynomial space, where the logarithm function is not included.

Therefore, the standard procedure of FEM approximation cannot be applied
directly if we want to maintain good properties with respect to a discrete energy
law. In particular, we want that discrete energy to also be decreasing in time. This
property is called the energy-stability.

One possible solution could be to write another problem that coincides with the
original one in some sense (for instance in the continuous framework) and makes
possible that its FEM-approximation be energy-stable.

On the other hand, the mass conservation property is not difficult to maintain
when FE are applied. However, the positivity for the discrete approximation of u

is not evident. Therefore, some truncated and regularized functions will be used in
order to treat this problem.

A first approximation of problem (2) for f (u) = u is the problem (Pε):

(Pε)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tuε −�uε −∇ · (λε(uε)∇vε) = 0 in �, t > 0,
∂tvε −�vε + vε = uε in �, t > 0,
∂uε

∂n
= ∂vε

∂n
= 0 on ∂�, t > 0,

uε(x, 0) = u0(x) ≥ 0, vε(x, 0) = v0(x) ≥ 0 in �,

(5)
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Fig. 1 Functions λε and Fε and its derivatives. (a) λε(s) vs 1
F ′′(s) := s. (b) F ′′ε (s) vs F ′′(s) := 1

s
.

(c) F ′ε(s) vs F ′(s) := ln(s). (d) Fε(s) vs F(s) := s(ln(s) − 1)+ 1

where λε(s) is a truncation of the function s (see Fig. 1a). In general, ε ∈ (0, 1)
is a parameter depending on k and h, ε = ε(k, h), being k and h the time step
and the mesh size of the discrete approximation, and such that ε(k, h) → 0 when
(k, h)→ 0.

Using the function Fε : R→ [0,+∞) (see Fig. 1d) given by

Fε(s) :=

⎧
⎪⎨

⎪⎩

s2−ε2

2ε + s(ln(ε)− 1)+ 1 if s ≤ ε,

s(ln(s)− 1)+ 1 if ε ≤ s ≤ ε−1,
ε(s2−ε−2)

2 + s(ln(ε−1)− 1)+ 1 if s ≥ ε−1,

(note that Fε(s) is a regularized/truncated function approaching the energy potential
F(s) = s ln(s)−s+1, with s > 0), whose derivatives appear in Fig. 1b,c, and testing
(Pε) by (F ′ε(uε),−�vε), the following (approximate) energy law holds:

d

dt

∫

�

(
Fε(uε)+1

2
|∇vε|2

)
dx+

∫

�

F ′′ε (uε) |∇uε|2 dx+
∫

�

(
|∇vε|2 + |�vε|2

)
= 0.
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2.2 Numerical Approach Using (Pε)

Once the problem (Pε) is written, a numerical approximation must be designed.
First, we write a variational formulation for (5), and we approximate the space
H 1(�) (where the solution (u, v) is being searched) by the FE-continuous spaces
Uh and Vh (in principle, the space Uh and Vh must not be the same). Assuming
a backward Euler discretization for the derivative in time, i.e. denoting δtu

n =
(un − un−1)/k, we arrive to the scheme:

⎧
⎨

⎩

(δtu
n
ε , ū)+ (∇un

ε ,∇ū) = −(λε(u
n
ε )∇vnε ,∇ū), ∀ū ∈ Uh,

(δtv
n
ε , v̄)+ (∇vnε ,∇v̄)+ (vnε , v̄)− (un

ε , v̄) = 0, ∀v̄ ∈ Vh.

(6)

Hereafter, (·, ·) denotes the L2(�) scalar product.
Now, the spatial operator must be discretized. In the equation for vnε , the fact of

taking −�hvn ∈ Vh as test function gives similar estimates to the continuous case,
where the linear operator−�h : Vh → Vh is defined as follows:

(−�hv
h, v̄) = (∇vh,∇v̄), ∀v̄ ∈ Vh.

However, in order to obtain a discrete energy inequality, the chemotactic part in the
equation for un

ε must vanish with the production part in the equation for vnε . Taking
into account that F ′ε(un

ε ) has to be interpolated (in order to belong to the FE-space),
we would need:

(λε(u
n
ε)∇vnε ,∇�h(F ′ε(un

ε))) = (∇un
ε ,∇vnε ), (7)

being �h the Lagrange interpolator from C0(�) onto Uh. However, it is not clear
that equality (7) holds for λε given in Fig. 1a. Thus, instead of the function λε , we
will use a matrix operator �ε : Uh → L∞(�)d×d (designed by Barret and Blowey,
see [2]), which satisfies the following properties:

• �εu
h is symmetric and positive definite for all uh ∈ Uh and it is an approxima-

tion of Iuh as ε → 0, where I denotes the identity matrix.
• It holds, for all uh ∈ Uh,

(�εu
h)∇�h(F ′ε(uh)) = ∇uh in �.

In the construction of this matrix operator �ε, the following hypotheses are
required:

• (H) The triangulation is structured in the sense that all simplices of the domain
discretization have a right angle.

• Uh is generated by P1-continuous FE. There is not constraints about the choice
of Vh, that could be generated by Pk-continuous FE (k ≥ 1).
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Using this operator �ε , we can modify system (6), obtaining the following first
order in time, nonlinear and coupled scheme (called scheme UV from now on):

⎧
⎨

⎩

(δtu
n
ε , ū)

h + (∇un
ε ,∇ū) = −(�ε(u

n
ε)∇vnε ,∇ū), ∀ū ∈ Uh,

(δtv
n
ε , v̄)+ (∇vnε ,∇v̄)+ (vnε , v̄)− (un

ε , v̄) = 0, ∀v̄ ∈ Vh,

(8)

where (·, ·)h is the mass lumping discrete scalar product, which will serve to obtain
unconditional energy-stability, which yields to energy estimates. Concretely, the
following properties are deduced:

• Well-posedness: Unconditional existence of solution of (8), and conditional
uniqueness.

• Mass conservation:
∫

�

un
ε =

∫

�

u0
ε, ∀n ≥ 1. (9)

• Unconditional energy-stability: In fact, the following discrete energy law holds:

δt

(

(Fε(u
n
ε), 1)h + 1

2
‖∇vnε ‖2

L2

)

+ ε‖∇un
ε‖2

L2 + ‖�hv
n
ε ‖2

L2 + ‖∇vnε ‖2
L2 ≤ 0.

• Uniform in time energy estimates.
• Approximated positivity of un

ε and vnε : the negative part of un
ε and vnε tends to

zero when ε → 0:

‖((un
ε )−, (vnε )−)‖L2 → 0 when ε → 0, (10)

where, in general, we denote the negative part of w by w− := min{w, 0}.

2.3 Numerical Approach Using the Scheme US

A different approach is deduced based on the idea appearing in the work of Zhang
et al. (see [11]) by using the equation satisfied by σ = ∇v, first solving the system
satisfied by (u, σ ) and, given u, recovering v a posteriori from the equation of v. The
resulting system must be rewritten in order to obtain that the numerical approach
satisfies an energy inequality, and it is well-posed in a FE-framework. In this case,
the problem (2) for f (u) = u is approximated by the following problem (Q)ε:

(Qε)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tuε − ∇ · (λε(uε)∇(F ′ε(uε)))−∇ · (λε(uε)σ ε) = 0 in �, t > 0,
∂tσ ε + rot(rot σ ε)− ∇(∇ · σ ε)+ σ ε = λε(uε)∇(F ′ε(uε)),
∂uε

∂n
= 0 on ∂�, t > 0,

σ ε · n = 0, [rot σ ε × n]tang = 0 on ∂�, t > 0,
uε(x, 0) = u0(x) ≥ 0, σ ε(x, 0) = ∇v0(x), in �.

(11)
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The energy law is now obtained testing (11) by (F ′ε(uε), σ ε) (again chemotactic
term cancels with the production term):

d

dt

∫

�

(
Fε(uε)+ 1

2
|σ ε|2

)
dx +

∫

�

λε(uε)|∇(F ′ε(uε))|2dx + ‖σ ε‖2
H 1 = 0.

Then, approximating the space H1
σ (�) := {σ ∈ H 1(�) : σ · n = 0 on ∂�} (where

the solution σ is sought) by the FE-continuous space �h, we propose the following
fully discrete scheme associated to problem (Q)ε (called scheme US from now
on):

• Given (un−1
ε , σ n−1

ε ) ∈ Uh ×�h, compute (un
ε , σ

n
ε ) ∈ Uh ×�h solving

⎧
⎨

⎩

(δtu
n
ε , ū)

h + (λε(u
n
ε)∇�h(F ′ε(un

ε)),∇ū) = −(λε(u
n
ε)σ

n
ε ,∇ū), ∀ū ∈ Uh,

(δtσ
n
ε , σ̄ )+ (Bhσ

n
ε , σ̄ ) = (λε(u

n
ε)∇�h(F ′ε(un

ε)), σ̄ ), ∀σ̄ ∈ �h,

(12)

with

(Bhσ
n
ε , σ̄ ) = (rot σ n

ε , rot σ̄ )+ (∇ · σ n
ε ,∇ · σ̄ )+ (σ n

ε , σ̄ ),

and where the auxiliary variable σ n
ε tries to approximate ∇vnε .

• We recover vnε = vnε (u
n
ε ) ∈ Vh solving:

(δtv
n
ε , v̄)+ (∇vnε ,∇v̄)+ (vnε , v̄) = (un

ε , v̄), ∀v̄ ∈ Vh. (13)

Again, we can prove the well-posedness of the scheme US (unconditional existence
and conditional uniqueness), satisfying the mass conservation property (9), the
approximated positivity of the solution (un

ε , v
n
ε ) (see (10)), and the following

discrete energy inequality:

δt

(
(Fε(u

n
ε), 1)h + 1

2
‖σ n

ε‖2
L2

)
+ ε‖∇�h(F ′ε(un

ε ))‖2
L2 + ‖σ n

ε‖2
H 1 ≤ 0,

from which we deduce uniform in time energy estimates.
Note that, in this scheme, the hypothesis (H) assumed for Scheme UV is not

required. Moreover, there is not constraints about the choice of discrete spaces Uh,
Vh and �h.

2.4 Numerical Approach Using the Scheme UZSW

The last scheme that we are going to present, uses the energy quadratization
technique (see for instance [1, 10]), that introduces more unknowns in the system
in order to linearize the problem and rewrite the energy in a quadratic form,
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obtaining an energy-stable scheme with respect to a modified energy. Concretely, by
introducing the auxiliary variables zε = F ′ε(uε), σ ε = ∇vε and wε = √Fε(uε)+ A

with A > 0, we can rewrite the problem as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tuε −∇ · (λε(uε)∇zε)− ∇ · (uεσ ε) = 0 in �, t > 0,
∂tσ ε + rot(rot σ ε)−∇(∇ · σ ε)+ σ ε = λε(uε)∇zε in �, t > 0,

∂twε = 1

2
√
Fε(uε)+ A

F ′ε(uε) ∂tuε in �, t > 0,

zε = 1√
Fε(uε)+ A

F ′ε(uε) wε in �, t > 0,

∂zε

∂n
= 0 on ∂�, t > 0,

σ ε · n = 0, [rot σ ε × n]tang = 0 on ∂�, t > 0,
uε(x, 0) = u0(x) ≥ 0, σ ε(x, 0) = ∇v0(x),

wε(x, 0) = √Fε(u0(x))+ A in �,

(14)

The advantages and disadvantages that Scheme UZSW presents with respect to
Schemes UV and US are summarized in Tables 1 and 2.

2.5 Numerical Simulations

We make some numerical simulations in order to validate numerically the theoret-
ical results obtained. Here, we compare the three schemes analyzed (schemes UV,
US, and UZSW) with the classical Backward Euler scheme BE associated to (2)
for f (u) = u. We chose the spaces for (u, z, σ , w, v) generated by P1-continuous
FE, the domain � = [0, 2]2 using a structured mesh, and all the simulations were

Table 1 Overview for the numerical analysis of the schemes

Schemes UV US UZSW

Linear or nonlinear Nonlinear Nonlinear Linear

Well-posedness Yes Yes Yes

Hypothesis (H) required? Yes No No

Approximated positivity of un
ε and vnε Yes Yes No

Table 2 Overview for the numerical simulations of the schemes

Schemes UV US UZSW

Energy stability w.r.t. Ee(u, v) Yes Yes No

Mass-conservation Yes Yes Yes

Approximated positivity of un
ε and vnε Yes Yes No

CPU time Less Intermediate Higher
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Fig. 2 Initial conditions. (a) Initial cell density u0. (b) Initial chemical concentration v0

carried out using FreeFem++ software. The linear iterative method used to approach
the nonlinear schemes was a Picard Method.

2.5.1 Approximated Positivity

In order to test the approximated positivity of the schemes, we choose k = 10−5,
h = 1

40 and the very exigent initial conditions (see Fig. 2):

u0=−10xy(2− x)(2− y)exp(−10(y − 1)2 − 10(x − 1)2)+ 10.0001

and

v0=100xy(2− x)(2− y)exp(−30(y − 1)2 − 30(x − 1)2)+ 0.0001.

We observe that for the schemes UV and US, the approximated positivity holds for
(un

ε , v
n
ε ); while for the scheme UZSW, this behavior is not observed (see Fig. 3).

For the scheme BE we have also observed negative values for the minimum of un
ε

in some times tn > 0, with values more negative than in the schemes UV and US.

2.5.2 Energy Stability

We compare the energy stability of the schemes with respect to the “exact energy”
(which comes from the continuous problem):

Ee(u, v) :=
∫

�

u+ (ln(u+)− 1) dx + 1

2
‖∇v‖2

L2
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Fig. 3 Approximate positivity of un
ε . (a) Minimum values of un

ε computed using the scheme
UV. (b) Minimum values of un

ε computed using the scheme UZSW. (c) Minimum values of un
ε

computed using the scheme US. (d) Minimum values of un computed using the scheme BE

and the behaviour of the discrete residual of the energy law:

REe(u
n, vn) := δtEe(u

n, vn)+ 4
∫

�

|∇
√

un+|2dx + ‖�hv
n‖2

L2 + ‖∇vn‖2
L2 ≤ 0,

where un+ := max{un, 0}.
We observe that the schemes UV, US and BE have decreasing in time energy

Ee(u, v), while the scheme UZSW evidences increasing energies for some times
tn > 0. On the other hand, the schemes UV and US evidence REe(u

n, vn) ≤ 0 for
all n ≥ 0, while the schemes BE and UZSW have REe(u

n, vn) ≥ 0 for some times
tn (see Fig. 4).

3 Conclusions

The three schemes (UV, US and UZSW) are mass-conservative and uncondi-
tionally energy-stable, but with respect to different discrete energies. The main
theoretical and numerical results obtained for the schemes are sumarized in the
Tables 1 and 2.
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The Thin-Sandwich Problem in General
Relativity

Rodrigo Avalos

Abstract This paper serves a review on the history and results on the reduced
thin-sandwich equations of general relativity (GR). These equations arise within
the initial value formulation of GR as a method of solving the Einstein constraint
equations. The program of analysing the generality of this procedure was first started
by J. A. Wheeler, which put forward clear physical motivations for this approach,
and conjectured that this program could generically work. Through this paper,
we will review the main contributions to this problem, going from the original
conjecture to recent results. Finally, we will also highlight how problems related
with the Einstein constraint equations, in particular with the thin-sandwich problem,
can be used as tools when analysing interesting and seemingly unrelated problems in
Lorentzian geometry. Namely, we will prove a theorem on the existence of isometric
embeddings of low regularity for compact Lorentzian manifolds into Ricci-flat
spaces.

1 Introduction

It is a well-known fact that the vacuum Einstein field equations of general relativity
(GR) admit a well-posed initial value formulation, as long as the initial data satisfies
a system of constraint equations [1]. The same thing can be said for different
matter models of interest in physics [1, 2]. Furthermore, since the Einstein constraint
equations (ECE) arise from the usual Gauss–Codazzi equations for hypersurfaces,
it is a necessary condition that they must be satisfied in order for the space-time
Einstein equations to have a well-posed Cauchy problem. It is a remarkable fact
that the constraint equations are also a sufficient condition for this problem to be
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well-posed, at least in most cases of interest. There is no surprise then in the fact
that these equations have drawn a great deal of attention.

During this paper, we will center on one problem related with the ECE, which
coined the name of thin-sandwich problem (TSP) [3–5]. This problem comes about
as a simplification of what came to be known as the sandwich conjecture. Both
problems were initially posed by the famous physicist John A. Wheeler. In the
following sections we will make explicit the nature of these problems, but it is
important to remark that both these problems were motivated by physical situations
[3, 6], and translated into problems in geometry and geometric analysis [4, 5, 7–9]. It
is interesting to note that claims concerning the well-posedness of TSP can be found
in the literature in very influential papers, such as [3, 6], in the early sixties. It was
not until the end of such decade that a more rigorous investigation of the problem
came about, and it was clearly shown that the TSP could not be well-posed in general
[7], as might have been previously expected. The first existence results were due
to Robert Bartnik and Gyula Fodor, which gave sufficient conditions for the TSP
to well-posed in the case of 3-dimensional closed manifolds [4]. Their result was
generalized by Domenico Giulinni to incorporate more realistic physical sources
into the equations [8]. It is important to realize that, in spite of the fact that the main
analytical tools used by Bartnik and Fodor in [4] do not rely on the dimensionality of
the manifold, their proof took great advantage of the fact that they were working in
low dimensions in order to manipulate different expressions. Furthermore, besides
particular examples, the issue of whether this method of solving the constraint
equations was general enough to be able to parametrize a sufficiently large subset of
the space of solutions on any closed manifold, had not been addressed at all. The first
result in these direction was [5], were the Bartnik-Fodor theorem is generalized for
arbitrary dimensions, and it is shown that, on any closed manifold, the solutions of
the TSP parametrize an open set in the space of solutions of the constraint equations
[5]. Further analysis of the subset of the space of solutions of the ECE which can be
parametrized via the thin-sandwich approach has been carried out in [10], where,
for the first time, this problem is also posed on asymptotically euclidean (AE)
manifolds.

In the following sections, this paper will be organized as follows. First, we will
review the main definitions and results concerning the initial value formulation of
GR. Then, we will introduce the TSP and the reduced thin-sandwich equations
(RTSE) as a method of solving the constraint equations, which carries clear physical
motivations. Then, we will analyse the well-posedness of the RTSE on closed
manifolds together with some genericity issues related with these equations, and
comment on how the problem translates to AE manifolds. Finally, we will show
how results concerning the ECE can play a central role in analysing somewhat
unrelated problems in Lorentzian geometry. In order to do this, we will show
how our results on the TSP can be used as the main tool in proving existence of
isometric embeddings of compact Lorentzian manifolds in Ricci-flat spaces [11].
This last problem has its own quite interesting motivations, both in physics and
mathematics.
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2 The Initial Value Formulation of GR

In order to introduce the Einstein equations within the context of their initial value
formulation in the most direct possible way, let us consider the following definition.

Definition 1 An (n+1)-dimensional globally hyperbolic space-time is defined to
be an (n + 1)-dimensional Lorentzian manifold (V

.= Mn × R, ḡ) satisfying the
Einstein equations:

Ric(ḡ)− 1

2
R(ḡ)ḡ = T (ḡ, ψ̄) (1)

where, Ric(ḡ) and R(ḡ) represent the Ricci tensor and Ricci scalar of ḡ, respec-
tively, and T represents some (0, 2)-tensor field, called the energy-momentum
tensor, depending on ḡ and (possibly) on a collection of tensor fields, collectively
denoted by ψ̄ , representing other physical fields.

In order to formulate the Cauchy problem for GR, define an initial data set for
the Einstein equations to be given by (M, g,K,ψ), where M is an n-dimensional
smooth Riemannian manifold with metric g, K is a symmetric second rank tensor
field, and ψ collectively denotes the necessary initial data for the non-geometric
fields ψ̄ . Then, The Cauchy problem for GR consists in finding an isometric
embedding of such an initial data set into a globally hyperbolic space-time (V , ḡ),
ι : M �→ V , such that K is the second fundamental form of M seen as a submanifold
of V .

The Cauchy problem for GR is translated into an existence problem for a set
of partial differential equations (PDEs) by trivially embedding M ↪→ M × R, and
writing the set of Eq. (1) as a hyperbolic system for the metric and the other fields
involved. In this process, it is standard to consider local co-frames where we can
write the metric ḡ in a convenient way, such that we have a “space-time splitting”.
In order to do this, a vector field β, which is constructed so as to be tangent to each
hypersurface M × {t}, is used to define the following local coframe

θ i = dxi + βidt , i = 1, · · · , n
θ0 = dt.

Then we can write the metric ḡ in the following way

ḡ = −N2θ0 ⊗ θ0 + gij θ
i ⊗ θj

where the function N is a positive function referred to as the lapse function, while
the vector field β is called the shift vector. Using this frame, the extrinsic curvature
to each submanifold Mt is given by:

Kij = 1

2N
(∂tgij − (∇iβj +∇j βi)). (2)
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For most sources of interest, it is known that GR has a well posed Cauchy
problem for initial data satisfying the following set of constraint equations on M

(see [2, 12] for updated reviews on this topic):

R(g) − |K|2g + (trgK)2 = 2ε

divgK −∇trgK = S
(3)

where (ε, S) denote the induced energy and momentum densities on M , respec-
tively, R(g) represents the scalar curvature of g, | · |g denotes the pointwise-tensor
norm in the metric g and divgK denotes the divergence of K in the metric g.

At this point, it should be noted that the above systems of constraints, as a
system for the initial data (g,K) would seem to be highly underdetermined, since
we have a scalar and a vector equation coupled on M (which could naively be
thought of as (n + 1)-equations), and we need to fix two (0, 2)-symmetric tensor
field on M . In fact, this underdetermined property of the system can be expressed
more rigorously, for instance within the conformal method of solving the constraint
equations. Within this method, the proposal is to fix the conformal class of the metric
g together with the mean curvature τ

.= trgK , and solve the constraint system
for the conformal factor and the traceless part of the extrinsic curvature. In this
scenario, if the physical sources are known, the system (3) can be posed as an elliptic
system for the conformal factor and a vector field, whose conformal lie derivative
is used to construct the traceless part of K (see [2] for a detailed description of
this procedure, together with further references). In particular, in the constant mean
curvature scenario (CMC), on closed manifolds, there is a complete classification,
due to James Isenberg, of the CMC conformal initial data which allow the constraint
equations to be solved [13].

Taking into account the above paragraph, it becomes quite clear that trying to
choose appropriately which part of the initial data (g,K) is to be set as prescribed
initial data and which part is to be solved for, might be an issue of physical interest.
In fact, this was the origin of Wheeler’s sandwich and thin-sandwich conjectures.
In the first one, the idea was to try to prescribe two Riemannian metrics on a 3-
manifold M , and try to find a solution of the Einstein space-time equations which
would result as the evolution of one of these metrics towards the other, filling the
sandwich with the space-time in the middle. This idea comes about as an attempt
of generalizing the usual variational problem in classical particle physics, where the
ends of the trajectories are fixed, to the setting of GR. The TSP comes about as
a simplification of the sandwich problem, where the idea is to try to prescribe the
initial Riemannian metric g, together with its initial time-derivative ġ (see [3, 14]).
Again, this correlates with well-understood problems in classical particle physics,
where one is allowed to prescribe the initial position and velocities of the particles in
the system. Notice from (2), that if (g, ġ) are taken as prescribed, then the constraint
equations should be posed for the lapse function and shift vector field on M . This
was expected to be a determined system which could be solved for generic initial
data, as can be read out from [14].
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3 The Reduced Thin Sandwich Equations

As we have explained in the previous section, the RTSE appear when trying to solve
the constraints in terms of the lapse function and shift-vector field. This is achieved
by using the expression for K in terms of N and β. In fact, given a solution of the
constraints, satisfying 2ε −R(g) �= 0 over all M , the lapse function can be equated
from the hamiltonian constraint to get:

N =
√

(trgγ )2 − |γ |2g
2ε − Rg

. (4)

where the tensor γ has components

γij = 1

2

(
ġij − (∇iβj + ∇jβi)

)
. (5)

Replacing (4) in the momentum constraint shows that the shift vector satisfies the
following equation, which is referred to as the RTSE:

divg

(√
2ε − Rg

(trgγ )2 − |γ |2g
(
γ − trgγ g

)
)

= S. (6)

The main idea in what follows is that we can reverse the above process: If, for
given data ψ

.= (g, ġ, ε, S), Eq. (6) is well posed for β (makes sense), and has a
solution, then, taking (4) as a definition for the lapse, (N, β) will solve the constraint
equations for the freely chosen initial data ψ .

In order to study the reduced Eq. (6), we will suppose that for some initial data
set ψ0

.= (g0, ġ0, ε0, S0), we have a reference solution of the RTSE β0, giving rise
to a reference solution for the constraints. We will analyse under what conditions
the RTSE admit a solution β for initial data ψ

.= (g, ġ, ε, S) sufficiently close
to ψ0. Afterwards, we will analyse whether it is possible to prescribe families of
such reference solutions (ψα, βα) satisfying these conditions, where α is some real
parameter. If we can, then we will produce an open subset in the space of solutions
of the ECE which can be parametrized via the thin-sandwich formulation.

3.1 The Compact Case

Let M be a compact (without boundary) n-dimensional manifold and write this set
of non-linear PDE for the shift vector in the following way. Let

Hs(T
p
q (M)), s >

n

2
, s > 2,
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denote the Sobolev space of (p, q)-tensor fields with s generalized derivatives in
L2. Denote

E1
.= Hs+3(T

0
2 M)×Hs+1(T

0
2 M)×Hs+1(M)×Hs(T

0
1 M)

which is a Banach space with the norm ‖ · ‖E1 : E1 → R given by

||(g, ġ, ε, S)||E1 = ‖g‖Hs+3 + ‖ġ‖Hs+1 + ‖ε‖Hs+1 + ‖S‖Hs

and let

E2
.= Hs+2(T

1
0 M) and F .= Hs(T

0
1 M).

Now suppose that for given data ψ0
.= (g0, ġ0, ε0, S0) ∈ E1 we have a solution

β0 ∈ E2. Then, the continuity of all the maps involved guarantees that (6) is well-
defined in a neighbourhood U of (ψ0, β0) in E1 × E2. With this in mind, we define
the map

� : U ⊂ E1 × E2 → F

given by

�(ψ, β)
.= divg

(√
2ε − Rg

(trgγ )2 − |γ |2g
(
γ − trgγ g

)
)

− S (7)

where we have denoted ψ = (g, ġ, ε, S), and we are using β to denote the shift.
Then the RTSE can be written as

�(ψ, β) = 0. (8)

Now our problem reduces to the following: we want to see if there are open sets
V ⊂ E1, W ⊂ E2, with ψ0 ∈ V and β0 ∈W, and a unique map

g : V→W

such that

�(ψ, g(ψ)) = 0 for all ψ ∈ V.

In this case, β = g(ψ) ∈ W would be the solution to our problem. In order to
address this issue, we intend to use the Implicit Function Theorem. Hence, we need
to show that

L
.= D2�(ψ0,β0) : E2 → F (9)
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is an isomorphism. A few computations give:

D2�(ψ,β)Y = divg

(
1

N

(

divgYg − S∇Y − 1

2ε − Rg

〈π,∇Y 〉π
))

(10)

where π is the tensor

π
.= 1

N
(γ − trgγ g) = K − trgK g (11)

and

S∇Yij = 1

2

(∇iYj +∇j Yi

)

What we would like to do at this point, is to apply standard methods in elliptic
theory to determine sufficient conditions which guarantee that the operator L is
an isomorphism. Nevertheless, the first point that we have to deal with, is that
L is not generally elliptic. Nonetheless, we have the following consequences
[5]:

• If π is a definite operator all over M , then the linear operator L is elliptic.
• L is (formally) self-adjoint: L∗ = L.
• Thus, assuming that π is definite and using standard elliptic theory, in order to

show that L is an isomorphism, we just need to show that it is injective.

In the following proposition, we analyse the kernel of the linear operator L.

Proposition 1 Consider a reference solution (ψ, β) for the TSP on a compact n-
dimensional manifold M satisfying that: (i) π is a definite operator on M; (ii) 2ε −
Rg > 0 on M; (iii) given a function μ, the equation

S∇Y = μK (12)

has only the solution Y = 0, μ = 0. Then L is injective.

Proof Several computations show that, under hypotheses (i) and (ii), the kernell of
L is characterized by the solutions Y of the equation (see [5]):

S∇Y = 1

|K|2g
〈∇Y,K〉K (13)

So if (13) has only the trivial solution Y = 0, then L is injective. ��
Using the above results plus the implicit function theorem we prove the

following:



82 R. Avalos

Theorem 1 Suppose (ψ0, β0) ∈ E1 × E2 satisfies �(ψ0, β0) = 0. Then, if π is a
definite operator at each point of M , 2ε − Rg > 0 everywhere on M , and if for a
given function μ on M the equation

S∇Y = μK

has only the solution Y = 0, μ = 0, then there are open neighbourhoods V ⊂ E1
and W ⊂ E2 of ψ0 and β0 respectively, and a unique mapping

g : V→W

such that �(ψ, g(ψ)) = 0 for all ψ ∈ V.

3.1.1 Existence of Reference Solutions

What we intend to show is that the constraint equations (3) on a compact manifold
M always admit a solution (g,K), satisfying all the hypotheses of the theorem. We
will proceed as follows:

• Look for a solution of the constraint equations of the form (h, αh).
• We will restrict ourselves to solutions of (3) with S = 0, i.e., with zero

momentum density.
• In this set up, the momentum constraint is automatically satisfied: divhK −
∇trhK = 0.

• What remains to be solved is the Hamiltonian constraint, which reads as

Rh = 2ε − α2n(n− 1). (14)

In order to guarantee the existence of solutions for (14), we will appeal to the
following well-established theorem [15].

Theorem 2 (Kazdan–Warner) Let M be a C∞ compact manifold of dimension
n ≥ 3. If f ∈ C∞(M) is negative somewhere, then there is a C∞ Riemannian
metric on M with f as its scalar curvature.

Using this theorem and considering α2 > min 2ε
n(n−1) , we see that (14) always

admits a smooth solution. A solution constructed in this way satisfies two of the
three conditions required by (1), that is, it satisfies

• 2ε − Rh > 0, which comes from (14).
• π is definite, since from K = αh we get that π = α(1 − n)h.

In this context, the last condition of Theorem 1 becomes the statement that h

does not admit conformal Killing fields (CKF). We can guarantee that we can find a
solution to (14) with this property by analysing with some care the proof of Kazdan–
Warner theorem, and putting it together with some results concerning negative Ricci
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curvature, due to J. Lohkamp [16]. The idea in this procedure is to first produce a
metric g′ with Rg′ = −1 which does not possess any CKF, and then follow the proof
of the Kazdan–Warner theorem as it is laid out in [17] in order to find a conformal
deformation g of g′ which solves the prescribed scalar curvature equation (14).
Then, the non-existence of CKF for g′ implies the same result for g. Putting all
this together, gives us the following theorem.

Theorem 3 On any smooth compact n-dimensional manifold M , n ≥ 3, there is
an open subset in the space of solutions of the constraint equations (3) with S = 0,
which can be parametrized via the thin-sandwich formulation.

3.1.2 Solutions Around Symmetric Data

The aim of this section and the following one is to study the behaviour of the
non linear operator � around solutions where its linearisation D2� is not an
isomorphism. We still consider reference solutions of the form treated above, that
is, pairs (ψ0, β0) induced from a solution of the form (g0,K = αg0), with S0 = 0.
Under these conditions, the linearization L

.= D2�(ψ0,β0) : E2 → Z is elliptic and
formally self adjoint, and Ker(L) is the space of conformal killing vector fields of
g0. In particular, we have

Hs+2 = Ker(L)⊕ Ker(L)⊥,

Hs = Ker(L)⊕ Im(L),

and thus L : Ker(L)⊥ �→ Im(L) is an isomorphism and both Ker(L)⊥ and Im(L)

are closed subsets, and thus Banach. Thus, we can prove the following lemma,
which has been extracted from [10].

Lemma 1 Let M be an n-dimensional compact smooth manifold. Consider the
following map

�̃g0 : U ⊂ Hs+1 ×Hs+1 × Im(L)×Ker(L)⊥ → Hs

(ġ, ε, S, β) �→ divg0

(√
2ε� − Rg0

(trg0γ )2 − |γ |2g0

(
γ − trg0γ g0

)
)

− S,
(15)

where U is a neighbourhood of (ψ̃0 = (ġ0, ε0, 0), β0) and s > n
2 . If the space of

conformal Killing vector fields of g0 consists merely of Killing vector fields, then
there are open subsets U1 ⊂ Ẽ1

.= Hs+1×Hs+1× Im(L) and U2 ⊂ Ker(L)⊥, with
ψ̃0 ∈ U1 and β0 ∈ U2 such that the equation

�̃g0(ψ̃, β) = 0 (16)

has a unique solution β = β(ψ̃) ∈ U2 for all ψ̃ ∈ U1.
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Proof By definition, we have �̃ : U ⊂ Ẽ1 × KerL⊥ → Hs , s > n
2 . Thus, if

Im(�̃) ⊂ Im(L), then, because of the above arguments, D2�̃(ψ0,β0) : KerL⊥ →
Im(L) is an isomorphism, and thus the implicit function theorem finishes the proof.
Thus, we need to show that Im(�̃) ⊂ Im(L). This is a rather straightforward
computation, that can be found in [10]. ��

The above lemma shows that, by restricting the functional spaces appropriately,
we can still analyse the RTSE in a neighbourhood of our reference solution, even
if it possesses continuous symmetries. All that is required is that every conformal
Killing field must be in fact a Killing field. Some relevant examples of these types
of symmetric initial data can be found in [10].

3.1.3 Neighbourhoods of Umbilical Reference Solutions with Conformal
Killing Fields

The idea of this section is to consider the case where we have an umbilical reference
solution for the vacuum constraint equations, which admits (genuine) conformal
Killing fields. Since in this situation the implicit function argument fails, we would
like to see whether we can find umbilical solutions of the ECE which are as close
to the original one as we want, but without conformal Killing fields, so that we
can apply the implicit function argument around them. Notice that, intuitively, this
claim ought to hold, since metrics without continuous symmetries are generic [18,
19]. The tricky part is to show that, within this dense subset of metrics without
symmetries, we can chose another dense subset which are solutions of the ECE.
Furthermore, we will show that we can make such choice preserving the scalar and
mean curvature of the initial data set.

Thus, we consider a smooth solution of the vacuum constraint equations of the
form (g0,K = τ

n
g0), where τ is constant which represents the mean curvature of the

embedded hypersurfaceM ↪→ M×R. We suppose that g0 has non-trivial conformal
Killing fields. Since we are considering vacuum, g0 satisfies

Rg0 = −
τ 2

n
(n− 1).

Our aim is to find another solution of the form (ḡ, τ
n
ḡ), with Rḡ = Rg0 such that ḡ

is close to g0 and Ker(�ḡ,conf) = {0}, so that (ḡ, τ
n
ḡ) induces a reference solution

(ψ̄0, β̄0) where the implicit function argument can be applied. In order to do this,
we will need some auxiliary results.

First of all, we need to make precise the statement concerning the genericity
of metrics without conformal Killing field. We will make use of the following
results. Consider the set of Riemannian metrics on a closed manifolds, of dimension
greater or equal to three, and denote it by M. It is possible to define a Fréchet
topology on this set by considering the distance induced by the Ck (semi) norms
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{pk = || · ||Ck}∞k=0, and denote such distance function by d0. This distance
is not complete, since we can have sequences which run out of M into the
space of (non necessarily positive definite) symmetric (0, 2)-tensor fields. That
is why it is necessary to supplement this distance function with another distance
d1 tailored so that sequences do not run out of M. Then, the distance function
d = d0 + d1 can be shown to be complete on M. How to build up d1 and to
proove the completeness of d can be seen in [20]. Using these ideas, it has been
shown in [19] that there is a residual subset in (M, d) without conformal Killing
fields. The key observation to be made here is that the density of such subset
in M implies that, given any Ck neighborhood U of an element g0 ∈ M (with
respect to the semi-norms pk), we can always find a metric g ∈ M which is
sufficiently close to g0 in the distance d , so that g ∈ U and g does not possess any
conformal Killing fields. The proof of the following theorem relies on this density
argument plus an implicit function argument. The detailed proof can be found in
[10].

Theorem 4 Given any umbilical smooth solution to the vacuum constraint equa-
tions (g0,K0) on a compact n-dimensional manifold M satisfying, with n ≥ 3, there
is another smooth solution (ḡ, K̄), which is as close as we want to (g0,K0) in any
Ck-topology and has the same mean and scalar curvatures as (g0,K0), for which
the induced solution (ψ̄0, β̄0) for the RTSE admits a neighborhood where the RTSE
are well-posed.

The above theorem, for instance, shows that any umbilical solution of the vacuum
(without cosmological constant) constraint equations, either produces reference
solutions of the RTSE such that these equations are well-posed in a neighborhood
of this data, or there is a another solution close to it, such that the previous claim
holds.

3.2 The Asymptotically Euclidean Case

In this section the idea is to review how some of the discussion of the RTSE on
closed manifolds gets translated into the case of asymptotically euclidean manifolds,
which are highly interesting objects in physics, since they are used to model
initial data for isolated gravitational systems. These are complete non-compact
manifolds which consist in a compact core and a finite number of ends which are
diffeomorphic to the exterior of the unit ball in R

n. Clearly, we can always introduce
a complete Riemannian metric e which is isometric to the euclidean metric on each
end.

Although many of the analytic aspects valid for closed manifolds are still valid
in this scenario, we need to make some adjustments. For instance, we will need
to work with weighted Sobolev spaces. We will follow the conventions adopted
in [21], and thus denote by Hs,δ the weighted Sobolev space of sections of some
vector bundle over M which has s-weak derivatives in some tempered L2-spaces,



86 R. Avalos

which are specified by the parameter δ ∈ R. These are Banach spaces with the
norm

||u||2Hs,δ

.=
s∑

m=0

∫

M

|Dmu|2e(1+ d2
e )

(m+δ)μe (17)

where de denotes the Riemannian distance function in the metric e with respect
to a fixed origin 0 ∈ M . These functional spaces share several of the properties
of the usual Sobolev spaces, such as the embedding theorems and continuous
multiplications properties [21].

In order to formulate the TSP in this context, we will again consider the
linearisation of the RTSE around umbilical solutions of the constraint equations
(g,K = αg). We will then set the momentum density to zero, i.e., S = 0, and thus
we have a prescribed scalar curvature equation for g, of the form

Rg + α2n(n− 1) = 2ε (18)

Since we will impose decaying conditions at infinity for both the allowed energy
sources and the metric, we need to deal with the constant term in the left-hand side
of (18). That is why we will introduce a cosmological constant term as part of the
energy sources, which will fix the umbilicity constant α.1 That is, we will consider
that the energy sources are decomposed as ε = �+ ε′, where � is a constant which
represents the cosmological constant, and ε′ represents the energy density induced
by matter fields. Then, fix α2 = 2�

n(n−1) , which means that (18) is equivalent to
Rg = ε′. In fact, for our reference solutions, we will consider vacuum. That is,
ε′ = 0:

Rg = 0. (19)

Now, let (M, e) be an n-dimensional manifold euclidean at infinity, n ≥ 3, let
(ψ0, β0) be a reference solution for the RTSE, where ψ0 = (g0, ġ0,�, ε0 = 0, S0 =
0). Also, assume that g0 is Hs+3,δ+1-asymptotically flat with Rg0 = 0, for some s >
n
2 and δ > −n

2 . Finally, we fix K0 = αg0, with α2 = 2�
n(n−1) . As discussed above

these choices would provide a solution of the constraint equations. Furthermore,
from this solution, by choosing a lapse function N0 = 1 and a shift vector β0 ∈
Hs+2,δ, we get

ġ0 = −2αg0 + Lβ0g0. (20)

Standard arguments show that ġ0 + 2αe ∈ Hs+1,δ+1.

1The introduction a positive cosmological constant can be very easily motivated from physical
arguments.
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Since we are restricted to a neighbourhood of the fixed reference solution, we
only consider metrics g which are Hs+3,δ+1-asymptotically flat and such that ||g −
g0||Hs+3,δ+1 is small enough. In a similar way, we will consider ġ with the same
asymptotic behaviour as ġ0, that is, ġ+2αe ∈ Hs+1,δ+1, such that ||ġ− ġ0||Hs+1,δ+1

is sufficiently small. In this way it will be useful for us to rewrite

ġ = −2αe − 2α(g − e)+ Lβg,

= −2αe + δġ,
(21)

and take δġ ∈ Hs+1,δ+1 as part of the data that is actually freely specified. Since the
same can be done with g, we will also take δg

.= g− e ∈ Hs+3,δ+1 as a freely given
datum. In this way, it holds that γ is a continuous function of δg, δġ and β, using the
previously discussed functional spaces, with γ + αe ∈ Hs+1,δ+1. Furthermore, we
get that trgγ +nα ∈ Hs+1,δ+1 and |γ |2g−nα2 ∈ Hs+1,δ+1. Having fixed this setting,

one gets that N−1 is well defined in a neighbourhood of the reference solution, and
furthermore, N−1 − 1 ∈ Hs+1,δ+1 on it.

Now, by replacing the Sobolev spaces by weighted Sobolev spaces with appro-
priately chosen weights, it is possible to analyse the behaviour of the linearisation
of the RTSE. In fact we find that (see [10] for the details):

D2�(ψ0,β0) · Y = −
1

2
�g0,confY, (22)

where

�g0,confY
.= divg0

(

LYg0 − 2

n
g0 divg0Y

)

(23)

is the conformal Killing Laplacian. It has been shown, for instance in [22], that the
following theorem holds:

Theorem 5 Let (M, g0) be a Hs,ρ-asymptotically euclidean manifold with s > n
2

and ρ > −n
2 . Then, �g0,conf is an isomorphism from Hs,δ to Hs−2,δ+2 for any

−n
2 < δ < n

2 − 2.

Applying the above theorem to D2�(ψ0,β0), followed by the implicit function
theorem, we prove

Theorem 6 Given a solution (g0,K0) of the constraint equations fixed as above,
there exists an E1-neighbourhood of the initial data ψ0 ∈ E1, such that the reduced
thin-sandwich equations are well-posed, i.e., there is a unique solution β = β(ψ) ∈
Hs+2,δ, s > n

2 and −n
2 < δ < n

2 − 2, for each ψ sufficiently close to ψ0.2

2In this theorem we have that E1
.= Hs+3,δ+1×Hs+2,δ+1×Hs+1,δ+1×Hs+1,δ+3×Hs,δ+3, E2

.=
Hs+2,δ and Z .= Hs,δ+2. The freely specified initial data are denoted by ψ

.= (δg, δġ, ε′, S) ∈ E1;
E2 is the space where we look for solutions β and Z is the range of the RTS operator �.
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3.3 Existence of Reference Solutions

The issue of whether reference solutions of the type we have been proposing can
be obtained on any AE manifold is not a simple one. Since we would need to
produce solutions of (19), results concerning the Yamabe classification of AE [23]
manifolds and obstructions to positive scalar curvature [24] can be used to produce
obstructions to the solvavility of (19). A detailed discussion about this matter can
be found in [10], where the final conclusion is the following one.

Theorem 7 On any n-dimensional manifold euclidean at infinity, n ≥ 4, which
admits a Hs+3,δ+1-Yamabe positive metric, with s > n

2 and −n
2 < δ < n

2 − 3,
there is an open subset in the space of solutions of the Einstein constraint equations
where the thin sandwich problem is well-posed.

It is interesting to point out that more explicit hypotheses that guarantee the
resolvability of (19) can be found. For instance, if a manifold euclidean at infinity M

admits a sufficiently regular AE-metric g whose scalar curvature Rg has sufficiently
small negative part, then it admits a conformal deformation into zero scalar
curvature [10]. This can be used to establish interesting examples. For instance,
small compactly supported perturbations of Schwarchild’s (initial data) metric can
be conformally deformed into zero scalar curvature.

4 Ricci-Flat Embedding of Lorentzian Manifolds

The idea in this section is to relate the problem of embeddings of Lorentzian
manifolds into Ricci-flat spaces with the constraint equations of GR. In particular,
with the partial resolution of the TSP on closed manifolds offered above.

The main motivation for analysing this problem comes from extra-dimensional
theories in physics. In some of them, the usual 4-dimensional space-time of GR
is seen as a submanifold of a space with some specified geometric property (Ricci-
flatness, Einstein space, etc). In this sense, determining whether generic solutions of
the space-time Einstein equations can be isometrically embedded into these kind of
structures becomes a natural problem. Even more ambitiously, we could think about
whether general Lorentzian manifolds admit these embeddings. Thought in these
terms, this problem has quite some resemblance with very important problems in
Riemannian geometry, such as Whitney’s embedding theorem or Nash’s theorems
on isometric embeddings of general Riemannian manifolds into some higher
dimensional Euclidean space. In our case, the Riemann-flat condition is replaced
by a weaker condition, such as Ricci-flatness, and we would aim to achieving
embeddings of lower codimension that in the Riemann-flat case. A detailed review
of both the physical motivation for this problem, together with the mathematical
history related with similar problems can be found in [11].
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Before moving to the statement of the main theorem, we should highlight that
some local and analytic results concerning existence of such embeddings have been
known for some time. These result are not ideal, even if we only think about
the motivations coming from physics, since it is essential to admit non-analytic
solutions of the Einstein equations in order to preserve causality. Furthermore,
stability of the embedding with respect to the space-time metric is typically desired.
Since the analytic results are proven via the Cauchy–Kovalevskaya theorem, there is
no guarantee of stability. Also, higher dimensional models in physics demand global
results. Thus, global and non-analytic results are well-motivated by some modern
physical scenarios in theoretical physics.

Theorem 8 Any n-dimensional compact Lorentzian manifold (M, g), with n ≥ 3
and g ∈ Hs+3, s > n

2 , admits an isometric embedding in a Ricci-flat (2n + 2)-
dimensional semi-Riemannian manifold with index n+1 (that is, with n + 1 time-like
dimensions).

Sketch of the Proof 3 Compactness gives us that we can write the Lorentzian metric
g as following

g = λ(g̃ − g0),

where ḡ and g0 are Riemannian metrics, and λ is a constant, which depends on g.
Furthermore, we can guarantee that we can always pick g̃ sufficiently close to g0.
Also, from Theorem 3 and the discussion preceding it, we know that we can pick
g0 as part of a solution of the vacuum constraint equations for GR, and we can
guarantee that for any g′ sufficiently close to g0 we can associate another solution
of the vacuum constraint equations. Thus, we get that for appropriately chosen g̃

and λ, both g0 and g̃ are part of a solution of the vacuum constraint equations on M .
Hence, as a standard consequence of the evolution problem in GR, we get isometric
embeddings of (M, g̃) and (M, g0) in Lorentzian Ricci-flat spaces, say (V1, h1) and
(V2, h2) respectively. We can then embed (M, g) into the product V1×V2 equipped
with the metric

h = λ(π∗h1 − σ ∗h2), (24)

where π and σ denote the projections onto the first and second factors of V1 × V2
respectively. This space is Ricci-flat, of index n+1, and the embedding is isometric.

Clearly, the above theorem demands only low regularity for the space-time
metric.4 Also, the above theorem is global. Furthermore, stability with respect of
the space-time metric can be extracted as a corollary (see [11]).

3For the details of the proof see [11].
4Since Hs+3 ↪→ C3 for s > n

2 , we are demanding at least C3-metrics. In particular, the results
always holds for smooth metrics.
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It is also worth to note that, despite the fact that compact space-times are not the
most relevant object of study in GR, embeddings of arbitrary large closed strips in
globally hyperbolic space-times, with compact space-slices, can also be extracted
as a corollary. Finally, in spite of the codimension needed for the embedding being
high, it is, as far as we are aware of, much lower that the best results available
that can be applied for general compact Lorentzian manifolds: (n2 + 3n− 2)-fewer
dimensions are needed.5
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Parametric Solutions to a Static
Fourth-Order Euler–Bernoulli Beam
Equation in Terms of Lamé Functions

A. Ruiz, C. Muriel, and J. Ramírez

Abstract The exact general solution to a static fourth-order Euler–Bernoulli beam
equation has been obtained and it has been written in terms of a fundamental set
of solutions to a Lamé equation. This permits to express the general solution in
parametric form in terms of Weierstrass elliptic functions. Three-parameter families
of solutions have been also reported by setting particular values to one of the
arbitrary constants of integration in the general solution. One of these families is
expressed in terms of the Weierstrass ℘-function and ζ -function whereas two of
them are given in terms of either trigonometric or hyperbolic functions. Graphical
representations of particular solutions are also shown for different values of the
arbitrary constants of integration.

1 Introduction

One of the most important problems in both mechanical and civil engineering
consists on studying the transverse motion of an elastic thin beam bearing a load.
This problem was firstly addressed by Daniel Bernoulli and Leonard Euler [1] and
it can be modelled [2] by the fourth-order partial differential equation

∂2

∂x2

(

EI
∂2y

∂x2

)

+ μ
∂2y

∂t2 = f (y), (1)

where y(t, x) denotes the transverse displacement at time t and position x, E is the
elastic modulus (also known as the Young’s modulus), I is the second moment of
area, μ represents the mass per unit length, and the function f , which is assumed to
be smooth, describes the applied load.
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The determination of some exact solutions to Eq. (1) is of great importance due
to its multiple applications. For this reason, different techniques have been applied
in the recent literature with the aim of addressing the problem of the integrability
of such equation. One of the most successful tools to find exact solutions is the
Lie symmetry approach [3, 4]. The complete classification of the Lie symmetries of
Eq. (1) was performed in [5] assuming that E,μ and I are constant, whereas in [6]
the case of variable mass density was studied.

In the static case, if E and I are constant, Eq. (1) becomes (up to constant)

y4 = f (y),

where y4 = d4y

dx4 . A remarkable particular case is

y4 = δy−5/3, δ = ±1, (2)

whose Lie symmetry algebra is three-dimensional and isomorphic to sl(2,R). Since
this Lie symmetry algebra is nonsolvable, the standard Lie reduction method cannot
be applied to integrate equation (2) by quadrature. In fact, only partial results on
the integrability of such equation have been obtained by using Lie and Noether
symmetry methods [7–10].

Some recent theoretical results [11, 12], based on solvable structures [13], were
applied by the authors in [14] to study Eq. (2). The general solution of such equation
was obtained in parametric form and expressed in terms of a fundamental set of
solutions to the following one-parameter family of linear second-order equations:

φ′′(r;K0)− 2℘(r; g2, g3)φ(r;K0) = 0, (3)

where ℘(r) = ℘(r; g2, g3) stands for the Weiertrass ℘-function with parameter
values

g2 = 162

3
δ and g3 = −162K0, K0 ∈ R.

In this work it is addressed the analysis of Eq. (3) with the aim of obtaining
exact solutions to Eq. (2). Equation (3) is a particular case of the Lamé equation
and its solutions are called Lamé functions [15–17]. In Sect. 2 we prove, by using
Lamé functions, that for K0 �= 0 the exact solution to Eq. (2) can be expressed
in parametric form and in terms of the Weierstrass ℘-function, ζ -function and σ -
function.

The case K0 = 0 is studied in Sect. 3. For this case, two linearly independent
solutions to Eq. (3) can be expressed in terms of the Weierstrass ℘ and ζ func-
tions. This provides a three-parameter family of solutions in parametric form and
expressed in terms of such elliptic functions.
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The case in which the discriminant g3
2 − 27g2

3 of the Weierstrass ℘-function
℘ (r; g2, g3) equals zero corresponds with the values K0 = ± 16

27 . For these specific
values, the Weierstrass ℘-function appearing in the Lamé equation (3) becomes
either a trigonometric or a hyperbolic function [15, 16]. The corresponding Lamé
functions are then elementary functions that provide a three-parameter family of
solutions to Eq. (2) in terms of either trigonometric or hyperbolic functions [14].
These results are collected in Sect. 4 for the sake of completeness of the study of
Eq. (2).

Finally, in Sect. 5 we include graphical representations of some particular
solutions to Eq. (2) by choosing different values for the four independent constant
of integration Ki , i = 0, 1, 2, 3.

2 Exact General Solution to Eq. (2)

Throughout this section

℘(r) = ℘(r; g2, g3), ζ(r) = ζ(r; g2, g3), σ (r) = σ(r; g2, g3)

denote the Weierstrass ℘, ζ , and σ functions [15, 16, 18], respectively, with
parameters values

g2 = 162

3
δ, g3 = −162K0, K0 ∈ R. (4)

In order to simplify the notation, from this point on the parameters g2 and g3 given
in (4) will be omitted in the argument of the corresponding Weierstrass elliptic
function.

In [14] it was proved that if {φ1, φ2} is a fundamental set of solutions to the Lamé
equation (3) such that the corresponding Wronskian becomes W(φ1, φ2)(r) = 1,
then the general solution to the static Euler–Bernoulli beam equation (2) is given in
parametric form by

x(r) = K3(K1 −K2)
φ1(r;K0)−K2φ2(r;K0)

φ1(r;K0)−K1φ2(r;K0)
,

y(r) = ±
⎛

⎝
K

1/2
3 ( K1 −K2)

2
(
φ1(r;K0)−K1φ2(r;K0)

)

⎞

⎠

3

,

(5)

where Ki ∈ R for i = 0, 1, 2, 3, K3 > 0 and K1 �= K2. The case K1 = K2 leads to
the two-parameter family of singular solutions [9, 10, 14]:

y(x) = ±(ax2 + bx + c
)3/2

,
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where the constants a, b and c satisfy

3(b2 − 4ac)2 − 16

3
δ = 0.

A fundamental set of solutions to the Lamé equation (3) for K0 �= 0 can be found
in [17, pag. 572]. These solutions can be expressed in terms of elliptic functions as
follows:

Φ1(r) = ℘(r)

exp(rζ(γ ))

σ (r)σ (γ )

σ (r − γ )
and Φ2(r) = exp(rζ(γ ))

σ (r − γ )

σ(r)σ (γ )
, (6)

where γ is a value such that ℘(γ ) = 0. It can be checked that

W(Φ1,Φ2)(r) = ℘ ′(γ ).

Therefore, a fundamental set of solutions {φ1, φ2} to Eq. (3) for K0 �= 0 such that
W(φ1, φ2)(r) = 1 is given by

φ1(r) = ℘(r)

exp(rζ(γ ))

σ (r)σ (γ )

σ (r − γ )
and φ2(r) = exp(rζ(γ ))

℘ ′(γ )

σ (r − γ )

σ(r)σ (γ )
. (7)

By using (5) and the functions φ1 and φ2, the general solution to Eq. (2) can be
obtained in parametric form and in terms of Weierstrass elliptic functions. Such
expression of the general solution is presented in the next theorem:

Theorem 1 The four-parameter general solution to the Euler–Bernoulli beam
equation

y4 = δy−5/3, δ = ±1,

is given in parametric form through

x(r) = K3(K1 −K2)
f2(r)

f1(r)
,

y(r) = ±
(

K
1/2
3 (K1 −K2)σ (γ )σ (r)σ (r − γ )℘ ′(γ )

2f1(r)

)3

,

where

fi(r) = σ(γ )2σ(r)2℘(r)℘ ′(γ )exp(−rζ(γ ))−Kiexp(rζ(γ ))σ (r − γ )2, i = 1, 2,

K1,K2,K3 ∈ R, K1 �= K2, K3 > 0, ℘(r) = ℘(r; g1, g2), ζ(r) = ζ(r; g1, g2),
σ(r) = σ(r; g1, g2) stand for the Weierstrass ℘-function, ζ -function and σ -

function, respectively, with parameters g2 = 162

3 δ and g3 = −162K0, K0 �= 0,
and the value γ is such that ℘(γ ) = 0.
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3 A Three-Parametric Family of Solutions Corresponding
to K0 = 0

In this section we study separately the case K0 = 0, which it is not included in
the result presented in Theorem 1. For the value K0 = 0, the Lamé equation (3)
becomes

φ′′(r)− 2℘(r; g2, 0)φ(r) = 0, where g2 = 162

3
δ. (8)

It can be checked that a fundamental set of solutions {φ1, φ2} to Eq. (8) such that
W(φ1, φ2)(r) = 1 is given by

φ1(r) =
√
℘(r) and φ2(r) =

√
℘(r)H(r), (9)

where

H ′(r) = 1

℘(r)
.

By using Formula 6.b in [18, p. 162] we have that

H(r) = 6

162δ

℘ ′(r)
℘ (r)

+ 12

162δ
ζ(r),

therefore, by (9), a fundamental set of solutions to Eq. (8) can be expressed as
follows:

φ1(r) =
√
℘(r) and φ2(r) =

√
℘(r)

(
6

162δ

℘ ′(r)
℘ (r)

+ 12

162δ
ζ(r)

)

. (10)

The fundamental set of solutions {φ1, φ2} given in (10) leads, through (5), to the
following three-parameter solution to Eq. (2):

x(r) = K3(K1 −K2)

(
162δ℘ (r)− 6K2

(
℘ ′(r)+ 2℘(r)ζ(r)

)

162δ℘ (r)− 6K1 ( ℘ ′(r)+ 2℘(r)ζ(r))

)

,

y(r) = ±
(

K
1/2
3 (K1 −K2)162δ℘ (r)

2
√
℘(r)

(
162δ℘ (r)− 6K1 ( ℘ ′(r)+ 2ζ(r)℘ (r))

)

)3

,

where Ki ∈ R for i = 1, 2, 3, K3 > 0, K1 �= K2.
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4 Three-Parameter Families of Solutions Corresponding
to K0 = ±16

27

The discriminant g3
2 − 27g2

3 of the Weierstrass ℘-function appearing in the Lamé
equation (3) equals zero for the values K0 = ∓ 16

27 . In such cases, the Weierstrass
℘-function becomes either a trigonometric or a hyperbolic function and then a
fundamental set of solutions to Eq. (3) can be expressed in terms of elementary
functions [14]. With the aim of collecting all the results concerning the integrability
of Eq. (2), we include in this section the explicit expression to such fundamental set
of solutions:

• If K0 = − 16
27 then two linearly independent solutions to (3) verifying

W(φ1, φ2)(r) = 1 become

φ1(r) =
√

3

8
cot (α1(r)) sin (α2(r))−

√
2

8
cos (α2(r)) ,

φ2(r) = csc (α1(r))
(
(3+√6) cos (β1(r)) + (3−√6) cos (β2(r))

)
,

(11)

where

α1(r) = 2
√

2r, α2(r) = 1√
6

(
4
√

2r − π
)
,

β1(r) = 1√
6

(
4(
√

2−√3)r − π
)
, β2(r) = 1√

6

(
4(
√

2+√3)r − π
)
.

(12)

• If K0 = 16
27 then two linearly independent solutions to the corresponding Eq. (3)

satisfying W(φ1, φ2)(r) = 1 are

φ1(r) = csch (α1(r))
(
(3+√6) cosh (β1(r)) + (3−√6) cosh (β2(r))

)
,

φ2(r) =
√

3

8
coth (α1(r)) sinh (α2(r))−

√
2

8
cosh (α2(r)) ,

(13)

where α1(r), α2(r), β1(r) and β2(r) are given in (12).

The functions φ1 and φ2 given in (11) (resp. (13)) provide through (5) a three-
parameter family of solutions expressed in terms of trigonometric (resp. hyperbolic)
functions. We omit here the expression of such solution due to its length.
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5 Graphical Representations of Some Solutions

In this section we present some graphical representations of particular solutions to
Eq. (2) by setting the integration constants to particular values. It can be observed
how the qualitative behaviour of the solutions changes depending on the different
choices of the integration constants and the domain of the parameter r (Figs. 1, 2, 3,
4, 5, 6, and 7).

25 30 35 40 45 50
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Fig. 1 Solution of Eq. (2) for the values δ = 1,K0 = 0.1,K1 = −1,K2 = −3,K3 = 10, r ∈
] − 100, 100[
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-1.0
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Fig. 2 Solution of Eq. (2) for the values δ = 1,K0 = 0.01,K1 = −1,K2 = −3,K3 = 10, r ∈
] − 100, 100[
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Fig. 3 Solution of Eq. (2) for the values δ = 1,K0 = 16
27 ,K1 = 1,K2 = −3,K3 = 10, r ∈

] − 15, 15[
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Fig. 4 Solution of Eq. (2) for the values δ = 1,K0 = 0,K1 = 0.3,K2 = −1,K3 = 1
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Fig. 5 Solution of Eq. (2) for the values δ = 1,K0 = 1,K1 = −1,K2 = −3,K3 = 10, r ∈]1, 4[
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Fig. 6 Solution of Eq. (2) for
the values δ = 1,K0 =
1,K1 = −1,K2 = −3,K3 =
10, r ∈]1, 4[
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Fig. 7 Solution of Eq. (2) for
the values δ = 1,K0 =
− 16

27 ,K1 = −1,K2 =
3,K3 = 10, r ∈]0.89, 6.2[
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6 Concluding Remarks

The exact general solution to the static Euler–Bernoulli beam equation (2) has
been obtained in terms of Weierstrass elliptic functions, as far as we know, for the
first time in the literature. This has been achieved by considering an appropiate
fundamental set of solutions to the Lamé equation (3). For the particular case
K0 = 0 a new three-parameter family of solutions has been also provided in terms of
the Weierstrass ℘-function. The case in which the discriminant of the Weierstrass
℘ function appearing in the Lamé equation (3) equals zero has been also studied
in this work. In this case two three-parameter family of solutions can be derived
in parametric form and expressed in terms of either trigonometric or hyperbolic
functions.
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On Large Orbits of Actions of Finite
Soluble Groups: Applications

A. Ballester-Bolinches, R. Esteban-Romero, and H. Meng

Abstract The main aim of this survey paper is to present two orbit theorems and to
show how to apply them to obtain a result that can be regarded as a significant
step towards the solution of Gluck’s conjecture on large character degrees of
finite soluble groups. We also show how to apply them to solve questions about
intersections of some conjugacy families of subgroups of finite soluble groups.

Keywords Finite groups · Soluble groups · Linear groups · Regular orbits ·
Formations · Prefrattini subgroups · System normalisers

Mathematics Subject Classification (2010) 20C15, 20D10, 20D20, 20D45

1 Introduction

The main aim of this paper is to present some results on regular orbits in finite and
soluble groups and show how they can be used to solve or to progress in the solution
of some open problems in finite group theory. Hence all sets, groups, fields and
modules considered here are finite, and we assume this without further comment.

Recall that if a group G is acting on a non-empty set Ω , an element w of Ω is in
a regular orbit if CG(w) = {g ∈ G | wg = w} = 1, i.e., the orbit of w is as large
as possible and it has size |G|. The study of regular orbits of linear groups actions,
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that is, regular orbits of actions of subgroups of GL(V ) on a vector space V , plays
an important role in many branches of group theory, particularly that of soluble
groups. In fact, the solution of some well-known open problems such as the so-
called k(GV )-problem ([17]) depends on the existence of such orbits. Consequently,
the problem of the existence of regular orbits has attracted the attention of several
authors and it is an active and interesting research area in Group Theory.

Our interest in this topic arose in trying to solve some questions about intersec-
tions of system normalisers and prefrattini subgroups of soluble groups raised by
Kamornikov and Shemetkov and Vasil’ev in the Kourovka Notebook [12].

A general way to present this kind of problems is by means of k-conjugate
systems.

Definition 1 A 3-tuple (G,X, Y ) is said to be a k-conjugate system if G is a group,
X, Y are subgroups of G with Y = CoreG(X), and there exist k elements g1, . . . ,
gk such that Y =⋂k

i=1 Xgi .

There are some interesting examples of conjugate systems in the literature.
Dolfi [4] proved that if π is a set of primes and G is a π-soluble group, then
(G,H,Oπ(G)) is a 3-conjugate system, where H is a Hall π-subgroup and Oπ (G)

is the largest normal π-subgroup of G. This result extends earlier theorems of
Passman [16] (case |π | = 1) and Zenkov [22] (case H nilpotent). On the other
hand, as Mann pointed out in [11], the results of Passman imply that if H is a
nilpotent injector of a soluble group G and F(G) is the Fitting subgroup of G, then
(G,H,F(G)) is a 3-conjugate system.

Due to the above results and the important role played by the system normalisers
and prefrattini subgroups in the structural study of soluble groups, the following
questions turn out to be natural and interesting:

Problem 1 ([12, Kamornikov, Problem 17.55]) Does there exist an absolute
constant k such that the Frattini subgroup Φ(G) of a soluble group G is the
intersection of k G-conjugates of any prefrattini subgroup H of G?

Problem 2 ([12, Shemetkov and Vasil’ev, Problem 17.39]) Is there a positive
integer k such that the hypercentre of any finite soluble group coincides with the
intersection of k system normalisers of that group? What is the least number with
this property?

In the language of conjugate systems, these problems can be restated as follows.

Restatement of Problem 1 Does there exist an absolute constant k such that if G

is a soluble group with Frattini subgroup Φ(G) and H is a prefrattini subgroup of
G, then (G,H,Φ(G)) is a k-conjugate system?

Restatement of Problem 2 Is there a positive integer k such that if G is a finite
soluble group with hypercentre Z∞(G) and D is a system normaliser of G,
then (G,D,Z∞(G)) is a k-conjugate system? What is the least number with this
property?
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Kamornikov gave in [10] the solution to Problem 1. He also solved in [9] a similar
question about the prefrattini subgroups associated to the formation of all nilpotent
groups.

This kind of questions can be reduced in many cases to a problem about regular
orbits in faithful actions: assume we want to prove that (G,X, Y ) is a k-conjugate
system. If we argue by induction on the order of G and the conjugate system has nice
closure properties, we can often reduce the problem to k > 1, Y = 1, G = NX,

and N is a faithful X-module. Assume that the natural action of X on N⊕ (k−1)· · ·
⊕N has a regular orbit. Then there exist n1, . . . , nk−1 ∈ N such that CX(n1) ∩
· · · ∩ CX(nk−1) = 1. Since X ∩ Xn = CX(n), for all n ∈ N , it follows that
X ∩Xn1 ∩ · · · ∩Xnk−1 = 1.

Another interesting problem where the regular orbits play an important role is
the following:

Let G be a group, and denote by

b(G) = max{χ(1) | χ ∈ Irr(G)},

where Irr(G) is the set of all irreducible complex characters of G; b(G) is the largest
degree of an irreducible character of G.

Gluck [8] showed that if G is soluble, then |G : F(G)| ≤ b(G)13/2 and made the
following conjecture.

Conjecture 1 (Gluck [8]) If G is a soluble group, then

|G : F(G)| ≤ b(G)2.

Note that the bound |G : F(G)| ≤ b(G)2 fails for many non-soluble groups (e.g.
for G simple and non-abelian).

Gluck’s strategy for producing irreducible characters of large degree consists in
considering the action of G/F(G) on the faithful and completely reducible G/F(G)-
module V of all linear characters of the section F(G)/Φ(G). It follows that large
orbits of G/F(G) on V give large character degrees.

To prove Gluck’s conjecture in this way, it is enough to prove that if V is a
faithful completely reducible G-module, then there exists an orbit in V of length at
least

√|G|. We could get such an orbit by means of a regular orbit of G on V ⊕ V :
if a, b ∈ V and CG(a) ∩ CG(b) = 1, then

|CG(a)CG(b)| = |CG(a)||CG(b)| ≤ |G|

and so |CG(a)| ≤ √|G| or |CG(b)| ≤ √|G|.
This is unfortunately not true in general as Gluck already noted in [8]: the group

G = S3 # S3 acts faithfully and irreducibly on a vector space of dimension 6 on
GF(2), the finite field of two elements but it does not have any regular orbit on
V ⊕ V .
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It would be therefore interesting to find out sufficient conditions to guarantee
the existence of a regular orbit on V ⊕ V , for a faithful and completely reducible
G-module V .

2 Regular Orbits

Espuelas (see [6, Theorem 3.1]) proved that if G is a group of odd order and V is
a faithful and completely reducible G-module of odd characteristic, then G has a
regular orbit on V ⊕ V . Dolfi and Jabara [5, Theorem 2] extended Espuelas’ result
to the case where the Sylow 2-subgroups of the semidirect product [V ]G of V and
the soluble group G are abelian, and Yang [20, Theorem 2.3] proved that the same
is true if 3 does not divide the order of the soluble group G. A result of Wolf [19,
Theorem A] shows that a similar result holds if G is supersoluble (see also [15,
Theorem 3.1] for an improved result when G is nilpotent).

Dolfi [4, Theorem 1.4], reproving a result of Seress [18, Theorem 2.1], proved
that any soluble groupG has a regular orbit on V⊕V⊕V and if either (|V |, |G|) = 1
or G is of odd order, then G has also a regular orbit on V ⊕ V [4, Theorems 1.1
and 1.5].

More recently, Yang [21] extends some of these results to the case when H is
a subgroup of the soluble group G by proving that if V is a faithful completely
reducible G-module (possibly of mixed characteristic) and if either H is nilpotent
or 3 does not divide the order of H , then H has at least three regular orbits on V⊕V .
If the Sylow 2-subgroups of the semidirect product [V ]H are abelian, then H has at
least two regular orbits on V ⊕ V .

We prove that all previous results on regular orbits are consequences of the
following surprising theorems.

Theorem A ([13]) Let G be a soluble group and let V be a faithful completely
reducible G-module (possibly of mixed characteristic). Suppose that H is a
subgroup of G such that the semidirect product VH is S4-free. Then H has at least
two regular orbits on V ⊕ V . Furthermore, if H is Γ (23)-free and SL(2, 3)-free,
then H has at least three regular orbits on V ⊕ V .

Recall that if G and X are groups, then G is said to be X-free if X cannot be
obtained as a quotient of a subgroup of G; Γ (23) denotes the semilinear group of
the Galois field of 23 elements.

Theorem B ([14]) Let G be a soluble group and V be a faithful completely
reducible G-module (possibly of mixed characteristic). Suppose that H is a
supersoluble subgroup of G. Then H has at least one regular orbit on V ⊕ V .

We now draw a series of conclusions from Theorem A.

Corollary 1 ([21]) Let G be a soluble group acting completely reducibly and
faithfully on an odd order module V . Suppose that H is a subgroup of G. If H
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is nilpotent or 3 � |H |, then H has at least three regular orbits on V ⊕ V . If the
Sylow 2-subgroup of the semidirect product VH is abelian, then H has at least two
regular orbits on V ⊕ V .

Corollary 2 (see [4, Theorem 1.1]) Let G be a soluble group and V be a faithful
completely reducible G-module. Suppose that (|G|, |V |) = 1. Then G has at least
two regular orbits on V ⊕ V .

Theorems A and B have found an application to Gluck’s conjecture about large
character degrees. In fact, our next theorem not only extends almost all known
results on Gluck’s conjecture, but it could also be very useful to solve Gluck’s
conjecture in the future.

Theorem C ([13, 14]) Let G be a soluble group satisfying one of the following
conditions:

1. G is S4-free;
2. G/F(G) is S4-free and F(G) is of odd order;
3. G/F(G) is S3-free;
4. G/F(G) is supersoluble.

Then Gluck’s conjecture is true for G.

3 Prefrattini Subgroups and Normalisers

This section has as its main theme the study of intersections of normalisers and
prefrattini subgroups of finite soluble groups associated to saturated formations,
and provides answers to the aforesaid questions of Kamornikov and Shemetkov and
Vasil’ev.

Recall that a formation is a class of groups F which is closed under taking
epimorphic images and such that every group G has an smallest normal subgroup
with quotient in F. This subgroup is called the F-residual of G and denoted by
GF. A maximal subgroup M of a group G containing GF is called F-normal in G;
otherwise, M is said to be F-abnormal.

We say that F is saturated if it is closed under Frattini extensions. In such case, by
a well-known theorem of Gaschütz-Lubeseder-Schmid [3, Theorem IV.4.6], there
exists a collection of formations F(p) ⊆ F, one for each prime p, such that F
coincides with the class of all groups G such that if H/K is a chief factor of G,
then G/CG(H/K) ∈ F(p) for all primes p dividing |H/K|. In this case, we say
that H/K is F-central in G and F is locally defined by the F(p). We say that H/K

is F-eccentric if it is not F-central.
Note that a chief factor H/K supplemented by a maximal subgroup M is F-

central in G if and only if M is F-normal in G.
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Every group G has a largest normal subgroup such that every chief factor of G

below it is F-central in G. This subgroup is called the F-hypercentre of G and it is
denoted by ZF(G) (see [3, Section IV.6]).

Let Σ be a Hall system of the soluble group G (see [3, Chapter I, Section 1.4]).
Let Sp be the p-complement of G contained in Σ , and denote by Wp(G) the
intersection of all F-abnormal maximal subgroups of G containing Sp (Wp(G) = G

if the set of all F-abnormal maximal subgroups of G containing Sp is empty). Then

W(G,Σ,F) =
⋂

p∈π(G)

Wp(G)

is called the F-prefrattini subgroup of G associated to Σ . The F-prefrattini
subgroups of G form a characteristic class of G-conjugate subgroups (see [1,
Section 4.3] for an exhaustive study of F-prefrattini subgroups).

According to [1, Proposition 4.3.17], the intersection LF(G) of all F-abnormal
maximal subgroups of a soluble group G is the core of every F-prefrattini subgroup
of G and

LF(G)/Φ(G) = ZF(G/Φ(G))

for every group G. In fact, we have:

Theorem D ([2]) Let F be a saturated formation and let H be an F-prefrattini
subgroup of a soluble group G. Then (G,H,LF(G)) is a 4-conjugate system.
Furthermore, if either G is S4-free or F is composed of S3-free groups, then
(G,H,LF(G)) is a 3-conjugate system.

If F = N, the formation of all nilpotent groups, then LF(G) = L(G) is the
intersection of all self-normalising maximal subgroups of G. It is a characteristic
nilpotent subgroup of G that was introduced by Gaschütz in [7]. If F is the trivial
formation, then LF(G) = Φ(G), the Frattini subgroup of G. Hence:

Corollary 3 ([9]) If G is soluble and H is an N-prefrattini subgroup of G, then
(G,H,L(G)) is a 3-conjugate system.

Corollary 4 ([10]) If G is soluble and H is a prefrattini subgroup of G, then
(G,H,Φ(G)) is a 3-conjugate system.

To describe our next result, we shall give a review of the definition of the F-
normalisers of a soluble group.

Let F(p) be a particular family of formations locally defining F and such that
F(p) ⊆ F for all primes p. Let

π = {p | F(p) �= ∅}.

For an arbitrary soluble group G and a Hall system Σ of G, choose for any prime p

the p-complement Kp = Sp ∩GF(p) of the F(p)-residual GF(p) of G, where Sp is
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the p-complement of G in Σ . Then

DF(Σ) = Gπ ∩
(
⋂

p∈π
NG(Kp)

)

,

where Gπ is the Hall π-subgroup of G in Σ , is the F-normaliser of G associated to
Σ . The F-normalisers of G are a characteristic class of G-conjugate subgroups.
There were introduced by Carter and Hawkes and coincide with the classical
system normalisers of Hall when F is the formation of all nilpotent groups (see
[3, Sections V.2 and V.3] for details).

According to [1, Proposition 4.2.6], if D is an F-normaliser of G, then
CoreG(D) = ZF(G). We prove:

Theorem E ([2]) Let F be a saturated formation and let D be an F-normaliser
of a soluble group G such that Φ(G) = 1. Then (G,D,ZF(G)) is a 4-conjugate
system. Furthermore, if either G is S4-free or F is composed of S3-free groups, then
(G,D,ZF(G)) is a 3-conjugate system.

Recall that if F = N is the formation of all nilpotent groups, then the N-
normalisers of a soluble group G are exactly the system normalisers of G and
ZN(G) = Z∞(G) is the hypercentre of G. Therefore the answer of Problem 2
for groups with trivial Frattini subgroup is contained in the following:

Corollary 5 Let G be a soluble group with Φ(G) = 1. If D is a system normaliser
of G, then (G,D,Z∞(G)) is a 3-conjugate system.

Our next example shows that (G,D,Z∞(G)) is not a 2-conjugate system in
general.

Example 1 Let D be the dihedral group of order 8. Then D has an irreducible and
faithful module V of dimension 2 over the field of 3-elements such that CD(v) �= 1
for all v ∈ V . Let G = [V ]D be the corresponding semidirect product. Then D

is a system normaliser of G and Z∞(G) = 1. By [3, Lemma A.16.3], D ∩ Dv =
CD(v) �= 1 for all v ∈ V . Hence (G,D,Z∞(G)) is not a 2-conjugate system.

Our next theorem has the aforesaid result of Mann as starting point and analyses
the intersections of injectors associated to Fitting classes of soluble groups. A class
of groups F is said to be a Fitting class if F is a class closed under taking subnormal
subgroups and such that every group G has a largest normal F-subgroup called
F-radical and denoted by GF. Every soluble group G has a conjugacy class of
subgroups, called F-injectors, which are defined to be those subgroups I of G such
that if S is a subnormal subgroup of G, then I ∩ S is F-maximal subgroup of S [3,
Theorem IX.1.4]. Note that, in this case, CoreG(I) = GF. We prove:

Theorem F ([2]) Let F be a Fitting class and let I be an F-injector of a soluble
group G. Then (G, I,GF) is a 4-conjugate system. Furthermore, if either G is S4-
free or F is composed of S3-free groups, then (G, I,GF) is a 3-conjugate system.
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Theorem A is the key result used in the proofs of the theorems of this section: we
need to get a regular orbit of an action of an F-prefrattini subgroup and an F-injector
over a completely reducible module.
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Poisson Algebras and Graphs
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Abstract A non-commutative Poisson algebra is a Lie algebra endowed with a,
not necessarily commutative, associative product in such a way that the Lie and
associative products are compatible via the Leibniz identity. If we consider a non-
commutative Poisson algebra P of arbitrary dimension, over an arbitrary base field
F, a basis B = {vi}i∈I of P is called multiplicative if for any i, j ∈ I we have that
[vi, vj ] ∈ Fvr and that vivj ∈ Fvs for some r, s ∈ I . We associate an adequate graph
(V ,E) to P relative to B. By arguing on this graph we show that P decomposes as
a direct sum of ideals, each one being associated to one connected component of
(V ,E). Also the minimality of P and the division property of B are characterized
in terms of the weak symmetry of the graph.

Keywords Poisson algebra · Graph · Multiplicative basis · Non-commutative
algebra · Decomposition theorem
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1 Introduction

An interesting problem in graph theory and in abstract algebra consists in char-
acterizing the structure of an algebraic object by the properties satisfied for some
graph associated to it (see for instance [1–4]). In this framework, the present paper
is devoted to study non-commutative Poisson algebras admitting a multiplicative
basis throughout an adequate associated graph.
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Definition 1 A non-commutative Poisson algebra P is a Lie algebra (P, [·, ·])
over an arbitrary base field F, endowed with an associative product, denoted by
juxtaposition, in such a way the following Leibniz identity

[xy, z] = [x, z]y + x[y, z]

holds for any x, y, z ∈ P.

Definition 2 Let P be a non-commutative Poisson algebra. A subalgebra of P is a
linear subspace closed by the Lie and the associative products. An ideal I of P is a
subalgebra satisfying [I,P] + IP+ PI ⊂ I.

Definition 3 A direct sum of linear subspaces of a non-commutative Poisson
algebra

P =
⊕

α

Pα,

is called orthogonal if [Pα,Pβ ] = PαPβ = {0} for any α �= β.

We also recall that an automorphism of a Poisson algebra P is a linear isomor-
phism f : P→ P satisfying [f (x), f (y)] = f ([x, y]) and f (x)f (y) = f (xy) for
any x, y ∈ P.

Multiplicative bases were considered for algebras endowed with exactly one
product in [5]. In this reference, a basis B = {vi}i∈I of an arbitrary algebra A is
called multiplicative if for any i, j ∈ I we have either vivj = 0 or 0 �= vivj ∈ Fvk
for some (unique) k ∈ I .

From here, we can introduce in a natural way the next concept:

Definition 4 A basis B = {vi}i∈I of a non-commutative Poisson algebra P is said
to be multiplicative if for any i, j ∈ I we have that [vi, vj ] ∈ Fvr and that vivj ∈
Fvs for some r, s ∈ I .

Since it is usual in the literature to describe an algebra by exhibiting a multiplica-
tive table among the elements of a fixed basis, we can find many classical examples
of Poisson algebras admitting a multiplicative basis.

Example 1 Consider the complex linear space V with basis B = {e1, e2, e3}. Let
us define the Lie algebras P = (V, [·, ·]) and P′ = (V, [·, ·]) where the nonzero
Lie products are given by [e1, e2] = −[e2, e1] = e3 and [e1, e2]′ = −[e2, e1]′ = e2
respectively.

By defining on P and P′ the associative product as e1e1 = e3 and zero otherwise,
we get that P and P′ become Poisson algebras admitting both of them to B as a
multiplicative basis.
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The paper is organized as follows. In Sect. 2 we will introduce the (directed)
graph associated to a non-commutative Poisson algebra P admitting a multiplicative
basis B. By utilizing this graph we prove that P decomposes as a direct sum

P =
⊕

k

Ik

of ideals with a multiplicative basis contained in B, each one being associated to
one connected component of the associated graph.

In Sect. 3, we discuss the relation among the previous decompositions of P given
by different choices of bases of P.

Finally, in Sect. 4, we relate the weak symmetry of the associated graph with
some properties of P. Then, the minimality of P and the division property of
B are characterized in terms of weak symmetry. It is also shown that the above
decomposition is by means of the family of its minimal ideals if and only if B is of
division, that is, if and only if the associated graph is weak symmetric.

2 Poisson Algebras Admitting a Multiplicative Basis,
and Graphs

We begin this section by recalling that a (directed) graph is a pair (V ,E) where V

is a (non-empty) set of vertices and E ⊂ V ×V a set of (directed) edges connecting
the vertices.

Definition 5 Let B = {vi}i∈I be a multiplicative basis of a non-commutative
Poisson algebra P. The graph �(P,B) := (V ,E) where V = B and

E = {(vi, vk) ∈ V × V : {vivj , vj vi , [vi, vj ]} ∩ F
×vk �= ∅ for some j ∈ I

}
,

where F× := F \ {0}, is called the (directed) graph associated to P relative to B.

Example 2 If we consider the Poisson algebras given in Example 1, we have that
the associated graphs to P and P′ relative to the multiplicative basis B are:

e1

e2

e3

e1

e2

e3

P,B P ,B)
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Given two vertices vi, vj ∈ V an undirected path from vi to vj is an ordered
family of vertices {vi1 , . . . , vin } ⊂ V with vi1 = vi , vin = vj , and such that either
(vir , vir+1 ) ∈ E or (vir+1 , vir ) ∈ E for 1 ≤ r ≤ n− 1.

We can introduce an equivalence relation in V defined by vi ∼ vj if and only if
either vi = vj or there exists an undirected path from vi to vj . Then it is said that
vi and vj are connected and the equivalence class of vi , (denoted by [vi] ∈ V/ ∼),
corresponds to a connected component C[vi ] of the graph �(P,B). Then we have

�(P,B) =
⋃̇

[vi ]∈V/∼
C[vi ]. (1)

We also can associate to any C[vi ] the linear subspace

PC[vi ] :=
⊕

vj∈[vi ]
Fvj , (2)

and assert the next result:

Theorem 1 Let P be a non-commutative Poisson algebra with a multiplicative
basis B = {vi}i∈I . Then P decomposes as the orthogonal direct sum

P =
⊕

[vi ]∈V/∼
PC[vi ] ,

being any PC[vi ] an ideal of P, admitting the set [vi] ⊂ B as multiplicative basis.

Proof From Eqs. (1) and (2) we can assert that P is the direct sum of the family of
linear subspaces PC[vi ] with [vi ] ∈ V/ ∼, admitting each one the set [vi] ⊂ B as
multiplicative basis.

Let us suppose that there exist vj ∈ PC[vi ] and vk, vl ∈ B such that

{vjvk, vkvj , [vj , vk]} ∩ F
×vl �= ∅

for some j ∈ I . Then (vj , vl) and (vk, vl) are edges ofC[vi ], and then vk, vl ∈ PC[vi ] .
From here we conclude that the direct sum is orthogonal and that PC[vi ] is an ideal
of P. ��

Observe that to identify the components of the decomposition given in Theorem 1
we only need to focus on the connected components of the associated graph.

Example 3 Consider the complex six-dimensional Poisson algebra P with basis

B = {e1, e2, e3, e4, e5, e6},
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nonzero Lie products [e1, e2] = −[e2, e1] = e2 and [e3, e5] = −[e5, e3] = e5;
and nonzero associative products e1e1 = e4, e1e4 = e4e1 = e4, e4e4 = e4 and
e3e3 = e6. Then, �(P,B) is:

e1 e2

e4

e3

e5 e6

Note that the corresponding decomposition of P given by Theorem 1 can be
easily recovered from the above graph by writing

P = PC[e1] ⊕PC[e3] ,

where PC[e1] = span{e1, e2, e4} and PC[e3] = span{e3, e5, e6}.
Corollary 1 If P is simple, then any two vertices of �(P,B) are connected.

3 Relating the Graphs Given by Different Choices of Bases

In general, two different multiplicative bases of P have two different associated
graphs, which give rise to two different decompositions of P (see Theorem 1).

Example 4 Let P be the complex six-dimensional Poisson algebra with basis

B = {v1, v2, v3, v4, v5, v6}

and nonzero products [v1, v2] = −[v2, v1] = v3, [v4, v5] = −[v5, v4] = v5,
[v4, v6] = −[v6, v4] = v6 and v1v1 = v3.

Consider the basis

B′ = {w1, w2, w3, w4, w5, w6}

where w1 = v1 + v4 and wi = vi for 2 ≤ i ≤ 6. Then we have that the nonzero
products among these elements are [w1, w2] = −[w2, w1] = w3, [w1, w5] =
−[w5, w1] = w5, [w1, w6] = −[w6, w1] = w6, [w4, w5] = −[w5, w4] = w5,
[w4, w6] = −[w6, w4] = w6 and w1w1 = w3.
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From here, we have that B and B′ are multiplicative bases. The corresponding
associated graphs are:

v1

v2v3

v4

v5 v6

w1

w2w3

w4

w5 w6

P,B) P,B )

Of course, these graphs give rise to different decompositions of P. Namely

P = PC[v1] ⊕ PC[v4]

being PC[v1] = Fv1 ⊕ Fv2⊕ Fv3 and PC[v4] = Fv4 ⊕ Fv5 ⊕ Fv6 for the basis B, and

P = PC[w1]

for the basis B′.
In this section, we give a condition under which the graphs associated to P and

two different multiplicative bases B and B′ are isomorphic. As a consequence,
we establish a condition under which two decompositions of P, induced by two
different multiplicative bases B and B′, are equivalent.

We begin by recalling that two graphs (V ,E) and (V ′, E′) are isomorphic if there
exists a bijection f : V → V ′ such that (vi , vj ) ∈ E if and only if (f (vi), f (vj )) ∈
E′.

Definition 6 Let P be a non-commutative Poisson algebra. Two bases B = {vi}i∈I
and B′ = {v′j }j∈J of P are said to be equivalent if there exists an automorphism
f : P→ P satisfying f (B) = B′.
Lemma 1 Let P be a non-commutative Poisson algebra with multiplicative bases
B and B′. If B and B′ are equivalent, then �(P,B) and �(P,B′) are isomorphic.

Proof Let us suppose that B = {vi}i∈I and B′ = {wj }j∈J are two equivalent
multiplicative bases of P. Then, there exists a linear isomorphism f : P → P
satisfying

f (x)f (y) = f (xy) and [f (x), f (y)] = f ([x, y]) (3)

for any x, y ∈ P and such that f (B) = B′.
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Let us denote by (V ,E) and (V ′, E′) the set of vertices and edges of �(P,B)

and �(P,B′) respectively. Taking into account that V = B and V ′ = B′, and the
fact that f (B) = B′, we have that the map f defines a bijection from V onto V ′.

Finally, observe that for any x, y ∈ V , if (x, y) /∈ E then xy = yx = [x, y] = 0
and so f (x)f (y) = f (y)f (x) = [f (x), f (y)] = 0. Hence (f (x), f (y)) /∈ E′ and
we only need to show that (f (x), f (y)) ∈ E′ for every (x, y) ∈ E. By Definition 5,
given (x, y) ∈ E, we have

{xz, zx, [x, z]} ∩ F
×y �= ∅

for some z ∈ B. Then, by Eq. (3)

{f (x)f (z), f (z)f (x), [f (x), f (z)]} ∩ F
×f (y) �= ∅,

which means that (f (x), f (y)) ∈ E′. We can conclude that �(P,B) and �(P,B′)
are isomorphic by means of f . ��
Example 5 Let us consider the Poisson algebraP given in Example 1, with the basis
B = {e1, e2, e3} and nonzero products [e1, e2] = −[e2, e1] = e3 and e1e1 = e3.

Let us also consider the basis B′ = {e′1 = e1 + e2, e
′
2 = e2, e

′
3 = e3} and the

linear isomorphism f : P→ P defined by f (ei) = e′i for any 1 ≤ i ≤ 3.
Taking into account that the nonzero products over the elements of the basis B′

are [e′1, e′2] = −[e′2, e′1] = e′3 and e′1e′1 = e′3, we have that B and B′ are equivalent.
So the graphs �(P,B) and �(P,B′) are isomorphic (see the diagram below):

e1

e2

e3

e
1

e
2

e
3

f (e1)

f (e2)

f (e3)

The following concept is taking borrowed from the theory of graded algebras
(see for instance [6]).

Definition 7 Let P be a non-commutative Poisson algebra and let

ϒ := P =
⊕

i∈I
Pi and ϒ ′ := P =

⊕

j∈J
Pj

be two decompositions of P as orthogonal direct sums of ideals. It is said that ϒ
and ϒ ′ are equivalent if there exists an automorphism f : P → P, and a bijection
σ : I → J such that f (Pi ) = Pσ(i) for any i ∈ I .
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Let us observe that if f : V → V ′ defines an isomorphism between two graphs
(V ,E) and (V ′, E′), then v is a vertex of C[v] if and only if f (v) is a vertex of
C[f (v)], for every v ∈ V . That means f ([v]) = [f (v)] for every v ∈ V . Hence,
taking into account this observation and Lemma 1, we get the next result.

Proposition 1 Let P be a non-commutative Poisson algebra with multiplicative
bases B = {vi}i∈I and B′ = {v′j }j∈J . If B and B′ are equivalent, then the
decompositions

P =
⊕

[vi ]∈V/∼
PC[vi ] and P =

⊕

[v′j ]∈V ′/∼
PC[v′

j
] ,

corresponding to the choices of B and B′ in Theorem 1 respectively, are also
equivalent.

4 Minimality and Weak Symmetry

We begin this section by recalling that given a graph (V ,E) and vi, vj ∈ V , an
ordered family {vi1 , . . . , vin } ⊂ V is called a directed path from vi to vj if vi1 = vi ,
vin = vj and (vir , vir+1) ∈ E for every 1 ≤ r ≤ n− 1.

We also recall that a graph (V ,E) is said to be symmetric if (vi , vj ) ∈ E for
every (vj , vi) ∈ E. Then, a weaker concept can be introduced as follows:

Definition 8 We will say that a graph (V ,E) is weakly symmetric if for every
(vj , vi ) ∈ E there exists a directed path from vi to vj .

Example 6 The following graphs are examples of non-symmetric weakly symmet-
ric graphs:

Taking into account that given a graph (V ,E), two vertices vi, vj ∈ V are said
to be strongly connected if there exists a directed path from vi to vj and from vj to
vi , we can assert the following result.

Lemma 2 A graph (V ,E) is weakly symmetric if and only if each pair of connected
(different) vertices are strongly connected.
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Proof Suppose that (V ,E) is weakly symmetric and consider vi, vj ∈ V , vi �= vj
such that they are connected by an undirected path

{vi1 , . . . , vin }. (4)

In case that (vir , vir+1) /∈ E for some 1 ≤ r ≤ n − 1, then (vir+1 , vir ) ∈ E. By
weak symmetry, there exists a directed path {vir,1 , . . . , vir,m } from vir to vir+1 (see
the diagram).

vi1 vi2 vir vir+1
vin−1

vin

vir,2 vir,m−1

Hence, we can replace the undirected path (4) by the one

{vi1 , . . . , vir−1 , vir,1 , . . . , vir,m , vir+2 , . . . vin}

which solves this problem. From here, we always can find a directed path from vi to
vj . Since the undirected path (4) is also from vj to vi , we have similarly that there
exists a directed path from vj to vi and so vi, vj are strongly connected.

The converse is a direct consequence of the fact that any directed path from vi to
vj is an undirected path, and so vi and vj are connected. ��

We refer to the smallest ideal of P that contains v ∈ V, denoted by I(v), as the
ideal of P generated by v.

Lemma 3 Let B be a multiplicative basis of P and vi, vj ∈ B. We have that vj ∈
I(vi) if and only if there exists a directed path from vi to vj in �(P,B).

Proof Suppose vj ∈ I(vi) for some vi ∈ B, taking into account that B is
a multiplicative basis, we have that vj = λf (· · · (f (f (vi , v1), v2), · · · ), vn) for
v1, . . . , vn ∈ B and 0 �= λ ∈ F, being any f (vr , vs) ∈ {vrvs, vsvr , [vr , vs ]}. From
here, by writing

wk := Ff (· · · (f (f (vi , v1), v2), · · · ), vk) ∩ B

for k ∈ {1, . . . , n− 1} we get that {vi, w1, . . . , wn−1, vj } is a directed path from vi
to vj .

Conversely, if {vi, v1, . . . , vn−1, vj } is a directed path from vi to vj then 0 �=
f (vi , w1) ∈ Fv1, 0 �= f (v1, w2) ∈ Fv2, . . . , 0 �= f (vn−1, wn) ∈ Fvj for some
w1, . . . , wn ∈ B, where f (·, ·) is defined as above. Hence

vj = λf (· · · (f (f (vi , w1),w2), · · · ),wn) ∈ I(vi),

for some 0 �= λ ∈ F. ��
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Now, we will show that some notions of Poisson algebras admitting a multiplica-
tive basis can be characterized by the weak division property of its associated graph.

Definition 9 Let P be a non-commutative Poisson algebra admitting a multiplica-
tive basis B = {vi}i∈I . It is said that B is of division if for any vi, vj ∈ B such that
0 �= vivj ∈ Fvk or 0 �= [vi, vj ] ∈ Fvk we have that vi, vj ∈ I(vk), being I(vk) the
ideal of P generated by vk .

Proposition 2 Let P be a non-commutative Poisson algebra admitting a multi-
plicative basis B = {vi}i∈I . Then B is of division if and only if �(P,B) is weakly
symmetric.

Proof Let us suppose that the multiplicative basis B is of division. Given an edge
(vi , vj ) of �(P,B) we have that

λvj ∈ {vivk, vkvi , [vi, vk]}

for some vk ∈ B and 0 �= λ ∈ F. Hence, since B is of division, vi ∈ I(vj ) and
so (see Lemma 3) there exists a directed path from vj to vi . So �(P,B) is weakly
symmetric.

Conversely, given vi, vj , vk ∈ B such that 0 �= vivj ∈ Fvk or 0 �= [vi, vj ] ∈ Fvk ,
we have that (vi , vk) or (vj , vk) are edges of �(P,B). By weak symmetry, there
exist directed paths from vk to vi or from vk to vj . Then, by Lemma 3 we have that
vi ∈ I(vk) or vj ∈ I(vk). So B is of division. ��
Definition 10 A non-commutative Poisson algebra P admitting a multiplicative
basis B is called minimal if its only nonzero ideal admitting a multiplicative basis
contained in B is P.

Proposition 3 Let P be a non-commutative Poisson algebra admitting a multiplica-
tive basis B = {vi}i∈I . Then

P =
⊕

k

Ik

is the orthogonal direct sum of the family of its minimal ideals, each one admitting
a multiplicative basis contained in B, if and only if �(P,B) is weakly symmetric.

Proof Let us suppose that P decomposes as the orthogonal direct sum of the
minimal idealsIk with a multiplicative basis contained in B. Let (V ,E) := �(P,B)

be the associated graph to P relative to B and take some (vi , vj ) ∈ E. By
orthogonality, vi, vj ∈ Ik for some k and, by the minimality of Ik , we have that
vi ∈ Ik = I(vj ). Taking now into account Lemma 3, there exists a directed path
from vj to vi and, consequently, the graph �(P,B) is weakly symmetric.

Conversely, from Theorem 1 we have that P is the orthogonal direct sum of the
ideals PC[vi ] . Let us consider a nonzero ideal I of PC[vi ] with a basis BI contained
in [vi]. For any vj ∈ BI and vk ∈ [vi ] we have that vj is connected to vk and so,
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by Lemma 2, vj and vk are also strongly connected. So vk ∈ I(vj ) ⊂ I and then
I = PC[vi ] . Then, any ideal PC[vi ] of the decomposition is minimal.

Finally, let us suppose that I is a nonzero minimal ideal of P with a multiplicative
basis BI ⊂ B. Then, given v ∈ BI we have that v ∈ I∩PC[v] �= {0}. Then I∩PC[v]
is a nonzero ideal of P with a multiplicative basis contained in B. By minimality,
I = PC[v] . So the ideal I appears in the decomposition given by Theorem 1. ��

The next result is now immediate.

Corollary 2 Let P be a non-commutative Poisson algebra admitting a multiplica-
tive basis B = {vi}i∈I . Then P is minimal if and only if the associated graph
�(P,B) is weakly symmetric and has just one connected component.

Example 7 Consider the complex four-dimensional Poisson algebra P with mul-
tiplicative basis B = {z} ∪ {eī}i∈Z3 , nonzero Lie products among the elements
of B given by [e0̄, e1̄] = −[e1̄, e0̄] = 2e2̄, [e0̄, e2̄] = −[e2̄, e0̄] = −2e1̄ and
[e1̄, e2̄] = −[e2̄, e1̄] = 2e0; and nonzero associative products zz = z, eīeī = −z,
eīei+1 = −ei+1eī = ei+2 and zeī = eīz = eī for any ī ∈ Z3. The associated graph
to P respectively to B is:

z

e
0̄

e
1̄

e
2̄

Then, Proposition 2 and Corollary 2 apply to get that B is of division and that P is
minimal respectively.

Taking into account the Propositions 2 and 3, we have that the weak division
property, allows us to state a context in which a second Wedderburn-type theorem
(see for instance [7, pp. 137–139]) holds in the category of non-commutative
Poisson algebras.

Theorem 2 Let P be a non-commutative Poisson algebra admitting a multiplica-
tive basis B = {vi}i∈I . Then, the division property of B is a necessary and sufficient
condition to state that

P =
⊕

k

Ik

is the orthogonal direct sum of the family of its minimal ideals, each one admitting
a multiplicative basis contained in B.



126 A. J. Calderón Martín et al.

Acknowledgements We would like to thank the referee for the detailed reading of this work and
for the suggestions which have improved the final version of the same.

The authors are supported by the PCI of the UCA ‘Teoría de Lie y Teoría de Espacios de
Banach’, by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish
Ministerio de Educación y Ciencia MTM2016-76327C31P.

References

1. Badawi, A.: On the annihilator graph of a commutative ring. Commun. Algebra 42(1), 108–121
(2014)

2. Chih, T., Plessas, D.: Graphs and their associated inverse semigroups. Discrete Math. 340(10),
2408–2414 (2017)

3. Das, A.: Subspace inclusion graph of a vector space. Commun. Algebra 44(11), 4724–4731
(2016)

4. Das, A.: On non-zero component graph of vector spaces over finite fields. J. Algebra Appl.
16(1), 1750007, 10pp. (2017)

5. Calderón, A.J., Navarro, F.J.: Arbitrary algebras with a multiplicative basis. Linear Algebra
Appl. 498(1), 106–116 (2016)

6. Elduque, A., Kochetov, M.: Gradings on Simple Lie Algebras. Mathematical Surveys and
Monographs, vol. 189, xiv+336 pp. American Mathematical Society, Providence; Atlantic
Association for Research in the Mathematical Sciences (AARMS), Halifax (2013)

7. Cohn, P.M.: Basic Algebra: Groups, Rings, and Fields. Springer, London (2003)



Graphs with Weight of Fold Gauss Maps

C. Mendes de Jesus and E. Sanabria-Codesal

Abstract Our goal is to characterize the graphs associated to fold Gauss map of
a closed orientable surface immersed in three-dimensional space. In this work we
extends our previous result for graphs with weight.

1 Introduction

The singular set of a stable Gauss map of a orientable surface M generically
immersed in Euclidean 3-space, called parabolic set, was described in [2]. It is
formed by fold curves with isolated cusp points on them and each curve separates
a hyperbolic region from an elliptic region of the surface. In order to codify
the topology of the regular set, in [7] the authors introduce graphs with weight
GW(V,E), associated to stable Gauss maps, where E denote the number of edges,
which corresponds to the path-components of the parabolic set of M, V is the
number of vertices, that represent the different regions on the surface with non
vanishing Gaussian curvature. Finally W is the weight of the graph W, defined
as the sum of the genus of the regions corresponding to the vertices. They shown
that any weighted bipartite graph GW(V,E) can be associated to a stable Gauss
map from an appropriate closed orientable surface. In the paper [6], the graphs are
associated to stable Gauss map whose parabolic set has no cusp points, called fold
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Gauss maps, are characterized by a graph with total weight equal to zero is a graph
corresponding to a fold Gauss map of a closed orientable surface if and only if it is
a 2-negative graph.

Our aim here is to describe how these results can be extended in order to include
graphs with total weight greater than zero.

2 Stable Gauss Maps and its Graphs

Let M, P be smooth orientable surfaces and f, g : M → P smooth maps. f and g

are A-equivalent if there are orientation-preserving diffeomorphisms l, k, such that
g ◦ l = k ◦ f .

Given an immersion f : M → R
3 of a closed orientable surface M , let Nf :

M → S2 be its Gauss map. This map Nf is said to be stable if there exists a
neighborhood Uf of f in the space I(M,R3) of immersions of M into R

3, with
Whitney C∞-topology [4], such that for all g ∈ Uf , the Gauss map Ng associated
to g is A-equivalent to Nf . It can be seen that this condition is equivalent to stating
that the family of height functions associated to f :

λ(f ) : M × S2 −→ R

(x, v) �−→ 〈f (x), v〉 = fv(x)

is structurally stable [2, 10]. Then, two Gauss maps are A-equivalent if and only if
their corresponding families λ(f ) are R+-equivalent [1].

We remind that a point of M is a regular point of f if the map f is a local
diffeomorphism around it and singular otherwise. We denote by �f the singular set
of f and its image f (�f ) is called the branch set of f .

For stable germs of Gauss maps, the regular points of Nf correspond to elliptic
or hyperbolic points of M, i.e. points where the height function in the normal
direction has a stable singularity of Morse type (A1). The singular points of Nf

are the parabolic points of M, i.e. points where the height function in the normal
direction has a non stable singularity. In this case we may have fold point of Nf ,
corresponding to an A2 singularity of the height function in the normal direction or
cusp point of Nf , when the height function in the normal direction has a singularity
of type A3.

So the singular set �Nf for a stable Gauss maps Nf is the parabolic set of M

associated to the immersion f . By Whitney’s theorem (see [4]), this singular set
consists of curves of fold points, possibly containing isolated cusp points. Then,
the image of �Nf , called the branch set of Nf , consists in a collection of closed
curves immersed in S2 with possible isolated cusps and whose self-intersections
(double points) correspond to parabolic points with parallel normals of the same
orientation. This branch set is oriented as follows: as we transverse a branch curve
following the orientation, nearby points on our left have two more inverse images
than those on our right. The regular set, immersed into the surface S2 by the map
Nf , consists of a finite number of regions.
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Fig. 1 Transition between two stable Gauss maps Nf and Ng from torus surface

Since every surface decomposes into a disjoint union of connected surfaces, we
will assume that the surfaces with which we work are connected. We can encode the
information of (M,�Nf ) over a weighted graph as follows [6, 7]:

• Each pathcomponent of M \ �Nf determines a vertex v and each curve of
�Nf an edge e. A vertex v and an edge e are incident if and only if the curve
represented by e lies in the boundary of the region represented by v.

• A vertex v receives a weight w if v represents a region with genus w.

Then, we denote this graph by GW(V,E), where V, E are the number of vertices
and edges, respectively, and W is the total weight.

We remind that a graph is bipartite if its vertices can be divided into two
disjoint sets such that every edge connects vertices with opposite labels. Since M

is orientable, each point of the parabolic set is in the frontier of a positive and a
negative region, and consequently the corresponding graph is bipartite.

Figure 1 illustrates two stable Gauss map of the torus with their corresponding
graphs: G0(2, 2) is associated to Nf and the tree G1(2, 1) to Nh. The branch set of
Nf has two curves with 4 cusp points each one with alternate signs, nevertheless
the branch set of Nh has one curve with 6 cusps (see [2] and [9]).

Theorem 1 ([7]) Any weighted bipartite graph GW(V,E) can be associated to a
stable Gauss map Nf of a closed orientable surface M whose genus is given by
g(M) = 1− V + E +W.

3 Fold Gauss Maps and its Graph

In this section, we pursue to characterize bipartite graphs which can be associated
to stable Gauss maps without cusp points of closed orientable surfaces, called fold
Gauss map. If we denote by V ±, the total number of vertices corresponding to ellip-
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Fig. 2 2-Negative trees: (1) Not positive, (2) positive

Fig. 3 Example of 2-negative graphs

tic and parabolic regions of M, respectively, and by W± their total corresponding
genus, we know the following result:

Corollary 1 ([6]) If GW(V,E) is a graph of a fold Gauss map, then E = 2 (V− −
W−).

We remind that the degree of a vertex v in a graph is the number of edges incident
to it. A vertex v is said to be extremal if v has degree one.

Definition 1 A bipartite graph, labeled positive and negative at its vertices, without
extremal vertices or such that all extremal vertices are positive is called positive
graph and is called 2-negative if all its negative vertices have degree two (see
Fig. 2).

The properties of this special type of graphs were analyzed in [6].

Lemma 1 ([6]) A bipartite graphGW(V,E) is 2-negative if and only if it is positive
and E = 2V− (see Fig. 3).

We observe that only one of the above conditions (to be positive or E = 2V −)
does not guarantee a 2-negative graph.

Theorem 2 ([6]) A connected bipartite graph GW(V,E) is 2-negative if and only
if it is positive and V + − V − = 1− β1(G), where β1(G) is the first Betti number of
the graph.

New properties of this type of graphs was obtained in [8]

Lemma 2 ([8]) A graph GW(V,E) corresponding to a fold Gauss map satisfies
W− = 0 and it is positive.
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Theorem 3 ([8]) A graph GW(V,E) corresponding to a fold Gauss map is 2-
negative graph.

Now, our goal is to determine sufficient conditions for graphs GW(V,E)

associated to fold Gauss map, generalizing the results obtained in [6] for zero weight
graphs. To do this, we will start summarizing the necessary techniques.

4 Lips and Beaks Transition and Surgeries

A codimension one transition corresponds to a generic isotopy from a given stable
map to another one, lying in a different pathcomponent of the set of the stable Gauss
maps (see [3]).

Here we make a decomposition of the codimension one transition on the immer-
sions, following the study of stable maps between surfaces and their invariants
(see [5]), that alter the singular set of their Gauss maps and hence their graphs in
convenient ways.

According to this study, the local codimension one phenomena are the following:

1. Morse transitions of the parabolic curve at a non-versal A3. This corresponds to
lips and beaks transitions in the Gauss map.

2. Birth/annihilation of a pair of cusps of the Gauss map on a smooth parabolic
curve (at an A4 point of the height function). This corresponds to a swallowtail
type singularity in the Gauss map.

3. Cone sections at a D±4 point of the height function (flat umbilic). Correspond-
ingly, we have the purse and the pyramid transitions for the Gauss map.

In this case, we are interested in lips and beaks transitions. The lips transition,
that we denote by L, corresponds to a Morse transition of maximum or minimum
type in the parabolic curve. It may be done in a region of positive (or negative)
curvature, X of M giving rise to a new region with negative (positive) curvature
Z. Their common boundary is a connected component of the parabolic set whose
image through the Gauss map is a closed curve with two cusp points in S2. The
effect of this on the graph of Nf corresponds to adding a new edge attached to the
positive (negative) vertex corresponding to the initial region, now renamed X1 (see
Fig. 4).

The beaks transitions correspond to a Morse transition of saddle type in the
parabolic set. Such a transition occurs when we approach two arcs of the parabolic
set until they join in a common point beaks point and break again giving rise to
a new pair of arcs and as a result, a couple of cusp points are introduced in the
branch set. This process, in the sense to increase the cusp points, can be separated
into four different cases (see Fig. 4): B+v -transition increases by 1 the number of
regular regions, i. e. adds a vertex and an edge on the graph of Nf , B

−
v -transition

decreases by 1 the number of regular regions, therefore removes 1 vertex and 1 edge
on the graph, B+w -transition increases by 1 the weight, maintains the number of
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Fig. 4 Realization of the 2-negative graph G0(3, 2) associated to the fold Gauss map of the sphere
(d), which can be obtained from the fold Gauss map (a), by shown sequence of lip and beak
transitions from (a) to (d)

Fig. 5 Local examples of surgeries H+
0 and H+

1 of fold Gauss maps

regular regions (vertices) but decreases by 1 the number of edges and B−w -transition
decreases by 1 the weight, maintains the number of regular regions (vertices) but
increases by 1 the number of edges.

In [6, 7] was introduced the definition of stable surgeries of stable Gauss maps,
which contributes to characterize the graphs associated to them, as we will see
below.

The Surgery on a closed surface M consists in joining two elliptic regions of M
with an intermediary hyperbolic region. This process is done by removing two discs,
one in each elliptic region and connecting a hyperbolic tube to their boundaries and
it can be done, clearly, in a smooth way (see Fig. 5).

5 Graphs with Weight of Fold Gauss Maps

In order to analyze the necessary and sufficient conditions so that a graph with
weight can be associated with a fold Gauss map of some closed orientable surface,
we shall use lip and beaks transitions and surgeries in the immersion of the
corresponding surface M associated to it. In [6], we proved the result for graph
with total weight zero (Fig. 6):
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Fig. 6 Realization of the 2-negative graph G0(2, 2) associated to a fold Gauss map of the torus
(e), which can be obtained from the fold Gauss map (a) by beak transitions from (a) to (e)

Fig. 7 Realization of the 2-negative graph G1(3, 2) associated to a fold Gauss map of the torus
(d), which can be obtained from the fold Gauss map (a) by beak transitions from (a) to (d)

Theorem 4 ([6]) G0(V ,E) is a graph corresponding to a fold Gauss map of a
closed orientable surface if and only if G0(V ,E) is a 2-negative graph.

In [8] we defined the simplest graph in this particular case and we found the
corresponding fold Gauss maps associated to these basic graphs.

Definition 2 The graphs which vertices have degree at most 2 are called basic
graphs (Fig. 7).

Lemma 3 ([8]) All basic 2-negative trees can be associated to a fold Gauss map.

Proposition 1 ([8]) Any 2-negative tree GW+(V , V − 1), with V ≥ 3 can be
associated to a fold Gauss map Nf : M → S2, where the genus of M is given
by W+.

Proposition 2 ([8]) Any 2-negative graph with only one positive vertex, called
positive daisy, can be associated to a fold Gauss maps Nf : M → S2, where
the genus of M is given by V − +W+.

Proposition 3 ([8]) Any 2-negative graph can be decomposed into basic 2-negative
graphs (see Fig. 8).
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Fig. 8 (a) 2-Negative graph and (b) decomposition of (a) in four basic 2-negative trees and
one daisy

By using the previous propositions, we obtain the general result:

Theorem 5 ([8]) GW(V,E) is a graph corresponding to a fold Gauss map of a
closed orientable surface if and only if GW(V,E) is 2-negative with W− = 0.
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A Note on Spacelike Hypersurfaces
and Timelike Conformal Vectors

Giulio Colombo, José A. S. Pelegrín, and Marco Rigoli

Abstract Any compact spacelike hypersurface immersed in a doubly warped
product spacetime Ih×ρ P with nondecreasing warping factor ρ must be a spacelike
slice, provided that the mean curvature satisfies H ≥ ρ′/hρ everywhere on
the hypersurface. The conclusion also holds, under suitable assumptions on the
immersion, when the hypersurface is complete and noncompact. A similar rigidity
property is shown for compact hypersurfaces in spacetimes carrying a conformal,
strictly expanding, timelike vector field.

1 Introduction

Spacelike hypersurfaces play a crucial role in the understanding of the geometry
of a Lorentzian spacetime. Roughly speaking, they describe the physical space that
can be measured in a given instant of time. For instance, they serve as initial data
in the Cauchy problem for Einstein’s field equations [18] and they play a privileged
role in determining the causal properties of the spacetime. Indeed, a spacetime is
globally hyperbolic if and only if it admits a Cauchy hypersurface [14]. Even more,
any globally hyperbolic spacetime is diffeomorphic to R × S, being S a smooth
spacelike Cauchy hypersurface [6].

In this article we will study the geometry of spacelike hypersurfaces in certain
spacetimes that present a particular symmetry. In General Relativity, symmetry
arises from the existence of a one-parameter group of transformations generated
by a conformal vector field. This infinitesimal symmetry is usually assumed when
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searching for exact solutions of Einstein’s field equations [13]. In fact, there is a vast
literature concerning the study of spacelike hypersurfaces in spacetimes that admit
different causal symmetries (see [8–10], for instance). We will focus on the study
of spacelike hypersurfaces in doubly warped product spacetimes, where natural
conformal vector field pertains to this structure.

Let (P, σ ) be a (connected) Riemannian manifold of dimension m and I ⊆ R

be an open interval. The product manifold M = I × P can be endowed with the
Lorentzian metric g given at each point (t, x) ∈ M by

g(t,x) = −h(x)2π∗I (dt2)+ ρ(t)2π∗
P
(σ ), (1)

where h ∈ C∞(P), ρ ∈ C∞(I) are positive functions and πI : M → I , πP :
M → P are the projections onto the factors of I × P. We call (M, g) a doubly
warped product spacetime, which will be denoted here by M = Ih×ρ P. The time
orientation of M is the one given by the timelike vector field ∂t := ∂/∂t . The causal
symmetry in these ambient spacetimes is given by the timelike vector field ρ∂t ,
which is conformal, as we will prove in Lemma 2 below. As a consequence, the
family of spacelike slices �t = {t} × P, t ∈ I , provides a foliation of M by totally
umbilical hypersurfaces; in particular, the mean curvature of �t at the point (t, x) ∈
M is given by H(t, x) = ρ′(t)/ρ(t)h(x).

Doubly warped product spacetimes were introduced in [5] as an extension of the
singly warped product spacetimes defined in [16] and include several models such
as standard static spacetimes and Generalized Robertson–Walker spacetimes (see
[7] for the original definition of singly warped product spaces in the Riemannian
setting). Causal properties of doubly warped product spacetimes were studied in
[4], obtaining several conditions to guarantee their global hyperbolicity. Moreover,
in [15] the authors studied the decomposition of an ambient spacetime as a doubly
warped product.

Our article is organized as follows. Section 2 is devoted to proving some
preliminary results for spacelike hypersurfaces in general Lorentzian manifolds as
well as for the particular case of doubly warped product spacetimes. These results
will enable us to prove our main theorems in Sect. 3. In particular, we prove in
Theorem 2 that a compact spacelike hypersurface ψ : M → M immersed in
a doubly warped product spacetime M = Ih×ρ P must be a spacelike slice if
H ≥ H ◦ ψ ≥ 0 on M , with H the mean curvature of ψ in the direction of
the normal unit vector with the same time-orientation as ∂t . Theorem 3 partially
extends this observation to the case of a general spacetime carrying a conformal
timelike vector field. Theorems 5, 6 and 7 provide examples of cases where the
conclusion of Theorem 2 still holds true for M complete and non-compact, under
additional assumptions on ψ .
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2 The Geometric Setting

Let ψ : (Mm, g) → (M
m+1

, g) be an isometric immersion between (connected)
semi-Riemannian manifolds and denote with ∇ and ∇, respectively, the Levi-Civita
connections for g and g. For any given point p ∈ M , there exist sufficiently
small neighbourhoods U ⊆ M and U ⊆ M , respectively, of p and ψ(p), such
that ψ(U) ⊆ U , ψ|U : U → U is an embedding and U supports a nowhere
vanishing vector field Z ∈ X(U) satisfying g(Zψ(q), (dψ)qV ) = 0 for every q ∈ U ,
V ∈ TqM . We say that Z is orthogonal to ψ on U . Note that we are not requiring
g(Z,Z) to be constant on U . From now on, for the sake of simplicity, we shall
omit writing pullbacks or pushforwards via ψ since the embedding ψ|U provides
a natural identification between U and a regular submanifold of U . Following
Chapter 4 of [16], the second fundamental form I of ψ is defined by

I(V ,W) = ∇VW −∇V W (2)

for every couple of vectors V,W tangent to U . I is a symmetric bilinear form taking
values in the normal bundle T U⊥ ⊆ T U of vectors orthogonal to U and satisfies
Weingarten’s equation

g(I(V ,W),Z) = g(∇VW,Z) = −g(∇V Z,W) (3)

For X ∈ X(M), V,W ∈ TqM , q ∈ M , we have the differential identity

(LXg)(V,W) = g(∇V X,W)+ g(∇WX,V ) (4)

for the Lie derivative L of the metric g, so Eq. (3) can be rewritten as

g(I(V ,W),Z) = −1

2
(LZg)(V,W). (5)

The mean curvature vector H of ψ is the normalized trace of I with respect to the
metric g, that is, for every q ∈ U and for every g-orthonormal basis {ei}1≤i≤m of
TqU ,

Hq = 1

m
traceg(Iq) = 1

m

m∑

i=1

g(ei, ei )I(ei, ei ) (6)

For a generic vector field X ∈ X(M) we let X ∈ X(M) be its tangential part
along ψ , defined as follows: for every q ∈ M , Xq is the orthogonal projection of
Xψ(q) onto the tangent subspace TqM ⊆ Tψ(q)M .

Lemma 1 Let ψ : (Mm, g) → (M
m+1

, g) be an isometric immersion between
semi-Riemannian manifolds, X ∈ X(M) a vector field and X ∈ X(M) its tangential
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part along ψ . For any couple of tangent vectors V,W ∈ TpM , p ∈ M ,

g(∇V X,W) = g(∇V X,W)+ g(X, I(V ,W)) (7)

and for any choice of a local unit normal vector field N on M ,

div(X) = div(X)+ g(mH,X)− g(N,N)g(∇NX,N), (8)

where div and div, respectively, are the divergence operators induced by ∇ and ∇.

Proof Let U,U,Z be as above. Then X = X − g(X,Z)
g(Z,Z)

Z on M , so

g(∇V X,W) = g(∇V X,W) = g(∇V X,W) − g

(

∇V

(
g(X,Z)

g(Z,Z)
Z

)

,W

)

.

Since g(Z,W) = 0 and I(V ,W) is a multiple of Z,

−g

(

∇V

(
g(X,Z)

g(Z,Z)
Z

)

,W

)

= −g(X,Z)

g(Z,Z)
g(∇V Z,W) = g(X,Z)g(I(V ,W),Z)

g(Z,Z)

= g(X, I(V ,W)).

Now let us consider a g-orthonormal basis {ei}1≤i≤m of TpM . If g(Z,Z) = ±1,
that is, if N = Z is a unit normal vector for ψ at p, then

div(X) =
m∑

i=1

g(ei , ei)g(∇eiX, ei),

div(X) =
m∑

i=1

g(ei, ei)g(∇eiX, ei)+ g(N,N)g(∇NX,N).

(9)

Then (8) follows from (7), (9) and the definition (6) of H. ��
In this note we are interested in the case where (M, g) is a Lorentzian manifold,

X is a timelike conformal vector field and ψ : M → M is a spacelike hypersurface,
that is, g is a Riemannian metric. Conformality of X means that there exists η ∈
C∞(M) such that LXg = 2ηg on M, that is, g(∇V X,W) = ηg(V,W) for every
V,W ∈ TqM , q ∈ M . Let us set the notation

α =
√

−g(X,X), H = η

α
. (10)

If ψ̂ : �m → M is a (necessarily spacelike) hypersurface such that X is
orthogonal to ψ̂ at some point x ∈ �, then by (5) the second fundamental
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form Î of ψ̂ satisfies g(Î(V ,W),X) = −ηĝ(V,W) for every V,W ∈ Tx�,
with ĝ = ψ̂∗g. N̂ = α−1X̂ is a unit normal vector for ψ̂ at x and therefore
Î(V ,W) = g(N̂, N̂)g(Î(V ,W), N̂ )N̂ = ηα−1ĝ(V ,W)N̂ . So, Î = Hĝ ⊗ N̂ at
x, that is, ψ̂ is umbilical at x with mean curvature vector

Ĥ = HN̂ = η

α2 X. (11)

The existence of a global timelike vector field X implies that ψ : M → M is
two-sided, that is, M admits a global (timelike) unit normal vector field N . In fact,
on every open subset U ⊆ M admitting a local unit normal vector field NU : U →
TU⊥ the function g(NU,X) is always nonzero since NU and X are both timelike
and therefore cannot be orthogonal at any point. So, consider a family {Na}a∈I of
local unit normal vector fields defined on the elements of an open cover {Ua}a∈I
of M and such that g(Na,X) < 0 on Ua . The conditions g(Na,Na) = −1 and
g(Na,X) < 0 uniquely determine Na at every point of Ua , so Na = Nb on Ua ∩Ub

for every a, b ∈ I and therefore we can glue together these vectors to obtain a global
unit normal vector field N : M → TM⊥ satisfying g(N,X) < 0 on M .

In the following, we will always assume that N is chosen so that g(N,X) <

0, that is, with the same time-orientation of X. In this case, we will also say that
N is future-pointing. The mean curvature vector H then induces a mean curvature
function H = −g(H, N) ∈ C∞(M) for which H = HN . By the wrong-way
Cauchy-Schwarz inequality, g(N, α−1X) ≤ −1, so we can introduce the hyperbolic
angle function θ ∈ C∞(M) via its hyperbolic cosine

cosh θ = −g(N, α−1X) = −g(N,X)

α
.

In this setting, recalling (4) we can express formulas (7) and (8) as

g(∇V X,W) = ηg(V,W) + g(AV,W)α cosh θ, (12)

with A = −∇( · )N the shape operator of ψ induced by N , and

div(X) = mη −mHα cosh θ = mα(H−H cosh θ). (13)

2.1 Doubly Warped Product Spacetimes

Examples of spacetimes admitting a timelike conformal vector field include doubly
warped Lorentzian product spacetimes. As we have previously said, by a doubly
warped product spacetime M = Ih×ρ P we mean a product manifold M = I × P,
where (P, σ ) is a connected m-dimensional Riemannian manifold and I ⊆ R is an
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open interval, endowed with the Lorentzian metric g given at (t, x) ∈ M by

g(t,x) = −h(x)2π∗I (dt2)+ ρ(t)2π∗
P
(σ ) (14)

with h ∈ C∞(P), ρ ∈ C∞(I) positive functions and πI : M → I , πP : M → P

the projections onto the factors of I ×P . In the following, with an abuse of notation
we write ρ, ρ′, h to denote the functions ρ ◦ πI , ρ

′ ◦ πI , h ◦ πP ∈ C∞(M). A time
orientation for M is given by the timelike vector ∂t := ∂/∂t . Note that from these
models we can reobtain a standard static spacetime by setting ρ(t) ≡ 1, as well as a
Generalized Robertson–Walker spacetime when h(x) ≡ 1.

Lemma 2 The timelike vector field X = ρ∂t is conformal on M = Ih×ρ P and

LXg = 2ρ′g. (15)

Proof Let (t0, x0) ∈ M be a given point and let {xi} be a coordinate system
(P, σ ) on a neighbourhood U ⊆ P of x0. Then {t, xi} is a coordinate system
for M defined on I × U % (t0, x0) and the (m + 1)-ple {e1, . . . , em+1} :={
ρ−1∂1, . . . , ρ

−1∂m, h−1∂t
}

is a local frame for M on I ×U . A direct computation
shows that [X, eμ] = −ρ′eμ on I × U for 1 ≤ μ ≤ m + 1. For every
1 ≤ μ1, μ2 ≤ m+ 1, the product g(eμ1, eμ2) is constant along the curve I × {x0},
so we have

(LXg)(eμ1 , eμ2) = X(g(eμ1 , eμ2))− g(eμ1 , [X, eμ2 ])− g(eμ2, [X, eμ1])
= 0− g(eμ1,−ρ′eμ2)− g(eμ2 ,−ρ′eμ1) = 2ρ′g(eμ1, eμ2)

at (t0, x0). Since (LXg)(t0,x0) is a bilinear form on T(t0,x0)M , (15) follows. ��
A doubly warped product M = Ih×ρ P is foliated by the level sets �t = {t}×P,

t ∈ I , of the coordinate function πI : M → I . They are always orthogonal to X, so
all of them are totally umbilical hypersurfaces by the previous discussion (see also
Prop. 2.2 in [19]). In this setting, we have

α =
√

−g(X,X) = hρ, H = η

α
= ρ′

hρ
.

Now, let ψ : M → Ih×ρ P be a spacelike immersed hypersurface, that is, assume
that g = ψ∗g is a Riemannian metric on M . Again, with a little abuse of notation,
we denote with ρ, ρ′, h the functions ρ ◦πI ◦ψ , ρ′ ◦πI ◦ψ , h ◦πP ◦ψ ∈ C∞(M).
Since the coordinate function πI has gradient ∇πI = −h−2∂t = −ρ−1h−2X, if we
introduce the height function τ = πI ◦ ψ then the tangential part X of X along ψ

satisfies −X = ρh2∇τ . Then, Eq. (13) can be restated as

div(ρh2∇τ ) = mhρ(H cosh θ −H) (16)
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or, equivalently,

�− log(ρh2)τ =
m

h
(H cosh θ −H) (17)

where, for f ∈ C1(M), �f is the symmetric diffusion operator

�f = ef div(e−f∇ ) = �− g(∇f,∇ ).

If we let R be an antiderivative of ρ on I , (16) is also equivalent to

�− log(h2)(R ◦ τ ) =
mρ

h
(H cosh θ −H) (18)

3 Rigidity of H -Hypersurfaces with H ≥ H

The aim of this section is to prove some rigidity results for compact or complete
spacelike hypersurfaces immersed in a spacetime M carrying a timelike conformal
vector field X. We shall refer again to the notation

LXg = 2ηg, α =
√

−g(X,X), H = η

α
(19)

introduced in the previous section. We first consider the case of a doubly warped
product spacetime M = Ih×ρ P, where X = ρ∂t and

LXg = 2ρ′g, α = hρ, H = ρ′

hρ
. (20)

Let us remark some facts about spacelike immersions into doubly warped product
spacetimes. Given ψ : M −→ M a spacelike hypersurface, we can define its
projection on P by ϕP := πP ◦ ψ : M −→ P. Note that

ϕ∗
P
(σ ) = ρ−2ψ∗(g + h2dt2) ≥ ρ−2ψ∗g = ρ−2g (21)

with g = ψ∗g the metric induced by ψ on M . Since ϕP is a local diffeomorphism,
by Lemma 3.3 in Chapter 7 of [12].

Lemma 3 Let ψ : M −→ M be a complete spacelike hypersurface in a doubly
warped product spacetime M = Ih×ρ P and let ϕP := πP ◦ ψ be its projection on
P. Then ϕP is a local diffeomorphism which is a covering map when ρ is bounded
on M .

The following is a direct consequence of Lemma 3.
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Proposition 1 Let M = Ih×ρ P be a doubly warped product spacetime.

1. If M admits a compact spacelike hypersurface, then P is compact.
2. If the universal covering of P is compact, then any complete spacelike hypersur-

face immersed in M where ρ is bounded is compact.

We now use Eq. (16) to deduce the following

Theorem 1 Let M = Ih ×ρ P be a spatially closed doubly warped product
spacetime, that is, assume that P is compact. Then, M admits a compact maximal
hypersurface if and only if it admits a totally geodesic spacelike slice.

Proof Any totally geodesic spacelike slice of a spatially closed doubly warped
product is clearly a maximal compact hypersurface. Vice versa, let ψ : M → Ih×ρP

be a compact hypersurface with mean curvature H . From (16) and (20) we get

div
(
ρh2∇τ

)
= mρhH cosh θ −mρ′. (22)

Integrating (22) on a compact hypersurface M we infer the integral formula

∫

M

(
ρhH cosh θ − ρ′

) =
∫

M

div(ρh2∇τ ) = 0. (23)

If M is maximal, then H ≡ 0 and (23) reduces to

∫

M

ρ′ = 0.

Thus, there must exist t0 ∈ I such that ρ′(t0) = 0. Since the spacelike slices are
totally umbilic and H(t0, · ) ≡ 0, �t0 = {t0} × P is a totally geodesic spacelike
slice. ��

The above theorem extends to the present ambient spacetimes a result obtained
by Choquet-Bruhat in [11] for Robertson–Walker spacetimes (see also Prop. 4.1 in
[2]). As a second consequence of Eq. (16) we prove the next rigidity result, which
generalizes Theorem 1 of [17] to doubly warped product spacetimes.

Theorem 2 Let M = Ih×ρP be doubly warped spacetime satisfying ρ′ ≥ 0 on I . If
ψ : M → M is a connected compact spacelike hypersurface whose mean curvature
in the direction of the future-pointing normal satisfies

H ≥ H ◦ ψ = ρ′

hρ
◦ ψ

then ψ(M) is a spacelike slice.



A Note on Spacelike Hypersurfaces and Timelike Conformal Vectors 143

Proof Let ψ : M → M be a compact spacelike hypersurface satisfying H ≥ H.
By Eq. (16), we have

div(ρh2∇τ ) = mhρ(H cosh θ −H) ≥ mρH(cosh θ − 1) ≥ 0 (24)

since H ≥ 0. Integrating (24) on the compact manifold M and applying the
divergence theorem we get

0 =
∫

M

div(ρh2∇τ )

so div(ρh2∇τ ) = 0 on M . Then τ is constant on M by the strong maximum
principle. This is clearly equivalent to saying that ψ(M) is contained in a slice
�t0 = {t0} × P for some t0 ∈ I . Since M is compact, ψ(M) ⊆ �t0 is closed.
The map ψ : M → �t0 is an immersion between manifolds of equal dimension,
so it is a local diffeomorphism and therefore an open map. Hence, the nonempty
image ψ(M) is both open and closed in the connected slice �t0 and we conclude
that ψ(M) = �t0 . ��

Clearly, the conclusion of Theorem 2 is still true if we replace the assumption
H ≥ H◦ψ ≥ 0 with H ≤ H◦ψ ≤ 0. A similar property holds in the more general
case of a spacetime admitting a timelike conformal vector field, provided that the
stronger condition H ≥ H ◦ ψ > 0 is satisfied.

Theorem 3 Let (M
m+1

, g) be a spacetime carrying a conformal timelike vector
field X ∈ X(M) and suppose that LXg = 2ηg with η > 0. Let ψ : Mm → M be
a compact immersed spacelike hypersurface whose mean curvature function in the
direction of the future-pointing normal satisfies H ≥ H ◦ ψ . Then X is orthogonal
to ψ and H = H ◦ ψ on M .

Proof By Eq. (13), the tangential part X of X along ψ satisfies

div(X) = −mα(H cosh θ −H) ≤ −mαH(cosh θ − 1) ≤ 0, (25)

because H = α−1η > 0. As in the proof of Theorem 2, an application of the
divergence theorem yields div(X) ≡ 0 on M . Since H > 0, by (25) we conclude
that cosh θ ≡ 1 on M . ��
Remark 1 Note that in the hypotheses of Theorem 3, the orthogonal distribution
of X is not assumed to be integrable, that is, the a priori existence of immersed
hypersurfaces orthogonal to X is not assumed. Also note that the conclusion of the
theorem is false, in general, if vanishing of η is allowed. For instance, the Lorentzian
surface (M, g) obtained by endowing the cylinder M = {(x, y, t) ∈ R

3 : x2+ y2 =
1}with the Lorentzian metric g = −dt2+dx2+dy2 induced by the restriction to M

of the Lorentz-Minkowski metric of R3 is foliated by compact spacelike geodesics
ψt0 : S1 → M : θ �→ (cos θ, sin θ, t0), t0 ∈ R. However, M carries a family of
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timelike vector fields

Xa = ∂t − ay∂x + ax∂y, −1 < a < 1

satisfying LXa
g = 0 for every−1 < a < 1, but, for every t0 ∈ R, ψt0 is orthogonal

to Xa if and only if a = 0. In fact, when a �= 0, the maximal codimension 1
spacelike submanifolds orthogonal to Xa are the noncompact geodesics γa,t0 : R→
M : s �→ (cos s, sin s, as + t0), t0 ∈ R.

Note that when M is a doubly warped product spacetime, the values of H on a
compact spacelike hypersurface naturally relate with those of H as a consequence
of the maximum principle. In fact, we have the following

Theorem 4 Let ψ : M −→ M be a spacelike hypersurface in a doubly warped
product spacetime M = Ih×ρ P. Suppose that there exist two points p0 and
p0, respectively, where the height function τ attains local minimum and maximum
values. Then,

H(ψ(p0)) ≤ H(p0), H(ψ(p0)) ≥ H(p0). (26)

Proof Since p0 and p0 are locally extremal for τ , at these points we have ∇τ = 0,
so ρh2�τ = div(ρh2∇τ ) and X = 0, implying that N = α−1X and therefore
cosh θ = 1. Since p0 is a local minimum point for τ , we have �τ(p0) ≥ 0 and then

0 ≤ div(ρh2∇τ )

mhρ
= H −H at p0.

Similarly, we deduce 0 ≥ H −H at p0. ��
When H is constant on M and ρ ≡ 1, that is, when M is a standard static

spacetime, the inequalities (26) are clearly satisfied if and only if H ≡ 0.

Corollary 1 Let M = Ih× P be a standard static spacetime, ψ : M → M

a connected spacelike hypersurface with constant mean curvature. If the height
function attains both locally minimal and maximal values on M , then ψ(M) is
contained in a totally geodesic spacelike slice.

Proof Since H is constant on M and H ≡ 0 on M , by Theorem 4 it must be H ≡ 0
on M . So τ satisfies �− log(h2)τ = 0 on M and attains a local maximum at some
point of M . By the strong maximum principle together with connectedness of M

and the unique continuation property for the equation �− log(h2)u = 0, τ is constant
on M . So, ψ(M) is contained in a spacelike slice. ��

We conclude by giving different versions of Theorem 2 in the complete
noncompact case, replacing compactness of M with different assumptions. The
first one relies on the following result due to Alías, Caminha, do Nascimento, see
Theorem 2.1 of [1].
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Proposition 2 Let (M, g) be a complete, noncompact Riemannian manifold, V ∈
X(M). Assume that there exists f ∈ C∞(M), f ≥ 0, f �≡ 0 such that

g(X,∇f ) ≥ 0 on M (27)

and

f (x)→ 0 as x →∞ in M. (28)

If div(X) ≥ 0 then

(i) div(X) ≡ 0 on M \ f−1(0) and (ii) g(X,∇f ) ≡ 0 on M.

(29)

Remark 2 If div is replaced everywhere in Proposition 2 by the weighted divergence
operator divϕ defined by divϕ(X) = div(X) − g(∇ϕ,X) = eϕ div(e−ϕX), with
ϕ ∈ C∞(M), then the resulting statement is also true. In fact, it suffices to apply the
above Proposition to the vector field e−ϕX.

Theorem 5 Let ψ : M → M = Ih×ρ P be a spacelike complete, noncompact,
connected hypersurface in a doubly warped product spacetime satisfying ρ′ ≥ 0.
Let t0 ∈ I and suppose that ψ(M) is above the slice �t0 and asymptotic to it at
infinity. If H ≥ H ◦ ψ on M , then ψ(M) = �t0 .

Proof As in the proof of Theorem 2, the assumption H ≥ H together with Eq. (16)
yields

div(ρh2∇τ ) = mhρ(H cosh θ −H) ≥ 0

for τ = πI ◦ψ the height function of ψ . Since ψ(M) is above the slice �t0 = {t0}×P
we have τ ≥ t0 on M . Furthermore, τ (x)→ t0 as x →∞ in M . Thus the function
f = τ − t0 satisfies f ≥ 0 on M and, for X = ρh2∇τ ,

g(X,∇f ) = ρh2|∇τ |2 ≥ 0.

We reason by contradiction and we suppose that ψ(M) �= �t0 . Then for some
x ∈ M we have ϕ(x) > 0, so that ϕ �≡ 0 on M . We can thus apply Proposition 2 to
deduce that

0 ≡ g(X,∇f ) = ρh2|∇τ |2 on M.

Since ρh2 > 0 on M , it follows that ϕ ≡ 0 on M , contradiction. ��
In the next two results, the role of compactness is played by the parabolicity of a

certain operator.
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Theorem 6 Let M = Ih×ρP be a doubly warped product spacetime satisfying ρ′ ≥
0 on I and let ψ : M → M be a spacelike complete, noncompact hypersurface.
Suppose that

∫ +∞

1

(∫

∂Br(o)

ρh2
)−1

dr = +∞ (30)

for some reference point o ∈ M . If H ≥ H ◦ ψ on M and the height function τ is
bounded above, then ψ(M) is a spacelike slice.

Proof Under the assumption H ≥ H ≥ 0, Eq. (17) yields

�− logρh2τ = m

h
(H cosh θ −H) ≥ mH

h
(cosh θ − 1) ≥ 0. (31)

Next completeness of M and (30) imply that the operator �− logρh2 is parabolic
on M , see Chapter 4 in [3]. Thus since τ is bounded above from (31) we deduce
that τ is constant, and this implies that ψ(M) is contained in a spacelike slice. By
completeness of M , ψ(M) must in fact be a slice. ��

Observe that condition (30) involves both ρ and h. We can get rid of ρ by
considering Eq. (18) instead of (17). If R is an antiderivative of ρ on I , then
R′ = ρ > 0 and therefore

sup
M

R(τ ) = lim
t→supM τ

R(t)

when τ is the height function of an immersion ψ : M → M . So, for instance,
if supM τ ∈ I then R(τ ) is bounded above. By applying the argument used in
the proof of Theorem 6 to Eq. (18) we have the following Theorem. Note that
condition (32) below is equivalent to (30) if ρ is bounded above and stays away
from 0, but otherwise the two seem independent.

Theorem 7 Let M = Ih×ρ P be a doubly warped product spacetime satisfying
ρ′ ≥ 0 on I . Let ψ : M → M be a spacelike complete hypersurface such that

∫ +∞

1

(∫

∂Br(o)

h2
)−1

dr = +∞ (32)

for some reference point o ∈ M . If H ≥ H ◦ ψ on M and supM τ ∈ I , then ψ(M)

is a spacelike slice.
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Naturally Graded Quasi-Filiform
Associative Algebras

I. A. Karimjanov and M. Ladra

Abstract In this paper, we classify naturally graded complex quasi-filiform nilpo-
tent associative algebras described using the characteristic sequence C(A) =
(n− 2, 1, 1) or C(A) = (n− 2, 2).

1 Introduction

The classification of associative algebras is an old problem which has appeared
periodically throughout the last years. Associative algebras form one class of
classical algebras that have been comprehensively studied, and they were found to
be related to other classical algebras like Lie and Jordan algebras.

Most classification problems of finite-dimensional associative algebras have
been studied when different properties of the algebras hold, but the complete
classification of associative algebras, in general, is still an open problem. The theory
of finite-dimensional associative algebras is one of the ancient areas of modern
algebra. It originates primarily from the work of Hamilton, who discovered the
famous quaternions, and Cayley, who developed the theory of matrices. Later,
the structural theory of finite-dimensional associative algebras has been treated
by several mathematicians, notably B. Peirce, C. S. Peirce, Clifford, Weierstrass,
Dedekind, Jordan, Frobenius. At the end of the nineteenth century, T. Molien and
E. Cartan described semi-simple algebras over the fields of the complex and real
numbers.

The purpose of this paper is to study naturally graded arbitrary dimensional
associative algebras of index of nilpotency n and n − 1. Similar results for Lie and
Leibniz algebras were obtained in the works [1–6, 9].
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This paper is organized as follows. In Sect. 2, we provide some basic concepts
needed for this study. The last section is devoted to classifying naturally graded
complex quasi-filiform nilpotent associative algebras, which are described through
the characteristic sequence C(A) = (n− 2, 1, 1) or C(A) = (n− 2, 2).

2 Preliminaries

For an algebra A of an arbitrary variety, we consider the series

A1 = A, Ai+1 =
i∑

k=1

AkAi+1−k, i ≥ 1.

We say that an algebra A is nilpotent if Ai = 0 for some i ∈ N. The smallest
positive integer satisfying Ai = 0 is called the index of nilpotency or nilindex of A.

Definition 1 An n-dimensional algebra A is called null-filiform if dimAi = (n+
1)− i, 1 ≤ i ≤ n+ 1.

It is easy to see that an algebra has a maximum nilpotency index if and only if it is
null-filiform. For a nilpotent algebra, the condition of null-filiformity is equivalent
to the condition that the algebra is one-generated.

All null-filiform associative algebras were described in [8, Theorem 2.1].

Theorem 1 ([8]) An arbitrary n-dimensional null-filiform associative algebra is
isomorphic to the algebra:

μn
0 : eiej = ei+j , 2 ≤ i + j ≤ n,

where {e1, e2, . . . , en} is a basis of the algebra A and the omitted products vanish.

Definition 2 An n-dimensional algebra is called filiform if dimAi = n − i, 2 ≤
i ≤ n.

Definition 3 An n-dimensional associative algebra A is called quasi-filiform alge-
bra if An−2 �= 0 and An−1 = 0.

Definition 4 Given a nilpotent associative algebra A with nilindex k+1, put Ai =
Ai/Ai+1, 1 ≤ i ≤ k − 1, and grA = A1 ⊕A2 ⊕ · · · ⊕Ak . Then AiAj ⊆ Ai+j

and we obtain the graded algebra grA. If grA and A are isomorphic, denoted by
grA ∼= A, we say that the algebra A is naturally graded.

For any element x of A, we define the left multiplication operator as

Lx : A→ A, z �→ xz, z ∈ A.



Naturally Graded Quasi-Filiform Associative Algebras 151

Let us take x ∈ A\A2 and for the nilpotent left multiplication operatorLx , define
the decreasing sequence C(x) = (n1, n2, . . . , nk) that consists of the dimensions of
the Jordan blocks of the operator Lx . Endow the set of these sequences with the
lexicographic order, i.e. C(x) = (n1, n2, . . . , nk) ≤ C(y) = (m1,m2, . . . ,ms)

means that there is an i ∈ N such that nj = mj for all j < i and ni < mi .

Definition 5 The sequence C(A) = maxx∈A\A2 C(x) is defined to be the charac-
teristic sequence of the algebra A.

Definition 6 The left annihilator of A is denoted by lAnn(A) = {x ∈ A | xa =
0 for all a ∈ A} and the right annihilator of A is denoted by rAnn(A) = {x ∈ A |
ax = 0 for all a ∈ A}. The annihilator of A is Ann(A) = lAnn(A) ∩ rAnn(A).

Now, we define filiform algebras of degree p.

Definition 7 An n-dimensional associative algebra A is called filiform of degree p

if dimAi = n− p + 1− i, 1 ≤ i ≤ n− p + 1.

The following theorems give the classification of the filiform associative algebras
of degree p (see [7, Theorem 3.2 and Theorem 3.2]).

Theorem 2 ([7]) Let A be a naturally graded filiform associative algebra of
dimension n (n > p + 2) of degree p over a field F characteristic zero. Then, A is
isomorphic to μ

n−p
0 ⊕ F

p.

Theorem 3 ([7]) Every filiform associative algebra of dimension n > p + 2 of
degree p over a field F of characteristic zero is isomorphic to the algebra

μ′ :
⎧
⎨

⎩

eiej = ei+j , 2 ≤ i + j ≤ n− p,

e1f1 = αen−p, α ∈ {0, 1},
fifj = βi,j en−p, 1 ≤ i, j ≤ p,

where βi,j ∈ F, and the other products vanish.

3 Naturally Graded Quasi-Filiform Associative Algebras

Let A be a naturally graded n-dimensional quasi-filiform associative algebra. Then,
there are two possibilities for the characteristic sequence, either C(A) = (n −
2, 1, 1) or C(A) = (n− 2, 2).

3.1 Associative Algebra with Characteristic Sequence (n−2, 2)

So we start considering the case C(A) = (n− 2, 2).
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According to the definition of the characteristic sequence, C(A) = (n− 2, 2), it
follows the existence of a basis element e1 ∈ A \ A2 and a basis {e1, e2, . . . , en}
such that the left multiplication operator Le1 has one of the following forms:

(
J2 0
0 Jn−2

)

,

(
Jn−2 0

0 J2

)

.

Let us suppose that the operator Le1 has the first form. Then we have the next
multiplications

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1e1 = e2,

e1e2 = 0,

e1ei = ei+1, 3 ≤ i ≤ n− 1

e1en = 0.

From the chain of equalities

0 = (e1e2)e3 = (e1(e1e1))e3 = ((e1e1)e1)e3 = (e2e1)e3 = e2(e1e3)

= e2e4 = (e1e1)e4 = e1(e1e4) = e1e5 = e6,

we obtain a contradiction.
Thus, we can reduce the study to the following form of the matrix Le1 :

(
Jn−2 0

0 J2

)

.

Theorem 4 Let A be 5-dimensional complex naturally graded associative algebra
with characteristic sequence C(A) = (3, 2). Then it is isomorphic to one of the
following pairwise non-isomorphic algebras:

π1(α) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e5,

e4e1 = αe5, α ∈ C

π2 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e4e1 = e5,

e4e4 = e5

π3 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e5,

e4e4 = e5

π4 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e5,

e4e1 = e2 − e5,

e5e1 = e3

π5 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e5,

e4e1 = e2 + e5,

e4e2 = 2e3,

e4e4 = 2e5,

e5e1 = e3

π6 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = e4e1 = e5,

e4e4 = e2,

e4e5 = e5e4 = e3
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π7 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e1e4 = −e4e1 = e5,

e4e4 = e2,

e5e4 = −e4e5 = e3

π8(α) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1e1 = e2, e1e2 = e2e1 = e3,

e1e4 = e5, e4e1 = (1− α)e2 + αe5,

e4e2 = (1− α2)e3, e4e4 = −αe2 + (1+ α)e5,

e4e5 = −α2e3, e5e1 = (1− α)e3,

e5e4 = −αe3, α ∈ C.

Proof We can assume that

A1 = 〈e1, e4〉, A2 = 〈e2, e5〉, A3 = 〈e3〉.

By the associativity identities and from the left multiplication operator Le1 we
deduce

e1e1 = e2, e4e1 = α1e2 + α2e5, e4e5 = α2β1e3,

e1e2 = e2e1 = e3, e4e2 = α1(α2 + 1)e3, e5e1 = α1e3,

e1e4 = e5, e4e4 = β1e2 + β2e5, e5e4 = β1e3,

with the following restrictions

α1β2 = α2
1(α2 + 1)+ β1(α

2
2 − 1), β1(α1(α2 + 1)+ β2(α2 − 1)) = 0. (1)

Let us suppose e5 ∈ Ann(A) . It follows α1 = β1 = 0 and then we have

e1e1 = e2, e1e2 = e2e1 = e3, e1e4 = e5, e4e1 = α2e5, e4e4 = β2e5.

We make the following change of generator basis elements

e′1 = A1e1 + A2e4, e′4 = B1e1 + B2e4, A1(A1 + β2A2)(A1B2 − A2B1) �= 0.

The equality e′1e′5 = 0, implies B1 = 0. Calculating new parameters we obtain:

α′2 =
α2A1 + β2A2

A1 + β2A2
, β ′2 =

β2B2

A1 + β2A2
.

If β2 = 0, then β ′2 = 0 and α′2 = α2, and so we obtain π1(α).

If β2 �= 0, then by choosing B2 = A1+β2A2
β2

we deduce β ′2 = 1. So we have the
next invariant expression

α′2 − 1 = (α2 − 1)A1

A1 + β2A2
.

• If α2 = 1, then α′2 = 1 and we have π2.
• If α2 �= 1, then by choosing A2 = −α2A1

β2
we infer α′2 = 0, and so we have π3.
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Let us suppose e5 /∈ Ann(A) . It follows (α1, β1) �= (0, 0). Then we consider
the next cases.

Case 1 Let e5 ∈ rAnn(A) . Then α2β1 = 0.

Case 1.1 If β1 = 0, then α1 �= 0 and β2 = α1(α2+1). Analogously as the previous
case, we make the change of generator basis

e′1 = A1e1 + A2e4, e′4 = B1e1 + B2e4,

A1(A1 + α1A2)(A1 + α1A2 + α1α2A2)(A1B2 − A2B1) �= 0,

and we find the restriction B1 = 0 on the coefficients.

Calculating new parameters we obtain

α′1 =
α1B2

A1 + α1A2
, α′2 =

α2A1

A1 + α1A2 + α1α2A2
, α′2 + 1 = (α2 + 1)(A1 + α1A2)

A1 + α1A2 + α1α2A2
.

By choosing B2 = A1+α1A2
α1

we obtain that α′1 = 1.
If α2 = 0 then α′2 = 0, and we have π8(0).
If α2 �= 0 then we consider the next cases:

• If α2 = −1 then α′2 = −1 and we obtain π4.

• If α2 �= −1 then by choosing A2 = (α2−1)A1
α1(α2+1) , we deduce α′2 = 1 and we have π5.

Case 1.2 If β1 �= 0 then α2 = 0. By restrictions (1) we obtain that β2 = α1 and
β1 = 0, that is a contradiction with the condition.

Case 2 Let e5 /∈ rAnn(A) . Then α2β1 �= 0. Taking the next change of basis

e′i = ei, 1 ≤ i ≤ 3, e′4 =
1√
β1

e4, e′5 =
1√
β1

e5,

we can assume that β1 = 1.

Case 2.1 Let α1 = 0. Then from restriction (1) we have

{
α2

2 − 1 = 0,

(α2 − 1)β2 = 0.

Case 2.1.1 Let α2 = 1. Then we have

e1e1 = e2, e1e2 = e2e1 = e3, e1e4 = e4e1 = e5,

e4e4 = e2 + β2e5, e4e5 = e5e4 = e3.

By making the change of generator basis elements, calculating restrictions on
the coefficients and new parameters and applying similar arguments as the previous
cases, we obtain π8(1) and π6.
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Case 2.1.2 If α2 �= 1 then α2 = −1 and β2 = 0. Hence we obtain π7.
Note that the algebra π6 is commutative and algebra π7 is noncommutative. Thus,

algebras π6 and π7 are non-isomorphic.

Case 2.2 Let α1 �= 0. Then we consider the next cases.

Case 2.2.1 If α2 = −1 then β2 = 0. We make the change of generator basis
elements

e′1 = A1e1+A2e4, e′4 = B1e1+B2e4, A1(A
2
1+α1A1A2+A2

2)(A1B2−A2B1) �= 0.

Calculating restrictions on the coefficients and new parameters we obtain:

B1 = 0, B2 = (A2
1 + α1A1A2 + A2

2)
1/2, α′1 =

α1A1 + 2A2

(A2
1 + α1A1A2 + A2

2)
1/2

.

It is easy to check that the next expression is an invariant expression

(α′1)2 − 4 = (α2
1 − 4)A2

1

A2
1 + α1A1A2 + A2

2

.

If α2
1 = 4 then α′1 = ±2, and we have π8(−1).

If α2
1 �= 4 then by choosing A2 = − 1

2α1A1 we obtain α′1 = 0, and it follows we
have π7.

Case 2.2.2 Let α2 �= −1. Then from restriction (1) we get α2 �= 1, β2 �= 0 and

α1 = (1− α2)β2

1+ α2
, (α2 + 1)2 + α2β

2
2 = 0.

By making the following change of basis

e′i = ei, 1 ≤ i ≤ 3, e′4 =
1+ α2

β2
e4, e′5 =

1+ α2

β2
e5,

we obtain π8(α) where α /∈ {±1, 0}.
By making the general change of basis, using the multiplication table on a new

basis and calculating new parameters, we obtain that α′ = α. It means that the
obtained algebras are non-isomorphic for different values of α. ��
Theorem 5 Let A be n-dimensional (n > 5) complex naturally graded associative
algebra with the characteristic sequence C(A) = (n− 2, 2). Then it is isomorphic
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to one of the following pairwise non-isomorphic algebras:

μn
2,2(α) :

⎧
⎪⎨

⎪⎩

eiej = ei+j ,

e1en−1 = en,

en−1e1 = αen,

μn
2,3 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eiej = ei+j ,

e1en−1 = en,

en−1e1 = en,

en−1en−1 = en,

μn
2,4 :

⎧
⎪⎨

⎪⎩

eiej = ei+j ,

e1en−1 = en,

en−1en−1 = en,

where α ∈ C and 2 ≤ i + j ≤ n− 2.

Proof According to the condition of the theorem, we have the following multipli-
cation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e1ei = ei+1, 1 ≤ i ≤ n− 3,

e1en−2 = 0,

e1en−1 = en,

e1en = 0.

It is easily seen that A1 = 〈e1, en−1〉,A2 = 〈e2, en〉,Ai = 〈ei〉 for 3 ≤ i ≤
n− 2. It follows en−2 ∈ Ann(A).

Considering the next identities

e1e2 = e1(e1e1) = (e1e1)e1 = e2e1, e1e3 = e1(e2e1) = (e1e2)e1 = e3e1,

we obtain that

e1e2 = e2e1 = e3, e1e3 = e3e1 = e4.

Now, we will prove the following equalities by induction on i:

e1ei = eie1 = ei+1, 1 ≤ i ≤ n− 3. (2)

Obviously, the equality holds for i = 2, 3. Let us assume that the equality (2)
holds for 2 < i < n− 3, and we shall prove it for i + 1:

e1ei+1 = e1(eie1) = (e1ei)e1 = ei+1e1,

so the induction proves the equalities (2) for any i, 2 ≤ i ≤ n− 3.
From the following chain of equalities

eiej = ei(e1ej−1) = (eie1)ej−1 = ei+1ej−1 = · · · = ei+j−2e2

= ei+j−2(e1e1) = (ei+j−2e1)e1 = ei+j ,
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we derive that

eiej = ei+j , 2 ≤ i + j ≤ n− 2.

Let us introduce the notations:

en−1e1 = γ1e2 + α1en, en−1en−1 = γ2e2 + α2en, en−1en = β1e3,

ene1 = β2e3, enen−1 = β3e3, enen = β4e4.

From the identities, we have

Identity Constraint

(e1en)e1 = e1(ene1) &⇒ β2 = 0,

(e1en)en−1 = e1(enen−1) &⇒ β3 = 0,

(en−1en)e1 = en−1(ene1) &⇒ β1 = 0,

(e1en−1)en = e1(en−1en) &⇒ β4 = 0,

(e1en−1)e1 = e1(en−1e1) &⇒ γ1 = 0,

(e1en−1)en−1 = e1(en−1en−1) &⇒ γ2 = 0.

Considering the identities

eien = (ei−1e1)en = ei−1(e1en) = 0,

enei = en(e1ei−1) = (ene1)ei−1 = 0, 2 ≤ i ≤ n− 4,

ej en−1 = (ej−1e1)en−1 = ej−1(e1en−1) = ej−1en = 0,

en−1ej = en−1(e1ej−1) = (en−1e1)ej−1 = α1enej−1 = 0, 2 ≤ j ≤ n− 3,

we deduce that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

eiej = ei+j , 2 ≤ i + j ≤ n− 2,

e1en−1 = en,

en−1e1 = α1en,

en−1en−1 = α2en.

We make the following general transformation of generator basis elements:

e′1 =
n∑

k=1

Akek, e′n−1 =
n∑

k=1

Bkek, A1(A1+α2An−1)(A1Bn−1−An−1B1) �= 0,
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while the other elements of the new basis are obtained as products of the above
elements.

From the next table of multiplications in this new basis

e′1e′n = 0, e′n−1e
′
1 = α′1e′n, e′n−1e

′
n−1 = α′2e′n,

we have the following restrictions on the coefficients:

Bi = 0, 1 ≤ i ≤ n− 3,

and calculating new parameters we obtain:

α′1 =
α1A1 + α2An−1

A1 + α2An−1
, α′2 =

α2Bn−1

A1 + α2An−1
.

If α2 = 0, then α′2 = 0 and α′1 = α1, and so we have μn
2,2(α).

If α2 �= 0, then by choosing Bn−1 = A1+α2An−1
α2

we deduce α′2 = 1. It is easy to
see that the next expression

α′1 − 1 = (α1 − 1)A1

A1 + α2An−1

is an invariant expression.

• If α1 = 1, then α′1 = 1. Hence, we obtain μn
2,3.

• If α1 �= 1, then by choosing An−1 = −α1A1
α2

, we infer α′1 = 0 and we have μn
2,4.
��

3.2 Associative Algebra with Characteristic Sequence
(n − 2, 1.1)

Now we will consider the case of the characteristic sequence equal to (n− 2, 1, 1).

Definition 8 An associative algebra A is called 2-filiform if C(A) = (n− 2, 1, 1).

By definition of the characteristic sequence, the operator Le1 has in the Jordan
form one block Jn−2 of size n− 2 and two blocks J1 (where J1 = {0}) of size one.

The possible forms for the operator Le1 are the following:

⎛

⎝
J1 0 0
0 Jn−2 0
0 0 J1

⎞

⎠ ,

⎛

⎝
Jn−2 0 0

0 J1 0
0 0 J1

⎞

⎠ .
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Let us suppose that the operator Le1 has the first form. Then we have the next
multiplications

⎧
⎪⎪⎨

⎪⎪⎩

e1e1 = 0,

e1ei = ei+1, 2 ≤ i ≤ n− 2,

e1en = 0.

From the chain of equalities

e4 = e1e3 = e1(e1e2) = (e1e1)e2 = 0

we obtain a contradiction.
Thus, we can reduce the study to the following form of the matrix Le1 :

⎛

⎝
Jn−2 0 0

0 J1 0
0 0 J1

⎞

⎠ .

So, there exists a basis {e1, e2, . . . , en−2, f1, f2} such that

e1ei = ei+1, 1 ≤ i ≤ n− 3,
e1f1 = 0,
e1f2 = 0.

Applying arguments similar to Case 1 of Theorem 2 (see [7, Theorem 3.2]), we
obtain the products:

eiej = ei+j , 2 ≤ i + j ≤ n− 2,

ekfs = 0, 1 ≤ k ≤ n− 2, 1 ≤ s ≤ 2.

By the previous multiplication table we have

e1 ∈ A1, e2 ∈ A2, . . . , en−2 ∈ An−2,

but we do not know about the places of the basis {f1, f2}.
Let denote by t1, t2 the places of the basis elements {f1, f2} in the natural

graduation corresponding, that is fi ∈ Ati , where 1 ≤ i ≤ 2. Further will denote by
μ(t1, t2) the law of the algebra with set {t1, t2}. We can suppose that 1 ≤ t1 ≤ t2.

Proposition 1 Let A be a naturally graded 2-filiform associative algebra. Then
ti ≤ i for any 1 ≤ i ≤ 2.
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Note that the case μ(1, 1) is a filiform algebra of degree 2. Thus, it is sufficient
to consider the case μ(1, 2). Since the proofs of the next results are carried out by
applying the arguments used above we shall omit them.

Proposition 2 Let A be a five-dimensional complex naturally graded 2-filiform
non-split associative algebra of type μ(1, 2). Then A is isomorphic to one of the
following pairwise non-isomorphic algebras:

λ1 :
⎧
⎨

⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e4e1 = e5

λ2 :

⎧
⎪⎪⎨

⎪⎪⎩

e1e1 = e2,

e1e2 = e2e1 = e3,

e4e1 = e5,

e4e2 = e5e1 = e3

Theorem 6 Let A be an n-dimensional (n > 5) complex naturally graded 2-
filiform non-split associative algebra of type μ(1, 2). Then A is isomorphic to the
following algebra:

μn
2,1 :

{
eiej = ei+j , 2 ≤ i + j ≤ n− 2,

en−1e1 = en.
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Spacelike Hypersurfaces in Conformally
Stationary Spacetimes

Luis J. Alías, Antonio Caminha, and F. Yure S. do Nascimento

Abstract In this paper we obtain new characterizations of totally geodesic hyper-
surfaces in conformally stationary spacetimes, under the assumption that the
future second fundamental form is positive semidefinite. In the compact case, our
results will be a consequence of certain integral formulas, while in the complete
noncompact case they will be an application of a new maximum principle at infinity
for vector fields.

1 Introduction

Our purpose in this paper is to establish certain Bernstein type results for space-
like hypersurfaces in conformally stationary spacetimes. Recall that a spacetime
(M, 〈 , 〉) is said to be conformally stationary if it possesses a globally defined
timelike conformal vector field K ∈ X(M). In particular, when K is Killing then
we say that M is a stationary spacetime. The reason for this terminology is due
to the fact that M , endowed with the conformal metric 〈 , 〉∗ = (1/|K|)〈 , 〉, is in
fact a stationary spacetime, since the timelike field K is Killing for the conformal
metric 〈 , 〉∗. The class of conformally stationary spacetimes includes the family of
generalized Robertson–Walker spacetimes, as defined in [2], and in this case the
conformal field K is also closed, in the sense that its metrically equivalent 1-form is
closed.
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The study of uniqueness results for spacelike hypersurfaces in conformally
stationary spacetimes has been a topic of increasing interest in recent years. A
basic question on this topic is the uniqueness of spacelike hypersurfaces with certain
natural geometric properties, like the vanishing or constancy of the mean curvature.
The first relevant result in this direction was the proof of the Calabi–Bernstein
conjecture for maximal hypersurfaces in the Lorentz-Minkowski spacetime, given
by Cheng and Yau in [12]. After this seminal result, many other authors have
approached several Bernstein type results in other ambient spacetimes, looking
for the characterization of totally geodesic hypersurfaces (and, more generally,
totally umbilical hypersurfaces) among the class of spacelike hypersurfaces with
vanishing or constant mean curvature. For instance, in [2–4] Alías, Romero and
Sánchez studied the uniqueness of compact spacelike hypersurfaces with constant
mean curvature in conformally stationary spacetimes. See also [5] and [1] for
other uniqueness results in the same direction, for the case of compact spacelike
hypersurfaces with constant higher order mean curvature, or [10], for the complete
noncompact case in the Lorentz-Minkowski space. More recently, and as an appli-
cation of a generalized version of the Omori-Yau maximum principle, these results
were extended in [6] to the case of complete noncompact spacelike hypersurfaces in
the family of generalized Robertson–Walker spacetimes (see also Chapter 9 in [7]).

In this paper we obtain new characterizations of totally geodesic hypersurfaces
in conformally stationary spacetimes, under the assumption that the future second
fundamental form is positive semidefinite. In the compact case, our results will be
a consequence of certain integral formulas, while in the complete noncompact case
they will be an application of a new maximum principle at infinity for vector fields,
recently given by the authors in [8] (see Theorem 3 below).

2 Preliminaries

An (n + 1)-dimensional (n ≥ 2) orientable manifold M
n+1

endowed with a
Lorentzian metric tensor 〈·, ·〉 is said to be a conformally stationary spacetime
provided it possesses a globally defined timelike conformal vector field K ∈ X(M).
In particular, if K is Killing then we say that M is a stationary spacetime. Since K

is globally defined on M , it determines a time-orientation on it; in this situation, we
will always consider on M the time-orientation given by K .

Recall that K being conformal means that the Lie derivative of the Lorentzian
metric 〈·, ·〉 with respect to K satisfies LK 〈·, ·〉 = 2φ〈·, ·〉 for a certain smooth
function φ ∈ C∞(M). In other words,

〈∇VK,W 〉 + 〈V,∇WK〉 = 2φ〈V,W 〉, (1)

for all vector fields V,W ∈ X(M), where ∇ stands for the Levi-Civita connection
of M . The case of K being Killing corresponds to φ vanishing identically on M . It
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follows from (1) that the function φ can be characterized as

φ = 1

n+ 1
Div K, (2)

where Div stands for the divergence of M .
Also in this setting, the conformal timelike vector field K is said to be closed if

its metrically equivalent 1-form is closed. In other words, this means that

∇VK = φV, (3)

for every vector field V ∈ X(M).
From now on, whenever the conformal timelike vector field of M is closed, we

will say that M is a conformally stationary-closed spacetime. Note that this includes
the case of generalized Robertson–Walker Lorentz spacetimes. By a generalized
Robertson–Walker Lorentz spacetime, and following [2], we mean a Lorentzian
warped product I×*M

n with complete Riemannian fiber (Mn, 〈·, ·〉M) and warping
function * : I → (0,+∞), so that its Lorentzian metric is given by

〈·, ·〉 = −dt2 + *(t)2〈·, ·〉M. (4)

In a generalized Robertson–Walker spacetime, the vector field given by K(t, x) =
*(t)∂t |(t,x) is a closed conformal vector field with φ(t, x) = *′(t).

A smooth immersion ψ : �n → M
n+1

of an n-dimensional connected manifold
� is said to be a spacelike hypersurface if the metric induced on � via ψ is a
Riemannian metric, which, as usual, we also denote 〈·, ·〉. Thus, for a given spacelike
hypersurface ψ : � → M , there exists a unique timelike unit normal vector field N ,
globally defined on � and having the same time-orientation as K , so that 〈K,N〉 ≤
−|K| = −√−〈K,K〉 < 0 holds everywhere on �. We will refer to N as the future
pointing Gauss map of �.

If ∇ denotes the Levi-Civita connection of �, then the Gauss and Weingarten
formulae for the hypersurface in M are given, respectively, by

∇XY = ∇XY − 〈AX,Y 〉N, and A(X) = −∇XN, (5)

for all tangent vector fields X,Y ∈ X(�). Here A : X(�) → X(�) defines the
future second fundamental form of �.

3 The Case of Compact Spacelike Hypersurfaces

We begin this section by deriving some general formulae for spacelike hypersurfaces
in a conformally stationary spacetime M . In order to do that, let us consider
K' ∈ X(�), the vector field obtained on the hypersurface� by taking the tangential
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component of K , that is,

K' = K + 〈K,N〉N. (6)

Our first idea here is to compute the divergence div(K'),

div(K') =
n∑

i=1

〈∇EiK
', Ei〉, (7)

where {E1, . . . , En} is a local orthonormal frame on �. By taking covariant
derivatives in (6) and using (5), we obtain from (1) that

1

2

(
〈∇XK', Y 〉 + 〈X,∇YK

'〉
)
= φ〈X,Y 〉 − 〈K,N〉〈AX,Y 〉, (8)

for all tangent vector fields X,Y ∈ X(�). Hence, 〈∇EiK
', Ei〉 = φ −

〈K,N〉〈AEi ,Ei〉 and

div(K') = nφ − 〈K,N〉tr(A) = nφ + nH 〈K,N〉, (9)

where

H = −1

n
trace(A) (10)

is the future mean curvature of �. The choice of the sign −1 in our definition of
H is motivated by the fact that, in doing so, the mean curvature vector is given by−→
H = HN . Therefore, H(p) > 0 at a point p ∈ � if and only if

−→
H (p) is future-

pointing.
On the other hand, for every X ∈ X(�) we have

X(〈K,N〉) = 〈∇XK,N〉 + 〈K,∇XN〉 = −〈X, (∇NK)'〉 − 〈AK',X〉, (11)

where we have used (1) to deduce that 〈∇XK,N〉 + 〈X,∇NK〉 = 2φ〈X,N〉 = 0.
At this point, assume that the timelike conformal vector field K is closed, that is,
that (3) holds. Then, (∇NK)' = 0 and (11) becomes

∇〈K,N〉 = −AK'. (12)

Therefore, using (9) and (12) we can compute

div(〈K,N〉K') = 〈K,N〉div(K')+ 〈∇〈K,N〉,K'〉
= nφ〈K,N〉 + nH 〈K,N〉2 − 〈AK',K'〉.

(13)



Spacelike Hypersurfaces in Conformally Stationary Spacetimes 165

We are now ready to present our first main result. Hereafter, recall that a
differentiable manifold is said to be closed if it is compact and without boundary.

Theorem 1 Let M be a conformally stationary-closed spacetime, with closed
timelike conformal field K , and let � be a closed spacelike hypersurface immersed
into M . If DivK ≥ 0 on � and the future second fundamental form of � is positive
semidefinite, then � is totally geodesic in M and DivK ≡ 0 on �.

As a direct consequence of the theorem above, we obtain the following

Corollary 1 Let M be a conformally stationary-closed spacetime endowed with a
closed timelike conformal field K such that DivK > 0 on M . There exists no closed
spacelike hypersurface immersed into M with positive semidefinite future second
fundamental form.

On the other hand, observe that when K is Killing, being closed is equivalent to
being parallel. Therefore, Theorem 1 for the case of stationary-closed spacetimes
reads as follows.

Corollary 2 Let M be a stationary-closed spacetime endowed with a parallel
timelike vector field K , and let � be a closed spacelike hypersurface immersed
into M . If the future second fundamental form of � is positive semidefinite, then �

is totally geodesic.

Proof of Theorem 1 Orient M and use the fact that K is timelike to endow �

with the induced orientation. Letting d� denote the corresponding volume form
and integrating (13) on �, the divergence theorem gives

0 =
∫

�

[nφ〈K,N〉 + nH 〈K,N〉2 − 〈AK',K'〉]d�.

Now, since DivK ≥ 0 on �, relation (2) gives φ ≥ 0 on �. Then, the positive
semidefiniteness of A, together with 〈K,N〉 < 0 on �, assure that the above
integrand is nonpositive on �, so that it must vanish identically. In turn, this shows
that φ ≡ 0 and H ≡ 0 on �, whence DivK ≡ 0 on � and A ≡ 0 on �. ��

As a consequence of Theorem 1 in the particular case where M = −I×*M
n is a

generalized Robertson–Walker spacetime, we obtain the following characterization
of totally geodesic slices. First of all, recall from [2, Proposition 3.2 (i)] that if a
generalized Robertson–Walker spacetime admits a closed spacelike hypersurface,
then it must be spatially closed, in the sense that the Riemannian fiber Mn must
be closed. On the other hand, observe that, for a spatially closed generalized
Robertson–Walker spacetime −I ×* Mn, the family of slices �t = {t} × Mn

constitutes a foliation of the ambient space by closed spacelike totally umbilical
leaves with constant mean curvature H(t) = *′(t)/*(t).

Corollary 3 Let M = −I ×* Mn be a spatially closed generalized Robertson–
Walker spacetime such that its warping function * satisfies the condition *′(t) ≥
0, with equality only at isolated points. The only closed spacelike hypersurfaces
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immersed into−I ×*M
n with positive semidefinite future second fundamental form

are the totally geodesic slices of the form �t0 = {t0} ×Mn, with *′(t0) = 0.

Proof The proof of Theorem 1 shows that φ ≡ 0 on �. Hence *′ ≡ 0 on �, and
our hypothesis on the zeroes of *′ guarantee that � is a totally geodesic slice of the
stated form. ��

We assume henceforth that K is a timelike conformal vector field, though not
necessarily closed. In this case, using (9) and (11) we can compute

div(〈K,N〉K') = 〈K,N〉div(K')+ 〈∇〈K,N〉,K'〉
= nφ〈K,N〉 + nH 〈K,N〉2 − 〈AK',K'〉 − 〈(∇NK)',K'〉.

(14)

Now, observe that

〈(∇NK)',K'〉 = 〈∇NK,K〉 + 〈K,N〉〈∇NK,N〉 = 1

2
N(〈K,K〉) − 〈K,N〉φ,

where we have used the fact that, by (1), 〈∇NK,N〉 = −φ. Inserting this into (14)
we get

div(〈K,N〉K') = (n+ 1)φ〈K,N〉 + nH 〈K,N〉2 − 〈AK',K'〉 − 1

2
N(〈K,K〉).

(15)

This allows us to state our second main result.

Theorem 2 Let M be a conformally stationary spacetime endowed with a timelike
conformal vector field K such that 〈K,K〉 is constant, and let � be a closed
spacelike hypersurface immersed into M . If DivK ≥ 0 on � and the future second
fundamental form of � is positive semidefinite, then � is totally geodesic in M and
DivK ≡ 0 on �.

This result immediately yields the following

Corollary 4 Let M be a conformally stationary spacetime endowed with a timelike
conformal vector field K such that 〈K,K〉 is constant and DivK > 0 on M . There
exists no closed spacelike hypersurface immersed into M with positive semidefinite
future second fundamental form.

The proof of Theorem 2 is the same as that of Theorem 1, after observing that
〈K,K〉 being constant implies, by (15),

div(〈K,N〉K') = (n+ 1)φ〈K,N〉 + nH 〈K,N〉2 − 〈AK',K'〉.

Finally, Theorem 2 for the case of stationary spacetimes reads as follows.
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Corollary 5 Let M be a stationary spacetime endowed with a unit timelike Killing
vector field K , and let � be a closed spacelike hypersurface immersed into M . If
the future second fundamental form of � is positive semidefinite, then � is totally
geodesic.

Corollary 5 is nothing but the corresponding version of Theorem 3.2 in [8] for the
case of closed spacelike hypersurfaces (see also Theorem 5 below). Observe that
the hypothesis in Theorem 3.2 (and in Corollary 3.4) of [8] about the spacelike
hypersurface being transversal to the unit timelike Killing field K is redundant,
since one gets it for free from the fact that � is spacelike.

4 The Case of Complete Noncompact Spacelike
Hypersurfaces

In this section, we extend the results of the previous one to complete, noncompact
spacelike hypersurfaces. We first recall Proposition 2.1 of [11]. To this end, given an
oriented, complete noncompact Riemannian manifold �, we let L1(�) denote the
space of Lebesgue integrable functions on �. If X ∈ X(�) is such that |X| ∈ L1(�)

and div(X) does not change sign on �, then Proposition 2.1 of [11] shows that
div(X) ≡ 0 on �. The coming result is a useful variation of this.

Theorem 3 (Theorem 2.2 of [8]) Let � be an oriented, complete noncompact
Riemannian manifold, and let X ∈ X(�) be a vector field on �. Assume that
there exists a nonnegative, non identically vanishing function f ∈ C∞(�) such
that 〈∇f,X〉 ≥ 0 and limr(x)→+∞ f (x) = 0, where r(x) = d(x, o) stands for the
Riemannian distance function on �, from a fixed origin o ∈ �. If div(X) ≥ 0 on �,
then:

(a) 〈∇f,X〉 ≡ 0 on �.
(b) div(X) ≡ 0 on � \ f−1(0).
(c) div(X) ≡ 0 on � if f−1(0) has zero Lebesgue measure.

As already hinted, we want to use the previous versions of maximum principle
to establish results similar to those of the previous section for an oriented, complete
noncompact spacelike immersed hypersurface � of a conformally-closed stationary
spacetime M . If K stands for the closed conformal timelike vector field of M , and
N for the unit normal vector field on � having the same time-orientation as K , we
consider the hyperbolic angle-function θ : � → [0,+∞), given at each point of �
by the equality

〈K,N〉 = −|K| cosh θ.

In particular, for x ∈ � we have from the reverse Cauchy–Schwarz inequality that
θ(x) = 0 if and only if K'(x) = 0.
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It is also worth recalling (cf. Proposition 1 of [14]) that, thanks to the closed
conformal character of K , the distribution K⊥ of vector fields X ∈ X(M) such
that 〈K,X〉 = 0 is smooth and integrable. If F is a leaf of it, then φ and |K| are
constant on F and the second fundamental form of F in the direction of K/|K| is
−(φ/|K|)Id. In particular, F is totally umbilical in M , with constant future mean
curvature and equal to φ/|K|. We are finally in position to state the following

Theorem 4 Let M be a conformally stationary-closed spacetime with closed
timelike conformal vector field K , and let � be a complete noncompact spacelike
hypersurface immersed into M . Assume that |K| is bounded above on � and
the hyperbolic angle θ between K and N satisfies limr(x)→+∞ θ(x) = 0, where
r(x) = d(x, o) stands for the Riemannian distance function on � measured from a
fixed origin o ∈ �. If DivK ≥ 0 on � and the future second fundamental form of �
is positive semidefinite, then � is totally geodesic in M and DivK ≡ 0 on �.

As before, this immediately gives a corresponding nonexistence result.

Corollary 6 Let M be a conformally stationary-closed spacetime with closed
timelike conformal vector field K , such that |K| is bounded and DivK > 0 on
M . There exists no complete noncompact spacelike hypersurface � immersed into
M and satisfying the following two conditions:

(a) � has positive semidefinite future second fundamental form.
(b) The hyperbolic angle θ between K and the future pointing unit normal vector

field N on � satisfies limr(x)→+∞ θ(x) = 0, where r(x) = d(x, o) stands for
the Riemannian distance function on � measured from a fixed origin o ∈ �.

Proof of Theorem 4 Firstly, if θ ≡ 0 on �, then N ‖ K and � is contained in a
leaf of K⊥. Therefore, as observed above, A = −(φ/|K|)Id, and the fact that A is
positive semidefinite gives φ ≤ 0 on �. On the other hand, (2) gives φ ≥ 0 on �,
so that φ ≡ 0 on � and � is totally geodesic.

We then assume that θ does not vanish identically on �, and shall apply the
previous proposition to X = K' and f = −|K| − 〈K,N〉. To this end, start by
letting � have the orientation induced by that of M and K , and notice that f =
|K|( cosh θ − 1

) ≥ 0 on �. Since limr(x)→+∞ θ(x) = 0 and |K| is bounded on �,
we get limr(x)→+∞ f (x) = 0. We now compute

2|K|X(|K|) = X(|K|2) = −X〈K,K〉 = −2〈∇XK,K〉 = −2φ〈X,K〉 = −2φ〈K',K'〉,

so that, with the aid of (11),

|K|〈∇f,X〉 = −|K|X(|K|)− |K|X〈K,N〉 = φ〈K',K'〉 + |K|〈AK',K'〉.
(16)

Our hypotheses guarantee that the right hand side of the above expression is
nonnegative on �, so that 〈∇f,X〉 ≥ 0 on �. On the other hand, relation (2),
the hypothesis on A and (9) give div(X) = nφ + nH 〈K,N〉 ≥ 0 on �.
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Theorem 3 thus gives 〈∇f,X〉 ≡ 0 on � and div(X) ≡ 0 on � \f−1(0). In turn,
this assures that φ ≡ 0 and H ≡ 0 on � \ f−1(0), and the positive semidefinite
character of A shows that A ≡ 0 on � \ f−1(0). Now, notice that

f−1(0) = θ−1(0) = {x ∈ �;K(x)⊥Tx�}.

Thus, if x lies in the interior of f−1(0), then N ‖ K in a neighbourhood of x,
whence, in such a neighbourhood, � is contained in the leaf of K⊥ passing through
x. This in particular gives, as in the first paragraph of the proof, A ≡ 0 and φ ≡ 0
in that neighbourhood. Thus, A and φ vanish both in � \ f−1(0) and in the interior
of f−1(0), so that they vanish on �. ��

On the other hand, assume now that K is a timelike conformal vector
field, not necessarily closed, with |K| constant. In this case, the condition that
limr(x)→+∞ θ(x) = 0 is equivalent to the fact that N converges to K at infinity.
Without loss of generality, we may assume that 〈K,K〉 = −1. It then follows
from (1) that K is necessarily Killing, since

0 = K(〈K,K〉) = 2φ〈K,K〉 = −2φ

implies that φ ≡ 0. This allows us to extend Theorem 3.2 of [8] to the case of
conformally stationary spacetimes in the following way.

Theorem 5 Let M be a conformally stationary spacetime endowed with a unit
timelike conformal vector field K . Then K is necessarily Killing. Assume that �

is a complete noncompact spacelike hypersurface immersed into M with positive
semidefinite future second fundamental form and such that N converges to K at
infinity, then � is totally geodesic in M .

For the sake of completeness and for the reader convenience, we include here a
detailed proof of Theorem 5, which was not given in [8].

Proof As observed above, K is necessarily Killing. Setting f = −1 − 〈K,N〉 =
−1+ cosh θ on �, we get f ≥ 0. If f vanishes identically, then N ≡ K . In such a
case, for every x ∈ � and every u, v ∈ Tx�, Eq. (1) implies

〈Axu, v〉 = −〈∇uN, v〉 = −〈∇uK, v〉 = 〈∇vK, u〉 = −〈Axv, u〉. (17)

Since Ax is symmetric, this gives Ax = 0 for every x ∈ �; that is, � is totally
geodesic. Therefore, we may assume that f does not vanish identically on �; in
other words � \ f−1(0) �= ∅. As observed above, the condition that N converges to
K at infinity means that limr(x)→+∞ f (x) = 0.

Let X = K'. From (9) we have

divX = nH 〈K,N〉 ≥ 0, (18)
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since φ ≡ 0 and H ≤ 0 from the hypothesis on A. On the other hand, from (11) we
also have

〈∇f,X〉 = −X(〈K,N〉) = 〈AX,X〉 + 〈X,∇NK〉
= 〈AX,X〉 + 〈K,∇NK〉 + 〈K,N〉〈N,∇NK〉.

Observe that

〈K,∇NK〉 = 1

2
N(〈K,K〉)= 0,

since we are assuming 〈K,K〉=−1. Moreover, by (1) we have 〈N,∇NK〉= − φ=0,
which yields

〈∇f,X〉 = 〈AX,X〉. (19)

Therefore, we may apply Theorem 3 to conclude that 〈∇f,X〉 ≡ 0 on � and
divX ≡ 0 on �\f−1(0). By (18) and the second conclusion, we have that H ≡ 0 on
�\f−1(0), and the positive semidefinite character of A yields A ≡ 0 on �\f−1(0).
Now, recall that x ∈ f−1(0) if and only if N(x) = K(x). If the interior of f−1(0) is
empty, by continuity we have A ≡ 0 on �, and we are done. On the other hand, if the
interior of f−1(0) is not empty, then N ≡ K in the interior of f−1(0) and (17) gives
Ax = 0 for every x in the interior of f−1(0). Thus, A vanishes both on � \ f−1(0)
and on the interior of f−1(0), so that A ≡ 0 on �. This finishes the proof. ��

5 The Case of Higher Order Mean Curvatures

In this last section we continue to investigate complete noncompact spacelike

hypersurfaces �n of a conformally stationary-closed spacetime M
n+1

, this time
focusing on higher order mean curvatures.

As before, we orient and time orient M , endow � with the induced orientation
and let N ∈ X(�)⊥ be the future pointing unit normal vector field with (future)
second fundamental form A. For every 1 ≤ k ≤ n, k ∈ N, let Sk : � → R denote
the smooth function that associates to each p ∈ � the k−th elementary symmetric
function of the eigenvalues of Ap : Tp� → Tp�. Letting S0 = 1 and I stand for
the identity operator, we set P0 = I (the identity operator) and, for 1 ≤ k ≤ n,

Pk = (−1)kSkI + APk−1. (20)

A trivial induction shows that

Pk = (−1)k(SkI − Sk−1A+ Sk−2A
2 − · · · + (−1)kAk), (21)
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so that Cayley–Hamilton theorem gives Pn = 0. Moreover, since Pk is a polynomial
in A for every k, it is also self-adjoint and commutes with A. Therefore, all bases of
TpM , diagonalizing A at p ∈ M , also diagonalize all of the Pk at p.

With the aid of such a basis, it is a standard fact (cf. [5] or [9], for instance) that,
for 0 ≤ k < n and upon the convention that Sn+1 = 0,

tr(Pk) = (−1)k(n− k)Sk, tr(APk) = (−1)k(k + 1)Sk+1

and

tr(A2Pk) = (−1)k
(
S1Sk+1 − (k + 2)Sk+2

)
.

For 0 ≤ k ≤ n, the k−th mean curvature Hk of � is defined by

(
n

k

)

Hk = (−1)kSk.

According to (10), H1 is simply the (future) mean curvature of �. Also, a simple
computation gives

tr(Pk) = ckHk, tr(APk) = −ckHk+1, (22)

with ck = (n− k)
(
n
k

) = (k + 1)
(

n
k+1

)
, and

tr(A2Pk) = n

(
n

k + 1

)

H1Hk+1 − n

(
n− 1

k + 1

)

Hk+2. (23)

Also concerning higher order mean curvatures, item (c) of Proposition 2.3 of [10]
shows that, if Hk(p) = Hk+1(p) = 0 for some 1 ≤ k < n and p ∈ �, then
Hj(p) = 0 for every k ≤ j ≤ n. In particular, the second fundamental form A has
at most k − 1 nonzero eigenvalues at p.

Following the computations in [5], we shall now compute div(PkK
') in the more

general setting of K being only conformal (i.e., not necessarily closed). To this
end, we fix p ∈ � and let {E1, . . . , En} be a local orthonormal frame field on �,
geodesic at p and diagonalizing A at p. Then, we get at p

div(PkK
') =

n∑

i=1

〈∇Ei PkK
', Ei〉 =

n∑

i=1

〈(∇Ei Pk)K
' + Pk(∇EiK

'), Ei〉

= 〈
n∑

i=1

(∇EiPk)Ei,K
'〉 +

n∑

i=1

〈PkEi,∇EiK
'〉

If M is a Lorentzian space form, i.e., if it has constant sectional curvature, it follows
from Lemma 3.1 of [5] that

∑n
i=1(∇EiPk)Ei = 0. Therefore, writing K' = K +
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〈K,N〉N , we obtain at p

div(PkK
') =

n∑

i=1

〈PkEi,∇EiK〉 +
n∑

i=1

〈PkEi,∇Ei

(〈K,N〉N)〉

= 1

2

n∑

i=1

(〈PkEi,∇EiK〉 + 〈Ei,∇PkEiK〉
)+ 〈K,N〉

n∑

i=1

〈PkEi,∇EiN〉

=
n∑

i=1

φ〈PkEi,Ei〉 − 〈K,N〉
n∑

i=1

〈PkEi,AEi〉

= φ tr(Pk)− 〈K,N〉tr(APk).

Thanks to (22), this gives

div(PkK
') = ck

(
φ Hk + 〈K,N〉Hk+1

)
. (24)

With the previous preliminaries at our disposal, we have the following extension
of Theorem 4.

Theorem 6 Let M
n+1

be a Lorentzian space form with no compact, proper,
totally geodesic submanifold of positive dimension, let K be a closed timelike
conformal vector field on M and � be a connected, complete noncompact spacelike
hypersurface immersed into M, such that |K| is bounded and DivK ≥ 0 on �. Let
A stand for the future second fundamental form of � and assume that, for some
0 ≤ k < n, k ∈ N, we have Pk positive definite and APk positive semidefinite on �.
If the hyperbolic angle θ between K and N satisfies limr(x)→+∞ θ(x) = 0, where
r(x) = d(x, o) stands for the Riemannian distance function on � from a fixed origin
o ∈ �, then:

(a) k = 0 and DivK ≡ 0 on �.
(b) � is totally geodesic on M .

Proof As in the proof of Theorem 4, if θ ≡ 0 on �, then N ‖ K and � is contained
in a leaf of K⊥. Therefore, A = − φ

|K | Id, whence � is totally umbilical with Hj =
(φ/|K|)j for every j ≥ 0. A simple induction using (20) shows that Pk = ckφ

k

n|K |k I .

In turn, this furnishes APk = − ckφ
k+1

n|K |k+1 I . Now, Eq. (2) gives φ ≥ 0 on �, and the
fact that Pk is positive definite (hence Hk > 0) and APk is positive semidefinite,
assure that k = 0 and φ ≡ 0 on �. Hence, � is totally geodesic.

Our objective now is to see that θ must vanish identically. We then assume that
θ does not vanish identically on �, and shall once more apply Theorem 3, though
this time to X = PkK

' and f = −|K| − 〈K,N〉. First note that, as in the proof of
Theorem 4, the facts that f = |K|( cosh θ − 1

) ≥ 0, limr(x)→+∞ θ(x) = 0 and |K|
is bounded on �, give limr(x)→+∞ f (x) = 0. On the other hand, since φ ≥ 0 and
Hk > 0 ≥ Hk+1 (for −ckHk+1 = tr(APk) ≥ 0), relation (24) yields div(X) ≥ 0.
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Also, reworking the steps that led to (16) (with X = PkK
' instead of X = K'),

the hypotheses on Pk and APk give

|K|〈∇f,X〉 = φ〈PkK
',K'〉 + |K|〈APkK

',K'〉 ≥ 0,

whence 〈∇f,X〉 ≥ 0.
Theorem 3 thus gives that div(X) = 0 on � \ f−1(0). Therefore, it follows

from (24) that φ ≡ 0 and Hk+1 ≡ 0 on � \f−1(0); hence, APk ≡ 0 on � \f−1(0).
However, since θ ≡ 0 on the interior of f−1(0), the same argument as in the first
paragraph of this proof (applied to the interior of f−1(0), instead of �) gives φ ≡ 0
and A ≡ 0 the interior of f−1(0). Hence, φ ≡ 0 on � and APk ≡ 0 also on the
interior of f−1(0), so that APk ≡ 0 on �.

If k = n − 1, then the relative nullity ν of � is identically 1. If k ≤ n − 2,
then APk = 0 implies A2Pk = 0. Thus, (23) gives Hk+2 = 0 and, as we have
previously observed, the equalities Hk+1 = Hk+2 = 0 furnish Hj ≡ 0 on �, for
every k < j ≤ n, whence ν ≥ n − k on �. However, since Hk > 0 on �, we
conclude that ν ≡ n − k on �. Hence, a theorem of Ferus (cf. [13], Chapter 5)
assures that the distribution of relative nullity is smooth and integrable, and the
leaves are complete and totally geodesic in � and in M. By hypothesis, all of such
leaves are noncompact. Since φ ≡ 0 on � and the leaves are totally geodesic in M ,
a simple computation shows that f is constant along each leaf. Hence, the only way
by which we could have limr(x)→+∞ f (x) = 0 is if f ≡ 0. In turn, this implies
θ ≡ 0, which we are assuming not to be the case. ��
Remark 1 Note that Pn = 0 is never positive definite. This shows why one has to
rule out the case k = n, in the previous result.
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Geodesic Completeness and the
Quasi-Einstein Equation for Locally
Homogeneous Affine Surfaces

P. B. Gilkey and X. Valle-Regueiro

Abstract Let M be a Type A affine surface. We show that M is linearly strongly
projectively flat. We use the quasi-Einstein equation together with the condition that
M is strongly projectively flat to examine the geodesic completeness of M.

Keywords Strongly projectively flat · Quasi-Einstein equation · Geodesic
completeness · Locally homogeneous affine surface

Subject Classification 53C21, 35R01, 58J60, 58D27

1 Affine Geometry

A pair M = (M,∇) is said to be an affine surface if ∇ is a torsion free connection
on the tangent bundle of a smooth surface M . A map from one affine surface to
another is said to be an affine map if it intertwines the two connections. An affine
surface is said to be locally homogeneous if given any two points of the surface, there
is the germ of an affine diffeomorphism taking one point to the other. Let (x1, x2) be
local coordinates on an affine surface. Adopt the Einstein convention and sum over
repeated indices to expand ∇∂

xi
∂xj = Γij

k∂xk in terms of the Christoffel symbols;

the condition that ∇ is torsion free is equivalent to the symmetry Γij
k = Γji

k . We
have the following classification result due to Opozda [8].
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Theorem 1 Let M = (M,∇) be a locally homogeneous affine surface. At least
one of the following three possibilities holds for the local geometry:

A. There exist local coordinates (x1, x2) so that Γij
k = Γji

k is constant.
B. There exist local coordinates (x1, x2) so that Γij

k = (x1)−1Cij
k where Cij

k =
Cji

k is constant.
C. ∇ is the Levi-Civita connection of the round sphere.

We say that M is a Type A model if M = (R2,∇) where ∇ is Type A.
This means that the Christoffel symbols Γij

k are constant. Let R2 be the group of
translations acting on itself; a connection ∇ on R

2 is Type A if ∇ is left-invariant,
i.e. the translations are affine maps. Since ∇ is torsion free, Γ12

1 = Γ21
1 and

Γ12
2 = Γ21

2. Thus there are 6 free parameters. We identify the set of Type A models
with R

6 by setting M(a, b, c, d, e, f ) = (R2,∇) where the Christoffel symbols are
given by

Γ11
1 = a, Γ11

2 = b, Γ12
1 = Γ21

1 = c, Γ12
2 = Γ21

2 = d, Γ22
1 = e, Γ22

2 = f .

The notion of a Type B or Type C model is defined similarly. The general linear
group Gl(2,R) acts on the set of Type A models by change of variables; we say that
two Type A models are linearly equivalent if they differ by a linear action. There are
surfaces which are both Type A and Type B which are not flat. Any such geometry
is, up to linear equivalence, one of the structures M1

1, M1
2(c1), M1

3(c1), or M1
4(c)

to be described presently in Definition 1; we refer to [2] for further details. The
Type C geometry is neither Type A nor Type B. The curvature operator R and the
Ricci tensor ρ of an affine surface are given by

R(ξ1, ξ2) = ∇ξ1∇ξ2 −∇ξ2∇ξ1 − ∇[ξ1,ξ2],

ρ(ξ1, ξ2) = Tr{ξ3 → R(ξ3, ξ1)ξ2} .

In general, the Ricci tensor of an affine surface need not be symmetric. However, in
the Type A setting, the Ricci tensor is symmetric and is given by

ρ11 = (Γ11
1 − Γ12

2)Γ12
2 + Γ11

2(Γ22
2 − Γ12

1),

ρ12 = ρ21 = Γ12
1Γ12

2 − Γ11
2Γ22

1,

ρ22 = −(Γ12
1)2 + Γ22

2Γ12
1 + (Γ11

1 − Γ12
2)Γ22

1 .

(1)

We say that a curve σ in an affine surface is a geodesic if ∇σ̇ σ̇ = 0, i.e.
σ̈ i + Γjk

i σ̇ j σ̇ k = 0 for all i. If ∇ is the Levi-Civita connection of a Riemannian
metric, geodesics locally minimize length. There is no such interpretation in affine
geometry. An affine surface is said to be geodesically complete if every maximal
geodesic σ is defined for all t ∈ R; otherwise the surface is said to be geodesically
incomplete. We shall concentrate on the Type A geometries so that the geodesic
equation is a pair of quadratic ODEs with constant coefficients. However, even
with this restriction, it is still difficult to solve these equations directly. Instead,
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we shall first discuss the notion of strongly projectively flat geometries and show
in Lemma 1 that any Type A geometry is strongly projectively flat. We shall then
introduce the quasi-Einstein equation and present its basic properties in Theorem 2.
This will enable us to give a classification of the Type A geometries in Theorem 3
which we will use to determine which Type A geometries are geodesically complete
in Theorem 5; this gives a different treatment of a result originally established by
D’Ascanio et al. [4] using different methods.

2 Strongly Projectively Flat Geometries

Two affine connections∇ and ∇̃ are said to be projectively equivalent if there exists
a smooth 1-form ω so

∇̃XY = ∇XY + ω(X)Y + ω(Y )X for all X,Y.

We remark that∇ and ∇̃ have the same unparametrized geodesics if and only if they
are projectively equivalent (see Kobayashi and Nomizu [7]); reparametrization can,
of course, affect geodesic completeness. If ω = dg for some smooth function g,
then ∇ and ∇̃ are said to be strongly projectively equivalent. If M = (M,∇), then
we set gM := (M, ∇̃) in this setting. If ∇ is strongly projectively equivalent to a
flat connection, then M is said to be strongly projectively flat.

Lemma 1 Let M = (R2,∇) be a Type A model. There exists a linear function
g(x1, x2) = a1x

1 + a2x
2 which provides a strong projective equivalence from M

to a flat Type A model.

We remark that results of Eisenhart [5] showed that an affine surface is strongly
projectively flat if and only if both ρ and ∇ρ are symmetric. Let M be a Type A
model. Equation (1) shows that ρ is symmetric and one can make a similar direct
computation to show ∇ρ is symmetric. However, this does not yield that the 1-
form in question has constant coefficients so Lemma 1 does not follow from general
theory.

Proof Let M = (R2,∇) be a Type A model. We work modulo linear equivalence.
We use Eq. (1) to study the Ricci tensor ρ of M. Let g(x1, x2) = w1x

1 +w2x
2 for

(w1, w2) ∈ R
2 and let gM be the resulting strong projective deformation. We then

have

gΓ11
1 = Γ11

1 + 2w1,
gΓ11

2 = Γ11
2, gΓ12

1 = Γ12
1 +w2,

gΓ12
2 = Γ12

2 +w1,
gΓ22

1 = Γ22
1, gΓ22

2 = Γ22
2 + 2w2 .

Let gρ be the Ricci tensor of gM. In dimension 2, the Ricci tensor carries the
geometry; gM is flat if and only if gρ = 0.
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Case 1 Suppose Γ11
2 �= 0. Rescale x2 to ensure Γ11

2 = 1. We have

gρ11 = −Γ12
1 − (Γ12

2)2 + Γ22
2 +w2

1 + Γ11
1(Γ12

2 + w1)+w2 .

We set w2 := Γ12
1−Γ11

1Γ12
2+(Γ12

2)2−Γ22
2−Γ11

1w1−w2
1 to ensure gρ11 = 0.

Then gρ12 = −w3
1 + O(w2

1) and gρ22 = (Γ11
1 − Γ12

2 + w1)
gρ12. Since gρ12 is

cubic in w1, we can find w1 so gρ12 = 0. This forces gρ22 = 0.

Case 2 Suppose Γ11
2 = 0. We set w1 = Γ12

2 − Γ11
1 and w2 = −Γ12

1 to see
gρ(M) = 0. ��

3 The Quasi-Einstein Equation

Let Hf := (∂xi ∂xj f−Γij
k∂xkf ) dxi⊗dxj be the Hessian. Let ρs be the symmetric

Ricci tensor and let Q := ker{H + ρs}. We refer to Brozos-Vázquez et al. [3] for a
discussion of the context in which this operator arises and for applications to four-
dimensional geometry arising from the modified Riemannian extension. We refer to
[6] for the proof of the following result.

Theorem 2 Let M be an affine surface.

1. If dg provides a strong projective equivalence between M and gM, then
Q(gM) = egQ(M).

2. We have that dim{Q(M)} ≤ 3; equality holds if and only if M is strongly
projectively flat.

3. If ∇ and ∇̃ are two strongly projectively flat structures on a surface M , then
∇ = ∇̃ if and only if Q(M,∇) = Q(M, ∇̃).

4. Suppose gM is flat. Then Q(M) = eg Span{1, φ1, φ2} and Φ := (φ1, φ2)

provides local coordinates so that the unparameterized geodesics of M take the
form Φ−1(at + a0, bt + b0).

Define distinguished Type A geometries and function spaces as follows. To
simplify the notation, let S(f1, f2, f3) := Span

R
{f1, f2, f3}.

Definition 1 Let c1 /∈ {0,−1} and c2 �= 0.

M0
0 :=M(0, 0, 0, 0, 0, 0), Q0

0 = S(1, x1, x2),

M0
1 :=M(1, 0, 0, 1, 0, 0), Q0

1 = S(1, ex
1
, x2ex

1
),

M0
2 :=M(−1, 0, 0, 0, 0, 1), Q0

2 = S(1, ex
2
, e−x1

),

M0
3 :=M(0, 0, 0, 0, 0, 1), Q0

3 = S(1, x1, ex
2
),

M0
4 :=M(0, 0, 0, 0, 1, 0), Q0

4 = S(1, x2, (x2)2 + 2x1),

M0
5 :=M(1, 0, 0, 1,−1, 0), Q0

5 = S(1, ex
1

cos(x2), ex
1

sin(x2)),

M1
1 :=M(−1, 0, 1, 0, 0, 2), Q1

1 = ex
2S(1, x2, e−x1

),

M1
2(c1) :=M(−1, 0, c1, 0, 0, 1+ 2c1), Q1

2(c1) = ec1x
2S(1, ex

2
, e−x1

),
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M1
3(c1) :=M(0, 0, c1, 0, 0, 1+ 2c1), Q1

3(c1) = ec1x
2S(1, ex

2
, x1),

M1
4(c) :=M(0, 0, 1, 0, c, 2), Q1

4(c) = ex
2S(1, x2, c(x2)2 + 2x1),

M1
5(c) :=M(1, 0, 0, 0, 1+c2, 2c), Q1

5(c) = S(ecx
2

cos(x2), ecx
2

sin(x2), ex
1
),

M2
1(a1, a2) :=M

(
a2

1+a2−1,a2
1−a1,a1a2,a1a2,a

2
2−a2,a1+a2

2−1
a1+a2−1

)

,

Q2
1(a1, a2) = S(ex

1
, ex

2
, ea1x

1+a2x
2
) for a1a2 �= 0 and a1 + a2 �= 1,

M2
2(b1, b2) :=M

(

1+ b1, 0, b2, 1,
1+b2

2
b1−1 , 0

)

, for b1 �= 1 and (b1, b2) �= (0, 0),

Q2
2(b1, b2) = S(ex

1
cos(x2), ex

1
sin(x2), eb1x

1+b2x
2
),

M2
3(c2) :=M(2, 0, 0, 1, c2, 1), Q2

3(c2) = ex
1S(1, x1 − c2x

2, ex
2
),

M2
4(±1) :=M(2, 0, 0, 1,±1, 0), Q2

4(±1) = S(ex
1
, x2ex

1
, (2x1 ± (x2)2)ex

1
).

Theorem 3 If M is a Type A model, then M is linearly equivalent to one of the
models Mν

i (·) of Definition 1. We have that Q(Mν
i (·)) = Qν

i (·) and that the Ricci
tensor of Mν

i (·) has rank ν.

Proof Let M be a Type A model. By Lemma 1, M is strongly projectively flat.
Thus by Theorem 2, M is determined by Q(M). Since the Christoffel symbols
of M are constant, the translation group acts by affine diffeomorphisms. This
implies that ∂x1 and ∂x2 are affine Killing vector fields. Consequently, Q(M)

is a finite dimensional ∂x1 and ∂x2 module. Let QC(M) := Q(M) ⊗R C be
the complexification. This 3-dimensional space of functions invariant under the
action of {∂x1, ∂x2}. By examining the generalized simultaneious eigenvalues of
this action, we can conclude that QC(M) is generated by functions of the form
ea1x

1+a2x
2
p(x1, x2) where p is polynomial and (a1, a2) ∈ C

2. With a bit of
additional work, one can classify the possible solution spaces Q up to linear
equivalence and show they are linearly equivalent to Qν

i (·) for some value of the
parameters; we refer to [6] for further details. By Theorem 2, dim{Q(Mν

i (·))} ≤ 3.
A direct computation shows that Qν

i (·) ⊂ Q(Mν
i (·)) and thus equality holds for

dimensional reasons. Finally, a direct computation determines ρ(Mν
i (·)) and shows

that the Ricci tensor has rank ν. ��
We have the following relations amongst the models Mν

i (·).
Theorem 4 The following are affine maps.

1. Φ0
1 (x

1, x2) := (ex
1
, x2ex

1
) embeds M0

1 in M0
0.

2. Φ0
2 (x

1, x2) := (ex
2
, e−x1

) embeds M0
2 in M0

0.

3. Φ0
3 (x

1, x2) := (x1, ex
2
) embeds M0

3 in M0
0.

4. Φ0
4 (x

1, x2) := (x2, (x2)2 + 2x1) defines M0
4 ≈M0

0.

5. Φ0
5 (x

1, x2) := (ex
1

cos(x2), ex
1

sin(x2)) immerses M0
5 in M0

0.

6. Φ1
1 (x

1, x2) := (e−x1
, x2) embeds M1

1 in M1
4(0).

7. Φ1
2 (x

1, x2) := (e−x1
, x2) embeds M1

2(c1) in M1
3(c1).
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8. Φ1
3 (x

1, x2) := (x1e−x2
,−x2) defines M1

3(c1) ≈M1
3(−c1 − 1).

9. Φ1
4 (c)(x

1, x2) := (x1 + 1
2c(x

2)2, x2) defines M1
4(c) ≈M1

4(0).
10. Φ1

5 (x
1, x2) := (x1,−x2) is an isomorphism M1

5(c) ≈M1
5(−c).

Proof By Lemma 1, the Type A models Mν
i (·) are strongly projectively flat. Thus,

by Theorem 2, affine morphisms between them correspond to local diffeomorphisms
which intertwine their corresponding spaces Q. One verifies immediately that this
condition is satisfied by the maps Φ

j

i (·) of the Theorem and the desired result now
holds. ��

We can draw the following consequence.

Lemma 2 Let M be a Type A flat geometry. Then M is geodesically complete if
and only if M is linearly equivalent to M0

0 or to M0
4.

Proof By Theorem 3, M is linearly equivalent to M0
i for some i. M0

1, M0
2, and

M0
3 have affine embeddings into M0

0 which are not surjective; they are therefore
not geodesically complete. M0

4 is affine diffeomorphic to the flat affine plane M0
0

and thus is geodesically complete. M0
5 has an affine immersion into M0

0 which is
not surjective; it is not geodesically complete. ��

We use Theorem 3 to express Qν
i (·) = eg Span{1, φ1, φ2} for g linear. Let Φ =

(φ1, φ2). By Theorem 2, the unparameterized geodesics of Mν
i (·) take the form

Φ−1(a0 + a1t, b0 + b1t). This reduces the problem of finding the geodesics of
Mν

i (·) to solving a single ODE defining the reparametrization. This fact informed
our subsequent investigations; we did not simply proceed mechanically to solve
the ODEs in question. We say a Type A model M can be geodesically completed if
there is an affine embedding ofM in a homogeneous geodesically complete surface;
otherwise M is said to be essentially geodesically incomplete. The following is a
useful criteria.

Lemma 3 Let M be a Type A model. Assume there exists a geodesic σ(t) for t ∈
(t−, t+) so that limt→τ |ρ(σ̇ (t), ∂xi )| = ∞ where τ = t+ <∞ or τ = t− > −∞.
Then M is essentially geodesically incomplete.

Proof Suppose to the contrary that there exists an affine surface M1 which is
locally modeled on M. Copy a small piece of the given geodesic σ into M1 to
define a geodesic σ1 in M1. We may assume without loss of generality that M1
is simply connected and extend the vector field ∂xi to a globally defined affine
Killing vector field Xi on M1. Results of [2] show that M1 is real analytic. Thus
the function f (t) := ρM(σ̇ , ∂xi )(t) defined for t ∈ (t−, t+) extends to a real
analytic function f1(t) := ρM1(σ̇1(t),Xi(t)) for t ∈ R. This is not possible since
by assumption f (t) blows up at a finite value. ��

If the Ricci tensor of a TypeA modelM has rank 1, thenM is linearly equivalent
to M1

i (·) for some value of the parameters. Thus it suffices to study these examples.
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Lemma 4 M1
1, M1

2(c1) for c1 �= − 1
2 , M1

3(c1) for c1 �= − 1
2 , M1

4(c) for any c, and
M1

5(c) for c �= 0 are essentially geodesically incomplete. M1
3(− 1

2 ) is geodesically
complete. M1

2(− 1
2 ) and M1

5(0) can be geodesically completed.

Proof A direct computation shows

ρM1
1
= dx2 ⊗ dx2, ρM1

2(c1)
= (c1 + c2

1)dx
2 ⊗ dx2,

ρM1
3(c1)

= (c1 + c2
1)dx

2 ⊗ dx2, ρM1
4(c)

= dx2 ⊗ dx2,

ρM1
5(c)

= (1+ c2)dx2 ⊗ dx2.

We apply the criteria of Lemma 3 with ∂xi = ∂x2 to study these geometries.

Case 1 Let M = M1
1. A direct computation shows σ(t) = (0, 1

2 log(t)) is
a geodesic for t ∈ (0,∞). Since limt→0 |ρ(σ̇ , ∂x2)| = ∞, M1

1 is essentially
geodesically incomplete.

Case 2 Let M = M1
2(c1) or M = M1

3(c1) for c1 �= − 1
2 . A direct com-

putation shows σ(t) := (0, 1
1+2c log(t)) is a geodesic for t ∈ (0,∞). Since

limt→0 |ρ(σ̇ , ∂x2)| = ∞, M is essentially geodesically incomplete.

Case 3 Let M =M1
3(− 1

2 ). Suppose b �= 0. Let σa,b(t) = ( a
b
(ebt − 1), bt). Then

σ is a geodesic with σ(0) = (0, 0) and σ̇ (0) = (a, b). If b = 0, let σa,b(t) =
(at, 0). Then σ is a geodesic with σ(0) = (0, 0) and σ̇ (0) = (a, 0). Thus every
geodesic starting at (0, 0) extends for infinite time. Since M is homogeneous,M is
geodesically complete.

Case 4 Let M = M1
2(− 1

2 ). A direct computation shows σ(t) := (− log(t), 0)
is a geodesic for t ∈ (0,∞). This geodesic can not be continued to t = 0 and
thus M1

2(− 1
2 ) is geodesically incomplete. By Theorem 4, M1

2(− 1
2 ) has an affine

embedding in M1
3(− 1

2 ). Thus by Case 3, M1
2(− 1

2 ) can be geodesically completed.

Case 5 Let M =M1
4(c). Let σ(t) := (− c

8 log(t)2, 1
2 log(t)). A direct computation

shows this is a geodesic for t ∈ (0,∞). Since limt→0 |ρ(σ̇ , ∂x2)| = ∞, M is
essentially geodesically incomplete.

Case 6 Let M = M1
5(c). Suppose that c �= 0. A direct computation shows

σ(t) = (log(cos( log(t)
2c )) + log(t)

2 ,
log(t)

2c ) is a geodesic for t ∈ (0,∞). Since
limt→0 |ρ(σ̇ , ∂x2)| = ∞, M is essentially geodesically incomplete.

Case 7 If c = 0, the curve σ(t) = (log(cos(t)), t) is a geodesic for M1
5(c) which

does not extend to R. Thus M1
5(0) is geodesically incomplete. We complete the

proof by showing M1
5(0) can be geodesically completed. Let N = (R2,∇) be

the affine surface where the only non-zero Christoffel symbol of ∇ is Γ22
1 = x1.

We compute {cos(x2), sin(x2), x1)} ⊂ Q(N ) and thus by Theorem 2 and for
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dimensional reasons we have Q is spanned by these elements and N is strongly
projectively flat. Let

Ψa,b,c,d(x
1, x2) := (eax1 + b cos(x2)+ c sin(x2), x2 + d) .

Then Ψ ∗
a,b,c,dQ(N ) = Q(N ) so Ψa,b,c,d is an affine diffeomorphism of N . Since

these diffeomorphisms act transitively on N , N is homogeneous. If b �= 0, let
σa,b(t) := ( a

b
sin(bt), bt); this is a geodesic with σa,b(0) = (0, 0) and σ̇a,b(0) =

(a, b). If b = 0, let σa,0(t) := (at, 0); this is a geodesic with σa,0(0) = (0, 0)
and σ̇a,0(0) = (a, 0). Thus N is geodesically complete at (0, 0) and, since N is

homogeneous,N is geodesically complete. The map Φ(x1, x2) = (ex
1
, x2) embeds

R
2 in R

2 and satisfiesΦ∗Q(N ) = Q(M1
5(0)). Thus Φ is an affine embedding of

M1
5(0) in N so N provides the desired geodesic completion of M1

5(0). ��
We begin our discussion of the geometries where the Ricci tensor has rank 2 with

the following result.

Lemma 5 M2
1(a1, a2), M2

2(b1, b2) for b1 �= −1, M2
3(c2), and M2

4(±1) are
essentially geodesically incomplete.

Proof A direct computation shows the Ricci tensor for the Type A models
M2

i (·) has rank 2. Consequently the criteria of Lemma 3 for essential geodesic
incompleteness is simply the existence of a geodesic so that limt→τ |ẋ(t)| = ∞ or
limt→τ |ẏ(t)| = ∞ for some finite value τ .

Case 1 Let M =M2
1(a1, a2). Let

σ1(t) := log(t) (1−a2,a1)
1+a1−a2

if 1+ a1 − a2 �= 0,

σ2(t) := log(t) (a2,1−a1)
1+a2−a1

if 1+ a2 − a1 �= 0.

Since (1+a2−a1)+ (1−a2+a1) = 2, at least one of these curves is well defined.
A direct computation shows such a curve is a geodesic and hence M is essentially
geodesically incomplete.

Case 2 Let M =M2
2(b1, b2) for b1 �= −1. The curve σ(t) = 1

1+b1
(log(t), 0) is a

geodesic. Consequently, M is essentially geodesically incomplete.

Case 3 Let M = M2
3(c2) or M = M2

4(±). The curve σ(t) = 1
2 (log(t), 0) is a

geodesic; consequently, M is essentially geodesically incomplete. ��
Before considering the geometry M2

2(−1, b2), we must establish a preliminary
result.

Lemma 6 Let P be a point of an affine manifold M. Let σ : [0, T ) → M be an
affine geodesic. Suppose limt→T σ (t) = P exists. Then there exists ε > 0 so that σ
can be extended to the parameter range [0, T + ε) as an affine geodesic.
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Proof Put a positive definite inner product 〈·, ·〉 on TPM to act as a reference
metric. Let Br be the ball of radius r about the origin in TPM . Since the exponential
map is a local diffeomorphism, we can use expP to identify Bε with a neighborhood
of P in M for some small ε. We use this identification to define a flat Riemannian
metric near P on M so that expP is an isometry from Bε to M . Let d(·, ·) be the
associated distance function on M . Let Br(P ) := expP (Br) = {Q : d(P,Q) ≤ r}
for r ≤ ε. Choose linear coordinates on TPM to put coordinates on Bε(P ). This
identifies TQM with TPM and extends 〈·, ·〉 to TQM for Q ∈ Bε(P ). Compactness
shows that there exists 0 < τ < 1

2ε so that if Q ∈ Bε
2
(P ) and if ξ ∈ TQM

satisfies ‖ξ‖ = 1, then the geodesic σQ,ξ (t) := expQ(tξ) exists for t ∈ [0, τ ]
and belongs to Bε(P ). By continuity, we can choose 0 < δ < 1

4τ so that if
Q ∈ Bδ(P ) and ‖ξ‖ = 1, then d(σQ,ξ (τ ), σP,ξ (τ )) <

τ
2 . Since d(P, σP,ξ (τ )) = τ ,

this implies d(P, σQ,ξ (τ )) ≥ 1
2τ . We conclude from these estimates that any non-

trivial geodesic which begins in Bδ(P ) continues to exist at least until it exits from
B 1

2 τ
(P ) and that it does in fact exit from B 1

2 τ
(P ). We assumed limt→T σ (t) = P .

Choose T0 < T so σ(T0, T ) ⊂ Bδ(P ). Then σ continues to exist until σ exits from
B 1

2 τ
(P ). Furthermore, σ(T ) = P and σ extends to a geodesic defined on (T0, T +ε)

for some ε. ��
We complete our discussion with the following result.

Lemma 7 M2
2(−1, b2) is geodesically complete.

Proof Let M = M2
2(−1, b2). Suppose, to the contrary, that M is geodesically

incomplete. Let σ be a geodesic in M which is defined on a parameter range (t0, t1)

where t1 < ∞ (resp. −∞ < t0) which can not be extended to a parameter range
(t0, t1 + ε) (resp. t0 − ε) for any ε > 0. By Lemma 6, this implies that limt↓t0 σ(t)

(resp. limt↑t1 σ(t)) does not exist. We argue for a contradiction. The non-zero
Christoffel symbols of M are Γ12

1 = b2, Γ12
2 = 1, and Γ22

1 = − 1
2 (1 + b2

2).
We work in the tangent bundle and introduce variables u1(t) := ẋ1(t) and u2(t) :=
ẋ2(t). This yields the geodesic equations

u̇1 + 2b2u
1u2 − 1

2 (1+ b2
2)u

2u2 = 0 and u̇2 + 2u1u2 = 0 . (2)

If u2(s) = 0 for any s ∈ (t0, t1), then u̇1(s) = 0 and u̇2(s) = 0. Consequently,
u1(t) = u1(s) and u2(t) = u2(s) solves this ODE and (u1, u2) is constant on the
interval (t0, t1). We may therefore assume u2 does not change sign on the interval
(t0, t1). We want initial conditions u1(0) = a and u2(0) = b. Let τ be an unknown
function with τ (0) = 1. Set

u1(t) := e−b2τ (t)
(

1
2

(−2ab2 + bb2
2 + b

)
sin(τ (t))+ a cos(τ (t))

)
,

u2(t) := e−b2τ (t)((bb2 − 2a) sin(τ (t))+ b cos(τ (t)))
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We then have u1(0) = a and u2(0) = b. Equation (2) then gives rise to a single
ODE to be satisfied:

τ̇ (t) = e−b2τ (t)(−2a sin(τ (t))+ bb2 sin(τ (t))+ b cos(τ (t)))

or equivalently τ̇ (t) = u2(τ (t)). Since u2 does not change sign, τ (t) is restricted
to a parameter interval of length at most π . Thus u1 and u2 are bounded. If u2 is
positive (resp negative), then τ̇ (t) is positive (resp. negative) and bounded so τ (t)

is monotonically increasing (resp. decreasing) and bounded on the interval (t0, t1).
Thus limt↓t0 τ (t) and limt↑t1 τ (t) exist so limt↓t0 σ̇ (t) and limt↑t1 σ̇ (t) exist. We
integrate to conclude limt↓t0 σ̇ (t) and limt↑t1 σ̇ (t) exist which provides the desired
contradiction and completes the proof. We remark that work of Bromberg and
Medina [1] can also be used to establish this result. ��

We summarize our results as follows; this result for non-flat connections was
derived previously by D’Ascanio et al. [4] using an entirely different approach and
the flat setting follows from Theorem 4.

Theorem 5 Let M be a Type A affine surface.

1. Suppose M is flat. Then M is geodesically complete if and only if M is linearly
equivalent to M0

0 or to M0
4.

2. Suppose the Ricci tensor of M has rank 1. Then M is geodesically complete if
and only if M is linearly equivalent to M1

3(− 1
2 ). If M is linearly equivalent to

M1
5(0), then M is geodesically incomplete but has a geodesic completion N .

If M is linearly equivalent to M1
2(− 1

2 ), then M is geodesically incomplete but
has the geodesic completion M1

3(− 1
2 ). Otherwise M is essentially geodesically

incomplete.
3. Suppose that the Ricci tensor has rank 2. If M is linearly equivalent to

M1
2(−1, b2), then M is geodesically complete. Otherwise M is essentially

geodesically incomplete.

The geodesic structures of these models is pictured below
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