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Introduction

This Study Guide has been developed exclusively with the Caribbean
Examinations Council {CXC®) to be used as an additional resource by
candidates, both in and out of school, following the Caribbean Advanced
Proficiency Examination (CAPE®) programme.

It has been prepared by a team with expertise in the CAPE® syllabus,
teaching and examination. The contents are designed to support learning

by providing tools to help you achieve your best in CAPE® Pure Mathematics
and the features included make it easier for you to master the key concepts
and requirements of the syllabus. Do remember to refer to your syllabus

for full guidance on the course requirements and examination format!

Inside this Study Guide is an interactive CD which includes electronic
activities to assist you in developing good examination techniques:

e On Your Marks activities provide sample examination-style short
answer and essay type questions, with example candidate answers
and feedback from an examiner to show where answers could be
improved. These activities will build your understanding, skill level
and confidence in answering examination questions.

o Test Yourself activities are specifically designed to provide experience
of multiple-choice examination questions and helpful feedback will
refer you to sections inside the study guide so that you can revise
problem areas.

e Answers are included on the CD for exercises and practice questions,
so that you can check your own work as you proceed.

This unique combination of focused syllabus content and interactive
examination practice will provide you with invaluable support to help you
reach your full potential in CAPE® Pure Mathematics.



1.1 Complex numbers

Learning outcomes

B To define imaginary numbers
m To define complex numbers

You need to know

m How to solve a quadratic
equation

m Therelationship between the
coefficients of a quadratic
equation and the roots of the
equation

m How to factorise a cubic
expression

Imaginary numbers

When we try to solve the equation x2 + 1 = 0, we get x> = —1 giving
X =xv—1

Up to this point, we have left it at the statement that there is no real
number whose square is —1, so the equation has no real roots. To work
with equations whose roots are not real, we need to introduce another
type of number.

If we introduce the symbol i to represent v'—1, we can say that the equation
x? + 1 = 0 has two roots, i and —1i.
i is called an imaginary number, where i = vV—1
It follows that i2 = (y—1)*= —1

This is consistent with what we know about the sum of the roots and the
product of the roots of a quadratic equation: for the equation

xX+1 =0, f%= 0and%= 1; and the sum of the roots isi + [—i] = 0
and the product of the roots is i X (—i) = —i?= —(=1) =1

Any negative number has two square roots, each of which is an
imaginary number and can be expressed in terms of i.

For example, the square roots of —4 are =v—4 = £/4 X V=1 = £2i
and the square roots of —49 are /=49 = £,/49 X V-1 = +7i

Imaginary numbers can be added, subtracted, multiplied and divided.

For example, 2i+ 7i=9i

i3 —i=i[V3 - 1)
2iX7i=14i2=14 X -1 = —-14
10i +5i=2
Powers of i can be simplified.
For example, i = (i?) Xi= —i,i*= {22 = (-1 =1 and

Complex numbers
Consider the quadratic equation x> — 2x + 5 =0

The solution of this equation is

2+V4—20 2+y—16 2=+4/—1

The two roots of the equation are therefore 1 + 2i and 1 — 2i

120

These numbers are the sum of a real number and an imaginary number.
Numbers of this form are called complex numbers.

A complex number is of the form a + ib where a and b are real.
a is called the real part and ib is called the imaginary part.



Section 1 Complex numbers and calculus 2

Like much mathematics that is devised to deal with a theoretical
problem, complex numbers have many applications in real life. The
main application of complex numbers is in electronics, where they are
used to understand and analyse alternating signals. Mathematicians use
i to denote v—1 but engineers use j to denote v— 1 because i is used for
current in electronics.

Conjugate complex numbers

The roots of the equation x> — 2x + 5 = 0 were found above to be 1 + 2i
and 1 — 2i

These two complex numbers are called conjugate complex numbers.

Any two complex numbers of the form a + ib and a — ib are
conjugate complex numbers and each is the conjugate of the other.

We use z to represent a complex number, so when z = a + ib, its
conjugate, denoted by z* (or by Z), is given by z* = a — ib

The solution of the general quadratic equation ax®> + bx + ¢ = 0 is given by

i —b = Vb — 4ac _—_b+i\f_4ac—fi
h 2a 7 T 2a
- / 3
Using p = f and g = L%—b, these roots can be expressed as p = ig

Therefore when a quadratic equation with real coefficients has
complex roots, those roots are a pair of conjugate complex numbers.

We know, from Unit 1, that the left-hand side of a cubic equation with
real coefficients can be factorised to give one linear factor and one
quadratic factor. Therefore a cubic equation will always have one real root
and when the other roots are not real, they will be a pair of conjugate
complex numbers.

In fact, any polynomial equation with real coefficients can be
expressed as a product of quadratic factors and possibly linear factors.
Therefore any complex roots will be pairs of conjugate
complex numbers.

Example
Find all the roots of the equation (x2 — 3x + 2)[x2+x + 2) =0

(x2 = 3x + 2)(x>+ x4+ 2) =[x — 2)x — 1){x* +x + 2]

-1+y1-8 1, V7
2 - R R L S T LA
The roots of (x> + x + 2) = 0 are ) )
2 _ ) “ 17 1 VT
the roots of (x* — 3x + 2)x? +x+ 2| =0 are 1, 2, 5~ i 2+12
Exercise 1.1
1 Simplify: 2 Find all the roots of each equation.
(a) i° (b) i° (c) i (a) x2+5x+8=0
(d) i*n (e) isn+1 (f) 5ix 2i (b)x3+2x—3=0

(g) 8i+ 2i




1.2  Operations on complex numbers

Learning outcomes Equality of complex numbers
m Toadd, subtract, multiply and Two complex numbers, a + ib and ¢ + id are equal if and only if the real
divide complex numbers parts are equal and the imaginary parts are equal,

ie. at+ib=c+id & a=candb=d

You needto know . .
: Addition and subtraction of complex humbers

The real parts and the imaginary parts are added and subtracted
The meaning of conjugate separately.

complex numbers

The form of a complex number

m The relationship between the For example, (2 + 3i) + (5 — 2i) = (2 + 5) + (31 — 2i)

coefficients of a quadratic =7 +i
equation and the sum and
product of its roots and (2 + 3i) — (5 — 2i) = (2 — 5) + (3i — (—2i))

-3+ 5i

Multiplication of complex numbers

Two complex numbers are multiplied together in the same way that we
expand (a + b)(c + d)

For example, (2 + 3i)(5 — 2i) = 10 — 4i + 15i — 6{i?)

10+ 11li+6
16 + 111

and (2 + 3i)(2 — 3i) = 4 — 6i + 6i — 9(i2)

=4+9

=13
The fact that (2 + 3i){2 — 3i) = 13 is a particular case of the fact that the
product of a pair of conjugate complex numbers is a real number.

This is because (a +ib){a — ib) = a®> — (ib)?> = a® + b?

Division of complex numbers

We can divide one complex number by another complex number by
multiplying the numerator and the denominator by the conjugate of the
denominator. This gives a real denominator.

2+3i (24 3i)(5 + 2i)
5—2i (5—2i)[5+ 2i)

For example,

10 + 19i + 6i)?
- 25 + 4
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Example
Find the values of a and b wherez = a + ib such that 2z + 3z* =5 — 2i

2z + 3z* = 2la + ib) + 3la — ib) = 5a — ib
22+ 32*=5-2 & 5a—ib=5-2i
Equating real and imaginary parts gives

S5a=5 = a=1
and -b=-2 = b=2

Example

One root of a quadratic equation with real coefficients is 3 — i.
Find the equation.

Let the equation be ax> + bx + ¢ =0
If one root is 3 — i, the other root is its conjugate, 3 + i

The sum of the rootsis (3 —i) + (3 +1i] =6

a

The product of the roots is (3 —i)(3 +i)=9 + 1 =10
€ =10
a

The equationis x> — 6x +10=10

Example
Find the values of x and y for which (3 — 2i}{x + iy) = 16 + 11i

(3 — 2i){x + iy) = 3x + 2y — 2ix + 3iy
(3 —2i)lx +iv) = 16 + 11i & 3x + 2y — 2ix + 3iy = 16 + 11i
& 3x+2y=16 (1] and —-2x+ 3y =11 [2]
Equating real and imaginary parts

Solving [1] and [2] simultaneously gives

2x[1] + 3% [2] 13y = 65
= y=5
from [1] x=12

Exercise 1.2

1 Find, in the form a + ib 3 Find the values of x and v for which
(a) (2 — 4i)(—1 + 2i) (b) %Ii (@) (x+iy)*=5-12i
3 4+ 3i X +iy .
@Dz 3t1+3 (B g =21
2 One root of a quadratic equation with real 4 Find the values of a and b where z = a + ib such

coefficients is 3 + 5i. Find the equation. that z(2 + i) + 2z* = 4 — 5i




1.3  The square roots of a complex number

Learning outcomes The square roots of a complex number
m To find the square roots of a If x + iy is a square root of the complex number a + ib, then
complex number (x+ iy =a+ib

Expanding the left-hand side gives x> — y* + 2ixy = a + ib

You need to know Equating real and imaginary parts gives a pair of simultaneous equations
which we can solve to find values for x and y.

m How to multiply complex

numbers The equations are quadratic, so there will be two values for x and y.

m Therelationship between the Therefore a complex number has two square roots.
roots and coefficients of a

quadratic equation Example

Find the square roots of 3 — 4i

If x + iy is a square root of 3 — 4i, then (x + iy)? = 3 — 4i

= x!—y?+2xy =3 —4i
Equating real and imaginary parts gives
-3 =3 [1]
2xy = —4 [2]
- _2
2] = y=-2 §

Blin[l] = x*-2%=3

= x*—-3x2-4=0

= [?-4)x2+1)=0

x is a real number, so x2 = —1 does not give a valid value for x
xX*=4 = x=20r-2

from [3] y=—lorl

the square roots of 3 — diare2 —iand -2 +1i

Note that this example shows that if z is one square root of a complex
number, —z is the other square root.

Exercise 1.3a

1 Find the square roots of
(a) — 2i (b) —8 — 6i () —1+2iV2

2 4+ 3iis one square root ofa + ib
(a) Find the values of a and b.
(b) Find the other square root.
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Quadratic equations with complex coefficients

A quadratic equation such as z2 + (6 + i)z + 10 = 0 can be solved
using the formula, which leads to finding the square root of a complex
number.

For example, to solve z*> + (6 +i]Jz+10=0

—(6+1i) =6 +1i)F — 40
ZzZ= )

e e P (s oV ol B
= z= )

If a +ib =y —5 + 12i, then squaring both sides and equating real and
imaginary parts gives

ar—p?r =-5 [1]
and 2ab =12 [2]
From [2] b :2 3]
Blin[l]=5 a*-3%=-5
= a* +5a>2—36 =0

= (@ +9)a>-4]=0
a=2and b=3 ora=-2 and b= -3
ie. v—=5+12i=2+3i

—6—i=*(2+ 3i)
Hence z = 3

= z=—-24iorz=-—-4-2i

Notice that the roots of this equation are not a pair of conjugate complex
numbers. Roots are only pairs of conjugate complex numbers when a
quadratic equation with real coefficients has complex roots.

We can check the answer to the example above using the sum and
product of the roots:

a—l—ﬁz[—2—1—'1]—1—[—4—21]:—6—1:—%

and aB={-2+i)-4-2i)=10= %

Exercise 1.3b

1 (a) Find the complex numbers u = x + iy, x, y € R, where
u? = —16 + 30i

(b) Hence solve for z the quadratic equation
zZ2+(1+iz+(4—-7i)=0

2 Solve for z the quadratic equation z2 — (3 — iJz + (14 — 5i) = 0

@ Exam tip

Note that it is very easy to make
arithmetic mistakes when working
with complex numbers, so check
your working.




1.4  The Argand diagram

Learning outcomes

The Argand diagram

m Torepresent a complex number A complex number, a + ib, can be represented on a diagram by using the

on an Argand diagram

ordered pair {a, b) to represent a point A on a pair of perpendicular axes,
as shown on the diagram.

You needto know

Then the vector OA represents the complex number a + ib

m Thedifference between a
displacement vector and a
position vector

m How to represent the sum
and difference of vectors
geometrically

i,V.i\

o Ala,b)
This is called the —» :
imaginary axis |

0 fFa %

This is called the real axis

This is called an Argand diagram.

Any complex number x + iy can be represented by OP where P is the
point (x, ).

The complex number 5 + 3i can be represented by OA where A is the
point (5, 3].

Any other vector with the same length and direction can also be used to
represent 5 + 3i, for example DE or BC.

iva
E(-1, 4)

A(5, 3)

C(9,2)

B(4, —1)

Therefore a complex number can be represented by a displacement
vector. It can also be represented by a position vector, when it can also be
represented by the point A.
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When z, = 5 + 3i, the vector representing z; must be marked with an

arrow to show its direction.
ivA
34
2

14 Zy

A(5, 3)

Example

(a) Ilustrate on an Argand diagram the points A and B representing
the complex numbers z, = 3 — 2iand z, = —1 + 2i, respectively.

(b) On the same diagram illustrate z, + z, and interpret the result in
terms of the vectors representing z; and z,.

(a) iva
3
B-12 |
Z
3 1

Z) +22 C[Z, 0!

Y

X
2 L 1 p) 3 4 5
_l’ Zl Zl
—21 Al3, —2)

() z, + 2z, =(3—2i) + (-1 +2i) =2
This is represented by the point C and the vector OC.
OC = OA + AC and AC represents z,.

Therefore the vector representing z, + z, is represented by the sum
of the vectors representing z, and z,.

Exercise 1.4

1 Given z = 3 — 2i, represent z on an Argand diagram.
On the same diagram represent z*.
2 Find the square roots of z = 2i

Represent z and its two square roots on an Argand diagram.




1.5  Modulus and argument

Learning outcomes The modulus of a complex number

B Todefine the modilis and The point Afa + ib] can be located using the distance, r, of A from the
argument of a complex number origin O and the angle, 6, that OA makes with the positive x-axis.

B Tointroduce the polar-argument iv 4
form of a complex number Ala, b)

You needto know

How to represent a complex 0 %
number on an Argand diagram

The length of OA, r, is called the modulus of a + ib, which is written as
|a + ib|

|a + ib| =r=vVa’ + b?

For example, the modulus of 3 — 4iis V32 + 42 =5

The argument of a complex number

The angle 6 is called the argument of a + ib and is written as arg(a + ib)
arg(a + ib) = @ where tan 6 = %:- and —w<0=sm
To find the argument of a complex number, draw it on an Argand diagram

so you can see which quadrant it is in.

For example, the complex numbers 4 + 3i, —4 + 3i, —4 — 3iand 4 — 3i
are drawn in the diagrams below.
iy
[_41 3:'

v

=
et

[_41 _3)

4 + 3iisin the first quadrant, so tan § = g = 0= 0.644rad

—4 + 3iis in the second quadrant, so

tan @ = —% = f=a— tan‘lgz 2.50rad

—4 — 3iis in the third quadrant, so 6 is negative and obtuse.

Therefore tan 6 = % = f=—7+ tan ! g = —2.50rad

4 — 3iis in the fourth quadrant, so 6 is negative and acute.
Therefore tan§ = —g = 0= —0.644rad
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The polar-argument form of a complex humber

iva
Plx, y)

0 X ;:;(

In the diagram above, x + iy is any complex number and we can see that

x =rcosf and y = rsin @

Therefore x + iy can be written as rcos @ + irsin

Hence x -+ iy = r(cos 6 + isin 6)

r(cos @ + isin ) is called the polar-argument form of a complex number.

Note that the '+’ sign is important: 3(cos § — isin ) is not in polar-

argument form but can be converted as —sin 3 = sin (

Cos 3 = 08 (— 17)

3

3(cos 5 — isin §) = 3(cos (- 5) + isin (—F))

”) and

It is easy to convert between the two forms, as the following worked
examples show.

Example

Express —1 + i in the form r(cos 6 + isin 6)

—1+4+i= r=v1+1=1+2,and from the diagram, 6 =

v 4

Therefore —1 +i=v2 (COSSTTr‘FiSi_n%) . \ ;
Example
Express S(Cos (— %) + isin (— 1—6':)) in the form x + iy
cos (—g) = ? and sin (— g) = —%
S(COS (—%) + isin (—% ) = %E__ %

Exercise 1.5

1

Find the modulus and argument of each of the
following complex numbers.

(a) 1 -1 (b) —4

(c) 24 d) —3 + 4i

(e) il —1)

Express each of the following complex numbers in
the form x + iy

(a) Z(CDS T 1 isin E)

3 3 (b) cosw +isina

Bk R
(c) S(COST —+ isin ?)




1.6

complex numbers

Learning outcomes

To show a graphical
representation of sums,
differences, products and
quotients of complex numbers
on an Argand diagram

You needto know

How to represent a complex
number on an Argand diagram

The meaning of the modulus and
argument of a complex number

The polar-argument form of a
complex number

How to add and subtract vectors

The trigonometric compound
angle formulae

The sum of two complex numbers

The complex numbers z, and z, are
represented on the Argand diagram
by the vectors OA and OB respectively.

iy A

Using vector addition we can see that
z, + z, is represented by OC, where OC
is a diagonal of the parallelogram
OACB.

Graphical representation of operations on

The difference of two complex numbers

Using the same notation as above and
using vector subtraction, we can see
that z; — z, is represented by BA,
where BA is the other diagonal

of the parallelogram OACB.

iva

Zy

Y

The product of two complex numbers

When z, =r{cos 8, +isin6,) and z, = ry(cos 6, + isin 6,),

then z,z, = rr,{cos 6, + isin 6,)(cos 6, + isin 6,)

= rI,|cos 6, cos B, — sin @, sin 6, + i(sin O, cos 6, + cos 6, sin 6,))

=rr;(cos (0, + 6, +isin (6, + 6,))

Therefore |z,2,| = |z,|%|2,| and arg(z,z,) = argz, + argz,

Therefore when z,z, is represented on an Argand diagram, we can see

that when z, is multiplied by z,, it is enlarged by a scale factor |z,| and

rotated by an angle 6,.

ly h

Not drawn to scale
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The quotient of two complex numbers

When z, = r,{cos 6, + isin ;) and z, = r,(cos 8, + isin 6,), then

z, _ rifcos 6, + isin 6]
Zy  I,(cos 0, + isin 6,)

r, _ |cos @, + isin 6))(cos 8, — isin 8,)
1, [cos @, + isin 6,)[cos 6, — isin 6,)

Ty 4 (cos 6, cos 6, + sin 6, sin 6,) + i(sin 6, cos #, — cos #, sin 6,)
Iy cos? A, + sin? @,

r, . cos|(6, — 6,) + isin(6;, — 6,)
— X
Iy 1

= r—l[cos (6, — 6,) + isin (6, — 92]]

Iy
z |z, Z,
Therefore |=2| = and ar (—) = argz, — argz iV 4
¥4 |2, & Zy EZi B ¥4 Not drawn to scale
z
Therefore when z—l is represented on an Argand diagram, we can see that zy z;
2
when z, is divided by z,, it is enlarged by a scale factor and rotated )
Zy
by an angle —#,. b1
. 0 6, — 6, X
Z12y

Example
Find the modulus and argument of (1 + i){1 — iv3)

|1+ 1]

V2 and arg(l +i) = %;

[1 —i/3| =2 and arg(l — iV3) = —%

[(1+i)1 —-i/3) =|1+1i] |[1-1/3]=V2Xx2=2/2

and arg(1 + i){1 — ivV3) = arg(1 + i) + arg(l — W3) =T - T = -
4 3 12
Exercise 1.6
1 Given thatz, = =2 + 2iV3 and 2z, = 2 — 2i, find the modulus

z , z
and argument of Z—l and hence illustrate z,, z, and Z—l on an
2
Argand diagram.

Using z = r(cos 6 + isin 0], prove that z2 = r2{cos 26 + isin 26}
Hence find the two square toots of V3 — i

Givenz = 1 + 1,

(a) Express z in polar-argument form.

(b) Represent z, iz and é on an Argand diagram.

(c) The points A, B and C represent z, iz and é respectively.

Find the complex number represented by BC in the form a + ib




1.7 De Moivre’s theorem

Learning outcomes

m Tostate and prove De Moivre’s

theorem
To use De Moivre’s theorem

To introduce the exponential
form of a complex number

You needto know

m The method of proof by
induction

The meaning of z

The properties of sin #and cos 6

The compound angle and
Pythagorean trig identities

Didyou know?

Abraham De Moivre (1667-1754)
was born in France, but moved
to England because of religious

intolerance. He was one of the many

mathematicians who contributed
to the huge advances made in the

study of mathematics of that time.

He is remembered now mainly
because of his theorem. However,

he also contributed a great deal to
the study of analytic geometry and

probability.

De Moivre’s theorem
De Moivre's theorem states that
(cos @ + isin @) = cosn@ + isinn@ for all integral values of n.
De Moivre's theorem is important because it links complex numbers and

trigonometry.

Proof by induction of De Moivre’s theorem

(To remind yourself of this method of proof, go to Unit 1, Topic 1.6.)

[cos 6 + isin @) = cos® § — sin* 6 + 2isinHcos 6

cos 260 + 1sin20
(cos @ + isin 8)" = cosn® + isinn# whenn =2
Assume that (cos # + isin 8] = cosnf + isinnf whenn =k,
ie. [cos @ + isin 6} = cosk# + isinke

then (cos® + isin@}<+t!

= (coskf + isink®)(cos § + isin 6)
= cos kfcos 0 — sink@fsin 0 + i[sinkfcos 8 + cos k@ sin 6)

= cos [k + 1)0 + isin(k + 1]6

Therefore if De Moivre’s theorem is true when n = k it is also true when
n=k+1

We have shown that De Moivre’s theorem is true when n = 2 so it is also
true whenn = 3

It follows that De Moivre’s theorem is true for all positive integer values of n.

Now consider (cos 6 + isin 8]~ where n is a positive integer.
(cos @+ isin 6)™™
= {(cos # + isin g2} ~!

= (cosnf + isinng) !

_ 1
" cosnf + isinn#

Using the result above

(cosn® — isinné)
(cosn® + isinn6){cosnf — isinné)

cos (—n6) + isin(—n#) . .
- g ey cosn®@ = cos(—n6) and —sinnf = sin(—no)

cos’A + silfA =1

cos [—n#) + isin(—n¥)
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i.e. (cos @ + isin )" = cos{—n#h) + isin (—n6)

Therefore De Moivre’s theorem is true for all integer values of n, positive
and negative.

Example
Use De Moivre’s theorem to find {1 + iV3)° in the form a + ib

First express 1 + iy/3 in polar-argument form:

[1 +iY3| =2 and arg(l + iV3 ]_E

= 1 +i/3 —2((:0@—%—15111%)

(1+i/3)° = 2’({:05——1— isin 3)5

3
_ 5w 5w
32(605 3 + isin 3)
- E)
= 32(2 )
=16 — 16iV3

Example

When z = % + i% use De Moivre’s theorem to show that z3 + Zlg

Y
is real and find its value.

First express z in polar-argument form:
z= < =& 1L
V2 V2

= (cos 3 + 1sin 4)

A (cos % + isin %)3

= (CO‘; %TW + isin STW) De Moivre’s theorem
and %zz“”—(coszl-l—mm )
= Cos (— STTF) + isin (— 37) De Moivre’s theorem
z3+%:(coq37ﬂ-+1qm ( +1q ( STW))
- 3@ ] _ 3_«]
—(coq 2 +1‘;m ( isin a
= 2.cos STW which is real
- 2% (— L)
)
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Example
Given that z = cos 0 + isin 0, show that
z+L=12c0s0 and z — L = 2ising

z z

From De Moivre's theorem,
z7! = cos|—6) + isin(—#6)
= cosf —isinf

z+%= (cos 8 + isin 6] + (cos 6 — isin 6]

= 2coséd

and z—%: (cos @ + isin @) — (cos @ — isin 6)

= 2isin #

Notice that when z = cos 6 + isin6,

%zz‘l = cos § — isin @

i.e. 1_ z*
z
The result from the example above can be extended to give
z" + zl" = 2cosnf and z" — z—ln = 2isinnéd

These results can be used to prove some trigonometric identities.

Example
Prove that cos 360 = 4cos® 6 — 3 cos 6
Starting with z = cos 8 + isin @
3
(z+l] =BA+3z+24+ L
z Fay
= (z3+%]+3(z+l) [1]
2 z
Using z = cos 6 + isin # and the result above gives
z+L=12c0s60 and 23 + l,, = 2cos 36
z z
[1] = (2cos6)® = 2cos30 + 6cosb

= 4cos?0 = cos360+ 3cos b

cos30=4cos’ — 3cos O

De Moivre's theorem can also be used to simplify expressions.
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Example

; < cos 0 — isin @
Simplify 30 — isin 30

Using %: z

1 - .
m = cos 360 + isin 360

cos#—isin 6
cos 36— isin 30

= (cos § — isin 6)(cos 36 + isin 36)

cos 30cos @ + sin 30sin 0 + i[sin36cos 6 — cos 30sin )

cos 20 +isin260

The exponential form of a complex number

Euler’s formula states that cos # + isin 0 = e’
Therefore z = r(cos 6 + isin ) can be written as z = relf
(Euler’s formula is proved in Topic 2.8.)

De Moivre's theorem can sometimes be easier to apply using the
exponential form,

-
for example when z = 2¢'%,
T3 37
then, using the laws of indices, z3 = 8le's)” = ge's
The following use of Euler’s formula gives an interesting equation that
links a combination of irrational numbers and an imaginary number to

an integer.
eim=cosw+isin7 but cosm=—1landsinT=10
Therefore ™ = —1

Exercise 1.7

1 Show that (1 + i)* is real and find its value.
2 Use De Moivre’s theorem to prove that sin 20 = 2sin 6cos #
3 Use De Moivre’s theorem to simplify (cos 26 + isin 26)(cos 8 + isin 6)

4 (a) Express 2/2 + 2iv2 in the form re*

(b) Usez2 = 22 + 2iV2 to find the two square roots of 2v2 + 2iy2
in the form re*

5 Find the value of (1 +i)® + (1 —i)®




1.8  Complex numbers and loci

Learning outcomes

m Toinvestigate the locus of a
point in the Argand diagram
defined by complex numbers

You needto know

m How to represent sums and
differences of complex numbers
on an Argand diagram

B The meaning of a line segment
and a ray

m The properties of the
perpendicular bisector of a line
segment

m How to find the points of
intersection of curves and lines

Loci

A locus [plural Ioci) is a set of points that satisfy a given condition. For
example, the locus of points that are at a fixed distance from a fixed point
is a circle.

In an Argand diagram, the point P{x + iy} can be anywhere. However, if
z = x + iy and we impose the condition |z| = 4, then OP is a fixed

length of 4 units.
iy
- _locus of P
: Plx + iy / \
't r
( 0
\

A > >
H 0 e oy X

'
\
\ K \
\\ A
. K \\
» ”
o ﬂ,

-
g s HM_,_ -

S

Therefore P is any point on a circle of radius 4 units and centre O.

Any equation of the form |z| = r defines the locus that is a
circle of radius r and centre O.

Now consider the equation |z — z;| = 4 where z, is the fixed point
Alx, + iy,).
iva
P
. z — 74
A
Z, R
0 X
i}fn i}’n
4 fr — 2, / \
. ( o st )
A +iy) 1 Al +iy) |
0 X '-\ 0 / X
\\ /
‘MH__H____/

AP =z — z,, s0 AP is a fixed length of 4 units. Therefore the locus of P is
a circle of radius 4 units and centre z;.

Any equation of the form |z — z,| = a, where a is a real constant,
defines a locus that is a circle of radius a and centre z,.
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When you need to work out the locus of a point, it is sensible to start by
drawing a diagram.

Example
Sketch on an Argand diagram the locus of points such that |z — 2i| = 3

When we compare |z — 2i] = 3 with |z —z,| =a
we can see that the locus is a circle whose centre

is the point 2i and whose radius is 3.

iv 4

w-
5 Y

Example

Describe the locus of the points on the Argand diagram given by
|z = z,| = |z — z,| where z represents the point P(x + iy],
zy=2+2 and zy =—4 — 1

In the diagram, |z —z,| = AP
|z = z,] = BP
|z—2z,|= |z —z,] = AP =BP

A point that is equidistant from two fixed points is on the perpendicular
bisector of the line segment joining the two points.

and

Therefore the required locus is the perpendicular bisector of the line
segment between 2 + 2i and —4 — i

Z —Zy

Z

7

e

LI &

This is a particular example of the general result, i.e.

any equation of the form |z —z,| = |z — z,| defines a locus that is
the perpendicular bisector of the line segment between the
points z, and z,.

Example
Describe the locus of points on the Argand diagram given by arg(z) = %

arg (z) is the angle that z makes with the positive real axis.

Therefore arg (z) describes a ray from the origin at an

angle of % to the real axis.

=

"R 2
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This is another example of a general result, i.e.

any equation of the form arg(z) = a describes a ray
from the origin at an angle « to the positive direction
of the real axis.

Intersection

To find the points of intersection of two loci, we can convert the equations
to Cartesian form. However, this is not always necessary. A diagram will
often suggest a simple solution.

Example
Find, in the form a + ib, the complex number that satisfies both |z| = 2 and arg|(z) = %

We can see from the diagram that A has a modulus of 2 and an iy 4
argument of % 2i Aarg[z! =3
Therefore A is the point Z(COS% + isin %) )
ie. 1+i/3 3 .
-2 e ' % %
—2i

Example

Find the complex numbers that satisfy the equations
|z—4|=|z+2|and |z -2 —-i| =4

Wt -4 =+
P

The locus of points that satisfies |z — 4| = |z + 2] is the
perpendicular bisector of the line between x = 4 and x = -2,
ieex=1

|z—2—-i] =4 = |z—-(2+i)]| =4

and this represents a circle, centre 2 + i and radius 4.




=

=

=

=

ie.

where |1 +iy -2 —i|] =4

To find the complex numbers that satisfy the given equations, we need
to find the points on the circle where x = 1,

| =1 KT}
1+ (y—1)?
y:— 2y — 14
y

Therefore the complex numbers are 1 + i1 + V15) and 1 + i(1 — V15)
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=4

16

=0
=115

Region of the Argand diagram

A locus can also be a set of points in a region of the Argand diagram.

iy

3

/

lz-2-i=4

8 J

p-d=l+2

For example, the set of points satisfying |z — 2 — i| < 4 lie inside the
circle |z—-2—-1i| =4

The set of points |z — 4| < |z + 2| lie to the right of the linex = 1

The set of points that satisfy both |z =2 —i| <4and |z -2 —i| =4
are contained in the shaded region bounded by the circle and the line.

Exercise 1.8

1 Sketch on an Argand diagram the locus of points for which
(@ |z] =2
() |z+2| =3

®) |z —2i| =3
d |z+2-2i =2

2 Sketch on an Argand diagram the locus of points for which

(a) argz = %-

(b) argz = -7

3 Find the complex numbers satisfied by

(a) |z| = 5and argz = —

INE

(b) |z+3—1i|] =2and |z| = |z — 2i|

4 Show on an Argand diagram the set of points for which x > 3 and

|z—-2| <4




1.9  Differentiation of exponential functions

Learning outcomes

m To differentiate exponential
functions

You needto know

What an exponential function is

The shape of the curve y = ¢*

dy dYy

& 2" e

m How to differentiate multiples,
sums, differences, products and
quotients of functions

® The meaning of

The chain rule

The meaning of stationary points

Graphs of y = a* wherea > 0

The family of curves with equation y = a* where a > 0, are exponential
curves. They are investigated in Unit 1 Topic 1.20.

VA }’='4'Y}’=_3x}’=2x

This diagram shows some members of the family. Each of these curves
has a property that can be found by drawing accurate plots and by
drawing the tangents at some points on the graph, then calculating the
gradients of these tangents:

d
the value of &y + vy is constant.

The table below gives approximate values for this constant fora = 2, 3
and 4, and the graph shows these values plotted against the value of a.

a 2 _ 3 _ 4
| d 1 1 |
d_i +y | 07 | 1 14
L syy
1.0+
0.5 1
0 T a
The differential of e*
The graph shows that there is a number between 2 and 3 for which,
dy _dy

whenyzﬂ",&+y=l, ie. y Ix
This number is e.
dy
¥ & =
and when f{x) = e¥, {'(x) = e*

Therefore when y = e* e

The function f(x) = e*is the only function that is unchanged when it is
differentiated.
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The differential of ef

efl is a composite function so we use the chain rule:

od d
When y = ef¥), &y: % X %X"i where u = flx) = y=¢"
% =e" X f'|x] = F(x)el
i.e. the differential of e is f'(x)e™)
Example
Find the derivative of
2+ 1 2.(3x— 1) £

(a) 3e* (b) et (c) x?%! (d) Sinx

d a_qd o
(a) 5. 3e" = 85 ¢ = 3¢
(b) % eirtl = gglrtl Using the result above

dy dv du

(c) x2el3*~2 ig a product so we use & tVy where u = x2

(d)

and v = el3—2

y = x%elx 2

dy ; ;
i e 2 (3x — 2) [3x —12)
= = ) (e 2) + (522
= (3x2 + 2x)elx— 2
x d _
€ is a quotient so we use Y = M with u = e¥ and
sinx dx %
v = sinx
e B
Y= Sinx
dy (sinx]{e*] — [e¥]{cosx]
dx sinlx
_ €*(sinx — cos x|
B sin?x

Exercise 1.9

1

Find the derivatives of the following functions.
(a) 5e¢ (b) e *cosx

. elx
{C) eslnx {d) m
d2 d
Given v = e*sinx show that E); - Zay +2y=0

Find the coordinates of the stationary point on the curvey = e* — x and
determine its nature.




110 Differentiation of logarithmic functions,
tangents and normals to parametric curves

Learning outcomes

To differentiate logarithmic
functions

To find the gradients of tangents
and normals to curves whose
equations are parametric

You needto know

The meaning of In x and its
relationship to e*

The differential of ¢*
The laws of logarithms

How to differentiate multiples,
sums, differences, products and
quotients of functions

The chain rule

How to differentiate parametric
equations and the meaning of
tangents and normals

The differential of Inx

We know thaty = Inx < x=¢¥

Now d e¥ = ¢, therefore dx _ & =x
dy dy

d
We also know that &y =1+ % From Unit 1 Topic 3.9
dy 1
therefore when y = Inx, s

i.e. when f{x) = Inx, f'(x) = _;lf

The differential of In f(x)

In f(x] is a composite function so we use the chain rule:

When y = In fx]), % = % X %Xl‘l where u = flx) = y = lnu
dy 1, . _ fix
&~ u X =g
i.e. the differential of Inf(x) is %{:—]]
. s dy _  9x
For example, wheny =In (x* + 1), 3= = 57

The example below shows how the laws of logarithms can be used to
simplify the differentiation of many log functions.

Example
Find g wheny = In (|
yzln(___.l}?—) =Inl —ll‘lX_llz [}—%lnx

Y

dv . 1(1)_ 1
Therefore 4= —5(}) S

Exercise 1.10a

Find the differential of each function.
1 In2x 2 Inx® 3

4 (")

In (sinx])

5 xlnvx?+1

Differentiation of parametric equations

We know (from Unit 1 Topic 3.9) that when y = f{t) and x = g|t),
where t is a parameter,

dy dy  dx

dx — dt T dt
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Equations of tangents and normals

When the equation of a curve is given parametrically, i.e. x = f(t) and
y = g|t], we can use (f(t], g(t]] as the coordinates of any point on the curve.

This means that we can find the equation of a tangent or normal to the
curve at any point on the curve.

For example, whenx = 3tandy = 1 — %, the coordinates of any point

on the curve are (St, 1-— %) and the gradient at any point on the curve is

; y _dy _dx _ 1 . 1
gwenby&:Efazﬁf;ﬁ:gF

Therefore the equation of the tangent at any point is given by
1 1 :
y—(l—?)Z?[x—St] Usingy — y; = m(x — x;)

The equation of the normal at any point can also be found: the gradient
of the normal is —3¢2 so the equation is given by

y—(l—%):—sﬁ[x—sc]

The equation of the tangent and normal at a particular point can be
found by substituting the value of ¢ at that point.

Example

The equations of a curve are x = cos # and y = # — sin 6. Find the
equation of the normal to this curve in terms of 6. Hence find the

equation of the normal at the point where 6 = %
dy _1-cosf_cosf—1 s : sin 6
il R < the gradient of the normal is T— cos

The equation of the normal is y — (0 — sin 8] = l_ng(?‘i_n‘) (x — cos 6)

When 6 = %, the equation becomes

y—(%—l):x :-yzx—!—%—l

Exercise 1.10b

1 Find, in terms of ¢, the equation of the tangent to the curve

=ty=21
X=ty=q
Hence find the equation of the tangent at the point on the curve
wheret = 2

2 Find, in terms of 6, the equation of the normal to the curve
x=2cosf,y=3sinf

Hence find the equation of the normal at the point on the curve

_m
where 6 = i




111  Implicit functions

Learning outcomes

m To describe implicit functions

m To differentiate implicit functions

You needto know

B The product rule and quotient
rule for differentiation

m Thechainrule

Implicit functions

The equation of some curves, such as y> + xy + x%y = 2, are not easy to
express in the form y = f{x|

A relationship like this is called an implicit function because y = f[x) is
implied by the equation.

Differentiation of implicit functions

The method we use to differentiate an implicit function is to differentiate
term by term with respect to x.

The differential of y with respect to x is %
To differentiate y? with respect to x, we start with gly) = y? where y = f[x)
Then  gly) = [fx]]*

This is a composite function so we use the chain rule with the
substitution u = f{x)

Then gly) =u?

= % () = HdE (2] x %%

i du
—Zuxdx

Buty = u = f[x), so % (v = Zy%

This is a particular example of the general result:
d d .Y
o) = [ o) x &
i.e. to differentiate a function of y with respect to x, differentiate the

d
function with respect to y and multiply by Ey

For example, % (2y?) = Sy"’d—d}; and % (Iny) = )l/d—d};

We can now differentiate any expression involving x and y, term by term,
with respect to x.

To differentiate terms such as x%y we use the product rule,

d d
S0 %[xzy]zxzxay+2}g><y:x2&y+ xy

and to differentiate terms such as % we use the quotient rule,

y-x¥
= %6): yzdx
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Example

d
Findayinterms of x and y when y? + xy + x?y = 2

Differentiating term by term gives

S+ )+ Dy = D)
dy dy dy 3
= Q'ydx+XdX+y+X dX—I-ny 0
L Y 2ty
d« = 2y +x+x2
Example

point (4, 2} on the curve.

We need the value of% whenx = 4andy = 2

y+E=y=5
dy dy dy
= dX+y+XdX—2de—0

&__ v
dx 2y —x—1
_ _, Gy
Whenx =4andy =2, &——2

Therefore gradient at the point (4, 2) is —2.

Find the gradient of the tangent to the curvey + xy — y* =

6 at the

Exercise 1.11

1 Differentiate each equation with respect to x.
(b) xe =x +y
y2
X

(@) 2 —y*=y

(c) xIn(y?] = 4 (d)

:y—_]_

2 Find % in terms of x and v when

(@) x> +xy—y2=6

d
3 (a) Find EY in terms of x and y when sinx + cosy = 1

(b) At the point (4,

range 0 = a =< , the value of a.

(b) 2cosx + 3siny = 4

) the gradient of the curve is 1. Find, in the




112  Inverse trigonometric functions

Learning outcomes

m To define the inverse
trigonometric functions

You needto know

m The properties and graphs of
the sine, cosine and tangent
functions

B The meaning of domain and
range

m The definition of an inverse
function

m The condition for a function to
have an inverse

VA
277 |
1 ‘t
1
P
P
=4 |
: r >
i 1 X
-
‘.
il
,
y
{1z

The inverse sine function
The sine function is normally given as f{x) = sin x for the domain x € R.

The graph of f{x) = sinx for this domain is given below.

f[X!.h

(ST
E]
Y

This function does not have an inverse because it is not one-to-one.

However, if we define the function f such that f(x) = sin x for the domain
— é*rr o %11‘, then the graph of f is the solid line in the graph above.

This shows that f(x) is one-to-one and so does have an inverse.

The graph of y = f!(x] is obtained by reflecting v = f(x) in the liney = x
and the equation y = f~!(x] is obtained from y = f(x) by interchanging
x andy.

. 1 1 . .
Therefore when y = sinx, — 37 < x < 37 the equation of the inverse
function is

. 1 | LI
siny =x,for —sr<sy=<gjmie -lsx=<1

; Lo 1 1
so y is the angle whose sine is x where — 37 <y < 7w

The ‘angle whose sine is x’ is denoted by sin~!x (an alternative notation
is arcsinx).

Therefore when f(x)
(x)
Note that sin~'x is an angle and that this angle is in the interval
[-3m 37 ).
T_he langles in the interval [— %11-, %11-] are called the principal values of
sin~!x.

sinx, —%ﬂ'ﬂx =< %11'

sin"!x, —1=x=1

For example, sin™! @) is the angle between — %11- and %11- whose sine

is %, o sin™! (%) = g
The inverse cosine function

The function f(x) = cosx, x € R is not one-to-one so it does not have an
inverse.

However, the function f given by f(x) = cosx, 0 < x < 7 is one-to-one
so f~! exists.
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Therefore when v = cosx, 0 = x =< 7 the equation of the inverse function is VA

cosy=x,forOsy=smie—-1sx=1

o -1
. N = cos™!x
so y is the angle whose cosine isx where 0 =y = 7 y

The ‘angle whose cosine is x’ is denoted by cos~!x (an alternative ._1_*\

notation is arccosx|. e

Therefore when f{x) = cosx, 0 =x <=7 i 1 \j
fi{x)=cos'x, -1sx=1 Ty a

Note that cos™! x is an angle and that this angle is in the interval [0, 7.

R J

The angles in the interval [0, #] are called the principal values of cos™'x.

For example, cos™! (— %) is the angle between 0 and 7 whose cosine

1 1

s D) -1{_1 :Z’JT
15 2,:’1‘:0[‘,("):’-5; ( 2) e

3

The inverse tangent function
When f(x) = tanx, x € R, { ! does not exist, but when ¥y =tanx
flx) = tanx, — %11‘ <x< %‘rr, f! does exist.

Therefore when y = tanx, — %11- <x< %11-, the equation of the
inverse function is

:
1

1 1 "

tany = x for —gmr <y < ;7 !
T

1

3 J

so y is the angle whose tangent is x wherex € R

The ‘angle whose tan is x’ is denoted by tan™!x (or arctanx).

Therefore when f(x) = tanx, —%1-:<x < %1-:
flix) =tan"'x,xe R

Angles in the interval (— %*rr, %’rr) are called the principal values of

tan~lx.
For example, tan~! (—1] is the angle between — %’rr and %11' whose tangent
is —1,sotan"!(—1) = —%

Note that the range of tan~!x is all real values of x whereas the ranges of
sin~!x and cos~!x are each [—1, 1].

Exercise 1.12

Find the principal value in terms of 7 of the following.
1 cos ! {—1) 2 tan 1) 3 sin'! (—_)

3

4 cos! (— )

5 tan~!(—/3)
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Learning outcomes

m To determine the differentials of
the inverse trig functions

You needto know

m The definitions of the inverse trig
functions

m The derivatives of sinx, cos x and
tanx

d_y =1+ g

dx " dy

The Pythagorean trig identities

m That

The chain rule

Differentials of inverse trigonometric
functions

The derivative of sin""x
Lety =sin"lx = x = siny

Differentiating x = siny with respect to y gives
dx _
e cosy

d
Therefore using &y =]+ % gives

g = l
dx cosy
= ._k—l T Using cos?y + sinfy =1
J1 —sin’y

Note that when y = sin™!x, the range of y is — %11' sy = %11' and for this
range, cosy = 0

Therefore we only use the positive square root of 1 — siny

L dv 1
But siny = x, so e

The derivative of cos™'x
We use the same method to find the derivative of cos ' x
Lety = cos™'x = x =cosy

Differentiating x = cosy with respect to y gives

% = —siny
Therefore using dy =1+ dx gives
s i = :
ﬂ =-_1 Using cos?y + sinfy=1
dx siny
I S
J1 — costy

When y = cos™'x, the range of v is 0 < v < 7 and for this range, siny = 0
So we only use the positive square root of 1 — cos?y
dy 1
Butcosy=x,50 +—=————
4 dx V1 —x?

i.e. 4 (cos™1x) = I -
dx V1 —x2



The derivative of tan™'x
The same method again gives the derivative of tan~'x
Lety =tan"'x = x = tany

Differentiating x = tany with respect to y gives

dx _ .

dy ~ S€CY
Therefore using dy 1= & gives

dx 1 1 .

&y~ sty ~ 1+ tan'y Using 1+ tan®y = sec’y

d
But tany = x, so &y= lixz
d T g 1
i.e dx{tan x) = T2
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Example

Find the derivative of cos™! (3x — 2]

Lety =cos !(3x —2) and u=3x—2 so y =cos 'u

d
Using the chain rule gives E}/ SRS W 3

/
\.-'l—l.l

o Yy_ 3
&~ JT-(3x-2F

This example is a particular case of the general result, i.e.
f'(x)
V1 - (f(x))
f
e feor™ ) = -
f(x)
1+ (fx))?

4 (sin-1 fx)) =

4 ftan~! fx) =

Exercise 1.13

Find the derivative of each of the following.

1 cos!2x

2 tan!'(2x + 1)
3 cos !{x?

4 sin'(x — 4)

5 tan'{1 +¢¥




114 Derivatives of combinations of functions

Learning outcomes

m To find the derivative of a
combination of functions

You needto know

Summary of differentials

We have found the differentials of a variety of functions in previous topics
and in Unit 1.

The results are summarised here.

Standard results

m Therules for differentiating
products and quotients of
functions and composite
functions

m How to use logarithms

fx) f(x) glx) 4 (gtlx)
X nxt=l lax + b} nalax + b) 1!
sinx COSX sin f(x) f'(x) cos f(x)
CoS X —sinx cosf(x) —f'(x) sin f(x)
tanx sectx tanf(x) f'(x) sec? f(x)
e¥ £F efix) £ [x)efi
1 t'(x)
Inx " In f(x) T
[ 1 | t'lx]
sin"!x T sin~!f(x) ﬁw
—1 1 | f(x)
cos™!x S p—— cos™ ! f(x) = TR
=) 1 =) HX}
tan~!x S tan~! f(x) TF P

Any of these results can be quoted unless you are asked to derive them.

You need to learn these results. When integrating you also need
to be able to recognise the function which gives any of these
differentials in the table.

For example, given %, you need to recognise this as the differential
of In (x* + 1)

General results

d

S ty) =)
b _dy  dx
dx — dt " dt

The use of logarithms

Logarithms were used in Unit 1 to help solve equations with exponents
that contained the unknown quantity. The same technique can be used
to differentiate functions where the variable is contained in an exponent.
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For example, when v = a* taking logs of both sides gives
Iny = xlna

Then differentiating with respect to x gives

%)%Zlnﬂ

dy g
= Efy]_na—alna

Example

Differentiate x?sin™! (x?)

x?sin! (x?) is a product so using y = x*sin~! (x?) with u = x? and
v = gin~! [x?),

then Lé%=2x andgx—v= ulz—Xx“

% = u% + V%Xl‘l = ul% + 2xsin~! (x2)
Example
Differentiate 2

e with respect to x.

lr?}éx is a quotient so using y = % with u = 3x and v = In5x

du _ dv 1
then T8 and =
du dv
g v (In 5x
Example
Given yel” ~!) = sinx show that % = )l/j—oz,};

yel? 1 ig a product, so we use the product rule.

. d d
Differentiating with respect to x gives e/~ Ey + 2ye -1 Ey = COSX

dy _ CosXx _ ycosx _ ycotx

dx (1 4+ 2yjelzr—1 a (1 + 2y sinx T 2y

Exercise 1.714

d
1 Find Ey in terms of x when
(a) y = x* (b) y = xtan"'x (c) sin™! (xy) = x

1 —1In{1 — x2

dy
dx 1 + Inf1 + x)2

2 Find dxi.nterms of x and y when y =

d
3 Giveny = xtan~!x show that x(1 + x2) &y =x¥+ y(l + x2)




115 Second differentials

Learning outcomes The second differential of y with respect to x
m To find and use the second We met % in Unit 1. It means the differential of % with respect to x,
differentials of functions
. d (dy)
1.€. E E
You needto know So, for example, when % = x2,
m Thedifferentials of standard dzy
functions 55 differential of x* with respect to x = 2x
m The product, quotient and chain
rules Example
m  The differential of f[y] with If y = e¥sin2x, find % in terms of x, simplifying your answer.
respecttox
ionshi d
" I';\)e(relatlonshlp betwepnerand y =e¥sin2x = &yz 3e® gin 2x + 2e¥cos 2x  Using the product rule

= 3 (3sin2x + 2 cos 2x]

2
K),i: 3e3(3sin2x + 2cos 2x] + e3* (6 cos2x — 4 sin 2x)

= ¥ (5sin2x + 12 cos 2x])

When an implicit function is differentiated, we often get terms such as
4
dx

Differentiating such terms will result in a combination of first and second

derivatives.

d
For example, if y = x? &y’ then using the product rule to differentiate

d d? d
with respect to x gives &y = x* Ez + 2x &y

Example

2
-

Ify = V3x2 + 2 show that (& e

y=Va&+12=[3x+2)
dy__ 3x
& (g2 4 gp

Now y = (3x% + 2]% and we require a relationship tlllat involves y so it
is sensible at this stage to substitute v for (3x> + 2)=

d d
This gives Ey = 37X = yayz 3x
: o . dy) (dy) &y _
Differentiating with respect to x gives (& el g = 3

i.e. (%)2 + y% =3
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Example

The parametric equations ofacurvearey =t and x = Py

2y
(a) Show that de +X3X1 =0

(b) Hence find SXZ in terms of t.

(a) We require a relationship that does not involve ¢, so we start by
eliminating t to give a direct relationship between x and y.

2
t+1

= xly+ 1) =2

— _ 2
y=t and x = =>X—y+1

dy _

dv d¥y
& T Xae +&—°
dy dy

= ZdX+XdX2_0

dy 3 . dy .
(b) We can use XE-I- v+ 1)=0 togweamtermsoft

; dy [t + 1)
) SO G o SRS LIS
e ¢ — )
dy d?y 2 ydy
Then ZdX+XdX2—U=}- [t+1]2+(m]ﬁ—0
d2 _jg 12
T & 2
2y
Alternatively we can use SXZ (;it (%) X % giving

d)r"_d( [t+112) dx

A dt 7 7
= (-t + 1) =
_ jERLp
N 2

Exercise 1.715

4z
1 Iftany = x, find the value of E); when y = %
(Hint: change tany = x toy = tan"'x)

, d’ dy \*
2 Ife’ = sinx, show that % -+ (Ey) +1=0

3 The parametric equations of a curve are x = sinf and y = cos 6

(a) Showthatygzg—k (gi:) +1=0

(b) Hence find % in terms of 0




1.16

Learning outcomes

m Tointroduce functions of more
than one variable

m To define and use partial
differentiation

You needto know

m How to differentiate standard
functions

m The product, quotient and chain
rules

m How to find a second derivative

Partial differentiation

Functions of two or more variables
Many quantities depend on more than one variable.

For example, the profit made by a farmer can depend on the weather,
wage costs, the price the farm produce sells for, the cost of transporting
the produce to market, and several other variables.

If z = x%v then z is a function of two variables, x and y, and we write
z =flx,y)

If w = f(x, v, z) then w is a function of three variables, x, y, z.

Partial differentiation

The farmer may want to know how profit changes when one of the
variables changes while keeping all the others constant, such as when
wage costs change.

This is where partial differentiation is useful: if f is a function of x and y,
then the partial differential of f with respect to x is found by treating y as
a constant.

The partial differential of f with respect to x is written as oA

X
(The formal definition of é‘fg(y] is
lim S where h = 8x)
h—0 h

For example, if f(x, y) = xy + 2y?

af _ S ; =S |

then o This is equivalent to finding = (ax + b)
of _ - . |

and F + 4y This is equivalent to finding dy (ay + 2y9)

If you get confused when finding partial derivatives, replace the variables
that are treated as constant by letters that look like constants.

Example
If flx,y, z) =x% + y%z + xyz find
(a) & ) X

(a) % = y% x4+ 0+ yz% X Treating y and z as constants

= 2xy + yz
o , d d .
(b)  Tha 0+y Ez + XyEz Treating x and y as constants

=y +xy
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Example

If bz y] = xye* find 2

ax
Treating y as a constant, we have to differentiate xe*, so we use the
product rule.

fix, y) = xye* = %zy(%xe") = yle¥ + xe¥)

Exercise 1.76a

1 ey saly y2ﬁ1;: %a;d%
Hence show that e -+ yg = 2f(x, y)
i -} 2 o of
2 Given flx,y, z) = X’y + y?z + z& ﬁ_ndg and =
'
3 Find % when .
X [y
(@) fx y) = xsinfe+y) ) fooy) =1y (0 oy =y
Second partial derivative
The symbol % means % (%f), i.e. find the partial derivative of f with

respect to x, then find the partial derivative with respect to x of the result.

Therefore if flx, v] = x% + xy°, then %f = 3%y + y°

it

9 a0 3 —
S0 oz = 3¢ 3X°y + ) = 6xy

With partial differentiation we can also have a mixed second derivative,

g (of\ ... . >
for example > (&) is written as ax
For example when f(x, v) = x3% + xy3, then
% = 3x%y + 3 y constant
P _ 9 (d)_ 9 3 =
So YE - (&X) =% (3x%y + y?) = 3x? + 3y? x constant
Exercise 1.16b
1 (a) Given flx, y) = ™ ¥ find
e R N O
(b) State whether the following are true
0Zt= 2% 0 2L =21
axt oy dydx  dxdy

2 Repeat question 1 when f(x, y) = xsin [x + y)




117  Integration of exponential and logarithmic
functions

Learning outcomes Integration as the reverse of differentiation

When a function is recognised as the differential of a function it can be

m Tointegrate exponential
integrated,

functions and logarithmic
functions 50 de' fx) = f(x) & ff'{x] dx = f{x) + ¢

Integration of exponential functions

You need to know d
We know that Ee" = ¢*, therefore fe"clx =g¥+ ¢
m How to differentiate exponential d d . .
functions and logarithmic We also know that gy ae* = ae* and pin glax bl = gelax+b)
functions

; . d :
; & Using the ch: 1 also h — el = f'[x) el®)
m That integration is the reverse of L e el e (x) €

differentiation therefore fae"dx =ae* +¢ and [e**Pdx = % elx b 4 ¢

m How to find a definite integral .
and its interpretation as an area and ff'{x]ef“] dx = el + ¢
The laws of logarithms For example, to find fe“"dx we know that % el = 4e¥

The modulus function
S0 fe“"dx =le® +c

Example
2 P
Evaluate f axe™ 1 dx
1

2x is the differential of x> — 1, so this integral is of the form

Jimemde = e + ¢

% il T a2 y12
f 4xe™ " Vdx = Zf 2xe? "1 dx = 2 [eW* V] = 2(e3 — e
1 1

= 2(ed — 1}
Exercise 1.17a
1 Find
(a) flehdx (b) [et2dx
(c) [xe¥dx (d) f[cosx]e“i“"dx
1 1 B
2 Evaluate (a) 1;534"‘101;; (b) !; (2x — 1)e* ) dx

: 1
Integration of -

If we try to integrate % (= x7!) using [x'dx = Xt + ¢ we get

n+1
%X“ + ¢, which is meaningless.
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However, we know that %lnx = % Now Inx is defined only for x > 0, so
provided that x > 0,

fldx=1nx+c (1]
X

When x < 0, f%dx = Inx + ¢ is not true, but the function é exists for
x <0

Also the shaded part of the graph shows that the area represented by

d
f %dx exists, so it must be possible to integrate é for negative values of x.
When x < 0,
x>0, fldx - f-idx =Inf-x)+c¢  [2]
x (—x)
[1] and [2] can be combined using |x| to give

f—l-dx=ln|x| +c
x

f'(x)
flx)
f'(x)

We know from Topic 1.9 that %]ﬂf[}(] = fx)’ therefore

Integration of —

f'(x)

_fE]_dx=ln|ﬂX” +c

For example, to find f ﬁ dx, we see that 2 is the differential of 2x + 1

2 _ ;
So fﬁﬁdX-].ﬂlZX"‘ll"’C

Example

° 3x
Evaluate £ ———dx
e

3 3 3 3 8
lxled}( i].[lle—ll] ZilnS—jlnE’;:ilng
Exercise 1.17b
1
4x €
@ Jre o oy 1
COS X 1 w1 x
(@ fsmx dx ) lenX dx (Hmt. xInx Inx
1
2 Evaluate (a) f [X — 4] dx (b) j{;%d}(

=y




118 Partial fractions

Learning outcomes

m To decompose a rational
function whose denominator
factorises into a sum or
difference of simpler fractions

You needto know

m The meaning of the terms
polynomial and rational function

The meaning of a proper fraction

How to express an improper
rational fraction as the sum of a
polynomial and a proper fraction

Partial fractions

In this section we deal with rational functions, i.e. fractions whose
numerators and denominators are polynomials.

We can add or subtract fractions to give a single fraction, for example,

3 1 _3x-1)+ix+1)_  4x-2
¥+ 1l "x—1 (x + 1)[x — 1) [x + 1)x — 1)

The reverse process, i.e. starting with a fraction such as ., e H
x + 1)(x — 1)
and expressing it as the sum or difference of two simpler fractions, is

called decomposing into partial fractions.

Fractions with linear factors in the denominator

When a fraction is proper (i.e. the highest power of x in the numerator is
less than the highest power of x in the denominator) the partial fractions
will also be proper.

D= ]
*olx + 1)x — 2)

can be expressed as A B

x+1 X_there

For example

A and B are numbers.

The worked example shows how the values of A and B can be found.

Example

Express ] in partial fractions.

> e |
(x + 1)[x—2

x—-1 A B

K+ 1)x—2] x+1 x-2

First express the right-hand side of this identity as a single fraction
over a common denominator.
1% — 1 _Ax—-2)+Blx+1)
(x+1)x—2) " [x+ 1){x— 2

This is an identity: since the denominators are the same then the
numerators are also the same.

= 2x—1=Ax—-2)+Bx-+ 1]

These are two ways of stating the same expression, so we can assign
x any value we choose.

Choosing to use x = 2 to eliminate A gives

3=38 = B=1

and using x = —1 to eliminate B gives
3=-34A=A=1
2l 1 1

K+1x—2) x+1 x—2
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Example
2 __
Express % in partial fractions.
oL
% is improper so we express it as a sum of a polynomial

and a proper fraction.

xX2-2x+1 _x*-2x+1 _[K¥+x—-6]-3x+7

x—2]x+3] " xX+x—6 2X=8
_ —3x +7
_1+X2+X—6

(This can also be done by dividing x> — 2x + 1 by x> + x — )

—3x+7 -_A , B _Alx +3) +Bfx - 2|
P2+x—6 X—2 x+3 {x—2)fx+3)

—3x+7 =A[x+ 3] +B(x— 2)

x=-3 = 16=—-58 = B=—12
x=2 = 1=54 = A=}

1 16

x?—2x+1 o _
5x—2)] 5x+3)

(x — 2){x + 3)

=1

Exercise 1.718a

Express each fraction in partial fractions.

3 6
¥ ey 2 kO
%+ 1 |
3 x(x — 1) 4 (x —XZJ[X—S]

Fractions with a repeated factor in the denominator

The fraction i W is a proper fraction and, by adjusting the

x —2)
numerator, can be expressed as the sum of two fractions with numerical
numerators.
. Xt EX—Z+3EX—2+ 3
ok -2P 0 x-2P 0 xk-2P 0 x-2P

_ 1 3
) Bl

Any fraction whose denominator is a repeated factor can be expressed as
two fractions with numerical numerators.

When there are other factors, adjusting the numerator is not easy. The
next worked example shows how such a fraction can be decomposed into
partial fractions.
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Example

Express in partial fractions.

2% — 1
x— 372 + 1)
x-1  _ A B C
[X—S}]{2[2X+1]=[X—3]2+[X—3]+[2X+1]

_ A(2x + 1) + Blx — 3)(2x + 1) + Cx — 3)
- (x — 3)2(2x + 1]

9 — 1 = A[2x + 1) + Blx — 3){2x + 1) + Clx — 32

x=3 = 5=7A so Azg
XZ—% = —2:%(3 S0 Cz—%

The value of B can be found by substituting any value for x (apart from
the two values already used).

Choose an easy value: we will usex = 0
- o _5 72 _ 4
x=0 = —1=A—-3B+9C = —1=5-3B—3 s0o B=g

x-1 __ 5 4 8
(x —3)}2x + 1) 7(x—3)* 49(x—3) 49(2x+ 1)

Exercise 1.18b

Express each fraction in partial fractions.

3 x4+ 2 3 x2+1

1 P = o+ 1) Lk — dj

2

Fractions with a quadratic factor in the denominator

Fractions with a quadratic factor in the denominator can also be
decomposed into partial fractions.

2x — 1
[x + 2){x* + 1)
will also be proper.

For example is a proper fraction, so its partial fractions

Therefore the partial fraction with denominator (x> + 1) will have a
linear numerator.

o o A B2
2% — 1 Alx>+ 1) + (Bx + C)[x + 2)

T K+ +1) X + 2] + 1)

= 2x—1=A(x>+ 1) + (Bx + C){x + 2]

x=-—2 gives —5 =05A so A=-—1

x=0 gives —1 =-1+2C so C=0
-2+ (B){3) so B=1

—
Il

x=1 gives

An e 1 Y

Kr2RE+1]. x+2 xX+1
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Repeated quadratic factors

i X By
The fraction T IP

numerator this can be expressed as the sum of two fractions,

has a repeated quadratic factor. By rearranging the

#2 g bt 1] =de= 1
x>+ 1) (x2+ 1)?

1 3x+1
X+l TP

ie.

Any repeated quadratic factor can be expressed as the sum of two factors
with linear numerators, one with the single quadratic factor and the other
with the repeated quadratic factor.

Example

Express gxch P in partial fractions.

(x — 1){x2+ 2
X—C+2 x—-1 +2 KF2P

A2+ 2P+ (Bx + Cl{x — 1){x> + 2) + (Dx + E){x — 1)
- (x — 1)[x2 + 2)2

3x+6 A _ Bx+C A Dx+E

x+6=Ax2+2P+Bx+CQ)x—1)x*+2)+ (Dx + E)[x — 1)
There are 5 unknowns so we need 5 equations.
x=1 gives 9=9A so A=1
x=0 gives 6= 4-—-2C —E
= 20+E=-2 [1]
x=—1 gives 3=9—-6(C— B)—2(E - D)
—~ -3(C-B)-(E-D)=-3 [2]
x=2 gives 12=36+ 6(C +2B)+E + 2D
—~ 6(C+2B)+E+2D=-24 3]
—2 gives 0 =36+ 18(2B — C) — 3(E — 2D)
= 6(2B—C)— (E— 2D} =—12 4]

b
I

Solving these equations simultaneously gives B= -1, C=—-1, D= -3, E=0
Ix +6 1 x+1 3x

x—1)x2+27 x—-1 ([x+2) [x2+2)?

Exercise 1.18c

Express each fraction in partial fractions.

1 x + x4+ 2x 1

1 T v 2 x0T 1P 3 PO




119  Applications of partial fractions

Learning outcomes

To use partial fractions to
simplify the differentiation of
fractions

To integrate using partial
fractions

You needto know

The differentials of simple
functions and of log functions

How to decompose a rational
function into partial fractions

The integral of f(%)

How to find a definite integral

The laws of logarithms

The use of partial fractions to simplify the
differentiation of fractions

. . ; 1
We can use the quotient rule to differentiate rERERY but the

simplification of the result is complicated.

When we express as partial fractions,

(x — 1){x + 1)

ie. as then we can differentiate two simpler

11
ax — 1) 2[x + 1)

fractions and the resulting simplification is easier.

e %(m) :%(zlxl— ]~ 2[X1+ 1]]

) ey

=3 Ek-12 4k + 17
. T
C2Ax+ 12 2Ax— 1)

o x—1P - x 1)
Co2x — 1)Hx + 1)2

_— 4x
T 2k — 1P x+ 1)
_ Ix
T x—1)Hx 4+ 1)
_ 2x

=17

Exercise 1.79a

Express each fraction in partial fractions and hence differentiate each
fraction.

Ax —1
KT 2% — 1]
5
2 TR A=)
3 3xr—x

(x + 3)(x2 + 1)

The use of partial fractions in integration

The fraction is not recognisable as the differential of a

1
x — 1){x + 1)

standard function so the integral f[x is not obvious, but if

1
— 1){x + 1)

we express the fraction in partial fractions,
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M K- IxT D 2x -1 2T )
then f[x l][X—i- 1]dX fZ[X— l]dX fz[ dX and each of

these integrals is recognisable.

fmd}‘:fﬁdx‘fﬁdx

zlln|x— 1 —%]_n|x—|—l|+c

N i
ln‘x+l‘+c

Example

©+4x>—x
bind f: — ) = 4] &
X3+ 4x? —x
x — 1){x + 4)
into the numerator:

is an improper fraction, so first divide the denominator

x+1
X+ 3x—4 )+ 42 —x
x3 + 3x? — 4x

x4+ 3x
x+3x—4
4
x34+4x2 —x _ 4
50 [X*l]fX+4]:X+l+[X*l][X+4]
_ 4 _ 4
=X+l 1 Sk 4]
+ 4x?
[x—l][x+4]dx f[X 1]dx+f5[ Tjdx - fstx+4]
= Loy 4 _11 -4
=g X +X+5]11|X 1 511‘1|X+4|+C
o 4 =0
—2+X+511‘1|X+4|+C
Exercise 1.19b

1 Use partial fractions to find the following integralv

3x+4
. dx ®) f[t zl[c + 2]

(@ x(x + 1)
4x* + 3x — 2
@ [T

2 Evaluate fu & (Hint' f#z tan 'x
(s — 1){s® + l] "1 + %




1.20 Integration using substitution

Learning outcomes

m To use substitution to find
integrals of some products

You needto know

m That integration is the reverse of
differentiation

The chain rule

The differentials of the standard
functions

Integration using substitution
When y = gh(x] we can use the substitution u = h(x) and the chain rule

to find % gh(x) giving

%gtu] = g'(u) %,%
[s't) G2 dx = glu) + ¢ iy
Now fg‘[u]du —glul + ¢ 2]
Clommaring (1] and 3] gives [ u du 4 - Je )
o i . w—— [t du gy Jitudu

Therefore integrating (f[u] %) with respect to x is equivalent to
integrating f{u) with respect to u, i.e.

du , _
T a;dx = ...du

Note that the relationship above is a pair of equivalent operations. It is
not an equation nor is it an identity.

For example, to find |x*(1 — X-”]%dxusing the substitutionu = 1 — x° gives
fxz[l—x-”]%dx = [xrdx
Now %%z—&‘.xz ...%‘ldxz...du = .. |-3xdx=..du
fxzul? dx = f— %u*— du
= (——;) (%)u%+c:= -201 —x3it ¢

3

This method of substitution is used to integrate a product of functions
when one function is the differential of the function ‘inside’ the other
factor We substitute u for this ‘inside’ function.

For example, we can use it to find fZ cosx sin® xdx because cosx is the
differential of sinx.

We cannot use it to find fe" cos?xdx because e* is not the differential of
COSX.

Example
Find fz cosx sin’xdx

cosx is the differential of sinx so we will use the substitution u = sinx

u=snx = Lé%:cosx, ...%@E...du = ...cosxdx= ..du

flcosxsinzxdx = f2u2du

=%u3+c=%si_n3x+c
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Definite integration using a substitution

When you use the substitution u = f{x) to evaluate a definite integral, you
do not need to substitute back to a function of x. You can use u = f{x] to
change the limits to corresponding values of u.

After some practice you may find that you can integrate some functions
directly without having to make a substitution.

Example
3
Evaluate £ xx?2 — 1dx

2x is the differential of x> — 1, so we will use the substitution
u=xr-1

u=x*-1 = %zlx

..d—udXE...du = ..2xdx=..du

dx
3 3
‘£X\."3X2 —ldx = %l xyx? —
: x =3 h
= El:—z u? du

Whenx =2, u=3and whenx =3, u =8
8
vaXZ— ldx = 2f u? du
3

=3 Gull;

1 (g3 3
25(8-—3-)

16/2 — 3/3
3

Exercise 1.20

1 Use the given substitution to find

(a) fsi_nx\fcosx dx; u =cosx

(b) f% (Inx)?dx; u = Inx

2 Use a suitable substitution to find

(a) fe" ver — 1dx

(b) fcos 2x sin? 2x dx

3 Evaluate

0.5
(a) f x/1 — x2dx using the substitution u = 1 — x?

‘ X
(b)‘L V1 + x?2




1.21 Integration of trigonometric functions

Learning outcomes

m Tointegrate some trig functions

You needto know

m The differentials of the standard
trig functions

m That %f{x] = f'[x)
o ff’[x]dx — fx) + ¢

The laws of logarithms

The double angle trig identities

Standard trigonometric integrals

From the derivatives of the standard trig functions we know that
fcosxdx = ginx + ¢, fSiI‘leX = —cosXx + ¢, fseczxdx =tanx + ¢

Using
fix]
Wd}( =1n |f[X]| +cC

gives

ftanxdx = fs'mxdx: —In|cosx| + ¢

COSX

CosX
=In|1| — In|cosx| + ¢ In1=0
=ln‘ 1 ‘+c=ln|secx|+c

and

fcotxdx = fwdx = In|sinx| + ¢

sinx

ie. ftanxdx= In|secx| +¢ and |cotxdx = In|sinx| + ¢

Using integration by substitution

gives fcosnxdx = % sinnx + c, fsinnxdx = —% cosnx + c,
and [sinxcos"xdx = - cos"tlx + ¢,
n+1
fcosxsin”xdx o el sin"*lx + ¢
n+1 !

tan"*lx + ¢

sec’x tan"x dx =
f n+1

Even powers of sinx and cosx

We use the identities for cos 2x in the forms cos?x = 31 + cos 2x)
and sin’x = %[l — cos 2x)
For example, fsinzxdx = f%[l — cos2x) dx

1 1

=§X—zsm2}(+c

Odd powers of sinx and cosx

We use the identity cos?x + sin’x = 1. For example,

fs'm-“xdx = fSi_llX (sin?x) dx

= fsi_nx (1 — costx]dx = f[si_nx — sinxcos?x) dx

1
= —cosx + 3 co8’x +¢
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Multiple angles

To integrate products such as cos 2x sin 4x we can use the factor formulae
(Topic 2.6 in Unit 1).

For example, to find fcos 2xsin 4x dx we can use
sin 6x + sin 2x = 2 sin 4x cos 2x

fcoslxsinélxdx :% f[s'méx + sin2x) dx

- _1 _ 1

= —13C086x — ycos2x + ¢
A variety of trig functions can be integrated using the ideas given above.
The aim is to convert a trigonometric integral to one of the standard
forms and/or to reduce the trigonometric function to a number of single
trigonometric ratios.

Example
Find fsi_ns ade
sin®@# = sin @ sin* @ = sin 0 (sin? 6)2

=sin f (1 — cos? 6)?

sin# (1 — 2cos® @ + cos* 0)

fsi.t15 0do = f[sinﬁ — 2sin fcos? 6 + sin 0 cos® §) d

2 1 5
= —¢osf+ zco8’@ —zoos’ B+ ¢

Example

Evaluate f sin 2x sin x dx
0

sin 2x sinx = —% (cos 3x — cosx]

w

fE sin 2xsinxdx = %‘[ [cosx — cos 3x) dx
]

0

1 F 1 . ,E
) [smx 3 sme]u

_1 1 _ 2
=3{1-3(-1) =%

Exercise 1.21

Find

1 fCOSSXdX 2 fsm9c0559d9

3 fseczx tan®x dx 4 fcosf“x sin?xdx

5 fsinx cos 3xdx 6 fsi_nZX V1 — 2sin’xdx

[ cox g,
v1 — sinx
Evaluate

T

8 ‘[i[cos 5x cos 3x) dx 9 Iismzﬂmszf)dﬂ
1]

]




1.22 Integration by parts

Learning outcomes Integration by parts
m Tointegrate a product of We cannot find fxe" dx using any of the methods introduced so far.
functions by parts Tf we start with %uv gxu +u g; and then integrate both sides with

respect to x, we get

You need to know uv = f U dx + f
Rearranging this formula gives

m The formula for differentiating a
product of functions fv du 0 _ v _f [l

m The differentials and integrals of

stahdard fihetons This version of the formula can be used to integrate a product of functions

where v and % are the two functions; this is called integrating by parts.

To use the formula, the right-hand side shows that one of the functions
in the product du , has to be integrated, and the other function, v, has to

be dlf_ferentlated. When both functions can be integrated, choose as v the
function whose differential is the simpler. When only one function can be
integrated, then v is the other function. This formula cannot be used when
neither function can be integrated.

So, to find f xe*dx, we have two functions that can be integrated. The

differential of x is simpler than that of ¥, so we choose v = x md dx = g¥
o B dv _
This gives u = & and T 1
Then fv%}%dxzuv—fu%dx = fxe"dxzxe"—f[exxl]dx
=xe‘—e‘'+c=¢e(x—1)+¢c

Example
Find flenxdx
To use integration by parts to find fX2 Inx dx we see that In x cannot be integrated but x? can. So we choose

dv

o ; du _ av....L il
v = Inx and T SE s e and u = 3x

fv%dxzuv—fu%dx = flenxdx =%X3h1x—f(%x”) &)dx
Z%Xath—f(%Xz)dX

:%Xslnxféstrc:éX?’[Slnxf 1} +¢

Example

Find f Inxdx

We said in the previous example that Inx cannot be integrated, but using integration by parts with

Inx =1 X Inx, we can find flnxdx
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Toﬁndf[lxlnx]dx,letvzl_nxa_nd %21 = &=

fv%d}::uvffu?—d;dx = flnxdx=xlan X& dy =xlnx —x+c=x{lnx—1)+c¢

Example
Find fe" sin 3x dx
Using v = ¢ and % = sin3x gives %z e and u = —%COSSX
fe" sin3xdx = —ée"cosSx — f(—%cos&’;x)e*dx
= —ée‘cos.’:‘ux + éfe"cosSde
Using integration by parts again on fe" cos 3x dx with v = e* and %% = cos3x gives
fe"sinSXdX = —ée‘cosSx + é (%EXSiHSX — %fexsinSde)
= ée"sinSX = ée"cosSx == éfe"s'mSXdX
The required integral appears on both sides of the equation. Collecting it on the left-hand side gives

lﬁ,ofe"sinSXdX: %e"s'mSX — ée"cos.’:’.x = fe"sin.’:’;xdx = %e"[sin.’:’;x —3cos3x) +¢

You may find it easier to apply the formula for integration by parts by
remembering it in the form

[0 gl e = ([0)) x g = [ [£0x) x L g | e

Example

T

Evaluate f > x2cosx dx
0

Using integration by parts, fxz cosxdx = x*sinx — fZX X sinx dx
We need to use integration by parts again to find fZX sinx dx

fxlcosxdx = x?sinx — (—ZX COSX — f—Zcosxdx) =x2ginx + 2xcosx — 2sinx + ¢

fsz cosxdx = [x2sinx + 2xcosx — 2sinx]2 = (E)Z —2
) 0 2
Exercise 1.22
1 Find 2 Evaluate
1 i
(a) fZXeE""dX (b) fe" cosx dx (a) I In(l + 2x)dx (b) £4 3x sin 3xdx
1]

(c) fX]ILXdX (d) fxzsinZXdX (c) L%ez" cos 2x dx




1.23 Integration of inverse trigonometric
functions

Learning outcomes The integral of sin~'x

m Tofind the integrals of the To find fsin‘lx dx we use integration by parts and the same device that

i tri tric functi ; : ; i
INVerse trigonometric lunctions we used to find flnx dx, i.e. we write fsm‘lxdx as f[l X sin 'x] dx

: du ;. dv
You needto know Then, using fv 3 dx = uv fu = dx

du

m The differentials of the inverse with g e % = 1

trigonometric functions

® How to integrate using gives d&"’ = 7# and u =x
substitution V1-x?
How to use integration by parts fsin“xdx = xsgin~lx — f _X  dx
Methods for integrating rational il =
functions using partial fractions To find f = X — dx we can use the substitution
V1 —x2

u=1-x = —-2xdv=du

Lk
f\ﬁdx = fu—jdu

1
—u*r+c

=—/1-x2+c¢
(You can also find this integral by sight.)
fsin‘lxdx =xsin"'x — (=1 —x%) + ¢
i.e. fsin'lxdx =xsin"lx +vV1l —x2 +¢

The integral of cos™'x

Using a similar method as we used above,

fcos‘lxdx = fl X cos !xdx

=XCOS_1X—f(XX ,_l )dx
v1 —x2

- X
= X COS 1X+f|, dx
V1 — x2

=xcos lx —vV1—x+c

ie. fcos'lxdx =xcos lx -Vl -x+¢
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The integral of tan~"x

Using fta_n‘lxdx = fl X tan~!xdx and integration by parts gives

ftem xdx = xtan™'x f—1+X2dX

f'(x]

Recognising fﬁdx as of the form %fm

dx = %]nf[x] +ec
gives fﬁdx = %ln[l +x2 +c
ftan"xdx =xtan " 'x — -é—ln{l +x+¢c

These results can be quoted unless their derivation is asked for,
although it is better to remember the method rather than learn
the integrals.

Example

Find fxtzm‘lxdx

Using integration by parts gives

a1 =1, e S B
fxtm xdx = 5 X tan” ' x 2{1+X2]dx
CS IR e G R .
Now =332 ~“ 1 13 =
x> _1f %
21+ 2 1+x2dX

=1 _ 1
_z(fldx fl +X2dx)
=%X—%tzm‘lx+c
fxta_n‘lxdx = %XZ tan~!x — % [x — tan"!'x) + ¢

=%[x2+ l]tan‘le%}(nLc
Exercise 1.23
1 Find

(a) fta_n‘lSXdX (b) fsin‘LZde (c) fxztan‘lxdx

2 Evaluate

(a) f]lsin‘lxdx (b) j[;:% cos !'xdx () ftan‘l (1 + x)dx

m Exam tip

When using integration by parts, it
is sensible to check your answer by
differentiating it: this should give the
function you integrated.




1.24 Reduction formulae

Learning outcomes

m To derive and use reduction
formulae

You needto know

m How to use integration by parts

m Theintegrals of standard
functions

Finding a reduction formula

If we need to find fsi.n“x dx we can use the identity sin® § = % (1 — cos26)

then square it to give sin*6 = % (1 — 2cos26 + cos® 246).

We can then use the identity cos? 26 = é (1 + cos446) to give an integral
involving cos 26 and cos 46, but this is tedious if used to find the integral
of higher powers of sinx.

To do this we use integration by parts to give a formula that
systematically reduces the power to one that we can easily integrate.

For example to find f sin” xdx, where n is a positive integer, we start by
calling this integral I,

then, by writing fsin”x dx as fs'mx sin” ~!xdx and using integration by
parts, we have

I, = fsin”xdx
= fsinx sin” ~ lx dx
= —cosx sin" " 'x — f[—cosx][[n — 1) cosx sin" " 2x | dx
= —cosx sin® " 'x + f[n — 1){cos’x sin” ™ 2x) dx
= —cosx sin? 'x + (n — 1) f[[l — sin’x) sin"2x) dx

= —cosx sin”? " 'x + (n — 1) (fsin”‘lxdx - fsin”xdx)

I, =—cosxsin" 'x+(n—1)([,_, — L)
= nl, = —cosxsin" " 'x+{n—1)I,_,
= I, =- nlcosxsin”‘lx—kn_ lI,,_Z

This is called a reduction formula because it reduces an integral
involving the power n to one involving the power n — 2.

Depending on the function to be integrated, a reduction formula may
reduce the power by 1 or by 2.

Using a reduction formula

A reduction formula can be used to systematically reduce the power to
one where the integral can be found easily.

To find fsin'-”x dx we have I, = fsinf’xdx and using the formula above
I, = —écosxsinsx+ %I‘, [1]
Using the formula again on I, gives

I =~— i cosx sin®x + %IZ (2]
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Now Izzfsinzxdx
=f%[l — cos 2x) dx
=%X—ism2}(+c

From [2], I, = —icosxsin3x+ % (%X— isi_nlx + c)

_3,_1 SN
= SX 4COSXS].H X 16 sin2x + ¢

o =l s s i:43 Siasrn vl ;
From [1], Iy = —¢cosxsin®x — 35 cosx sin’x + X — jzcosxsinx + ¢
Using sin2x = 2sinx cosx

Note that when we found I,, we introduced a constant of integration,
c. As ¢ is an unknown constant, there is no need to multiply it by the
fractions in the reduction formulae.

Example

(a) Given I, = fX"e"dX show that I, = x"e* — nl,_,

(b) Hence find fx“e"dx

(a) I, :fX”e"dXZX"e"— fnx”‘le"dx
=X"e"—nfx”‘le"dx

=x"e*—nl,_,

ma:ﬁw&
Now I, = fxe“dx
= xe¥ — fe"dx
=e'[x—1)+¢c Using integration by parts
Using I, = x"eX — nl,_, with n = 2 gives
I, = x%~ — 21,
=xl—2e¥x—1)+c¢c
=e" (x> -2+ 2] +c
Similarly I, = x%e* — 31,
=e (x5 -3x2+ 6x — 6] +¢
and I, = x% — 41,

=e'(x* —4x*+ 12x> — 24x + 24) +¢c

We can also find a reduction formula for a definite integral, and in this
case the formula is often easier to use.
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Example

1
(a) Given I, = f x(x? — 1)7dx showthat I, = — —2—1,_,
0 n+1

1
(b) Hence evaluate f x(x? — 1)Pdx
1]

(a) We need an integral involving (x> — 1)*~! so we start by writing I, as
LIX[XZ — 1)xr— 1) ldx
I, = J;IX[X2 — 1}~ 1jp—tdx
We can now express this as two integrals, i.e.

1 1
I,,=f XS[XZ*IJ”_IC[X*‘[ x(x?— 1P tdx
) )
1
:‘[ XS[XZ_ l]n*ldX_ -
)

1
I +1 =f x3x2 — 1)m - ldx

0

If we use integration by parts with v = (x2 — 1)7 1 we will reduce
the power to n — 2, which we do not want. Therefore we rearrange
x3(x2 — 1)7~! so that there is a term involving (x2 — 1)7~! that can
be integrated.

Now 1;1 x}x?— 1) ldx = 1;1 (x?) (x[x®— 1) !)dx

Using integration by parts with % =x|{x*— 1)~ gives

[XZ_ 1]11)]1 fl ([XZ_ l]ﬂ)
= =t — ¥ e
In 1o [X]( 2n 0o Y & 2n &
-0-1g,
n
~ lT1'1—~_j-{1'r—1 :_lfn
n
O : |
R I R

(b) LI x(x2 — 1)0dx = I

1
Now I, =1; x(x?— 1)dx

1
zf (x3 — x)dx
0
B X4_X2J1
4 2

==
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_ n
Using I, o1 l-1 &ives
L=-%xI
mf2 TN L
= (=3)(=3)
=1
3
S0 13:_%12
— 351
=%
=1
- T8
= _ 4y 1
=—5X g
—
T 10
S0 Iszf%xﬁ
=L
T T2
1
ie. f x(x2— 1)Pdx = — 5
0

Note that a formula like I, = I,_,, where I, is known, produces

. n
n+1
a sequence giving values forI,, I, I, ...

Such a formula is called a recurrence relation.

Exercise 1.24

1 IfI,= fcos”xdx show that
n—1 I

n—22

n=12

n

1 _
I =Esmxcos" ly +

Hence find fcosf’xdx

2 Use the reduction formula given in question 1 to show that,

m

2
when I, = f cos"x dx,
1]

n-1
In: n In—Z

1
3 II,= fx"v"l — xdx show that
0

I_Zn

"= ont+3l-v2=0

1
Hence find j; x%1 —xdx




1.25 The trapezium rule

Learning outcomes

m To derive and use the trapezium
rule to find an approximate value
for the area between a curve, the
x-axis and two values of x

You needto know

m How to find the area of a
trapezium

m Themeaning of the word
ordinate

m The shape of the graphs of
simple functions

m How to use integration by parts

Yo Yii »

We have covered a variety of methods to integrate functions. However,
there are many indefinite integrals that cannot be found. But there are
several methods that can be used to give an approximation for a definite
integral when the function involved cannot be integrated.

We look at one such method here.

The trapezium rule
I’J‘
The integral | f(x) dx represents the area between the curve y = f(x),

the x-axis and the ordinatesx = g and x = b.

When a function whose derivative is f(x) cannot be found, we can divide
the area into a finite number of vertical strips as shown in the diagram.
Joining the tops of the strips as shown gives a set of trapezia.

The sum of the areas of these trapezia then gives an approximate value

for [ fx) de

o) ' ' ' %

Taking n strips at equal intervals along the x-axis so that each strip is the
same width, d, and labelling the vertical sides |(i.e. the ordinates) yy, vy, ..., V..,

then the area of the first strip is %d (vo + v1),

the area of the second strip is %d (v, + v,), and so on.

Va

=
=
Yn-2\¥n-1 Vn .tq T
S| 5
=t e
=l | e
«d»<d> x O X

The sum of the areas of all the strips is given by
%d [y{) + yl] 3 %d EYI =+ YZ] T el %d[yn—Z_FYH—l] =+ %d EYJ']—I +y{l]
:%d [y[) s Q'YI 2 2)’2 gz Q’Yrr—l gz Q‘yn—l +yn]

b
lf{x]dx "‘%d o+ 2y + 2z oe + 2y, 0 + 2y + V4
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This formula is called the trapezium rule.
It is easy to remember this formula in words as
half the width of a strip X (first + last + twice all the other) ordinates.

Note that there is one more ordinate than the number of strips.

Note also that the approximation gets better when the width of the strips,
i.e. the value of d, gets smaller.

Example 2
(a) Find an approximate value for f x*dx using the trapezium rule with
five intervals. '

(b) Use a sketch to determine whether your answer is an over-estimate
or an under-estimate.

[¢]

(a) f x° dx represents the area between y = x?, the x-axis and the
1
ordinatesx = l andx = 6
There are five units between x = 1 to x = 6 so we take our five
intervals as one unit wide, i.e.d = 1
This gives six ordinates: y, = 1*=1, y, =23 =8, v, =27,
Y4 = 64; y:) = 125, YG = 216

The trapezium rule gives

]

X¥dx~1(1+ 216+ 2(8 +27 + 64 + 125)) = 332.5 i
1

(b) The sketch shows that the area of each trapezium is greater than 2004

the area under that part of the curve.
6
Therefore 332.5 is an over-estimate for the value of f x3dx 150+
1

G
. 340 — [L4]6 —
Alternatively, j; Xy = [4 X4]l 323.75 i

This is the exact value of the area, confirming that 332.5
is an over-estimate. 50

Exercise 1.25

1 (a) Use the trapezium rule with five intervals to find an approximate
2
1
value for j: = dx
2
(b) Sketch the graph showing the area represented by ]; édx
2 (a) Use the trapezium rule with five intervals to find an approximate
value for ft[l = XZJ_%C[X
0
(b) Find the exact value of f[l = le"%dx

(c) Use your answers to (a) and (b) to find an approximate value for .




Section 1

1 A quadratic equation with real coefficients has

one root equal to 3 — 2i

Write down

(a) the other root of the equation

(b) the equation.
2-F1

o 1-19i
(o) Siteplity o= o= 5 o

(b) Ifx + y =ila — b) for real values of x, v, a
and b, write down two relationships between
x,v,a andb.

Find the values of a and b where z = a +ib such
that

2iz — z*(2 — i) = 2z — 2i

(a) Find the square roots of 11 — 60i
(b) Hence find the roots of the equation
x2—(4+ix+(1+17i]l=0

You are given thatz =1 — i
(a) Expressz in the form r(cos 8 + isin 6)
(b) Find the modulus and argument of z*

(c) Tllustrate z and z? and z — z? in an Argand
diagram.

You are given that z = \_é,i + %i

(a) Expressz in the form r{cos # + isin 6)
(b) Hence find the two square roots of z.

Solve the simultaneous equations
z+H{2—iw=5+1
2 +ilz—3w=3—i

(a) Using the binomial theorem or otherwise,
expand (cos 6 + isin 6)3

(b) Hence express
(i) cos 38 in terms of cos 0

(ii) sin 30 in terms of sin

(a) Describe the locus of points satisfied by
(i|z—4|=|z+6] (i)|z+1]|=6

(b) Hence find in the form a + ib the values of z
which satisty the simultaneous equations

|z—4|=|z+ 6| and |z+ 1| =6

10

1

12

13

14

15

16

17

Practice questions

Find the smallest positive value of x for which
y = e*sinx has a stationary value and determine
the nature of that stationary value.

Determine the number and nature of stationary
points on the curve whose equation is

The parametric equations of a curve are
x=¢e,y=t¢
(a) (i) Find in terms of ¢ the equation of the
tangent to the curve at the point (¢, ).

(i) Hence find the equation of the tangent to
the curve at the point where t = 2

(b) (i) Find the Cartesian equation of the curve.

(i) Use the Cartesian equation to find the
equation of the tangent to the curve at the
point where x = ¢’

Given that y = e’ sinx show that

dy _ e'cosx

dx 1-y

; : d d
Hence find a relationship between %, &y and y.

The parametric equations of a curve are
x=122, y=3t

. dy d’y .
Find g and 3 in terms of t.

Find the derivatives of
(a) x3xex
(b) sin !{3x — 2}

(c) xtan!{2x]

H — 2 2 ﬂ . E
Given that z = x?> + xy + ¥?, find S and 3y

2 2
Hence show that (%) + (%) = 5z + 3xy

Given that z = sin™! (%),
0z

dz 9z
ﬁ]ld s é'Xé'_y

ox ' gy m



18

19

20

21

22

23

24

25

26

Evaluate

(a) fE e* X gin 2x dx

I[= 2&2"
o [ L2 e
Express % in partial fractions.

dy oy
Hence find & wheny = m

i
W in partial fractions.

0

Express

2 Gy —
Ix 6X2dX

Hence evaluate I lm

Find

() [sin’xdx

(b) fsin 5x cos 3x dx
© f costxdx

(a) Use the substitution u = e* to find
c
feb‘ +1 dx

(b) Hence or otherwise find f ez" T e a1

35,
Use the substitution u = 2* to evaluate f 2*dx
1

Find

(@) fxexdx
) f Sl
(© [xsecixds

Find
(a) fez" sinxdx
(b) fQ.X log, x dx

Show that

2cosx _
cosx + sinx

COSX — sinx
COSX + sinx

2 CcosXx

o
i
Hence evaluate I —
) COsX + sinx

Section 1 Practice questions

27 (a) GivenlI, = f x"e2*dx show that

28

29

30

(b)

@)

(b)

(@)

(b)

(@)

(b)

(c)

o l Nnalx g

i 5 X'e ) I,
Hence find fx3ezxdx
IfI,= fgsec"xdx show that

0

AN =1 2
L= (—;1—21 +n_%fﬂ_2 forn =2

V3" m—-1) -
Hence evaluate fg sectx dx
0

Use the trapezium rule with three intervals to

1
: sy 1
find an approximate value forj; B dx
Find the exact value of I dX and

use it to determine whether your answer to
part (a) is an over-estimate or an undei-
estimate.

Vi
1.5

0.5

H
¥

—4 9 0o 2

—0.54

The diagram shows the area between the

2

curve y = ﬁ, the x-axis and the

ordinates x = -2 andx =2

Use the trapezium rule with four intervals to
find an approximate value for this area.

Use the diagram to explain why it is difficult
to judge whether your answer is an over-
estimate or an under-estimate.

Find the exact value of f T+ XZ dx



21  Sequences

Learning outcomes

To define a sequence

To use a formula for the nth
term or a recurrence relation to
find a specific term of a sequence

m To define arithmetic and
geometric progressions

Example

The nth term of a sequence is
2

given by, = 2 E L

Find the value of u,.

e+l 17
Us = 2142 — 3[4) ~ 20

Sequences

A sequence is an ordered list of terms. There is a first term, a second
term, and so on.

A sequence can have a finite number of terms or an infinite number of
terms.

We denote the terms of a sequence as u, u,, ..., u,, ... where u,, is the
nth term.

(The notation a,, a,, ..., d,, ... is also used.)
When u, is a function of n, we can use this to find a specific term.

For example, if the nth term of a sequence is given by u,, = 27 — 1 then
we can find a specific term by replacing n by the number of that term,

i.e. the first term is given by replacingn by 1, so u; = 2! — 1 = 1 similarly,
i, =22—1=3, u;=2>—1=31, u;p=2"—1=1023, and so on.

Recurrence relations

Sometimes the terms of a sequence are related by a recurrence relation.
This is an equation which connects the nth term to previous terms, for
example, u, =2u, ,+3 or u, =u, ; +u, , Arecurrence relation
on its own is not enough to define a sequence; we need to know the value
of at least one term.

When u,, = 2u,, | + 3, if we know the first term we can generate the
sequence:

if u, = 2, the recurrence relation tells us that each term is twice the
previous term plus 3,

sou, =4+3=7,u3;=2u,+ 3 =17, and so on.
So the sequence is 2, 7, 17, 37, 77, ...

When u, =u, | + u, ,we need to know the first two terms in order to

generate the sequence.

If u; = 2 and u, = 4, then the recurrence relation tells us that each term is
the sum of the two previous terms, so u3 =4 +2 =6, uy, =6 + 4 = 10,

and so on.

So the sequence is 2, 4, 6, 10, 16, 26, ...

Any sequence where each term is the sum of the two previous terms (like
the one above) is called a Fibonacci sequence.

Example

A sequence is given by u; = 7 and u, ,, = 2u, — 1. Show that u, = 3(2") + 1

u, =320+ 1 = wu,,, =322 +1
=2X32+1=2u,—1)+1=2u,—1

and u,=3(22)+1 = w =7 [n=1)

This verifies that the given formula for the nth term gives the first term and the recurrence relation,
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Alternatively

U, 1=22u,—1 = u,,, +1=24,
= 3(2°tY) +1+1=2u, Using u, +1=3(2""") + 1
= 6(27) + 2 = 2u,
= u,=232"+1

Example

The nth term of a sequence is given by u, = 5" + 1. Find u,,, , in terms of u,,.

57t + 1
5(57) + 1
=5(5"+1) -4
5u, — 4

u,=5+1 = u,.,

Arithmetic progressions

An arithmetic progression (AP) is a sequence where each term differs by a constant from
the previous term.

For example, 2, 5, 8, 11, 14, ... is an arithmetic progression as successive terms differ by 3.

A general AP whose first term is a and where the difference between successive terms is d
(called the common difference) can be written as a,a +d, a + 2d,a + 3d, ...

The recurrence relation that gives an APisu, =u,_, +d

We can see that the nth term is given by u, = a + (n — 1)d

Geometric progressions

A geometric progression (GP) is a sequence where each term is a constant multiple of the
previous term.

For example, 64, —32, 16, —8,4, — 2, ... is a GP as each term is — % the previous term.

A general GP whose first term is a and where each term is the previous term multiplied by r
(called the common ratio) can be written as a, ar, ar?, ar?, ...

The recurrence relation that gives a GP is u,, = ru,,_;
We can see that the nth term is given by u, = ar® !

You need to be able to recognise an AP or a GP from a recurrence relation or from a
formula for the nth term.

Exercise 2.1

1 State which of the following sequences are APs 2 A sequence is defined by u; = 10 and the
and which are GPs and in each case determine the recurrence relationu,, ., = u, — 3
10th term. Find a formula for u,, in terms of n.
@ 5, ?’ }’l_l"" 3 The nth term of a sequence is given by u, = 5 — 4
Bf Ligs g Find an equation giving u, ., , in terms of u,.
€L-L1-L1,.. 4 The nth term of a sequence is given by
@1,3,0 -1 -1,.. u, = 3 X 2% — n. Find the value of the 10th term.




2.2 Convergence and divergence of sequences

Learning outcomes

m To describe the behaviour
of convergent and divergent
sequences

m To define alternate, periodic and
oscillating sequences

You needto know

m How to find a limit of a function
ofnasn— oo

The limit theorems

How to express an improper
fraction as the sum of a
polynomial and a proper fraction

Convergent sequences

Consider the sequence 1, l%, l%, l— i

16/
The nth term of this sequence is given by u,, = 1 + %
Now as n increases, % — 0,s0u, — 1, ie. nl'_u:px (u,] =1

So the terms of this sequence converge to the value 1, and the series is
said to be convergent.

A sequence is convergent if the nth term is such that llm () =c
where c is a finite constant.

Divergent sequences
Consider the sequence 1, 3, 5,7, 9, ...

The nth term of this sequence is given by u, = 2n — 1 and, asn
increases, 2n — 1 increases so n]imx (11,] = oc. This sequence does not

converge, the terms diverge and the sequence is said to be divergent.

A sequence that is not convergent is divergent.

Example

Determine whether the sequence whose nth term is
converges or diverges.

4n® —1
5n*+ 2n — 1

1
4 L sienpur,
4n? — 1 _ n? o
CHIRE D 1 By dIVI(.jlng both numerator and
5+ R denominator by n?
1
4 .
4n? — 1 n® 4
Jim =y = lim 2_1 5
5+ =
n n

Therefore the sequence converges.

Alternating sequences

When the terms in a sequence alternate between positive and negative,
we have an alternating sequence.

For example, 1, —1, 1, —1, 1, ... and 0.5, —0.05, 0.005, —0.0005, ... are
alternating sequences.

An alternating sequence may be convergent or divergent.

The nthtermof 1, —1,1, —1, 1, ... is given by u, = (—1)**! and

nangc (u1,,] does not exist, so this sequence is divergent.
The nth term of 0.5, —0.05, 0.005, —0.0005, ... is given by
U, = % (10t —n)(—1)=+! and nli_rt;)C (1,) = 0 so this sequence is convergent.

Note that a negative number to a power involving a multiple of n will
alternate between positive and negative values.
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Periodic sequences

When the terms of a sequence form a repeating pattern, the sequence is
called periodic. For example, 1, 2, 3, 1, 2, 3, 1, 2, 3, ... is periodic.

A periodic sequence may also be alternating, for example, 1, —1, 1, —1, 1, ...

Periodic sequences are not convergent.

Oscillating sequences

The terms in an oscillating sequence move between higher and lower values.
Examples of oscillating sequences are

(@ 1,-1,1,—1,... (b)1,2,31,23,...

(c) 1,0,2,0,3,0,... (d) 5 —5,6,—6,7,—7, ...

An oscillating sequence may be an alternating sequence as in (a) and (d),
or an oscillating sequence may be a periodic sequence as in (a) and (b).

Oscillating sequences are not convergent.

uﬂ b . u]’] A ul]“
. .’- ' .
s | TR i *
' ' ' L] L
I T T N AR N I ‘P X
[} ry ) n‘ : “ v L T :“ . 'l \‘ ,I \‘ )
Wivit ot 1’ RN ETAT .S ST W S
E VA S TR T Vel §ow ¥ n NF wF NE R m
v L 1 i '.' L] oo - e v 2] s
L [ r *
x ] . ] N ] Ay »
n
An oscillating sequence An alternating sequence A periodic sequence
(also convergent) (also oscillating)

Note that the nth term of an arithmetic progression is u, = a + (n — 1)d so ul._u:[;‘c (u,) = x
Therefore all arithmetic progressions are divergent.
The nth term of a geometric progression is 1, = ar” ! and n]l._'l‘[_}c (1z,,) depends on the value of r.

If -1<r<l1,r*"!'—=0asn— ocso ﬂli_m (z,) = 0 and the sequence is convergent.
— 00

Example
Determine whether the sequence whose nth term is given by u, = 5 — [— %)” s alternating, periodic,
oscillating or none of these.

nl'Lrn_ [u,] = 5, so the sequence converges and so is neither periodic nor oscillating.

r1+l

(_ 3)11+ alternates in sign, but |( | < 1 therefore 5 — (— %)”H is always positive.

Therefore the sequence is not alternating.

Exercise 2.2

1 Determine which of the following sequences, 2 Determine whether each of the following
whose nth term is given, converges. sequences is alternating, periodic, oscillating or
n+1 2n? + 1 none of these.
(a) 211 (b) 22
+ 2 {E) u, = - ]- U, = la-ndun+2 u+1+2urr
nd+1 n nw
(©) oo (d) (—1) (b) u, = cosnw () u, = sin =~




2.3 Number series

Learning outcomes

To define a number series
To introduce the Y notation

To use the sum of the first n
terms of a series to find the sum
to infinity of the series

m To define convergence and
divergence of series

You needto know

B The meaning of an arithmetic
progression and a geometric
progression

m Thegeneral term of an
arithmetic sequence and of a
geometric sequence

Exam tip

When you are finding a general term
of a sequence or a series, look for

a relationship between the term
number, r, and the numbers in the
term. Common relationships are
multiples r, of r = k, multiples of

r? + k, where k is a constant.

Series

A series is the sum of the terms of a sequence.

For example, 1 + 2+ 3 + 4 + ... is a series.

When the terms are real numbers the series is called a number series.

We use u, to denote a general term of a series.

Example

Find the rth term of the series [211[3] + [3ﬁ4] + [4ﬁ5] + ..

The numerator of each term is equal to the term number, r, and the
denominator is the product of r + 1 and r + 2

——
Therefore u, = TESITEY

Check to see that the answer does give the first 3 terms.

The sum of the first n terms of a series

The nth term of the series 1 + 2+ 3 + 4 + ... is n.

The sum of the firstntermsis 1 +2+3+ ...+ n—-1)+n
We can write this more briefly using > to mean ‘the sum of’.

Taking the rth term as a general term (i.e. any term between the first and
nth term),
r=n
then Z r means the sum of all the values of r fromr = 1tor=n
r=1
r=n
ie. Zrz 1+2+3+...+n—1]+n

r=1

The sum of the first n terms of an arithmetic progression

Any AP has the forma,a + d, a + 2d, a + 3d, ... where the rth term is
a+(r—1)d

The sum of the first n terms is

Z [a+(r—1)d)=a+la+d) +la+2d)+ ...+ (a+(n— 1))

r=1

Using S, = Z (a + (r — 1)d) we have

r=1
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S, = a -+ la + d + la+2d) + ...+ |a+ (n—1)d) [1]

and (writing the right-hand side in reverse order)

2
I

@a+n—1)d) +la+n—2)d) +{a+ (n—3)d)+ ..+
Adding [1] and [2] gives 2S, = n(2a + (n — 1)d)

2]

=

Therefore
s,,=%{2a +(n—1)d

You may quote this formula unless you are asked to derive it.

An alternative version of the formula above is §, = % (a + 1) where I is the

last term. This version is derived from [2] where S, = % la + aln — 1)d)

For example, the terms of the series 1 + 3 + 5 + 7 + ... are an AP, where
a=1landd =2

The sum of the first n terms is given by S, = 2 (2 + 2(n — 1)) = n®
2

The sum of the first n terms of a geometric progression

Any GP has the form a, ar, ar?, ar?, ..., ar" ™!, ...

The sum of the first n terms is given by
S, =atar+ar+ta’+.. +a! [1]

n

Now 15, = ar+ar:+ar*+ ... +ar" !+ arm (2]
[1] — [2] gives S,|1l — 1) =a — ar®
Therefore

_all—r"

a 1—-r

n

You may also quote this formula unless you are asked to derive it.

Example

Find fl 5(%)

r=m+1 T
5%) is recognised as the sum of the first m + 1 terms of a @ Exam tip

ith fi 5 d 1 If you do not recognise the form of a
wi rst term 3 and comimon ratio 3 series, write out the first few terms:

r=m+1 r
r=m ¢ B Iy in this example using 5 (l)
Therefore ZH 5(1) =M ; 3
r=1 3 withr =1,2, 3, ... gives

(1- &) e

P
Py ]
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Example
r=n

Given Z u, = n{2 — n? find u,,.
r=1

r=n r=n-1

Z u=u, +u,+..+u, ,+u, and Z u,=u; +u,+..+u

r=1 r=1

n—1

Therefore unzz u, — Z u,
r=1 r=1
=n{2-n*)-{n-1)(2—-(n—1)?
=1+ 3n — 3n?

Exercise 2.3a

1 Find the rth term of the series

1,2,3 .4

1 1 1 1
®) oy~ @ T @) T B T

2 Find the sum of the first n terms of the series
1 1 3
14 gdli—g—1—5-

3 Evaluate

. ~_3—n i
4 Gwenz Hpmsig , find u, in terms of n.

n
r=1
1 n r=120
5 GwenZI: W= l,ﬁnle:“ u,
The sum to infinity of a series
The sum of the first n terms of a series is given by Z u =1+ %

r=1

As n—oo, 1+ % — 1 so the sum of the terms of this series converges to 1.
This is called the sum to infinity of the series.
r=n
A series is convergent when the sum to infinity (i.e. "11.11‘;10 (Z ur)]

is a finite constant.

r=n r=iun
If Zu,=n2+ 1, thenasn —oo,n* + 1 —oc0so lim (Z ur)
r=1

n—oo

is not a finite constant and the series diverges.
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A series that does not converge is called a divergent series.

Clearly any series, u; + u, + u3 + ..., where the terms do not approach
zero as n increases, will diverge as the sum of the first n terms will
continue to increase.

Therefore a necessary [but not sufficient) condition for a series to
converge is that the nth term approaches zero as n approaches infinity.

Arithmetic progressions and geometric progressions

The sum of the first n terms of an AP is % [2a + (n — 1) d) and it is clear
that this sum diverges as n — o

Therefore the sum of an AP always diverges.

a(l — m)

= where a is the first term

The sum of the first n terms of a GP is
and r is the common ratio.

al{l — r7)

Whether lim ( = ) is a constant depends on the value of r:

all — )

= — % and the series diverges.

If |r] >1,r" —o0 as n—o0 SO

all — )

Ifr=1,1-r=0s0 =

is meaningless.

ﬂ[l—ﬂ’] a
T=2 = 1=

If |[r]<1, "m—0as n —o0s0
converges.

2 and the series

a
1-r

Therefore, provided that |r| < 1, the sum to infinity of a GP is

Example
Show that the series % + % + % + % + ... is geometric and find the
sum to infinity of this series.

u, = %, t, =u; X (%), Uy =1,y X (%) and so on. Therefore each
term is % times the previous term, so the series is geometric with first

term % and common ratio % {21

1

So the sum to infinity is —>— =

1 =%

ool

Exercise 2.3b

1 §,is the sum of the first n terms of a series. Determine whether the
series is convergent, and if it is, give the sum to infinity when

_ 2n _ n? i
(@) 8, = -2 ®) S, =1 (c) S, =2
1

1 1 1
(b) Find the sum of the first n terms of the series in (a) and hence find
the sum to infinity.

2 (a) Show that the series is geometric.




2.4 Method of differences

Learning outcomes

m To use the method of differences
to find the sum of the first nn
terms of a number series

You needto know

m How to decompose a rational
function into partial fractions

Exam tip

You need to list enough terms at the
start and at the end so that you can
clearly see the pattern of cancelling.

Finding the sum of the first n terms of a series

We have found the sum of the first n terms of a series whose terms are

in arithmetic progression and a series whose terms are in geometric
progression. There is no general method that will give the sum of the first
n terms of any series, but there are methods that work for some types of
series.

Method of differences

This method works with a series whose general term can be expressed as
f(r + 1) — f(r), because most of the terms cancel when they are listed.

: : 1 1 1 1
Consider the series T Y A T ) + ..
So u, = e and we use partial fractions to express this as two

separate fractions:

1 A B

r[r+1]:r r+1

= 1=Alr+1)+Br

r=0 = A=1 and r=-1 = B=-1
1 1 1

rfr + 1) T r+1
H r=n _r_JT l l
ence 3 w=), {r~ 7
r=1 r=1

We now list the terms vertically (this makes it easier to see the terms that
cancel):
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Example

(a) Express in partial fractions.

r—1){r—2)

(b) Hence find Z PRy ] l]l[r )
r=3

(c) Deduce the sum to infinity of the series

] ] ]
2x1 3x2  ax3

1 __A . B
r=—1r-2) r—1 r—-2
r=1 = A=-1 and r=2 = B=1

1 1 1

[rfll[rfl]:_r—l_l_r—z

(a) = 1=Ar—-2)+Br—1)

(b) Note that the first term of this series is given byr = 3,

1 .
S0 [P TP is the (r — 2]th term.

r=n r=n

DI e M e )
r=3

r=3

(c) Sum to infinity = ﬂl'_].l"[_:_{C (the sum of the terms up to r = n)

=1m(y— 1)=1
n—oc n-—1

Exercise 2.4

1 (a) Express in partial fractions.

1
=1k +1)
r=n _l_
(b) Hence find 2 [r—_m

(c) Deduce the sum to infinity of the series

1 1 ]
Ix372xa " 3x5 1T

2 Express in partial fractions and hence find

1
rir+ 1)r + 2)

S e

r=1 "




2.5 Proving properties of sequences and series

Learning outcomes A formula for the nth term of a sequence

m To use proof by induction to When a sequence is defined by a recurrence relation, we may be able to
deduce a formula for the nth term that works for the first few terms, but

prove properties of sequences _ I
we need to prove that it works for all the terms. We can do this using

and series
proof by induction.
Example
You need to know
- A sequence of positive integers, {U,}, is defined by U; = 1 and
m How to use proof by induction 3Up1=2U, -1
Prove by mathematical induction that U, = 3%) -1
Let P, be the statement U, = 3(%) —1
2 1
Now P, is U, = 3(5) — 1 = 1, which is true.
: ; AL
Assume that P, is true when n = k, i.e. that U, = 3(5) -1
Using the recurrence relation gives
_afaf2¥ ) _
Wi = 2(3(5) 1] =
=2 2)3‘_ ]_l_ 2)“1 .
- Uf‘“‘a(S(a L 3‘3(3 1
Therefore if P, is true, P, ., is also true.
As P, is true when k = 1, then it is truewhenk =2, 3,4, ..., n
Therefore U, = 3%) — 1 istrueforalln € N
A formula for the sum of the first n terms of a series
It is not always possible to find the sum of the first n terms of a given
series. We may be able to deduce a formula that works for the first few
terms, but we need to prove that it works for all the terms. We can do
this using proof by induction.
Consider, for example, the series 12 + 22+ 32+ 42 4+ ... + n%>+ ...
Nowwhenr=1,2,3,4, ... Zrz gives the sequence 1, 5, 14, 30, ...
r=1
From this we may be able to deduce that Zrz = % (n + 1){2n + 1} is
trueforn=1,2,3,4 ek
Example

Prove by mathematical induction that Zrz = % (n+1)(2n + 1) foralln e N

r=1

Let P, be the statement = % (n + 1){2n + 1)
=1

r
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When n=1,P, = é (2)(3] = 1 = 12, i.e P, is true.
- k
Assume that P, is true when n = k, i.e. Py = Z = G [k + 1)(2k + 1) [1]
r=1
k+1 .
then adding the next term of the series gives Py, = Zrz e [k + 1)2k+ 1)+ [k + 1)?

r=1

We now aim to simplify the right-hand side so that it becomes [1] with k + 1 replacing k.

%[I<+ {2k + 1)+ (k+ 1) = [k + 1]( (2 + 1)+ (k+ 1]] K*-llu[zm 1) + 6k + 1))
Eil—] (2k* + 7k + 6)
B s gk + 3
l}%l_] [k + 1) + 1[2(k + 1) + 1]

Therefore if P, is true, Py, is also true.

As P, is true when k = 1, then it is true whenk = 2, 3, 4, ..., n

Therefore Z r:= %[n +1){2n + 1) istrueforalln e N

r=1

There are some number series whose sums are worth remembering.

These are:
the sum of the first n natural numbers: Z r= % (n+1)
r=1
[ This is the sum of the terms of an AP so can be verified using the Example
formula derived in Topic 2.3.) ,,
the sum of the squares of the first n natural numbers: Find Zr[lr +1)
Zrz =%{n +1)(2n + 1)
ze] r2r + 1) = (202 + 1)
[ This is proved above.) ; Z
the sum of the cubes of the first n natural numbers: =N "2 +
bes o e 3
Zra =7 n+1)
=1 =2(g[n+1][2n+1])
(This can be proved by induction and is part of question 1 in
Exercise 2.5 below.) + (% (n + 1])
These results can be used to find the sums of series whose general = % (n + 1){4n + 5)
term is the sum or difference of ar, ar® and/or ar®.

Exercise 2.5

1 Prove by induction that
n 1 _H = 1 n . niz )
(a) er[f_ 7= n (b) ler =4t

2 (a) Find the rth term of the series 1(4) + 2(7) + 3({10] + 4(13|

(b) Prove by induction that the sum of the first n terms of this
series is njn + 1)2




2.6

Learning outcomes

To define a power series

To introduce the factorial
notation

m Toderive and use Maclaurin’s
theorem to expand functions as
a power series

You needto know

m How to differentiate simple
functions

m How to differentiate products of
functions

m The values of the trig ratios for
multiples (including fractional)
of w

Power series and Maclaurin’s theorem

Power series

A series whose terms involve increasing or decreasing integral powers of a
variable is called a power series.

For example 2 + 3x + 4x2 + 5x3+ ..., and x* —x" ! +x7 2 — . are

poOwer series.

The factorial notation

There are several occasions when products such as
1 X2XxX3X4X5X...X 40 occur.

There is a shorthand notation for products such as these.
We denote 1 X 2 X 3 by 3! (called 3 factorial).

6! means the product of all the integers from 1 to 6 inclusive and n!
means the product of all the integers from 1 to n inclusive,

i.e. n! = (1)(2)(3) ... (m — 2)(n — 1)(n)

Example

20!
1713!

Evaluate

20! is the product of the integers from 1 to 20 and 17! is the product
of the integers from 1 to 17, so we can cancel this product.
200 _ 18 X 19 X 20

731~  3xax1 o X19x20=1140

Exercise 2.6a

Evaluate

51 9! 3% 4
1 4! 2 5! 3 o & o § &
Maclaurin’s theorem

If we assume that a function of x, f{x), can be expanded as a series of
ascending powers of x and that this series can be differentiated term by
term, then

flx) =gy +ax+ax®+ax>+ax*+ ... +ax + .. [1]

where ag, a,, a,, ... are constants,

Substituting 0 for x in [1] gives {0) = a,, ie. a, = £{0)
Differentiating [1] with respect to x gives

f'lx) = a; + 2a,x + 3a;x* + 4ax3 + Sa.x* + ... [2]
Substituting 0 for x in [2] gives {'(0) = a,, ie. a, = f'(0)
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Differentiating [2] with respect to x gives
f"x) = 2a, + (2)(3)asx + (3){4)ax® + (4)(5)asx® + ... [3]

Substituting 0 for x in [3] gives {'(0) = 2a,, ie. as=

Differentiating [3] with respect to x gives

£7(x) = (2)(3)as + (2)(3)(4)asx + (3)(4)(5)asx* + ... 4]
Substituting 0 for x in [4] gives (0] = (2/(3)a;, i.e. a; = F;,‘L‘Ol
After differentiating r times we get

frx) = (2){3){4)...(r — 1){r)a, + (2)(3])...{r + 1l)a,x + ...
Substituting 0 for x gives (0] = rla, ie. a, = frr[P]
Substituting these values for a;, ... in [1] gives

f(x) = £f{0) + £'(0)x + %f—]lxz + f—S{,ﬂx’ + ..+ EI{.?—]X" + ...

oo fn{olxn
= ol
n=10

This is called Maclaurin’s theorem and you need to learn it.

The series can be found if the nth derivative of f(x) exists when x = 0
for all values of n. For the series expansion to equal f(x), the series must
converge to f(x).

Some series converge to f(x) for all values of x and some converge for a
limited range of values of x. In the following examples, the values of x for
which the series converges is given but without proof.

Example
Use Maclaurin’s theorem to find the power series expansion of f(x] = e*
f'(0 0 10
Using f[x] = £{0) + {'[0)x + #XZ -+ %XS + ...+ #XT + ...
! ! r!
gives flx) =e* s0o f0) =e’=1
f'lx) =e* s0o f(0) =e=1
f"x) =ex so 0] =el=1
f"x) =e* so ("0) =e’=1
frlx) = e so 0] =e'=1
Therefore ex =1 +X—|—§+}§—?+Z—?+...+};—;+
This series converges for all values of x.
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Example

Use Maclaurin’s theorem to find the power series expansion of f{x) = cosx

Using f(x) = f{0) + {'{0)x + [0] X f3[!0] . @Xr + ...
gives flx] = cosx so fi0)] = cos0O =

flx] = —sinx so (0] = —sin0 =0

f'lx)] = —cosx so f'(0] = —cos0 = —1

t"(x] = sinx so f”[0) = sin0 =0

f"(x) = cosx so f”[0] = cos0O =1

(0)x3

Therefore cosx =1 + (0)x — f T gyt E+

We can see that values cycle from 1 to 0 to —1 to O to 1 again and so
the series involves only even powers of x. Therefore the general term

has the form = when r is odd the term is negative, and when r is

[2 ]"
even the term is positive. We can show this using (—1},
2
ie. cosx = 1— ;, i—?— ..+[—l]f§r!+

This series converges for all values of x.

Example

Use Maclaurin’s theorem to find the series expansion of f(x) = In {1+ x|

Using f{x) = f{0) + £{0)x + f2[10] x2 4+ f;[}] S P F0} > I A
gives flx] =In(l+x) so f0)=Inl1=0
frix) = T+l_x so fl0) =1
frlx) = —ﬁ so £70) = —1
f"[x) = +7[1+2X]3 so f10) =2
f"(x) = —7[%_::}(3]'4 so f"0) =—-2%x3= 3!
Therefore In (1 + x) = 0+X—§+23—){i—%+ . and the general
term has the form
R T '
e

This term is positive when r is negative and vice-versa, which we can
show using (—1)7*+!

XZ
=4

= — X_ X_4 e r+1X_r
= In{l+x)=x 3 4-I—...+[ 1) PR

This series converges for —1 <x <1

Note that it is not possible to use Maclaurin’s theorem to expand
f(x) = Inx because {{0) = In0 and In 0 is undefined.
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Standard expansions

These are the series you are expected to know:

2 3 4 T
e"=l+x+,}£—!+%+%+...+f—!+... for all values of x
cosx =1 — X—Z-I— Xt + [—l]rizi-l— for all values of x
) 21 41 v rt ’
. - _X_:i X_’) s X2r+].
sinx = x — 35 + 5 + ...+ (-1} ESI + ...  for all values of x
I i X _
In{l +x)=x 7 T3 4+...+[ 1) PR for—-1<x=1
Ml ey E_ XX .
(1 -xj=—x T (—1) r-l—...for l=sx<1
Example

Expand e*sin 2x as a power series as far as the term in x3.

Using the standard expansions for e and sin x as far as the term in x° gives
]3

[T + ... Replacing x with 2x

b — X_z X_S 1 — -
e —1+X+2|+3,|+... and sin2x = (2x]

: _ x? . _ 4x3
e*sin 2x = 1+X+j+§+.)(lx T‘f’...

Multiplying the brackets and ignoring any terms involving powers of x greater than 3 gives

3 3
e“sini‘,x:le%Jr D5y =2X+2X2*X§+

The series found so far have been infinite, but some series terminate.
For example, using Maclaurin’s theorem to expand (1 + x)* gives

%Xl + %Xs + ...+ @Xf + ...
flx) = (1 + x)*, f'(x) = 4(1 + x)3, 'x) = 12(1 + x)}, {"x)=24(1 +x), {"x)=24
so f0)=1, £(0) = 4, (0) = 12, f(0) = 24, fm0) = 24

flx] = £{0) + f'{0)x +

All further differentials are 0, so the series terminates.

- 12 24 . 24
[1+X]4—1+4X+—2TX2+§!—X%+HX4

ie. (1+x)*=1+4x+6x*+ 4x° + x*

Note that there are easier ways to expand functions of the form (1 + x}* which we will look at later in this section.

Exercise 2.6b
Use Maclaurin’s theorem to expand each of the (b) Write down u, and u,,,, where u,, and u,,,, are
following functions as far as the term in x* and give the nth and (n+1)th terms respectively of this
the range of values of x for which they are valid. series.
i Hence find a recurrence relation between u,,
1 flx)=¢e 2 tan2x andu,,
3 In(l — 3x) 4 e‘cosx (c) Use the recurrence relation to show that the
series is geometric and hence verify that the
5 (a) Use Maclaurin’s theorem to show that series converges to (1 — x) !, stating the range

1-x'=14+x+x"+x3+x*+x°+ ... of values for which this is true.




2.7

Learning outcomes

To prove Euler’s formula

To use Maclaurin’s theorem to
expand further functions and find
approximations

You needto know

m How to evaluate powers of i
(ie.V/=1)

The standard Maclaurin series

The values of the trig ratios for
multiples (including fractional)
of

B The meaning of a quadratic
function

Applications of Maclaurin’s theorem

Euler’s formula
We introduced the formula ¥ = cos 8 + isin 8 in Topic 1.7.

We can now use the Maclaurin expansions of cos 6 and sin 6 to prove it:

AT A [
cos():l—j—ka— +[—1]’2r!+.
i = _is E — 1\ 92r+1
and sinf =0 3!+5!+...—|-[ 1) [2r+1]!+"

.3 --’)
cosf)+isin9=l+if)*%*%+%+lgg i

Now replacing x with i@ in the expansion of e* gives
[ig)* (i0P (i0)* (6P
T TR TR

- . ¢ i | ¢ | i
—l+19_i—§+m+ﬁ+...

cos @ + isin @

ci= Tkl

Expanding a composite function

To expand a function such as f(x) = ¥ we start with the expansion of e*
and replace x with sinx. We can then replace sinx by its series expansion.

By terminating the series we can find a polynomial that is an
approximation for the function.

Example

Find a quadratic function that is an approximation for esin,

([sinx)? (sinx)?
or toar f
3
Now sinx = x — >~ + ... so we can replace sinx with its expansion.

3!
-2 ) k-24.)

sinx X3 i
¢ =l+(x—ﬁ+...)+ o + 30 N

e’"* =1 + sinx +

To find a quadratic function we can ignore all terms containing powers
of x greater than 2.

3 2 [y
Now (X—%-i-...) =X2—%+ higher powers of x

(and we ignore the x* term).

3 3
And (X—%-F...) = x* + higher powers of x

s0 we can ignore this term and further terms.
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sinx — XZ
e’ —1+X+2!+...
sinx X_Z

= g 1+X+2

Using a series expansion of a function to find an
approximate value of a function

By expanding a function as a Maclaurin series of ascending powers of x,

we are expressing the function as an infinite polynomial. We can use the

first few terms of the polynomial to find an approximate value for the

function. By adding more terms we can improve on the approximation to

give a value to as great a degree of accuracy as we choose, provided that
the series converges for the value of x we use.

For example, we can find an approximate value for cos % by using the
Maclaurin expansion of cosx which converges for all values of x.

2
Using the first three terms of the series, i.e. cosx = 1 — 2~ + X

o @y

. s
gives cos 7 = 1 = p +T

= 0.707429...
The calculator gives cos % = 0.707106...

so the approximation is correct to 3 decimal places.
Adding more terms will improve the approximation.
T (4]

()

6!

Adding the next term in the series, i.e. —

o myd T\ 6
cos 4 =1~ (31) ¥ (j!) - (21)

0.707102...

gives

and this agrees with the calculator value to 5 decimal places.

Exercise 2.7

1 ExpandlIn (1 + 2x?) as a series of ascending powers of x as far as and

including the term in x*. Give the range of values of x for which the
expansion is valid.

2 Use the first four terms of a Maclaurin series to find approximate
values for:
(a) e
(b) In1.1 ie. 1+ 0.1)

£

(c) sin 3

3 Write down the first five terms in the Maclaurin series expansion of e*,

(a) By substituting 1 for x, find an approximate value for e.

(b) Find the value of the sixth term of the expansion when x = 1 and

hence estimate the accuracy of your approximation.

Did you know?

The summation of infinite series
goes back to the Ancient Greeks.
Archimedes used the summation

of an infinite series to find the area
under an arc of a parabola. He also
used a series to find a fairly accurate
value for 7.




2.8

Learning outcomes

m To derive and use Taylor's
theorem

You needto know

B Themeaning of a differential
equation

m How to differentiate an implicit
function

Didyou know?

Maclaurin series are named after
Colin Maclaurin and Taylor series
after Brook Taylor, both working in
the UK in the early 18th century.
However, several Maclaurin

series and Taylor’s theorem were
discovered some decades earlier
by James Gregory, a Scottish
mathematician.

Taylor’s theorem and applications

Taylor’s theorem

We have seen that we cannot expand In x using Maclaurin’s theorem.
This problem and others where the Maclaurin series does not give a valid
expansion can sometimes be overcome by using a Taylor series which
gives an expansion of f(x) in ascending powers of (x — a),

ie. flx) =ay+ a\lx-a) + ay[x-a)* + aslx —a) + a,(x-a)* + ...

The values of a,, ay, a,, ... can be found using a method similar to the
one we used to find the Maclaurin series giving

f"{a)(x — a)? & f"la)(x — a)? bk fra)(x — a)r S

f(x) = fla) + f'|a)(x — a) +

2! 3! - r!
00 f"

<Y e
n=10

This is called Taylor’s theorem and you need to learn it.

You can assume that this series converges for values of x close to a for
any expansion you are asked to find.

Example
Find the first four terms in the Taylor expansion of In (x) about a.
, , t"a)(x —a)*  {"a)lx —a)?®
Using f(x) = fla) + f'{a)(x — a) + [ ][2! ) [ ][3! ]
gives
flx) = In|( x) so fla) =Ina
r e l r P ].
f[x]—g SO f[a]—E
f(x) = —% so f"a) = —#
f"x) = )% so f"a) =- %
- x—a (x—a [x—a
Inx = lna + T @ T ap Tt

Exercise 2.8a

Find the first three terms in the Taylor expansion about a of

1 tanx 2 sinx 3 e‘cosx
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Using Taylor series to find approximations

A Taylor series can sometimes be used when either the Maclaurin series
is not valid or the series converges slowly.

Example
Find the first three terms of the expansion of sinx as a series of

ascending powers of (X - %)

Hence find an approximate value of sin 46° given that 1° = 0.017 rad.

Using Taylor’s theorem with a = 17: gives

)[X - E) + (—sinﬁ)(i_@— s

s i
smx—s1n4+(cos4 1 1 o
a 2
x— X [x-Z
i 7 | f) +
v V2 202

Now sin46° = sin (45° + 1°) = sin (% + 0.017]

so when x = 46° i.e. (% + 0.017) rad, ( - %) = 0.017

0.017)?
sin46°=é+0'[ﬂ7—[ j] 4o
V2 V2 W2
0.707106... + 0.0120208... — 0.000102... = 0.719025...

Therefore sin 46° = 0.7190

[sin 46° = 0.7193 correct to 4 decimal places)

Note that we could use the Maclaurin series to find an approximate

value for sin (% + 0.01 7) but the terms decreasc in value more slowly

(the third term of the expansion of sin (% + 0.017) is 0.00277.. ) S0 we

would need more terms to give a reasonable approximation.

Using Taylor series to find polynomial approximations for the
solution of differential equations

There are some differential equations that cannot be solved to give
y = f[x), but we can sometimes use Taylor’s theorem to find a polynomial
that is an approximation for f(x) for values of x close to a given value.

To do this we need to know a pair of corresponding values of x and y
o _dy . _dy
for an equation involving & and, for an equation involving &

d
corresponding values of x, y and &y

These are called the initial conditions.

Then, stopping the series after a given number of terms, we can often
approximate the solution for values of x close to a where a is the initial
value of x. How good the approximation is depends on several things
such as the number of terms included, how close x is to @, and so on.
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dy d2
Differential equations are usually given in terms of x, y, Ey, E); Jeveny B0

we use Taylor’s theorem in the form
dy dy| x—a) (dy) [x—af
y=y.+ (&)a =l (@)a_m L (ﬁ] 3l
dy dy ;
where y,, Jx a7 - means the value of y, IR when x = a, where a is

the initial value of x.

We illustrate this with a simple first example.

Example

Find a Taylor series polynomial up to and including the term in x2 to
approximate the solution of &y = xy for values of x close to 0, given

thaty = 1 whenx =10

We stop the series after the term containing x2,

d dYy (x —a)?
i.e.yzya+(ay]a[x—a]+g);[ 31 ]

d
The term involving x* involves —dz; so we differentiate the given
. . . . ) . d?
differential equation to give an equation containing E);

dy d>y _dy

T T dk
a is the initial value of x, so a = 0,
andy = lwhenx=0soy, =1

g (d—y)a =(0)1)=0 = (%)a: 010 +1=1

dx
v =y, + (%)a . (dly)a [x ;!a]Z

dXZ

: ~14%
gives y—l+2

The differential equation in the example above has an exact solution, y = e
Try to judge the accuracy of the approximate solution by finding values of

2 Lo
T XT and e whenx = 0.01, 0.1, 0.2

Example

The displacement, s metres, of a particle at time ¢ seconds is given by
the differential equation

2,
%+ 2%—1—31113:0
WhentzO,sannd%zO.S

Find a Taylor series approximation for s in ascending powers of ¢t up to
and including the term in 3.
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3
For the term in t3 we need the value of % so we differentiate the
given differential equation.

d%s ds

W+2E+sms=0 [1]
= %4‘2%4‘ [coss]%=0 [2]

We use the Taylor series in the form

e £ (%)a (t—a)+ (%)a i ;!alz (dss ) ‘ ;1(1]3

Using the initial values we havea = 0

dt?

s

so s,=0 and (%]u = 0.5

Substituting these values in [1] gives

(%)a + 2(0.5) + sin0 =0

)
(dt2 a 1
Substituting these values in [2] gives

(4], +2(-1) + (cos0](0.5) = 0

(ﬁ) _3

dedla 2
Therefores = 0 + (0.5)t + (~1) £ Eid (ﬁ) (5]
: i 5 5
t tZ tS
aillls NN TEge

Remember that this approximation is only reasonable when ¢ is very
small (i.e. close to zero).

Exercise 2.8b

1 Find a Taylor series approximation to y in ascending powers of x up to
and including the term in x* when x is close to zero, given that

dy
EZZX)/—SX

and thaty = 1 whenx =0
Hence find an approximate value of y when x = 0.1

2 Use a Taylor series expansion to find a cubic function that is
approximately equal to y when
dy _ (dy )2
dx? — \dx
given y = 1 and %z 2 whenx =1

Hence find an approximate value of y when x = 0.9




2.9 Derivation of the binomial theorem
forne N

Learning outcomes Binomials

A binomial is an expression with two terms, for example, 2 + x,

To introduce Pascal’s triangle
3x + 2y, s* — 5t

To derive the binomial theorem
forn € N In this topic we investigate how to expand powers of binomials as a series.

m Tointroduce and use the *C, .
notation Pascal’s triangle

We can expand, for example, (@ + b)°, by multiplying out the brackets,
but a quicker method is to use Pascal’s triangle.

You needto know First look at these expansions:

m Maclaurin’s theorem [a+bl'=a+b

la + b2 = a® + 2ab + b2

@ + b)? = a® + 3a*h + 3ab® + b3

la + b)* = a* + 4a®b + 6a’b* + 4ab? + b*

Notice that the powers of a and b form a pattern.

B The use of factorial notation

From the expansion of (@ + b)* you can see that the first term is a* and
then the power of a decreases by 1 in each succeeding term while the
power of b increases by 1. In all the terms, the sum of the powers of a
and b is 4. There is a similar pattern in the other expansions.

Now look at just the coefficients of the terms. Writing these in a
triangular array gives:

1
1 1
1 2
b
3 3 1
S

1 4 6 4 1

This array is called Pascal’s triangle and it also has a pattern:

Each row starts and ends with 1 and each other number is the sum of the
two numbers in the row above it, as shown. Also, the numbers in each
row are symmetric about the middle of the row.

You can now write down as many rows as you need.

For example, to expand (a + b)¢, go as far as row 6:
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Using what we know about the pattern of the powers and using row six of
the array gives

[a + b)® = a® + 6a°b + 15a*b* + 20a°b® + 15a%b* + 6ab® + b®

The binomial theorem forx € N

We can use Pascal’s triangle to expand (a + b)* for any n € N, but this

will clearly be a time-consuming activity for values of n greater than 5.
However, we can use Maclaurin’s expansion of (1 + x}* to get a general
form for the expansion of (a + b)" for anyn € N

Using f(x] = (1 + xJ7,
f'lx) =n{x + 1)*"1,
f'lx) = nln — 1){x + 1)2-2,
f"lx) =nln — 1){n = 2)[x + 1)7 3, ...,
flx) =nn—-1)....n —r+1)x+ 1F, ...,
filx) =nn—1)...\n — (o — 1)){ix + 1) =n{n — 1)...{1) = n!
so all further derivatives of fx) are zero and the series terminates.
flo) =1, £{0) = n, "0} = njn — 1), £"{0) = n{n — 1)in - 2), ...,
fr0) = nln — 1)...[na —r + 1), ..., £2(0) = n!

(n — 1]X2+n[n - l][n—21X3+
2! 3!
nn—1]...[.n—r+1)

S + X

n
= (1+x"=1+nx+

T e XD
(Note thatn—} = l)
n!

This expansion can be adapted to give the expansion of (a + b)?,
but before we do that, we will introduce a simpler notation for the
coefficients of x, x?, ... . [These coefficients are called the binomial
coefficients.)

The 2C, notation
nln — 1){n — 2}

The coefficient of x* in the expansion above is 31 , which
; ; Iy f ial n! '

we can write using only factorials as T

—1)...n—r+1
Similarly, B st —2 ] can be written as ——————, which we

r! [n — r)lr!
denote by "C,, i.e.
n!
G = (n — )i

Therefore C, = —— oot S

2 (4 —2)2! 2X2

8!

L] 8C, = __ 8l :8x7x6:56

(8 — 3131 5! X 3! 6



Section 2 Sequences, series and approximations

Now "C, is the coefficient of x" in the expansion of (1 + x)* so "C,, is the

. ) ] ; ;
coefficient of x?, which we know is 1, but "C, = 2! S o

(n — n)in! — Ol
To make this equal to 1, we define 0! as 1

0l=1
Example
Show that °C, _, = °C,
" _ n! _ . n _ n
Co-r = m—(n—-rMMn—! n-1! @-r)t <
Example
Find a relationship between n and r given that *C, = " !C,_,
= n!
T o - n)r!
. (n — 1)! 3 (n — 1)
=l T m—1—r+1r=1!  [n—1rlr— 1N
nl_ (n—1)
[n—1)ir! (o —1Pr— 1N
Now n!=n(n—1) and r! =rjr—1)!
) , ) nln — 1) _ (n— 1)
Cancelling gives  i.e. m—1lrr =10 [n—1)l r = 1)
n _
B
r
= n=r

Exercise 2.9a

1 Find the value of n when "Cy =*"!C,
2 Find the value of n when 5("C;) = 4("*!C;)

3 Find a relationship between n and r given that #+!C, = °C,

The expansion of (@ + b)" forn €N

We can now write the expansion of (1 + x)* as

PGy A0 A+ PG+ wy HIC R A s TCXT

b] and replacing x by % in the expansion above

Then (a + b)* = a® (1 + i

gives

(@ +b)" = a" (ﬂc[, + ﬂcl(b) + ﬂcz(b)z Fanit "Cr(b)r-l- ot "C,,(b]")

a a a a|
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Multiplying through by a" and noting that *°C, = “C,, = 1 gives
(a+br=a"+"Cua"b+"Coa" b2+ ...+ "Ca”~'b* + ... + b*

You need to learn this, but you may find it easier to
remember in the form

{ﬂ+b]"=ﬂ“+_ﬂﬂﬂ_lb+£__]-]ﬂ"_zb2+9£__1]{n__glﬂ"_3b3
2! 3!
—-1)..{n—r+1
+...+ﬂ{":l L ol ]a"'fbf+...+nabﬂ'1+bﬂ

r!

Either of these forms confirms the observations we made from Pascal’s
triangle, i.e. the sum of the powers of a and b in each term is n and the
power of a decreases by 1 in each succeeding term while the power of b
increases by 1.

We have shown that °C,, _, = “C, so the coefficients are symmetric about
the centre.

To expand (1 + x)'? in ascending powers of x as far as the term in x® we
replace n with 10, a with 1 and b with x to give

10 x9
2x1

10 X9 X 8
3 xX2x1

(1+x)'0 = 1{1)1° + 10(1)% + (152 + (1)7%3 + ...

1 + 10x + 45x% 4+ 120x° + ...

Knowing the properties of the expansion, we can also write down the last
four terms, i.e.

oo+ 120x7 + 45%° + 10x7 + x!'0

To expand {1 — x)® in descending powers of x as far as the term in x°, we
can either write {1 — x]® as (—x + 13, then replace n with 8, a with —x
and b with 1 to give

(1= x)* = 1(=x)* + 8(—x)"(1) + E5L (—x)(1 ]2 .

=¥ Bl DR .,
or we can expand (1 — x)* in ascending powers and use the symmetry
property, i.e.
(1 —x)® =1—8x+28x2+ ...+ 28x¢ — 8x" + x°
then reverse to give descending powers of x.
Note that the general term in the expansion of
(1 —x)%is 8C,—x) = 8C,(—1)x"

We look at further expansions using this work in Topic 2.10.

Exercise 2.9b

1 Expand (1 — 2x)7 in ascending powers of x as far as the term in x3.

2 Find the coefficient of the term in x* in the expansion of (3 — x)°




210 Applications of the binomial expansion
forneN

Learning outcomes The expansions of (1 + x)? and (1 — x)=
m To apply the binomial expansion i nin — 1) 5 nin — 1)({n — 2| . .
fiis BN (1 +xj2=1+nx+ o i 30 ¥+ .. +x
and
] -1 =)
{(I—xpt= 1 =me-t n[nz ]x2 + 2 3]1[11 lx-” +o.. o= 1P

You needto know

These are the most straightforward binomial expansions and you need
to recognise the left-hand side when you see it. For example, you should
recognise 1 + 3x + 3x2 + x3 as the expansion of {1 + x)3

m Theexpansion of (a + b)" for
n€EN

B The meaning of compound

- .
RS Compound interest problems

m The sum of the first 1 terms of a

geometric progression Suppose $4 is deposited in an account that pays interest of ﬁﬁ of $4

(where r is the rate % per annum (pa)) and the interest is credited to the
account each year on the anniversary of the deposit. Then, if no
withdrawals are made, at the end of year 1, the amount in the

account is $A(l + ﬁ)

at the end of year 2, the amount is

$A(1 + ﬁ) + ﬁ of $A(1 + ﬁ) = $A(l e 1—60)2

at the end of year 3, the amount is

$4(1 +100) * 100 °f $4(1 + 109) = $4(! + 100)’

By deduction, the amount at the end of year n is $A(1 -+ —l%)ﬂ
This formula is used to calculate compound interest (where the interest
is added to the capital each year).

For example, if $10000 is deposited in an account paying 2% pa

compound interest, then the amount in the account after 4 years is
$10000(1 + 0.02)* = $10000(1.02)*

Example

(a) Rachel has a pension that each year increases by 3% of its value the previous year.
Her initial pension was $3000 when she retired. What was her pension at the end of the 8th year of her
retirement?

(b) How much in total did Rachel receive in pension payments for the first 8 years of her retirement?

(a) Pension at the end of the 8th year = $3000({1.03)®* = $3800 (to the nearest §)
(b) Total pension paid for the first 8 years is $3000(1 + 1.03 + 1.032 + 1.03% + ... + 1.03%)
The expression in brackets is the sum of the first 8 terms of a GE witha = 1 and r = 1.03

l[l = 103?’] _ $3000 » 1_033 -1

total paid = $3000 X —— 57— ©0.03

= $26 677 |to the nearest $)
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Expansions using the binomial theorem

The examples that follow illustrate some problems involving expansions.

Example
Find the terms up to and including x? in the expansion of (1 + ZX]“(I = %X)é

(1+ 2x)41 — 1x)® = (1 + 4{2x) + 6(2x)* + 4(2x)* + ...](1 NI L ) PR )

o 2% 3l 2%
There is no need to go beyond the term in x? in either expansion

o L P ) [ e
-1 _3X+_14_5X1_%X3 L ] Exam tip
+ 8x — 24x® + 30x% + .. Be systematic when you expand
+24x* - 72x3 + . brackets like this: multiply the
1+ 39%3 + second bracket by 1, then by 8x and
15 1 so on. Then add the results.
1+ 5x+ —4:—X2— 125;;3 e

Example
9
Find the term independent of x in the expansion of (% - 2X2)

9
The general term in the expansion of 1 Q,XZ) is

e, L) -ty =g (o (25

This term is independent of x when 2r = 9 — r, ie. whenr =3

9! X (—8
Therefore the term independent of x is *C5(—2)° = %1] = —672

Example
Use the binomial expansion of (1 — 2x)* to find the value of 0.98% correct to 3 decimal places.

(1 —2x)* = 1 — 8(2x) + 28[4x%) — 56(8x3) + 70{16x%) — 56(32x5) + ...
0.98 =1 — 2(0.01) So substituting 0.01for x gives
0.98% =1—0.16 +0.0112 — 0.000448 + 0.0000112 — 0.0000001792 +...

We stop here as the first significant figure of the next term will be in the 7th or 8th
decimal place so will not alter the 4th decimal place

0.851 correct to 3 d.p.

Exercise 2.10

1 Find the coefficient of x3 in the expansion of {1 + x — x?)¢ 3 Find the coefficient of x” in the expansion
(Hint: treat it as (1 + X]¢ and then substitute x — x* for X of (XZ B 1)3

2 Find the real part of {1 + 2i)°

(Hint: expand (1 + x)¢, replacing x by 2i and only consider
even powers of i.)
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Learning outcomes

m To derive the expansion of
(14 x)* when n is a fraction or a
negative integer

m To apply the binomial theorem
to problems

You needto know

Maclaurin's theorem
Factorial notation

The meaning of a convergent
series

B How to express a rational
function in partial fractions

The binomial theorem for n € Q

Using Maclaurin's theorem to expand (1 + x)* gives

i n{nzT 1) e nin — ;]!{11 - 2) 3

% n(n — 1]..;{?1 —r+ 11x"+

(1+x)"=1+nx

YT

Now r is a positive integer, but when n is a negative integer or a fraction,
there is no value of r for which (n — r + 1) is zero. In this case the series
does not terminate.

The series expansion of (1 + x)” converges to (1 + x)”
onlywhen —1<x <1

Note that the term in x* is the (n + 1)th term, not the nth term.

For example, to expand (1 + x)° we substitute % for n giving

3% (3) , 3x(a)*x(3) ,

L
(1+x)f=1+3x+ X X7 30 XL, .,
:l+%x—%xz+ll—6x3+... for—-1<x<1

Note that when n is a positive integer, the series (1 + x)” terminates and
is valid for all values of x, but when n is not a positive integer, the series
is infinite and converges only when |x| < 1.

There are other differences:
we cannot use "C, for the coefficients
and we cannot use the form of the expansion for (a + b)*

To expand (a + b)" when n & N, we take a outside the bracket to give

a" (l+ Q)

a

__ — ! 245
For example, to expand /(2 — x2|, we express /(2 — x2] as 22 (l - Xj)
then replacing n by % and x by (— %) we have
1 1
: 2\ _ ot . 5" 1% (3) ey
21-5F =21+ ) (-F)+ 5 (5) ¢
— /3 — x52  xW2
4 32

2
This expansion is valid when —1 < XT <1
XZ

. x2
ie. when0<7<l >

cannot be negative

= x2<2 = —-V2<x</2
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Example

Expand (1 + x)! as a series of ascending powers of x up to and
including the term in x*.

Give the term in x™.

Using the binomial theorem,
(1 +x)!

U208 (U=l

_ (=1)(=2)
=l-x+——Fr—x"+
= ] =X ot o

The pattern is now clear, i.e. the coefficients are 1 when the power
of x is even and —1 when the powers of x are odd.

Therefore the term in x” is (— 1) x*

The series expansion of (1 — x)™! is similar to the series in the example
above, i.e.
(=1=2)
2!
(—1){=2)(-3)(—4)
i 4l
=l4+x+x>2+x3+x*+ ...

(—1){—2){-3]

{1 —x)1=1-(—x)+ 30

() + ()

{=xft 4 ...

The series expansions of (1 +x) ! and (1 — x) ! are worth
remembering and may be quoted unless their derivation is
asked for, i.e.

(1+x)'=1-x+x*—-x*+x*+..+(-1"x"+... -1<x<1
(1-x"'=1+x+x2+x3+x*+ ... +x" + ... -1<x<1
Note that both of these series are geometric, so starting with the

right-hand side and finding the sum to infinity of a GP verifies these
expansions.

Exercise 2.711a

1 Expand (1 — X]% as a series of ascending powers of x as far as the
term in x5,
Give the range of values for which the expansion is valid.

2 (a) Expand (1 + 3X]_1— as a series of ascending powers of x as far as the
term in x°.

(b) Find the term in x” and give the range of values for which the
expansion is valid.

3 Find the term in x" in the binomial expansion of {1 — 2x)~? and give
the range of values of x for which the expansion is valid.
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Applications of the binomial theorem

We can apply the binomial theorem to a variety of functions if we can
express them as binomials.

To use the binomial theorem to expand a function such as f(x) = [x — 1) !
e |
we write it as x ! (l - %) . We can then expand the function as a series

of descending powers of x,
\2 3
ie flx}= l(l + 1 + (LJ + (l) + ) =
X X X
=xl+x2+x3+ ...

This series is valid for —1 < é <1, ie. forx<—-lorx=>1

Example

Find the coefficient of x" in the expansion of {3 — 2x]~? in ascending powers of x and give the range of values

of x for which the expansion is valid.

(3 - 2x)2 =321 - %)_2

:1(1 (=) (_2_54) L 1=20=3) (—E)2+ [—2][—3][—4]( 2x)3+ (—=2){=3){(=4)(=5) (_g)ﬁr )

9 2! 3 3! 3 4! 3
sl (B)ra B e B ¢ s )+
You need to write down sufficient terms so that the pattern of the coefficients is clear.
From this we can see that the coefficient of x" is é (n + 1) 3—: il ;[_:3 j; I
The expansion is valid for —1 < % <]l = —% = %

The binomial theorem can be used to expand rational functions with
factors in the denominator by using partial fractions to express them as
the sum or difference of simpler functions.

Example

SR (E——

(1+ x2)(1 — x|

(b) Hence find the first four terms in the expansion of f(x) as a series
of ascending powers of x, stating the range of values of x for which
the expansion is valid.

(c) Find the coefficient of x".

(a) Express f[x] = in partial fractions.

=AX—I-B+ C
T Iy 1 —x

(Ax + B)({1 —x] + C[1 + x?)

1
(2) (1 +x2){1 — x]

I
I

1 _ x+1 1
¥ T +0 =% =2[}i+X2]+2[1 —x]
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(b) fix) = (x + 1)1 + x2) 1 + 21 —x] !
:%[X—f— 1][1_X2+X4_X6+...]+%[]_—|—X+X2+X3+X4“.]
:%[X-X3+X5_X?_|____]+%[1_X1+X4_Xf,+m]

+%[1+X+X2+X3+X4+...] The terms in x? and x>
cancel so we have to
add another term to the

+ %[1 +x+ X2+ +x4+ x5+ ...) expansionof (1 —x)~"

=ll+x-22-+x+x5—..)

=l+x+x*+x"+ ...

The series is valid for -1 <x <1

(c) The coefficient of x" is 1.

The binomial theorem can also be used to find approximate values for
some irrational numbers.

Example
(a) Expand (1 — X]lj as far as the term in x3.
(b) Substitute 0.02 for xin (1 — X]_; and its expansion.

Hence find an approximate value for v2 and state the degree of
accuracy of your answer.

= Q)P

2! 3!

@ (1-x=1-1x+

(b) Substituting 0.02 for x gives
[0.98]% =1-0.01 -—0.00005—0.0000005 — ...

This expansion is valid because x = 0.02 is within the range —1 <x < 1

= %,I'I% = 0.9899495... Thisis correct to 7 d.p. as the
next termis 5 X 10°
= T7ﬁ /2 =0.9899495... = 2 = 1.41421 correct to 5d.p.
Exercise 2.11b

1 Expand (x — 2]’1r as a series of descending powers of x as far as and
including the fourth term. Give the range of values of x for which the
expansion is valid.

2 Express in partial fractions. Hence expand

1
(1 + x){1 — 3x]
1

T =& as a series of ascending powers of x as far as and

including the term in x*. Give the range of values of x for which the
expansion is valid.

L with x = 0.1 to find the value of
v1 —x

3 Use the expansion of

V10 correct to 4 d.p.




212 Locating a root of an equation

Learning outcomes The intermediate value theorem
o Taintrodicethe intdimediate Consider a function f{x) that is continuous between x =g andx = b

value theorem The diagram shows that if f(c) is a value of f{x) between f(a) and {(b), then
B Touse the intermediate value c lies between a and b.

theorem to locate a root of an

- y = fix)}
equation
fla) 5

You need to know fie) ===~ =T
B The meaning of a continuous (b) ¥

function '
m How to sketch graphs of simple '

functions (0] a c b ;

There may be more than one value of x between x = g and x = b, as the
diagram below shows.

y = fx]4
/|
f(a)
fle) -~ o)
oo
i(b) -
0 . ¢  ob\N *x

However, if f{x) is not continuous between a and b then there may not be
avalue of x betweenx =agandx = b

This is illustrated in the next diagram.

y = f[x]

fla)|—

flc)f--mmmmnmes e

fib)

O fececcgeanad
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The intermediate theorem states that:

Provided that f(x) is continuous between x = aandx = b,
there must be at least one value of x between x =aandx = b
for which f(x) has a given value between f(a) and f(b).

Locating a root of an equation
It is not possible to find the exact roots of some equations.

However, we can sometimes use the intermediate theorem to locate a
root in an interval.

If the equation f{x] = 0 has a root between x = g and x = b, and if f(x)
is continuous in this interval, then the curve v = f(x) crosses the x-axis
betweenx =a andx = b

The intermediate value theorem tells us that f{x) = 0 is between f(a) and {(b).
Therefore f(x) changes sign between x = a and x = b, i.e.

y.l\

fib)

0]

Y

fla)

If f(x) is continuous between x =a and x = b and
if one root of the equation f(x) = 0 lies betweenx =aandx = b
then f(a) and f(b) are opposite in sign, i.e. f(a) x f(b) <0

The first step is to roughly locate the roots of an equation using a sketch
where possible.

For example, the equation e* — 2x — 2 = 0 has roots where the graphs of
y = e*and y = 2x + 2 intersect.

M-
(F5]
A

/_2_

From the sketch, we can see that there appears to be a root between x = 1
andx = 2

We can test this by using f(x) = e¥ — 2x — 2 [which is continuous) and
finding f{1) and f[2).

fl1) =e—4<0
and f{2) =e?—-6>0 e2=73,.

As f(1) and f{2) are opposite in sign, i.e. f{1] X f{2] < 0, there is a root
between 1 and 2.



Section 2 Sequences, series and approximations

Example

Use a sketch to show that the equation x> — 2x> + x + 1 = 0 has only
one real root.

Find two consecutive integers between which this root lies.

The roots of x3 — 2x* + x + 1 = 0 are the values of x where the graph
of y = x3 — 2x* + x + 1 intersects the x-axis.

The curve is a cubic which crosses the y-axis where y = 1, and y — oo
as X — 0o
To locate the curve we will find the turning points:

dy
= 22
i 3x dx + 1

= 3x2—-4x+1=0
= (3x—-1)x—1)=0
= X:%andle

Whenxz%,yz 1% andwhenx =1,y =1

The curve crosses the x-axis once so there is only one real root.

yh

N

1 X

/ 0

Alternatively, the roots of x> — 2x> + x + 1 = 0 are where
xr=xt—x—1

Gal— =

A sketch of thecurvesy = x3andy = 2x* —x — 1 (= (2x +1}{x — 1]}
also shows that there is only one real root.

}I.ll
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From either sketch it appears that the root is between —1 and 0.
Using f(x) =x3 — 2x2 +x + 1,
f(—1)=-3 and f{0)=1

f{—1) and f{0) are opposite in sign, therefore the root lies between
—1and 0.

(It is likely that this root is nearer 0 than —1, as f{0) is nearer zero
than is f{—1]. We can test this by finding the sign of f(— %]

Iff(— %) < 0, the root lies between — % and 0.

Exercise 2.12

1 Draw a sketch to show that the equation Inx = éhas one real root.

Hence find two consecutive integers between which the root of the
equation xInx — 1= 0 lies.

2 Show, using a sketch or otherwise, that the equation e = x2 — 1 has
only one root.

Find two consecutive integers between which this root of the equation
lies.

3 The diagram shows a sketch of the curve

y=tan"lx — In(l + x?)

yll
l_

0.57

(a) Verify that zero is one root of the equation
tan'x —In(l1 +x*) =0

(b) Use the intermediate value theorem to show that another root of
the equation lies between 1 and 1.5
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Learning outcomes

m Touse interval bisection to find a
root of an equation to a specified
degree of accuracy

You needto know

m How to use sketch graphs and
the intermediate value theorem
to locate a root of an equation
within an interval

Interval bisection

Numerical methods for solving equations

Numerical methods use repeated applications of a method to successively
improve on an approximation for a root of an equation.

Interval bisection method

In the last topic, we showed how to locate a root between successive
integers. The interval bisection method refines this approach to give the
value of the root to any degree of accuracy.

Consider again the equatione* — 2x — 2 =0

We have shown in Topic 2.12 that this equation has a root between 1 and 2
and that f(1) < O and f{2) > 0

So if this root is &« we know that 1 < a < 2

y.ll

@)
<
=Y

0.5 f[”l

We then bisect the interval to give x = 1.5 and find the sign of f[1.5):
f(1.5) = e!'®* = 5 = —0.5... Therefore f{1.5) < 0 and f{2) >0 so
lb<a<2

yll

0.5 1 f1.5]1]5 2 25X

We then bisect the interval again to give x = 1.75 and find the sign of f{1.75):

£{1.75) = €175 — 5.5 =0.25... > 0
Therefore f{1.5) <0 and f{1.75) >0 so 1.5<a<1.75
y.i\
o[ Vo' 1 fl1.5) 25X

Bisecting the interval 1.5 to 1.75 gives x = 1.625 and
£1.625) = —0.17... <0
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Therefore f{1.625) <0 and f{1.75) >0 so 1.625 < a<1.75
yil

f11.625K s
0.5 1 1, 2 2

w
=Y

We are narrowing down the interval in which the root lies, but we still do not
have a value correct to even 1 decimal place, so we continue.

There is no need to draw diagrams, we just need to keep track of the sign of f(x].
Bisecting the interval again gives x = 1.6875

f(1.6875) = 0.03... > 0 and we know that f{1.625) < 0

Therefore 1.625 < o < 1.6875

Bisecting the interval again gives x = 1.65625

£(1.65625) = —0.072... < 0 and {1.6875) >0

Therefore 1.65625 < a < 1.6875

The last interval is less than 0.05, so we can now say that the root of the
equation is 1.7 correct to 1 decimal place.

To get an answer correct to 2 decimal places, we need the interval to be less
than 0.005

This method is an example of an iterative method. An iterative method for
finding a root of an equation starts with a first approximation and then uses that
to feed into the next step to give a better approximation. This is then repeated
until the desired degree of accuracy is obtained. Each step is called an iteration.

The interval bisection method is slow to converge (i.e. to get close to the value
of the root).

In the example above it took five iterations to get an answer correct to 1 decimal
place.

However, it does have the advantage that the method will only fail if the
conditions for the intermediate value theorem are not met, i.e. if the function is
not continuous or there is more than one root in the initial interval.

In the next topic we look at an iteration method that improves on the interval
bisection method.

Exercise 2.13

1 (a) Find the stationary points on the curve y = x* — 3x + 4 and hence
sketch the curve.

(b) Use your sketch to find consecutive intervals in which the root of the
equation x* — 3x + 4 lies.

(c) Use the interval bisection method to find this root correct to
1 decimal place.
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Learning outcomes Linear interpolation

Linear interpolation is similar to the interval bisection method but uses
proportion to find the next value in the interval rather than taking the
mid-point.

m Touse linear interpolation to
find a root of an equationtoa
specified degree of accuracy

Consider an equation f(x) = 0 which has a root a which we know lies
betweenx = a andx = b

You needto know

m How to use sketch graphs and

the intermediate value theorem f(b)
to locate a root of an equation
within an interval a c &
m The properties of similar X
triangles fla)
Didyou know?
- The line joining the points on the curve y = f{x) where x = a and
There is evidence that a method x = b cuts the x-axis at ¢. Assuming that fla) < 0 and f(b) > 0, the
similar to this was used over 2000 diagram shows that the interval between x = a and x = ¢ is likely to
years ago. be smaller than the interval from x = a to the interval bisection point.

Therefore this method is likely to converge more quickly than the
interval bisection method.

The line joining the points on the curve y = f{x) wherex =aandx = b
forms a pair of similar triangles. Therefore the point x = ¢, divides the
line between x = a and x = b in the ratio

¢, —a_ |fall

b —¢ |f[b]|

. _alfib)| +blfia)]
*= TJa)] + T

where c, is the first approximation for a.

|fla)| - |£{b)], ie.

You need to learn this.
Consider again the equation e* —2x — 2 =10

We have shown in Topic 2.12 that this equation has a root between 1 and 2
and that (1) < O and f(2) = 0

yll

._.
1
=
b2
wn

3

0.5 (1) 1
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Working with the first four decimal places throughout gives
f(1) = —1.2817... and £(2) = 1.3890...

_ (1){1.3890) + (2)(1.2817) _

Therefore G 12817 7 1.3890 = 1.4799
Thisis the 1st approximation for a
flc,) = —0.5672... < 0 so «is in the interval 1.4799 to 2

_ (1.4799)(1.3890) + (2)(0.5672)
Repeating the process: ¢, = 05672 = 1.3890

= 1.6307
2nd approximation

flc,) = —0.1539... < 0 so «is in the interval 1.6307 to 2

. . 1.6307){1.3890) + {2){0.1539
Repeating again: Cy = [ [}]E1539 +]l 3[891'[0 ] = 1.6675

3rd approximation

flc;) = —0.0360... < 0 so e isin the interval 1.6675 to 2

_ (1.6675)(1.3890) + (2){0.0360)

0.0360 + 1.3890 = Laiad

And again: G

4th approximation

f(1.6759) = —0.0081... and this is small enough to be worth checking to
see if the 4th approximation is correct to 2 decimal places:

£(1.675) = — 0.011... and f(1.685) = 0.022... so 1.675 < a < 1.685
Therefore « = 1.68 correct to 2 decimal places.

We have found the value of « correct to 2 decimal places in four
iterations. This compares with five iterations to give a value correct
to 1 decimal place using interval bisection {Topic 2.13). Therefore the
convergence rate is quicker.

The rate of convergence of linear interpolation depends on
the shape of the curve in the initial interval.

If the gradient changes a great
deal and if ¢, is not very close
to a, the rate of convergence

a -
is slow. c b X
If the gradient does not change
il
i

much and if ¢, is close to a,
the rate of convergence is fast.

As with interval bisection, this
method fails if the function is not
continuous or has more than one
root in the initial interval.

Exercise 2.14
1 (a) Show that the equation Inx — x + 2 = 0 has a root between x = 3
and x = 3.5
(b) Use linear interpolation twice to get an approximate value for this
root.

(c) Show that the approximation is correct to 3 decimal places.
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Learning outcomes

m To use the Newton-Raphson
method to find an approximate
value for the root of an equation
to any degree specified

m To give a geometric
interpretation of the method

You needto know

m How to locate an intervalin
which a root of an equation lies

m How to find the equation of a
tangent to a curve at a given
point

Didyou know ?

The method was first published

by Sir Isaac Newton and it is often
called simply Newton’s method.
However, it was simplified by Joseph
Raphson a few years later. Neither of
these early methods used calculus -
this was first introduced by Thomas
Simpson. The version we use today
was published nearly a century later
by the French mathematician Joseph
Lagrange.

Newton-Raphson method
The Newton-Raphson method uses a linear approximation for a function.

If the equation f(x] = 0 has a root « then the curve y = f(x) cuts the
x-axis where x = «

If ¢, is an approximate value of «, then the tangent to the curve at the
point A where x = ¢, cuts the x-axis at a point where x = ¢,

y = f{x]

W

A

In most cases, ¢, will be closer to « than is ¢,. Therefore ¢, is a better
approximation to .

The coordinates of A are (¢, f(c,]) and the gradient of the curve at A is f'(c,).

Therefore the equation of the tangent is y — f(c,) = f'{c,)(x — ¢})
fic,)
t'(c,)

This tangent cuts the x-axiswhere y=0 = x=c¢, —

Therefore if ¢, is an approximation for a root of an

equation f(x) = 0 then ¢, = ¢; — ;%
1

is a better approximation.
You also need to learn this.

Using this method to find the root of e¥ — 2x — 2 = 0 and usingc¢, = 2
as the first approximation, we have f'[x] =e*— 2

5 _ e —6
Therefore ¢, = 2 — T = 1.74224...
1.74224 __
and ¢y = 174224, — S A8 68140
1.68142 _ ¢
and cy = 1.68142... — & el_(,ui'e‘_%m'“ = 1.67835...

80 a is probably equal to 1.68 correct to 2 decimal places.

We have already tested this in Topic 2.14, so we know that o = 1.68
correct to 2 decimal places.

If we do another iteration, we get

el.67835 5.3567...

e1_(,?335 = 2 = 1.67834...

cs = 1.67835... —

so we can see that « is likely to be 1.6783 to 4 decimal places.
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We can check whether o = 1.6783 is correct to 4 decimal places:
£(1.67825) = —0.0003..., f{1.67835) = 0.00001 ... Therefore
1.67825 < @ < 1.67835 80 @ = 1.6783 correct to 4 decimal places.

The Newton—Raphson method is the best method considered so far for
finding a root of an equation because when it works it converges rapidly,
as the example above shows.

However, there are factors that cause the method to fail:

B the first approximation, ¢, is too far from «

y = fix)

Cy C1 o

"%

B the gradient of the curve at the point where x = ¢, is too small
y = flx)
c a/ Cy

A

Y

B the gradient of the curve increases rapidly

y = flx)

Cy [4 Cy

Exercise 2.15

1 (a) Use a sketch to show that the equation x* = In (x + 2] has two
roots.

(b) Use the Newton—Raphson method three times to find an
approximate value of the larger root.

(c) State, with reasons, the accuracy of your approximation.




216 Using a given iteration

Learning outcomes

m Touse agiven iteration to find an
approximate value of a root of an
equation

You needto know

m How to use the intermediate
value theorem

Iteration

As we have seen with linear interpolation and Newton-Raphson,
iteration produces a sequence of values by using a formula (called an
iteration formula) of the form

Xpv1 = f[Xn]

Taking x, as the first value, then x, = f{x;)

x3 = f{x,]
x, = f{x;)
x; = f(x,) and so on.

For example, when x,,, = (x, + 1] and x, = 2
5 =2+ 1F= 1.732...
x; =(1.732... + 1)7 = 1.652...
Xy ={1.652... + 1)2 = 1.628...
x; ={1.628... + 1)> = 1.621... and so on.

This is the same as a recurrence formula used to generate a sequence
and we now look at the convergence of such a sequence in the context of
finding a root of an equation.

The sequence of values generated above converge to a value «, because as
n increases, x,, gets closer and closer to x,, , |, i.e. x,, — «. This value, «,
i ] L 3
is when x,, = x,,,;, i.e. when «a = (a + 1)2. Therefore « is a root of the
: 4
equation a = (a + 1)2

Not all iterations give values that converge.

For example, using the iteration formula, x, , , = ve* + 2, and taking
x; = 2 gives

x, =vel+ 2 = 3.064...

Ve3064. 1) = 4.839...

X3

e

x, =vet®% + 2 =11.32...
This sequence of values diverges because the values are increasing

(rapidly in this case).

Using an iteration formula to find a root

We have seen that we can use an iteration formula to find a good
approximation to a root, «, of an equation f(x) = 0
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When f{x) = 0 can be written in the form x = g(x] we can use this to
make the iteration formula

Xr1+]. = g[Xn]

The roots of the equation x = g{x) are the values of x at the points of
intersection of the line

y = x and the curve y = g(x)

The diagram shows how this iteration works.

Va
V=X
D{x,, glx.|} E
-~ <
(@) i E Alxy, glx )}
: B :
{ b Loy =gx)
0 E P : .
X9 o X3 X X

Using x, as the first approximation to the root «, then in the diagram
A is the point on y = g(x] where x = x; so y = glx,)
B is the point where x = « and v = g(x;)
C is the point on the line y = x where x = x, and y = g|x,)

Now x, will be closer to « than is x; provided that, near the root, the
curve is less steep than the gradient of the line y = x, i.e. provided that
lg'(x]| <1

Therefore x, is a better approximation to « than is x;,
provided that |g'(x)| <1

Now C is on the line y = x, therefore x, = glx;)
We can repeat this process to get x5 Xy, ... .

The rate of convergence of this sequence depends on the value of g'(x)
near the root.

The smaller |g'(x)| is, the more rapid is the rate of convergence.

Va Va
—

1
T
1
1
' H ]
1 1
! h v
1 1
1 h ' '
i ) —_— :
i ) i v
' i !
! E ! '

@] H : - 0] | : g
¥4 Xy X (74 X X
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The sequence diverges [i.e. fails to find a root) if |g'(x)| =1
Ya Ya

by

We will use this method to try and find the roots of the equation
etl—x—-3=0

The graph of y = ex*! — x — 3 shows that the equation has two roots,
one near —3 and the other near 0.

Rearranging the equation as x = e**! — 3 and changing this to the
iteration formula gives
Xu+1 = ex”+ ? 3
Taking x, = —3 gives
Xy =e2—3=—28646...
X3 =e 18646 _ 3= 28450,
X, = e 18450.. — 3 = —2.8419...
Xs = e L8419 — 3= _28414...

so this iteration is converging.

Using flx] = et —x — 3,
f(—2.8415) =7.9 X 105> 0 and f(—2.8405) = —7.6 X 10~* < 0,
therefore « = —2.841 correct to 4 significant figures.

Now taking x; = 0 as the first approximation to the other root gives

XZ = el == 3 == _02817.
X3 = el-02817.. _ 3 = _(.9490...
X, = el 0990 _ 3 10477 .

This sequence is diverging so it fails to find the root near zero.
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We could predict that this will happen by looking at the gradient function

of ex*1! — 3:
%[e"”—é’.] =¢tl and 7! >1 forx>—1,

ie. |g'x]| = 1 for values of x nearx = 0

Example

o

3

(b) Taking 0.75 as a first approximation to this root, use the iteration
X,+1 = cosx, three times to find an approximation to this root.

(a) Show that the equation cosx — x = 0 has a root between 0 and

(c) Hence show that the root is 0.74 correct to 2 decimal places.

(a) f(x) = cosx —x so f{0] =1 and f(%) =0.5-104...=-05...
f{0) > 0 and f%) < 0 therefore cosx — x = 0 has a root between
0 and %

(b) Using x;, = 0.75 and x,,, = cosx, gives
cos0.75 = 0.73168...

x; = c0s0.73168... = 0.74404...
c0s0.74404... = 0.73573...

Xy

Xy
Therefore 0.73573... is an approximate value of the root.
(c) £(0.735) = c0s0.735 — 0.735 = 0.0068... > 0
f{0.745) = cos0.745 — 0.745 = —0.0099... <0

Therefore the root, «, lies between 0.735 and 0.745, so o = 0.74
correct to 2 decimal places.

Note that x is measured in radians, so the root is 0.7 4 rad.

@ Exam tip

Iterations are easy to do on most
scientific calculators: enter the value
of x4 and press EXE (or ENTER). Then
enter the formula for g(x,) using ANS
for each value of x. Then press EXE
and continue to press EXE for each
iteration.

Exercise 2.16

(a) Show that the equation x* — 5x — 3 = 0 has a root between —1 and 0.

(b) Use —0.5 as a first approximation for this root and the iteration
x3—3
5

given by x,, ., =

Use six iterations to find a better approximation for the root, writing

down 5 decimal places for each iteration.
(c) Show that your root is correct to 3 decimal places.

(d) The equation x® — 5x — 3 = 0 also has aroot nearx = 2

Explain why the iteration formula given will fail to find this root.
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1 A sequence is givenbyu; = 8andu, =u, ; — 2

Show that the sequence is an arithmetic
progression and write down the common
difference.

The first three terms in a sequence are

g—, a and ab respectively, b > 0

(a) Show that the terms are in geometric
progression.

(b) The first term is 2 and the product of the

three terms is 216.
Find the values of a and b and the fifth term.

The nth term of a sequence, 11, is given by
u, = 2(37) — 4
Show thatu,, ,; = 3u, + 8

The nth term of a sequence, u,, is given by
_2n>—n

“ T AnT ¥ 1

Show that the sequence converges and give the

value to which it converges.

u

Determine whether the sequence whose nth term

is n sin %11 is alternating, periodic or oscillating.

(c) the sum to infinity of the series.

(a) Show that the terms of the series

L
R i e T
are in geometric progression.

(b) Find the sum of the first n terms of the series

in (a).

(c) State with a reason whether the series is
convergent,

(a) Express [I—Hh in partial fractions.

w— Ii
(b) Hence ﬁ_[ld Zl mr+—3']

(c) Deduce the sum to infinity of the series

1 1 1

3%x4 3x5 4Ax6

9

10

1

12

13

14

15

16

(a) Express in partial fractions.

1
[r — 1)rfr + 1)

T2 l
(b) Hence find 2 m

The nth term of a sequence, u,, is given by
i, =1 — 1

Prove by mathematical induction that the sum of
the first n terms is given by % n{n® — 1}

$2000 is invested in an account that accrues
interest at 5% per annum paid yearly. At the end
of each year $500 is withdrawn from the account.

Show that the amount $4,, in the account after
n years is given by

A, = 2000(5 — 4(1.05)")

The rth term of a series, u,, is given by

u, = (2r — 1){r +2)
Find Zur
r=1

(a) Use Maclaurin’s theorem to find the first two
terms in the expansion of

flx) = e¥sinx
as a series of ascending powers of x.

(b) Use your series to find an approximate value

m
for e®,

(a) Use Maclaurin’s theorem to find the first
four terms in the expansion of

1 —x

e V1 +x’

as a series of ascending powers of x, stating
the values of x for which the expansion is
valid.

(b) Use your series to find an approximate value
for In 3.

e ez i

(a) Find the first three terms of the expansion of

cosx as ascending powers of ( — %)

(b) Hence find an approximate value of cos 61°
given that 1° = 0.017 rad.

(a) Expand tanx as a series of ascending powers
of (x — a) as far as the term in (x — a)?

(b) Usea= % to find a quadratic function that
gives an approximate value for tanx when
x is close to &

3



17

18

19

20

21

22

23

24 Expand (1 + x + 2x?)7! in ascending powers of x

25

(a) Prove that "C, = "C, _,
(b) Find a relationship between n and r when
ncr =t ].Cr_ |

In the expansion of (l = %X)g in ascending
powers of x find:

(a) the first four terms

(b) the coefficient of x’

(c) the general term.

Find the terms up to and including x* in the
expansion of

(1 — 2x)41 + 4x)°

Find the real part of (1 — 2i)5

Find the term independent of x in the expansion

afe-2

Find the coefficient of x* in the expansion of
1
V2 — 3x

1
(a) Express (x + 1){x + 2){x2 + 1)

in partial fractions.

1
(x + 1){x + 2){x> + 1]
series of ascending powers of x up to and

(b) Hence expand

including the term in x%, and give the range

of values for which the expansion is valid.

up to and including the term in x3.

The diagram shows the graphs of the curves

x 2
X

y=¢ land y =

y.ih

(a) Verify that one solution of the equation
Sy e G (1)
lies betweenx = 1 and x = 2

as a

26

27

28

29

(b)

(@)

(b)

(c)

(@)

(b)

(c)

Section 2 Practice questions

Use the interval bisection method twice to
show that this root lies between x = 1.75 and
x=12

Sketch the graphs of
y=x—landy=In(x + 2)

Use your sketch to show that the equation

1— x + In(x + 2) = 0 has only one positive

root, a.

Use the intermediate value theorem to find

two consecutive integers between which « lies.

Use linear interpolation twice to find an
approximate value for . Give your answer
correct to 3 significant figures.

Show that the equation x* — 4x> + 5 =0
has a root between the turning points on the
curvey = x> — 4x2 + 5

Use the intermediate value theorem to find
consecutive integers between which this root
lies.

Use the Newton—-Raphson method to find
this root correct to 2 decimal places.

The diagram shows the curvey = x® — 6x + 4

@)
(b)

(c)

(d)

VA
104

N

| J
o
——
14
(o]

|
B
W

Confirm that the equationx® — 6x +4 =0
has one root equal to 2.

Using 1 as a first approximation to the other
positive root, show that an iteration formula
of the form

Xl g[Xn]
converges to the value of this root and find it
correct to 2 decimal places.

Taking the negative root as lying between
—3 and —2, show that the same iteration
formula fails to converge to this root.

Use another numerical method to find this
root correct to 2 decimal places.

Use a numerical method to solve the equation

e = 3x

giving the roots correct to 3 decimal places.
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Learning outcomes

m Tointroduce and use the
fundamental counting principle

The principles of counting

Counting

To answer any question starting ‘How many ... ¥, we need an efficient
method of counting.

When the entities to be counted can be placed in a one-to-one
correspondence with the numerals, 1, 2, 3, ..., counting them is easy.
For example, to count the balls in a box, you can take them out one at a
time counting 1, 2, 3, ... asyou go.

However, there are many situations where this is not possible.
For example, how many different meals are possible when there is a
choice of 3 main courses, 2 desserts and 2 drinks on a menu?

We can illustrate the different meals that can be chosen using a diagram:

drink;
dessert, <
drink,

main, dink
dessert, < 1
drink,
drink,
dessert, <
drink,
maing, —_—
1
dessert, <
drinkz
drink;,
dessert, <
dl’inkl
maing

Bk,
dessert, <d -
I1 1

For each of the three ways of choosing a main course there are two ways
of choosing a dessert.

Therefore there are 3 X 2 ways of choosing a main course and a dessert.
For each of these 3 X 2 ways there are two ways of choosing a drink.
Therefore there are 3 X 2 X 2 different meals possible.

Now consider a multiple choice examination with 30 questions, each
of which has a choice of four different possible answers. In how many
different ways can this examination be answered?

Taking just the first two questions: for question 1 there are four different
ways of choosing an answer and each of these four can be paired with one
of the four different answers for question 2. This gives 4 X 4 ditferent
ways of answering the first two questions, i.e. 42 different ways.

Repeating this argument for all 30 questions gives 43¢ different ways.
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Question Question Question - Question
1 1 1 30
4 X 4 X 4 p < 4

These two examples illustrate that

if there are n ways of doing one task, m ways of doing another, I ways
of doing yet another task ... and so on,
then the number of different ways of doing all the tasks is

nxmxIlx ..

This is known as the fundamental counting principle.

Example

Three ordinary six-sided dice, one red, one blue and one green, are rolled and a coin is tossed.
How many different outcomes are there?

There are six ways in which each dice can land and two ways in which the coin can land.

Therefore there are 6 X 6 X 6 X 2 = 432 different outcomes.

Example

A company selling software products uses a six-character code on each item.
The first character is one of the digits 1 to 9.

The next two characters are letters of the alphabet, not including vowels.
The next two characters are one of the digits 0 to 9.

The final character is a letter of the alphabet, not including the letter O.

How many different codes are possible when digits and letters can be repeated?
There are 9 choices for the first character, 21 choices for the next two characters, 10 choices for the fourth
and fifth characters and 25 choices for the last character.

Therefore there are 9 X 21 X 21 X 10 X 10 x 25
= 9922 500 different codes.

There are many other situations where we need an efficient method of
counting, and we look at some of them in the next few topics.

Exercise 3.1

1 There are three different colours of paper that can 2 The number plate on a car consists of three digits
be used to make a poster and there is a choice of followed by two letters of the alphabet, followed by
one of four different colours that can be used for one digit. The first digit is 1 to 9, the next two digits
the print on the poster. arc 0 to 9, the two letters of the alphabet do not

include the letters I or O and the last digit is 1 or 0.

How many different colour combinations are
there? How many different number plates are possible
when digits and letters can be repeated?




3.2 Permutations

Learning outcomes

m To define a permutation and
introduce the notation P,

m To find a variety of types of
permutation

You needto know

Permutations
A permutation is an ordered arrangement of a number of objects.

For example, if four books, A, B, C and D, are placed on a shelf, one way
of arranging them is A, B, C, D. Another is B, D, A, C.

or

m Factorial notation

m The fundamental principle of
counting

Each of these arrangements is called a permutation of the books and each
arrangement is a different permutation.

The number of permutations is the number of different arrangements.

For the books, there are 4 different choices for the left-hand book. This
leaves 3 different choices for the next book, so there are 4 X 3 different
ways of selecting the first and second book. There are now only 2 ways

of choosing the third book in the row, giving 4 X 3 X 2 ways of arranging
the first three books. There is only one book left, so the number of
permutations of the four books is4 X 3 X 2 X 1 = 4!

In general
the number of permutations of n different objects is n!

For example, the number of permutations of the 52 playing cards from an
ordinary pack is 52!

The examples of the books and cards are straightforward arrangements
in a line. In the next example we look at the number of different
arrangements of some of the n objects.

Example

How many different three-digit numbers can be made using the
integers 2, 3, 4, 5, 6 if each digit can only be used once?

There are 5 ways of choosing the first integer, 4 ways of choosing the
second integer and 3 ways of choosing the third integer.

Therefore there are 5 X 4 X 3 = 60 different three-digit numbers that
can be made.

The example is an illustration of a general case: the number of
permutations of r objects from n different objects is
nXn—-1Xn-2)xX . X[n-—r+1)

< , < ’ < ! :
This can be written in factorial notation as Hfrﬂ and is denoted by "P,.

(n
i.e. the number of permutations of r objects from

n different objects is P, = __ 1!
(n —r)!
In the next examples we look at arrangements that have conditions
placed on them.
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Example

How many different three-digit even numbers can be made using the integers 2, 3, 4, 5, 6 if the digits can
be repeated?

The number has to be even so the last digit is restricted to 2, 4 or 6.
Starting from the right-hand end of the number, there are 3 different digits that can be used.
The next two digits can be any of the 5 given digits.

So there are 5 X 5 X 3 = 75 different three-digit even numbers that can be made.

Circular arrangements

When n different objects are arranged in a circle, there is no first or last object.

For example, if five people, A, B, C, D and E, are to sit A 1 D

in chairs round a circular table, then there are
5 choices for chair 1, 4 choices for chair 2, and
so on giving 5! different ways to be seated. This
number includes the five arrangements shown
in the diagrams: D C C B B A

Now for any one of these arrangements, the people can
be moved clockwise five times and each person will
still have the same people on either side. Therefore the B D A C
number of ways of seating the five people in numbered

chairs is five times the number of ways of seating them

round a circular table. A E E D
Therefore there are % = (5 — 1)! ways of arranging five different objects in a circle.
In general

there are (n — 1)! ways of arranging n different objects in a circle and

)
ﬁ ways of arranging r objects from n different objects in a circle.

Now consider the number of arrangements of five different beads on a circular ring.
The % different arrangements include these two:

A ring can be turned over, so these two arrangements are the same.
Therefore the number of different arrangements in a ring is half the

al ..
—5—12

number of different arrangements in a circle. So there are 5 %

ways of arranging the five beads on a ring.

In general
when n different objects are arranged in a ring that can be

turned over there are BE! = %{n — 1)! different ways of doing this.

Exercise 3.2a

1 In how many different ways can the letters in the (b) the number is even and each digit can be
word PAGES be arranged? used more than once?

2 How many three-digit numbers can be made from 3 In how many different ways can three beads
the digits 3, 5, 6 and 7 if from five different beads be threaded on a ring?

(a) the number is odd and each digit can be used once
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Permutations when not all the objects are different

Consider the number of different ways of arranging the letters in the
word LOOK.

There are two letters O in this word. If we label them as O, and O, then
the number of different arrangements of the letters L O; O, K is 4!

But this number includes the two arrangements

LO,0,K and LO,0,K

so the arrangement L O O K appears twice in the 4! number.

This means that the number of arrangements of the letters L O O K is

41 _
aF 12
Applying the same argument to the letters in the word CURRICULUM,
we have two Cs, two Rs and three Us, so the number of arrangements of
the letters C, U; R, R,I1C, U, LU; M is 10!

But 10! includes the 2! ways of arranging the two Cs, the 2! ways of
arranging the two Rs and the 3! ways of arranging the three Us.

Therefore the number of arrangements of the letters in CURRICULUM

100 ;
lsm = 151200

In general
the number of permutations of n objects when p are the

.. n!
same and q are the same is ——
p'q!

Permutations when some objects have to be kept
together or kept apart

To find the number of permutations of the letters in the word THREE
when the two Es are kept together, we can consider the two Es as one

object, i.e. find the number of permutations of the four objects
T H R (EE), which is 4!

This means that the number of permutations where the two Es are apart
is the total number of permutations of the letters minus the number
where the Es are together,

5!

1.6 I 4! = 36

Independent permutations

Two tasks are independent when the execution of one task has no effect
on the execution of the other task.

For example, the number of different number plates with any two
letters followed by any four digits is the number of permutations of two
letters of the alphabet, 2°P,, and the number of permutations of four
digits, 19P,. These two permutations have no effect on each other, so
the permutations are independent. Using the fundamental principle of
counting, the number of different number plates is 2P, X P,

Therefore when two tasks are independent, the number of ways of
doing both is the product of the number of ways of doing each task.
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Mutually exclusive permutations
Two tasks are mutually exclusive when they cannot both be executed.

For example, it is impossible to make a two-digit number and a three-digit
number — a number either has two digits or it has three digits, not both.

Using the digits 1, 2, 3, 4, 5 without repeating a digit,

the number of permutations giving a two-digit number is 5l _90

3!
the number of ways of making a three-digit number is % = 60
and these two permutations cover all the different two-digit numbers and
three-digit numbers so there are 20 + 60 = 80 ways of making a two-digit

number or a three-digit number from 1, 2, 3, 4, 5 without repeating a digit.

When two tasks are mutually exclusive, the number of ways
of doing either one task or the other is the sum of the
number of ways of doing each task.

Example

A number plate with five characters on it consists of at least three letters together followed by at least one digit.
The letters are chosen without repetition from the letters A, B, C, D, E, F and the digits are selected without
repetition from the digits 1 to 9 inclusive.

The letters must include the letter A. Find the number of different number plates possible.

There must be either 3 letters and 2 digits or 4 letters and 1 digit:

m 3 letters and 2 digits
There are 2 letters available from the 5 remaining letters (B, C, D, E, F) and 2 digits from the 9 digits.
There are 5 X 4 ways of arranging the two letters and for each of these there are 3 positions that A can be
in. So there are 3 X 5 X 4 permutations of the letters. There are 9 X 8 permutations of the digits.
The permutations of letters and digits are independent, so the number of permutations of 3 letters and
2 digitsis 3 X 5 X 4 X 9 X 8 = 4320

m 4 letters and 1 digit
The number of permutations of letters including A {using similar reasoning to the first case) is
5 X 4 X 3 X 4 and the number of permutations of one digit is 9. Therefore the number of permutations
of 4 letters and 1 digitis 5 X 4 X 3 X 4 X 9 = 2160

The two cases considered are mutually exclusive, so the number of different number plates is
4320 + 2160 = 6480

Exercise 3.2b

1 Find the number of arrangements of the letters in the word
PROBABILITY in which

(a) the Bs are together
(b) the Is are apart
(c) the Bs are together and the Is are apart.

2 Three multiple choice questions each have one correct answer and
three incorrect answers.
In how many ways can these questions be answered so that there is at
least one correct answer?

3 A code is made from three digits selected from the digits 1, 2, 3, 4, 5, 6.
In how many of these codes are the digits in ascending order of size?




3.3 Combinations

Learning outcomes

To define a combination
To find a variety of combinations

To distinguish between a
permutation and a combination

You needto know

How to find a permutation

What independent permutations
are

m  What mutually exclusive
permutations are

m Themeaning of "C,

Combinations

We have seen that the number of different arrangements of 4 books on a
shelf is 4!, but there is only one set, or combination, of books.

A combination is a group of objects when the order of the objects in the
group does not matter.

Suppose we want to find how many groups of 5 books can be selected
from 8 different books.

There are *P; different arrangements of 5 books selected from the
8 books, but this number of arrangements includes the 5! arrangements
of the 5 books selected among themselves.

/ different permutations \

same combination

Therefore the number of different combinations of 5 books selected from
8 different books is

PRy, .l
51 T 518 =5
|
Now ﬁ = *C; s0 we can denote the number of combinations of

objects chosen from 8 different objects by *Cs.
The same argument applies to the general case:

the number of different combinations of r objects selected from
n different objects
is given by "C, = xd{_nniT]!
For example, the number of different ways of selecting 8 people from a
group of 10 people is

10!

10 — . TTETEL L
Cs = 3110 — a1

=45

Example

other group.

In how many ways can a set of 8 students be divided into two equal groups?

There must be 4 students in each group.

The number of ways of selecting 4 students from 8 is *C, and this leaves the remaining students as the

Labelling the students A, B, C, D, E, E G, H, one selection is the group (A, B, C, D).
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This gives (A, B, C, D) and (E, F G, H] as the two groups. But (E, E G, H] is one of the selections included
in the *C, selections and this gives (E, E G, H) and (A, B, C, D] as the two groups. So *C, gives twice the
number of divisions into two equal groups.
Therefore the number of ways the students can be divided into two equal groups is

5Cq _ 8!

™ axalxal oo
Exercise 3.3a
1 A box holds a large number of red, blue, yellow, (b) two balls only are the same colour?

green, black and brown balls. How many selections

e s halls G Barmade it 2 In how many ways can 10 children be divided

g i 1 into two groups of 6 children and 4 children?
(a) they are all different colours

Distinguishing between permutations and combinations

Problems do not usually include the words permutation or combination.
You need to read the problem carefully and use the context to decide
whether or not the order of any selection matters.

For example, the number of different hands of cards that can be dealt
from an ordinary pack of 52 playing cards is a number of combinations
as a hand of cards is a group and the order does not matter. The number
of different numbers than can be made from 4 of 5 different digits is a
permutation as the order of digits in a number does matter.

Example

How many different ways can 4 students be selected from 10 students
if either Martha or Sergio but not both must be selected?

Either Martha is selected and Sergio is not, which leaves 3 students
to be selected from the remaining 8 students, giving *C;
different groups,

or Sergio is selected and Martha is not, which again leaves
3 students to be selected from the remaining 8 students,
giving C, different groups.

These are mutually exclusive combinations so the number of different
groups is 28C; = 112

Exercise 3.3b

1 Find the number of ways in which 10 girls can be B
placed in a line so that Alice, Grace and Maria are
separated.

2 The diagram shows a grid of 8 vertical lines and 7
horizontal lines.

Starting at A, and either moving left or up at
each intersection, how many routes are there to
get to B?




3.4

Learning outcomes

m To define a sample space

m Tointroduce different ways of
drawing a sample space

You needto know

m How to draw Venn diagrams

Sample spaces

Sample spaces

When we perform a task, one of the items that results from the task is
called an outcome.

For example, if the task is choosing two letters from the letters A, B, C,
D, one possible outcome is AB.

All the possible outcomes of a task is called a sample space.

Tables

When a task involves just two items, drawing up a two-way table is a
good method for ensuring that all the possible outcomes are listed.

For example, this table lists all the possible outcomes when two letters
are chosen from A, B, C and D.

A B C D

AA | AB | AC | AD

BA | BB BC | BD

CA (B CC D

O N w | >

DA DB  DC DD

The possible choices of letter are listed along the top and down the left-
hand side of the table. Then the table can be filled in with the outcomes.

This table gives all the outcomes when a coin is tossed and a six-sided
dice is rolled. The table shows, for example, that there are two outcomes
resulting in a head and a score greater than 4.

1 2 3 4 5 6

H |H1 H2 H3 H4 H5 H6

T | T T2 | T3 T4 T5 | T6

Tables are also useful when a sample space contains only a few different
outcomes but each outcome occurs several times.

For example, this table shows the outcomes and the number of times
each outcome occurred in a drug trial for a new treatment for migraine,

Big improvement Mild improvement No improvement
Gender No Some No Some No Some
side-effects | side-effects @ side-effects | side-effects = side-effects | side-effects
Male 25 3 65 2 38 1
Female 21 5 97 1 14 0

From this we can read, for example, that the number of outcomes giving
a big improvement is 54 in total.
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Tree diagrams

Tables are not suitable when there are several different outcomes for a
task involving more than two items, for example when three different
letters, chosen from the letters A, B, C, D, are arranged in a line. We
know that there are *P; = 24 different outcomes, but not what these
outcomes are. We can find these outcomes by drawing a tree diagram:

Start by drawing 4 | Attheend of | Repeat At the end of
branches to show the | each branch, | for the the branch read
4 different choices | repeat forthe | 2 different |along the path to
for the first letter, 3 different choices for | list the outcome
writing the letteron | choices of the | the third

each branch second letter | letter

BCA
BCD
BDA
BDC
CAB

CAD
CBA

CBD
CDA
CDB
DAB
DAC
DBA
DBC
DCA
DCB

>0l 0 \mw e O\ 0O\w0f =00 0\00\= 0\ O \0

=

The list at the right-hand end of the diagram is the sample space for this task.

Venn diagrams

When a task involves overlapping outcomes, we can sometimes use a Venn
diagram to illustrate and find the numbers of the different outcomes.

Consider, for example, this information for 50 students from a college
entered for CAPE examinations:

m 10 students entered for physics, P
m 12 students entered for chemistry, C
m 5 students entered for both physics and chemistry.
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This does not give the numbers of students who entered for physics
but not for chemistry, or vice-versa. It does tell us how many entered
for physics and chemistry, so there is an overlap between the numbers
entered for physics and the number entered for both subjects.

We can represent this on a Venn diagram using overlapping circles to
represent the numbers entered both for P and for C. In the overlap region,
we enter 5, which leaves 5 in the non-overlapping part of the circle P and
7 in the non-overlapping part of the circle C.

33

Therefore 17 students were entered for physics or chemistry or both,
leaving 33 who were entered for neither subject. This number goes in the
box outside the circles.

Example

Of the 100 students in a school entered for CSEC examinations:

45 were entered for mathematics 30 were entered for economics

25 were entered for geography 15 were entered for mathematics and economics
18 were entered for mathematics and geography 15 were entered for economics and geography

36 were entered for none of these subjects.
(a) Draw a Venn diagram to show this information.

(b) Find the number of students who
(i) entered for all of these subjects (ii) entered for mathematics but not economics nor geography.

This needs a Venn diagram with three overlapping circles. We will use M for mathematics, E for economics
and G for geography to label the circles containing the numbers for each subject. We need regions where just
M and E overlap, just M and G overlap, just E and G overlap and where all three overlap.

(a) We do not know how many students entered for all three subjects so we put x in the region where all
three circles overlap.
Looking at the numbers for mathematics and geography, we know that 18 students entered both. The
region where M and G overlap already contains x, so that leaves 18 — x for the region where just M and
G overlap.
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Now looking at the numbers for mathematics and economics, 15 enter for both. Taking out the number
who enter all three subjects leaves 15 — x for the region where just M and E overlap.

We know that 45 is the total number in M, so that leaves (45 — {33 — x|) = 12 + x in the region where
M does not overlap either of the other circles.

The numbers in the remaining regions can be filled in using similar reasoning,
(b) (i) The sum of the numbers in all the regions is 88 + x

There are 100 students in total, therefore 88 + x = 100 = x = 12
Therefore 12 students were entered for all three of these subjects.

(ii) Reading from the diagram, 24 students entered for mathematics but not economics nor geography.

Exercise 3.4

1 An ordinary six-sided red dice and an ordinary six-sided blue dice are both rolled.
(a) How many different outcomes are there?
(b) Draw a table showing the sample space.

2 The table shows the outcomes of an investigation into the age of cars owned.

Age of car Over 10 years 5—10years

Age of owner  18-25 26—40 41-60 over 60 18-25 26—40 41-60 over 60

40 35 15 30 55 60 32 65

Age of car Under 5 years

Age of owner  18-25 26—-40 41-60  over 60

5 8 56 20

(a) How many people owned a car over 10 years old?
(b) How many people up to the age of 60 own a car that is 10 years old or less?
3 Four different coins are tossed at the same time.
(a) Draw a tree diagram to show all the outcomes.
(b) How many outcomes result in at least two heads?
4 Of the 100 customers at a matrket stall selling vegetables:
37 bought sweet potatoes
2.8 bought tomatoes
56 bought carrots
15 bought sweet potatoes and tomatoes
12 bought tomatoes and carrots
16 bought sweet potatoes and carrots
12 did not buy sweet potatoes, tomatoes or carrots.

(a) Draw a Venn diagram to show this information.

(b) (i How many people bought sweet potatoes, tomatoes and carrots?
(i) How many people bought just carrots?




3.5  Basic probability

Learning outcomes
m Tointroduce the terminology
used in probability

m To define and use basic
probability

You needto know

m How to find permutations and
combinations

m How to read tables and Venn
diagrams

®  What outcomes and sample
spaces mean

Terminology

Probability gives a measure for how likely it is that an event will happen,
i.e. probability gives a measure of predictability.

Up to now we have talked about tasks, but in the context of probability
we call tasks experiments. For example, choosing three letters from A, B,
C and D is called an experiment.

An event is an outcome or a group of outcomes from an experiment. For
example, the outcome ABC is an event when choosing three letters from
A, B, C and D. An event can also be all the outcomes containing the
letter A.

When one letter is selected from A, B, C and D, then the selection is
random when the selection of any one letter is as likely as the selection
of any other letter. In this case, we can say that each outcome is equally

likely.

When coins or dice are involved in experiments, they are described as
fair or unbiased if the coins are equally likely to land heads up or tails
up and if the dice are equally likely to show any one of the possible
scores.

Definition of probability

When all the outcomes of an experiment are known the probability that
an event A is likely to happen is denoted by P{A) and is given by

P(A) = the number of equally likely outcomes giving A
)= the total number of equally likely outcomes

Depending on the nature of the event A, the numerator of this fraction
can be any number from zero (no outcomes giving A} to the number in
the denominator (all equally likely outcomes giving A).

Therefore 0=<PlA)=<1

When P(4) = 0, the event A is impossible and when P(A) = 1, the event
is certain to happen.

Probabilities are given as fractions or decimals or percentages.

For example, when an ordinary fair dice is rolled, each of the 6 scores is
equally likely.

To find the probability that the score will be greater than 4, we know that
the number of equally likely outcomes is 6 and the event ‘a score of 5 or
6’ is 2 of the equally likely outcomes.

1

Therefore P[5 or 6) = % =g

Also  P(scoreis 7) = 0 and P{scoreis 6 orless) = 1
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Example
The table gives a breakdown of car theft in an island for the year 2012.
Age of stolen car in years
Cost of a replacement
Lessthan 1 1-3 Older than 3
Less than $10 000 22 30 60
$10 000—$30000 78 56 84
More than $30 000 14 25 8

Find the probability that a randomly selected theft was
(a) of a car up to 3 years old
(b) of a car older than one year and costing $10 000 or more to replace?

(a) There are 377 thefts listed in the table and any one of these is equally likely to be selected.
Thefts of cars up to 3 years old are listed in the first two columns: there 225 of these.

P(theft was a car up to 3 years old) = %7; = 0.597 (3.1

(b) Let B be the event ‘thefts of cars older than one year and costing $10 000 or more to replace’.
These are listed in the lower two right-hand columns and rows of the table: there are 173.

P(B) = é—;? = 0.459 (3s.)

Example

Two cards are drawn at random from a pack of 20 cards containing 5 red cards, 5 blue cards, 5 yellow cards
and 5 green cards. Find the probability that both cards are red.

The number of combinations of two red cards is °C, and the number of combinations of any two cards is 2°C,.

Therefore the probability that two red cards are drawn is

Cy . 5x4
M = 30 % 19 = 0.0526 (3s.£)
Exercise 3.5
1 Two digits are selected at random from the digits 3 A box contains 200 different patterned tiles of
1,2,3,4,5, 6,7 to make a two-digit number. mixed colours on a white background.
What is the probability that this number In the pattern, 65 tiles include red, 39 tiles
(a) is even include blue, 53 tiles include yellow, 20 tiles
(b) contains two odd digits? include red and blue, 18 tiles include red and
yellow, 25 tiles include blue and yellow and 10
2 Three different letters, chosen at random from the tiles include all three colours.
letters A, B, C, D, are arranged in a line. Using the (a) Draw a Venn diagram to show this
tree diagram in Topic 3.4 or otherwise, find the information.
probability that the letters A and B are next to each (b) One tile is selected at random. Find the
other. probability that the pattern on it contains
(i) only red

(i) red and blue but not yellow.




3.6  Probability that an event does not happen

Learning outcomes

m Finding the probability that an
event does not happen

You needto know

Simple set notation
What a sample space is

How to use basic probability

The meaning of mutually
exclusive

The probability that an event does not happen
If A is an event, then the event ‘not A’ is denoted by A'.

When an ordinary six-sided dice is rolled, the sample space is the set
S=1{1,2,3,4,5,6}.

S contains 6 elements son(S) = 6
This sample space contains every possible outcome so it is exhaustive.

If the dice is unbiased, the outcomes are all equally likely, so if A is the
event of scoring 1 or 2,

then the number of ways in which A can occur is 2, so P(A] = %
Now the number of ways in which A cannot occur is 6 — 2,
Therefore P[A’] = g =G 1 — P(A)

In general if the number of equally likely ways an event A can happen
is x and the sample space is S, then the number of ways in which A
cannot happen is n(S) — x,

. n(S]—x n(S) 3
PIAY) = =Lisr = mls) " alg = L P

ie. PlA')=1- P(A)
For example, the probability that an unbiased dice shows 6 when rolled
is %, therefore the probability that the dice does not show 6is 1 — é = g
and if the probability that it will rain tomorrow is 67%, then the
probability that it will not rain tomorrow is 100% — 67% = 33%

In simple cases, P{A’) can be found directly, for example when one letter
is chosen at random from the letters A, B, C, D, the probability that it is
not the letter D is f

In other cases it may be easier to find P(A) first.

Example

A two-digit number, greater than zero, is made by choosing two
integers at random from the digits 0 to 9 inclusive. A digit can be
chosen more than once. What is the probability that the number is
not a multiple of 57

It is easier to find how many numbers are multiples of 5 than how
many are not.

A number is divisible by 5 if it ends in 0 or 5.
The number of permutations of two digits endingin 0 or 5is 9 X 2

The number of permutations of two digits is 9 X 10
A number cannot start with 0 but it can end with 0

So if A is ‘the integer is a multiple of 5’

—_g_xz_zi . 1l = — o — ﬂ
PLA]_gxlO 5r>> P[Iq] 1 PLA] 1 5

|~
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Example

This Venn diagram (from Topic 3.4) shows, out of the 100 students
who were entered for CSEC examinations, the numbers who were
entered for mathematics, economics and geography.

One of these 100 students is chosen at random. What is the
probability that they were entered for at least one of the subjects
mathematics, economics or geography?

M E

(SN

36 G

It is easier to find the probability that a student was not entered for
at least one of the subjects. The Venn diagram shows that this number
is 36.

Taking A as the event ‘a student is entered for at least one of the
subjects mathematics, economics or geography’, A’ is the event ‘a
student is not entered for any of the subjects mathematics, economics
or geography’.

36

Then P(A’) = 155 = 0.36
Using P(A') = 1 — P(A) gives 0.36 = 1 — P(A)
P(A) = 0.64

Exercise 3.6

1 Two pens are chosen at random from a box containing 6 red, 4 blue and 8 black pens.
What is the probability that at least one pen is blue?

2 This table from Topic 3.4 shows the outcomes for 272 people taking part in a drug trial for a
new treatment for migraine.

Big improvement Mild improvement No improvement

Gender No Some No Some No Some

side-effects _ side-effects side-effects side-effects side-effects _ side-effects

Male 25 3 65 2 38 1

Female 21 5 97 1 14 0

Find the probability that one person, chosen at random, had no side-effects.




3.7  Probabilities involving two events

Learning outcomes Mutually exclusive events
m To find the probability that Two events are mutually exclusive when they cannot both occur
events A and B will both occur simultaneously.
m To find the probability that For example, choosing an even number and choosing an odd number are

either event A will occuror event ~ Mmutually exclusive because a number cannot be both even and odd.

B will occur However, choosing a number that is a multiple of 3 and choosing any
even number are not mutually exclusive because 6, for example, is both.

If A and B are mutually exclusive events, the set of ways in which A can

You needto know occur and the set of ways in which B can occur will have no members in
- common. They can be represented in a Venn diagram as two circles that
m How to use set notation do not overlap. The set S is the sample space.
m The meaning of union and S

intersection of sets A X B

Basic probability

About independent

permutations and combinations
X X &

If there are n equally likely outcomes in the sample space of which A can
occur in p ways and B can occur in g ways,

+
then the probability of A or B occurring is P 5 1. ‘;—) + % = P|A] + P(B)

The probability that A or B will occur is denoted by P(A U B).

Therefore when A and B are mutually exclusive events
P(A UB) =P(A) + P(B)

Example

The probability that a girl walks to school is i and the probability that she takes a bus to school is %

What is the probability that she goes to school by another method?

P(she goes to school by another method) = P(she does not walk nor take a bus)
= 1 — P(she does walk or take a bus)

Walking and taking a bus are mutually exclusive, therefore

P(she does walk or take a bus) = L + 2 = 17

P(she goes to school by another method) = 1 — % = 23—0

Independent events

Two events are independent when one event, whether or not it occurs,
has no effect on whether or not the other event occurs.

For example, rolling an ordinary fair six-sided dice and tossing a fair coin
are independent experiments.

The number of ways the dice can land and the coin can land is 6 X 2

The number of ways the dice can show five uppermost and the coin can
showaheadis1 X 1
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_Ix1_1,1_
Therefore P(5 and H) = tx1-8%7 P(5) x P{H|
If there are n outcomes in an experiment in which an event A can occur
in p ways,
i
then P(A) = -

If there are m outcomes in an independent experiment in which event B
can occur in g ways, then P(B) = %

As the experiments are independent, A and B are independent.

There are n X m outcomes for the first and second experiment in which
A and B can occur in p and g ways,

soPLAemdB]z%z%X}%zPLA]XP[B]

P(A and B) is denoted by P{A N B).

Therefore when A and B are independent events

P(A N B) = P(A) x P|(B)

Example

Three ordinary six-sided dice are rolled together. Two of the dice are fair but the third dice is biased so that it
is twice as likely to show 6 as any other number. Find the probability that all three dice will show 6.

The equally likely outcomes from the biased dice are 1, 2, 3, 4, 5, 6, 6. Therefore the probability that this
dice shows 6 is % The probability that a fair dice shows 6 is %

There are three dice, so we will call the fair dice a and b and the biased dice ¢ and events of showing a 6 as,
6,, 6, and 6..

The way in which one of the dice lands has no effect on the way the others land, so the events are independent.

P[6Lr n 63‘) n 6(] = P[6a] X P[6h] X P[6L]

Lize 3

=Ly lw2_ 2
S e

Probability that A or B occurs when A and B are not
mutually exclusive

Suppose that one number is chosen at random from the integers 1 to 12
inclusive and we want to find the probability that the number is even
or a multiple of 3.

If A is the event ‘choosing an even number’ and B is the event ‘choosing
a multiple of 3’ then A and B are not mutually exclusive because
6 and 12 are both even and multiples of 3.

We can illustrate the sample space in a Venn diagram.

1 A B

A and B
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This diagram shows that the number of elements in either A or B, i.e. in
A U B, is not {number of elements in A} + (number of elements in B)
because this includes the elements 6, 12, i.e. in A N B, twice.

The number of ways in which A can occur is 6 so P|A] = TGZ_
The number of ways in which B can occur is 4 so P|B) = %

The number of ways in which A and B can occur is 2, so P[A N B) = 1—2'2

The number of ways in which A or B can occuris 8 =6 + 4 — 2,

—6+4-2_6 4 2 _ _
s0 PA U B = 2 5T 35 =15 = PlA] +P(B] ~PAMNE)

For any two events A and B that are not mutually exclusive:

(the number of ways in which A or B can occur])

= (number of ways in which A can occur) + (number of ways in which B
can occur) — (number of ways in which A and B can occur).

This is because (number of ways in which A can occur] + (number of
ways in which B can occur] includes (number of ways in which A and B
can occur) twice.

Therefore when A and B are not mutually exclusive events
P(A U B) = P(A) + P(B) — P(A N B)

Notice that the set of elements in the part of B that excludes {A N B} is
described by the set {A’ N B} and similarly for the set of elements in the
part of A that excludes {A N B}

b
o]

Example

This table from Topic 3.4 shows the outcomes for 272 people taking part in a drug trial for a new treatment

for migraine.

Big improvement Mild improvement No improvement
Gender No Some No Some No Some
side-effects | side-effects | side-effects | side-effects | side-effects = side-effects
Male 25 3 65 2 38 1
Female 21 5 97 1 14 0

Find the probability that one person, chosen at random, is male or has side-effects.
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Being male and having side-effects are not mutually exclusive. Therefore

P(male or side-effects)| = P{male) + P(side-effects] — P(male and side-effects)
The number of {males} is 134, the number of {side-effects} is 12,
the number of {male and side-effects} is 6.

_ 134 | 12 6

Therefore P{male or no side-effects) = 373 -+ 353 " 373
_140 _ s
= 375 = 0.515 (3s.)

Example
Two fair normal six-sided dice are rolled together. Find the probability of rolling at

least one 6 or at least one 5.
At least one 6 and at least one 5 are not mutually exclusive, therefore
P(at least one 6 or at least one 5)

= P|at least one 6) + P(at least one 5) — P(at least one 6 and at least one 5)

Platleastone 6) =1 — Plno 6) =1 — 5;65 = %
Platleastone 5) =1 — Plno 5) =1 — 55(65 = %
P(at least one 6 and at least one 5) = % = 3i6
5)=22—-4_1
P(at least one 6 or at least one 5) = 3G 5

Exercise 3.7

1 Two boys, A and B play a game that involves rolling an ordinary six-
sided dice.
The first person to roll a six wins. A goes first. Find the probability
that B wins on his first turn.

(Hint: For B to win on his first turn, A must lose on his first turn.)
2 A and B are independent events. P(A) = %, P(B) = i and
PA'NB) = 5
Find (a) P{A N B) (b) P(A U B)
3 A tennis player A has a probability of % of winning a set against player

B. The first player to win 2 sets out of 3 wins the match.
Find the probability that when A plays B, A wins the match.

4 A and B are two events such that P(A) = 0.3, P|[B) = 0.5 and
PA UB) =06

Explain why A and B are neither mutually exclusive nor independent.




3.8 Probabilities involving two or more events

Learning outcomes

m To use tree diagrams to solve
problems involving two events

m Finding the probability that an
event occurs given that another
event has already occurred

You needto know

How to use basic probability
How to draw a tree diagram

How to find probabilities of
mutually exclusive events

Events that are not independent

If a card is removed at random from a pack of 4 cards numbered 1, 2,
2, 3 and not put back, and then a second card is chosen, the options for
the number on the second card depend on which number was removed
first.

Therefore these two events are not independent as the ways in which the
second event can occur have been reduced by one and depend on which
number was removed first.

The number of equally likely outcomes is therefore 4 X 3 = 12
We can show the probabilities for each card and the different outcomes

on a tree diagram:

First card Second card

P2) = 3 (1,2)

[]'J' 3]

[ZF l]

(2, 2)

[2{ 3]

(3, 1)

p(2) = 2 (3, 2)

Notice that this tree diagram shows the seven different outcomes,
which are mutually exclusive, but it does not show all the equally likely
outcomes (there are 12).

For example, there are two ways in which the first card is 1 and the
second card is 2, i.e. (1, 2;) and (1, 2,)
so P(lstcardis 1 and 2nd card is 2] = 1—22 = é
Using the tree diagram,
P(lst card is 1) X P{2nd card is 2] = i X % :é
Similarly,

P(1st card is 2 and 2nd card is 1] = é = P(1st card is 2) X P|2nd card is 1)
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So, to find the probability of an outcome shown on a tree diagram, we
multiply the probabilities on the path leading to that outcome.

There are two outcomes where the two cards are 1 and 2 in any order, i.e.
(1, 2) and (2, 1).

These are mutually exclusive, so to find the probability that one card is 1
and the other is 2, we add the probabilities of each.
Therefore P(the cards removed are numbered 1 and 2] = é + % = %

To find the probability of two or more outcomes shown on a tree diagram,
we add the probabilities of each outcome.

Tree diagrams can be extended to cover more than two events.

This diagram shows the probabilities when three coins are tossed, two of
which are fair and one is biased so that a head is twice as likely as a tail.

Biased coin Fair coin Fair coin

P(H) =

[ bl

(H, H, H)

P[H) =
(H, H, T)

(H, T, H)

(H, T, T)

(T, H, H)

(T, H, T)

(T, T, H)

(T, T, T)

P(T) =

2|

To find the probability of any one of the outcomes, we multiply the
probabilities along the path giving that outcome.

For example, to find the probability that the biased coin shows a head,

and the other two coins show tails, we follow the path leading to (H, T, T)

giving PH, T, T) =2 x 1 x =1

To find the probability of more than one outcome we add the probabilities
of each.

For example, to find the probability that the three coins land showing two
heads and a tail, we add the probabilities of the events

(H,H, T), (H, T, H) and (T H, H) giving + + + + & =2
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There are problems involving two events when we are interested in
only some of the possible outcomes. In cases like these we can draw a
simplified tree diagram.

Example

Three ordinary six-sided dice are rolled together. Two of the dice are fair and one is biased so that a six is
three times as likely as any other score.

Find the probability that exactly two sixes are rolled.

We are interested in whether sixes are rolled or not, so we need only show probabilities and outcomes for

sixes or not sixes.

Biased dice

Fair dice Fair dice

P(6) =

=

(6,6,6)

(6,6, 6]

(6', 6, 6)

3 5 1 5

8 6 6 8

P(6') = 2

ThereforeP[tw06s]=(%xéxg)+(‘—X‘—x—)+(‘—xéxé)—£=(}.122

o288

Exercise 3.8a

1 A pack of ten cards are numbered 1 to 10. One
card is removed at random and not replaced. A
second card is then removed at random. Find the
probability that the sum of the numbers on the

2 A bag contains 3 red pens and 2 blue pens. One
pen is removed at random and not replaced, then
a second pen is removed. Find the probability that
one red and one blue pen are removed.

two cards is 3.

Conditional probability

We refer to the card situation outlined at the start of this topic, namely,

a card is removed at random from a pack of 4 cards numbered 1, 2, 2, 3
and not put back, and then a second card is removed at random. Suppose
we want to find the probability that the second card removed is number
2, given that the first card is 1.

This is an example of conditional probability and we write it as
P(2nd card is 2| 1st card is 1)

In general P(A|B) means the probability that A occurs given
that B has already occurred.
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If the first card is numbered 1, there are 2 out of 3 ways of removing a
card numbered 2, so

P(2nd card is 2|Lst card is 1) = %
1
4

Now P(lstcardis 1 N 2nd card is 2] = x% and P(lst card is 1) :i

P(lstcard is 1 N 2nd card is 2)
P(1st card is 1}

In general if A and B are two events then

P(A N B) = P(A) x P(B|A)

= P(2nd card is 2| 1st card is 1)

Example

Onc coin is selected at random from two coins and tossed. One of the
coins is biased so that a head is twice as likely as a tail and the other
coin is fair. If the coin shows a head, what is the probability that it is
the biased coin?

The two events we are interested in are the choice of coin and whether
it shows a head.

Choice of coin Shows a head

P(H) = 3

P(biased) = é

P(not biased) = %

|
|
|
|
|
I
|
|
|
|
|
|
1
|
1
|
|
|
|
1
1
|
|
|
|
|
1

If B is the selection of the biased coin and H is tossing a head, then the
probability that the coin is biased given that a head is tossed is P(B|H).

Using P{H N B) = P(H) X P(B|H), then from the tree diagram

(biased, H)

(not biased, H)

and P[H]:%XE‘FEXE_E
P(B|H) =1+ L5 =1
Exercise 3.8b

1

A bag contains 3 white balls and 2 black balls.

A second bag contains 1 white ball and 4 black
balls. One bag is chosen at random and one ball is
removed at random from that bag.

If the ball is black, what is the probability that it
came out of the second bag?

A telephone call from one cell phone to another
cell phone goes through three sets of independent

equipment, the cell phone making the call, the
operator’s network and the cell phone receiving

the call.

The probability that the outgoing phone is faulty
is 0.001, the probability that the network is faulty
is 0.01 and the probability that the receiving
phone is faulty is 0.005

Find the probability that if a call fails to connect,
it is at least partly a fault of the network.




3.9 Introduction to matrices

Learning outcomes

m To define a matrix
m To add and subtract matrices

B To multiply a matrix by a scalar

You needto know

m The meaning of commutative
operations

Matrices

A matrix is an array of elements in rows and columns (numbers or
algebraic expressions) that are enclosed in brackets, for example

( 2 =1 0 3 —4
=10 6 4 5 0
A matrix is denoted by A, B, etc.

The size of a matrix is defined by the number of rows and the number of
columns, in that order. For example,

2 -1 0 3 —4| has?2rowsand 5 columns and is
—2 6 4 5 0/ caleda?2 x 5matrix.

When a matrix has m rows and n columns it is called an m X n matrix.

The position of a particular element is identified by suffixes to show
which row and column (in that order] it is in. For example, a,; means the
element in the second row and first column and a; means the element in
the ith row and jth column. In the example above, a,, = —2

A matrix with just one column is called a column vector and a matrix
with just one row is called a row vector. Column vectors and row vectors
are denoted by a, b, etc.

6
For example, a=| 2| and b=(-8 5 10)
==
A matrix with the same number of rows and columns is called a square

, 3 8)
matrix, e.g. (
0 -9

Two matrices A and B are equal when each element in A is equal to the
corresponding element in B, i.e.

A =B ¢ a;=Db; forall values of i and j

'3 8 (3 8 (3 8 3 6
For example, ( ) = ( ) but ( ) # ( )
0 -9 0 -9 0 -9 1 -9

Example 0 a0
Find x and y given that ( x ] = ( )
-1 4/ \-1 vy

As a; = b for all values ofi andj, x = 3andy = 4

Addition and subtraction of matrices

Matrices can be added when they are the same size by adding
corresponding elements.

2 -3 [ 4 0 6 —3
For example, [4 0|+|-2 7|=|2 7

6 —1 5 =5 11 -6/
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4 1
2. =1
The matrices ( 2) and |—-2 6| are different sizes and cannot be
4 -1

added, so their sum has no meaning.

The addition of real numbers is commutative, so if A and B are two matrices of the
same size, it follows that

A+B=B+A

Matrices can be subtracted when they are the same size, by subtracting
corresponding elements.

2 -3 4 0 =2 =3
Forexample, |4 0|—-|-2 7|=| 6 -7
6 —1 5 —5 1 4

Subtraction of real numbers is not commutative, so if A and B are two matrices of
the same size, it follows that

A-B#B-A

Matrices that are the same size are said to be conformable for addition and
subtraction.

Multiplication of a matrix by a scalar

The elements in the matrix AA are each A times the corresponding elements in A.

2 —3 6 -9
For example, when A=|4 0|, 3A=[12 0
6 -1 18 -3
Example
5 —4 -1 -2 0 -2
Given Az( ) and Bz( ), find
2 5 0 4 -6 —1,
(a) A+ B (b) 2A — B
5 -4 -1 -2 0 -2 10 -8 -2
(a) A+ B = ( ) -+ ( ) (b) 2A = ( ), therefore
2 5 0 4 -6 -1 4 10 0
3 —4 -3 10 -8 -2 —2 0 —2
= 2A -B = =
6 -1 -1 4 10 O 4 -6 -1
3 (12 -8 0)
0 16 1
Exercise 3.9
4 5 —1 2 X 2x —x 5x 2y —x
A: _2 O,B: _3 Z,C: y Xy XZ ’D: y Xy yZ
3 -6 3 -1 3x —2x Xy 3y —2x 2y?

1 Use the given matrices to find;
(3 B—A (b) 3A + 2B () D-C
2 Ifc;is an element in C, write down the element c;;.

3 Explain why A + C has no meaning,




310 Matrix multiplication

Learning outcomes The product of a row vector and a column vector
m To define the product of a row Provided that a row vector and a column vector each have the same

vector and a column vector number of elements, by,
m To define the product of a square b,,

matrix and a column vector the product (a;; @y, ... ay,)| | |is defined as a,,byy + @by ... + @b
m To define the product of two '

matrices Du

31
For example, (2 1 —1)| 4|=(2)(3) + (1)(4]) + {—1)(—2) = 12

You needto know =2

m Themeanings of columnmatrix, 1 he product of a matrix and a column vector

row matrix, m X 1 matrices Provided that a matrix has the same number of columns as the number

B The notation for the elements of AL e TN
a matrix a by,
B Thedouble angle trig identities of elements in a column vector, the product =11
bnl
\a a

ml e mn '

is defined as the column vector whose top element is the product of the
top row of the matrix and the column vector, whose second element is
the product of the second row of the matrix and the column vector, and

S0 on,
ay;; ... aln‘,b“ apbiyt anby + ...+ ainba
- @y ... Qip e Ay by + apby + ... + ay,by
b
Ay --o iy @t Dip e Doy = wo s B
For example,
—1
IRTO (|
(229 2 &
-1 -6 2] 2
-5

. ( (5{{—1) + {2){2) + (7){—5)
(—1)(—=1) + {—6)(2) + {2)(-5)
—36"
- (—21)
This definition of the product is precise: Ab exists when b is a column

vector only if the number of columns in A is equal to the number of
elements in b.

bA is meaningless and bA is said to be non-conformable.

For any product of an (m X n) matrix by an (n X 1) column vector, the
result is an (m X 1) column vector.
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Example
2 x
Evaluate |—1 y (
0 z
2 X —2 +.2x
-1
—] v ( ) =| 1+2y
2
0 z 2z

Exercise 3.10a

Evaluate these products.

4
—4
1 (5 —2]( 2) 2 (2 -5 1l 0 3 (3 -1 4)|y
-3 z
5 1 3 -1 4\ [x
2 1\/—4 3
5 |-2 -1 6 |2 -2 0
3 —-1/\ 2 -2
0 3 1 5 —1

The product of two matrices

For two matrices A and B, the product AB exists provided that the
number of columns in A is equal to the number of rows in B. Two
matrices that satisfy this condition are called conformable for
multiplication.

AB is then defined as the matrix C where the element c; is the product of
the ith row of A and the jth column of B, i.e.

dy .o dyy bll wee blm \
Cit --- Cp
ay; ... Gy |[Bay ... Bapy "
c c
Ay --- gy bnl pexe bnm s =
Lj
where ¢;; is the product of the ith row and jth column, i.e. ¢; = (a;; ... a;,
For example, byl

1 3 243 1
However, ( " " 2)( " l) is meaningless because the first matrix

has three columns and the second matrix has only two rows, ie. the

matrices are not conformable.
2 1

)andB= 0 -2
-1 1

2 4 1
Now consider the matrices A and B where A = ( 5 5 i
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The product AB exists because A has three columns and B has three

TOWS, SO
i 1
“:P 4 w( 4
1 0 —1,
= 1
_ (([2][2] +(4)0) + (1){=1)) ((2)(1) + (4)(=2) + (1){1))
(1)(2) + (0){0) + (—1)(=1)) ({1)(1) + {O)(—=2) + {=1)(1})
3 —5
_h J
The product BA also exists because B has two columns and A has two
TOWS, SO
2 1
2 4 1]
BAZ( o a|F ¢ )
il 0 -1
-1 1

(2)2) + (1)(1)  (2){4) + (1)0)  {2)(1) + (1){=1)
(0){2) + (=2){1)  (0)(4] + (=2){0)  (O)1] + {=2)(—1)
(=1)(2) + (L)1) (=1)(4) + (1){0) (=1)1)+ (L)(=1)

5 8 1
-2 0 2
-1 -4 -2

This example illustrates the following key points.

When AB and BA both exist, in general AB # BA
so matrix multiplication is not commutative.

The order in which the matrices are multiplied matters, so for AB we
say that A premultiplies B and for BA we say that A postmultiplies B.

When A is anm X n matrix and B is an n X p matrix,
the size of ABism X p

Note that A2 means AA.

Example
Given A = (4 _1) and I = (l 0) show that
3 6 0 1

(a) AI = IA (MM—A—mz(O_ﬂ

27 18
=2 "o )=l 7

wam=( s o=l Tl

.. Al =1IA (= A)
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4 —-1\y4 -1 13 —10
=3 "ls "o)=lao )
3 6/\3 6 30 33
Al—Az(IS —10)_(4 —1):( 9 —9)
30 33 3 6 2 AP
g =Y 9 0 0 -9
e 20 2
27 27 0 9 27 18
0 -9
AZ—A—9I=( )
27 18
Example
. 2 =1 1 4 -2 0
GwenAz( ),Bz( )a.ndCz( )
3 2 0 1 =2 3
show that (AB)C = A(BC)
_(2 —l)(l 4)_(2 7)
3 2/lo 1) \3 14/
2 7\{/-2 O —-18 21
el A B v
3 14/\-2 3 —34 42
(1 4)(—2 0) (—10 12)
BC = =
0 1/\-2 3 -2 3
2 —1y/-10 12 —-18 21
BC| = =
A(BC] (3 2)( ==, 3) (—34 42)
Therefore (AB)C = A(BC)

In general if the products can be found, then for
three matrices A, B and C

(AB)C = A(BC)
i.e. matrix multiplication is associative.

Exercise 3.10b
1 Evaluate ) 4 5 1 0
()(_l 0)(2 3] ® -1 3 oll-1 2
3 I _
2 4/ \—1 0
2 =l 2 4 1
1 5
-5 2 6 —1 3 4
()
3 —1 4 —8)|=y =8
2 1
. 1 1 1 -1
2 GwenAz( ):mde( )s.ho\avthat[A-I—B]2=A2-|—B2
4 -1 2. =1
cos X sin &
2 R 1 0
3 Given A = show that A2 =( )
sm% cosq—g 0 1




311 Square matrices, zero matrices,
unit matrices and inverse matrices

Learning outcomes

m To define zero and unit matrices

m To determine identity matrices
for addition and multiplication

You needto know

m How to find the product of two
matrices

®  What is meant by the concept of
identity

Square matrices

A square matrix has an equal number of rows and columns.

-1 2 i}
2 —4
For example ( 3) isa2 X 2squarematrixand | 2 0 3] is
1 -4 -2

a 3 X 3 square matrix.

Unit matrices

A unit matrix is a square matrix such that the elements in the Ieading
diagonal (that is top left to bottom right) are all 1 and all the other
elements are zero.

0 0
1
For example, (O )emd 0 1 0] areunit matrices.
' 0 0 1

A unit matrix is denoted by I.

Zero matrices

All the elements in a zero matrix are zero. A zero matrix is denoted by 0
) ) 0 0 0} . )
and is not necessarily square, for example, 5 185 is a zero matrix.

Multiplication of a matrix by a zero matrix of a suitable size will give a

0
. a c e 0 0
zero matrix, for example, ] 0 0= ( )
b d f|, 00

However, unlike real numbers whereab =0=a =0orb =0,
when AB = 0, neither A nor B may be 0.

2 —=1y/0 1 0 0
For example, )z )
0 0/\0 2 0 0

iiee. AB=0%% A=0o0r B=0

For real numbers, ab =ac ==a=0orb=c

) I 1 1 0 0o 1
However, given A = J, B = , C= )
11 0 1 1 0

= o o= )

wa ac=(1 ) o)< )

so AB=AC but A#0 and B# C
ie. AB=AC % A=0or B=C
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Identity matrices

Under addition and subtraction of real numbers, the identity number is 0
as it leaves unchanged any number it is added to or subtracted from.

There is no single identity matrix that can be added to or subtracted
from any matrix that will leave that matrix unchanged.

The identity matrix for addition and subtraction is a zero matrix of the
same size.

For example,
a c e 0 0 O a c e a4 c g 0 0
i = but S
P M i L A S
is meaningless.

Under multiplication of real numbers, the identity number is 1 as it
leaves unchanged any number multiplied by 1.

Again, there is no single identity matrix that can premultiply and/or
postmultiply any matrix and leave it unchanged.

The identity matrix for multiplication is a unit matrix and its size
depends on the matrix it multiplies.

For a square matrix, the identity is the same size. For example,

P e R S PR i

9]

a d g\l 0 0 a d g 1 0 O\fa d g a d g
b e h||0 1 0|=|b e h|and [0 1 O||b e h|=|b e h
c f i/]l0 0 1 c f i 0 0 1/lle f i c f i

Therefore, a unit matrix of the same size as a square matrix is both a
premultiplicative and a postmultiplicative identity.

a c e
Now consider the matrix A =
b df
1 0
We can premultiply A by the unit matrix ( giving
(1 0)(& c e]_(a c e)
0 1/\b d b d
f f 1 0 0
and we can postmultiply A by the unit matrix |0 1 0| giving
1 00 0 0 1
a c e a c e
b d)l2 0o a ]
0 0 1

In general, for an m X n matrix, an m X m unit matrix is
a premultiplicative identity and an n X n unit matrix is a
postmultiplicative identity.

Exercise 3.11

1 Given A= (1 0) where i = V=1 show that A* =1

0 i




312 Determinants, minors and cofactors

Learning outcomes

To define determinants

To calculate the determinant of
an n X nn matrix

B To define a singular matrix

You needto know

m The notation for identifying
elements in a matrix

B Themeaning of the leading
diagonal in a square matrix

Determinant of a matrix

The determinant of a square matrix is a real number that is associated
with that matrix. Only square matrices have determinants.

ﬂ]l ana e Glu
. . ﬂzl P e ﬂz‘r A
The determinant of a matrix A = "1 is denoted by
a a
ﬂ“ fIl” Jusis sl
Ayp  .ee .. oy
|A| =
a a

nl

|A| is also written as det A.

The determinant of a 2 X 2 matrix

b
The determinant of the matrix (ﬂ ) is defined as the value of ad — bc,
c d

i.e. as the value of the product of the elements in the leading diagonal
minus the product of the elements in the other diagonal.

Therefore b‘ =ad — be
c d
2 =1 2 =1
For example, if A = ( then |A| = ‘ ‘ = (2){5) — (-1){3) = 13
3 5 3 5

Exercise 3.12a

Find the determinant of each matrix.

1 %
3 2 6 —2 73 2%y
1 . 5 10 4 2)
-1 -2 —5 1 5 o X X
Cofactors

The determinant of an n X n matrix is based on extracting smaller
determinants.

The determinant of a 3 X 3 matrix is based on 2 X 2 determinants
extracted from the 3 X 3 determinant.

These 2 X 2 determinants are found from the elements left when the row
and column through a particular entry are crossed out.
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For example, when we cross out the elements from the row and column

2
through the element 8 in
5 9
; . 1
we are left with the 2 X 2 determinant ‘ 9‘

This determinant is called the minor of the element 8.

Each minor in a determinant has a sign, + or —, associated with it. This
sign depends on the position of the element of which it is minor.

B o= s
These signs are | — + —
b =

The minor of an element together with its sign is called the
cofactor of that element.

21 3
So, for example, the sign — is associated with the element 8in |6 4 8
5 9 7
so the cofactor of 8 is — ‘ 2 1‘
5 9
4 8 6 8 6 4
The cofactors of 2, 1 and 3 are o I = ‘5 7‘ and ‘ respectively.

The determinant of a 3 x 3 matrix

The determinant of a 3 X 3 matrix is defined as the sum of the products
of each element in the first row and its cofactor.

2 1 3
4 8 6 8 6 4
So, forexample, |6 4 8| =2 -1 +3
9 7 5 7 5 9
5 9 7
= (2)(—44) — (1){2) + (3)(34) = 12
In general
ay; dypy dy3
a a a a a a
4y ay ay=ay, 22 M3 —ay 21 a3 an 21 A
dzy dig a3y djz a3 djz

d3; d3p; djj

It is not sensible to try and remember this as a general method, just
remember the process.

The determinants of larger matrices are found by extending the definition
of a 3 X 3 determinant, i.e. by the sum of the products of the elements in
the first row and their cofactors.

For a 4 X 4 determinant, the cofactors are 3 X 3 determinants, and these
in turn are broken down to 2 X 2 determinants. However, the calculation
involved in finding a determinant larger than 3 X 3 is tedious and is
usually done using a specialist calculator or software.

@ Exam tip

It is easy to make mistakes when
finding a3 X 3 determinant, sodo
not be tempted to try and calculate
itin one step.
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Example
—I s 0
Evaluate |—3 1 -1
2 0 5
=1 2 02[11‘1 —1‘[2]‘—3 —1‘+[0]‘—3 1‘
s 1 o=l 0 5 2 5 0
2 0 5
= {—1)(5) — {2}(—13]
=21
Example % B i

Solve the equation |x 3 —1|= 24
4 1 -1
Expanding the determinant gives
2 x5 1
x 3-1|=2(-3+1)—x[-x+4)+1x-12)

1 -1
= 4+x2—4x+x—12

=x*—3x— 16
x?—3x— 16 =24
= x!—-3x—-40=0
= (x—8)x+5=0

x=-5o0rx =28

An application of 3 X 3 determinants in coordinate
geometry

VA
C[X‘;, yi:l

B(xs, v1)

Alxy, yy)

O S T U X

The area of the triangle ABC in the diagram is
(area SACT) + (area TCBU) — (area SABU)
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= % (Vi + ysllxs —x) + % (Vs + ysllxy — x3) — % Vi + yallxy — x)
= % (aV3— X3V — X1 V3 + X3V T X1 V0 — X, 7))

Writing this as

:%([1][?‘12}’3*5’3)’2]*[1][}‘11}’3*4’(3)’1]+[1][X1Y2*X2Y1])
shows that it is the expansion of the determinant
1 1 1
1
7 | X1 Xz X3
Yi ¥ ¥a

Hence the area of a triangle whose vertices are at
the points (x, y,), (x,, y,) and (x3, y3) is

11 1
1
72 | X1 Xp X3

Yi Yz ¥

Also, if the points A, B and C are collinear, the area of triangle ABC is
ZEr0, 80

the condition for three points (x;, y,), (x,, ¥,) and (x;, v;)
to be collinear is

1 1 1

x; X x50 =0

¥t ¥o Y3
Exercise 3.12b
1 Calculate each determinant.
2 1 7 1 4 -3 -1 0
(a |0 -1 2 (b) |0 5 2 () |-3 %
1 2 3 0 3 -1 1 -2 4
1 1 1

2 Expand and simplify the determinant |cos 6 cos?6 1
sinf sin?f 1
a b ¢
3 Show that | a> b? 2| = abcla — b){b — cl(c — a
at b ¢
4 Determine whether the following points are collinear.

(a) (0, =6), {1, =3], (3, 3)
(b) (0, 1), {1, 0), (1, 1)




313 Simplification of determinants

Learning outcomes

m  Tosimplify determinants

You needto know

m Howtofind a3 X 3 determinant

B The meaning of a cofactor

Simplification of determinants

When the elements in a determinant are large numbers or complicated
algebraic expressions, it is easy to make mistakes when evaluating the
determinant. However, there are properties of determinants that can be
used to reduce elements to more manageable quantities.

a, da, das a, by ¢
Transposing the rows and columns of |A| = | b, b, bs| gives | a, b, ¢,
& OF i a; b; c
which we denote by |AT|. b P
Now |A| = a;{byc; — bscy) — aylbic; — bsey) + as(bicy — bycy)
= a,(bycs — bycy) — bilascs — ascy) + cilasb; — azhy) = |AT|

Therefore the value of a determinant is not changed when
the rows and columns are transposed.
Hence any property proved for rows is also valid for columns.

The following properties can be proved using a method similar to that above.

A determinant can be expanded using any row or column
and the respective cofactors.

1 3 —4
For example, |0 -2 6| can be found from the first column giving
0 1 2
R 6
[1]‘ +0+0=-10
2

The value of a determinant is unchanged when any row (or column)
is added to or subtracted from any other row (or column).

2 3 5 0 0 3
: _ | B Subtracting the third
For example, ! 2 = 1 2 L row from the first row
2 3 2 2 3 2

It follows from this property that if two rows or columns are the same,
simplification will give a row or column of zeroes, so the determinant is
equal to zero.

A matrix whose determinant is zero is called a singular matrix.

The value of a determinant is unchanged when a multiple
of any row (or column) is added to or subtracted from any
other row (or column).

2 1 —4 2 1 0
. Al — Adding twice the first
Bor-example, | =1 2 2= el & 0 column to the third column
2 5 ==l 2 3 3

The aim when simplifying a determinant is to get as many zeroes as
possible in one row or column to make the evaluation easier and with less
risk of mistakes, but be careful that you do not overdo it. It is also easy to
make mistakes when adding and subtracting multiples of rows or columns.
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Example
1 2 1

Solve the equation | x x—1 x+1]=0
dx dxet 1 g

Subtracting the first column from the second and from the third
column simplifies the elements containing x and gives a zero in the
top row.

1 2 1 1 1 0
x x—-1 x+1|=|x -1 1 =0
2x 2x+1 x—1 2x 1 —x—-1

Expanding the determinant gives

=] 1 % 1
(1) - +0 =0

1 —=x=1 2x —x =1
= x+1)-1—-(—x*-x—-2%]=0 = x*+4x=0
= xjx +4) =0
= x=0o0orx=—-4
Example

1+x* x 1

Given f{x, ¥, z) =|1 +y* y 1| show that [x — y) is a factor of the

) 1?2
function f.

Subtracting the top row from the second and third row gives
1 +x2 x 1
f[Xr)‘I:z] = y27X2 y—x 0
Eli= N 2 =ik [
Expanding using the third column and its cofactors gives
flx, y, z) = (1)(* — X%z —x) — [y — x){z* — =*))
= (y ==}y +-x}z =%} — {28 =x)
=x-yl(22-x) - [y +x)lz —x])

Therefore (x — y) is a factor of the function f.

Exercise 3.13

1 6 —10 100 200 -100
1 Evaluate (@) |2 8 16 (b) | 20 —18 16
1 8 -14 21 36 -—14

x 1 x2

2 Express [x? 1 x| asa product of factors.

= 1 =




314 Multiplicative inverse of a matrix

Learning outcomes

m To find the multiplicative inverse
of a matrix

You needto know

How to multiply matrices
What a unit matrix is
How to evaluate a determinant

The meaning of a singular matrix

The effect of multiplying a
matrix by a scalar

m How to find the cofactor of an
element in a matrix

The meaning of a multiplicative inverse of a matrix

If for a matrix A, a matrix B exists so that AB = I, B is called the
multiplicative inverse of A.

B is denoted by A !, so AA ! =1, and we will show that when A ! exists,
AAT'=ATA=1

This is similar to a multiplicative inverse for real numbers. Multiplying
any real number by its reciprocal gives 1, e.g. 2 X % =1, s0 % is the
multiplicative inverse of 2, and vice-versa.

In future we will call a multiplicative inverse of a matrix simply an
inverse matrix.

The inverse of a 2 X 2 matrix

b -
IfA = ((1 d) then postmultiplying A by the matrix ( d ) gives
c —c a
((1 b)(d —b)_(ad—bc 0 )
c d/\—c a 0 ad — bc
0
=i — Bl )
1
— d — ;
Premultiplying A by ( ) gives
—¢ a
(d -b (a b):(ad—bc 0 )
—c allc d 0 ad — bc
0
= (ad — bc) X )
1
Now ad — bc = |A|
Therefore both premultiplying and postmultiplying A by ( o = ) gives
—c a
o T e 1 (d —b
|A|T so both premultiplying and postmultiplying A by TaT
—-c a
gives L.
b d -b'
Therefore when A = (a . ATtE L ( )
c d Al {—¢ 4

If |A| = 0, A~! does not exist and A is a singular matrix.

Notice that the matrix ( d _b] is obtained from the matrix (ﬂ b )
—F W c

by transposing the elements in the leading diagonal and changing the
signs of the elements in the other diagonal.
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Example

Find the inverse of (a) (i ;) (b) (2 5)

3 4

(a) First transpose the elements in the leading diagonal and change

3 -1
the sign of the other elements to give ( )

5 1 -5 2
Then ‘ =1
L 2, 1y 3 -1
therefore ( J = ( )
5 3 0 2
(b) First transpose the elements in the leading diagonal and change
4 -5
the sign of the other elements to give ( " 2)
2 5
Then ‘ ‘ = -7
3
2 5| 4 -5
therefore ( ) = —l( )
7\-3 2
g 3
7 7
s 2
T

Note that each of these answers can be checked by multiplying it
by the original matrix.

Exercise 3.14a

Find, when it exists, the inverse of each matrix.

o B P L B

The inverse of a 3 X 3 matrix

a, ap das

(sinf) cos 0 )

cosfl —sinéd

The inverse of the matrix A= | b, b, b;| is found by first transposing
Gy Ca Gh
a, b, ¢
the rows and columns to give | a, b, ¢, This is denoted by AT
a; by cy
then replacing each element of A with its cofactor. Denoting the cofactor
(A, B, G
of a, by A, and so on, this gives the matrix | A, B, C,| and finally
A; By G,
dividing by |A], i.e.
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a, a, d;

When A= bl bz b3

c, ¢ C;
A, B, C,!
A1 =ﬁ A, B, C,
A; B; G,

where A, A,, ... are the cofactors of a,, a,, ...

If |A| = 0, A™! does not exist and A is a singular matrix.

4 1 0
For example, to find the inverse of A =|—1 2 1|, first find AT,
3 -2 1
(4 —1 3
AT =1 2 —2
0 1 1
Next replace each element in AT by its cofactor:
2 —2‘ 1 -2 1 2]l
+ - +
1 1 0 1 0 1
4 -1 1
-1 3 4 3 4 -1
- + - =| 4 4 —4
1 1 0 1 0 1
—4 11 9
-1 3‘ 4 3 4 —1
+ = +
2 =2 1 —2 1 21
4 1 0 4 1 0
Then find |[A|]: |-1 2 1| =|-4 4 0
¥ =2 1 3 =2 1
Subtracting the third row from the second row
=20
—] 1
5 1
T —
Therefore A~ ! = 20 4 4 4
-4 11 9
4 1 0 4 -1 1
: A1 _
Check: |—1 2 1| 5% 20 4 4 4
3 =2 1 —4 11 9
(20 0 O
_ 1 ;
=30 0 20 O
0 0 20
‘1 0 0
=0 1 O
0 0 1

Note that it is very easy to make mistakes using this process, so take one
step at a time.
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Example
3 1. &

Show that the matrix A = | 1 2. 3| does not have an inverse.
2 -1 4

To find the inverse of any matrix A, we need to evaluate |Al. Therefore
it is sensible to start with evaluating this determinant and if it is zero
we know that the inverse does not exist.

3 1 7
Al= |1 2 3
2 -1 4
2 -1 4
Row 1 — row 2 gives |1 2 3
2 -1 4

Rows 1 and 3 are the same, so taking one from the other will give a
row of zeroes. Therefore |Al = 0, hence A does not have an inverse.

Properties of inverse matrices

This is the property we proved for 2 X 2 matrices and it is true for all
square matrices:

AA"l = ATIA
It follows from this that as A is the inverse of A™!, i.e.
(A1) = A
Now postmultiplying AB by B~*A™! gives (AB)(B~!A™!)
Matrix multiplication is associative, therefore
(AB)(B-'A"!) = A(BB~)A"! = AIA"! =

Hence the inverse of ABis B7'A™!, ie.

{AB]_I =B A}
Exercise 3.14b
1 Find, when it exists, the inverse of the matrices
1 1 0 1 0 4
@A=[-1 3 o0 @B=|0 3 2
2 =1 1 —1 5 0
5 -1 9 4 1 3
)3 -1 5 | 3 5 -2
2 0 4 —1 =2 1

2 Verify that, for the matrices A and B in question 1, (AB) ! = B"'A™!

3 A, B and C are non-singular 3 X 3 matrices.
Prove that (ABC)™! = C'B'A™!




3.15

Learning outcomes

To investigate the consistency of
a pair of simultaneous equations
in two unknowns

To use matrices to solve a pair of
simultaneous equations in two
unknowns

To define the meaning of
equivalent systems of equations

You needto know

How to represent a linear
equation in two unknowns as a
line in the xy-plane

How to multiply matrices

How to find the inverse of a
2 X 2 matrix

Systems of 2 X 2 linear equations

Systems of 2 X 2 equations

A system of linear equations is a set of linear equations containing the
same variables.

A set of two linear equations with two variables is called a 2 X 2 system
of linear equations,

ﬂ1X+ﬂ'_}y =d;
b1X+b2V :ba

Consistency of a system of equations
X & .V = a3

can be represented by two lines in the
bx + by = b, 3 4

The equations
xy-plane.

These lines may intersect, in which VA
case there is only one set of values
of x and y that satisfies the equations,

i.e. there is a unique solution. ax + ay = a,

/ [6) X
bx + by = b,
The lines may be parallel, in which VA
case there is no solution, e.g.
2 — 3y = -2

A Ao

7 o/ X
v

Or they may be the same line, in which VA
case there is an infinite number of
solutions, e.g.

x — 3y = —1
dx — 6y = =2

/ >
/ O X

A system of equations that has either a unique solution or
an infinite number of solutions is called consistent.

A system of equations that does not have either a unique solution or an
infinite number of solutions is not consistent.
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Matrix representation

ﬂ1X+ﬂ2y:ﬂ3

The equations can be represented by a single matrix

equation.
a, a,\(x 41X + ay
Since = 2
b, by/\y bx + by
‘a, a,\(x das
we can express the equations in the form ( )( = ( )
b, byJ\y b,
. ay dy . . . X as
Using A = ( ), the matrix equation can be written as A| | =
by by y b,

then, provided that A~! exists, premultiplying each side by A~! gives

X a,
A‘lA( ) = A1l ( ),
y bs

S

The equations have a unique solution provided that A~ ! exists,
i.e. provided that |A| # 0

2x — 3y =

can be written as
dx+ y=-1

For example, the equations

b=l

2 =3
Thenif A = ( ), |A|] = 14 so the equations have a unique
solution. 1

14 2
1 (1 3\ =3\(x\ 1(1 3\[5
S0 _ = —
14 14 2(4 1/\y/] 14\-4 2/\-1
x\ 1(1 3\[5
= I( :T_
y -4 2f\-1
]
X 1 2 7
=3 = — ==
y| 14{-22 -4
Thereforex =7 andy = -4

The advantage of using matrices is that the process is mechanistic,
i.e. requires no thought, so computers can easily be programmed to
carry it out.

However, to solve a system of 2 X 2 equations by hand, it is often simpler
to use the basic method of elimination or substitution.
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Equivalent systems

2x —3y= 5 [1]
dx + y=-1 |[2]
several ways to give a different pair of equations.

The equations given above, i.e. can be combined in

_ _ x—3=5
For example [1] + [2] and [1] gives B~ Ot

have the same solution as the first set.

and these equations

Any algebraic combination of equations [1] and [2] will give another set of
equations with the same solution.

Two sets of equations with the same solution are called equivalent systems.

The aim in producing an equivalent set of equations is to make the
solution easier.

For the equations [1] and [2], 3[2] + [1] gives 14x = 2,

ldx =7
dx+y=-1
pair of equations and are easier to solve.

so the equations have the same solution as the original

: ; ; x—3y= 5 14x = 2
Comparing the matrix equations of POT and S
X

o =)= 600

4 1
we can sce that by replacing the first row by (3 X row 2 + row 1) of both

(2 3
4 1

equation.

ie.

and (

-

5
l) we can obtain the second matrix

and the column vector (

By placing the column vector in the matrix to get a third column, we get

2 = 5
the augmented matrix ( % ‘ ? )
4 1 =1

Operating on this augmented matrix ensures that whatever we do with
the rows of the square matrix, we also do with the rows of the column
vector, so producing an equivalent system of equations.

Calling the top row of the augmented matrix r, and the second row r,,

then
14 0 2
3r, + r; on the first row gives ( ) | : )
; 10 L
r; + 14 gives -
4 1 -1
10 4
ry, — 4r, gives i
01 =
1 0f/x % X %
This gives the matrix equation = 4l = = N
0 lyl \-% y| |-%

11 1
soy=—<andx =3
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This method of solving the equations is called row reduction. The aim is

a 0
to get the square matrix in the form ( 0 b)
This method of solving a pair of 2 X 2 linear equations is clearly not as
quick as using simple algebraic elimination. However, it is extended in
the next topic to solve systems of 3 X 3 linear equations, when it does
give an easier solution than purely algebraic methods. Therefore it is
worth spending time practising the method on simpler 2 X 2 equations.

Example
=2
Use the row reduction method to solve the equations 7
x -3y =4
) ) ) ) . 3 Ii/x 2
Expressing the equations in matrix form gives =
2 —3l\y/ \4
3 1 2
Using the augmented matrix 5 -3 | 4 gives
11 0 10
3+ =
2 —3 4
11 0 10
11ry — 21, =
0 —-33 24

o —sally) =)
o3 o

— 1o = _ 8
So x=17 andy=

11

Exercise 3.15

1 Determine which of the following systems of equations are

consistent.
I3x—2y= 5 6x —dy =12 x+ty=-1
(@, ®) , . _ ) =
4x y=-1 x—2y=1 x—y=-1
: 5x +3y= 8 : :
2 Express the equations B sl as a matrix equation.

Hence solve the equations using row reduction.

x—y=28§

3 Solve the equations 2% —y=0

using row reduction on an

augmented matrix.




3.16 Systemsof 3 X 3 linear equations

Learning outcomes

To investigate the consistency
of a 3 X 3 system of linear
equations

Torepresent a set of three linear
equations in three unknowns as a
single matrix equation

To reduce a matrix to row
echelon form

To solve a 3 X 3 system of linear
equations using row reduction of
an augmented matrix

You needto know

That a linear equation in three
unknowns can be represented as
a plane in three dimensions

How to find the determinant of a
3 X 3 matrix

Systems of 3 X 3 equations
A set of three linear equations with three variables is called a 3 X 3
system of linear equations,
QX +a)y +azz =day
eg bx+by+biz=5b,
CiX + Caf + €52 =Gy

Consistency of a system of equations
X T dyy + azz =dy

The equations b,x + b,y + byz = b, can be represented by three planes.
X+ cy+cz=10¢4

If the planes intersect in only one point, the equations have a unique
solution.,

If the planes intersect in a common line, or are identical (i.e. the
equations are multiples of each other), there is an infinite set of solutions.

AN
>l

In both these cases the system of equations is consistent.

Any other configuration of the three planes will not give any solution and
the equations they represent are not consistent.

Matrix representation
ax + @y + azz =a,

The equations b, x + b,y + byz = b, can be expressed as the single matrix
CiIX + GV +C3Z2=¢Cy4

a, a, as||x dy
equation | by b, b;||y| =|b,| as each row of the matrix multiplied by
€, €y C3/\z Caq
b ¢

the column vector |y | gives the left-hand side of each equation.
Z

a, dy dj

bl bZ b:i

Cp C C3

IfA = then, provided that A~! exists, premultiplying each

side of the matrix equation by A~! gives
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X a, bre iy b's a,
A'Aly|=A1tb,|, ie. I|ly|=A1|by| = |yv|=A"'|b,
Z Cy Z Cy Z] Cy |
(If A-! does not exist, the system of equations is not consistent.)
dx + y=3
For example, the equations —x + 2y + z = 2 can be expressed as
x—2y+z=1
4 1 0} /x 3
—1 2 1llyl=12
3 -2 1/M\z 1
4 1 0 4 -1 1
Then A=|-1 2 1|andAl=5-| 4 4 -4
3 —2 1 = 11 9
(This was found in Topic 3.14)
4 -1 1 4 1 0 4 —1 1y /3
L _all- . —— _
20 4 4 4 1 2 1| v 20 4 4 4
-4 11 9 3 =2 1/\z -4 11
4 —1 1} (3
1
z -4 11 9
x| ISURNE
_ 1 _ |4
= Y[ =20 || 7|5
z 19/ |32
_ _ 19
X=w VY= 2=

Again, as with solving 2 X 2 linear equations, this method has the
advantage of being easily programmable. However, using this method
without the aid of appropriate software means finding the inverse of a
3 X 3 matrix, which is time-consuming and prone to mistakes.

We know that combining equations to eliminate a variable produces an
equivalent system of equations. This means we can solve 3 X 3 linear

equations using the method

of row reduction of an augmented matrix,

just as we did when solving 2 X 2 systems.

First we look at the form of an augmented matrix that we need to

achieve.

Row echelon form of a matrix

The leading elements in a row of a matrix are the elements reading from

left to right along the row.

A matrix is in row echelon form when each row has more leading zeroes
than the row above it. (It is the number of leading zeroes in a row that

Did you know?

Echelon is the Greek word for ladder.

matters; other elements can be zero.)
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1 =] 0 4 0 0O
These matrices are in row echelon form: (0 3 5/, 10 0 0 1
0 2 0 0 0 O
) T ¢ 0 0 0 5
These matricesarenot: [0 0 3, |0 0 2 1
0 0 2 0 2 3 0

Reduced row echelon form of a matrix

A matrix is in reduced row echelon form when
each row has more leading zeroes than the row above it
and the first non-zero element in each row is 1.

1 4 0 -2 0 1 3 2
For example, | 0 1 3 1] and |0 0 0 1| arein reduced row
0 0 0 1 0 0 0 O

echelon form.

Using reduced row reduction to solve systems of 3 X 3 linear
equations
Using the equations on page 161 again,
4 1 0} /x 3
ie. [-1 2 1|lv|=12] theaugmented matrix is
3 =2 1z 1

4 1 0 3
= 21 2
3 -2 1 1

We now use combinations of rows to change this to reduced row echelon
form. It is important that you use combinations of rows; do not be
tempted to use columns as this will not give an equivalent system of
equations.

Using ry, 1, and r; to denote the rows of a matrix, we want zeroes in the
leading elements in the second and third rows.

4 1 0 3
Adding 3r,torsgives | -1 2 1 2
3 4 4 7
4 1 0 3
Adding r, to 4ry gives |0 9 4 | 11
0 4 4 7
We now want a zero in the second element in the third row:
4 1 0 3

subtracting 4r, from 9r; gives [0 9 4 11
0 0 20 19|
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Next, divide each row by the value of the first non-zero element in that row:

1 0] 2
01 5| %
001 |3
x+ay=3 [
This augmented matrix gives the equivalent system y + %z = % [2]
_ 19
=50 [3]

which can be easily solved using substitution, i.e. [3] in [2] gives

&) (19) 1L _20-76 _144 _4
b)) =% = v 1807 3
then substituting the value of y into [1] gives x + % = % - x= %

Therefore the solution is x = 1l H -

200 VT 5 £T7320

Example
4x — y+5z=28
Use reduced row reduction to solve the equations 5x + 7y — 3z = 42
3x+4y + z=127
4 -1 5 8

Starting with the augmented matrix: | 5 7 =3 42
3 4 1 27

4 -1 5 8 4 -1 5 8
3r,—5r; = |0 1 —14 =2]; 4r;—3r;, = |0 1 —-14 -9
3 4 1 27 g 19 =11 84
4 -1 5 8 1= & 2
r3—19, = |0 1 —14 -9|; n+4r;+255 = [0 1 -14 —9
0 0 255 255 0 0 1 1
This gives the equivalent set of equations (starting with the last row)
z =1
v—14z =-9 = y=5

X—iy+%z:2 = x=2

Therefore x=2,y=5,z=1

Exercise 3.16

Use row reduction of an augmented matrix to solve the following systems
of equations.

2x—y+3z=28 X+ 2y — 4z
1 d4x+2y—2z=13 2 3x—y+2z
2x +3y —4z =95 5x +y+4z=3

0
7




3.7 Using row reduction to find an inverse

matrix

Learning outcomes

m To find the multiplicative inverse
of a matrix using row reduction

You need to know
m How to represent a system of
linear equations in matrix form

m How to reduce a matrix to
echelon form

Finding the multiplicative inverse of a matrix using

row reduction
x+2y+tx=4
Consider the system of equations x — 3y + 2z = 2
x—3y—z=-2

3 2 1)/x [ 4
These can be represented by |1 -3  2[y|=| 2
2 =3 =ll\z —2
1 0 0 4
=0 1 0 ) [1]
0 0 1/1\-2

We know that operating on the rows produces an equivalent system of
equations.

To find the inverse of the left-hand matrix we want to reduce it to a unit
matrix. So if

'3 2 1 fx 4
A=|1 -3 2| wereducethesystemto I|y|=A"1| 2
2 -3 -1 z 2

4

Any row operation eitheron Ioron | 2| gives the same result on the
right-hand side of [1],

=)
1 1 0 4 6
eg. 1n+tronl = 01 0 21=( 2
0 0 1/1-2 -2
4 1 0 0 6
and r, +r,on | 2] = |0 1 0 2| =
-2 0 0 1/1=-2 -2

If we just want to calculate A~!, we can operate just on A and I using the
augmented matrix:

3 2 1 1 0 0
1 -3 2 01 0
2 =3 =1 0 0 1

We now work on the rows to reduce the left-hand side to I.

5 -1 0 1 01

r+tr; = 1 -3 2 0 1 0};
2 -3 -1 0 0 1
5 -1 0 01

rn+dr; = (5 -9 0 0 1 2|;
2 -3 -1 0O 0 1]
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40 0 O 9 -0 7
o, —1, = 5 —9 0 1 2 |;
2 -3 — 0 0 1
40 0 O 9 -1 7
n—§n = |0 -9 0| -2 2 2}
2 -3 -1 0 0 1
40 0 O 9 -1 7
I3 %rl = 0 -9 0 —g % %

@
(o5
t
(=]
B
o o o
| |
oo W
|
o o -
| |
wio  \O g|°
l =3
[ =1 1= R — ::;|'—
g wpa g|;
et PN o L SR TN o e e SRR B o N el T B

)
=)
G2
e

gle
At
&

&le
8|~
&l~

Iy Iy I3
a0 ~9 -3

OO | —

= 0 1 0

oo

3 13 11
0O 0 1 0 T

We have now reduced the system in [1] to

9 1 7
1 0 0}x oh mas oo 4

g1 0=l = 3| B

00 1|z |5 B -l
Sk H| o 7

Al=|1 L 1 =%5—5 -5
2 B _4u 3 13 —11

This method of finding an inverse of a matrix by row reduction has
advantages over the method using cofactors because it simplifies the
arithmetic, and so mistakes are less likely. However, it is sensible to
check that your calculated inverse multiplied by the original matrix does
give L.

Using row reduction is also a quicker method for showing that a matrix is
singular as it will produce a row of zeroes, proving that |A| =0

Exercise 3.17

1 3 1
1 Use row reduction to show that the matrix |3 7 2| is singular.
2 4 1

2 Find the inverse of each of the following matrices.
4 1 1 2 1 0 e | 4
(a) |2 0 2 (b) | 5 5 1 () |2 -1 5
1 =2 1 1 -2 1 1 2 4




3.18 Differential equations

Learning outcomes

m To explain differential equations
as mathematical models

m To formulate differential
equations of the form
dy
dx

function of x or a constant

ky = f{x) wherek is a

You needto know

B The meaning of a first and
second derivative

The basic facts about integration

The derivatives of standard
functions

m How to differentiate a product of
functions

m How to differentiate implicit
functions

Didyou know?

Newton's name keeps appearing

in the study of mathematics. Sir
Isaac Newton (1643—1727) was a
prolific mathematician. He was also
arguably the greatest scientist the
world has known.

Differential equations

A differential equation connects an unknown function and its
derivatives.

The order of a differential equation is the highest derivative contained
in the equation.

For example, &y — xy = x* is a first order differential equation and

d?y dy ; ; . :
RV = 0 is a second order differential equation.

Models

Unlike many topics in mathematics which find real-world applications
some time after their development, the formulation of differential
equations comes directly from the need to describe real-world phenomena
mathematically.

A differential equation is a mathematical description of a real-world
phenomenon. It is used to predict results and it is called a mathematical
model.

How good the model is depends on how closely the results it predicts are
to measured results from the real-world phenomenon.

There are many well-known equations that are extremely good models.
For example, Newton's laws of motion are a set of equations that describe
the relationship between the forces acting on a body and the motion of
the body. These are accurate enough to be used to determine the forces
needed to place satellites in orbit.

Solution of differential equations

The solution of a differential equation gives an equation connecting the
variables without any derivatives involved. If the differential equation is
a first order equation, solving it involves one integration operation so it
will include one unknown constant. When the differential equation is a
second order equation, two integration operations are needed to solve it
so the solution will involve two unknown constants.

There is an enormous number of different types of differential equation
and many of them cannot be solved.

In Unit 1 we covered the solution of a first order differential equation
with separable variables. In the remaining topics in Unit 2 we look at the
solution of two more types of differential equation.

First, we look at how a particular type of differential equation can arise.
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Formulation of differential equations of the form

% — ky = f(x) where k = h(x)
dv du

G ; d _
We know that, if u# and v are functions of x, then e (uv) = u s
We also know that d (velx]) = glx) d_y + ye'(x)
£ ax Ve =E8Xl gy T V8
for example, % [vsinx] = sinx % +ycosx

d
Therefore, given the differential equation sinx &y + ycosx = 2x, we can
recognise the left-hand side as the differential of ysinx, and so solve the
equation by integrating both sides.
d
Hence sinx &y + ycosx = 2x
= ysinx = x> + A where A is an unknown constant.

This type of differential equation is called an exact differential equation.

d
If the equation sinx &y + veosx = 2x is divided by sinx (sinx # 0) it

becomes

dy
P = g
cotx = 2x cosecx

so it is of the form d—d}; — ky = f{x] where k = h(x] but the left-hand

side is not now the derivative of a product. Before finding ways of solving
differential equations of this form, we solve a few exact differential
equations that have not been simplified.

The solution of a differential equation containing unknown constants
of integration is called the general solution. To evaluate constants of
integration we need to know initial values of x and y. These are called
boundary conditions.

Example
1

d
Find the general solution of the differential equation x &y =i

The left-hand side is the derivative of xy,

therefore the general solution isxy = In |x| + A

Exercise 3.18

Find the general solution of each of the following differential equations.

4y _ , dy _
1 ea+ye"—2x 2 XE-FZX}/—CDSX

dv ,  _p
3 1 tv=t




3.19 Integrating factors

Learning outcomes Integrating factors
m To solve differential equations of We know that if the left-hand side of a differential equation has the form
A oy , - .
the form _SE yglx) = f(x) g(x) YR (x) we recognise that this is the derivative of the product
using an integrating factor yglx).

However, when this is not the case, it is possible to multiply by a
function of x that will give the derivative of the product yg(x).

You needto know This function is called an integrating factor, and we will denote it by .

; o d
m  The formula for differentiating a Consider an equation of the form Ey + Gy = F where both G and F are
roduct
P functions of x.
The chain rule

How to solve a differential Now multiply the equation by I where I is a function of x,

equation with separable variables & Iﬂ + y)GI) = FI 1]
m Theintegrals of standard 5
functions We want to find I such that dX (Iy) = T+ (v)|GI)

Comparing the left-hand side of [1] with u SX +v gx gives

d
:‘ng; &y and V—y,gxu

Using the chain rule, i.e. % = g‘—i ® (313, gives % =1XGI=GI

GI

Now % = GI 1is a first order differential equation whose variables are
separable.
1 _
Therefore fT dl = deX
= InI =deX
= I= efcdx

: d
So I = ef('dx is an integrating factor for the expression &y + Gy

Assuming that f Gdx can be found (it cannot always, but can for any

equations you meet in the examination), then

d d
T +Gy=F = Ig + G =H

s f( +[y][GI])dX fL'Fdx
= Iy:fIFdX

Both I and F are functions of x, so the integral on the right-hand side can
be found for any equations you meet in the examination.
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Example % @
Find the general solution of the differential equation &y - ?y = x’e*
dy 29 _ , dy 2Y_
T = gy e
. . . f- 2
the integrating factor I ise/ ¥ = g 2Inx
S, s O |
I . dy 29 o
Multiplying both sides of oy X by x7% gives
1 dy
Xk o ¢
= 12 = fe" dx
X
="+ A

= y=x% + Ax?

Example
Find the solution of the differential equation t% —v+tlet=0
given that v =0whent =1

First, rearrange the equation so that it is in the form ((ii_: + vg(t) = ft)

dv

bar

_ dv 1 _
o2e 2 T — = e t
v+tet=0 = dt—i—v( t)_ te

1
J = ef_?dr = e_ll“ = %

b )

- o) fe
= v=te '+ At
v=0whent=1gives0=e !+ Aso A= —e!

v=tet—te!

Exercise 3.19

1 Find the general solution of

(a)%—%—&’.y:x (b) si.nx%+yc05x=l

2 Find the solution of % +xy=x giveny = 0 whenx =0

ki

d
3 Solve the equation Hd_):) — v = 6*cosf giveny = 0 when 6 =

b2




3.20 First order differential equations

Learning outcomes

m To summarise methods for
solving first order differential
equations

You needto know

m Theintegrals of standard
functions

m How to differentiate implicit
functions

m How to use integrating factors

@ Exam tip

Any equation you are given in an
examination can be solved.

Summary of solutions of first order differential
equations

d
There are many differential equations involving E}/ that cannot be

solved to give a direct relationship between x and y. The table shows
methods that can be used for some first order differential equations that can
be solved. All of these methods rely on recognising the standard integrals,
so you need to know all of these from Unit 1 as well as from Unit 2.

Form of equation Method of solution

dy _ Recognise the function of which the differential
—-— = fx) .
dx is f{x)

or use a substitution to simplify f(x)
or use partial fractions (for a rational function)

or use integration by parts (for a product of

functions).
d d
&y = gly)ix) Separate the variables to give ﬁ &y = f{x)
1 -
then f il f f(x) dx
dy N Recognise the left-hand side as the differential of
glx) 3, tvg'lx) = fix) yalx) ghing
yelx) = [fix) dx
(You may need to rearrange the equation to give
this form.)

This form is called an exact differential equation.

@ + yelx) = f(x) When rearrangement does not give an exact
d " 78 differential equation, multiply throughout by the
integrating factor
This then gives an exact differential equation.
Example

Solve the following differential equations.

(a) [1+X1]%:2X (b)[l+x2]%=2yf

(c) (1 + x2) % +2xy=0 (d) x % + 2%y = 4xe ¥
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d
(a) (1 + =) Ey: 2x
This equation contains no term involving v, so first rearrange it to
isolat dy
isolate -

d
Eyzlixxz = y=ln|l+x* +c

) (142 L =2y

The variables in this equation can be separated to give

1dy_ o
yde 1+x°

1 _f 2 i .
= fydy— —1+X2dx = In|y| =2tan 'x +¢

(c [1+X2]%+2xy=0

—

2x is the differential of (1 + x)? so this is an exact differential
equation giving

¥l +x2% =c
(The variables in this differential equation can be separated but

recognition of an exact differential equation gives a quicker and
neater solution.|

dy
dx
The left-hand side is not exact and the variables cannot be
separated but we can rearrange the equation to the form

(d) x 5=+ 2x% = 4xe ©

% + vglx) = f[x] and use an integrating factor:

dy .
E—I— 2xy = 4
then I= efhdx = J=g"

Exercise 3.20
Solve each of the following differential equations.
1 smxa-l—ycosx—tamx 2 =t

3 Xd_y_ = 3x? 4 —+y=0
x VT x VT




3.21
L4
dXZ

Learning outcomes

m To solve equations of the form

dy dy
b Tl
wherea,b,c €R

+cy=0

You needto know

m Therelationship between the
roots and the coefficients of a
quadratic equation

B The meaning of conjugate
complex numbers

Differential equatlons of the form

dX+cy=0

Formulation of a second order differential equation

When an equation y = f{x) contains two unknown constants, A and B,

d%

. " oo o _
differentiating twice gives 4= f'{x) and T "(x)

These two equations, together with the original equation, can be used to
eliminate A and B, giving a second order differential equation.

We now look at three types of the equation y = f{x) containing unknown

constants A and B, all of which give rise to an equation of the form

d? d
a EZ + b&y + cy = 0 where a, b and c are real constants.

A differential equation of the form (1% -+ b& +cy =0 is called a

linear second order differential equation.

The equationy = Ae** + Bef*

Consider the equation y = Ae¥ + Be*

d&3/231’-15-’”‘+ 4Be* = 3y + Be™
dy dy i O (dy )
52 =3 T4Be =3 + 4|3~ 3

@ d
5 Tr- B L+ E)y=0

and the coefficients of this equation are the roots of the quadratic
equation u> — 7u + 12 = 0.

Therefore working backwards, by using the coefficients of

dy ,dy dy
dx? dx
u?—7u+12=0 = (u— 3)(u— 4) = 0 then the roots of this
equation give the general solution as y = Ae® + Be®*

+ 12y = 0 to give the quadratic equation

Now consider the general case, i.e. y = Ae™ + Bef

dy

Oy X Bx

T ale™ + (BBe
d

and % = a?Ae™ + B*Be

Eliminating A and B from these two equations gives
d

d
e+l +apy=0
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Then the coefficients of this equation give the quadratic equation
—|la+Bu+ap=0

whose roots are « and .

In general, the quadratic equation au® + bu + ¢ = 0, formed from the

differential equation (1% + b% +cy =0 is called the auxiliary

equation.

When the auxiliary equation au® + bu + ¢ = 0 has real distinct
roots @ and B, the general solution of the differential equation

r;l2 d
aga+ b 4 cy = 0 can be quoted as

y = Ae™ + Befx

Example

Find the general solution of the differential equation

587 gl o

&~ Cdx Y

The auxiliary equation is 2u? —3u +1 =10

Wwr—-3u+1=0 = (2u-1u-1)=0 = uzéoruzl

. dy dy
Therefore the general solution of ZE - 35 +yv=0

is y= Ae*™ + Be¥

The equationy = (A + Bx)e®x

Consider the equation y = (A + Bx)e™

% = 3(A + Bx)e’* + Be® = 3y + Be**
dy _dy dy dy
EZSdX+SBegXZSE+3(dX 3}/

d dy
> B sraPiaxay-=o

This time the auxiliary quadratic equationis u? — (3 + 3jJu + (3 X 3) =0
and it has a repeated root of 3.

Now consider the general case, i.e. y = (A + Bx]e

dy

Ezay-i—Bem‘
d d d d
dZZQdi/-i-aBe“: &y+a(&y—ay)
2y

= SXZ ZGSX-I-aQy 0

dy » dy

P dX+aly:0

ie. y=|[A+ Bxlex =
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When the auxiliary equation au® + bu + ¢ = 0 has a repeated
root a, the general solution of the differential equation

r;l2 d
agz+ ba% + cy = 0 can be quoted as

y = (A + Bx)e™™

Example
Find the general solution of the differential equation
433 & 12— +9 =0

The auxiliary equation is 4u2+ 12u +9 =0

= (2u+3)> =0

This equation has a repeated root equal to — %
d d

so the general solution of 4% + IZE}} +9 =0

is y=[A+ BX]E_%X

The equationy = e** (A cos Bx + B sin 8x)
Consider the equation y = e* (A cos 3x + B sin 3x|

d
EY = 2e* (A cos 3x + Bsin3x| + e (—3Asin 3x + 3Bcos 3x]

=2y + e» [—-3Asin3x + 3B cos 3x]

2
% = 2% + 2e* (—3Asin3x + 3B cos3x) + e (—9A cos 3x — 9B sin 3x]
dy (dy ; )
=2g +2 |-

, dly dy
ie. 12 4dX+13y 0

The auxiliary equation is u? — 4u + 13 = 0 and the roots of this

equation are the conjugate complex numbers % =2 =+ 3i

Now consider the general case v = e** (A cos Bx + B sin x|

% = ae® |Acos Bx + Bsingx] + e** (—BAsin Bx + BB cos Bx|

ay + e™ (—BAsin Bx + BB cos Bx|

d? d d

2 il )
2y

= (leXZ Zad +la2+ By =0

The auxiliary equation is u?> —2au + (a®> + g%y = 0 and the roots of this

) 2a = 4a? — 4(a® + B .
equation are ) = a*if
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When the auxiliary equation au? + bu + ¢ = 0 has complex
roots a *+ i, the general solution of the differential equation

dy o dy
ags +ba;+ cy = 0 can be quoted as

y = e* (A cos Bx + B sin 8x)

Note that if the roots of the auxiliary equation are purely imaginary,
ie. a=0

!

then y = Acos Bx + Bsin 8x

Example

Find the general solution of the differential equation

dy d
4Lty =0

The auxiliary equation is

- 16 — 20
w*+4u+5=0 = HZW

=-2%i

Therefore the general solution is v = e > (A cosx + Bsinx)

Summary
The general solution of the differential equation

dy o dy
(IE-FE)&‘FC}’:O

depends on the nature of the roots of the auxiliary equation
au* +bu+c=0

If the roots are « and B8 then

m when « and B are real and distinct, y = Ae™ + Be#
m whena=p y = (A + Bx]e™
[ ] Lvlllll:cnr{) :r :nd B are complex conjugate s g {roes AT Bt ge)
Exercise 3.21
Find the general solution of each differential equation.

d?y dy : dly dy
1 W— E-klly:(} 2 E—Q,&-FS)/:O

2

35%_@20 4g%+@:0

d?y dy dYy dy
5 —2_7520 6 E—éa—k%’:(}




3.22 The particular integral 1

Learning outcomes

m To solve differential equations of
the form
W
ags+ b
where f[X} is a polynomial

o A cy = flx|

You needto know

m How to find the general solution
of the differential equation
dy dy

dX2+bEX—+Ly 0

The particular integral when f(x) is a polynomial or a

constant

d? d
Consider the differential equation E}; + 4&)} +3qy=6x>+x+2

The polynomial on the right-hand side suggests that a polynomial of the
form y = ax? + bx + ¢ might be a solution of the differential equation.
We call this a trial solution.

We can test this by differentiation, to see if values of a, b and ¢ exist so
that y = ax®> + bx + ¢ is a solution,

ie. y=ax’+bx+c = dE—an+b and%—i)a

Substituting into the left-hand side of the differential equation gives
2a + 4(2ax +b) + 3lax® +bx +¢) = 6x2+x + 2

= 3ax*+ (8a+ 3b)x+ (2a+4b+ 3c)=6x2+x+2

Comparing coefficients givesa =2, b= —5andc = 6

Therefore v = 2x2 — 5x + 6 is a solution of the equation

d2y dy .
dX2+4dX+3y—6X +x .2

However, y = 2x> — 5x + 6 cannot be the full solution because it does
not contain any constants of integration.

The function 2x? — 5x + 6 is called the particular integral.

d?y

d
The general solution of a v IxZ 2.

+bd

+ cy = f(x)
where f(x) is a polynomial

We have found a solution of the equation
dzy dy "
dx2+4dx+3y 6x> +x + 2

and we can find the general solution by first solving the simpler
differential equation

d’y dy

o2 T 4&+ 3y =0

The auxiliary equation is

w+4u+3=0 = (u+3)lu+l)=0 = u=-3or—1

y =Ae ¥+ Be™®
Adding Ae3 + Be* to the particular integral gives
y=Ae ™ ®* +Be*+2x>—5x+ 6

and we can show that this is the general solution of

by ;.
dx2+4&y+ Jy=6x2+x+ 2



y=Ae ¥+ Be ¥+ Wx?—5x+ 6

d 2
—]y = —34e ¥ —Be ¥+ 4x — 5 d] );
42
—]}; =94e * + Be ¥+ 4

dy

Section 3 Counting, matrices and differential equations

S iy s
+a4g + 3y =62 +x+2

Ae 3 + Be ¥ is called the complementary function, and we have found
the general solution of the given differential equation by adding the
complementary function and the particular integral.

: . . d’y . dy
For any differential equation of the form a ot b + cy = {x)

dx

where f(x) is a polynomial, the general solution is given by
y = (complementary function) + (particular integral)

dy

d
where the complementary function is the solution of a R b 3y Top= 0

and the particular integral is a general polynomial of the same order
as f(x) and whose coefficients can be found by differentiation and
substitution into the given differential equation.

Example

d d?
= Eyza and %z[}
2a + 5lax +b)=7x—1
19

Therefore y = %X s

Next find the complementary function:

- 4 — 920
2i»24 20 .. .55

So the complementary function is
y = e *|Acos2x + Bsin 2x|

= u=

Therefore the general solution is
y =¢e*[Acos2x + Bsin2x) + %X —

dZ
Find the general solution of the equation EZ + 2 I

Comparing coefficients gives a = % and b = — 5=

the auxiliary equation is u®> + 2u +5 =0

19

25

dy

First find the particular integral: try vy =ax + b

Substituting into the given differential equation gives

19
25

is the particular integral.

+5y=7x—-1

Exercise 3.22

Find the general solution of each differential equation.

dy dv
1 @‘F&ﬂLy—l‘FX 2

dy
dx?

*9)/=X2*2




3.23 The particular integral 2

Learning outcomes

m To solve differential equations of

the form

W

a3 + b—— +cy = fx]
where f{x) is a trigonometric
function

You needto know

m How to find the general solution
of the differential equation

d¥y dy
dX2+bEX—+(,y 0

The particular integral when f(x) is a trigonometric

function

d? d
Consider the differential equation EZ + 4% + 3y = 2cosx — 3sinx

The function on the right-hand side suggests that a function of the form
y = pcosx + ¢sinx might be a solution of the differential equation.
Using this as a trial solution, we can differentiate it to find out if values
of p and q exist so that y = pcosx + g sinx is a solution.

¥V = pcosx + gsinx

dy .

I -~ psinx + g cosx
d2y .
T2 = ~Pcosx — gsinx

Substituting these expressions into the given differential equation gives
(—pcosx — gsinx) + 4(—psinx + gcosx] + 3(pcosx + ¢gsinx]
= 2cosx — 3sinx

= (2p + 4q)cosx + |—4p + 2g)sinx = 2cosx — 3 sinx

= prda=l = p=2%and g=-Lk
—4p +2g= -3 5 10

y= % cosx + 11_0 sinx is a solution of the given differential equation

and so % cosx + % sinx is the particular integral.

When f(x) is any combination of cos vx and/or sin vx we use
y = pcosvx + gsinvx as the trial solution. For example, if f(x] = 3 sin 4x,
WE use ¥ = pcos4dx + gsindx

The general solution when

dy  dy

e ) + b5— = + cy = atrigonometric function of x

d d
For the differential equation % + 4% + 3y = 2cosx — 3sinx the

d? d
complementary function is the general solution of Ej; + 4% +3y=0

The auxiliary equation is
w+4u+3=0 = ([u+3jju+l)=0 = u=-3or—1
Therefore the complementary function is Ae 3 + Be™

The general solution of the given differential equation is therefore

= —3x —x 4 L oz
y=Ae ¥+ Be ™ + z cosx + ypsinx
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d?y d
For any differential equation of the form a—= et b di + ¢y = f(x)
where f(x) is a combination of sines and cosines of the same angle,
the general solution is given by

= (complementary function) + (particular integral)

where the complementary function is the solution of
r;l2 dy
1t by
and where p and g are constants which can be found by differentiation

and substitution into the given differential equation.

+ ¢y = 0 and the particular integral is p cos ux + ¢ sin ux

Example
Find the general solution of the differential equation

dy dy + 9y = 4sin2x

&
Using v = pcos2x + gsin2x as the trial solution gives
8 g 2x
iy psin2x + 2qcos
d
% = —4pcos2x — 4gsin 2x

Substituting into the given differential equation gives

(—4pcos 2x — 4gsin 2x) — 6(—2psin 2x + 2q cos 2x) + 9(pcos 2x + g sin2x)
= 4sin2x

= [5p — 12q)cos2x + {12p + 5¢q)sin2x = 4sin 2x

Equating coefficients of cos 2x and sin 2x gives
o5p —12g =10 _ 48 20

12p+5g=4] = p_169’q:l69

the particular integral is (48 cos 2x + 20 sin 2x)

169

The complementary function comes from the general solution of
d2y dy

&2 bt =0

The auxiliary equationis u*> — 6u + 9=0 = u = 3 (repeated)
so the complementary function is (A + Bx]e®

Therefore the general solution of the given differential equation is

y = [A + Bx]e® + (48 cos 2x + 20 sin 2x)

169

Exercise 3.23

Find the general solution of each differential equation.

gy By b s 2 X _ o 0520 — 25in26
52+ 3 + 2y = 5cosx qgz — 3x = cos sin




3.24 The particular integral 3

Learning outcomes The particular integral when f(x) is an exponential
m To solve differential equations of function
: : : - dy  dy
the form Consider the differential equation ) + 4& + 3y = ¢e*

dy+b - +cy = f[x)

T&e The function on the right-hand side suggests that a function of the form
where fiX]' is an exponential y = pc* might be a solution of the differential equation. Using this as a
function trial solution gives

d d2
o= pet =y Ey pe* and de pex
You needto know Substituting into the given differential equation gives 8pe¥ =e¥ = p = %

. . 2
m How to find the general solution Therefore y = _ex isssslitsreet SXZ + 4‘:13; +3y =

of the differential equation

d¥y dy
dX2+bEX—+(,y 0

and the particular integral is % ex
The auxiliary equation is

w?+4u+3=0 = (u+lu+3=0 = u=-lor-3
Therefore the complementary function is Ae 3 + Be™

Hence the general solution of

d?y d
&= 4%+ 3y =¢* is y = Ae ¥ + Be ¥ + ¢

The failure case
: e o dydy
Now consider the differential equation e 4& + 3y = ¢*
The auxiliary equation is
w?—4u+3=0 = (u—1)ju—-3=0 = u=1oru=3
so the complementary function is Ae3* + Be*

If we use v = pe* as a trial solution we get
y = Ae®™ + Be* + pe* = Ae® + Ce¥ which is only the general solution of
the left-hand side of the given equation.

This means we cannot use y = pe* when the complementary function
already includes a multiple of e*.

Instead we use v = pxe* as a trial solution, giving
d
y = pxet = &y pxe* + pe* and 2), = pxe* + 2pe*

Substituting into the given differential equation gives

plxe’ + 2e¥) — dp(xe¥ + &) + 3pxe¥ =€ = p= —é

Therefore y = — 2 xe* is a solution, so the general solution of the given
differential equation is

y = Ae® 4 Be* ——Xe"
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2
For any differential equation of the form a :llxz +b :i = f(x)

where f(x) = Bex, where a and $ are constants, the general solution
is given by y = (complementary function) + (particular integral)
where the complementary function is the solution of

&y
aga+ b Y g ¢y = 0 and the particular integral depends on the
powers of e in the complementary function:

B use pe™ when the complementary function does NOT
contain e

B use pxe™ when the complementary function DOES contain
eo:x

B use px’e”™ when the complementary function contains both
e™ and xe™

and where p can be found by differentiation and
substitution into the given differential equation.

Example

Find the general solution of the differential equation

d?y d

bty =

First find the complementary function.

The auxiliary equationis u? —6u+9=0 = u=3
Therefore the complementary function is (A + Bx]e3

This contains e** and xe so we use v = px?e™ as a trial solution.

d
y = pxle® = d}}; = 3pxe® + 2pxe*

dZ
= EZ = 9pxZe™ + 12pxed + 2ped
Substitution into the given equation gives
(9px2e®™ + 12pxe®™ + 2pe™) — 6(3px2e™ + 2pxe™) + Opxle® = e

= p=3

dz’y dy
=t 2ndx — = pdx
Therefore y = X e¥ is a solution of I 6 3 Oy = éf

i ; i r % L 73
So the particular integral is ;x’e™

and the general solution is y = (A + BxJe® + %Xze-:"‘

Exercise 3.24

Find the general solution of each differential equation.

2y
1 %—Z%ﬂ'}’:ﬁh 2 SZ+2&+5)/ 4e*




3.25 Using boundary conditions

Learning outcomes Summary of general solutions of second order linear
differential equations

m Tosummarise the general

solution of differential equations

of the form de + b_ + 0
&y YT
agrt b Y + cy = f(x)
Auxiliary equationau® + bu + ¢ =0 General solution
m To find the solution of -
d d real and distinct roots, @ and 8 y = Ae™ + Bef
2+ b2 4oy = fix)
T dx repeated root, y = (A + Bxle™
given boundary conditions
complex conjugate roots, e * i3 y = e A cos Bx + B sin Bx)
You need to know dzy
=5+ b Y cy = f(x)
. . o dx
m How to differentiate standard
functions and products of General solution: y = complementary function + particular integral where
functions 2 dy

the complementary function is the solution of a 5—5 dy LB cy = flx)

B The meaning of the auxiliary dx? dx

equation

and the particular integral comes from a trial solution that depends on the
m How to find a particular integral form of f[x]
from a trial solution flx) Tral seliion

polynomial or constant | polynomial of same order as f[x],
egflx)=3x-2,y=px+q

trigonometric:
11 COS ax

Vv sin ax Y = pcos ax + gsinax
u cos ax + vsin ax

exponential: ue™ v = pe™ when €™ is not part of the
complementary function

= pxe™ when e™ is part of the complementary
function
y = px’e™ when e"* and xe™ are part of the
complementary function

When f(x) is not one of the forms given in the table, you will be given a
trial solution.

Boundary conditions

When we are given boundary conditions, i.e. corresponding values of x, y
d
and possibly Ey, we can use these in the general solution of a differential

equation to find the particular solution.
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Example
2
Solve the equation % + 4v = 8t given that v =0whent = 0 and when t = %

2
% + 4v = 8t gives the auxiliary equationu®> +4=0 = u=*=2i

Therefore the complementary function is Acos 2t + Bsin2t

Using v = pt + ¢ as a trial solution gives ((ii_‘; =p and % =0

Substituting into the given equation gives 4pt + 4g =8t so p=2andg =0
Therefore the particular integral is 2¢

= v =Acos2t + Bsin2t + 2t
Whenv=0andt=0: 0=A

0=B+T = B=-T . yv=92%—Tgin2t

— 0. =7,
Whenv =0 and ¢ e 3 5 5

Example
. dy o . dy
Solve the equation o s 5e*sinx given thaty = 0 and = 2 whenx =0

Use y = pe*cosx + ge¥sinx as a trial solution.

The auxiliary equation is u2 + 1 = u = *i so the complementary function is Acosx + Bsinx

d
¥ = pe‘cosx + gefsinx = E)/ = e¥|pcosx + gsinx) + ef{—psinx + g cosx)

=e¥p + g)cosx + e(—p + ¢g)sinx

dZ
and —); =¢e* [p + g)cosx + e{—p + g)sinx — e¥|p + ¢g)sinx + e(—p + g) cosx

= 2ge*cosx — 2pe*sinx
Substituting into the given equation gives e¥{(p + 2¢g| cosx + (—2p + g)sinx) = 5¢*sinx = p=-2,g=1
so the particular integral is —2¢e* cos x + e¥sinx
v = Acosx + Bsinx — 2e*cosx + e*sinx

When x=0,y=0 = A=2, so y=2{1 —e*cosx + (B + &)sinx

d
Eyz —2[1 — e¥) sinx — 2e¥cosx + (B + e¥)cos x +e¥sinx
dy .
When x =0, e 2 = B=3, . y=21-¢&)cosx+ (3 + e*sinx
Exercise 3.25

. dy  dy _ ; ; B dy _
1 Solve the equation &g 2y = 10sinx giveny = 0 and i 1

whenx =0

. dy _dy S
2 Solve the equation &2 St = [4x — 3)e ™ using

d
y = |[px + g)e ™ as a trial solution and given that y = 0 and Ey =0

whenx =0




3.26 Using substitution

Learning outcomes

m To use substitution to reduce a
differential equation to a form in
which it can be solved

You needto know

® How to find the general solution

of an equation of the form
d v dy
g =
aga +b oter= f{x)

m Thechainrule

: dy 1
m Therelationship == Tﬁ—
dy
m How to differentiate implicit

functions
How to use an integrating factor

How to integrate by parts

Substitution

We have seen in Unit 1 that we can sometimes use a substitution to find

dy _
y when e f(x)

It is also sometimes possible to use a substitution to reduce a second
order differential equation to a form that can be solved.

d?y dy

Consider the differential equation XEE + ZX& -1y =6

We know that when the left-hand side is a second order linear equation,
the solution often involves e¥, so we will try the substitution x = e

When x = e¥, using the chain rule gives
dy _dy du _dy 1

A " du Cdx T odn C dx
du
dy 1 _1,dy
W e x
dy _ dy
= T W [
Differentiating [1] with respect to x gives
>y dy _d (dy
¥ T dx T dx \du
_ @y du_dy 1
@ T dw X
d2 dy d¥y ;
= dXZ + X& — EE [2’]
E Ay by
xpressing the given equation as x” p: ) B e dX Xdx 12y = 6
we can now substitute g{ for x jj?; +x dx and %I for Xi{ giving
d? d
Tt -1y =6

The left-hand side is now linear and second order, so the equation can be
solved.

Substitution can also be used to transform some second order differential
equations to first order equations. This usually makes the integration easier.

dy dy
+ =
Consider the equation a2 24 a9 = 4x
There is no term involving y in this equation, so we can reduce it to a

first order equation with the substitution u = & so that du _ 5
) de dx  dx?

The given equation then becomes % + 2u = 4x which can be solved
using the integrating factor I = edex = gl
Therefore el"% + 2ue™ = 4xe™

= ueX= f4xel“dx



Section 3 Counting, matrices and differential equations

Using integration by parts gives
ueX = Ixe™ — fle“dx
=2xe™ —e™ + A
= u=2—1+Ae>
Substituting back for u gives another first order differential equation:

dy o
E—ZX—1+A6

Integrating again gives y = x> — x — %Ae‘z" +B

Example 5
Use the substitution u = Ey to find the general solution of the
differential equation

d2y dy)
dX2+2(dX =0

dy du d¥
=

dx dx — dx?
G2 ()
dX2+2dX =)
du _

= dx+2u2 0

; 1da_ _1_
i 2 = T x +A
_ 1
=%+ 4
80 d_y_ !
d«  2x+ A
= y=2:ln|2x+A| +B
Exercise 3.26

d
1 Use the substitution u = E}/ to find the general solution of the

d? d
equation dszl +x (d)};) =0
Given that y = 0 and &y = 1 when x = 0, find y in terms of x.

2 Use the substitution x = e” to show that the differential equation

2
g;‘FXdX-I-y:O can be expressed as %—I—y:(}_
d¥y dy

Hence find the general solution of XZE + x== I +yv=0




Section 3 Practice questions

1 A sim card manufacturer marks each sim with

a unique registration code. This code consists

of one digit chosen from 1 to 6, two letters not
including the letters O and I, two digits chosen
from 0 to 9 inclusive and ending with two letters,
again not including O and I. All digits and letters
can be repeated.

The manufacturer has made 20000000 sim cards.

How many more sim cards can be made before a
new format for the codes needs to be introduced?

Four-digit numbers are made from the digits
1,2, 4,6, 7 and 9. Each digit is used only once.

(a) How many different even numbers can be
made?

(b) How many different numbers can be made
that are greater than 4200?

Three coins are tossed simultaneously. Calculate
the number of ways they can land so that

(a) atleast one coin lands with a head uppermost

(b) at least two coins land with a head uppermost.

Three cubical dice are thrown and the numbers
on the uppermost faces are added to form
the score.

Find the number of ways in which they can land
so that the score is

(a) less than 6 (b) greater than 10.

One cubical dice is biased so that when it is
thrown, it is twice as likely to show a six on its
uppermost face as any other score. A second
cubical dice is unbiased.

One of these dice is chosen at random and then
thrown. If a six shows on the uppermost face,
what is the probability that the biased dice was
chosen?

The cards numbered 2 to 9 are withdrawn from
an ordinary pack of 52 playing cards to form a
smaller pack. Three cards are drawn from this
smaller pack.

Calculate the probability that they all show the
same number.

Of the 50 members of a cricket club,
27 are batsmen,

27 are bowlers,

16 are wicket keepers,

8 are batsmen and bowlers,

3 are batsmen and wicket keepers,

5 are bowlers and wicket keepers,

8 are neither batsmen nor bowlers nor
wicketkeepers.

(a) Draw a Venn diagram to show this
information.

(b) One member of the club is chosen at
random. Calculate the probability that the

person chosen is not a batsman, nor a bowler,
nor a wicket keeper.

A bag contains 5 red discs, 8 blue discs and
6 white discs.

One disc is removed at random and not replaced,
then a second disc is removed at random.

Calculate the probability that the two discs
removed are the same colour.

3 a1 =l 1 0 4
9 A=|6 0 4| and B= |-2 2 0
1 —4 3 o= =

(a) Find A + 2B
(b) Determine x and y if

S x—fhe =i 5
A—-3B=|12 xy 4
=81 9

3

10 A=(214) and B= [0

1

12

13

1
Show that |[AB| = 10 but |BA| =10

cos 6 sin 6
Given that A = ( ) show that A2 =T
sin® —cosé
I »a 2k
GivenA=|1 0 4
2 1 1

(a) Find the value of x for which |A| = 0
(b) When x = 1 find the value of y for which

1 6
Al-1[(=(13
¥ 4

Find the value of a given that
1 1 1

a 2a da|=—4

a* a*—1 &



14

15

16

17

18

19

20

21

1 -1 4 8] ===l
A=|0 1 -1]and B=(20 1
2 0 1 12 0

(a) Determine ATBT

(b) Show that (AB)T # ATBT

(a) Determine which of the following sets of
equations are consistent:
(i) 2x—y+4=0

yv=2x—4
(i) 2x—y+4=0
e =]
(iii) 2x —y+4=0
3y = 6x +12

(b) (i) Express the set of equations that has a
unique solution as a matrix equation.

(i) Use row reduction to solve the matrix

equation.
IS0 0
Show that the matrix A= |2 3 1
4 2 1
1 2 2
can be reducedto |0 —1 -3
0 0 11

Hence find |A].

Use row reduction to solve the equations
x—y—2z =12
x--dy—2=0§6
dx —dy+ 2z = —7

Express the system of equations
x+y+3z=4
ax —yv +2z=12

% + dy + 6z = —1

Hence show that the system is not consistent.

as a matrix equation.

3 Sy = [ 4 3
GivenA=|]1] —1 —-2)| and B=|-2 6
0 1 0 T —3 1

find the matrix C that satisfies the equation

AC=AB

(a) Find the general solution of the differential
equation Xzﬁy + 2Xy = CcOSX

(b) Find the particular solution given that when
x= %, y=20

(a) Find the integrating factor for solving the

d
differential equation &y — Xy = x?

22

23

24

25

26

27

Section 3 Practice questions

(b) Find the solution given that y = 1 when
x=0

Find the general solution of each differential
equation.

(@) %—8%+12y:0
d’ d d’
(b) %—S%Jrlﬁ:y:[} (©) %+9}/:0

For the differential equation % —ley=3x—1
find

(a) the particular integral
(b) the complementary function
(c) the general solution.

Given that y = acos 2x + bsin2x is a particular
integral of the differential equation

%4. 2% + 3y = 10cos 2x, find

(a) the values of the constants a and b

(b) the general solution of the differential
equation.

. d d
Given that % = 4% + dy = X

(a) find the complementary function

(b) explain why y = ae™ where a is a constant is
not a suitable particular integral

(c) find the particular integral and hence give the
general solution of the differential equation

(d) find the particular solution given that
y =1 and %z()whenxz[}

Use the substitution x = e¥ to show that the

d? d
differential equation XZE}; + ZXEY —3y=0

dy  dy _

reduces to 5 - 3 3y=0

Hence find the general solution of the differential
d’y dy

equation le %* ZXE— 3y=20

o d
Use the substitution u = Ey to reduce the second

: : ; dy  dy _
order differential equation ) -+ o =0

to a first order differential equation.

Hence find the general solution of the equation

%4—}(1{—)}—3)(:0



Index

A

addition of complex numbers 8§, 16

addition of matrices 138-9

addition of vectors 16

alternating sequences 68, 69

angle # 14-15, 16, 17

approximations, finding 85-7

arccos 33

Archimedes 83

arcsin 32

arctan 33

area under a curve 62-3, 83

Argand diagrams 12-17, 22-5

argument of complex numbers 14-15, 17

arithmetic progressions 67, 69, 73
sum of first n terms 70-1, 73

augmented matrix 158-9, 161-4

auxiliary equations 172-6, 178-83

axes of graphs 12

B

bias, cons 135, 137

bias, dice 131, 136

binomial coefficients 89

binomial expansion 92-7

binomial theorem 89, 93, 94-7
applications 96-7
derivation of 88-92

binomials 88

bisection, interval 102-3

bisector, perpendicular 23, 24

boundary conditions 167, 182-3

brackets, expanding 93

C
calculators, scientific 111
car theft 127
cards 127, 134, 136-7
playing 116, 121
certainty 126
chain rule 28, 30, 35, 42, 50, 126
circles 22-5
circular arrangements 117
cofactors 146-7, 150, 153-4
coins 115,122,126, 135, 137
column vectors 138, 140, 158, 160
combinations 120-1
difference from permutations 121
common difference 67
common ratio 67
complementary function 177-83
complex coefficients of quadratic equations 11
complex conjugate roots 182
complex numbers 6-11, 12
addition 8
applications 7
argument of 14-15, 17

conjugate 7, 11,174
difference of 16
division of 8
exponential form 21
graphical representation 16-17
and loci 22-5
modulus of 14, 17,24
multiplication 8
operations on  8-9
polar-argument form 15, 19
product of 16
quotient of 17
square roots of 10-11
subtraction of 8
sumof 16
complex roots 175, 182
composite functions 27, 28, 30
expanding 82-3
compound interest 92
conditional probability 136-7
conjugate complex numbers 7, 11, 174
conjugate complex roots 182
consistency of equations system 156, 160, 161
constants 67, 176-7, 182
of integration 59
convergent sequences 68, 69
convergent series 72-3, 79-80, 84-5, 94
converging iteration 110
coordinate geometry, determinants in = 148-9
cos x, even, odd powers 52
cos'x 32-3
derivative of 34, 35
principle values 33
counting 114-15
cubic equations 7
curves, gradient of 106
curves, tangent to 26, 106

D
De Moivre, Abraham 18
De Moivre’s theorem 18-21
decomposing into partial fractions 44, 46
definite integral 51, 59-60
denominator 44, 45, 46
derivation of binomial theorem 88-92
derivatives
of combinations of functions 36-7
of trig functions 52
inverse 34, 35
determinants
in coordinate gecometry 148-9
expansion 148
of matrices 146-9
minor in  146-7
simplification 150-1
diagrams, Argand 12-17, 22-5
dice 115,122,126, 128, 131, 133



difference of complex numbers 16
differences, method of 74-5
differential equations 166-7
exact 167,170,171
failure case 180-1
orderof 166
first order 166, 168, 170-1, 185
second order 166, 172, 182-4
solutions 166-85
approximate 85-7
general 167,169, 174-85
trial 176, 178-83
differentials
of ¢! 27
of ex 26-7

of inverse trigonometric function 34

second 38-9
summary 36
differentiation
of exponential functions 26-7
of fractions 48
of implicit functions 30-1, 38
of logarithmic functions 28
of parametric equations 28
partial 40-1
as reverse of integration 42
term by term  78-9
displacement vectors 12
divergent sequences 68, 69
divergent series 72-3
division of complex numbers 8
drug trial 122, 129, 132-3

E
e 81,82,180
equally likely 126, 128, 130
equations
arg (z) = « 24
auxiliary 172-6, 178-83
cubic 7

differential 166-7

first order 166, 168, 170-1, 185

second order 166, 172, 182-4

trial solutions 176, 178, 179-83

equivalent systems of 157-8
linear, systems 156, 160-3
matrix 157, 158

matrix representation of 157, 160-1

of normals 29
parametric 28
polynomial 7
represented by three planes 160
roots of 6,7,9, 107
simultaneous 10, 47
solving, numerical methods 102-3
row reduction 158-9
of tangents 29, 106
|lz|=r 22
|z—z,|=a 22-3
equivalent operations 50

equivalent systems of equations 157-8
Euler’s formula 21, 82
events 126

independent 130-1

mutually exclusive 130

not happening 128-9

not independent 134-6

not mutually exclusive 131-3

probability with two  130-3

or more 134-7

exhaustive sample space 127
expanding brackets 93
expanding composite functions 82-3
expansion of (@ + b)" 90-1
expansion, standard 81
experiments 126
exponential complex numbers 21
exponential curves 26
exponential function 180-1, 182

differentiation of 26-7

integration of 42-3

F

factorial notation 78, 116
factors, integrating 168-9
fair coins and dice 126
Fibonacci sequence 66
finite constant 72

first order differential equations 166, 168, 170-1, 185

formulae
Euler’s 21, 82
iteration 108-10
for the first n terms 767
nth term of a sequence 76
recurrence 108
reduction 58-61
sum of terms 71
fractions
differentiation of 48
improper 45
negative 94
partial 44-9, 74-5, 96
proper 44, 45, 46
with quadratic factors 46-7
functions
fix) = e 82
series expansion of 83
trigonometric, integration of 52-3
of two or more variables 40

fundamental counting principle 114-15

G
general terms 70, 74
geometric progressions 67, 69, 73, 95
sum to infinity 73
sum of first n terms  71-2
gradient of a curve 106

graphical representation, complex numbers

graphs 26
axes, real and imaginary 12



Index

I M
identities 44 Maclaurin, Colin 84
identity matrices 144-5 Maclaurin series 83, 85
imaginary axes of graphs 12 Maclaurin’s theorem 78-81, 84, 89, 94
imaginary numbers 6 applications 82-3
implicit functions 30-1 mathematical induction 76
differentiation 30-1, 38 mathematical models 166
impossibility 126 mathematicians 18, 84, 106, 166
independent events 130-1 matrices 138-45
independent permutations 118 addition of 138-9
indices, law of 21 augmented 158, 159, 161-4
infinite series 81, 94 conformable 139, 141
infinity, sum to 73 determinants of 146-9
initial conditions 85 identity 144-5
‘inside’ function 50 inverse 152, 153-4
integers, negative 94 using row reduction 164-5
integral, particular 176-83 non-conformable 140, 141
integrating factors 168-9 multiplication by scalars 139
integration multiplicative inverse 152-4, 164-5
constant of 59 product of two 141-2
as reverse of differentiation 42 product with column vectors 140
partial fractions in  48-9 row echelon form  161-3
of exponential functions 42-3 singular 150, 152, 153
of logarithmic functions 43 square 138, 144-6, 154, 158
of trigonometric functions 52-3 subtraction of 138-9
inverse 56-7 unit 144, 145, 164
by parts 54-60, 185 zero 144, 145
using substitution 50-2 matrix equations 157, 158
of reciprocal of x 42-3 matrix multiplication 140-3, 144
intermediate value theorem 98-9 associative 143, 154
interpolation, linear 104-5 non commutative 142
interval bisection 102-3 postmultiplying 142, 145, 152, 154
inverse cosine function 32-3 premultiplying 142, 145, 152, 157, 160
inverse matrices 152, 153-4 matrix representation of equations 157, 160-1
multiplicative 152-4, 164-5 method of differences 74-5
using row reduction  164-5 minor in determinants 146-7
inverse sine function 32 models 166
inverse tangent function 33 modulus of complex numbers 14, 17, 24
inverse trigonometric function 32-5 multiplication of complex numbers 8
integration 56-7 multiplicative inverse of matrices 152-4, 164-5
irrational numbers 97 mutually exclusive events 130
iteration 108-111 mutually exclusive outcome 134-5
iteration formula 108-10 mutually exclusive permutations 119
to find a root 103, 108-111
L N
law of indices 21 n—oc 68, 72-3
law of logarithms 28 n terms, sum of first 70-2, 74-5
leading diagonals 144, 146, 152-3 n! 116
line segments 23 natural numbers 77
linear equations »C,notation 89-90
second order differential 166, 172, 182-4 negative fractions 94
systems of 2 x 2 156 negative integers 94
systems of 3 x 3 160-3 negative numbers 6
linear interpolation  104-5 Newton, SirIsaac 106, 166
loci 22-5 Newton-Raphson (Newton's) method 106-7
loci intersection 24 Newton’s laws of motion 166
logarithmic functions normals, equations of 29
differentiation of 28, 36-7 nth term 66, 67, 69, 70, 94
integration of 43 of a sequence, formula 76

logarithms, law of 28 approaching zero 73



number plates 115,118,119

number series 70-3

numbers, imaginary 6

numbers, irrational 97

numbers, real 8

numbers, negative 6

numerators 44, 45

numerical methods to solve equations 102-3

(0]
operations on complex numbers 16-17
orders of differential equations 166, 170-2, 185
oscillating sequences 69
outcome 115,122,123, 126, 128, 130
mutually exclusive 134-5
overlapping 123-5

P
parametric curves 28-9
parametric equations, differentiation of 28
partial fractions 44-9, 74-5, 96
applications of 48-9
decomposing into 44, 46
in integration 48-9
particular integral 182, 183

one 176-7
two 178-9
three 180-1

Pascal’s triangle 88-9, 91
pensions 92
periodic sequences 69
permutations 116-19, 128
circular arrangements 117
difference from combinations 121
independent 118
mutually exclusive 119
perpendicular bisector 23
playing cards 116, 121
polar-argument, complex numbers 15, 19
polynomial equations 7
polynomials 44, 176-7, 182
position vectors 12-13
postmultiplying 142, 145, 152, 154
power series  78-81
premultiplying 142, 145, 152, 157, 160
principles, counting 114-15
probability
basic 126-7
conditional 136-7
definition 126
events not happening 128-9
with two events 130-3
with two or more events 1347
terminology 126
product of complex numbers 16
product rule 30, 37, 38, 41
progressions, arithmetic 67, 69, 73
sum of firstn terms 70-1, 73
progressions, geometric 67, 69, 73, 95
sum to infinity 73
sum of first n terms  71-2

proof by induction 18-20, 76
properties of sequences and series, pr

Q

quadratic equations 6,7, 9, 10, 172
with complex coefficients 11

quadratic factors 7, 46-7

quadratic formula 7

Index

oving 76-7

-3

questions and answers 64-5, 186-7,112-13

quotient of complex numbers 17
quotient rule 30, 48

R
radians 111
radius 22

random selection 126, 128, 129

Raphson, Joseph 106

rational functions 44

rays 23-4

real axes of graphs 12

real numbers 8

reciprocals 152

recurrence formula 108

recurrence relations 61, 66-7, 76

reduction formulae  58-61

repeated roots  173-4, 182

roots of equations 6, 7, 9
approximations 106-7, 108-111
complex 10-11, 175, 182
locating 98-101, 104-5, 107
using iteration formula 108-111
noreal 6
repeated 173-4, 182

row echelon form of matrices 161-3

row reduction 158-9, 161, 164-5
row vectors 138, 140

S
sample spaces 122-5, 127, 130
exhaustive 127
scale factor 16-17
scientific calculators 111
second order differential equations
second partial derivative 41
sequences 61, 66-74
alternating 68, 69
convergent 68, 69
divergent 68, 69, 110
Fibonacci 66
generating 66
nth term, formula 76
oscillating 69
periodic 69
series 70

166, 172, 1824

convergent 72-3, 79-80, 84-5, 94

divergent 72-3
expansion 83, 94, 95
infinite 81, 94
sum to infinity 723



Index

Maclaurin 83, 85

sum of first n terms 70-2, 74-5

number 70-3

power 78-81

Taylor's 84, 85-7

terminating 81, 94
simultaneous equations 10, 47
sin x, even, odd powers 52
sine function, inverse 32
singular matrices 150, 152, 153
solving equations

numerical methods 102-3

row reduction method 158-9
square matrices 138, 144-6, 154, 158
standard expansions 81
substitution, using 184-5
subtraction of

matrices 138-9

complex numbers 8

vectors 16
sum of

(Z] 70

to infinity  72-3, 75

cubes of the first n natural numbers

squares of the first n natural numbers

first n terms, formula  76-7
complex numbers 8§, 16
summary of differentials 36

T

table, two-way 122

tan ! x, principle values 33
tangent function, inverse 33
tangents to a curve 26, 106
tangents, equations of 29, 106
tangents, gradients of 26, 31
Taylor, Brook 84

Taylor’s series 84, 85-7

Taylor's theorem 84-7

terminating series 81, 94

terms, finding 66, 67

terms, general 70, 74

theorem, De Moivre’s 18-21

theorem, intermediate value 98-9

trapezium rule 62-3

tree diagrams 114, 123, 134-6

trial solutions 176, 178-83

triangles, arca 148-9

trigonometric function 178-9, 182
integration of 52-3, 56-7
inverse 32-5, 56-7

differentials of 34
turning points 100
two-way table 122

U

u, 66

unbiased coins and dice 126
unit matrices 144, 145, 164

A%
variables, function of 40
vectors 12-17
addition 16
column 138, 140, 158, 160
displacement 12
position 12-13
row 138, 140
subtraction 16
Venn diagrams 123-5, 129-32

X
x" 94

z
zero matrices 144, 145
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