W s i

Pure

Mathematics unit:
for CAPE®







€7 §] St Guide

Kenneth Baisden
| Charles Cadogan
Sue Chandler
Mahadeo Deokinandan
-




OXTORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford.

It furthers the University's objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

Text © Sue Chandler 2013

Original illustrations © Oxford University Press 2014

CXC® and CAPE® are registered trademarks of the Caribbean Examinations
Council (CXC®)..

The moral rights of the authors have been asserted

First published by Nelson Thornes Ltd in 2013
This edition published by Oxford University Press in 2014

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, without the prior permission in writing of Oxford University
Press, or as expressly permitted by law, by licence or under terms
agreed with the appropriate reprographics rights organization.
Enquiries concerning reproduction outside the scope of the above
should be sent to the Rights Department, Oxford University Press, at
the address above.

You must not circulate this work in any other form and you must
impose this same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

978-1-4085-2039-0

10987654

Printed in Great Britain by CPI Group (UK) Ltd., Croydon CRO 4YY
Acknowledgements

Cover photograph: Mark Lyndersay, Lyndersay Digital, Trinidad
www.lyndersaydigital.com
Page make-up and illustrations: Tech-Set Ltd, Gateshead

Thanks are due to Kenneth Baisden, Charles Cadogan, and Mahadeo Deokinandan
for their contributions in the development of this bool.

Although we have made every effort to trace and contact all
copyright holders before publication this has not been possible in all
cases. If notified, the publisher will rectify any errors or omissions at
the earliest opportunity.

Links to third party websites are provided by Oxford in good faith
and for information only. Oxford disclaims any responsibility for
the materials contained in any third party website referenced in
this work.



Contents

Introduction

Section 1 Basic algebra and functions

11
1.2
13
1.4
15
1.6
1.7

1.8
1.9
110
11
112
113

114
115
116
117
118
119

Terminology and principles
Binary operations

Surds

Logic and truth tables
Direct proof

Proof by induction

Remainder theorem and factor
theorem

Factorsof a” — b", n <6
Quadratic and cubic equations
Curve sketching
Transformation of curves
Rational expressions

Inequalities — quadratic and
rational expressions

Intersection of curves and lines
Functions

Types of function

Inverse function

Logarithms

Exponential and logarithmic
equations

6
8
12

18

20

22
24
26
30
32
36

38
42
44
48
50
52

54

1.20

1.21

1.22

Exponential and logarithmic
functions 56

Modulus functions 58

Modulus equations and
inequalities 60

Section 1 Practice questions 62

Section 2 Trigonometry, geometry

21

2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

210

211

212

and vectors

Sine, cosine and tangent

functions 64
Reciprocal trig functions 68
Pythagorean identities 70
Compound angle formulae 72
Double angle identities 76
Factor formulae 78

The expression
acos §+bsiné 80

Trigonometric identities and
equations 82

General solution of trig
equations 86

Coordinate geometry and
straight lines 90

Loci and the equation of a
circle 92

Equations of tangents and
normals to circles 94



Contents

213

214

215

216

217

218
219
2.20
2.21

2.22

Parametric equations
Conic sections

The parabola

The ellipse

Coordinates in 3-D and
vectors

Unit vectors and problems
Scalar product

Equations of a line

Pairs of lines

Planes

Section 2 Practice questions

Section 3 Calculus 1

31

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Functions - continuity and
discontinuity

Limit notation
Limit theorems
Gradient of a curve

Differentiation from first
principles

General differentiation

96

98

100
102

104
108
110
12
116
18

122

124

126

128

130

132

134

Product rule and quotient rule 136

The chain rule

Parametric and general
differentiation

138

142

3.10

3.11

312

313

314

315

3.16

317

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

Rates of change

Increasing and decreasing
functions

Stationary values

Determining the nature of
stationary points

Curve sketching
Tangents and normals
Integration

Integration of sums and
differences of functions

144

146

148

150

154

158

160

162

Integration using substitution 164

Calculus and the area under
acurve

Definite integration
Area under a curve

Area below the x-axis and
area between two curves

Volumes of revolution
More volumes of revolution

Forming differential
equations

Solving differential
equations

Section 3 Practice questions

Index

166

168

170

172

174

176

180

182

186

188



Introduction

This Study Guide has been developed exclusively with the Caribbean
Examinations Council {CXC®) to be used as an additional resource by
candidates, both in and out of school, following the Caribbean Advanced
Proficiency Examination (CAPE®) programme.

It has been prepared by a team with expertise in the CAPE® syllabus,
teaching and examination. The contents are designed to support learning

by providing tools to help you achieve your best in CAPE® Pure Mathematics
and the features included make it easier for you to master the key concepts
and requirements of the syllabus. Do remember to refer to your syllabus

for full guidance on the course requirements and examination format!

Inside this Study Guide is an interactive CD which includes electronic
activities to assist you in developing good examination techniques:

e On Your Marks activities provide sample examination-style short
answer and essay type questions, with example candidate answers
and feedback from an examiner to show where answers could be
improved. These activities will build your understanding, skill level
and confidence in answering examination questions.

o Test Yourself activities are specifically designed to provide experience
of multiple-choice examination questions and helpful feedback will
refer you to sections inside the study guide so that you can revise
problem areas.

e Answers are included on the CD for exercises and practice questions,
so that you can check your own work as you proceed.

This unique combination of focused syllabus content and interactive
examination practice will provide you with invaluable support to help you
reach your full potential in CAPE® Pure Mathematics.



1.1 Terminology and principles

Learning outcomes

m To use words and symbols
correctly

You needto know

m How to solve a pair of linear
simultaneous equations in two
unknowns

m The meaning of x"

Language of mathematics

The language of mathematics is a combination of words and symbols where
each symbol is a shorthand form for a word or phrase. When the words and
symbols are used correctly a piece of mathematical reasoning can be read in
properly constructed sentences in the same way as a piece of prose.

Many of the words used have precise mathematical definitions. For example,
the word ‘bearing’ has many meanings when used in everyday language, but
when used mathematically it means the direction of one point from another.

You need to be able to present your solutions using clear and
correct mathematical language and symbols.

Symbols used for operators
A mathematical operator is a rule for combining or changing quantities.

You are already familiar with several operators and the symbols used to
describe them.

+ means ‘plus’ or ‘and’ or ‘together with’ or ‘followed by’, depending on
context.

For example, 2 + 5 means 2 plus 5 or 2 and 5,

a + b means a together with b or a followed by b.
— means ‘minus’ or ‘take away’.
For example, 2 — 5 means 2 minus 5 or 2 take away 5.

The operators X and + also have familiar meanings.

Symbols used for comparison

The commonest symbol used for comparing two quantities is = and it
means ‘is equal to’.

For example, x = 6 means x is equal to 6.

Some other familiar symbols are > which means ‘is greater than’ and =
which means ‘is greater than or is equal to’. A forward slash across a
comparison symbol is used to mean ‘not’, for example, #, which means
‘is not equal to’.

Terms, expressions, equations and identities

To use comparison symbols correctly, you need to recognise the difference
between terms, expressions, equations and identities.

A mathematical expression is a group of numbers and/or variables
5t
3 - X

(for example, x) and operators. For example, 2x, 3 — 2y and are

expressions,

The parts of an expression separated by + or — are called terms. For
example, 3 and 2y are terms in the expression 3 — 2y
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An equation is a statement saying that two quantities are equal in value.
For example, 2x — 3 = 7 is a statement that reads ‘2x — 3 is equal to 7’.
This statement is true only when x = 5

Some equations are true for any value that the variable can take. For
example, x + x = 2x is true for any value of x. This equation is an
example of an identity and we use the symbol = to mean ‘is identical to’.
Therefore we can write x + x = 2x

Symbols used for linking statements

When one statement, such as x> = 4, is followed by another statement
that is logically connected, for example x = *2, they should be linked by
words or symbols.

Some examples of words that can be used are:

‘x* = 4 therefore x = =2/, ‘x> = 4 implies that x = *£2’

‘x2 = 4 so it follows that x = £2’ 'x2 = 4 gives x = =2’

‘x? = 4 hencex = =2

The symbols ... and = can be used to link statements, where .. means
‘therefore’ or ‘hence’ and the symbol = means ‘implies that’ or ‘gives’.

Forexample, 2x -1 =5 ~x=3 or 2x—-1=5 = x=3

Setting out a solution

It is important to set out your solutions to problems using correct
linking symbols or words.

It is also important that you explain the steps you take
and your reasoning.

The following example shows a way of explaining the solution of the pair
of simultaneous equations: 2x + 3y = 1 and 3x — 4y = 10

2% + 3y=1 (1]
3x —4y= 10 [2]
[1] X3 = 6x+9y=3 [3]
[2] X2 = 6x—8y=20 [4]
[3] — [4] = 17y = =17
. y=—1

Substituting —1 fory in [1] gives 2x + 3(—1)=1 = x=2
The solutionis x =2 andy = —1

Notice that the equations are numbered. This gives a way of explaining
briefly what we are doing to combine them in order to eliminate one of
the variables.

Exercise 1.1

In each question, explain the incorrect use of symbols 2 Find the value of A given that sin A° = 0.5
and write down a correct solution. sin A% = 0.5
1 Solve the equation 3x — 1 = 5 A= 30°
x—1=5
= 3x=6

= 3= 0




1.2  Binary operations

Learning outcomes

m To know the meaning of and
perform binary operations

B To be able to use the concepts
of identity, closure, inverse,
commutativity, associativity,
distributivity, addition,
multiplication and other simple
binary operations

You needto know

B The meaning of the set of real
numbers, R

Binary operations
A binary operation is a rule for combining two members of a set.

For example, we can combine two members of the set of real numbers by
addition, subtraction, multiplication or division. We know the rules for
these operations, thatis4 +2=6,4 —2=2,4X2=8and4 +2 =2

We can define other operations. For example, for a and b, where a, b are
members of the set of real numbers, R, then a and b are combined to give
2a—b

We write this briefly asa *b =2a — b

Then, forexample,3*7=2%x3-7=-1

Properties of operations

An operation, *, is commutative when a * b gives the same result
as b * a for any two members of the set.

For example, addition on the set of real numbers is commutative because

a+b=b+a, abelR
Multiplication on the set of real numbers is also commutative because

aXb=bxa, abeR
However, subtraction is not commutative because, in general,

a—b#b—a
eg3—7#7—3
Division is also not commutative because, in general,
a~b#b-+a
eg 37 #7+3
An operation is associative when any three members can be
combined by operating on either the first two members or the second
two members first, that is
[@a*b)*c=a*(b"c)

For example, multiplication on the set of real numbers is associative
because (a X b) X c =a X |b X ¢, a,bceR
e.g (2X3)x4=2x(3x4)
Addition on the set of real numbers is also associative because
l[a+b)+c=a+|b+c) abceR
eg (2+3)+4=2+(3+4)
However, subtraction is not associative because, in general,
[a—b)—c#a—{b—c), a,b,ceR
eg(2—3)—4=—-1—4=—-5whereas2 - (3—-4]=2—-(-1)=3
Division is also not associative because, in general,
[a<+b)+c#a+{b=+c), a,b,ceR

eg|2+3)+4=2+4=;whereas2+(3+4)=2+3=2
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An operation, *, is distributive over another operation, ¢, when for any
three members of the seta * (b $ c) = (a* b)  {a * ¢)

For example, multiplication is distributive over addition and subtraction on
members of R because
ax|b+cl=ab+acandax (b—c)=ab —ac

but multiplication is not distributive over division because

a X [b+c]:@
c
whereas (a X b) + (a X ¢ :%
80 aX|b+c)#(axXb)+ (aXclunlessa = 1
Example

An operation * is defined for all real numbers x andy asx * v = 2x + 2y

Determine whether the operation * is: (a) commutative (b) associative.

(a) x*y=2x+2yandy "x =2y + 2x
2x + 2y = 2y + 2x because the addition of real numbers is
commutative.
-, the operation * is commutative.

(b) Taking x, y and z as three real numbers,
X*y)*z=({2x+2) " z=2(x +2y) + 2z=4x + 4y + 2z
x*[y*zl=x*(y+2z)=2x+ dy + 4z

Therefore (x *y) *z # x * (v * z) so the operation is not
associative.

Example

(a) For two real numbers, x and y, the operation * is given by
x"y=x"+y?
Determine whether the operation is associative.

(b) For two real numbers, x and y, the operation ) is given by x { y = xy

Determine whether the operation ¢ is distributive over the
operation *.

(a) For any three real numbers, x, y and z,
x*yl*z=+y)*z=(x2+y)P + 22
x*(yrzl=x2* (2 +z2Y) =x2+ (x> + z2)?

S x Tyl Tz#x (v " z)so the operation is not associative.

(b) For any three real numbers, x, y and z,
xQy*z)=xly " z) =x{y* + 2?) = xy* + x2°
(X Oy)*(x0z) =xy*xz=x% + x’2?
“xQyTzl#xQy) T x02)
so the operation ¢ is not distributive over the operation *.
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Closed sets

A set is closed under an operation * when for any two members of the
set, a * b gives another member of the set.

For example, the set of integers, Z, is closed under addition because for
any two integers, a and b, a + b is also an integer.

However, Z is not closed under division because a + b does not always

give an integer, for example 3 + 4 = %, which is not an integer.

Identity

If a is any member of a set and there is one member b of the set,
such that under an operation, *,a * b = b * a = a then b is called the
identity member of the set under the operation.

For example, 0 is the identity for members of R under addition as, for any
member a,

0+a=a+0=a

However, there is no identity for members of R under subtraction because
there is no real number b suchthata —b=b —a

Also 1 is the identity for members of R under multiplication, as for any
member a,

lXa=ax1=a

However, there is no identity for members of R under division because
there is no real number b suchthata +b=5b +a

Inverse

Any member a of a set has an inverse under an operation
if there is another member of the set, which when combined with a
gives the identity.

Clearly, a member can have an inverse only if there is an identity
under the operation.

For example, as 0 is the identity for members of R under addition,
then —a is the inverse of any member a,
since —a +a=a+ |—a)=0

Also, as 1 is the identity for members of R under multiplication,
1.3
a

but there is one important exception to this:

then é is the inverse of a since a X

!

1. .
o s meaningless.
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Example
An operation, *, is defined for all real numbers x and y as

e Xty
y=">=-

X

(a) Show that the set is closed under the operation *.

(b) Show that x has no inverse under the operation *.

x +y)
2

Therefore the set is closed under the operation *.

(a) When x and y are real numbers, is also a real number.

(b) For x to have an inverse, there needs to be an identity member,
i.e. one member, b, of R such thatx * b = x,

(x +b]
s
Solving this for b gives b = x

i.e. such that

Now x is any member of R, so b is not a single member and
therefore there is no identity member of the set.

As there is no identity, x has no inverse.

Exercise 1.2

1

Determine whether addition is distributive over multiplication on the

set of real numbers.

The operation * is given by

2y

X'y =x
for all real values of x and y.
Determine whether the operation * is:
(a) commutative
(b) associative

(c) distributive over addition.
The operation * is given by
X'y =Xy
for all positive real numbers including 0.
(a) Show that the operation * is closed.
(b) Write down the identity member.
(c) Determine whether each member has an inverse.

The operation ~ is given by x ~ y = the difference between x and y

for x, y € R.

(a) Determine whether R is closed under this operation.
(b) Show that the identity member is 0.

(c) Show that each member is its own inverse.




1.3 Surds

Learning outcomes

m To perform operations involving
surds

You needto know

m Themeaning of a rational
number

Surds

The square roots of most positive integers and fractions cannot be
expressed exactly as either a fraction or as a terminating decimal, i.e. they
are not rational numbers.

A number such as v2 is an irrational number and can only be expressed
exactly when left as v2. In this form it is called a surd.

Note that v2 means the positive square root of 2.

Simplifying surds

Many surds can be simplified.

For example, V18 =v9 X 2 =9 X y2 = 3V/2
AndV8 +V2 =Va X2 +V2=2/2 +V2=3/2

In both cases, 32 is the simplest possible surd form.

When a calculation involves surds, you should give your
answer in the simplest possible surd form.

Operations on surds
An expression such as (3 — V2] (2 — V3) can be expanded,
ie (3—-vV2)(2-V3)=6-3/3 - 22 +V6 (V2 X V3 = V2 X 3)
When the same surd occurs in each bracket the expansion can be simplified.
For example,
{5 —2/3)(3 + 2/3) = 15— 6/3 + 10/3 — 12
(2/3 X 2V3 = 49 = 12)
=3+4/3

In particular, expressions of the form (a — vb){a + Vb) simplify to a single
rational number.

For example,
(5 — 2V3)(5 + 2/3) = 52 — [2/3)2
(2/3)2 = 4/3V3 = 4/9 = 4 x 3)
=25-12=13

Example
Simplify (2 — V5)(3 + 2//5]
(2—V5)(34+2/5) =6 —3/5 +4/5 — 10
(25 X V5 = 24/25 = 10)
=—4+5




Rationalising the denominator

When a fraction has a surd in the denominator, it can be transferred to
the numerator.

When the denominator is a single surd, multiplying the fraction, top and
bottom, by that surd will change the denominator into a rational number.

For example,

2 +3 _ 2+\f§>(§
V5 V5 V5
_ 254415
5

When the denominator is of the form a + vb, multiplying the fraction,
top and bottom, by a — vb will change the denominator into a rational
number.

For a denominator of the form a — b multiply top and bottom by a + Vb

Section 1 Basic algebra and functions

Example

/2 — 1
Rationalise the denominator and simplify !

TR
This fraction has a single surd and a bracket in the denominator.

Do not attempt to rationalise them both at the same time. We will
start with rationalising the single surd.

Vi-1 _ V3V2-1)  J§-/3
VB2 +3) V3 xV3V2+3) 3(V2+3)

_ V6 — V3 % V2 — 3 _ V12 — V6 — 3V6 + 343
3v2+3) v2-3 3(v22 - 9)

_2/3-4/6+3/3 _4/6-5/3

32 — 9] 21

We have written down every step in this example, but you should be able
to do some of these steps in your head.

Exercise 1.3

Expand and simplify when possible.
1 (3 —2V3)(V3 —v2) 2 (V2 —5)? 3 (1-—(V3+v2)?

Rationalise the denominator of each surd and simplify when possible.

2 1-y2

4 = 7 ——\.:
V2 1+v2

5 22 g 3
V3 23 — 55
i o 8

3—4V2 V2(V3 — v2)




1.4

Learning outcomes

m Toidentify simple and
compound propositions

m To establish the truth value of
compound statements using
truth tables

m To state the converse,
contrapositive and inverse of
a conditional (implication)
statement

m To determine whether two
statements are logically
equivalent

You needto know

B The meaning of commutative,
distributive and associative for
binary operations

Didyou know?

George Boole (1815-1864) invented
a system using values 0 and 1 and
truth tables to formalise logic. This
system is now known as Boolean
algebra.

Logic and truth tables

Propositions

A sentence such as 'Sonia went to school today’ is a closed sentence, but
‘She went to school today’ is not closed because it contains the variable
‘she’, who could be any female.

Closed sentences are called statements or propositions and are denoted
by p, g, etc.

A proposition is either true or false.

Negation
The proposition ‘It is not raining’ contradicts the proposition ‘It is raining’.
‘It is not raining’ is called the negation of 'It is raining’.

If p is the proposition ‘It is raining’, the negation of p is denoted by ~p.

Truth tables

For the proposition p: ‘It is raining’, if p is true then ~p is false.

But if p is false, then ~p is true.

We can show this logic in table form (called a truth table|. p ~p
We use 1 to represent true and O to represent false. [ 1 0

The numbers in each column are called the truth values. | 0 |1

Conjunction

The statements p: ‘It is raining’ and g: ‘It is cold’ can be combined as ‘It
is raining and it is cold’. This is called a conjunction of two propositions.

Using the symbol /A to mean ‘and’ we write this conjunction as p /\ g

We can construct a truth table forp A g

p can be true or false, g can also be trueortalse. We | p | g p/Ag
put all possible combinations of 1 (true) and 0 (false) I 1 1 T 1 |
for p and ¢q in the first two columns. Then, reading 1 0 | 0
across, we can complete the third column forp A g 0 ] 1 | 0

(If either p or g is false, then p and g must be false.) 0 0 0

Disjunction

The statements p: ‘It is raining’ and g: ‘It is cold’ can be combined
as ‘It is raining’ and/or ‘it is cold’. This is called a disjunction of two
propositions and the word ‘and’ is implied so it would normally be
written as ‘It is raining or it is cold.’

Using the symbol \/ to mean ‘or’ we write this disjunction as p \/ g



We can construct a truth table for p \/ g
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p can be true or false, g can also be true or false. As p g lpvqg
before, we put all possible combinations of 1 and 0 for | 1 1 1
p and g in the first two columns. Then reading across | 1 0 1
we can complete the third column for p \/ q. (If either | O 1 1
p or g or both are true, then p or ¢ must be true.) 0|0 0

Conditional statements
If ‘it is raining’ then ‘it is cold’ is called a conditional statement.
Using the symbol — to mean ‘If ... then ...” we write p — ¢

The proposition p is called the hypothesis and the proposition ¢ is called
the conclusion.

In logic, p — q is true except when a true hypothesis leads
to a false conclusion.

For example, if p is ‘5 is a prime number’ and ¢ is ‘6 is a prime number’
then in logic p — q is false.

The truth table for p — g is such that p — ¢ is P q p—q
false for only one combination of p and g: p true 1 1 1
and q false. 1 0 0

0 1 1

0 0 1

The converse of p — qisqg — p

For example, the converse of ‘5 is a prime number’ — ‘6 is a prime
number’ is ‘6 is a prime number’ — ‘5 is a prime number’,

Also the converse of ‘It is cold’ — ‘It is raining’ is ‘It is raining’— ‘It is cold’.

The inverse of p — q is ~p — ~q

For example the inverse of ‘5 is a prime number’— ‘6 is a prime number’
is ‘5 is not a prime number’ — ‘6 is not a prime number’.

and the inverse of ‘It is raining’— ‘It is cold’ is ‘It is not raining’— ‘It is
not cold’,

The contrapositive of p — q is ~q — ~p

For example the contrapositive of ‘5 is a prime number’ — ‘6 is a prime
number’ is ‘6 is not a prime number’ — ‘5 is not a prime number’.

Bi-conditional statements

A bi-conditional statement is the conjunction of the conditional
statement p — g with its converse g — p, that is (p — q) /\ (g — p). This
reads ‘if p then g and if g then p’.

For example, ‘If it is raining then it is cold’ and ‘If it is cold then it is
raining’ is a bi-conditional statement.

‘Tf it is raining then it is cold’ and ‘If it is cold then it is raining’ can be
written simply as ‘It is raining’ if and only if ‘It is cold"’.’
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Using the symbol < to mean ‘if and only if’ we can write ‘It is raining’ <
Ttis cold’ and (p — g) /\ |g — p) can be written as p < g

We can construct a truth table forp < ¢

Start with the truthtablefor  p g p—q g—p (p —q /\(qg— p)
p — ¢q, then add a column for 1 1 1 1 1
q — p. Lastly, add a column 1 0 0 1 0
for the conjunction of the 0 1 1 0 0
third and fourth columns. 0 0 1 1 1

This table can now be written as a simpler truth table for a bi-conditional
statement.

P=q

The table shows that p < ¢ is true only when

clo|l—|—I9
ocl—|leo|—-IR

&
1
0 p and g are both true or both false.
0
1

Compound statements

A compound statement combines two or more propositions using a
combination of two or more of the symbols ~, A\, \/, —, «.

A bi-conditional statement, [p — g) /\ (¢ — p), is an example of a
compound statement.

Example
Let p, g and r be the propositions:

p: ‘Students play soccer’, g: ‘Students play cricket’, r: ‘Students play basketball’.

Express the compound statement ‘Students play soccer or basketball but not both and students play cricket’
in symbolic form.

‘Students play soccer or basketball’ is p \/ r. ‘Students do not play both soccer and basketball’ is ~(p /\ r).
‘Students play soccer or basketball but not both’is (p \/ r) /\ ~[p /A r).
Adding ‘and students play cricket’ to this gives (p\/ 1) /\ ~(p /N t) N g.

The truth table for a compound statement can be constructed in a similar
way to the bi-conditional table above.

Example
Construct a truth table for the compound statement p \/ (~q /\ p)

~q |~q/\p p\/ (~q/\p)

Always start with p and q.

Then add columns in stages

to build up the compound

o|lo|l~|~1I%

q
1
0
1
0

=lo|l—=]|Q
oo | - | O
Do | =] -

statement.




Equivalence

Two statements are logically equivalent when their truth values are the
same, that is in the completed truth tables the final columns are identical.

Section 1 Basic algebra and functions

Example

Determine whether the statements p /\ g and ~p — ¢ are logically
equivalent.

We construct a truth table for each statement:

p| g |~p|pANg|~p—q

1 1 0 1 1 The truth values for p /A g and

1 0|0 0 1 ~p — q are not the same. Therefore

0 1 1 0 1 the statements are logically not

0 0 1 0 0 equivalent. We write p A\ g # ~p — ¢
Identity law

This law states that p /A p and p \/ p are both equivalent to p.

Algebra of propositions

The symbols /\ and \/ are called logical connectors,

These connectors are commutative, thatisp ANg =g Apandp\yqg=qg\/p

They are also associative, thatis (p A g) /Nr=p /(g /\r)

They are also distributive over each other and over the conditional —,
for example

pAlgvr={pANgvipAr and pvigAr=(pVvg Nlp\vr
pAlg—r1)=(pAq)— A1 and pVvig—1=[pVvq —pV1
These propertics can be proved using truth tables.

The properties can also be used to prove the equivalence between two
compound statements.

It can also be shown thatp — g = ~q — ~p

Exercise 1.4

Example
Use algebra to show that
pAlpval=pVvip/\q

pAlpVa =pAplVvIiPAg)
using the distributive law

=pVip A4
using the distributive law

In this exercise, p, ¢ and r are propositions.
1 Write down the contrapositive of ~p /\ g

2 (a) Construct a truth table for p — ~qg and p\/ ~¢g
(b) State, with a reason, whether p — ~¢q and p \/ ~q are logically
equivalent.
3 p:'Itis raining’, g: ‘It is cold’, r: ‘The sun is shining’.
Using logic symbols, write down in terms of p, g and r the statement:
‘The sun is shining and it is cold and it is not raining’.




1.5  Direct proof

Learning outcomes

m  To construct simple proofs,
specifically direct proofs

m Proof by the use of counter
examples

You needto know

The basic rules of logic

How to solve a quadratic
equation by factorisation or by
the formula

m How tofind the area of a triangle

Direct proof

Mathematics is the study of numbers, shapes, space and change.
Mathematicians look for patterns and formulate conjectures. They then
try to prove the truth, or otherwise, of conjectures by proof that is built
up from axioms. The axioms are the basic rules or definitions, and all
other facts can be derived from these by deduction, that is by using

true inferences from those rules (an inference is the same as the logic
conditional —). (We can use the game of chess as an analogy — the basic
rules are the moves that are allowed for each piece, and games are built
up from these moves.)

For example, x is defined to mean n lots of x multiplied together,
ie.x X x X x X ....X x, and from this definition we can deduce that
x4 X Xb = i +b

Example
Prove that if 4(x — 5) = 8thenx =7
Starting with 4(x — 5) = 8

= 4x — 20 = 8  Using the distributive law
= 4x = 28 Adding 20 to each side keeps the equality true
= x =7  Dividing each side by 4 keeps the equality true

4x—-5=8 = x=7

This is an example of direct proof by deduction, i.e. to prove p = g, start
with p then deduce p = r=s=¢q,s0p =g

(Note that this is a proof of an implication p = . We know from
Topic 1.4 that whether p is true or ¢ is true is another question. |

We know from logic that if p — g is true then the contrapositive ~g — ~p
is also true. Therefore we can also say that if x # 7 then 4{x — 5) # 8

The converse of 4{x — 5)=8=x=7,l.e.x=7 = 4(x — 5) = 8 is also
true in this case, but the converse of a true implication is not always true.

For example, ‘A polygon is a square = a polygon has four equal sides’ is true

but A polygon has four equal sides = a polygon is a square’ is not true
because a thombus has four equal sides.

Therefore the converse of an implication needs to be proved to be true.

£ZDCA = LCAB
£LECB = £CBA

£ DCA + £ZACB + £ECB = 180° -
= LCAB + LACB + LECB = 180° & 7~ B
= the sum of the interior angles of any triangle is 180°.

Example

Prove that the sum of the interior angles of any triangle is 180°, s C i
>

ABC is any triangle. DE is parallel to AB. .

Alternate angles are equal
Alternate angles are equal

Supplementary angles
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Use of counter examples

As well as it being necessary to prove that a statement is true, it is
also important to prove that a statement is false. This is particularly
important for the converse of a true implication.

A statement can be shown to be false if we can find just one example that
disproves it. This is called a counter example.

For example, a > 0 = a® > 0 is true, but the conversea? > 0 =a >0 is

false.
We can use a2 = 9 = a = 3 or —3 as a counter example because —3 % 0.

For example, the statement ‘all prime numbers are odd’ is not true. We can
prove this using the counter example ‘2 is a prime number and 2 is not an
odd number’.

Example

Use a counter example to prove that the converse of the true
statement: ‘n is an integer’ = ‘n® is an integer’ is false.

The converse of the given statement is
‘n? is an integer’ = ‘n is an integer’.

[V2)* = 2 is an integer but v2 is not an integer.

Therefore ‘n? is an integer’ = ‘n is an integer’ is false.

Exercise 1.5

1 Provethatifx? —3x+2=0thenx=1orx=2
2 Find a counter example to show that a > b = a® = b? is not true.
3 (a) Prove that ‘n is an odd integer = n? is an odd integer’.
(Start with n = 2k +1 where k is any integer.)
(b) Use a counter example to show that the converse of the statement
in (a) is false.
4 (a) Prove that 'x2 + bx + ¢ = 0 has equal roots = b? = 4¢’
(b) Prove that the converse of the statement in (a) is also true.

5 In the diagram, D is the midpoint of AB. (@)

Prove that the area of triangle ABC
is twice the area of triangle ADC.




1.6  Proof by induction

Learning outcomes

m  Establish simple proofs by using
the principle of mathematical
induction

You needto know

B The set of positive integers is
denoted by N

® Any even number can be written
as 2k and any odd number can
be writtenas 2k — 1 fork € N

® A natural number is a member of
the set1,2,3, 4, ...

Proof by induction
Consider these results: 1 +12=2,24+22=6,3+32=12,4+4>=20
In every case, the right-hand side is a multiple of 2.

This suggests that the proposition
‘tor any positive integer n, n + n? is a multiple of 2’
is true but it does not prove it.

We can prove it using a method called mathematical induction .
We call the proposition p(n) and rephrase it as ‘n + n? = 2m forn, m € N’

We start with the proposition, that
whenn =k, 'k + k? is a multiple of 2, k € N, [1]

The next step is to replace k by k + 1 (i.e. by the next consecutive
integer)

= (k+ 1)+ (k+ 1)
=k+1+kK+2k+1
= [k + k¥ + 2(k + 1) which is also a multiple of 2.

From [1] this is a multiple of 2

Therefore we have shown that if for any integer, n, n + n? is a multiple
of 2

then (n +1) + (n + 1)* is also a multiple of 2. [2]
We know that p{1]is true, i.e. 1 + 12is a multiple of 2.

Therefore [2] shows that p(1] = p(2] so p(2) is true,

then again  [2] shows that p(2) = p(3) so p(3) is true,

again [2] shows that p(3] = p(4) so p(4) is true, ...

This process can be continued indefinitely, i.e. for all positive integers.

Therefore we have proved that, for any positive integer n, ‘n + n’is a
multiple of 2.

An analogy for proof by induction is a row of evenly spaced dominoes
standing on end.

If you can show that pushing over any domino will make the next
domino fall, then pushing over the first domino will make the whole row
fall, one domino after the other.

Proof by induction can be used to prove many results that are generalised
to cover any positive integer from a result proved for a particular integer.



The proof has three distinct steps:

1 Let p(n) be a proposition involving n, then assume that p(k) is true.
Prove directly that p(k +1) is true. (Note that k is an arbitrary and
convenient integer.)

2 Prove that p(1]) is true.

Combine steps 1 and 2 to prove that p(2), p(3), p{4), ... are true.
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Example
Prove by induction that 10* — 1 is a multiple of 9, n € N.
Assume that p(k) is 10 — 1 = 9m, where k and m are natural numbers,
Replace k by k + 1, giving 105+ ! — 1 = 10 x 10% — 1
=10 % 10— 10 + 9
= 10{10% — 1) + 9 = 10{9m) + 9 which is a multiple of 9.

Therefore when 10% — 1 is a multiple of 9 then 10¥+! — 1 is also a
multiple of 9. [1]

pl1) is the proposition 10! — 1 is a multiple of 9, and 10! — 1 = 9,
therefore from [1] 10? — 1 is a multiple of 9, from [1] again 10% — 1 is
a multiple of 9, ...

Therefore 107 — 1 is a multiple of 9, for all n € N,

Example

Prove by induction that the sum of the first n odd numbers is n®.

(The second odd number is 2(2) — 1, the third odd number is
2(3) — 1, ... the nth odd number is 2n — 1)

Let p{n) be the proposition that 1 + 3+ 5+ ... + (2n — 1) = n?

Assumethat 1 + 3+ 5+ ... +[2k - 1) =k

Then adding the next odd number to both sides gives
1+43+54+ ..+ 2k-1)+(2k+1)=kK2+2k+1=(k+1)?

Thereforewhen 1 + 3 + 5 + ... + {2k — 1) = k2 then
14+3+5+ .. +{2k+1)=[k+ 1P

i.e. when the sum of the first k odd numbers is k2, the sum of the first
(k + 1) odd numbers is (k + 1)2

Now p(1): 1 = 12, so the sum of the first two odd numbers is 22, and
S0 on.

Therefore the sum of the first n odd numbers is n2.

Exercise 1.6

Prove by induction that:
1 n? — nis a multiple of 6 for all positive integral values of n

2 the sum of the first n natural numbers is %n[n + 1)




1.7

Learning outcomes

To apply the remainder theorem

To use the factor theorem to find
factors and to evaluate unknown
coefficients

You needto know

B The meaning of the notation f{a)
for the function f{x) where a is a
value of x

m How to expand expressions of
the form (ax + c)(a polynomial)

m How to factorise a quadratic
expression

Example

Find the remainder when
2x3 + 7x* — 3 is divided by
2x — 1.

Letflx) = 2x3 + 7x2 — 3

2x — 1 :Owhenxzé,

therefore when 2x% + 7x* — 3
is divided by 2x — 1

the remainder is f[%].

fly) =203° + 7P -3=1

-. the remainder is 1.

Remainder theorem and factor theorem

Polynomials

The general form of a polynomial expression is
ax" +a,_ x"" '+ ..+a,x> +ax +a,
where n is a positive integer, a,, a, _ y, ... d,, ayare real numbers anda, # 0

The order of a polynomial is the highest power of x. For example,
x5 — x? 4+ 2 has order 5.

Identical polynomials

Two polynomials are identical when they have the same order and when
each power of x has equal coefficients.

For example, x* — 5x*> + 2 = ax® + bx* + ¢x* + dx + e if and only if
a = 0 (the order must be the same) andb = 1,c = —5,d =0,e = 2
[coefficients must be equal).

The remainder theorem

When 17 is divided by 3 the result can be written as 5, remainder 2,

— 2z
1.e.—3——5+3

5 is called the quotient.

which can be written as 17 = 5 X 3 + 2. In this form,

When flx) = x3 — 7x> 4+ 6x — 2 is divided by x — 2, we get a quotient and
a remainder. The relationship between these quantities can be written as

flx) = x* — 7x* + 6 = [quotient){x — 2] + remainder

Substituting 2 for x eliminates the term containing the quotient, giving
f(2) = remainder.

Now f{2) =23 — 7(22) + 6 = —14, sowhen flx) =x3 — 7x2 + 6x — 2 is
divided by x — 2, the remainder is —14.

This is an illustration of the general case:

when a polynomial f(x) is divided by (ax — b) then

f(x) = (quotient)(ax — b) + remainder = f(g) = remainder

This result is called the remainder theorem and can be summarised as:

when a polynomial f(x) is divided by (ax — b), the remainder is f(%:—).

Example

When x* — ax® + x + b is divided by x — 1, the remainder is 4
and when x3 — ax? + x + b is divided by x — 3, the remainder is 16.
Find the values of a and b.

Using the remainder theorem gives
l—-a+1+b=4and27 —9a+ 3 +b = 16,

ie. b—a=2 [1]
and b—9a=—-14 |[2]
[1] - [2] = Ba=16=a=2

Substituting 2 forain [1] = b =4




The factor theorem

When (x — a) is a factor of the polynomial f(x),
the remainder is zero = fla) = 0

This is the factor theorem,
i.e. if, for a polynomial {(x), fla) = 0 then x — a is a factor of f(x).

For example, when x = 3,
x*—3x* -3+ 1lx—6=81—-81-27+33-6=0
Therefore x — 3isafactorof x* — 3x® — 3x*+ 11lx — 6
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Example

Given that ax® + 3x2 — b has a factor 2x — 1 and leaves a remainder
—5 when divided by x + 2, find the values of a and b.

%—l— % —b=0=a-8=-6 [1] Using the factor theorem with x = ]
—8a+12—-b=-5=—8a—-b=-17 [2]
Using the remainder theorem withx = —2

8X[1]+[2] = —65b = —65= b=1
Substituting 1 forb in [1] gives a =2

The factor theorem can be used to find factors of polynomials.

Example

Factorise x3 — x2 — x — 2.

If x — «is a factorof x* — x2 — x — 2 then
=32 m—2= - a4 bx+ g

. — ac = —2, so possible values of a are =1 and =2.

Trya=1: (1P —=(12={1)—2=%#0 sox — 1 is not a factor.
Trya=—1: (-1 —(—1)?— (-1} —2# 0 sox + 1 isnot a factor.
Trya=2: (2P —(22—-(2)—-2=0 therefore x — 2 is a factor.

Xt —xt—x—2=(x-2)x*+bx+c|=x*+b-2)x>+ (c —2blx—2c

Comparing coefficients of x? and the constant gives —1 =b — 2
sob=1and -2 = —2csoc =1

L Xt sx—d=e- At 1)

Exercise 1.7

1 Given that (x — 1) and (x + 2) are factors of x® + ax® + bx — 6, find
the values of a and b.

2 flx) = 5x® — px? + x — q. When {(x) is divided by x — 2, the
remainder is 3.
Given that (x — 1) is a factor of f{x), find p and q.




1.8 Factorsofa®— b n<6

Learning outcomes Factors of a2 — b?

m To extract all factors of g — bt a? — b? is the difference between two squares, so a> — b? = (a — b)(a + b)

for positive integersn = 6
Factors of a®> — b?

From the factor theorem, whena = b,a* - b3 =b3 - b3 =0

You need to know Therefore a — b is a factor of @® — b® = a® — b® = (@ — b)(a* + ab + b?)

m How to factorise quadratic (You can verify this by expanding the right-hand side.)

expressions
P |a* + ab + b?) cannot be factorised.

B How to expand expressions such
as (x + 1)3, (2x — 1)*(3x + 4)3 Therefore a® — b3 = (a — b)(a® + ab + b?)

For example, x* — 8 = x> — 23 = [x — 2)(x> + 2x + 2)

Factors of a* — b*
a* — b* is the difference between two squares,
ie [@?? — (b2} = |(a® — b?)(a® + b?)
= |a — b)(a + b)la® + b?)
using the factors of the difference between two squares twice.

(@ + b?) cannot be factorised.
Therefore a* — b* = (a — b)(a + b){a® + b?)

For example, x* — 16 =x* — 2* = (x — 2)(x + 2)(x? + 4)

Factors of a®> — b°
From the factor theorem, whena = b,a’> — b5 =b>—-Db5=0

Therefore a — b is a factor of a® — b®
= a® — b® = (a — bl(a* + a® + a®b* + ab?® + b?)

(You can verify this by expanding the right-hand side.)
[a* + a®b + a®b? + ab? + b*) has no linear factors.
Therefore a®> — b® = (a — b)(a® + a3b + a®b® + ab® + b*)

For example, x5 — 32 = x5 — 25 = (x — 2)(x* + 2x3 + 4x2+ 8x + 16)

Factors of a® — b®
a® — b® = (a?)? — (b?)?, which is the difference between two squares.
Therefore a® — b® = (a® — b%|{a® + b?)
= (a — b){a* + ab + b*)(a® + b?)
Now whena = —b,a®+ b3= -b*+b3=0
Therefore a + b is a factor of a® + b® = a® + b3 = (a + b){a® — ab + b}

(You can verify this by expanding the right-hand side.)



Neither (a? + ab + b?) nor (a> — ab + b?) can be factorised.
Therefore a® — b® = (a — b){a + b)(a®> + ab + b*)(a® — ab + b?)
For example, x6 — 64 = x® — 26 = (x — 2)(x + 2)(x% + 2x +4](x2 — 2x +4)

These results can be used to factorise any polynomial that can be
expressed in one of the forms given above.
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Example
Factorise 8x® — 27 completely.
8x3 — 27 can be written as (2x)? — (33
Using a*—b® =|a — b)la* + ab + b?
and replacing a by 2x and b by 3 gives
8x* — 27 = (2x — 3|{{2x)* + {2x)(3) + (3)*}
= (2x — 3)(4x2 + 6x + 9)

Example
Show that [x + 1)} —x*=(x+ 1P +xx+ 1P+ x+ 1)+ x°
Using a* — b* = |a — b)|a + b)|a®> + b?)

and expanding the last two bracket gives

at— =l bl ra'h raber )
Replacinga by x + 1 and b by x gives
x+1Pf—xt=x+1-xNx+1P+xx+1P+x}x + 1) +x3}

=x+1P+xx+ 12 +xx + 1) +x°

Example
(a) Show that 7x® — 3x2 —3x — 1 =8x> — (x + 1)?

(b) Hence or otherwise factorise 7x* — 3x? — 3x — 1

(@ 7x* - 3x* - 3x - 1=8x"-x3-3x"-3x— 1
=8x*— (x3+3x2+ 3x + 1)
=8x— (x+1)3
(b) 7x* —3x> - 3x - 1=8x— [x+ 1)?
Using a® — b® = (a — b)|a* + ab + b?)
and replacing a by 2x and b by (x + 1) gives
8x3 — [x+ 1P ={2x — (x + 1)H{{4x? + 2x[{x + 1) + {x + 1)*}
=[x — 1){7x* + 4x +1)
L Tx3—3x"—3x — 1= x— 1){7x* + 4x +1)

Exercise 1.8

1 Factorise 8x* + 1 completely. (Hint: (—1)® = —1]
2 Showthatx*— [x —2)* = 8(x — 1){x* — 2x + 2}




1.9

Learning outcomes

To investigate the nature of the
roots of a quadratic equation
and the relationship between
the sum and product of these
roots and the coefficients of
ax> +bx +¢ =0

To use the relationship between
the sum of the roots, the
product of the roots, the sum
of the product of the roots pair-
wise and the coefficients of
a*+bx*+cx+d=0

You needto know

How to expand brackets of the
form
(ax + b)(a polynomial)

Quadratic and cubic equations

Polynomial equations
A polynomial equation has the form
ax* +a,_x* '+ . taxtax+a=0
The roots of a polynomial equation are the values of x that satisfy the
equation.

The order of the polynomial gives the number of roots of the equation.
Some, or all, of these roots may not be real. For example, the quadratic
equation x? + x + 2 = 0 has two roots, although neither of them are
real. (You will discover the nature of these roots if you study Pure
Mathematics Unit 2.

The nature of the roots of a quadratic equation
The general form of a quadratic equation is ax*> + bx + ¢ = 0.

The values of x that satisfy this equation are given by

_ —b = Vb - 4dac
2a
nature of these roots.

X

Note that b? — 4ac is called the discriminant.

When b? — dac > 0, =vVb* — 4ac has two real and different values,
therefore the roots are real and different.

When b2 — dac = 0, =/b? — dac =0

__ b SRR,
X = 2a+0emdx 2 0

so there is only one value of x that satisfies the equation and the equation

is said to have a repeated root.
When b2 — dac < 0, =vVb? — 4ac has no real value, so the equation has
no real roots.

The relationship between the coefficients of a quadratic
equation and the roots
The general form of a quadratic equationis ax*+bx+c¢ =0 [1]

If @ and B are the roots of this equation,
the equation can be expressed as x—a)x—8 =0
=x'—|lat+Bx+af=0 [2]
[1] and [2] are the identical equation, so we say that

X2+E—)X+£EX2—[Q+B]X+QB
a a
([1] is divided by a, so that the coefficients of x* are equal.)

Comparing coetficients of this identity shows that

a'+f3=—g

and aff = ﬂE

and it is the value of b2 — 4ac that determines the



i.e. the sum of the roots of the equation ax? + bx + ¢ = 0 is —% and
the product of the roots is %. This is true whether or not the roots

are real.
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Example

(a) Determine the nature of the roots of the equation
3x2—-2x+2=0

(b) If a and j are the roots of the equation 3x* — 2x + 2 = 0, find the
1.
B

. 1
equation whose roots are = and

(a) 3x> — 2x + 2 =0s0'b? — dac’ = 4 — 4(6) = —20
Therefore 3x2 — 2x + 2 = 0 has no real roots.

(b) 3x2— 2x + 2= Ogivesa+ f= Fand af = 5

For the equation whose roots are 1andal

a B’
+
the sum of the roots is - + 4 = F e
a B af
2
_ 3 _
== 1
3
. 11
and the product of the roots is e 5= ap
~1_3
29
3

Therefore the required equation is x> — x + % = (),
e 2x2—-2x+3=0

Exercise 1.9a

1 One of the roots of the equation 3x> — x + ¢ = 0 is « and the other
root is 2a.

Find the value of c.
2 The roots of the equation x> + 3x + 5 = 0 are « and S.

Find the equation whose roots are « + 2 and 8 + 2

Cubic equations

The formula for solving a general quadratic equation was known to the
ancient Greeks. However, the search for a general solution for the cubic
equation continued until a method was developed during the Renaissance
in Italy.

This method does lead to a formula, but it is not at all easy to remember
and is difficult to work with. It also relies on working with numbers

that are not real, and such numbers are not covered in Unit 1. For these
reasons it not included here.

If you are interested in finding this formula, search on the internet for
‘general solution of cubic equations’.

Did you know?

It is thought that Girolamo Cardano
(1501-1576) was the first to publish

a general method of solution for the
cubic equation.
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The roots of a cubic equation

The general form of a cubic equationisax® + bx2 + cx + d =0

The order of this equation is three, therefore it has three roots.

If these roots are @, 8 and v then the equation can be written as
x—allx—Bllx—v=0

By expanding this form of the equation and comparing with the general
form, we can get a relationship between the roots of a cubic equation and
the coefficients of the general form.

(x —alfx — Bllx —y) = (x — a)x* = (B + v|x + B
=x°—(a+ B+ yx2+ (af + ay + By)x — aBy

Dividing the general form of the cubic equation by a gives

b

x*—(a+ B+ Y+ (af + ay+ ﬁy]x—aﬁyzx3+axz+gx+d

a
Therefore if «, B and y are the roots of ax® + bx? + cx +d = 0, then

a+ﬁ+'y=—£—
aﬁ+a7+ﬁy=%
d
apy=-2

For example, the sum of the roots of the equationx* + 2x* + 5x — 7 =0
is —2, the product of the roots pair-wise is 5, and the product of the
roots is 7.

Example
Two of the roots of the equation x® + px*> + 2x + ¢ = 0 are 1 and —2.
Find the values of p and q.

If « is the third root, then —1 + @ = —p Sum of the roots [1]
-2+ a—2a=72 Pair-wise product of the roots [2]
—2a =q  Product of the roots [3]

[2] gives @ = —4,
therefore from [1], p = 5
and from (3], g = 8

Example
The equation ax® + bx® + cx + d = O has roots « — p, e and « + p.

Find a relationship between a, b, ¢ and d.

The sum of the rootsis (¢ — p| + @ + (@ + p) = 3a

3a=-b = a=-0b

a 3a




a is a root of the equation, so x = « satisfies the equation,

e a><(—%)3+bx(—%)2+cx(—%)+d:0

Multiplying by 27a®> = ab® — 3ab?® + 9a*bc — 27a%d = 0
= 2ab3 — 9a*hc + 27a%d = 0

Section 1 Basic algebra and functions

Example
The roots of the equation 2x* — x> + 3x — | = O are o, B and v.

Find the equation whose roots are L Lo

1 1
o B Y
From the given equation

a+ﬁ+y:%

3
af + ay+ ﬁy=§

1
opy=1%
For the required equation, the sum of the roots is
L1, 1 _Byraytap
a B v apy
=3

The product of the roots pair-wise is

1 1 1 atp+y
—— =
af By ay afy

The product of the roots is )
aBy

Therefore the required equationisx® — 3x2 +x — 2 =10

Exercise 1.9b

1

Two of the roots of the equation 2x3 + px2 + gx — 1 = 0 are

% and —1.

Find the values of p and q.

The roots of the equation x* + 2x? — 5x + 1 = 0 are @, B and v.
Find the equation whose rootsare e+ 1, 8+ land y + 1

The roots of the equation 2x* + x> + px —g=0are o, Band @ + B
Find a relationship between p and q.




110  Curve sketching

Learning outcomes

m To revise basic techniques for
simple curve sketching

You needto know

m How to express ax? + bx + cin
the forma(x — p)*> + q

Vi /

D
2% —[3y[+ D = 0}’/
| A3
1]

Straight lines

The equation of any straight line can be written as y = mx + ¢ where m
is the gradient of the line and c is the intercept on the y-axis.

To sketch the graph of a straight line, you need the coordinates of two
points on the line.

The most straightforward points to find are those where the line crosses
the axes.

For example, to sketch the line 2x — 3y + 9 = 0, first find where the line
crosses the axes: whenx =0,y = 3 and wheny = 0,x = —4%, so draw
the line through (0, 3) and [—4%, 0).

Curves

A sketch of a curve should show the shape of the curve and its position
on the coordinate axes. It should also show any significant features of
the curve such as, for example, where the curve turns. A sketch is not an
accurate plot, so these features will in many cases be approximate.

Parabolas

A curve whose equation has the form y = ax®> + bx + ¢ has a characteristic
shape called a parabola.

Whena = 0, Whena < 0,
y has a minimum y has a maximum
value. value.

In both cases, the curve is symmetrical about the line through the point
where the curve turns, as shown in the diagrams.

To sketch the graph of the curve whose equation isy = ax? + bx + ¢, you can

either find the coordinates of the points where the curve crosses
the axes (this is easy if ax> + bx + c¢ factorises) and then use
symmetry to find the coordinates of the turning point

or express ax® + bx + ¢ in the form a(x — p?) + g to find the
coordinates of the turning point together with the fact that the
curve crosses the y-axis at the point (0, ¢).

Example

Sketch the curve whose equation isy = 2x* — 3x + 1

y=2x2—-3x+1={2x — 1){x — 1)

The curve crosses the y-axis at (0, 1) and crosses the x-axis at [%, 0} and (1, 0). Em
Therefore the curve is symmetrical about x = % A i E
(halfway between x = % andx = 1) — 5 1 —
o 5 4 ; : - 0] 1 b 2ok X
y has a minimum value where x = Jof 2(3]* — 3[7) + 1 = —3 1 '
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Example v
Sketch the curve y = —x* +x — 1 B

I 13,
y:—[XZ—X]—]_:—[X—%lz_% [2: 4!

and y has a maximum value where

_1._3
X—Zof . . /

42 | O 2 X
The curve crosses the y-axis at (0, —1] — /{’4\ i

Cubic curves

A curve whose equation is v = ax® + bx? + cx + d has a characteristic

shape.
a=0 a=20
y b,
or or

The curve is easy to sketch when the cubic expression factorises.

oo

b
L~

For example, the graph of v = (x + 1){x — 2}{x — 3] crosses the x-axis at

T2 ] O N7 3
(~1,0),(2,0,(3,0). i [ I o O
When the brackets are expanded, and comparing with ax®* + bx? + cx + d =
shows thata = 1 and d = 6, so the curve crosses the y-axis at (0, 6).
The curve whose equation isy = X
We know that% is meaningless, so there is no point on the curve where VA
x =0. Whenx > 0, y > 0 and when x < 0, y < 0 so the curve exists only L6
in the first and third quadrants. "
We also know that for positive values, as x gets larger, £ gets smaller, i.c. 3 \
as x increases the curve gets closer to the x-axis. Using similar reasoning, ¥ ;)
as x approaches zero from positive values, y increases. -6 4 2 4 6 %
For negative values of x, as x approaches zero, y decreases, and as x 4
approaches —o=, v increases. The curve gets closer and closer to the axes | ¢
but never crosses them.
Any line that a curve gets closer and closer to but never
crosses is called an asymptote.
y = 0 and x = 0 are asymptotes to the curve y = %
The curve is symmetric about the liney = x
Exercise 1.10
1 Draw sketches of the graphs whose equations are 2 On the same set of axes, draw sketches of the
given. graphs whose equations are
Mark all significant points on the curves. y = % and2y — 3x + 6 =0

(a) y=x2—5x+6 (¢ y=x(x— 1)x — 3)
b) y=3x2—-x+1




111  Transformation of curves

Learning outcomes

m Tounderstand how curves are
transformed and to use this
knowledge to sketch curves

You needto know

B The meaning of translation and
reflection

m How to sketch graphs of simple
equations

Translations

Consider the curve whose equation is y = f(x} and the curve whose
equation is y = f(x) + 2

y=fx)+2/

Comparing v = flx) with y = f(x) + 2, we see that for a particular value
of x, the value of f(x) + 2 is 2 units greater than the value of f(x).

Therefore for equal values of x, points on y = f(x) + 2 are 2 units above
points on v = f(x], i.e. the curve y = f(x) + 2 is a translation of the curve
y = f{x) by 2 units in the positive direction of the y-axis.

For any function f, the curve whose equation isy = f(x) + ¢

is the translation of the curve whose equation is y = f(x)
by ¢ units parallel to the y-axis.

Now consider the curve whose equation isy = f(x — 2|

Vi

Comparing v = f(x) with y = f(x — 2), we see that the values of y are the
same when the value of x in f(x — 2) is 2 units greater than the value of x
in f[x].

Therefore for equal values of v, points on y = f{x — 2) are 2 units to the
right of points on y = f(x), i.e. the curve v = f{x — 2} is a translation by 2
units of the curve y = f(x) in the positive direction of the x-axis.

Using similar reasoning, the curve y = f(x + 4) is a translation of the
curve y = f[x) by 4 units in the direction of the negative x-axis.

For any function {, the curve whose equation is y = f(x + ¢)is a
translation of the curve y = f(x) by ¢ units parallel to the x-axis.
When ¢ > 0, the translation is in the negative direction
of the x-axis and when ¢ < 0, the translation is in the positive
direction of the x-axis.
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Reflections

Consider the curve whose

y = f{x) .
equation is y = —f{x|

Comparing y = f{x) with
y = —f{x], we see that for a
given value of x, f{x) = —f(x)

Therefore for the same value of
X, apoint on y = —f(x] is the
reflection in the x-axis of the
point on y = f(x)

y =—fx)

So, for any function f, the curve y = —f(x) is the reflection
of the curve y = f(x) in the x-axis.

Consider the curve whose equation is y = f(—x)

y=fx) 7} y =f[{-x]

Comparing v = f(x) with y = f{—x], we see that the values of y are equal
when the values of x are opposite in sign, i.e. fla) = f{—(—a))

Therefore points with the same y-coordinates on the curves are
symmetrical about the y-axis.

So for any function f, the curve y = f(—x) is the reflection
of the curvey = f(x) in the y-axis.

Example v
1

Sketch the curve whose equation is y = P

in the positive direction of the x-axis.

L1
Start with the curve y = %whose shape and position Y Fx
is known.
S 5
i 1 e =2
If f(x) = = then is flx — 2.
X x—2 Nt
So the curvey = ﬁ is a translation of y = éby 2 units \"“_—-ﬁh—l—;
4 6 X

|
o
|
i I
o .n;__--te:/ % b2 E:N s
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Example
Sketch the curve y = 2 — (x + 5)?
y|=2— fx H5p

N7
S{X/E
0

gata

y==—x+'5}1 [ y;‘:—xz

_4_
/- ‘ “ _6- - \ |
Start with v = —x? whose shape and position is known.
Theny = —(x + 5)% is a translation of y = —x? by 5 units in the

direction of the negative x-axis.

Thereforey = 2 — (x + 5)? is a translation of y = —([x + 5)? by 2 units
parallel to the positive y-axis.

Exercise 1.77a

1 Sketch each of the following curves whose equations are

@y=x-—4  @y=k-1F
il |
b)yy=5+2 @y=3-37"73
2 On the same set of axes, sketch the curves whose equations are
(@) y =x° € y=-x+2p
b) vy = (x +2)3 dy=1-(|x+2)

One-way stretches
Consider the curve whose equation is y = af|x]

y“

y = af{x)

y =f{x)

Comparing points on v = f{x) and y = af(x) with the same x-coordinate, the
y-coordinate of the point on y = af(x) is a times the y-coordinate on y = f[x|

So the curve y = af(x) is a one-way stretch
of the curve y = f(x) parallel to the y-axis by a factor a.
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Consider the curve whose equation is y = f{ax)

y.i\

v = f[x]

0 %

Comparing points on y = f{x] and y = f{ax) with the same y-coordinate,

the x-coordinate of the point on y = flax) is é times the x-coordinate
ony = f(x)

So the curve y = f(ax) is a one-way stretch
of the curve y = f(x) parallel to the x-axis by a factor %.

Example
On the same set of axes sketch the curves y = x?, y = 2x? and
y = (2x)? for values of x from —3 to 3.

A

Start with y = x2
Then double the y-coordinate of points on v = x2 to give y = 2x?2

Halve the x-coordinate of points on y = x? to give y = (2x]?

Exercise 1.11b

On the same sct of axes sketch the graphs of the curves given for values
of x from —3 to 3.
1 2

@y=3  By=F @y=g




112  Rational expressions

Learning outcomes

m To express an improper rational
expression as the sumof a
polynomial and a proper rational
expression

You needto know

B Themeaning of the orderof a
polynomial

The factor theorem

How to use transformations to
sketch curves

Rational expressions

An expression where both the numerator and denominator are
polynomials is called a rational expression.

X 3x

K= Ix—2) & +1 ¢ rational expressions.

For example, Xi,
These expressions are all proper rational expressions because the order of
the numerator is less than the order of the denominator.

When the order of the numerator is greater than or equal to the order of
the denominator, the expression is called improper.

ElndX+l

I — | are improper.

) X
For example, % =1

Expressing an improper fraction as a sum of a
polynomial and a proper fraction

There are two methods we can use to express an improper fraction in a
form where the remaining fraction is proper.

The first method involves rearranging the numerator so that we can
cancel.

For example, in the case of %’(Xjf'

that x — 1 is part of the numerator,

WE Can rearrange the numerator so

. 2% +3 2x—1)+2+3
ie. =
x—1 x—1

We can now express the right-hand side as the sum of two fractions,

. 2x—1) 5
e +X—l

—1

We can now cancel |x — 1) in the first fraction to give 2 + =

22X+ 3 _ 5
Tx—1 _2+x—l

The second method involves dividing the numerator by the denominator.

2 Start by dividing x into 2x. It goes 2 times.
x—12x+3 Multiply x — 1 by 2 then subtract this from 2x + 3
% — 9 2 is the quotient and 5 is the remainder.
5
X +3 5 . , 12 . .5
ThenX_l —2+X_1(mthesamewayas7 —1+7)

This second method is useful when the denominator is quadratic.

xX*—2x+5

T iy ycna form where the fraction is

For example, to express

proper, we divide by the denominator.



x— 4 There is no x? term in the
X2+ dx + 53+ 0x2 — 2x + 5 numerator so we add zero for this
%3 4+ 4x2 + 5x term. Start by dividing x? into x3.
—4x — 7%+ 5 It goes X times.
A T — O Multiply x2 + 4x + 5 by x then

subtract. Bring down 5. Divide x>
into —4x?, and repeat the process
until no more division is possible.

9 + 15

3_
X 2X+5:X it Ox + 25
x1+4x +5 xX+4x+5

This second method of division is also useful when, given one factor of a
polynomial, we need to find the other factor and finding it by inspection
is not straightforward.

Section 1 Basic algebra and functions

Example

Given that 2x — 1 is a factor of 2x* — x3 + 6x? — x — 1, find the cubic
factor,

x3 + 3x +1
2x— 12 —x3+ 6x>—x— 1
2x* — x°
O+6x2—x—1
6x2 — 3x
2x — 1 Therefore x3 + 3x + 1 is the
2x— 1 cubic factor,
Example
Sketch the curve whose equation is y = z f i
x _x—1+1_ 1
Y‘] x—1 x-1 _1+X—1

-

1

\ —— YT TEd
2\ 1

Start with y = é, theny = 1

il

is the translation of y = %by

j
kb
—

bd-‘

1 unit in the direction of the
positive x-axis.

is the

Soyzl-l—X_1

translation of y = ﬁ by 1 unit

£

parallel to the positive y-axis.

Exercise 1.12

1 Express each expression in a form where the fraction is proper.

2x 6x a3+ x4+ 3
By ®n-7 @534
N -
2 Sketch the curve whose equation isy = S 1

3 Show thatx — 2is a factorofx* —x3 —2x* + 3x — 6
Hence factorise x* — x3 — 2x2 + 3x — 6




113  Inequalities — quadratic and rational
expressions

Learning outcomes

m To revise quadratic inequalities

m To solve inequalities involving
rational expressions

You needto know

m How to sketch a curve whose
equation has the form
y=ax*+bx +c

m The conditions for a quadratic
equation to have real roots or no
real roots

m How to complete the square

Quadratic inequalities

A quick sketch is the easiest way to solve an inequality such as
x +1)x—2)<0

—_—

\
\ L&}
\ T,

| | 2_
2 g i 4
i 1 e P e

The sketch of the curve v = (x + 1){x — 2) shows that the curve is below
the x-axis, i.e. [x + 1){x —2) <0,when -1 <x <2

=Y

The inequality can also be solved algebraically.

We know that (x + 1){x — 2) = 0Owhenx = -1 andx = 2,

and whether (x + 1){x — 2} is positive or negative depends on the signs
of [x + 1) and (x — 2].

So we investigate these signs forx < —1, -1 <x <2andx > 2

When x < —1, both brackets are negative, so (x + 1)(x — 2) is positive.

When —1 < x <2, [x +1) is positive and (x — 2} is negative, so
(x + 1){x — 2) is negative.

When x > 2, both brackets are positive, so [x + 1){x — 2] is positive.

Therefore (x + 1)(x — 2] <0Owhen -1 <x<2

Example
Find the values of a for which x®> + ax + a > 0 for x € R.

The curve y = x® + ax + a is a parabola with a minimum value.

2
Completing the square gives x2 + ax + a = [x + %]2 +a-— %

(X + %)2 > ( for all values of x,

2
sofnrx2+ax+a>0,a—%>0

a

i >0=4a—-a*>0=ala—4)<0

Now, a —




A sketch of y = ala — 4) shows thata(a — 4) <Owhen0<a <4

Thereforex2 + ax + a > Owhen 0 <a < 4

Section 1 Basic algebra and functions

Rational expressions

An expression where both the numerator and denominator are
polynomials is called a rational expression.

For example,

1 X 3x
x' x-1)x-2) x*+1

are rational expressions.

The range of values that a rational function can take

The graph of y = % (see Topic 1.10), shows that O is the only value that
y cannot take.

We can show this algebraically: y = % = X = )l]and x is undefined

when y = 0, so there is no value of x for which y = 0,

ie. t<0ori>0butL#0
X X X
Now x can take all real values when y = XZE'%

To find the values that v can have, we rearrange the equation to give a
quadratic equation in x,

ieyx?—3x+y=0

For x to be real, this equation has to have real roots, so ‘b* — 4ac’ = 0,
ie.9—4d4y2=0

= yr = %

:—y.‘»‘:—%and ys:_%

= —% sy = %

We can use this information, together with the following observations,
 3x

to sketch the graph of y = Tl
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m y>0whenx >0

y=0whenx =0

whenx < 0,y <0

as x approaches very large values (we write this as x — =), v — 0

asx — —o, y — 0

=20 [ -I5 1 =

Solving inequalities involving rational expressions

3x
x4+ 1

It is easy to see the values of x for which = 0, but it is not so

obvious for the expression X —1)x = 2

The values of x for which
x—landx— 2

[X—l?ﬁ > 0 depend on the signs of x,

The value of the expression is zero when x = 0 and undefined when
x = 1 and x = 2, so we need to investigate the sign of the expression
when

x<< 1), =<x<], l<x<2 and x>2

The easiest way to do this is to use a table.

x<0 I<x<1 1<x<2 x>2
X = + 35
x—1 = = =+
%= 2 - - - +
- : :
[x— 1)x — 2] = 2z = +

Now we can see that ]>0when0<x<landx>2

g
(x —1){x— 2

Example

Solve the inequality X_ ] 4%

Ax

An inequality is easier to solve if it is first rearranged so that the
right-hand side is zero.




1
T

|
= % — 1 X<0
7[}(_1]2 <0

= XPx—1)

The numerator is positive for all x € R so the significant values of
x are 0 and %

i Fpy l L
We need to investigate the ranges x < 0,0 <x <jandx > 3

x<0 0<x<i x>1
e — 12 + + +
b¢ = + F
2% — 1 - - +
k- 1)
x(2x — 1) + B *

o X
Therefore % =1

clf0r0<xc%
X

Section 1 Basic algebra and functions

Example
9 _
Find the values of k for which % can take all real values
forallx € R.
x99+ k
Letr="3+1

Rearranging as a quadratic equation in x gives
x2—x(2+yl+k—y)]=0

For x to be real, (2 + y)? = 4(k — v
= y? + 8y = 4k — 4)
Completing the square gives [y + 4)> — 16 = 4k — 4

The minimum value of (v + 4)> — 16 is —16, so y can take all real
values provided that —16 = 4k — 4, ie. k= -3

Exercise 1.13

1 Find the values of x for which x2 — 4 < 2x — 1

2 Find the values of k for which (kx)* + (3k — 2]x + 4 > 0 forx € R.

3 Find the set of values of x for which x=F o p
x(x — 2)
4 Find the range of values of y for which y = %
x+k

5 Find the minimum value of k for which T 1

> —1forallx € R.




114 Intersection of curves and lines

Learning outcomes Intersection

m Toinvestigate the intersectionof ~ Depending on the shape of a curve, a line may intersect the curve at
several points, it may touch the curve at one of these points, or it may
not intersect the curve at any point.

a curve and a line

For example, a line may intersect a parabola in two distinct points, or it
may touch the parabola at one point (in which case it is called a tangent
to the parabola), or it may not intersect the parabola.

m How to sketch the graphs of
linear, quadratic and cubic
functions
m How to solve a pair of \

You needto know

simultaneous equations where

one is linear and the other is

quadratic

To find the points of intersection, we need to solve the equation of the

m The conditions for a quadratic : : :
curve and the equation of the line simultaneously.

equation to have two distinct
roots, or arepeated root, or no For example, to find the points of intersection of the line with equation
real roots y = 3x — 5 with the curve with equation v = x2 — 2x + 1, we solve the

m How to use the factor theorem equations simultaneously. 1

h
to find the roots of a cubic A rough sketch of these curves gives an
equation idea of which of the three cases illustrated
above exists in this case. However, this
sketch is inconclusive.
The nature of the solution will tell us if this o) S =
line intersects, touches or misses the curve.

y=x2—-2x+1 [1] y=3x-5 [2]
[2]in[l]]=23x—-5=x2-2%x+1=>x2—-5x+6=0
= [x—-2)x—-3)=0 [3]

There are two real and distinct roots so the line intersects the curve in
two distinct points.

From [3], the coordinates of these points are x = 2 and (from [2]) y = 1,
orx =3andy = 4,1ie (2, 1) and (3, 4).

Example 4
Prove that the liney = 3 — 2x and the curve y = p? % 3 do not intersect. \

Solving y =3 — 2xandy = . 3 simultaneously gives

5
y=3-2 [1]
2

y=5=3 [I —————-..g\
Substituting [2] in [1] gives —2—5 = 3 — 2x :
= 2=(3— 2](x — 3

= 2x*— 9% +11=0

‘b? — dac’ is 81 — 88 which is less than zero, so there are no real The sketch shows that the line and
values of x for which2x> — 9x + 11 =0 curve do not intersect but this is not

Therefore the line and the curve do not intersect. a proof. (A sketch is also unreliable.




Section 1 Basic algebra and functions

Example
(a) Find the condition on m and ¢ for which the liney = mx + cis a
tangent to the curve whose equation is y = 3x2 — 2x — 1

(b) Hence find the equation of the line with gradient 2 that is a
tangent to the curve whose equationisy = 3x> — 2x — 1

(a) Solvingy = 3x* — 2x — 1 and v = mx + ¢ simultaneously gives
mx+c=3x>—2x—1
= 3x2—x(m+2)—(c+1)=0
For the line to touch the curve, this equation must have a repeated
root, i.e. ‘b* — 4ac’ = 0,
so(m + 2)* = 12{c + 1)

(b) Whenm =2, 16=12c+1)=c=1
the equation of the line with gradient 2 that is a tangent to
y=3x*—2x—1is
y =2+ %

= 3y—6x—1=0

Example

Show that the line y + 5x — 4 = 0 intersects the curve
y =x*— 7x? 4+ 10x — 5 once and touches it once.

The values of x at which the line intersects the curve are given by the
roots of the equation

x¥3-7x2+ 10x—5=4-5x = x¥3-7x*+ 15x-9=0
Possible factors of fx) = x> — 7x>2 + 15x — Qare (x = 1), (x = 9), x = 3}
Using the factor theorem, whenx = 1, fix) = 0, .. [x — 1) is a factor.

So flx] = [x — 1){x> — 6x + 9]
=[x —1)x — 32
the equation x* — 7x2 + 15x — 9 = 0 has one single root and one
repeated root.

Therefore the line y + 5x — 4 = 0 intersects the curve
y = x% — 7x? + 10x — 5 once and touches it once.

Exercise 1.714

1

Find the value of k for which the line y = kx + 2 touches the curve
xy+4=0

Find the nature of the points on the curve y = x3 + 5x> + 8x + 4
where y = 0. Hence sketch the curve.

Determine whether the line v = x — 5 intersects, touches or does not
intersect the curve whose equation is x> + 2y2 =7




115 Functions

Learning outcomes

m To define mathematically the
terms: function, domain, range,
composite functions

B To use the fact that a function
may be defined as a set of
ordered pairs

You needto know

m How to sketch curves whose
equations are of the form
y=ax>+bx+c

Mappings

When the number 2 is entered in a calculator and then the x* button is
pressed, the display shows the number 4.

2 is mapped to 4, which is denoted by 2 — 4
Under this rule, which is squaring the

input number, 3 — 9, 25 — 625,

0.2 — 0.04, —2 +— 4 and (any real

number) — (the square of that number).

by

This is denoted by x > x?, forx € R.

This mapping can be represented - -
graphically by plotting values of x* ;
against values of x. The graph, and our /\
knowledge of what happens when we ;

square a number, show that one input 0O X
number gives just one output number.

But the mapping that maps a number to .
its square root, e.g. 4 — =2, gives a real =
output only when the input number is
greater than or equal to zero (negative -
numbers do not have real square roots).

This mapping can be written as
x+— =%, forx € R, )

¥

The graphical representation of this
mapping shows that one input value
gives two output values.

Functions

For the mapping x ~ x2, for x € R, one input number gives one output
number,

The mapping x — *.X gives two outputs for every one input number.

The word function is used for any mapping where one input value gives
one output value.

A function is a rule that maps each single number to another single
number for a defined set of input numbers.

Using f for function and the symbol : to mean ‘such that’, we write f:x > x*
forx € R to mean f is the function that maps x to x* for all real values of x.

The mapping x — +X forx = 0, x € R is not a function because it does
not satisfy this condition.

Domain and range

We have assumed that we can use any real number as an input for a
function unless some particular numbers have to be excluded because
they do not give real numbers as output.

The set of inputs for a function is called the domain of the function.



The domain is also called the pre-image.

The domain does not have to contain all possible inputs; it can be as
wide, or as restricted, as we choose to make it. Hence to define a function
fully, the domain must be stated.

If the domain is not stated, we assume that it is the set of all real
numbers (R).

The mapping x — x2 + 3 can be used to define a function f over any
domain we choose. Some examples, together with their graphs, are given.

1 f:x—>x>+3forxeR 2 fix—=x2+3foorxeRx=0
fix)a f(x} 4
3 3
0 % 0 %

3 fix—>x2+3forx=1,2,3,4

This time the graphical representation is four discrete points.
VA

20H g
164
124 .

81 .

44 .

T3 35%
These three examples are not the same function - each is a different
function.

For each domain, there is a corresponding set of output numbers.

The set of output numbers is called the range of the function. The range
is also called the image.

The notation f{x) represents the output values of a function, so for
f:x—x?forx, flx) = x2

For the function defined in 1 above, the range is f{x) = 3, for the function
given in 2, the range is also f(x) = 3 and for the function defined in 3, the
range is the set of numbers 4, 7, 12, 19.

A function can be represented pictorially.
For example, f:x+— x>+ 3 forx = 1, 2, 3, 4 can be illustrated as:

This function can also be represented by a set of ordered pairs, where the
first number in the pair is the value of x, and the second number is the
value of f(x|. Therefore f:x+>x2 + 3forx = 1, 2, 3, 4 can be represented
by the set {(1, 4), (2, 7), {3, 12, (4, 19)}.

Section 1 Basic algebra and functions

The point on the curve wherex = 0

is included, and we denote this by a
solid circle. For the domain x = 0, the
point x = 0 would not be part of the
curve, and we indicate this by using an

open circle.
1
2 > 7
3 >12
4 19
domain range
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Example

The diagram shows a mapping of members of the set A{1, 2, 3, 4, 5} to the set
B{a, b, ¢, d, e}.

(a) Give two reasons why this mapping is not a function.

(b) Construct a function, f, that maps A to B, giving your answer as a set of
ordered pairs.

(a) In A, 2 maps to two different members of B (d and e). In A, 4 does not map to any member of B.

(b) For f to be a function, every member of A must map to just one member of B. There are several ways of
doing this but the simplest is to change the two mappings in A so that 2 maps to either d (or e), and then
4 maps to e (ord). £ = {(1, b), (2, d), (3, c), (4, €, (5, al}

Example
The function, f, is defined by f(x) = x2 forx < 0,
and flx) =xforx>0,x€R.

(a) Find f{4) and f(—4) (b) Sketch the graph of f. (c) Give the range of f.

(@) Forx >0,flx)=x - fl4) =4 x)a
Forx <0, flx)=x2 . f{—4)=(-4)2=16

(b) To sketch the graph of a function, we can use what we know about lines
and curves in the xy-plane. So we can interpret f(x) = x for x > 0, as
that part of the line y = x which corresponds to positive values of x,
and f[x) = x? for x = 0 as the part of the curve y = x? that corresponds
to negative values of x.

(c) The range of fisf(x) = 0

Composite functions

Two functions f and g are given by f(x) = x?, x € R and g(x) and g[x] = L,
x # 0, x € R. These two functions can be combined in several ways. =
1 They can be added or subtracted,

ie flx) +glx)=x>+ i,xi 0,xeER

and flx) — g{x) :Xz—é,Xi 0,xeR

2 They can be multiplied or divided,
1

ie flx)glx) =x* XL =XX# 0,xeR
fi 2
and ﬂz—zxix#[},xeﬂ'&
glx] 1
X

3 The output of f can be made the input of g,
ie. xfx2 % X_lz or glflx)]=gx),x+0,xER
Therefore the function f:x — é, x # 0, x € R is obtained by taking the

function g of the function f. This is a composite function and is written
as gf(x].
Forflx) =x2, x€eRandglx) =3x— 1, xR

gf{x) means the function g of the function f(x),
iegfflx]=gx})=3x?—1,xER




fg|x) means the function f of the function g(x|,
iefgx)=f3x—1)=(3x — 1, xER

This shows that the composite function fg(x) is not the same as the

composite function gf(x).

For any composite function gf(x), f(x) is the range of f and this range gives

the input values of g. Therefore the range of f must be included in the

domain of g.

Section 1 Basic algebra and functions

Example

f, g and h are functions given by

fix) =x,xeR, gx)=2x+ 1, xeR hix]=1—-x, xR
(a) Find as a function of x: (i) fg (i) ghf.

(b) Calculate the value of: (i) gf{3) (i) hfg(3) (iii)) gg(3]).

(a) (i) fglx)=f2x+1)=(2x+ 1L xER
(i) ghffx] = gh{x*) = g[1 — x*)
=2(1-x)+1
=3-2x3L,xeER
(b) () gfix) =glx®) =2+ 1, . gf3]=2(3P+1=19
(i) hfgx) = hf(2x + 1) = h[[lx+ 1P)=1—(2x + 1)%,
- hfg(3)=1—(7)*=—48
(i) gglx) =g(2x+1)=2(2x+1)+1=4x+ 3
gg(3) = 4(3) +3=15

Example

t and g are functions of x such that f(x) = ﬁ and gf(x) = x
Find g(x).

To change =———— ZX 1 [ tox, we need to first take the reciprocal of

so let hix) = ;, then hf(x) = 2x — 1

qoletj[x] = ix + 3 then jhf{x) = 3(2x — 1) + 7 =x
jh(x) = 5= + = g[x]

To change 2x — 1 to x, we need to halve 2x — 1 and then add %,

#
_1;

Exercise 1.715

1 The function fis given by f{x) = —x forx < 0, x €R
and flx) = xforx =0, x € R.

(a) Find the value of f[5), f{—3) and f{0).
(b) Sketch the graph of the function.

2 The functions f and gare given by f(x) = x>, x e Rand g[x) = 2 — x

(a) (i) Find the function given by fg(x].

(i) Sketch the curve whose equation is y = fg|x|
(b) (i) Find the function given by gf(x).

(i) Sketch the curve whose equation is y = gf{x|

3 fand g are functions such that f(x) = ZXE-,'I- 1

and gf(x) = x. Find g(x].




116  Types of function

Learning outcomes

m To define mathematically the
terms: one-to-one function
(injective function), onto
function (surjective function),
many-to-one, one-to-one and
onto function (bijective function)

m To prove whether or not a given
simple function is one-to-one or
onto

You needto know

B The meaning of function, domain
and range

Codomain

The codomain of a function is the possible values that can come out of a
function.

This will include the actual values that come out (i.e. the range) but may
include other values as well. The codomain is useful when we do not
know all the values that will come out of a function (e.g. a complicated
function or one we have not seen before). We can then choose as a
codomain the values that might come out of a function.

For the function f:x > x> forx = 1, 2, 3, we can
choose the codomain to be the set of integers
from 1 to 10 inclusive.

codomain

One-to-one functions

A function is one-to-one when each member of the domain maps to a
different member of the codomain. The function f defined above is a one-
to-one function.

A one-to-one function is also called an injective function.

Onto functions

A function is ento when every member of the codomain is mapped to
by a member of the domain, i.e. no members of the codomain are left
without a matching member of the domain.

For example, when g is given as g(x) = x* for
x=—2,—1,0, 1, 2 and the codomain is the
set {0, 1, 4}, the diagram shows that every
member of the codomain has at least one
image in the domain.

Therefore g is an onto function.

An onto function is also called a surjective
function.

domain codomain

The function f:x — x? forx = 1, 2, 3 given above is not surjective because
some members of the codomain do not have an image in the domain.

However, h: x> x? for x € R onto the positive real numbers is surjective
because every real number, when it is squared, maps to a positive real
number, and every positive real number has a real square root. But h is
not one-to-one because more than one member of the domain maps to
one member of the codomain, e.g. both 2 and —2 map to 4.



Bijective functions

A function that is both one-to-one and onto is called a bijective function.
This is a function where each member of the domain maps to one
member of the codomain and where each member of the codomain
comes from one member of the domain.

For example, f:x+— 2x for x € R onto R is one-to-one (each member of
R maps to one member of R) and onto {each member of R comes from
just one member of R). Therefore f is a bijective function.

To summarise:

injective but not surjective surjective but not injective bijective
Every member of the Some members of the Every member of the
domain maps to a different domain map to the same domain maps to a
member of the codomain. member of the codomain different member of the
and every member of codomain and every
codomain is mapped to. member of the

codomain is mapped to.

Section 1 Basic algebra and functions

Example

Determine whether the function given by f(x) = x> — 2, x € R onto
the codomain R is injective, surjective or neither.

x2 — 2 = -2 for all x € R, therefore some members of the codomain
are not mapped to. Therefore f is not surjective.

When x = —3 and x = 3, {{x) = 7, therefore more than one member of
the domain maps to one member of the codomain.

Therefore f is not injective.

So fx) = x> — 2, x € R onto the codomain R is neither injective nor
surjective.

Exercise 1.76

1 LetA = {l1,2,3, 4} and the function f: A — A be given by
£=1{(1,2),(2, 4), {3, 1), {4,3)}

Show that f is one-to-one and onto.

2 LetA={-1,0, 1,2} and the function f: A — A be given by
f={{-1,1},{0,0),(1, 1), {2, 4]}
(a) Show that f is not one-to-one.

(b) Is f an onto function? Give a reason for your answer.




117 Inverse function

Learning outcomes

m To define mathematically the
term inverse function

You needto know

m The meaning of a function

B What aone-to-one function is

m The shape of a curve when its
equation is y = a quadratic
function of x or a cubic function
ofx

Inverse functions
f is the function where f(x) = 2x forx = 2, 3, 4
The domain {2, 3, 4} maps to the range {4, 6, 8}.

The mapping can be reversed, i.e. each member
of the range can be mapped back to the domain.

We can express this reverse mapping as
XH%XfOIX =4,6,8

This is a function in its own right.

It is called the inverse function of f where f(x] = 2x

Denoting the inverse function of f by f!,
we write {!(x] = %X forx =4,6,8

Notice that the range of the function is the domain
of the inverse function.

Not every function has an inverse.

Consider the function f(x) = x* for x € R, which is such that +2 and -2,
for example, both map to 4. When this mapping is reversed, each value of
x? maps to two values of x, for example 4 maps to both +2 and —2, and
this is not a function. Hence only functions where each member of the
domain maps to a different member of the codomain have an inverse,

i.e. only one-to-one functions have an inverse.

A function f has an inverse only if f is a one-to-one
and an onto function.

You can tell whether a function f(x) is one-to-one from the graph of y = f[x)

When any line parallel to the x-axis will cut the graph only once, f is
one-to-one.

| PN
N AN
0 \ \

one-to-one not one-to-one

¥
@]
¥

The graph of a function and its inverse
The diagram shows the curve that is obtained by reflecting v = f(x) in the
liney =x

The reflection of a point A(a, b) on the curve y = f[x) is the point A’
whose coordinates are (b, a), i.e. interchanging the x- and y-coordinates of
A gives the coordinates of A",



Therefore we can obtain the equation of the reflected curve by
interchanging x and y in the equation y = f(x)

Now the coordinates of A on v = f(x) can be written as [a, f(a)]. Therefore
the coordinates of A' on the reflected curve are [f{a), a], i.e. the equation of
the reflected curve is such that the output of f is mapped to the input of f.

Hence if the equation of the reflected curve can be written
in the form y = g(x), then g is the inverse of f, i.e. g = f!

Any curve whose equation can be
written in the form y = f{x] can
be reflected in the line y = x

However, this reflected curve may not
have an equation that can be written
in the formy = {}{x)

The diagram shows the curve y = x*
and its reflection in the liney = x

The equation of the image curve is
x=y’=y==*/Xandx— =/X is not
a function.

[We can see this from the diagram as,
on the reflected curve, one value of

x maps to two values of y. So in this
case y cannot be written as a
function of x.)

However, if we change the domain to
give the function f(x) = x>, x = 0,

x € R, then { is a one-to-one function
so does have an inverse.

Section 1 Basic algebra and functions

Vi
il
e
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—
ya y=xLx=0
y=vyx,x=0
%

Example
Find £ !(4) when flx) = 5x — 1, x € R,
yv=5x—1

For the reflected curvex =5y — 1 = y = %[x + 1) a_nd%[x +1)isa
function, so f![x) = é[x + 1), =~ £Y4) = é[4 +1)=1

Exercise 1.17

1 Afunction f is defined by f:x+— (3 —x)2, x < 3, x € R.

Define {!{x] fully.

2 The functions f and g are given by f(x] = 2x, x € R and g(x] = 2 — x,

x € R.
Find: (a) g 'f'{x) (b) (gfl~'(x)

3 (a) Show that f(x) = (x - 1){x - 2)(x - 3), x € R does not have an

inverse,

(b) Redefine f(x) with a different domain, so that {~!{x) exists.

W



118 Logarithms

Learning outcomes

m  To use the laws of logarithms to
simplify expressions

You needto know

m Thevalue of simple powers of
2,3,5

Indices
Logarithms depend on the laws of indices, so here is a reminder of these
laws.

B o’ Xal=a'td For example, x3 X x* = x3 74 = x7
B a’+al=qa" 4 For example, x3 + x* = x* =% = x7!
B (ar)d = am For example, (x3)* = x3 %4 = x12

m a'= l,a‘"zﬂ—lmfﬁz?a'

Logarithms

We can read the statement 102 = 100 as

the base 10 raised to the power 2 gives 100.

This relationship can be rearranged to give the same information, i.e.
2 is the power to which the base 10 must be raised to give 100.

In this form the power is called a logarithm.

The whole relationship can then be abbreviated to read
2 is the logarithm to the base 10 of 100

or 2 = log,;, 100

In the sameway, 2*=8 = 3 =log,8
and 3*=81 = 4 =log;81
Similarly, logs25 =2 = 25=5
and log, 3 = % =3 =0

The base of a logarithm can be any positive number, so
b=a"<logb=c,a>=0

The symbol < means that each of these facts implies the other,

Also, as ¢ = 1 this means log, 1 = 0,
i.e. the logarithm of 1 to any base is zero.

The power of a positive number always gives a positive result,

eg 4 =16,4"2=2L

This means that, if log, b = ¢, i.e. b = a°, then b must be positive. So logs
of positive numbers exist,
but the logarithm of a negative number does not exist.

Natural logarithms

There is an irrational number that appears in several different areas of
mathematics. It is denoted by e and is equal to 2.71828...

This constant was first named e by Euler who showed that as

lx
X—>OC,(X+§] — €

; 1, 1 1
Newton discovered that the sum 1 + 1 + % + R
1

LR RO B + ... — e as more and more terms are added.
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When e is used as the base for logarithms they are called natural
logarithms and are denoted by Inx.

Inx means log.x so Inx=y&oe'=x

Logarithms with a base of 10 are called common logarithms and denoted Did you know?

by lgx or logx, i.e. if the base is not given, it is taken to be 10. So logx

means log;,x and logx =y < 10V = x Natural logarithms are also called
Napierian logarithms. John Napier
invented logarithms —in 1614 he

Evaluating logarithms published explanatory text and

A scientific calculator can be used to find the values of logarithms with tables related to natural logarithms.
base e or 10. Use an intemet search to look up
Use the ‘I’ button to evaluate natural logarithms and the ‘log’ button ‘Napier’s bones’”

to evaluate common logarithms. The e* button (usually above the ‘In’
button) is used to evaluate powers of e.

Laws of logarithms

Given x =log,b and y =log,c then a* =b and @’ = ¢

Now bc = [ax][g_}f'] = he =ag*tV¥
Therefore log,bc = x + yi.e. log,bc = log,b + log,c Example
This is the first law of logarithms and, as a can represent any base, this Express logpg? vt in terms of

law applies to the logarithm of any product provided that the same base the simplest possible logarithms.

is used for all the logarithms in the formula.

Using x and y again, a law for the log of a fraction can be found.

logpg? vt
= logp + logq? + log/r

b _a* Q—a"‘V = logp + Zlogq—i—%logr
c a c
b)_, _ ; b) _ _
Therefore log, o) =X=F ie. log, o = log,b — log,c Example
A third law allows us to deal with an expression of the type log, b". Express
. 3logp + nlogg — 4logr

Using x = log,b* = a* = b* ie.a”=b as a single logarithm.
Therefore % =log,b = x=nlog,b ie. log,b" = nlog,b 3logp + nlogg — 4logr
These are the most important laws of logarithms. Because they are true = logp® + logg" — logr*
for any base we do not include a base, but in each of these laws every _q. 0

; = log=
logarithm must be to the same base. r

logbc = logh + logc, log?b = logh — logec, logh" = nlogh

Exercise 1.718

1 Find the value of:

(a) log, 16 (b) log, 2 (c) log, 8
2 Express in terms of the simplest possible logarithms:
P = X
(a) loga (b) In5x2 (c) logp,/q (d) th i

3 Express as a single logarithm:

(a) logp — logg (c) 2logp + 5logg
(b) In3 + Inx (d) Zlnx—iln[x— 1)




119 Exponential and logarithmic equations

Learning outcomes

m To solve logarithmic and
exponential equations including
changing the base of a logarithm

You needto know

m Thelaws of logarithms

m How to simplify logarithms

Exponential equations
An exponential equation has x as part of the index, for example, 3* ~2= 8§

When you need to solve an exponential equation, first look to see if the
solution is obvious.

For example, for 52~ * = 125, notice that 125 = 53
Therefore B2-*=5 go2—x=3=x=-1

When the solution is not obvious, taking logarithms of both sides can
change the index to a factor.

For example, for 3~ 3 = §, taking logs of both sides gives

log8
(x —3)log3 =10g8 so x—3= Tog3
Therefore x — 3 = 1.892... = x = 4.89 (3 s.f.)
Note that }gﬁg is NOT equal to log % Note also that we could equally

well have used natural logarithms.

Example
Solve the equation 2¥ + 2{27%] = 3

The left-hand side of this equation cannot be simplified so taking logs
will not help, but using y = 2* will.

Lety = 2% then 2* + 2{27) = 3 :'Y“L%:S =y -3y +2=0
sly-2)y-1)=0=y=1lory=2

SoX=1=2x=00 =2 = x=1

Example

Solve the equation 4(3¥](5*| = 7

4(34(5%) = 7 = (34(5Y) = 1.75

Taking logs gives In [3%)(5*) = In1.75 = xIn3 + xIn5=1In1.75

.. _ In175 _ |

Logarithmic equations

A logarithmic equation contains the logarithms of expressions containing
x, for example, In(x — 2) =1 — Inx

To solve a logarithmic equation, again look to see if the solution is obvious.
For example, for log, (2x — 1) = 2log,x, we can write 2 log, x as log, x2,

then log, (2x — 1) = log,x* = 2x — 1 = x?
= x2—-2x+1=0=x=1

When the solution is not obvious, express the logarithmic terms as a
single logarithm and then remove the logarithm.



For example, for 3 log, x = log, 16 — 1, collecting the logarithmic terms

3
on one side and expressing as a single term gives log, —i% = —1, then
. . x¥ 1
removing the log gives 15

Thereforex* =8 = x=12

Section 1 Basic algebra and functions

Example
Solve the equation Inx — 2 = In(x — 1)
nx—-2=hx+1) = hx-Inx+1) =2

—X =
g'mx—l—l 2
X = @l
T Fgl °
2
Sox(l — e =e? = lefezz—l.lé[Ss.f.]

Changing the base of a logarithm

When the bases of logarithmic terms are different, they cannot be
simplified to a single logarithmic term. To do that, we need to be able to
change the base of the logarithm.

If x = log, c and we want to change the base of the logarithm to b, then
x = log,c = c =a*

log,c
Taking logarithms to the base b gives log, ¢ = x log,a = x = logba
b
: log, ¢ ; ; Inc
ie. log,c = Tou, and in particular log,c = Tia

The base of an exponential expression can change in a similar way.

To express a* as a power of e, then using a* = e” gives xIna = p, therefore

aF = exlna

Example

Solve the equation 3log;x = 1 + 2logyx

First change the base of logyx to 3.

_ logzx  log;x

~logs9 T 2

o 3logsx =14 2logyx = 3logzx =1 + log;x

log, x

2logyx = 1 s0 logyx = % - x=31=173 (3 s.f.)

Exercise 1.719

1 Solve the equation (4% *1){5* ~2] = 6! =

2 Solve the simultaneous equations
Inx+1)+n2=Inyandlnjx — 2y + 1) =0

Solve the equation log, x + log, 2 = 2
4 Given that Iny = 3, find the value of x given that nx3 + 4log,5 = 8
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Learning outcomes

m To define exponential and
logarithmic functions

You needto know

m The definition of a function and
the meaning of a one-to-one
function

m How to find an inverse function

m The meaning of logarithms and
the laws of logarithms

B The meaning of natural
logarithms
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Exponential and logarithmic functions

Exponential functions

The mapping x > 2*is such that 2+ 22 =4, -2+ 272 = i, and any
real number maps to a single real number.
Therefore x — 2*, x € R is a function.

But x — [—2)* has a real value only when x is an integer, so (—2), x € R
is not a function.

However, for any value of a > 0, x +—a*, x € R is a function.
The function f{x) = a*, x € R is called an exponential function.

For all values of a > 0, a* = 0, therefore the range of f(x] = a*, x E R
is flx) =0

The curvey = a*

The family of curves whose equations are y = a* go through a point that
is common to all of them: when x = 0, a° = 1, i.e. they all go through the

point (0, 1).
Whena=1,y=1 =1

When a > 1, and x > 0, a* increases as x increases
A2 n3 710
le.g. 22, 23, .., 210 )

and when x < 0, a* decreases as x decreases
(e.g. 272, 273, 2710 ) but never reaches 0,

i.e. asx — —oo, @ — 0

When a < 1, the opposite happens: as x — —o, a* increases
1y—-2 1V\—-5 _ AH-
leg ()2 =4, .. ()" =32.)
asx — @, a*— 0

This graph shows the curve v = a* for some different values of x.

The inverse of the function f(x) = a*
The function f(x} = a* is a one-to-one function, so it has an inverse.

If y = a* where f(x) = 4*, we obtain the graph of y = {!{x) by reflecting
y = a* in the liney = x

We can obtain the equation of this reflected curve by interchanging x and
y, so the equation of y = f~!(x] is given by x = a'. Taking logarithms to
base a, we getlog,x =y, ie.y = log,x

Therefore when f(x) = a*, f!{x] = log, x
The function log, x has domain x > 0.
(The range of a function is the domain of the inverse function.)

The function f:x — log, x, x > 0, x € R is called a logarithmic
function and it is the inverse of f: x> a*, x ER

The graph shows the curves with equations y = a* and y = log, x
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The functions e and Inx
Whena = e,

f(x) = e*, x € R is called the exponential function and
fix) = Inx, x > 0, x € R is called the logarithmic function.

The logarithmic function is the inverse of the exponential
function and vice versa.

The graph shows the curvesy = e“ andy = Inx

VA
]

1
1

8_

6_

RS
—

Note that the x-axis is an asymptote to the curve y = ¢
and the y-axis is an asymptote to the curve y = Inx

These sketches show some simple variations of the graph of y = e*

Example
Vi iy Ya
Givenflx) =e* + 1, x e R,

o -y ¥ O — % | find f[x).
0, =1
y = —e L [ ! Wheny = e¥* + 1,
Y=gt Y=g interchanging x and y gives
[0,11\ x=e¥+1
O > —e=x-1

= 3y =In{x — 1)
Therefore f!{x] = %]_n[x — 1),

Exercise 1.20 x>1,xeR.

1 On the same set of axes, sketch the graphs of
y=1l+e,y=1—-¢e,y=1—-¢e*

2 On the same set of axes, sketch the graphs of
y=1l—-Inx,y=Inhx—1,y=In(x— 1)

Givenflx) =1 — e, x € R, find £ !(4).
4 Givenflx) =1 - 2Inx, find f12).




1.21

Modulus functions

Learning outcomes

m To define the modulus function

and its properties

You needto know

m How to sketch simple curves

m Algebraic methods for solving

inequalities

—x—y

Xx+y

Bl

=X

The modulus of x

The modulus of x is written as |x| and it
means the positive value of x whether or
not x itself is positive or negative,

eg |2] =2and |-2| =2

Hence the graph of y = |x| can be found y=x
from the graph of y = x by changing the
part of the graph for which y is negative
to the equivalent positive values, i.e. by
reflecting the part of the graph where y is a
negative in the x-axis.

Hence we define the function f:x — |x|,

x| =xfor=0 y = |x|

Re IXI=Xf0rX<O}XER >
o X

The properties of |x|

|x| is always positive or zero, so we can write

|x| = the positive square root of x?, i.e. |x| = vVx?

Now for any two real numbers x and y,

|x| =xforx=0and |x| = —xforx < 0, and |y| =y fory = 0 and

ly| = —yfory <0

If |x| = |y| then x = =y so x* = y? and conversely if x* = y?, then

x = tyso x| = |y],

ie. x| = |y| x> =y>

It follows that |x| < |y| & x2 <y?

Nowx? <y?=x>—y><0

=[x —yllx+y) <0 x<-y|-y<x<y x>y

k-y)| - - |+

[x +y) = + +

The table shows that x> < y*when —y <x <y,
ie. x| < |yl e —y<x<y
The last property is |x + y| = |x| + |y|
We can illustrate this on a diagram.

The modulus of a number is equal to the distance of the point
representing that number from zero, shown here as the vertical line.

The diagram shows that

when x and y are both positive or both negative, |x+y| = |x| + |y|

but when one is positive and the other is negative, |x +y| < |x| + |y|,
so |x+y|=|x| + |yl



The modulus of a function

The graph of any curve whose equation is y = |f{x]| can be found from
the curve C with equation y = f{x), by reflecting in the x-axis the parts of

C for which f(x] is negative. The remaining sections are not changed.

For example, to sketch y = |{x — 1){x — 2]| we start by sketching the

curve y = (x — 1){x — 2)

We then reflect in the x-axis the part of this curve which is below the x-axis.

yl

y= |- 1)x-2)|

i YJL
\ /MM \
o I~ % o 1 3 %
For any function {, the mapping x — |f{x]| is also a function.
Example y4
Sketch the graph of

y=|1 —éx| and write
the equations in
non-modulus form of
each part on the sketch.

Start with a sketch of
y=1- %X, then reflect the
part below the x-axis in
the x-axis.

Example
Sketch the graph of y = 2 + |x? — 4|

positive direction of the y-axis.

| yll

Start with y = |x2 — 4|, then translate the curve by 2 units in the

| | | | ] [ vA
\ — 11t / i \\ 10
N / ;
N e
\\/ N / \WAN
44 | q2 | O g % (2| 200 E
T 7 ",o 9
I Z —

Exercise 1.21

Sketch the graphs of:

1
1 y=1+|x—-1] 2 y=|m| 3 y=|x—1)x+ 1){x—2)]

Section 1 Basic algebra and functions



1.22 Modulus equations and inequalities

Learning outcomes

m To solve modulus equations and
inequalities

You needto know

m How to sketch the graph of
y = |fx]|

m How to solve linear and
quadratic equations

How to solve inequalities

The properties of modulus
functions

Intersection

To find the points of intersection between two graphs, we need to solve
the equations of the graphs simultaneously. When those equations
involve a modulus, a sketch helps to identify those equations in non-
modulus form.

For example, to find the values
of x where the graph of

y = |x + 2| intersects the
graphy = |1 — 2x|, we draw
a sketch and write on it the
equations of each section in

non-modulus form. —=M5 -‘0‘5

y=1-2x yA y=—{1-2x

V=[x +2|

y=—[x+2|

"

There are two points of N
intersection, one where ’
—(1—-2x)=x+2 =2x=3

and onewhere 1 — 2x =x + 2 =>X=—%

Alternatively, using the property that |x| = |y| < x*> = yX
[x +2] =1 - 2x| = (x+ 22 =1 - 2x)?
XX+ 4x+4=4x>—4x+1
= 3x2-8x—-3=0
= (3x+ 1){x—3)=0

X= —é or x =3
Check:
whenx = —1, |x + 2| = 12and |1 — 2x| = 13, sox = —1 is a solution

3, |[x+ 2] =5and |1 - 2x| = 5, sox = 3 is also a solution.

when x

It is essential that the values of x found using this method are checked
because squaring can sometimes give values of x that are not solutions.

Solving equations involving modulus signs

We can solve an equation such as |2x — 1| = 3x by sketching graphs as
illustrated above, or by using the following fact:

when |f(x)| = g[x) then f(x) = g[x) and —f(x) = g(x)
Example
Solve the equation |2x — 1| = 3x
2x — 1 = 3xgivesx = —1 and —(2x — 1) = 3x gives x =é
Check:
whenx=—1,|2x — 1| = 3 and 3x = —3, sox = —1 is not a solution
whenx =1, |2x — 1| = 2 and 3x = £, so x = 1 is a solution.

Therefore x =  is the only solution.
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Example
. 1
Solve the equation x + 2 = |X_3
From the sketch, x+2 = |Xi 3| where
=l N S
X+27X_3 = x—x—7=0

= x=23.19(3sf) y= —e

X bl ==t gty 5=
x—3

= x=2.79 or —1.79 (3 s.f)

(the sketch shows that we only want the positive root) 0
and where

Solving inequalities involving modulus signs

Simple inequalities can be solved from a sketch of the graphs.
VA

V=X —a
y=-(x—a

N

O b+a

=Y

a

For example, the sketch shows that the inequality |x — a| < b is true for
a—-b<x<a+b

Otherwise the method used is the same as for equations.

y=-3-x

Example r=3-x ¥}
y=X

Solve the inequality |3 — x| < |x|

y=—x
From the sketch, |3 — x| = |x| where 3 — x = x,
i.e. wherex = £ :
. 3 :
e |8 g x| forsas s 0 \% %

Exercise 1.22

1 Solve these equations: 2 Solve the following inequalities:

(@ |3x—2| =5 @ [2x—1]> |1 -x|
(b) 12— x| = |x] ClFss
(c) |[ex—2| =1 (¢) |Inx| >x -1

|<|X+1|
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fin) = n3+ 2n
(a) Show that flk + 1) = flk) + 3(k2 + k + 1)

(b) Hence prove by induction that f{n) is divisible
by 3 for all positive integer values of n.

fin)=9" -1

(a) Show that flk + 1) = 9f(k] + 8

(b) Hence prove by induction that f(n) is divisible
by 8 for all positive integer values of n.

Prove by induction that n® — n is a multiple of 6
for all positive integer values of n.

p and g are propositions.

Construct a truth table to show the truth values
of ~p —qgandp\/q

Hence determine whether ~p — g and p \/ g are
equivalent statements.

p and g are propositions.

(a) Write down the contrapositive of ~p — ~q

(b) Use the algebra of propositions to show that
~p—pA~ql=q—p

(a) Sketch the graphs of
y=x+landy= |%|
on the same diagram. Show the coordinates
of the points where the graphs intersect.

(b) Find the range of values of x for which

X+l<|l|
X

Prove by induction that

12r08 cga e +n2=%[n+ 1)(2n + 1)
The binary operation * is defined by
x'y=x*+y

forallx and y € R.

State with reasons whether the operation * is:
(a) closed (b) commutative.

flx) = 2x3 + 5% + px + q.

When {(x) is divided by (x + 2] the remainder
18— L)

One root of the equation f{x) = 0 is %

(a) Find the values of p and g.

(b) Factorise f{x) and hence state the number of
real roots of the equation f(x) = 0

10

1

12

13

15

16

17

18

19

20

Practice questions

(a) Solve the equation e¥ — 4e > — 3 =0

(b) Find the values of x for which
log,x — 2log,2 =1

(x + 1) and (x — 2) are factors of
X =Dty N Gy = 10

(a) Find the values of p and .

(b) Hence solve the equation
xt Eooxs bt e 10 =)

Given thaty = }iz 1 for all real values of x, find

X
the range of values of y.

18 — 1
a) Simplify =2 — ~
(a) pb€§+3

(b) Given that x = 53 find the value of log, 5.

Find the range of values of x for which

Xl
L +Bx+6 L
_ Xx
(a) Sketch the graph ofy = S
(b) On a separate diagram sketch the graph of
|
V=lx+1l
: -2z
(c) Solve the equation x = = =i

The binary operation * is defined by
x*y=x>—yrforx, yER.

Explain with reasons whether the operation is:
(a) closed

(b) associative

(c) distributive over multiplication

(d) such that x has an inverse.

(a) Sketch the graphofy =2 — |1 — x2|
(b) Solve the inequality |lnx| =2

Given f(x] = 2 — Inx, sketch the graph of:

@) vy = fx]
(b) y=t"x]
Solve the equation 6~ ' = 5(3> *1}

flx) = (x — 1)* forx € R and

glx) = [;_l—l]for x#0,xeR.

(a) Find fg(x) and gf(x].

(b) Explain why g(x) has an inverse but f(x) does
not.
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22

23

24

25

26

27

(c) Find g 'f{x).
(d) Define a domain for the function h where
h(x) = (x — 1)* so that h ! exists.

The function f is given by

£={{2, 3), {3, 2), {4, 4), (1, 2)}

(a) Show that f is onto but not one-to-one.

(b) Suggest a change to one of the ordered pairs
of f to give a function g such that g is both
onto and one-to-one.

(c) Using your definition of g, give g~ ! as a set of
ordered pairs.

Find the relationship between a and b such that
the line x + ay + b = 0 is a tangent to the curve
y=92x +tx— 4

Hence find the coordinates of the point where the
tangent with gradient 1 touches the curve.

Find the maximum value of k for which
X—zﬁ p=k= (et 1
for all real values of x.

Given that x> + 1 is a factor of
s e = B dR

find the other factor and hence factorise
x* + 3x% + x* + 3x + 2 completely.

On the same diagram, sketch the following
curves:

Pl r=x vy 1 y—x +1,
for—2<x<?2

() y=Inx,y=1+1Inx,y=1—Inx,
for0<x<?2

) y=¢,y=3¢,y=e* for—2<x<2

The roots of the equation

X3 —5x2+6x+3=0

are o, B and v.

Find the equation whose roots are « — 1, B — 1
and y — 1.

Factorise completely:
(@) 81x*— 16
(b) la+b)—>b

28

29

30

31

32

33

34

35

36

Section 1 Practice questions

The function f is defined by

Fo) = e )
4-—x,x>4

(a) Find ff(2),

(b) Explain why f does not have an inverse.

for x € R.

Show that e'** = x,

Hence find, in terms of e, the value of
e[ln(a + 2In3 — In 13)

Find the range of f where f is defined by

fx) = =X~ forallx €R
{x) = 7o foralx €R.
Hence sketch the curve whose equation is

y = f(x)

p and g are propositions.
Draw a truth table for ~p \/ q.

(a) Give a counter example to show that the
following statement is false.
The sum of any two prime numbers is an
even number.

(b) Prove that if n is any integer, n® + n is an
even integer.

x—\y x+)y
Simplify ”IX e UZ
X m Xy

Find the conditions satisfied by a and b such that
(x — 2) is a factor of (x — a)(x? — 3b + 2b?

Solve the inequality |x* — 16| < 1.

The function f is defined by
f[X]:{X2+2, ¥ =)
pe =t S =< R
(a) Sketch the graph of y = f(x).
(b) Find (i) f{O) (ii) f{—2)
() glx)=x2—3x— 10
Find the points of intersection of the curves
y=f(x}] and y = g[x].



21 Sine, cosine and tangent functions

Learning outcomes The definition of an angle

. To reVise cich lar measure Whﬁn a 11116 rotates .E['Om ].tS mlt].a.]. pOSi.ti.On OPQ about thﬁ ﬁ.‘xﬁd pol.nt O

W b st . to any other position OP the amount of rotation is measured by the angle
To revise the sine, cosine and between OP, and OP.

tangent functions
When the rotation is anticlockwise, the angle is positive, and when the
rotation is clockwise, the angle is negative,

You need to know i.e. a negative angle represents a clockwise rotation.

2 s The rotation of OP can be more than one revolution.
B Thesine, cosine and tangent

of an angle in a right-angled P P
triangle
B The exact values of the sine,
cosine and tangent of 30°, 45° A
and 60° (0] PO (o] W Pa PO
B How to use transformations
of curves to help with curve
sketching

The radian

r Degrees and revolutions are two units used to measure angle. The radian
! [sometimes called circular measure) is another unit used to measure

angles.

One radian is the angle subtended at the centre of a circle
by an arc equal in length to the radius of the circle.
The circumference of a circle is 2ar so the number of radians in one
revolution is ZTM = 27 Therefore 2arrad = 360°.

The diagrams show some other angles measured in radians.

5 Ll N

The sine, cosine and tangent functions

When OP is drawn on x- and y-axes, where OP = 1 unit and the

coordinates of P are (x, y], then the sine, cosine and tangent functions are
1 defined as:

Plx, v]

X

cosﬁ=T and tan8=£ foroeR

sing =1,
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The sine function

Measuring 6 in radians, for0 < < %, OP is in the first quadrant, y is

BiI8

positive and increases in value from 0 to 1 as # increases from 0 to 3

Therefore sin # increases from 0 to 1.

For % = g =< 7, OP is in the second quadrant, y is positive and decreases

in value from 1 to 0 as 6 increases from % to .

Therefore sin 6 decreases from 1 to 0.

L OP is in the third quadrant, y is negative and decreases

9+
in value from 0 to —1 as 6 increases from w to 3'2—11-

Form=0=

Therefore sin 6 decreases from 0 to —1.

For 37” =< ¢ = 27, OP is in the fourth quadrant, y is negative and

7 7 ; 3w
increases in value from —1 to 0 as 6 increases from 5 to 2T,

Therefore sin 6 increases from -1 to 0.

v
V4 VA Vi
P(x, y) Pzl e ot
; 0\ /8] N
} y y 1 R CE S *
9; . = 9\ . v : ¥
5} ¥ O X
Plx, y Plx, y)
This shows that sin 6 is positive for 0 < # < 7 and negative for 7 =< 0 < 2w
and sin 6 varies in value between —1 and 1. The pattern repeats itself as
OP moves round the quadrants again.
As OP rotates clockwise, sin 6 decreases from 0 to —1, then increases
from —1 to 0, and so on. The graph of f{6) = sin 6 shows these properties:
sin (A
H
N\ /.
_l-
This graph also shows that, for any angle @, sin|{—60) = —sin 6
The cosine function
For any value of 6, cos 6 = %
P(x, y) Plx, y) 4
P x [ |6\ - /0 -
5" R 6\
X " X ” &
1
P(x, y) Plx, y)
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Y

As OP moves round the quadrants, cos 0 decreases from 1 to 0, and then
decreases again to — 1, then increases to 0 and in the fourth quadrant
increases again to 1. So cos 8, like sin 6, varies in value between —1 and 1.

The graph of y = cos 6 looks like this:

cos B4

The curve is symmetrical about the vertical axis, showing that

cos|{—0) = cos @

Comparing the curves for cos 6 and sin 6, we see that when we translate
the cosine curve by % in the positive direction of the horizontal axis,

we get the sine curve, i.e. sin § = cos (9 == %r)

The tangent function

For any value of 4, tan 6 = ;—]

As OP rotates through the first quadrant, x decreases from 1 to 0 and

y increases from O to 1. Therefore the fraction i{ increases from 0 to very
large values, and as 8 — %, tan § —

The behaviour of ;—} in the other quadrants shows that in the second

quadrant tan 0 is negative and increases from — to 0, in the

third quadrant tan 6 is positive and increases from 0 to =, and in the
fourth quadrant tan 6 is negative and increases from —oe to 0

The cycle then repeats itself.

Therefore the graph of f{6) = tan 6 looks like this:
. tan 6a

e -7 [‘I fn ??

Properties of the sine, cosine and tangent functions

The graphs of the sine, cosine and tangent functions show that:

Forfl9) = sinf, 0 ER —1<sind=<1
sin{—@) = —sin#
sin 0 is continuous (i.e. has no breaks) and has a pattern that
repeats every 2w rad
Forf(f) = cosf #ER —1<cosf=1
cos(—#6) = cos 6

cos  is continuous (i.e. has no breaks) and has a pattern that
repeats every 2wrad
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Forf{f) = tan#, 6 € R  the range is unlimited
tan (—6) = —tan @

tan 0is undefined when 9 = ... - Z & 3w

j, E’ 2 e
and has a pattern that repeats every wrad.

Example
Find exact values for: (a) sin 5311- (b) cos 537'- (c) tan 5311-
(a) From the sketch, (b) From the sketch, (c) From the sketch,
5 tan%”: = tan% = —/3

Example

Sketch the graphs of the following functions for values of @ in the range 0 = 6 =< 2. In each case give the
maximum value of the function.

(a) £6) = sin26 (b) £6) =2 — 3cos B (c) £6) = 2sin (g— g)
(a) Comparing y = sin26 with  (b) Start with y = cos ¢, then (c) Start withy = g,m {t,hu, is sin @
y = flax) shows that reflect the curve in the

stretched by a faLtor of 2 parallel

y = sin 26 is compressed by horizontal axis, stretch this to the horizontal axis) then

a factor of 2 parallel to the curve by a factor of 3 parallel ; - coin

) : . ) translate by ar in the positive

horizontal axis. Therefore to the vertical axis and then N : -
- - —_— 1 Hi I direction of the horizontal axis,
;,111 gues L rolélgh l;wo Lgt' £ trantis] et _F’: LluW_P" Y2 UnltS  and las tly stretch by a factor of 2
or every one cycle of sin 6. up the vertical axis. paralle] toithevertical axis.

£{6) & 1(6)a t(6)

f{#) = sin 20

o /\ |

£(6) = 2 — 3 cos@ i fl6) = 2sin (16 — 1)

s \/ \]" GO i G
—0.51 o] &3 ERY
—t l_ _4_
The maximum value is 1. The maximum value is 5. The maximum value is 2.

Exercise 2.1

1 Find exact values for: (a) coq( 5;) (b) tan (%T) (c) sin (9—;)

2 Sketch the graphs of the following functions for values of # in the range 0 = 60 < 27
(a) f{6) = tan26  (b) f{6) = 2 — cos O (c) f(6) = s'm(9+ %)

3 Write down the maximum and minimum values of each function.
(a) 5cos(20 — 7} (b) 5+ cos26 (c) - 2sing




2.2  Reciprocal trig functions

Learning outcomes

m To define and use the reciprocal
trigonometric functions

You needto know

B The properties and graphs of
the sine, cosine and tangent
functions

The reciprocal trigonometric functions

The reciprocals of the three main trigonometric (trig) functions have their
OWN names:

1 _ 1 _ 1
Smﬁ—cosecﬁ cosﬁ_secg tan 6

= cotf

where cosec is the abbreviation of cosecant, sec is the abbreviation for
secant and cot is the abbreviation for cotangent.

The cosecant function
The graph of f{6) = cosec 8 is given below.
(o) 4

Il ¥

sin @

The graph shows that:

B the cosec function is not continuous; it is undefined when 6 is any
multiple of 7 (this is to be expected because these are the values of 6

where sin # = 0 and % is undefined)

B the cosec function takes all real values except for values between —1
and 1.

The secant function

The graph of f{6) = sec 0, shown below, is similar to the graph for cosec 6.
6)

fl6) = cos @

[,

NZE N7

The properties of the secant function are similar to those of the cosecant
function:
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B it is not continuous; it is undefined when 0 is any odd multiple of %

B it takes all real values except for values between —1 and 1.

The cotangent function

The graph of f{6) = cot 6 is given below.
(6)

f(#) = tan #

The properties of the cotangent function are similar to those of the
tangent function:

B it is undefined when 6 is any multiple of =
B it takes all real values.
From the graph we can see that the curve for cot 6 is the reflection of the

curve for tan ¢ in the x-axis, and it is translated by % in the direction of
the negative x-axis.

Therefore cot § = tan (—6 + 1—;] = tan [% — 0
Example cos 64
Find, in radians, the smallest value of 6 for which sec = -2 1
1
1
_ 1 1
ROER" i B
2

From the sketch, the required value of @ is?

Example cos By,
Find the exact value of cosec%
cosecﬁ =1
6 Si_l‘l:%
From the sketch, sin% = —%
coqecﬁ = -2
; 6

Exercise 2.2

1 Find the exact value of: (a) cot% (b) sec% () cosec%ﬂ

2 Find, in radians, the smallest value of x for which:
(a) cotx =—1 (b) secx = — % (c) cosecx = —1
y




2.3

Learning outcomes

M To derive and use the
Pythagorean identities

You needto know

B The definitions of the sine, cosine
and tangent functions

B The definitions of the reciprocal
trig functions

Pythagoras’ theorem

B How to solve a quadratic
equation

Pythagorean identities

The relationship between the sine, cosine and tangent
of any angle

Vi
Pryl |
’. o T %
For any angle 6, we know that sin g = T eosf=2 tang="Y
! ’ op’ 0] X
ang_. 3 Y
But 2= o5/ OF = x
i.e. for all values of 0, tan 0 = sind [1]
cos 6

Using the reciprocal functions, this identity can be written as

_ cos0
€0L0=Sing
The Pythagorean identities
by
B [ R

Plx, y) ~~-o .-

For any angle 6, a right-angled triangle can be drawn in which x* + y* = OP?

Dividing by OP? gives (OLf p (&)2 -1

ie. cos?@® + sin’0 =1 2]
(cos? # means (cos #)2, etc.)

We can use these identities to produce further identities.

sin®g _ 1
cos’6  cos@

Dividing cos?6 + sin? 8 = 1 by cos?6 gives 1 +

then using tan 6 = 2$ g gives 1+ tan20 = sec2® [3]
5 r oo €080 __1
Dividing cos? 6 + sin? 6 = 1 by sin? 0 gives S 0 + 1= s’ o
cos @

then using cot § = “SAD gives cot’ @ + 1 = cosec? 0 [4]

These identities can also be used to solve some trig equations.
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Example
Solve the equation 2cos’x — sinx = 1 for 0 = x< 2w
Using [2] gives cos’x = 1 — sin?>x so 2cos?x — sinx = 1 becomes
2(1 — sin’x) — sinx =1 .
f{x)4
= 2sin’x +sinx—1 =0 1
Thisis a quadratic equation in sinx

(2sinx —1)(sinx + 1 =0 0 {
= sinx = %or sinx = —1 \/
_l-
5

These identities can be used to prove the validity of some other identities.

e

Example
Prove that (1 — cosA)(]1 + secA) = sinAtanA

This identity has yet to be proved so do not use the complete identity in your
working. Work separately on the left-hand side (LHS) and the right-hand side (RHS).

LHS = (1 — cosA)[1 + secA) =1 — cosA + secA — cosAsecA

=1 —cosA + secA — cosA
cosA
= secA — cosA
1 —cos?A _ sin?A GAA sinA
~ cosA  cosA cosA

sinAtanA = RHS
(1 — cosA)(l + secA) =sinAtanA

These identities can also be used to eliminate trig ratios from a set of
equations.

Example

Eliminate @ from the equations x = 3sinfandy = 2sec

x = 3sinf = sinf):% and y = 2secf = cosf):%
%]2 + 6)2 =1 Usingcos?f +sin?@=1

Exercise 2.3

1 Solve the equation sec’x + tan’x = 3 for0 =sx < 27

; o sinx _ 3cosx
2 Simplify cosx  sinx

3 Eliminate 8 from the equations x = 4tan 6 and y = 2cos 6

4 Prove the identity tan A + cotA = sec A cosecA




2.4 Compound angle formulae

Learning outcomes

M To derive and use identities for
sin(A = B), cos (A = B) and
tan (A = B)

You needto know

B The cosine formula
B Pythagoras' theorem

B The properties of the
trigonometric functions

The identity cos (A — B) = cos A cosB + sinAsinB

Trigonometric functions are not distributive,
i.e. cos|{A — B) is NOT equal to cosA — cosB

We can derive the correct identity for cos (A — B) using the diagram
below, which shows a circle of radius 1 unit centre O.

We find the length of PQ using two different methods and then equate
the two results.

V4
P
e i \Q
! o :
4\
N 0 M X

Using the cosine formula in AOPQ gives
PQ? =12+ 12— 2cos|{A — B)
=2 — 2cos|A — B)

From the diagram
OM =cosB and ON= —cosA so QS = |—cosA + cosB]
QM =sinB and PN =sinA so PS = [sinA — sinB]

Using Pythagoras’ theorem in APQS gives
PQ? = |—cosA + cosBJ? + (sinA — sinB)?
= c0s*A + cos’B — 2cosAcosB + sin’?A + sin’B — 2sinAsinB

2 — 2{cosAcosB + sinA sin B)

Equating the two expressions for PQ? gives
2 — 2cos(A — B) = 2 — 2(cosAcosB + sinAsinB)
= c0s (A — B) = cosAcosB + sinAsin B

The angles A and B can be any size and the proof is similar. Therefore the
identity is true for all angles.
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Compound angle identities

The identity derived above is one of the compound angle identities and
we can use it to derive others.

cos|{A — B) = cosAcosB + sinAsinB [1]
Replacing B by —B in [1], cos (A + B) = cosAcos |—B) + sinAsin|{—B)
= cosAcosB — sinAsinB [2]

Replacing A by 1—21' — A in [1] gives

cos(%— (A + B])

cos(,E—A)cosB + sin(_ﬂ—A)s'mB

2 i)
= sin{A + B) = sinAcosB — cos AsinB [3]
Replacing B by — B in [3], sin{A — B) = sin A cos (—B) + sinA cos (—B)
= sinAcosB — cos AsinB (4]

sin{A + B) _ sinAcosB + cosAsinB

Dividing [1] by [3] gives cos[A + B] cosAcosB — sinAsinB

sinAcosB cosAsin B
cosAcosB  cosAcosB

TnA T HES cosAcosB  sinAsinB
cosAcosB cosAcosB
_ tanA —tanB
e ~ 1 —tanAtanB [5]
Replacing B by —B in [5] gives
tan|A — B} = tanA —tanB 6]

1 +tanAtanB

You need to learn these identities and be able to
recognise either side.

Collecting the identities together gives

sin (A + B) = sinA cosB + cosAsinB
sin(A — B) = sinAcosB — cosAsinB
cos (A + B) = cosAcosB — sinAsinB

cos(A — B) = cosAcosB + sinAsinB

_ tanA + tanB
tanA +B) = 1 —tanAtanB
_ tanA —tanB
tan (A — B) = 1+ tanAtanB



Section 2 Trigonometry, geometry and vectors

[/] Examtip

Using compound angle identities

These identities can be used to prove further identities.

The range is given in radians so the
answer must be given in radians.

Example
Prove that sin [A + o) + sin (A — @1} = —2sinA
LHS =sinAcos 7+ cosAsina + sinAcosa — cosAsinm

2sinA cos 7

cosm= —1

Therefore LHS = —2sinA = RHS

These identities can be used to solve equations.

Example

Solve the equation cos 6 = sin (9 = %r ) for values of @ in the range
O=f6=m

i _m
cos § = sin (9 3 )

4 T . T
= gin # cos— — cos # sin -

3 3
s V3
= Esu;_ﬂ— Tmsf)
V3 s
(l + 7) cos = 5sinf

= (2 + /3)cosf =sin@
= tanf=2+3

#=1.31rad (3 s.f)

The identities can be used to find exact values of some trig ratios.

Example
Find the exact value of sin 15°.

sin 15° = sin (45° — 30°] = sin45° cos 30° — cos 45°sin 30°

A e

B 2 a2
_V3 1

W2 W2
_ V6 — V2
-1

They can be used to simplify expressions.

Example
Simplify cos 6 cos 20 + sin 6 sin 2.6

This is the RHS of [2] with A= fand B = 20

cos 0 cos 26 + sin # sin 26 = cos (8 — 26)
= cos [—¥0)
=cos
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These identities can also be used to eliminate an angle from two equations.

Example

Eliminate @ from the equations x = sin (9 + %‘

X = s'm(f)-l— %)

. T o
311_119 cosz—; cos 951111
?Si_l‘l9+ —,_COSB

V2 V2

= l_sinf)—l— L_y

V2 V2

x(v2 — y) =sin 6

Then, using sin? 6+ cos? 8= 1 gives
/2 —y)2 +y2 =1
= 2x2 + 2 — 2xy/2 = 1

]andyz cos 6

Exercise 2.4

1 Find the exact value of;
(a) sin 75°
(b) sin 50°cos 40° + cos 50°sin 40°

2 Prove that:

(a) cot{A + B) = SotAcotB — 1

cotA + cotB
(b) sin (60° + 6) = sin (120° — 6)

3 Simplify:
(a) sin fcos36 + cos #sin 30

(b)

tanP — tan 3P
1 + tan Ptan 3P

4 Solve the equationsfor0=60=< 7

(a) cos (9 + %) = ging

(b) cos (% — 9) = sinf

5 Eliminate # from the equations

1—T) andy = 2tan 6

X=4t£m(9— 1

6 Given thatsina = %, find the exact value of:

(a) sin (a + %)

(b) tan (a 4 g)




2.5 Double angle identities

Learning outcomes

M To derive and use identities for
trig ratios of multiple angles

You needto know

B The compound angle identities

Double angle identities

The compound angle identities are true for any two angles, A and B, so
they can be used for two equal angles, i.e. when B=A

Replacing B by A in the compound angle formulae gives

sin2A = 2sinA cosA
cos 2A = cos?A — sin?A

2tan A

tanZAE——————1 — GnlA

The identity for cos 24 can be expressed in other forms because

cos?A — sin?A = cos?A — 1 — cos?A) = 2cos?A — 1

and
cos?A — sin?A = (1 — sin?A) — sin?A = 1 — 2sin?4
Therefore ot — SinZA
cos2A =1{ 2cos2A -1
1 — 2sin?A

The last two identities above can be rearranged as

COs?A = %{1 + cos 2A)
sin’A = %{1 — cos2A)
You also need to learn all the double angle identities including all the

alternative identities involving cos 2A. The identities in this set are
some of the most useful for simplifying trigonometric expressions.

As with the previous identities, they can be used in a variety of problems.
The following examples illustrate some of their uses.

Example
Given that 6 is an acute angle and that sin = %, find the value of :

(a) cos 38 (b) tan26

Given f is acute and sinf = % then cos 6 = % and tan 6 = g

(a) cos30 =cos (26 + 6) = cos26 cosf — sin26 sin
Using a compound angle identity

=(2cos?0 — 1)cos® — 2sin’@ cos 0

_ 416} _ 4 9 4__ 44
_[2(25) 1}’(5 2R 95N E 125

 2tanf® _ 2X3 o4
(b) tan26 = T—tanl®

;|-<D o
~J
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Example

Solve the equation cos2x + 3sinx =2for0s=x s 7

COoRRRT BNRR=2 Using the identity cos 2x =1 — 2sin?x

= (1 — 2sin’x) + 3sinx = 2 so that the equation contains only
. . terms in sinx
= 2sin’x — 3sinx+ 1 =0
= (2sinx — 1){sinx — 1) =0
= sinx=1orl,sox="2 s T
E 3 s 6: 6 ’

Example

Prove the identity sin3x = 3sinx — 4sin®x

LHS = sin3x

sin (2x + x)

sin 2x cosx + cos 2x sinx

= 2sinx cosxcosx + (1 — 2sin’x)sinx

=2sinx(l — sin?x) + sinx — 2sinx
= 3sinx — 4sin®x = RHS

Therefore sin 3x = 3 sinx — 4sin’x

The identity for sin 3x is worth remembering.

Note that we used a compound angle identity and a Pythagorean identity
as well as a double angle identity in this proof.

Example

Eliminate @ from the equations x = cos 26 and y = cosec 0

_ 1 _ 1 _ )
Y=gy and x =1— 2sin’@

le—)%:- Vil —x) =2

Exercise 2.5

12

13 and that @ is acute, find the exact value of:

1 Given that cos 8 =
(a) sin26

(b) cosg (Hint: use a double angle identity with A = g)

) ) _ 1 —tan’A
2 Prove the identity cos2A = I FhdntA

3 Solve the equation tanxtan2x =2 for0 = x < 7

4 Eliminate t from the equations x = cos2t and y = sec 4t




2.6 Factor formulae

Learning outcomes

B To derive and use the factor
formulae identities

You needto know

B The properties of the trig
functions

B The compound angle identities

/] Exam tip

Identities [4] and [8] involve a minus
sign, so take care when using these.

The factor formulae

The identities in this set are called the factor formulae because they
convert expressions such as sinA + sin B into a product.

Starting with the compound angle formulae

sinAcosB + cosAsinB = sin (A + B)

sin Acos B — cosAsinB = sin(A — B)
adding gives 2sinA cosB =sin (A + B) + sin (A — B) [1]
subtracting gives 2 cosAsinB = sin(A + B) — sin (A — B) 2]
Now, using the other two compound angle formulae

cosAcosB — sinAsinB = cos (A + B

cosAcosB + sinAsinB = cos|A — B)
adding gives 2 cosA cosB = cos (A + B) + cos (A — B) [3]
subtracting gives —2sinAsinB = cos (A + B) — cos (A — B) (4]

The right-hand side of each of these formulae can be simplified by the
following substitutions.

P=A+B } {A=%EP+Q1
EY

Q=A-B B=3P—-Q)
Then sinP + sinQ = 2sin %{P + Q) cos %{P - Q) [5]
sinP — sinQ = 2 cos é{}_’ + Q) sin%{P - Q) [6]
cosP + cosQ = ZCDS%{P + Q) cos%{l’ -Q) [71
cosP —cosQ = -2 sin%{P + Q) sin%{}_’ - Q) [8]

You may find it easier to remember the last group using words.
For example,

sum of sines = twice sine (half sum) X cosine (half difference)
The first group, [1]-[4], is used when we want to express a product as a
sum or difference. For example, using [1]

sin 5x cos 3x = %[sin 4x + sinx)

The second group, [5]-[8], is used when we want to express a sum or
difference as a product. For example, using [5]

sin 5x + sindx = 2sin4xcosx

As well as being useful for solving some trig equations and proving some
identities, the factor formulae are particularly useful for certain types of
calculus problems which we will consider in Section 3.
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Example
p h cos2x —cosly -
rove that =7 Sy tan(y — x|
_cos2x —cos2y —2sin{x +ylsin(x —y]

LHS = s + sinly  2sin(x + y)cos(x — y) Using [] and [3]
_ —sin{x —y)
"~ coslx —v)
_ sin{y — x] Using sinA = —sin (—A)
"~ cos(y — x| and cos A = cos(—A)
= tan(y — x) = RHS

cos 2x — cos 2y

DTN e A

Example

Solve the equation cos 2x + cosdx = 0for 0 = x = 27w

cos2x + cosdx = 0
= 2cos3x cosx =0  Using[7]

= cos3x =0 orcosx =0

; = —m 37w Sm 7w 9m 11w
either cos3x=0 = 3X—2, R R R )

For values of x between 0 and 2, we need values of 3x between 0 and 67,
i.e.in 3 times the range forx

FEEUWE G R 6
_ =T 37
or cosx=0 =>X—201' )
a7 a7 57 7w 37 117

"X=266 2 6

This example includes a special case of an equation of the form

cosax = b. To find values of x in a given range, we need to find values
of ax in a times that range.

The same is true for equations of the form sinax =b and tanax=>b

Exercise 2.6

1 Simplify sin (X + §) — sin (X = §)
2 Prove the identity sinA + sin2A + sin3A =sin2A (1 + 2cosA)

3 Solve the equation sin3x = sindx + sin2xfor0=x <7




2.7  The expressiona cos 6+ b sin 6

Learning outcomes

B Toexpressacos # + bsinfas
rsin/cos (6 * a)

You needto know

B The properties of the
trigonometric functions

B The compound angle formulae

The expression acos 6 + bsin 0

The expression acos 8 + bsin 6 can be reduced to a single term such as
rcos|(f — a)
We can find values for r and « by expanding rcos (6 — a) using a
compound angle identity,
ie. if rcos(6 — a) =acosf +bsin b

then r{cos@cosa + sinfsina)=acosf +bsind

Comparing the coefficients of cos # and sin 0 gives

rcosa=a |[1] and rsinae=b [2]
: sfa
[2]7[1]:-&1110—&

and [1]* + [2]* = r?{cos?a+sin’a)=a + b?
= r=va®+b* Usingcos’a+ sin?a =1

However, it is not sensible to rely on the formulae for r and «. You should
always use the method to work out the result.

For example, to express 4 cos § + 3 sin # as rcos (# — «), start with the
expansion of rcos (6 — «), which gives

r{cos f cos @ + sinf sina) = 4cos 6 + 3sin f
Comparing the coefficients of cos 6 and sin 6 givesrcosa = 4 and rsina = 3
Then tana = % andr=V32+ 4 =5

Therefore 4cosf + 3sinf = 5cos (6 — «) where tana =%
We can also express 4 cos @ + 3sin fas rsin (0 + a).

This time start with the expansion ofrsin (0 + «), which gives
r{sin® cosa + cos @ sina) = 4cos @ +3sind

Comparing the coefficients of cos # and sin 0 givesrcosa = 3 and rsina = 4

Then tana = % andr=V42+ 32 =5

Therefore 4cos @ + 3sin @ = 5sin (6 + «) where tan e = %

Exercise 2.7a

1 Express 5co0s 6 + 12sin 6 in the form:
(a) rcos(6 — a) (b) rsin (0 + a)

2 Express 7 cos # — 24 sin  in the form:
(a) rcos (6 + « (b) rsin (6 — «

Finding maximum and minimum values of
acos ) +bsin 6

To find the maximum and minimum values of an expression of the form
acos @ + b sin @ we express it as a single sine or cosine. We can then ‘read’
the maximum and minimum values.



Section 2 Trigonometry, geometry and vectors

For example, to find the maximum and minimum values of
3sinx — 2 cosx, we can express 3sinx — 2cosx as rsin|x — o

r(sinxcosa — cosxsina) = 3sinx — 2cosx
Comparing coefficients of sinx and cosx gives rcosa = 3 and r sina = 2

Therefore r =v22 + 32= /13 andtana = %

So 3sinx — 2cosx = /13 sin [x — @] We do not need to evaluate «
The maximum value of the sine of an angle is 1 and the minimum value

is —1, therefore the maximum value of 3sinx — 2cosx is V13 and the
minimum value is — 13.

To find the value of x at which the maximum and minimum values
occut, we do need to evaluate a:

tana = % = a = 0.588rad Make sure your calculator is in radian mode

sin (x — a) is maximum when (x — a) = % and minimum when
(x —a) = 3—;, i.e. whenx = %r + 0.588rad and x = 37?1- + 0.588rad
The equationacos 6 + bsinf =c¢

Expressing a cos # + bsin 0 as a single sine or cosine makes solving
equations of the form acos 8 + bsin 8 = ¢ straightforward.

For example, to solve cosx + /3 sinx = 1, for 0 < x = 2,
we can express cosx + 3 sinxas rcos [x — «),
ie. rcosxcosa+ rsinxsina = cosx + v3 sinx

= r2:4zmdtana:u”3_50a=%

cosx + V3 sinx = 1 becomes 2 cos (X— %) =1
_my_1
= cos(x 3) )
fx]p
7 1 HEIv X
2
_l_
To find values of x in the range 0 to 27 we need to find values ofx—%
i o w
Lntherzmge—gton—g,
Cm(X_ E):l:_x_ T oo T O
: 3 2 3 3" 3" 3
—n 27 .
x=0, 3,217

Exercise 2.7b

1 Express 3cosx — 4sinx in the form rcos (x + al.

Hence find the maximum and minimum values of 3cosx — 4sinx
and the values of x at which they occur in the range 0 = x = 27

2 Solve the equation cosx + sinx = V2 for 0 =x < 27




2.8 Trigonometric identities and equations

Learning outcomes

B To prove trigonometric identities

B To solve trigonometric equations
in a given range

You needto know

B The properties of the
trigonometric ratios

The important identities

In previous pages we have introduced some trigonometric identities one
group at a time.

We now collect them together:

cos?f +sin?f=1
1 + tan? @ = sec2 6

cot?@ + 1 = cosec? 9

sin (A + B) = sinAcosB + cosAsinB
sin{A — B) = sinA cosB — cosAsin B
cos A + B)= cosAcosB — sinAsinB

cos|A — B)= cosAcosB + sinAsinB

tanA + tan B
1 — tanAtanB
. oy tanA — tanB
tan(A — B) 1 + tanAtanB

tan(A + B) =

sin2A = 2sinAcosA

oA —  2tanA
tan2A = T —tailk
cos?A — sin?A
cos2A =14 2cos’A — 1
1 — 2sin?A

cos?A = %[1 + cos2A)

sinA = %[l — cos2A)

2sinAcosB =sin (A + B) + sin(A — B)
2 cosAsinB = sin (A + B) — sin(A — B)
2 cosAcosB = cos|A + B) + cos A — B)
—2sinAsin B = cos(A + B) — cos (A — B)

sinP + sinQ = Zsin%[P+ Q) cos%[P— Q)
sinP — sinQ = 2003%[P+ Q]sin%[P— Q)
cosP + cosQ = 2c03%[?+ Q]cns%[P—Q]

cosP —cosQ = —Zsin%[P—k Q) sin%[P -Q)



Section 2 Trigonometry, geometry and vectors

Proving trigonometric identities

To prove an identity, it is sensible to work on one side at a time.

The examples and exercises in the previous pages have all been associated
with a specific set of identities. In Exercise 2.8a you are asked to prove
mixed identities. Some guidelines on where to start are:

B work with the more complicated side

B convert all ratios to sine and cosine

B when a multiple angle is involved, start with that and break it down

to ratios of a single angle using the compound angle formulae for
odd multiples (e.g. sin 34), and the double angle formulae for even
multiples (e.g. sin 2A)

B use the factor formulae to express a product of ratios as a sum, or

vice versa.

The following example illustrates that it may be necessary to work on
both sides, but separately.

@ Exam tip

Remember that these points are only
guidelines, and practice will help you
develop strategies that work for you.

Example
Prove that sin 34 = (sin2A — sinA){1 + 2 cosA)

There are multiple angles on both sides, so we will start with the RHS and express that in terms of ratios of

the single angle A and simplify.
RHS: (sin2A — sinA)(1 + 2cosA)

(2sinAcosA — sinA)(l + 2cosA)

sinA(2cosA — 1){1 + 2cosA)

sinA(4cos*A — 1)

We now turn to the LHS and express that in terms of ratios of the single angle A.

LHS: sin 3A = sin2A cos A + cos2A sin A

= 2sinAcos?A + sinA(2cos?A— 1)
sinA (2 cos*A + 2costA — 1)
=sinA (4 cos’A — 1) = RHS
Therefore sin 3A = (sin2A — sinA|(1 + 2cosA)

This form for cos 24 is chosen because we have the factor

sin A and we want the other factor to involve cos A

Exercise 2.8a

Prove the following identities.

1
2
3

2 1+ cosA 27 cosec 6
(cotA + cosecA)? = =k 8 sec’f = Uihec sl
cot 2A + cosec 2A = cotA & oM By = cotAcotB — 1
cosA sin4A  _ . " cotA + cotB
+ = sinA + cosA
1 —tanA 1 —cotA . . .
9 10 sin36 + sin 56 _ sin 46
sin( 6 + %] = sm[?” — 0 sindf + sin 66  sin 50
1 — Co82A _ ;.4 11 cos3A = 4cos®A — 3cosA
sin2A4 sinB
c0s24 + c0s2B _ o1i4 4 Blcoria - B 12 tanlA + B) ~ tand = oo T R

COSX — Cosy

cos4x = Bcos*x — 8cos?x + 1 13 sinx + siny

ta_n%[x + v
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Solving trigonometric equations in a given range

Any of the trig identities, together with the transformation
acosx + bsinx = rsin/cos (x + «), can be used to help solve a trig
equation.

There are two general approaches to solving trig equations. First see
whether the equation will factorise, either in its given form or by using
an identity. If this is not possible {and it often is not), try to reduce the
equation to a form that involves only one trig ratio of one angle.

The tables that follow list most of the common categories of trig equations,
together with an appropriate method for solving them. The lists are not
exhaustive, nor are they infallible.

Equations containing one angle only

Equation category Method

1 acosx + bsinx =0 Divide by cosx, provided that cosx # 0

2 acosx + bsinx =c¢ Transform the LHS to rcos (x — a)

3 acoslx + bsinx = ¢ Use the Pythagorean identities to express

5 5 _ the LHS in terms of one ratio only
asin’x + bcosx = ¢

atan’x + bsecx = ¢

4 acosx + btanx =0 Multiply by cosx, provided that cosx # 0

asinx + btanx = 0

Equations containing multiples of one angle

Equation category Method

1 acosx + bcos2x =¢ | Use the double angle formulae to reduce to

asinx + beosdx — ¢ | A equation containing trig ratios of only x

2 cosSax =c Solve for ax in a times the required range

: - and then divide by a
sinax = ¢

The methods listed do not give the only way of solving a particular
equation, nor do they always lead to the quickest solution. An equation
may be able to be simplified quickly when part of it is recognised as part
of a trig identity. Sometimes you may need to classify each side of an
equation independently.

Practice will help you recognise the best way to tackle any equation.
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Example

the range 0 = Bs%

= sindf = tan 30
. _ sin 36
= 8in3f = cos 360

= sin 30 — sin306sec30 =0
= sin30(1 —sec3d) =0

= sin30=0orsecdf=1

3w

in therange 0 < 6§ < X

_o T
6=0,7%

Solve the equation sin26cos # + cos 20sin § = tan 36 for values of #in

sin 26 cos 8 + cos 26sin 6 = sin36 The LHS is the expansion of sin (26 + 6)

For values of 8 in therange 0 < 0 < %, we need to find values of 36

sin30=0 = 30=0or mandsec30=1 = 36=0

Example

cos46+ cos20+ cos360 =0

This gives cos 36 as a factor of the LHS.
= 2c0s830 cosO + cos36=0
= c0s30(2cosf+ 1) =0

Solve the equation cos 40 + cos20 + cos30=0for0= 0= 7w

Using the factor formula on the first two terms gives a factor cos 36.

= c0539=00rc039=—%
m 3w S T w Smw
H=garg ¥ go'e
2w
or f = 3
ie.g=T T 27 57
T 6’2 36
Exercise 2.8b

Give answers that are not exact correct to three significant figures.

Solve the following equations for values of 6 in the
range0 s 0= 7

1 cos26sinf + sin2fcos =1
sin?# — 2cos =1

5sinf+ 12cos6 =13
sin3@ — sin@ =0

cos? @+ 2sin?f =2

G N A W N

sin 560 — sin 6 + cos 36 = 0

Solve the following equations for values of ¢ in the
range 0 < 60 < 27

7 2sec?f +tanh =3

8 4sin?@ — 2cos? 6 = 4cos?*0 — 1

1 1 _
T+ cosd ' 1T—cosd

10 tan 26 — cot260 =0

11 sin36 + sin @ = cos # + cos 30
12 4siné = sec




2.9

Learning outcomes

B To find the general solution of
trig equations

You needto know
B The properties of the
trigonometric functions

B The main trigonometric
identities

General solution of trig equations

General solutions of trigonometric equations
The equation cos x = 1 has a finite number of solutions in a given range
of values of x.

All possible values of cosx occur in the range — # = x < 7and cosx = 1
has one solution in this range, namely x = 0

However, cosx = 1 for an infinite number of values of x.
In fact cosx = 1 for every multiple (both positive and negative) of 2.

COS X 4
1

AN AN

—I(m —ilrr —{17: O Q,IJT 4I:|z 6Ir: ;
—.5
1

Therefore when the range of values of x is unrestricted,
the solutions of cosx = 1 can be written as
x = 2nwforn € Z.

This is called the general solution of the equation.

The general solution of cosx =c, |c| < 1

Within the range — 7 < x = 7, the equation cosx = ¢ has, in general, two
COS X A

solutions.
T T T \ /1\ T Al >
-G —dsr = O 2r 4 6T X
— .5-
11

If one solution is x = «, then the other solution isx = —«

The graph of f(x] = cos x has a pattern that repeats every interval of
2. Therefore we can get the general solution of the equation by adding
multiples of 27 to a and to —«.

We can write this solution as x = 2n# * @, where n is an integer.
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Therefore the general solution of the equation cosx = c is
x=2nw* aforn€Z
where « is a solution in the range —w=x =7

Example

Find the general solution of the equation cosx = %

~1
cosX = 7
=x==% %intherange—frféxs T
Therefore the general solution is
x=2nm=* %

The general solution of sinx =c, |c| =<1

All possible values of sinx occur in the range 0 = x = 27 and, in general,
the equation sinx = ¢ has two solutions in this range.

sin x 4

VYV

If the smaller solution is x = «, then the other solution is 7 — a

The graph of f{x) = sinx has a pattern that repeats every interval of 2.

Therefore we can get the general solution of sinx = ¢ by adding multiples
of 2rtoaand to 71— «a

We can write this solution as x = 2n7 + eand x = 2n7+ 7 — awhere n
is an integer.

Therefore the general solution of the equation sinx = ¢ is
x=2nwr+ aandx = (2n + 1)w — aforn €Z
where « is the smallest solution in the range 0 = x =< 2x

Example _
7
Find the general solution of the equation sinx = %
sinx = Q
) 2
=X = % as the smallest solution for values of x in the range

O=x=d7
a

4 OrX = (2n + 1) —

Therefore the general solution is x = 2nw +

N
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The general solution of tanx =c¢

All possible values of tan x occur in the range —% sSx< % and the
equation tanx = ¢ has one solution in this range.

FaIlXJL
10
5-
AN
F'Sn‘ =0 -7 T b4 3r X

The graph of f{x) = tan x has a pattern that repeats every interval of =, so
if x = ais the solution of tanx = ¢ in the range —% =x= %, the general
solution can be written as

x=nw+anecl.
Therefore the general solution of the equation tanx = ¢ is
x=nw+an€l

where a is the solution in the range —% =x= —125

Example

Find the general solution of the equation tanx = —1

tanx = — 1 = x = —% for values of x in the range —g =x= %
Therefore the general solution is x = nw — %‘

When a multiple angle is involved, first find the general solution for the
multiple angle. Then use that to find the general solution for the single
angle,

Example

Find the general solution of the equation sin 2x =

When sin2x = %, the solution for 2x in the range

9y = T _ 5w
2X—6and2X— 5

Therefore the general solution for 2x is

==

=2x = 2wis

ZXZ%-I— 2nrand

ZX:%+2H1T

giving the general solution for x as

=T , = om
x = 12+m-r.1ndx 12+m-r
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Example

Find the general solution of the equation
sinx + 2sinxcos2x =0
sinx + 2sinxcos2x = 0
= sinx(l + 2cos2x) =0
. Either sinx=0 = x=0, 7w, or 2rintheinterval 0 = x < 27

Then the general solution is x=nw

Or COSZXZ—%:- 2X=i%mthemterval—fréxﬂfr
Then the general solution is 2x = anri%”' = x=nwt
ie. x =nmorx=nmw=x %

S
3

Example
Find the general solution of the equation

X e
cosz sz 1

X _ ainX X - . —
cosy — siny rcos(2+a)wherer v2 and tana =1

2SN -
cos2 s.m2 1
:—cos(%—k%):%
2

For values of x in the range — 7w = x = 7,

we need values of % + %) from —% + %to % + %
3= Ford
= x=—qgqor0
Therefore the general solution is is x = nr
Exercise 2.9
Find the general solutions of the equations.
1 sinx=1 5 cossz%
2 cosx=—1 6 sin’x +sinx =0
3 tanx =1 7 tan2x =43

4 V2cosx =1 8 sin3x +sinx =0




210 Coordinate geometry and straight lines

Learning outcomes

B To revise the gradient of a
straight line

B To find the angle between two
straight lines

B To find the distance of a point
from a straight line

You needto know

B The Pythagorean identities
B The compound angle formulae

B The exterior angle property of a
triangle

The gradient of a straight line

The gradient of a straight line is given
by finding the increase in v divided by
the increase in x when moving from
one point on the line to another point
on the line.

\
@]
¥

In the diagram, the gradient of the line is ¥

of tan 6. =

%. This is also the value
2

Therefore the gradient of a straight line is equal to the tangent of the

angle that the line makes with the positive direction of the x-axis.

When two lines are perpendicular, the product of their gradients is —1.

Therefore if the equation of a line L is y = mx + ¢, any line perpendicular

to L will have an equation of the form y = T k

The angle between two lines

The lines L, and L, have gradients n, Va L
and m, respectively, where
m, =tanf, and m, = tan 6,

The angle « between the lines is 6, — 6,.
Therefore tan a = tan(@, — 6,)

A 0

tan 6, — tan 6,

1 + tan 6, tan 6, - B /

Therefore the angle, a, between lines with gradients m, and m,
m,; —im,
1+ mm,

is given by tana =

Example

L,istheliney = 3x — 5and L, is theline 2x + vy + 1 = 0.
What is the angle between the lines?

m,; = 3 and m, = —2, so the angle between the lines is given by

3 - (—2) ___5 _ 37
R T A e Y
This is the obtuse angle between the lines; the acute angle is
37T T

G Ry
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The distance of a point from a line
The distance of a point from a line is the perpendicular distance.

In the diagram, the distance of the point A(g, b) from the liney =mx + ¢
is the length of the line AN.

B is a point on the line such that AB is parallel to the x-axis, so b is the
y-coordinate of B.

Therefore from the equation of the line the x-coordinate of B is b—c
This gives the length of AB as |b —E._ a| = |b_(jm7_m‘
AN =d = ABsin#
But tan § = m, therefore sin § = —2 Using 1 + cot? # = cosec?
vm? + 1

b—c—ma

Henced = ———
Vvm?r+1

Note that in the diagram point A is on the left of the line. If A were on
the right of the line, then we would write a — (b — ¢)/m for the length of
AB. The modulus is needed because the length of AB is the difference
between the x-coordinates of A and B.

Note also that if @ is obtuse, the angle ABN = 7 — 0
But sin (7 — 6) = sin 6, so the result is valid when the line has a negative
gradient.

The distance of the point (a, b) from the line y = mx + ¢
b—c—ma
vm?+ 1

is given by

Vi

B(|b — c)/m, b)

Example
Find the distance of the point (2, —3) from the line 2x — 3y + 4 = 0

Rearranging the equation of the line asy = %X + %

+a=2b=-3,m=2andc=1%

Therefore the distance of (2, — 3) from 2x — 3y + 4 = 0 is given by
—3—%—3| _1nis
TS

Exercise 2.10

1 Find the acute angle between the lines whose equations are
y=3x—2and2x +3y—1=0

2 Adisthe point (2, 5) and B is the point (—5, 2). Find the equation of
the line that bisects the angle AOB, where O is the origin.

3 Find the distance of the point (1, 5) from the line whose equation is
v=3—-Xx

4 A point P|a, b) is equidistant from the line 2y = 5x — 1 and from the
point (1, 1).
Find a relationship between a and b.
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Learning outcomes

To define the meaning of loci in
the context of the xy-plane

To find the Cartesian equation of
a given locus

To find the Cartesian equation of
a circle

You needto know

How to find the distance
between two points

How to find the equation of a
straight line

How to form a perfect square

Loci and the equation of a circle

Loci

When a condition is placed on the possible positions of a point P, then P
is restricted to a particular set of points. This set of points is called the
locus of P.

When P is the point (x, v), the relationship between x and y that
satisfies this condition is called the

; ] y
Cartesian equation of the locus of P. =1

Plx, y)
For example, if A is the point (1, 4) and the
condition on P{x, y) is that the gradient of AP

is 2, then the gradient of AP is Z g

the Cartesian equation of the locus of

Pis uzg
x—1

= y=2x+2

All, 4)

o]
¥

Example

A point P(x, y] is the same distance from VA

the point (1, 2) as it is from the line x = 3.
Plx, yl, 4

Find the equation of the locus of P.
AL, 2)

The distance of P from the line
x=3183 —x

The distance of P from the point (1, 2) is
Jix =12+ [y — 2

the equation of the locus of P is given
by3d —x=/[x— 12+ (y — 2)
= 3-xP=x-1P+(y—2)?

= 9—6r + % =x"—2W A T4V —4y-+4
=y -4y +4x—-4=0

Exercise 2.77a

Find the Cartesian equation of the locus of P(x, y) when P satisfies the
following conditions.

1 P is the same distance from the point (0, 4) and the linex = 6
2 P is the same distance from the points (1, 2) and (-2, 4).

3 P is twice the distance from the line y = 5 as it is from the point (2, 0).

The Cartesian equation of a circle

A circle is the locus of points that are a constant distance from a fixed
point.
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If P(x, y) is any point on the circle of radius r and centre C{p, g, then Va

CP=randCP =[x —p)? + [y — g)®

Pl ¥l
x—pP+ly—gP=r { /
[ I

i.e. the Cartesian equation of a circle, centre (p, q) and \ J
radiusris (x —p)2 + (y — q)? =1 % a .

Therefore the equation of a circle, centre (2, —1) and radius 3, is given by

x—2P+(y—(-1]f=9=>x2+y2—d4x+2y—4=0

Conversely the circle whose equation is (x + 1)2 + (v — 3)2 = 8 has its
centre at (— 1, 3) and its radius is V8.

An equation of the form x>+ y*+ 2gx + 2fy +c =0 [1]
where f, g and ¢ are constants, can be rearranged as
X2+ 2gx+ 2+ v2+ 2y + P +c=g2+ 1
= x+gP+ly+A*=8+Ff—-c [2
Comparing [1] and [2] shows that
x2 + y2 + 2gx + 2fy + ¢ = 0 is the equation of a circle
with centre (—g, —f) and radius /g + f> — ¢
provided that /g2 + f2 — c is a real number.

Notice that the coefficients of x? and y? are equal and that there is no
Xy term.

Example

Find the centre and radius of the circle whose equation is
X2+y2+2x—4y+4=0

Rearranging x> + y> + 2x — 4y + 4 =0 as

(x+ 12+ (y—2)2=1+4 — 4 =1 gives the centre as the point
(=1, 2] and the radius as 1.

Alternatively comparing x> + yv> + 2x — 4y + 4 = 0 with
X2+y:+2gx+ 2y +c=0gvesg=1,f=—-2andc =4

Then using (—g, —f) and |/g*> + f* — ¢, gives the centre as the point
(=1, 2) and the radius as y1 + 4 — 4 = 1

Exercise 2.11b

1 Find the equation of the circle whose centre is (3, — 2) and whose
radius is 5.

2 Find the centre and radius of the circle whose equation is
x2+y2—6x+2y—6=0

3 Find the centre and radius of the circle whose equation is
22+ 2+ 6x+4y+1=0
|Hint: divide the equation by 2.

4 Explain why the equation x* + y?> + 2x — y + 6 = 0 cannot be the
equation of a circle.
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Learning outcomes

To find the equations of tangents
and normals to circles

To find the condition for a line to
be a tangent to a circle

You needto know

How to find the centre and
radius from the Cartesian
equation of acircle

The basic facts about the
geometry of a circle

How to find the points of
intersection of a line and a curve

How to find the distance of a
point from aline

Equations of tangents and normals to circles

The equation of a tangent to a circle at a given point

When we know the coordinates of the centre and the radius of a circle,
we can use the fact that the tangent at a given point on the circle is
perpendicular to the radius through the point of contact.

Example

Find the equation of the tangent at the
point A(3, —11) on the circle

xX+y2—4dx+ 10y -8=0 []

First rearrange the equation as Al3, =1
x—2)2+(v+5°2=8+4+25

Therefore the centre of the circle is the point C(2, —5])

The gradient of AC = -6
the gradient of the tangent at A is é

So the equation of the tangent at Aisy — (—11) = é[x — 3]

= x—6y—69=0

The normal to a curve

The normal to a curve is the line perpendicular to the tangent to a curve
through the point of contact.

normal
tangent

In the case of a circle, the normal is the line containing the radius
through the point of contact.

The condition for a line to be a tangent to a circle

There are two methods for determining whether a line is a tangent to a
circle,

The first method uses the fact that a line is a tangent to a circle if the
distance from the centre of the circle to the line is equal to the radius of
the circle.

The second method uses the fact that there will be a repeated root when
the equations of the line and the circle are solved simultaneously.
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Example

(a) Find the values of ¢ for which the linex — y + ¢ = 0 is a tangent
to thecirclex> +y2 + 2x — 8 =0

(b) Find the equation of the diameter of the circle that is parallel to
the tangent.

(@ > +y?+2x—8=0 =[x+ 1)2+y?=9
.. the point (-1, 0) is the centre of the circle and the radius is 3.

First method
For the linex — v + ¢ = 0 [i.e. y =x + ¢) to be a tangent to the
circle, the distance of the line from (—1, 0) is 3.

b—c— ma

- usingd = ,whered =3,a=—1,b =0 and

Vvmi4+1
m = 1 gives

_|°—C——“1f—11| aoel-c_ _ 11373
a VI+1 T TeT e

V2
Second method
Solvingx —y + ¢ = 0 and (x + 1)2 + y2 = 9 simultaneously gives

x+ 1P+ [x+c)r=9
= W+ 2x{1 +¢c)+c2—8=0
For the line to be a tangent this equation must have equal roots,

ieb?—dac=0 = 41 +c)P—8*+64=0

= c*—2—17=0
= c=¥:li3v§

(b) The diameter goes through the centre of the circle,
i.e. through (—1, 0J.
The diameter is parallel to the tangents so its gradient is 1.

Therefore the equation of the diameter is [y — 0) = 1{x — (—1]}I,
ieey=x+1

Exercise 2.12

1 Find the equations of the tangents to the circle x> + y* + 6y — 11 = 0
at the points on the circle where y = 1

2 Determine whether the line 3x — 4y + 5 = 0 is a tangent to the circle
x2+y?+4x+ 8 =0
3 (a) Explain why the circles (x +1]> + (v + 2)> = 9 and
x2 +y2 —d4x + 12y + 36 = 0 touch.
(b) Find the coordinates of the point of contact of the two circles.
(c) Find the equation of the common normal to the circles through
the point of contact.

4 Find the condition that m and c satisfy if the liney = mx + cisa
tangent to the circle whose equationis x> + y> + 6x + 5 =0
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Learning outcomes

B To define a parameter

B To find the Cartesian equation of
a curve given in parametric form

You needto know

B How to find the centre and
radius of a circle from its
equation

B The Pythagorean trig identities
and the double angle identities

The definition of a parameter

When a direct relationship between x and v is difficult to work with, it is
often easier to express each of x and v in terms of a third variable. This
variable is called a parameter.

For example, in the equations x =t2, y =t — 1, t is the parameter. The
equations are called the parametric equations of the curve.

A point P(x, v is on the curve given by these equations if and only if the
coordinates of P are (t3, t — 1).

By giving t any value we choose, we get a pair of corresponding values of
x and y. For example, when t = 2, x = 4 and y = 1. Therefore (4, 1)isa
point on this curve.

By giving t several other values we can plot points and draw the curve.

t -3 = =] 0 1 2 3
b 9 4 1 0 1 4
y —4 -3 =3 =] 0 1
y 3
4
2 ___..--—"".'.—-—
‘--"'"'..-—._

The relationship between parametric equations and
Cartesian equations

The Cartesian equation of a curve can be found by eliminating the
parameter.

In the case of the equations x = t%, y =t — 1, eliminating t gives
x=(y+1p

When the parametric equations involve trigonometric ratios of an angle
6, the trig identities are useful to help eliminate 6.

For example, a curve has these parametric equations:

x=2sinf [1] and y = 3cos26 [2]
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The identity cos 20 = 1 — 2 sin? 6 can be used to find the Cartesian
equation of the curve.

[1] = sinf=% and [2] = cos 20 = 2

2 3
Y _ 1 L ox)?
Therefore 3= 1 2(2)
= y =6 — 3x?

It is not always easy to convert a Cartesian equation to parametric
equations. However, the Cartesian equation of a circle can be converted
to parametric equations.

For example, the circle whose equation is (x — 2)> + (v — 1)*> = 9 has
radius 3 and centre (2, 1).

NS
N
%

N

From the diagram, CN = 3 cos 6

therefore x =2+ 3cosb
PN =3sin#
therefore y=1+3sinf

Hence, x = 2 + 3cosfandy = 1 + 3 sin 0 are the parametric equations
of the circle, where 6 is the parameter.

Exercise 2.13

1 Find the Cartesian equation of the following curves whose equations
are given parametrically.

@x=t2+1,y=t+2
1 b= ]
(c) x=secH y = 3tan@
2 Show that the curve whose parametric equations are
x=23(1+sinf and v = 3cos#h
represents a circle.
Give the coordinates of the centre and the radius of the circle.
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Learning outcomes

B To define the conic sections

You needto know

B The definition of a right circular
cone

B The meaning of the axis of a
cone

Didyou know?

This group of curvesis believed to be
among the earliest whose properties
were investigated.

They were studied extensively by the
ancient Greeks. Apollonius of Perga
wrote an eight-volume treatise on
conic sections around 300 BC. This
was translated into Arabic by Omar
Khayyam near the beginning of the
last millennium.

Conic sections

There is a set of curves called conic sections that come from the
intersection of a plane and a right circular cone.

When the plane is perpendicular to the axis of
the cone, the curve is a circle. |The circle is
not always considered to be one of the conic

sections.)

When the plane is at an angle less than the
inclination of the slant of the curved surface,
the curve is an ellipse.

When the plane is parallel to the slant of the curved
surface, the curve is a parabola.

When the cone is double-ended and the
plane is at an angle greater than the slant
of the curved surface, a two-part curve is
formed called a hyperbola.
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Like many mathematical activities, conic sections were investigated as a
purely academic activity with no interest in their applications. And like
many such mathematical activities, they end up having wide scientific
uses.

It was in the 17th century that Kepler discovered that the orbits of the
planets round the Sun are ellipses. In fact, our moon and satellites move
round the Earth in elliptical orbits.

Around the same time Galileo found that an object projected at an angle
to the vertical follows a path whose shape is a parabola. For example, the
flight of a cricket ball thrown to another player is a parabola.

One of the most important scientific applications is the use of parabolic
mirrors in giant telescopes to focus light. {A parabolic surface is made by
rotating a parabola about its axis.)

This comes from a property of the parabola that means all light coming
in parallel to the axis is reflected onto one point (called the focus).

Focus

The Hubble space telescope currently orbiting the Earth has a parabolic
mirror which collects starlight.

In the next topics we use coordinate geometry to find equations for the
parabola and ellipse.



215 The parabola

Learning outcomes The parabola

B To define a parabola as a locus We are already familiar with the shape of a parabola - the graph of
y = ax® + bx + c is a parabola.

B To find the Cartesian equation
and the parametric equations of One of the properties of a parabola discovered by the ancient Greeks is
the parabola that any point on a parabola is equidistant from a fixed point (called the

focus| and a fixed straight line (called the directrix).

We can now use this property to derive the Cartesian equation of the

You need to know standard parabola.
: The simplest equation is obtained v4

B The meaning of a parameter by taking the fixed point as Ala, 0)
B How to find the Cartesian and the fixed line asx = —a,

equation Of a locus then P[X, y] is SuCh thélt PA = PN N P[X! y:l
B How to find the distance

between two points
B The condition for aline to be a

tangent to a curve =2 O Ala 0] >

PA’= (x —a)*+y*and PN = [x + a) = PN? = (x + a)?
(x —a)*+y* = (x + a)?
= y* = dax
y? = 4ax is the Cartesian equation of the standard parabola

whose vertex is at the origin, whose line of symmetry is the x-axis
and whose focus is the point (a, 0)

For example, the equation y* = 8x gives a parabola whose focus is at the

point (2, 0).

Example
Find the focus and vertex of the parabola {y — 1)2 = §({x — 2) and m‘
hence sketch the curve. v e
Comparing [y — 1)* = 8(x — 2) - //
with Y2 = 4aX whose focus is at X = a, Y = 0 and vertex is at : //

X=0,Y=0 - .( i 0 N O [ T :
gives Y=y—1,X=x—2,a=12 0 i\\_‘l‘ b 8 1o X

whenY=0,y=1,whenX =0,x = 2 s | \“"\'"“'---..
Therefore the vertex is at the point (2, 1).
The line of symmetryisY = 0, ie.y = 1, 10

When X = 2, x = 4, so the focus is the point (4, 1).
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Parametric equations for the standard parabola

The parametric equations of the standard parabola are
x=at? andy = 2at

Therefore the coordinates of any point on the parabola can be written as
(at?, 2at).

Using parametric coordinates means that we can find general properties
that apply to any point on the parabola.

Example

Find the equation of a chord that passes through the focus of the
parabola x = at® and y = 2at from any point on the parabola.

yl

Plat?, 2at)

N“’

O (a, 0)

A chord of a curve is a line joining any two points on the curve.
P(at?, 2at) is any point on the parabola.

The equation of the line through (a, 0) and |at?, 2at)
; _ 2at
is p=iopr x|

= y[t? — 1) = 2(x — a)

Example
Find the value of a for which the line y = 2x — 1 is a tangent to the
parabola y* = dax

Solving the equation of the line and the parabola simultaneously gives
(2x — 12 =4dax = 4x?—4x(1 +a)+1 =0

For the line to be a tangent to the curve, this equation must have
equal roots, i.e. 16(1+a)>=16 = 1 +a==*x1l =a= -2

(a = 0 is not a valid solution to the problem because it gives yv> = 0,
which is not a parabola.)

Exercise 2.15

/] Exam tip

This problem highlights the
importance of checking that
solutions are valid in the context of
the problem.

1 Find the focus and vertex of the parabola given by: 3 The parametric equations of a curve are x = 8t2,
(a) (v + 2 = 16x (b) x = 3t%, y = 6t v = 16t. Find, in terms of p, the equation of the
chord joining the points on the curve wheret = 2

2 Find the coordinates of the points of intersection of

andt =p
the line y = x — 6 and the parabola x = 4t2, y = 2t
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Learning outcomes

B To define the ellipse as a locus

B To find the Cartesian and
parametric equations of an
ellipse

You needto know

B The meaning of a parameter

B How to find the Cartesian
equation of alocus

B How to solve quadratic
inequalities

Didyou know?

A property of the ellipse is that the
sum of the distances between the
foci and between each focus and a
point on the ellipse is constant.
You can use this to draw an ellipse.

The ellipse

One of the properties of an ellipse discovered by the ancient Greeks is
that when a point is constrained so that its distance from a fixed point
and a fixed straight line are in a constant ratio which is less than 1, the
locus is an ellipse.

The position of the ellipse depends on the position of the fixed point and
the fixed line. These are also called the focus and the directrix. The shape
of the ellipse depends on the value of the constant ratio; this is called the
eccentricity of the ellipse and is denoted by e.

(Notice that when e = 1, the definition gives a parabola.)

We will find the simplest Cartesian equation for an ellipse. This is when

the point (ae, 0) is the focus and the line x = % is the directrix.

yll
PN? = (% - X)2 and P$* = (ae — x)* + y*
Now ePN = PS so ¢?PN? = PS?
P(x, y)
r (2 _ gV = x— gelr — 2 N
e (3 X) (x —ae)> —y
= x*1—e}) +y* =a%l - e
2 2 %
Replacing a1 — e?) by b? gives X—Z +Lpi=i] = Sle::0l , 8
a b x=4
The shape of the curve can be deduced from the equation as follows:
2 oyt 2 y
;(—2+§=1=>X2=%[b2—y2]and}(220 a4
b
sobl—y2=0= (b—ylb+y)=0
Therefore —b <y < b, and as /_ _\ _
—a 0 a x
B %\;bz a yz; k_/ ’
the curve is symmetrical about the y-axis. -b

. xt V . N
Solving — + b= 1 for y2, gives similar
a
results for x, i.e. —a = x = g and the curve is symumetrical about the x-axis.
Alsowhenx =0,y = zbandwheny = 0,x = *a
The curve is symmetrical about both axes and so we can see that it has
two symmetrical foci and directrices.

y.i

Il
I
e

The line AA' is called

h
B
the major axis and its
A'f focus focus \ o length is 2a.
Q-y The line through BB'

is called the minor
BF

ot W

axis and its length is

directrix directrix 2b.
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yz
T

hpl ]

= 1 is the Cartesian equation of an ellipse
where b? = a?(1 — e?),
a > b — with foci at (ae, 0) and (—ae, 0),

major axis of length 24 and minor axis of length 2b.

Example

Find the eccentricity of the ellipse 3 + y? 1

Comparing the given equation with the standard equation gives a = 3

andb =2
Using b? = a1 — &?) gives 4 = 9(1— e?)
S er=32s0e = %

Parametric equations of an ellipse

The parametric equations of an ellipse are
x=acos@andy = bsin 0

Therefore the coordinates of any point on the ellipse can be written as
(acos @, bsin ).

Example
Find the length of the chord joining the points A where 6 = % and B where 0 = 27 on the ellipse
x=acosfandy = bsin f
The coordinates of A where 6 = § are (a cos = 3 b qm (% @—)
. _ 3w 37 @ . (a2 b2
The coordinates of B where 6 = 7 are (a €os 4~ , bsin 2 ) 1.3.( ) )

223_2,-’-_ 2 b_z,e’-__ 212
AB 4[\24—1] +4[x2 V3)

= AB = L/a%(3 + 2/2) + b2(5 — 2/6)

Exercise 2.16

1 Find the lengths of the major and minor axes of the ellipse
>l
579 =1

Hence sketch the ellipse.

2 (a) Write down the coordinates of F, and F,, the two foci of the ellipse
x=4cosf,y= 3sind

(b) Find, in terms of 6, the lengths of F,P and F,P where P is the point
(4 cos 6, 3sin ).

(c) Hence show that the sum of the lengths F,P  F,P and F,F, is
constant.




217 Coordinates in 3-D and vectors

Learning outcomes

B To define a vector

B To define three-dimensional
coordinates

B Tointroduce the unit vectors
i,j k

To find the magnitude of a vector

B To find a vector sum

You needto know

B Pythagoras' theorem

Vectors
A, B and C are three points in space. A

AB, BC and AC are displacements. Each has a

magnitude (the magnitude of AB is the length

of the line segment AB, i.e. 2m) and a 2m
definite direction in space.

The displacement from A to B |[written as AB) €
followed by the displacement from B to C is 2m
equivalent to the displacement from A to C.

We write this as AB + BC = AC

There are many other quantities that are defined by magnitude and
direction and can be represented by vectors.

A vector is a quantity which has both magnitude and a
specific direction in space.

A scalar quantity is one that is fully defined by magnitude alone and can
be represented by a real number. Length, for example, is a scalar quantity,
as the length of a piece of string does not depend on its direction.

A vector can be represented by a straight line segment where the length
of the line represents the magnitude and the direction of the line segment
represents the direction of the vector.

A

The vector can be denoted by AB, where A and B are the end points of the
line and the arrow shows the direction, i.e. from A to B. A vector in the
opposite direction is denoted by BA. The vector can also be denoted by,
for example, a.

Properties of vectors

The magnitude of a vector a is written as |a| or g, so |a| is the length of
the line representing a.

Two vectors are equal if their magnitudes are equal and their directions
are equal.

If two vectors a and b have the same

magnitude but opposite directions, //
thenb = —a
ta 4
If t is a positive real number, then ta is b " a
in the same direction as a but of
magnitude t|a|.
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Addition of vectors

If the sides AB and BC represent the vectors a and b, the third side, AC,
represents the vector suma + b

b
B > -

Notice that a and b follow each other round the triangle (clockwise in the
diagram|) whereas a + b is in the opposite sense (anticlockwise in this
case).

The order in which a and b are added does not matter, as the diagrams
above show,ic.a+b=Db+ a

This rule can be extended to cover the adtbte+d
addition of as many vectors as we wish

to add.

In the diagram the side AE represents B
the vector suma + b + ¢ + d. Again

notice that a, b, ¢ and d follow each

other round the pentagon in the same

sense, buta + b + ¢ + d is in the C
opposite sense.

Note that, although this diagram appears to be two-dimensional, it can
equally represent vectors in three dimensions.

Position vectors and displacement vectors

A vector usually has no particular position in space. Such a vector is
called a displacement vector.

However, some vectors represent the specific position of a point, for
example the vector OA, where O is a fixed origin, represents the position
of the point A relative to O.

OA is called the position vector of A. It is unique and cannot be
represented by any other line of the same length and direction.

Coordinates in three dimensions

To locate a point in three dimensions
we start from a fixed origin, the point
O. Any other point can be located

by giving its distances from O in
each of three mutually perpendicular
directions. Therefore we need three
coordinates to locate a point in 3-D.

We use the familiar x- and y-axes,
together with a third axis Oz.
Then any point has coordinates
|x, v, z) relative to the origin O.
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Cartesian unit vectors

A unit vector has a magnitude of one unit.

i is a unit vector in the direction of Ox
j is a unit vector in the direction of Oy
k is a unit vector in the direction of Oz

Therefore the position vector, relative to O, of any point P can be given in
terms of i, j and k.

For example, the point P distant

3 units from O in the direction of Ox
4 units from O in the direction of Oy
5 units from O in the direction of Oz

has coordinates (3, 4, 5) and OP = 3i + 4j + 5k

— 3
This can also be written as OP = (4)
5

When P is any point with coordinates (x, y, z), then r = OP is the
position vector of P.

Thenr =xi + yj +zk
b's
orr = (Y)
z

Displacement vectors are also given in the same way. For example,

the vector 2i — 3j + 2k can represent the position vector of the point
P(2, —3, 2] but it can equally represent any vector of the same magnitude
and direction as OP. Unless we are told that a vector is a position vector,
we can assume that it is a displacement vector.

Addition and subtraction of vectorsini, j, k form

Vectors in i, j, k form can be added and subtracted by adding or
subtracting the coefficients of i, j, and k separately.

For example, whenr, = 2i + 5j —kand r, = 3i — 2j + 3k

then r,+r=(2+3i+(5-2)j+(-1+3k

=5i+ 3j+ 2k
and ©rn-—-rn=2-3i+5-(-2))+(-1-3k
=i+ 7j— 4k

The magnitude of a vectorin i, j, k form
The magnitude of a = 4i + 3j + 2k is the length of OP where
P is the point (4, 3, 2.
Using Pythagoras’ theorem twice gives
OB> = QA + AR = 4> + 27
OP? = OB + BP? = (42 + 22) + 32 =42 + 32 4+ 22
OP = 42 + 32 + 22 = /29

For any vectorr = xi + yj + zk, |r| = yx2 + y2 + 22
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Parallel vectors

Two vectors if v, and v, are parallel when v, = tv, wheret € R.
For example 3i + 2j — k is parallel to 6i + 4j — 2k (t = 2)

and 3i + 2j — ks also parallel to —3i — 2j + k(t = —1)
Equal vectors

Vectors v, = a;i + b,j + ¢,k and v, = a,i + b,j + ¢,k are equal if and
only ifa, =a,and b, = b, andc, = ¢,

Example
Determine whether the vector 2i — 6j — k is parallel to:
(@i-2j—k (b) —i+3j+3k

(a) 2i — 6j — kis not a multiple of i — 2j — k, so these vectors are
not parallel.

(b) 2i — 6j — k= —2(—i+3j+ %k] so these vectors are parallel.

Example

A is the point (—1, 3, —2) and B is the point (3, 0, —1). Find |K§|

|OA|= —i + 3j — 2k and |OB| = 3i — k

AB = AO + OB

Al-1,3, -2

When drawing a diagram showing points
in three dimensions, do not draw the
axes, as they complicate the diagram.
However, always include the origin as

B(3,0, —1]  this gives a reference point.
@]

Remember, the vectors to be added must go round the diagram in the
same sense and be in the opposite sense to their sum.
AB = —(—i+ 3j - 2k] + (3i — Kk

=4i-3j+k

|AB| =42+ 32+ 12 =26

Exercise 2.17

1 Pis the point (1, 4, —2J.
Give |OP| in i, j, k form and find the length of OP,

2 a= 3i+ 5j — 2k. Write down the vectors:

(a) 3a
(b) —a
1 2
3 a=|-2|andb = 1 |are the position vectors of the points
0 —1
A and B.

Show the vectors a and b on a diagram, and find the magnitude of BA.




218 Unit vectors and problems

Learning outcomes

B To find a unit vector parallel to a
given vector

B To solve problems in three
dimensions

You needto know

B How to add and subtract vectors
in three dimensions

B How to find the magnitude of a
vector

B The properties of cubes and right
prisms

Unit vector parallel to a given vector
A unit vector has a magnitude of one unit.

The vector a = 2i - 6§ + 3k is represented by OA
la| =V6> + 22+ 3> =49 =7

7 units

1 unit

Therefore the unit vector parallel to a is % the magnitude of a,

i.e. the unit vector parallel to a is % (2i - 6§ + 3k) and is denoted by 4.

A unit vector in the direction of v is denoted by ¥
and is given by ﬁ

Example

8
Find a unit vector in the direction of v = (— 1)

. _ 8!
lv|=v64+1+16=/81=9 . ¥ :L(_l)

_Exercfse 2.18a

1 Find a unit vector in the direction of the vectori + 2j + 2k

3 11
2 The position vectors of the points A and B are (2 and —4)
0

respectively. 2

Find a unit vector parallel to AB.

Solving problems

To solve a problem in three dimensions, it helps to draw a clear diagram.
Mark the origin but do not attempt to draw the axes as these clutter

the diagram. Mark all the information on the diagram and draw lines

to represent what you need to find. When a diagram is given, copy it so
that you can add what you need to find. Remember that any line equal
in length and direction to another line can be represented by the same
displacement vector.
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Example

OABCDEFG is a cube of side 4 units. O is the origin and the unit
vectors i, j, and k are parallel to OA, OE and OC respectively.
M is the midpoint of the edge DG.

Find, in i, j, k form, the vectors

() OA () OC () OM

(a) OA = 4i Each edge of the cube is 4 units long
(b) OG = OA + AB + BG = 4i + 4k + 4
=4i+ 4 + 4k

(c) OM = OG + GM
@fz%ﬁﬁand@z—ﬁ:—éﬁ
OM = (4i + 4j + 4k)- 3(4i)
= 2i + 4j + 4k

Example
The position vectors of the points A and B are 2i + 5j - 3k
and 4i - 3j — 2k respectively.

Find the vector of magnitude 5 units in the direction of AB.
The vector of magnitude 5 units in the direction B

of AB is five times the unit vector in the
direction of AB.

. s A
AB =0B - 0A
= (4i - 3j - 2K) - (2i + 5j - 3K)
=2i-8j+k
|AB| = V69 2
the unit vector in the direction of AB is
71: (21 = 8j + k) so the required vector is —5_— (2i - 8 + K]
V69 V69
Exercise 2.18b
1 The position vectors of points A and B are 2 OABCDE is a right triangular prism with
OA=-+2j+kandOB=i-bj + k OA = 2 units, OD = 2 units and AB = 4 units.
respectively. The unit vectors i, j, and k are parallel to OA,
(a) Find, in terms of b, the unit vector in the OD and OC respectively.
direction of AB. Find the unit E
(b) Given that |AB| = 2, find the value of b. vector parallel D
to DB.
2




219 Scalar product

Learning outcomes
B To define the scalar product of
two vectors

B To find the angle between two
vectors

You needto know

B The Cartesian form of a vector

B How to expand the product of
two brackets

The angle between two vectors

You can use either the acute angle or the Q
obtuse angle for the angle between two lines,
ie. eitheraorm— «

However, the angle between two vectors is defined as the angle between
their directions when they both converge or both diverge.

a
<o) ¢
b d

(@) (b)

The scalar product

The scalar product of two vectors a and b is defined as ab cos 6 where 0is
the angle between a and b and is denoted by a . b, i.e.

a.b = abcos 0 where 0 is the angle between a and b

Parallel vectors

When a and b are parallel, then

either a.b=abcos0 or a.b=abcosw
a a
_’_ _’—
b b a
’ 1 ﬂ---'— .....
Now cos0 = 1 and cos = = —1, therefore
for parallel vectors in the same direction a . b = ab
and for parallel vectors in opposite directions a . b = —ab

In the special casewhena=b,a.b=a.a=a2

For the unit vectors, i, j and k,

Perpendicular vectors
When a and b are perpendicular, thena . b = ab 0031—21:
but cos% = 0, therefore ﬂL

for perpendicular vectors aand b,a.b =0

In particular, for the unit vectors i, j and k, z

i.j=i.k=j.k=0 b
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The scalar product of vectors in Cartesian form

Whena=xi+yj+zkandb = xi + v,j + z,k,
a.b=(xi+yj+zK.[xi+yj+ 2k

Expanding these brackets gives terms involvingi. i, j.jandk.k,
together with terms involvingi . j, i . k and j . k that are all zero as they
involve the scalar product of perpendicular vectors.

Nowi.i=j.j=k.k=1,
thereforea.b = x;x, + vy, + 2,2,

ie. (X1 +yij + z,K) . (X1 + yoj + 2,Kk) = x%, + y1yo + 212,

For example (3i — 2j + K| . (2i + 5§ — 2K) = (3)(2) + (=2)(5) + (1)(-2] = —6

Example

2 2
Find the value of a for which the vectors (— 1) and ( ﬂ) are
perpendicular, 1 =2
ﬂ) =4—-a-—-12

BIAE:

The vectors are perpendicular when 4 —a -2 =10
a=2

2

Example
The position vectors of points A and B are OA=i+ 2j + 3k
and OB =i — 3j + 2k, respectively.
Find the angle between OA and OB.
|OA| = V14 and |OB| = V14,
OA-OB=1-6+6=1
|OA| X |OB| X cos ZAOB = 1
so cos ZAOB =—_,l__ =1
|OA||OB| 14
= /£ AOB = 1.50rad

Exercise 2.19

1 a=4i—3j+ 5kandb = 2i—2j — 4k

Find a . b and the angle between a and b.

2 Show thati + 7j + 3k is perpendicular to bothi — j + 2k and
2i+j -3k




2.20 Equations of a line

Learning outcomes

B To define the vector, Cartesian
and parametric equations of a
line

You needto know

B The difference between
a position vector and a
displacement vector

How to add and subtract vectors

B The Cartesian form of a vector in
three dimensions

B The scalar product of two vectors

Straight lines in three dimensions
A straight line is uniquely located in space if:

B it is parallel to a given vector, i.e. it has a known direction, and passes
through a fixed point, or

B it passes through two fixed points.

The vector equation of a line

The line L passes through the point A whose position vector is a and is
parallel to the vector b.

P(x, v, z) is any point on the line.

If r is the position vector of P i.e. r = OP, then AP = tb, where t can take
any real value.

Now5ﬁ=5&+ﬁ
ie.r=a+ Ab

and for any value of A, this equation gives a point on the line.

r = a + Ab is called the vector equation of the line
where a is the position vector of a point on the line

and b is a vector parallel to the line.

Now a is the position vector of any point on the line so it can have many
different values. This means that the vector equation of a line is not
unique although the line is unique.

For example, the line whose vector equationis r =i — 2j + k + A({3i — k|
is parallel to 3i — kand i — 2j + k is the position vector of a point on
the line.
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Example

(a) Write down the position vector of two points on the line whose
vector equation is

r=5i—j+ 2k + A3i + 4j — 6k
(b) Determine whether the vector —6i — 8j + 12k is parallel to the
line.

(c) Show that the vector 2i + 3j + 3k is perpendicular to the line.

(a) Comparingr = 5i —j + 2k + A(3i + 4j — 6k] withr = a + Ab
gives a = 5i — j + 2k so this is one point on the line.
Giving A any value gives another point on the line, so taking A = 1
gives T = 8i + 3j — 4k
Therefore 5i — j + 2k and 8i + 3j — 4k are the position vectors of
two points on the line.

(b) Comparingr = 5i —j + 2k + A{3i + 4j — 6k) withr =a + Ab
shows that 3i + 4j — 6k is parallel to the line.

—6i — 8j + 12k = —2(3i + 4j — 6k|, therefore —6i — 8 + 12k is
also parallel to the line.

The vector 3i + 4j — 6K is parallel to the line, so if the scalar
product of 3i + 4j — 6k and 2i + 3j + 3k is zero, then the vectors
are perpendicular.

(3i+4j —6Kk).(2i +3j+3k)l=6+12—-18=0

Therefore 2i + 3j + 3Kk is perpendicular to the line.

—
(]
—

Parametric equations of a line

If P(x, y, z) is any point on the line r = 3i + 2j + 5k + A[8i + 4j — 6k]

then xi +yj+zk=3i+2j+ 5k + A(8i + 4] — 6Kk]

Equating the coefficients of i, j and k gives
x=3+8Ay=2+4\2z=5— 6\

These equations give the coordinates of any point on the line in terms of
the parameter A and are called the parametric equations of the line,

Now 3i + 2j + 5k is the position vector of any point on the line so it can
have many different values. This means that the parametric equations of a
line (like the vector equation) are not unique although the line is unique.

The parametric equations of any line can be found in the same way, i.e. if
P(x, y, z} is any point on the line r = x,i + y,j + z,k + Alai + bj + ck]
then xi+yj+zk=xi+y,j+ z,k + Aai + bj + ck]

Thereforex =x, + Aa,y =y, + Ab,z =2z, + Ac
are the parametric equations of a line where (x, y, x;) is a point on
the line and ai + bj + ck is a vector parallel to the line.

For example, the equations
x=-1420,y=3—-7Az=1+ 4\

are the equations of a line where (—1, 3, 1) is a point on the line and
2i — 7j + 4k s parallel to the line.
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Example

Find the parametric equations of the line through the points A(1, 1, 4)
and B(0, —1, 2).

@]
AB is parallel to the line and AB = OB — OA
Therefore AB = —j + 2k — (i +j + 4k) = —i — 2j — 2k

Using A(1, 1, 4] as a point on the line and comparing with
x=x,+My=vi+Ab,z=2z, + givesx; =1,y =1,z =4
anda=-1,b=-2,c= -2

Therefore the parametric equations of the line are

x=1—-Ay=1—-2\z=4—-2A

Cartesian equations of a line

Starting with the parametric equations of a line, x = x; + Ag,
y =y, + Ab, z = z; + Ac and solving each for A gives the Cartesian
equations of a line, i.e.

X=X _Y—WN_z2—-2,
a ~ b ¢ (=A)

where (x, y; X,) is a point on the line

and ai + bj + ck is a vector parallel to the line.

Using the equations of a line

Any of the three forms described above can be used to describe the
equation of a line and in each of them, you can ‘read’ the coordinates of a
point on the line and a vector that is parallel to the line.

Example

State whether the lines with equations

r=2i—3j+ 2k + Ali —j + 4Kk} and

r=(3 — uli— (3 — n)j + (2 — 4u)k are parallel.

To determine whether the lines are parallel we need to find a vector in

the direction of each line. We can ‘read’ this from the equation of the
first line but the equation of the second line needs rearranging first.

r=2i— 3j+ 2k + Ali — j + 4K is parallel to the vector (i — j + 4k|
r=3-pi—-(3—pj+(2-4ulk = r=3i—-3j+2k+ p(—-i+j—4k),
so this line is parallel to the vector (—i + j — 4k)

i—j+ 4k = —(—i + j — 4k) therefore the lines are parallel.
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Example

The point C is the midpoint of the line segment joining
A(3,2, —2) and B(2, 1, 5). D is the point {1, —4, 1].

Find the Cartesian equations of the line through C and D.
To find the Cartesian equations of the line through C and D,
we need a vector parallel to CD.
C is the point with position vector OA +AC
and AC = 1AB = }{OB - 0A)
B i ¥ .
= 7{(2i +j + 5k) — (3i + 2j — 2k]}
=H—i—j+ 7Kk
. OC = (3i +2j — 2k) + 3(—i — j + 7K
= 1(5i + 3j + 3K
CD =0D - OC
= (i— 4j + k) — 451 + 3j + 3k) = 3{—3i — 11j — K|

Using D(1, —4, 1) as a point on the line and 3i + 11j + k as a vector parallel to CD gives the Cartesian
equations as
x—-1_y+t4 z-1

3 11 1

Example

The line L; has equations x =2 — 3A,y = 1 + A,z = 5 — 2\ and the
line L, has equationsx = 1 + 4p, vy =4 — 3u, z= —1 + .
Find the angle between L, and L,.

L, is parallel to the vector —3i + j — 2k and L, is parallel to the vector

4i — 3j + k.
If 6 is the angle between L, and L,, using the scalar product,
(-3i+j—2Kk).[41—3j+k]=|-3i+j—2k| |41 —3j +k|cos¥d
= —-12-3-2=(V9+1+ 4)\16 +9+ 1) cosé
17
= cosf = ———
V14Y26

0 =2.67rad This is the obtuse angle between the lines;
the acute angle is 0.471rad

Exercise 2.20

1 Aisthe point (1, 2, 2] and B is the point (2, 0, 5). Find vector and
parametric equations for the line through A and B.

2 4
2 The line /| has equation r = (—l +A 2) and the line 1, has
5 —1
5 3
equationr = |1| + u(a
1 8

Given that I, and 1, are perpendicular, find the value of a.




2.21 Pairs of lines

Learning outcomes

B To determine whether two lines
in three dimensions are parallel,
intersecting or skew

You needto know

M The different forms for the
equations of aline in three
dimensions

B The condition for vectors to be
parallel

B How to solve a pair of
simultaneous equations

Pairs of lines in space

Two lines in space may be parallel or not parallel, in which case they may
intersect or they may not.

A pair of non-parallel lines that do not intersect are called skew.

Parallel lines Intersecting lines Skew lines separated in
space

Parallel lines

It is easy to tell whether two lines are parallel because you can ‘read’ the
vectors that are parallel to each line from their equations.

For example, the lines

r=2i—k+ A2 —j+klandr =7+ 2k + pl4i — 2j + 2k)
are parallel because the vectors parallel to the lines,

ie 2i—j+kand 4 — 2j + 2k (= 2(2i —j + k], are parallel.

Non-parallel lines

Two lines whose vector equations are r;, = a; + Ab,and r, = a, + ub,
intersect if values of A and w can be found for which r, = r,

If no such values can be found then the lines are skew.

The parametric equations of lines are easiest to work with when
determining whether two lines intersect or are skew.
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Example

Show that thelinessx =14+ A, y=—1—A,z=3+ A and
x=242u,yv=4+pu,z=06+ 3u intersect and find the coordinates
of their point of intersection.

If the lines intersect then equating the values of x gives
1+Aa=2+2u [1]
and equating the values of y gives —1 — A =4 + [2]

Solving these equations gives A = =3 and u = —2
WhenA=-3,x=-2,y=2andz =0 (first line)
When p=-2,x=-2,y=2andz =0 (second line)

Therefore these values of A and w give the same point on each line, so
the lines intersect at the point (—2, 2, 0).

Example

Determine whether the lines r; = i + k + A{i + 3j — k) and
r, =2i+ 3j + k + p(4i —j — 5k] are parallel, intersect or are skew.

The lines are not parallel because i + 3j — k and 4i — j — 4k
are not parallel.
Writing the equations in parametric form:
X =1+A4A, v = 34, z1=1-A
X% =2+4+4y, v, =3—puwn, z=1-5pu
Equatingx, and x, gives 1 +A =2+ 4u [l]
Equating v, and y, gives 3A =3 — pu [2]
Solving [1] and [2] gives A=1land =10
With these valuesz;, = 0andz, = 1

These values are not equal, therefore the lines do not intersect and are
skew.

Exercise 2.21

2 =2, 5 |
1 Show thatthelinesr=|1|+A| 3|andr=|1]|+ u| 0] are skew.
2 2 0 2

2 Two lines which intersect have equations
r, =2i+ 9 + 13k + Afi + 2j + 3k and
r,=ai+ 7j — 2k + p|[—i+ 2j — 3k)
Find: (a) the value ofa
(b) the position vector of the point of intersection
(c) the angle between the lines.




2.22 Planes

Learning outcomes

B To determine the vector and
Cartesian equation of a plane

You needto know

B How to add and subtract vectors
in three dimensions

B The scalar product of two vectors

B The equations of a line in three
dimensions

B The meaning of a unit vector

Defining a plane
There are several ways to define a unique plane, for example:

(a) one and only one plane can be drawn through three non-collinear
points, therefore three given points specify a unique plane

(b) one and only one plane can be drawn to contain two intersecting
lines, therefore two given intersecting lines specify a unique plane

(c) one and only one plane can be drawn perpendicular to a given
direction at a given distance from the origin, therefore the normal to
a plane and the distance of the plane from the origin specify a unique
plane

(d) one and only one plane can be drawn through a given point and
perpendicular to a given direction, therefore a point on the plane and
a normal to the plane specify a unique plane.

normal

LA

|A normal to a plane is any line perpendicular to the plane. A normal is
therefore perpendicular to any line in the plane.)

The vector equation of a plane

We use the definition of a plane given in (d) to derive the vector equation
of a plane.

A is a point on the plane and OA=a
The vector n is perpendicular to the plane.
P is any point on the plane and OP =r

AP is a line in the plane, and is therefore
perpendicular to n.

AP = r — a, therefore the scalar product of r — a and n is zero,
iie.(r—a).n=0

This is called the vector equation of a plane.
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The vector equation of a plane can be written in another form.

In the diagram, ON is the distance of the plane from the origin.
If ON =d, then in triangle OPN, d = OPcos
Butr.fi= OPcosf=d
Therefore r . fi = d is the vector equation of a plane that is
perpendicular to the unit vector fi and distant d from the origin.
This equation can be multiplied by any scalar.
Therefore an equation of the form r . n = D represents a plane

perpendicular to n and distant % from the origin.

Example

The vector equation of a planeis r. (2i + j + 2k) = 12.
Find the distance of the plane from the origin.

2i + j + 2k s a vector perpendicular to the plane.

Dividing both sides by |2i + j + 2k| converts the equation to the
formr.n=d

|2i + j + 2k| = 3, so the equation becomes r . %[Zi +j+2k =4

Therefore the plane is 4 units from the origin.

Example

(a) Find the equation of the plane that is perpendicular to the

4 2
vector( 4) and contains the point (g)
-1

(b) Find the distance of the plane from the origin.

(a) Usingtheform (r—a).n=0 = r.n — a.n = 0 gives
4 2 4
IR

—1 3 =i |

4 4

r.(4)—25=0, i.e.r.(4):25
—1 =]

(b) The distance of the plane from the origin =

r.

—
J4r+ 42+ (-1 V33
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Example .
2
5

3
Show that the line whose equation is r = (—l + A|2 ]| is parallel to

2

8
the planer.( 2) =5
—4

If the line is parallel to the plane, then it is perpendicular to the
normal to the plane.

't 8 A
The line is parallel to |2 | and the plane is perpendicular to ( 2).
5 ! —4

2
Now (2,) § ( Q,) = 0, therefore the line is parallel to the plane.
5/ \-4

The Cartesian equation of a plane

The point P(x, v, z) is any point on the plane that is perpendicular to the
unit vector where

f=1Hh+mj+nk

Using r . i = d gives
(xi +yj+zKk).[i + mj+ nk) =d
= Ik+my+nz=d

Therefore

Ix + my + nz = d is the Cartesian equation of a plane
where d is the distance of the plane from the origin
and Ii + mj + nk is a unit vector perpendicular to the plane.

Multiplying this equation by a constant gives the more general form of
the Cartesian equation,

ie. ax+ by +cz=D

Then ai + bj + ck is a vector perpendicular to the plane and the distance
of the plane from the origin is given by

e e o

Va* + b + ¢t
For example, the equation 3x — 2y + 6z = 21 represents a plane where
3i — 2j + 6k is perpendicular to the plane and the distance of the plane
from the origin is given by

21 1

7:—:3
V& +22+62 7
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Example

(a) Find the Cartesian equation of the plane that contains the points
A(1,5 —2),B(1,1,1) and C(5, —1, 4).

(b) Hence write down a vector that is perpendicular to the plane.

(a) The Cartesian equation of a planeisax + by + ¢z = D
(1, 5, —2) satisfies the equation of the plane,
therefore a+5b—-2c=D [1]
(1, 1, 1) also satisfies the equation of the plane,
therefore a+b+c=D (2]
similarly, usingC 5a —b + 4c =D [3]

These three equations are enough to find a, b and ¢ in terms of D.
This is all we need because any multiple of ax + by + cz = D is
also the equation of the plane.

[1] — [2] gives 4b —3c =0 (4]
5[2] — [3] gives 6b +c = 4D [5]
3[5] + [4] gives b = %
Then [4] gives c= % and [2] gives a = —%
Therefore the equation of the plane is
3D 6D 8D ai + bj + ck
Eilal TR e =
= —-3x+6y+8z=11
B

G

(b) ai + bj + ck is perpendicular to the plane ax + by + cz = D
Therefore —3i + 6j + 8k is perpendicular to the plane.

Exercise 2.22

1

Find, in the form r . n = D, the equation of the plane that contains
the point (2, 5, —1) and is perpendicular to the vector 3i — j + k.
Hence write down the distance of the plane from the origin.

Find the Cartesian equation of the plane that contains the point
(1, 0 —1) and is perpendicular to the vector i — 2j — k.

(a) Show that the line L with equationsx =2 — A, y =1 + A,
z = 3 + 2A is parallel to the plane P whose vector equation is
r.(-3i+j—2kl=6

(b) Show that the point (0, 8, 1) is contained in the plane.
Hence find the equation of the line parallel to L that is contained
in the plane P




Section 2 Practice questions

1 Give exact values for:

o wllE)
0wl @ el
2 Give the minimum value of

3

3 GivensinA = % and that A is acute,

find the value of:
(a) sin2A (b) cotA
4 (a) Prove the identity

_4dcot2f
sin 2.0

(b) Hence find the solution of the equation
tan® § — cot’f = 4
for values of 0 between — 7 and .

tan2 @ — cot? 9 =

5 Prove that
cosAcosbhA — sinAsin54 = cos 6A

6 Express cos x — /3 sinx in the form rcos (x + a).

Hence find the maximum and minimum values
of cosx — V3 sinx and the values of x at which
they occur in the range 0 = x = 2«7

7 Show that
(2s8in 6 + 5cos 62 < 29
for all values of 6.

8 Prove the identity
sin?2x cot?x — sin? 2x tan’x = 4cos 2x

9 Solve the equation
sin3f — sin26 + sind= 0
for values of @ between 0 and 2.

10 Find the general solution of the equation
cos 6 + cos 36 = cos20

11 Find the equation of the locus of the point P(x, y)

when the distance of P from the line y = 4 is twice

the distance between P and the point (2, —1).

12 Find the Cartesian equation of the curve whose
parametric equations are
x=2—cos2f0andy =5+ sin @

13

14

15

16

18

19

20

21

The equation of a circle is

xife it O ye—a=1()

Find the equation of the diameter of this circle
whose gradient is 1.

The focus of a parabola is the point (2, 4) and the
directrix is the liney = 8
Find the equation of the parabola.
(a) The equations of two circles are
x— 1P +{p+1)2=9
md2+y2 +tdx —6y+c=0
Find the value of ¢ such that the circles touch.

(b) Find the coordinates of the point of contact
of the circles.

(c) Find the equation of the common tangent
through the point of contact.

(a) Prove that theline3x — 2y — 12 =0isa
tangent to the circle
(x— 12 + (v —2)2=13

(b) Find the coordinates of the point of contact
of the line and the circle.

Find the equations of the tangents from the origin
to the circlex2 + y2 — 8x — 6y + 16 = 0

(a) Show that the line y = 2x + 2 is a tangent to
the parabola whose parametric equations are
x=d4t% 7= 8t

(b) Find the coordinates of the point of contact
of the line and parabola.

The equation of an ellipse is 4x* + 9y> — 36 = 0
(a) Sketch the ellipse.

(b) Find the coordinates of the foci.

(a) Find the points of intersection of the line

y = x + 5 and the circle
XX +y2—2y—25=0

(b) Find the equations of the tangents to the
circle at each of these points.

The line 1, has vector equation

1 2
r=(2]|+A 0)
4 1
and the line 1, has vector equation
2 —3
r=|1|+tp 1
1 o

where A and p are scalar parameters.



22

23

24

25

26

27

(a) Show that the lines intersect and give the
position vector of their point of intersection.

(b) Find the acute angle between the two lines.

(a) The position vectors of three points are
r=2i— 3j+ 2k,
r=5i+k,
r=i+j—k
Find the vector equation of the plane which
contains these three points.

(b) Hence find the distance of the plane from the
origin.
The equations of two lines are:

x=5-Ay=2+3\z=—1+Aand
x=4+2u,y=3—6u,z=1-2u

(a) Show that the lines are parallel.

(b) Show that the vector 2i + j — k is perpendicular
to these lines.

The Cartesian equation of a line 1, is
x—1 ¥Y—2 z+3
20
and the Cartesian equation of a line 1, is
x -1l _¥ra _z- 1
i 3 a
Given that /; and I, are perpendicular, find the
value of a.

The Cartesian equation of a plane is
dx W hdz=7

(a) Find the distance of this plane from the
origin.

(b) Show that the line whose vector equation is
r=1i+2j+ 4k + A{2i + 2j — 3K}
lies in the plane.
Hence write down the distance of the line
from the origin.

The position vectors of points A and B are
(2i — 2j + k] and (31 + 6§ — 2Kk) respectively
relative to a fixed origin O.

Find the acute angle between OA and OB and
hence find the area of triangle OAB.

Show that the planes whose equations are
r.(i—5j+2k =10

andr.(—2i + 10j — 4k) = 8 are parallel.
Hence find the distance between the two planes.

28

29

30

32

33

34

Section 2 Practice questions

Show that the line whose vector equation is

2 1
r=|1|+A l)ispara_l_leltothepla_ne
5 4

1
whose equation is r . (5) = 8
il

(a) Find the parametric equations of the
line through the point (2, 1, —5) that is
perpendicular to the plane whose equation is
3x +3qy—z=9

(b) Find the coordinates of the point of
intersection of this line and the plane.

Show that if P(x, v} is twice as far from the point
(4, —2) as it is from the origin then P lies on a
circle. Find the centre and radius of the circle.

Pla cos 6, b sin 6;) and Q(a cos 6, b sin 6,) are
two points on the ellipse

2 Y

F - E = l

(a) Find the equation of the chord PQ.

(b) Deduce that the equation of the tangent to
the ellipse at the point (a cos 6, b sin 6) is
ay sin  + bx cos 6 = ab

P(5t2, 10t} is any point on a curve.
(a) Find the Cartesian equation of the curve.

(b) M is the midpoint of the line OP.
Find the Cartesian equation of the locus of M
as t varies.

(a) Prove that
cos?x +sin’x =1

(b) Find the general solution of the equation
cos’x + S5sin*x =2

Show that the line whose vector equation is

0 1
0
.

4|+t
is contained in the plane whose

Tr =

8

2
equation isr . ([}) =8
1



Learning outcomes

m Toinvestigate the meaning of
continuity and discontinuity of
functions using graphs

You needto know

The meaning of a function

The meaning of the domain of a
function

m The shapes of graphs of simple
functions

Vi

»

31  Functions - continuity and discontinuity

Continuous functions

Most of the graphs that we have drawn so far in this unit have involved
continuous functions. For a function to be continuous, there must be no
breaks in its graph and no points at which it is undefined.

For example, f(x) = x? for x € R is a continuous function because the
graph of y = f(x) has no breaks and f(x) has a real value for every value of
x in its domain.

T

Discontinuity
The graph below illustrates the graph of a function over the domain x € R.

3

]

1
I

un

sdiscontinuity

4 21 1 O ] A g 3
discontinuity
|
=

=]

1
T 1

There is a clear break in the graph where x = 2. There is also a
point missing from the graph where x = —2. These breaks are called
discontinuities.

The function is continuous for all other values of x.

Some functions are continuous even though the graphs have breaks in
them.

For example the function f(x) = %, x # 0, x € R is continuous because
although the graph of y = %has a break in it where x = 0, this value of x

is not in the domain of f(x].



Example

(a) Sketch the graph of the function given by
x+4,x=4

fix) = {x— 4 x<4XER

(b) State, with a reason, whether the function is continuous over all of
its domain.

(a) f[X!.u
107

\

|
N
|
[}
@]
\§>
o
oo
¥

(b) There is a break where x = 4 and x = 4 is included in the domain,
so the curve is not continuous over all the domain.

Example

(a) Sketch the graph of the function given by
flx) = {XZ, x<0

x, x=0'

(b) State whether the function is continuous.

xeR

() flx)

O] I
(b) There are no breaks in this graph and although there is a change
in the nature of the graph where x = 0, there is not a point

missing because f(x) is defined when x = 0. Therefore the function
is continuous.

Exercise 3.1

Sketch each of the following functions and state whether the function is
continuous.

x+1, x<4

1 flx) =x, x=1{2,4,6} 4 f[x]—{_XJrng;mXE[R
1 _ [y, Xesnd

2 f[x]—X—_i_l,XqE I,xeR 5 ﬂX]_{—X+9,X.=:5’XER

X, x<0

X+1,X2U"XER

3 f[x]:{
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3.2 Limit notation

Learning outcomes

m Tointroduce basic concepts of
limits
m Toinvestigate the behaviour

of f(x) as x approaches a from
above and below

Limits
In Topic 1.10 we looked at the behaviour of % as the value of x gets large.

This table of values shows that i approaches zero as x approaches
infinity.

5 10 /' 100 | 1000 | 10000...

You needto know

B The meaning of continuity
m Theshape of the curvey = %

m How to sketch simple functions

W |

0.2 0.1 0.01 0.001] 0.0001...

We write this as L — 0 asx — %, and we say that the limiting value
X

of % as x — o is 0. The notation for this statement is lim i =0
e

1 ;
If we now look at L 8x— 0, there are two cases to consider because

x can approach zero from positive values or from negative values.

x approaches 0 from below x approaches 0 from above

| ] I | 1 1 |
|

T T T T 1 1
-20-10 -5 0 5 10 20

Asx — 0 from above
"y i 1 1
(L. 57 (= 10), 557 (= 100}, 5557 (= 1000]...], 1=

Asx — 0 from below

1 1 L g 1 s 1

(1.e. (= —10), — 57 (= —100), =5 o7 | 1000]...), 1w

Therefore lma(%) does not have a unique value so li_na l) does not exist.
X— X—+

For Li_rur}[f{x}] to exist and equal k then

as x — a from above _

fix) = k

and as x — a from below
The limit of f{x) as x — a from above is written as lim f{x) and the limit
of f{x) as x — a from below is written as lim f(x]

X—d

Limits and discontinuity
We can now define a discontinuity in terms of limits.

For f{x] to be continuous where x = g, lim f(x] = J}_].l“él f(x) = fla)



x3x<0

X X?O’XER’

For example the function f(x) = {

!

is sketched in Topic 3.1.

Using the condition for continuity at x = 0,

lim x =0, lim x> = 0 and

x—0* x—0

f(0) = 0, therefore f(x] is continuous atx = 0

However applying this condition to the function

flx) = {X+ 4x=14
x—4,x<4’

Topic 3.1, gives lirE[X + 4] = 8 and lirf x—4)=0
x—4 X—

They are not equal so there is a discontinuity atx = 4

x € R, where x = 4, which is also sketched in

Example
The function f is defined as f({x) = {

(a) Find lim f(x)

(b) Find ]il‘{l fx)

x—1,x>1
X x=1'

(c) Hence show that f(x) is continuous at x = 1

First sketch the graph y = f(x)
VA
5—

X

e

3 O 2

(a) From the graph, XIEP flx) = XlLrP (2x— 1} =1
(b) From the graph, XIEP flx) = }_u.-? xt=1
(o fl1)=12=1

Xlir{} fix) = }_11"{1 flx) = £{1)

Therefore f(x] is continuous atx = 1

xeR.

Exercise 3.2

(a) Sketch the graph of the function given by
2
flal= }; 7 x>1

5 ,x ERforvaluesof -3 =x=3
—x,x=1

(b) Find Xlirﬂ f{x)
(c) Find XIEP f{x]

(d) Hence show that f[x] is continuous at x = 1

Section 3 Calculus 1



3.3 Limittheorems

Learning outcomes

m To list and use the limit
theorems

m Tofindanduse lmﬂ
—0 @

You needto know

The notation for limits

The trigonometric double angle
formulae and factor formulae

How to factorise x* — y°

The factor theorem

The limit theorems
1 If }1(151;1 flx) = F then lirn kf{x) = kF where k is a constant.

For example, lin% x? = 4, therefore 111‘[;1 x1=3x4=12
X—

2 If Jl(iE} f(x) = F and if Jl(igtgil glx) =G then gﬂ[f[xl X glx]] =
For example, lin% x2 =4 and lin% x + 1) =3,

therefore li_n% [xYx + 1) =4 x3=12

w

If!{i&} flx) = F and ifli£n glx) =G then ]ii'n[f[xl +gx)]=F+G
For example, lin% x? =4 and le x +1)=3,
therefore l'm% [xX*+x+1]=4+3=7

fix]

4 If }Eﬁ flx) = Fand ﬁ!}g} glx) = G then, provided G # 0, l ( ]

For example, lim x> = 4 and lim (x + 1} = 3,
x—2 x—2

. x2 _ 4
therefore }(l_l“lax T

Now % is meaningless, but these theorems can be used to find the limit

of a function which appears to be % The example below illustrates this.

_F

G

Example

Find im (27555

-9  (x—3)x+3 X+3
E—7x+12 X-3)x—-4] x—4 provided thatx # 3

The limit as x approaches 3 means we want the values of the function
as x gets closer and closer to 3 to see what value they are tending
towards. We do not want the value when x = 3, so we can say that

limg (25575 ) = lim (23

}(m% [x + 3] §
li]‘n3 x—4] -1
The limit of = SI asx—0

This is an important limit and the limit theorems do not help to find it
directly, so we start with the graphs of y = sinx and y = x close to the

origin.



=3

Whenx = 0, Si:X

For —g <x<g T sinx and x are nearly equal, and as x approaches 0 from

Note that this result is valid only when x is measured in radians.

-0
—Oa_nd

Therefore lim =—=

% is meaningless.

sinx

Sll‘lX =1

x—0

Example

sin26
f

Find lim
[)

sin26 _ 2sin ficos

_sin@

7}
liti sin28 _
#—0

Alternatively, %Lrn

0

sin 6
=lm—g"

sin 26 _

9 X 2cos 0

xluancoeB]—le—Z

= lim 28026 _ 5);,,, Sin 26

0

00 20 o ng R

Exercise 3.3

2
1 Find the limit of ¥ —2X+6 g5 )

2 Find the limit of asx — 1

—1
- x24+x-1
3 Find the limit of W as § — 0

4 Use the results above to show that the function f(x) =
discontinuity where x = 0

SIMX hasa
x
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3.4 Gradient of a curve

Learning outcomes

m Find the gradient of a curve at a
point on the curve

You needto know

m The definition of the gradient of
a straight line

B The concept of a limit

Tangents, chords and normals
The line joining two points on a curve is a chord.

A line that touches a curve at a point is a tangent to the curve.

point of "
contact @{&, L2

The gradient of a curve at a given point

The gradient of a curve at a point A is defined as the
gradient of the tangent to the curve at A.

We can find the gradient of a

curve at a point A by taking

another point B on the curve B
close to A. A

As B moves closer to A, the
gradient of the chord gets
closer to the gradient of the
tangent at A.

l]ismit (gradient of chord AB) = gradient of tangent at A

We can use this to find the gradient of the curve y = x? at the point

where x = %
; ; 1
A is the point on the curve where x = 3,

B is a point on the curve whose x-coordinate is a bit larger than %

We denote the ‘bit larger’ by dx. h is sometimes used as an alternative
notation for the ‘bit larger’

So B is the point on the curve where x = % + dx

Va

8 dis not avariable - itisa prefix
that means ‘a small increase in’

61 the value of the variable that

4 B(L + ox, (3 + ox)3) follows it. So 8y means a small

A[%, %ZJ ] increase in the .value ofj./, ot
-~ means a small increase in the
_13 —[2 10 i i é > value of t, and so on.




1 1

The coordinates of A are (3, 3

The coordinates of B are [% + 8%, [% + 8x)?
dx)? — 4

1
+ox — 1

1
The gradient of AB is [21
2
Liox+(ax)-1L
_ 4 4
ox

. gradient of tangent at A = liém}\t |gradient of chord AB|

=1+8x

= limit (1 + 8x) =1
ax—0
*. at the point where x = %, the gradient of y = x? is 1.

We can apply the same process to a variable point on y = x?
A is any point on the curve so its coordinates can be denoted by (x, x?).

B is the point on the curve whose x-coordinate is a little larger than the
x-coordinate of A,

i.e. x + dx. Hence B has coordinates (x + 8x, (x + 8x)?

+8x) — X2
The gradient of AB is w

Section 3 Calculus 1

B(x + &x, (x + ox)?)

[x + 8x] — x o
_ x?+ 2xdx + [8x)? — x*
n ox
_ 2xdx + (dx)*  8x(2x + Bx) Alx, %)
T x0T & %, X
= 2x + 8x o) ;'
The gradient of the tangent at A = lim (gradient of AB)

= lim (2x + 8x) = 2x
Gx—0

We can now use this result to find the gradient at any particular point
el
ony = x

For example, at the point where x = 3, the gradient of the curve is
2 X 3 = 6, and where x = —4 the gradientis2 X —4 = —8

Exercise 3.4

1 Use the method above to find the gradient at any point on the
curve y = x°
Use your result to find the gradient on the curve where:
(a) x=-1 (b) x=5

2 Use the method above to find the gradient at any point on the curve
y=x>+ 2x
Use your result to find the gradient at the points where:

(a x=0 (b) x=—3




3.5 Differentiation from first principles

Learning outcomes

m Find the gradient function of a
curve by differentiation from first
principles

You needto know

The concept of a limit

How to manipulate algebraic
fractions

The limit of sinfas 8 — 0

The factor formulae

The gradient function

In the previous topic, we found that the gradient of any point on the
curve v = x° is given by 2x.

Now 2x is a function and it is called the gradient function of x2.

Because 2x is derived from x2, 2x is often called the derived function or
the derivative.

The gradient function of a general curve y = f{x] is denoted by f'(x) or by %

flx)

(x + ox, flx + ox)

flx + ox) — flx)

N"

Ol

: dy
So fory = x*, we write f'x) = 2x or " 2x

; flx + 8x) — f{x]
For any curve y = f(x), gradient of AB = e
and the gradient at A = lim w
&x—0 ox

. oy — 1o Hx + 8x) — {(x)
L2 Fic) = lim ———

We can use this general formula to find the gradient of any function, and
it is called differentiation from first principles.

Example

Differentiate % from first principles.
X

_ 1 _ 1
f[X] = ;, S0 f[X + 8x) = m
i ox)? —2xdx — (Bx)?
T R NS UG ok ..
%+ 8x) —ilix) (x + 8x)? x? x}x + dx)? x3x + dx)?
_ _ _ 2
i) = Jirn flx + 8x) — f(x] = fis 2xdx — (dx)
x—0 ox &x—0 Jx(x + dx)ix?
_ —Ox —dx _ —2x_ 2
ax—0 x2(x + 8x)2  x* x°
when y = i, .3

x2 dx x3




Example

Differentiate sin x from first principles.

flx) = sinx, so f{x + 8x] = sin (x + &x]

flx + 8x) — f{x] = sin(x + dx) — sinx
= 2.cos (x + %axlsinéﬁx

2cos [x + %SX] sin%&x = Hig cos (x + %8}{] sinéax

Using a factor formula

. K = ox Sed Lo

Now as dx — 0, cos [x + %SX] — cosx and, provided that x is in

sin 18x
radians, — — 1
ESX
o Flx) = cosx

ey s e dy
ie. if y =sinx, then Ix = C0sx

Example

Differentiate vx from first principles and hence find the gradient of
the curve at the point where x = 4

flx)=vx =x
flx + 8x) — f(x) = [x + &x): — x*
([X -+ SX]%— —x )([X + ﬁx]% + X%)

((x + 8x)? + x*)

: M Using (a + b)(@a — b) = a*> — b?
((x + 8x) + x)
B ox
([X + 3x)r + XIT)
s Bl =T = lim ==Ly
o0 g+ 8x) + k) B0 (x + Bxi+x 2x
1 d L
ie if y=x3 &y = %X_T
i W Ter 1
When x = 4,&—5[4] -—Z

Exercise 3.5

Differentiate the following functions from first principles.
1 f(x) = kx wherek € R 4 flx) =x"!
2 f{x) = cosx 5 x2—-2x+1)

3 flx) = 5%° 6 f(x) =sin2x
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3.6 General differentiation

Learning outcomes Differentiation of a constant
m To derive rules for differentiating The equation y = ¢, where ¢ is a constant, A
simple functions represents a straight line parallel to the y—c
X-axis. £
Therefore the gradient of the line is zero, R
You need to know tis when y = ¢, % =0 0 X
m The equations of straight lines For example, when y = —5, % =0
m The meaning of &y
Differentiation of y = ax
¥
The equation y = ax, where a is a constant, l
represents a line through the origin s
with gradient a.
dy
Therefore when y = ax, p >
0 X
dy

For example, when y = 4x, e 4

Differentiation of y = x#
The table shows some of the results from Topic 3.5:

L

y = f(x) x? x* x X Xt
% 3x? 2x %X"’I—’ —x"? | —2x73

These results suggest that to differentiate a power of x, we multiply by
that power and reduce the power by 1,

d
ie. when y = x7, Ex}: = nx"~! for all values of n.

= —fx

&le

d
For example, when y = x'9, &y = 10x” and when y = x4,

Differentiation of y = ax®

The result from Exercise 3.5, question 3, shows that when v = 5x3,

dy
= i 2
i = 15x 5 x 3x

This is a particular example of the general result,
; dy ; :
Le. wheny = ax", &= anx” ~ ! where a is a constant.

1 d 1 3
For example, when y = 4x 2, &y =4x —x 1 '=—02x2
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Differentiation of y = f(x) + g(x)

The result from Exercise 3.5, question 5, shows that when

dy
= oyl ! — —
V=X 2x + 1, 1 2x-=2
This is the same as differentiating each term separately, i.e.

d
= e — o + L

The notation %f{x) means the differential of f(x) with respect to x, i.e. %f{x) =f'(x)

This result is true for the differential of the sum or difference of any
functions,

d
ic when y = f(x) = glx), G = §flx) = Selx)
Two other results from Topic 3.5 are important:
when y = sinx, % =cosx and wheny = cosx, % = —sinx

All these results are important and you need to remember them.
We have used the letters y and x for the variables, but any letters can be

used, for example when s = 2t + cost, % = 2 — sint

(Letters s and ¢ are often used for displacement and time in problems
concerned with movement.|

Example
. dy _6x*—5x+2 ;
Find pE when y = e m Exam tip
d
6 -5+ _ 6 5x, 2 g (ft) &™)
3x 3x 3x  3x &R = d
Ayl _ 5 31 ag()d
= 2x? — 3 s EX
3 5,2 dy %
ol T B SO&=4X—§X
Exercise 3.6
nd dy h . @ E .
Find 7= wheny is: xamtip
1 5x* 5 4 — 3cosx A6 x i) x 9
% S 1(c) x g) # S1(c) x gl
2 L g 24
X X
3 4x3—2x +5 7 x(2 —x)

4 (3x — 4)(2x + 1] 8 5Hsinx — 4cosx




3.7

Learning outcomes

m To derive and use aformula
for differentiating a product of
functions

m To derive and use a formula for
differentiating a quotient of
functions

You needto know

m How to differentiate sums and
differences of powers of x

m How to differentiate sinx and
oS X

The limit theorems

Trigonometric identities

Product rule and quotient rule

The rule for differentiating a product of functions

If y = uv, where u = flx| and v = glx|

and if 8x is a small increase in the value of x, and 3y, du and dv are the

corresponding increases in y, u and v, then
y + 8y = (u + du)(v + dv
= uv + u(dv) + v{du) + (du)(dv)
Asy = uv, this simplifies to
8y = uldv| + v{du) + (du){dv)

Dividing by 8x gives

oY Ve T auax
Now lungxy g, al;;—‘nng g;, éx@(}% = % and }(Lmn du=0
o & 2] o+ 8
ie. dx{uv] — u% + V%

You may find it easier to remember this rule in words:

To differentiate a product of functions,

multiply the first function by the differential of the second
function

then add the second function multiplied by the differential
of the first.

For example, if y = x> cosx, then using u = x* and v = cosx gives

dy

= —x2sinx + (cosx)(2x) = 2x cosx — x?sinx

Exercise 3.7a

Use the product rule to find % when v is:
(a) x*sinx (d) x¥(3%® — 4)
(b) sinxcosx (e) (x*+ 1)cosx

T i
(<) 2 sinx




The rule for differentiating a quotient of functions
Ify = % where 1 = f{x) and v = g(x)

and if 8x is a small increase in the value of x, and 3y, du and dv are the
corresponding increases iny, u and v,
u + du

then v+ dy = Fem

_u+du _u

y=v ay_V-FaV v

vou — udv
v + viv

Dividing by d8x gives
ou _  dv

¥ _ Vax U
dx v+ vdv

. dy dy . v _dv . du _du : B
Now [Imsx ~@¢ afhax ~dv alhex ~ax 4 M =0
; du_dv
dy . 8_}/) _ ldx dx
i ify =4 Yo dx dx
ie. ity = = then 3= ==

You need to remember this rule. The order in the numerator is
important. One way to remember it is by using the old word for a
computer monitor — visual display unit’ or VDU. So, VDU comes first.

: sinx : ; .
For example, if y = & then using u = sinx and v = x? gives

d_y _ x*cosx — 2xsinx _ xcosx — 2sinx

dx x* 32

Alternatively, writing y as a quotient, i.e. y = x ?sinx, and using the

Xcosx — 2sinx

d
product rule gives &y = —2x3sinx + x 2 cosx = e

The disadvantage of writing a quotient as a product is that the
simplification of the result is often complicated.

Exercise 3.7b

Use the quotient rule to find % when vy is:
. _ sinx X
(@ tmx(— cosx) d g
)
(b) i (e) cotx
(©) Cos X

VX
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3.8

Learning outcomes

m To derive the chain rule and to
use it to differentiate composite
functions

You needto know

The limit theorems

The meaning of a composite
function

m The differentials of simple
functions

m How to differentiate a product
and quotient of functions

The chain rule

Differentiating a composite function
When y is a composite function, i.e. when y = gf{x] where u = f(x), we
can write y = glu).

If 3x is a small increase in the value of x and 3y and du are the
corresponding increases in y and u, then

oy Y _ du

3 du " dx
As dx — 0,8y and du also approach zero.

dv _ . (BY) _
Therefore p lim |z

Bx—0

ﬁ_ya_u)
ox >

SXE}[}(BH Ox
» 3}’) ou
= lim [2%) x lim (3]
dy  du
T dx
i.e E}: = Elz X du
) de du
This is known as the chain rule and can be used to differentiate a
composite function gf(x) by making the substitution u = (x|

For example, when y = (2x + 3)¢, usingu = 2x + 1 gives y = u®

then g% = 6u® and (cilz =9
dv _dy _ du

dy_ 5 — 5
E_azxa;gwes &—(m X2 =12u

W ) dy .
Substituting 2x + 1 for u gives e 12(2x + 1)

You will not usually be given the substitution, so you need to recognise
f(x) when y = gf(x]

Example
Find f'(x) when f(x) = V2x> — 5

Lety =v2x> — 5 thenif u=2x> -5 y=vu = u

du _fyooanqg & _ L4 1
Therefore y: = 4x and il S
d d dy
T L

\-
= 2x
N
flx)=__2x




Example

Differentiate sin(SB + %) with respect to 6.

When @ is the variable, we replace x with 6.

Lety = sin(39+ %) and u = 39+% then y = sinu

d d
Using d_)f; = %% X % with %% = 3 and d—i = cosu gives
% = (cosu)(3)
=3 cos(SB + %)

After a bit of practice with simpler functions, you should be able to make

the substitution mentally and write down the differential directly.

For example, you could go straight from

d
y=23x— 1) to &y = (2)(3)(3)(3x — 1)2
= 18(3x — 1)
Example
d
Find E}f wheny = TXTZST

We could use the quotient rule for this, but by writing the equation as
v = 2(x — 3)7!, we can use the chain rule: i.e.

d
y=2x—3" = & =(2)1)x-23)">

dy 2

¥ & TREOR

Exercise 3.8a

1 Differentiate each function with respect to x.

(a) (3x+ 4)* (d) cos®x
() (2-xp (&)
(c) sin2x

2 Differentiate cos® 8 with respect to 6.

. dy _
3 Fmdawheny—

Vx?2 + 1

Section 3 Calculus 1
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To differentiate more complicated functions, it is sensible to write down
the substitutions.

Example

oy _ i
Find g Biven y = (3x — 2]25111(2}( — %')

This is the product of two composite functions. We will start by
finding the differential of each composite function and then apply the
product rule,

Lett=(3x — 2)2andu=3x—2 so t = u?

dt _ du _
= aE—Zu anddX—S

dt _ dt  du

then i
= 6u

= 6(3x — 2)

Lets = sin(Zx—%) and u = (ZX—%) S0 § = sinu

= %zland%zmsu
ds _ds . du

then g

= (cos u)(2)

= _m

= 2cos (2 3)
Now using the product rule gives
dy _ ds dt
& = t& = S&

= (3x — 2)2 xzcos(’zx—%) + sin(Zx—%) X 6(3x — 2)

= 2(3x — 2][[3;: ~ 2) cos(2x - %) + 3sin(2x — %)]

Extending the chain rule

We can extend the chain rule to cover functions that are a composite
of three functions, i.e. where y = hgf|x], by using v = h(v) and v = glu)
where u = f(x) and then using the extended version of the chain rule, i.e.

dv dy dv _ du

T dv du X dx
For example, when y = |/cos(x? + 1),
thenu =x*+ 1 and v = cosu so y = v2



then %}z %V"E X (—sinu) X 2x

= %cos_{’u X (—sinu) X 2x
xsinx? + 1)

Jcos(x? + 1)

Example

DLEferentlate 2[3; =

First we can write - 7 3 sin?(3x — 1)

1
sin?(3x — 1
Now sin~%(3x — 1) = hgf(x]
where f{x) = (3x — 1),
glx) = sinx and h(x) =x?
so we need two substitutions.
Lety = sin 2(3x — 1),
u=3x-1
and v = sinu
then y = v?
then j); g X g; X g;‘:

; dy _3
gives E——ZV X cosu X 3

—6(sinu) 3 cosu

6cos(3x — 1)
T sind(3x — 1]

Exercise 3.8b

1 Differentiate [2x — 1)*/x* — 1 with respect to x.

dy
2 Fmd@wheny— coq(ZB— E) sin” 6
3 Find f'(x) when f(x) = sin[{x + 4)]

4 F'md%wheny: V14 (3x — 1)
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3.9 Parametric and general differentiation

dy _ . . dx

Learm'ng outcomes The formula E =1= dy

This is a formula we need to be able to differentiate a parametric

dy
dx equation.

m Tofind e

a curve is given parametrically

when the equation of

- dy . ¥y L oox
Wheny = {0, then g = limt = lim1 + &)

dy i [X . dx
You need to know BUGHp-—0pER—208 G o= 1 Té,fﬁ%(@): 1+ %
B The meaning of parametric ie. %x}: =1+ g_X_
equations v
m How to differentiate simple Parametric differentiation
functions

d
When the equation of a curve is given parametrically, we can find &y in

m The product rule, quotient rule i ——

and chain rule

- dy d
m The limit theorems If x = f(t) and y = g(t), then the chain rule gives E}/ = —): X fl—d;
1 dt — b g
Using the formula above, = 15
dy _dy  dt y _dy _ dx
B0 g Xep becomes e
dy _ g'lt)
then& =)
For example, when x =t and y = ” i I then
% = 2t and ((j‘l_}t} = —ﬁ Using the quotient rule
dy _dv  d«
de  dr  dt
S
e+ &
R S
o2t + 1)

Exercise 3.9a

d
Find Ey in terms of the parameter when:
(@) y=t2x=1—12° (© x=4,y=(1+1p

t

(b) y=cosf,x =2sind

General differentiation

In the previous topics we have given the differentials of various types of
functions and derived rules for combinations of functions. These results
are summarised in the table.



dy
y i General results
¢ (a constant] 0 %[f[x] + gix)) = f'lx) + g'{x)
X7 nx"! %[af[x]] = al'(x)
. | dy _dv  du
ax anx® ! do™0: X
: ' dy . dx
sinx COSX e 1% dy
COSX —sinx %[uv] = u% + V%
d "% - “%
uy
tan x secx E(?) = 72

Any of these results can be used directly unless their derivation is
asked for.

The next exercise gives practice in recognising the type of function and
applying the most direct method to find its differential. Remember that
some functions may fall into more than one category, so two rules may

be needed. For example, is a quotient and the denominator is

Vdx —
a composite function. Remember also that you may be able to simplify
some expressions before differentiating them.

Exercise 3.9b
., dy .
1 Find T when y is equal to:
Pl
(@ sinpe — 1) () I (g (1+x)sinx (@) 15X

2 Differentiate each of the following functions with respect to x.

(a) Wir (e) (4 —x3)° (i) x*cos 2x
E =i ; — 13

(6} s Batnm OFF
1 — 2

(© COS X (&) %2 —}: dx — 4

(d) (1 + 2x)tanx () S2X

d
3 Find Ey in terms of the parameter when:

(fa) x=t2+1,y=t+2 (c) x=cosf,y=3tan @
IR o |
{b)X_l_i_try_ tZ
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3.10 Rates of change

Learning outcomes

m Tosolve rates of change
problems

increase in x

You needto know

m Thechainrule

m How to differentiate simple
functions

Rate of increase

The gradient of a straight line, y = mx + ¢, is calculated from
increase in
4 from one point on the line to another point on the line.
Therefore the gradient measures the rate at which y increases per unit
increase in x, i.e. the rate of increase of y with respect to x.

dy . : .

Jx Bives the gradient of the tangent at a point on the curve y = f(x],

d
S0 &y is a measure of the rate at which v is increasing with respect

to x at that point on the curve.

For example, at the point where Ya ,
d .
XZZOHmECUWSYZXZ,EVZZXZ-q- 81 3
So where x = 2, y is increasing at the
rate of 4 units for every unit increase 67
in x.
Note that this is only true wherex = 2 4
because the rate at which y changes
varies as x varies. 2
. d ¥
At the point where x = =2, Ey = —4 i
The negative sign shows that y is J4 J9 O] & o3 4 X
decreasing at 4 units per unit increase ‘

in x,

Connected rates of change

The chain rule is useful when we know the relationship between the
variables v and x, we know the rate of change of v with respect to a
variable u and we want to find the rate of change of x with respect to u.

Example
The equation of a curveisy = 4 — %
A point P is moving along the curve so that the y-coordinate is

increasing at the constant rate of 0.01 units per second.
Find the rate at which the x-coordinate is increasing when x = 1

d d
The rate at which y is increasing is cl_)t}’ S0 d_}t] = 0.01 where t seconds

is the time.

T dy _ 1
y=4 % therefore e

The rate of change of x with respect to t is %
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dy _dy de . dt _1 . _
qung Exagwesd}( PTO.Ol——Z

Now using (SIX o l/% gives % = %20

When x = 1, iig =0.01
t
Therefore when x = 1, x is increasing at the rate of 0.01 units per
second.
Example

Air is leaking out of a spherical balloon at the constant rate of 0.3 cm?
per second.

Find the rate of change of the radius when the volume of the balloon
is 36 cm?.

The volume of a sphere is V = 271%) Give your answer correct to one
P 3
significant figure,

When V = 36,1 = 7=

VT
We require % when the volume is decreasing at the rate of

0.3 cm? per second, i.e. when (g;/ -0.3

FromV = 11-1“"‘, g = 4q7?
Usmg?ir—vzﬂg g;gwe-a 4qrt = —DSXS;:%:—%WZ
dr dt 3
Then'g; = Vy = ~30m7
When r = zi aﬁ -——L — 0006
v 1207

The radius is decreasing at the rate of 0.006 cm per second.

Exercise 3.10

1 The area of a circular oil slick on a lake is increasing at the rate of
2. m? per second.

Find the rate of change of the radius of the slick when the radius is
3 m. Give your answer correct to three significant figures.

2 The equation of a curve is y = 2sin 6. A point is rnovmg along the
curve so that 6 is increasing at the constant rate of 77 radians per
second. Find the rate of change of y when 6 = £

3 Aright circular cone has its axis vertical and its vertex downwards. It
contains grain, which is pouring out of a hole in the vertex at the rate
of 50 cm? per second. The semi-vertical angle of the cone is éfn‘. Find
the rate of change of the height of grain in the cone when the radius
of the circular surface of the grain is 2 m.




3.11

Learning outcomes

m To determine whether a function

is increasing or decreasing

You needto know

How to find the rate of change of
a function

How to differentiate simple
functions

How to differentiate products,
quotients and composite
functions

How to solve quadratic and
rational inequalities

Increasing and decreasing functions

Increasing and decreasing functions

d
The value of & at any point on a curve whose equation is y = f(x)

measures the rate at which y is increasing as x increases, i.e. f'(x]
measures the rate at which the function f{x) is increasing with respect
to x.

Consider, for example, the function given by f(x) = x3 — 3x + 2

The graph shows the relationship between the curves
y = fix)andy = f'(x)

PE

T
fx) = 3x* — 3 =11
! “,l 5
flx) = x° — 3% + 2}/ SIS S N
‘\l *
3 9 s 0 Ad

This graph shows that f(x) is decreasing as x increases where f'(x) is below
the x-axis (i.e. f'(x) < 0), and f|x) is increasing as x increases where f'(x] is
above the x-axis [i.e. f'[x] > 0).

Therefore {'(x) > 0 when f(x) is increasing
and f'(x) < 0 when f(x) is decreasing,.

So, to determine whether a function is increasing or decreasing, we need
to determine whether {'(x) is positive or negative.

Example

Find the range of values of x for which the function
flx) =3x>—-2x+ 4

is decreasing.

flx) =3x2 —2x+ 4
= f'x)=6x—2
f'[x) < 0 when 6x <2, i.e. whenx < %

Therefore f(x) is decreasing for values of x less than 1,5




x<—4, —4<x<-2, 2<x<-1 —-1<x<2and x> 2
Note that [(x + 1}{x + 4)]*> = 0 for all values of x.
The table shows the sign of f'{x) for the different ranges of x.

Example
Determine the range of values of x for which fx) = ﬁ is increasing.
_ 2x
f[X]_XZ-I— 5x + 4
i) = 2x? + 5x + 4] — 2x(2x + 5)
= Ha= [x* + 5x + 4)?
. —2x2+ 8
© 2+ 5x + 4)?
22 =x){2+=]
x4+ 1){x + 42
f'(x) is zero when x = —2 and x = 2 and f'(x) is undefined when
x = —4 and x = —1 so we need to investigate the sign of {f'(x) when

x>2

Xx<-4 -4<x<-2 -2<x<-1 -1<x<2 |
L + =+ +
Lit--3¢ — — +
x+1)x+42 + | + +
2(2 — x)(2 + x|
[+ 1)x + 42 - ¥ F

Therefore f'(x) > 0for -2 <x < —1 andfor —1 <x <2,
hence f(x) is increasing for —2 <x < —1 andfor —1 <x <2

Exercise 3.11

1 Find the range of values of x for which the function given by
flx) =x* — 4x®> + 4x
is increasing.

2 Find the range of values of x for which the function given by

2x
L

is decreasing.
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312

Learning outcomes

m To define and find stationary
values

You needto know

m How to differentiate simple
functions

m How to differentiate products,
quotients and composite
functions

Stationary values

Stationary values

We have seen in Topic 3.11 that when f'(x] is positive, f[x) is increasing
as x increases, and that when f'|x) is negative, then f(x) is decreasing as x
increases.

There may be points where f[x] is neither increasing nor decreasing so
f'(x) is neither positive nor negative but is equal to zero.

The value of f(x] at such a point is called a stationary value.
Therefore {'(x) = 0 = f(x) has a stationary value.
Consider the graph of y = f(x]. ¥

At the points A, B and C, f(x),
and therefore y, is neither A
increasing nor decreasing.
Therefore the values of y at
these points are stationary
values,

dy B

N"

i.e.azt}:-yhasa 5 ’
stationary value.

The points on the graph where y has a stationary value are called
stationary points.

At stationary points, the gradients of the tangents to the curve are zero,
i.e. the tangents are parallel to the x-axis.

y or f{x) has a stationary
value
; 2 dy
Therefore at a stationary point T OF f'x),=0
the tangent to the curve is
parallel to the axis

Example
Find the stationary values of the function given by

fix)=x3—-2x2+x—-1

fix)=x3-2x>+x-1 = {lx)=3x2—-4dx +1
At stationary values, f'x) = 0,

= 3x*—-4x+1=0

= [3x—1)x—1)=0

= X_%OI‘XZl

=3
Whenxzé,f[x] 221—?—%+%— 1= —%andwhenx =1, f{x) = -1

Therefore the stationary values of f(x) are —1 and —%




Example
Show that the curve whose equation is y = m has no
stationary points.

__ 1 S S
Yo T x+1 [X—ll2 dr ~ E~IP
At statlonary values, — dX = 0, but there are no values of x for
whmh llg =0,

_ 1 P

therefore the curve y = = g has no stationary values.

Example

Show that the curve whose equation is y = [X—Xillz has only one
stationary point and find it.

- X d}’ x+1
Y= =1 7 &~ [x-1pP

d
The curve has a stationary point where Ey =0,

; o x+1
i.e. where x — ”3—0

There is only one value of x for which — [; j 11]3 =0iex=-1

Therefore the curve has only one stationary point.

Whenx = -1,y = —i, so the stationary point is the point (—1, —i].

Example

The curve y = ax® + bx + 8 has a stationary value of 5 whenx = 1.

Find the values of @ and b.

y=ax*+bx + 8 :—%:2ax+b

y has a stationary value of 5 when x = 1,
5=a+b+8 =a+b=-3 [1]

and 2a+b=0 (2]

Solving [1] and [2] simultaneously givesa = 3 and b = —6

Exercise 3.12

1 Find the stationary value of the function given by f(x) =x2 — 5x + 1

2 Find the stationary value of the function given
by flx) = x> — 6x2 + 12x + 2

X2

x+1

3 Find the stationary points on the curve y =

4 Show that there are no stationary points on the curve

- Ax
Y=x¥+5x-4
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3.13 Determining the nature of stationary points

Learning outcomes

To define maximum and
minimum points and points of
inflexion

To distinguish between
stationary points

To define the second differential
of a function

You needto know

How to differentiate simple
functions

How to find stationary values

How to determine whether
a function is increasing or
decreasing

Turning points

A curve y = f(x] can have several stationary points and the shape of the
curve close to one of these points belongs to three different types.

Vi

Moving along the curve in the positive direction of the x-axis:

1 Near the point A, the gradient of the curve goes from positive through
ZEero to negative.

A is called a maximum turning point.

The value of y at A is called the maximum value of y (or of f(x)).

2 Near the point B, the gradient of the curve goes from negative through
ZEero to positive.

B is called a minimum turning point.

The value of y at A is called the minimum value of y {or of f{x)).

3 At C the gradient is zero but the gradient does not change sign as
a point on the curve moves through C. The curve does not turn
here, but the sense of curvature does change from clockwise to
anticlockwise.

A point on a curve at which the curvature changes from clockwise
to anticlockwise (and vice versa) is called a point of inflexion.

There are two other points in the diagram where the sense of curvature
changes, one between A and B and one between B and C. Therefore
the gradient at a point of inflexion is not necessarily zero. However the
gradient at a turning point is zero.

Note that the terms maximum and minimum do not mean greatest value
and least value. They refer only to the behaviour of a function close to its
stationary values.



Distinguishing between stationary values
There are three ways of distinguishing between stationary values.

Ya

First method

Look at the points on either side of, and close to, the stationary values.

For A (a maximum value):

For B (a minimum value):

For C (a point of inflexion):

yatA; <yatA
yatA, <yatA
yatB, >yatB
yatB, >yatB
yatC, <yatC
yatC,>=vatC

We can summarise these observations in a table:

Maximum

Minimum Inflexion

Values of y
either side of
the stationary
value

Both smaller

One smaller and
one larger

Both larger

Second method

For this method we look at the gradient on either side of, and close to, the

stationary values.
; dy dy dy
For A (a maximum value): EatA1>0, &atA— 0, EatA2<[}
0 dy dy dy
For B (a minimum value): a2 B, <0, &atB =0, o &t B, >0
. . . dv dy dy
For C (a point of inflexion): &atcl >0, EatCz 0, =—atC, >0
These results are summarised in the table:
Maximum Minimum Inflexion
d
Signof&y + 0 - - 0 + + 0 + or — O
either side, - — L
and at, a / \ % o £ /
stationary value

Section 3 Calculus 1
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Third method
For A (a maximum value): As a point moves along the curve

d
through A, then as x increases &y goes
from positive to negative

Ly d ;
50 g decreases as x increases.

d
Therefore E}/ is a decreasing function
at A.

For B (a minimum value): As a point moves along the curve
d
through B, then as x increases Ey goes
from negative to positive

Y. ;
S0 &H‘JCI‘BGSBS dsS X ICreascs.

Therefore % is an increasing function
at A.

For C (a point of inflexion): As a point moves along the curve
through C, then as x increases % goes
from positive to zero then increases
again to positive values.

Therefore % itself has a stationary

value at C.
Second derivative

d d
The rate of change of Ey is the derivative of &y with respect to x. This is

2
called the second derivative of y and is denoted by % or when y = f(x),
by f'{x).

For example, when y = x3 — 2x2,

d
Ey = 3x? — 4x and
42
& = dxlee - 4

=6x — 4

Returning to the third method for distinguishing between stationary
points, we can now express the observations above in terms of the second
derivative.

d d
At A, &y is a decreasing function therefore % <0

d d
At B, Ey is an increasing function therefore % >0

dy : dy
At C, & has a stationary value, therefore o= 0



dz
This is the easiest method to use. However E{ can also be zero at a

d
maximum or minimum value, so when % = 0 either the first or second
method has to be used to distinguish between stationary values of y.

These results are summarised in the table:

Maximum Minimum
i sz : .
Sign of G2 ata Negative Positive
stationary value (or zero) (or zero)
Example

Find the stationary points on the curve y = 3x* — 4x* + 2 and
distinguish between them.

d
y=3x—ar+2 = &= 12— 122

d
At stationary points, Ey =0 = 12x-12x2=0
=xx~ 1}=0
=x=0o0rx=1
Whenx =0, y=2 and whenx =1, y =1
Therefore (0, 2) and (1, 1) are stationary points.
d2
T = 36 - 24x
d2
Whenx = 1, Ejgz 36 —24>0
- (1, 1) is a minimum point.

d2
When x = 0, E); = 0 which is inconclusive, so we look at the signs

d
of &y each sideofx = 0

d
When x = —%’ Ey: 12!‘%]3— 12{_%]24 0
dy _12 12
LA .. 13 13
When x = 3, i . . <0

Therefore (0, 1) is a point of inflexion.

Exercise 3.13

Find the stationary points on the curve y = f{x] and distinguish between
them when f(x) is:

(a) x?—3x2+3x -1 (b) x** — 2x2+x+2 (o) [x—2)*

Section 3 Calculus 1



314 Curve sketching

Learning outcomes

To use a variety of techniques to
sketch curves

You needto know

How to find stationary points
and distinguish between them

The meaning of an asymptote
How to find limits

How to solve rational
inequalities

How to convert an improper
rational function to a proper
rational function

How to find the range of values
that a rational function can take

How to determine whether
a function is increasing or
decreasing

Features to look for when sketching curves

To sketch a curve whose shape is unknown, we can often find several
features by observation and by calculation from the equation of the curve.

The main features to look for are:
m where the curve crosses the axes
stationary points

vertical and horizontal asymptotes

the range of values of y

the behaviour of y as x — = oo
m where the function is increasing or decreasing.

Not all of these features need to be considered for a particular curve.
A picture of the curve can be built up by marking these features on a
diagram as you find them.

Example

Sketch the curve whose equation isy = H
First find where the curve crosses the axes:
whenx =0,y = l% andwheny =0,x =3

Therefore the curve goes through the points (0, l%] and (3, 0).

Now look for asymptotes:

a8 X — * oq, [ so the line y = 1 is an asymptote.

=2
The value of y is undefined when x = 2 so the line x = 2 is an
asymptote

and)}'_l_glI (l—ﬁ)z—oo and }_LFE (I—X—)Zoo

These findings are shown on the diagram.

y.i
G

N

i e

4

......... H N > < O T O
| (@]

=4

|
e
DN DR S T

|




Next investigate stationary points:

_xXx—3

Y=x—-2

o ) e
=1 x—2
=1-(x-2)"!
dvy 1

& w2

There are no values of x for which % = 0 so there are no stationary

values.

d
Also Ey > 0 for all values of x except x = 2, therefore y is increasing as

X increases.

Check the range of values of y:

_x—d _2y—3
Y e T E T e

therefore the curve does not cross the liney = 1

50 x has real values except wheny =1,

We now have enough information to sketch the curve.

|
=]
1
et

Example
x— 1)

Sketch the curve y = = 1]

Check for intercepts on the axes:

when x = 0, y is undefined. Therefore the curve does not cross the
y-axis.

when vy = 0, x = 1. This is a repeated root, therefore the curve
touches the x-axis at (1, 0.

(This must be a stationary point.)

Section 3 Calculus 1
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Check for asymptotes:
y is undefined when x = O and x = %,

therefore the linesx = 0 and x = é are vertical asymptotes.

x—=1)2
X —x
_ X Iyt ]
x? — x
Y B
T2 4x—2x
ol OEE B
T2 T (- 1)

1 3x—2
ARIHC O (E 2x(2x — 1]

SR I Cal
and as x — ao,(z (2% = 1

) k. from below
2
i from above
3 :

Therefore y = % is a horizontal asymptote.

I

When y

—

1_1__3x—-2 3x —2 _
22 2x(2x — 1] 7 2x{2x — 1)

Therefore the curve crosses the line y = éwhere X =

Wit Wt

=== 2o
X

I
-------%'-----'--

This diagram shows the features found so far.

As the curve crosses the asymptote y = % only once, and does not

cross the vertical asymptotes, it is clear that the point (1, 0) is a
minimum point.

We can also deduce thaty > % when x < 0

and y > 0whenx>%

We now check for other stationary points.
.. e dy  2{x — 1){2x* —x) — (x — 1)*4x — 1)
Y Exx = 1) T dx 22x — 1)

_ = 1)(3x - 1)
= TEx -1

%:Owhenxz landé
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Therefore y has stationary points where x = 1 and where x = +

3
(-3)
Whenx = 1, y = 0 and when x = %,y == —4%
()(=3)
We will use the values of x either side of the stationary points to
determine their nature.

(The values chosen must be close to the value of x at the stationary
point and the curve must be continuous between those values.)

1 1 5 3
X 3 3 3 z 1 2
y <4 —4 <-4 >0 0 >0

Therefore (%, —4) is a maximum point and (1, 0) is a minimum point.

We could also check the range of values that y can take and the values
of x for which y is increasing and decreasing, but we now have enough
information to sketch the curve.

/2 '
.......................... ..{L;.....é..........c.....
T ¥ T b
{4 ) O i 2 4 x
=9 E
— E
=5 .

Exercise 3.714

Sketch the graphs of the following curves.

1

3 Y=7-x
_ x

2 Y=3—%
2

3 X




3.15 Tangents and normals

Learning outcomes

m To find the equations of tangents
and normals to curves including
curves whose equations are
given parametrically

You needto know

m How to differentiate simple
functions

m How to use the product rule, the
quotient rule and the chain rule
to differentiate functions

m Therelationship between the
gradients of perpendicular lines

m How to find the equation of a
straight line

Equations of tangents and normals

d
We know that Ey represents the gradient function of a curve whose
equation is y = f[x]

We can therefore find the gradient of the curve, and hence the gradient of
the tangent to the curve, at any given point on the curve.

When x = a, y = f(a) and the gradient at that point is {'(a).

Therefore the equation of the tangent to the curve y = f{x) at the point
|a, f(a)) is given by

y — fla) = {'|a)(x — a)

The normal to a curve is a line perpendicular to the tangent and through
the point of contact of the tangent. Therefore at the point (g, fla)) the

gradient of the normal is — f,[l—ﬂ], and the equation of the normal to the

curve at the point y = f(x) at the point (g, f{a)) is given by

1
y — fla) = —WEX—HJ
For example, wheny = vx + 1, d_y = %
dx  2/x + 1
Whenx = 3 d—y:L so the v L1}
rdx - 4t y= 14 —dx
gradient of the curve at the T 4- _| i
" 4 V=X >
point where x = 3 is N T Ayx T 1
2—
~( \ i
120 2 & 6 8 1p %
2 \(‘

When x = 3, y = 2, therefore the line through (3, 2) with gradient i isa
tangent to the curve at the point (3, 2).

The equation of this tangentisy — 2 = i [x — 3]
= 4y =x+5
The equation of the normal at this point
is y—2=—-4(x—-3
= y =14 — 4x
Equations of tangents and normals for curves whose
equations are parametric

When the equation of a curve is given as x = f(t) and y = g[t), a point on
the curve can be expressed as (f(t), g(t)) and the gradient function is given

dy _dy . dx _ g'lt)
Y& T T d T
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Therefore the equation of a tangent to the curve can be given as

y ~ git) = 519 (x ~ fi)

Then any particular value of ¢ gives the equation of the tangent at that
point.

Similarly, the equation of a normal to the curve can be given as

fit)
g'lt)

y— gt)=— (x — fit))

Example
Find the equation of the tangent and the normal to the curve

x = 3cos 6, y = 4sin d, at the point where 9=%

fl6) = 3cos 6 and g(6) = 4sind
= f{'(6) = —3sin6 and g'(0) = 4cos 0
so the equation of a tangent to this curve is

4cosd
3sin 6

y — 4sinf = — [x — 3cos 0)

(This is a general equation; it gives the equation of a tangent to the
curve at any point on the curve.)

Therefore the equation of the tangent at the point where 6 = % is
given by

47
p- o= afg) o yoae -2

The equation of a normal to this curve is given by

3sinf
4cos @

y — 4sinf = [x — 3cos 8

(Again this is a general equation giving the equation of a normal at
any point on the curve.)

So the equation of the normal at the point where 6 = % is given by
3) f )
—4f) ===~ 3(g)) = y-2=% k-3

Exercise 3.15

1 Find the equation of the tangent and normal to the curve whose

equation is y = [_XTZST at the point where x = 7

2 Find the equations of the tangent and normal to the curve whose

=t—1

y _ 1
equations are X = y——, ¥




3.16 Integration

Learning outcomes

m To define integration as the
reverse of differentiation and
to apply basic principles of
integration

You needto know

m The differentials of simple
functions

Reversing differentiation
When x? is differentiated with respect to x the derivative is 2x.

Therefore when the derivative of an unknown function is 2x then the
unknown function could be x2.

This process of finding a function from its derivative, which reverses the
operation of differentiating, is called integration.

The constant of integration

We know that 2x is the derivative of x2, but it is also the derivative of
x%+ 5 %t —3

In fact, 2x is the derivative of x* + ¢, where c is any constant.

Therefore the result of integrating 2x is not a unique function but is of
the form x? + ¢ where ¢ is any constant.

c is called the constant of integration.

x? + ¢ is called the integral of 2x with respect to x and is written as
fZX dx =x*+¢
where f ..dx means ‘the integral of ... with respect to x'.

Integrating any function reverses the process of differentiating, so for any
function f{x) we have

[#(x)dx = fx) + ¢
For example, differentiating x® with respect to x gives 3x2
S0 ISXZdX = x3 + ¢ and it follows that szdX = %X3 +6

(We do not need to write —;c in the second form, as ¢ represents any
constant in either expression. |

Now we know that the derivative of x* + Lis (n + 1]x" so

1
4] — 1+ 1

e
fX dX ].X C

Therefore to integrate a power of x, increase that power by 1 and
divide by the new power.

This rule can be used to integrate any power of x except —1.

_6 _ 3
For example, f6x3dx = ZX“ +c= ZX“ +.6;

3dx = 3x°dx =3x + ¢ and |4x3dx="xl+c=-2x2+¢
=



Exercise 3.76a

Find the following integrals.
(a) [5xdx () [6dx () Jx2dx
(b) [ax7dx (d) [4x3dx () [5x6dx

Families of curves

When %ZZX, then y=f2xdx=x2+c

Therefore the equation v = x* + ¢ represents a family of curves.
Each value of ¢ gives a different member of the family.

The graph shows some members of this family.

\\\ ol 1] /A
A\
\

\

"“-\"“-‘-\'.:

- ;/ /
Vo2 o

\

.
\\
i

To find the equation of a particular member, we need to know a point on
the curve.

For example, if y = ISXZdX
then y=x+c¢

If we also know that (2, 5] is a point on the curve we can find the value of
¢ and hence the equation of the particular curve.

Whenx=2andy=3, y=x*+¢ = 3=8+c = c=-5

Therefore the equation of the curveisy = x3 — 5

Exercise 3.16b

1 Find the equation of the curve that goes through (1, 5) and for
which y = féxldx

2 Find the equation of the curve that goes through (—1, 2) and for
which y = f9x“‘dx
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3.17

Learning outcomes

To define the integral of sums
and differences of functions

You needto know

The differentials of simple
functions

The meaning of integration as
the reverse of differentiation

The meaning of the constant of
integration

How to solve a pair of
simultaneous equations

The effect on the equation of a
curve by a translation parallel to
the y-axis

Integration of sums and differences of
functions

Integration of a sum or difference of functions
When y = f(x) + g[x) we know that % = f'(x] + g'|x)
Therefore it follows that f(f’[x] +g'lx))dx = flx) + g(x) + ¢
For example, f[cosx + sinx)dx = sinx — cosx + ¢

dy
When v = f(x) — g[x) we know that e f'ix) — g'(x)
Therefore it follows that f(f‘[x] —g'lx))dx = f[x) — g[x] + ¢

For example, f[ZX —sinx)dx = x2 4 cosx + ¢ and
f[l —Wxjde=x—x*+¢c

Integration of a multiple of a function
When y = af(x) we know that d&y = af'(x)
Therefore faf'[x] = aflx) + ¢

For example, fGXZdX = fS[ZXZ] dx=2x>+¢

To summarise,

[(Ex) = g(x))dx = [f(x)dx = [g(x)dx and [(af(x))dx = aff(x)dx

Note that f(f[x] x/+ g|x)) dx is not equal to ff[x] dx x/+ fg[x] dx

Example
Find f[x-” — 4 cosx)dx

f[X-” — dcosx)dx = fx-”dx - 4fcosxdx

= %X“— 4sinx + ¢

Exercise 3.17a

Find the following integrals:
(a) [ox*dx

(b) fX[3X3 — 4)dx (Hint: Multiply out the bracket.)

(c) f[S sinx — 6 cosx)dx
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Example

dZ
The equation of a curve is such that E}: = 6x — 14. Two points on the curve have coordinates {1, —2) and

(—1, —12J. Find the equation of the curve.

dy . oy ; : 2
% is the second derivative of y with respect to x, so we need to integrate twice.

d
The first integral gives Ey

%=6X-14 - %=f[6x—l4]dx - %=3X2—14x+c

We need to integrate again to find an expression for y so we need to introduce another unknown constant.

y=f[3x2—14x+c]dx = y=x—7x*+cx+d

We can now use the coordinates of the points on the curve to find the values of ¢ and d.
When x=1,y=-2, = -2=-6+c+d, iec+d=4 [1]
When x=-1,y=-12 = —-12=-8—c+d, ie. c—d=4 [2]
Solving [1] and [2] simultaneously gives ¢ = 4 and d = 0

Therefore y = x* — 7x? + 4x

Example

d
The equations of a family of curves is given by &y =4x—-3

Sketch the graphs of two members of this family.

%:4X_3 = y=[lax - 3)dx = 2% — 3x + ¢

We can use any value of ¢ to get one member of the family.
The simplestisc = 0

This gives y = 2x* — 3x = x(2x — 3) which is a parabola that passes
through O and (% 0).

Then any other value of ¢ translates the curve by ¢ units up the y-axis. -2 -1 0 Y 2 3 X

The sketch showsy = 2x* — 3x and y = 2x> — 3x + 2

Exercise 3.17b

1

d
The equation of a curve is such that E)/ = 3cosx and the curve

passes through the point (1—21:, 4).

Find the equation of the curve.

A curve passes through the points (0, 1) and (1, 6). The equation of
d2
the curve is such that a); = 6x

Find the equation of the curve.




3.18 Integration using substitution

Learning outcomes

m To use substitution to integrate
functions

You needto know

The chain rule

The differentials of simple
functions

m Theintegrals of simple functions

Integration using substitution

When we use the chain rule to differentiate a composite function the
result is often a product of functions. For example, when y = (x? — 4x)%,
then with u = x® — 4x so that y = u?*, the chain rule gives

dy — 3 2 = 2 3 3

3 = 4u3(3x* — 4] = 4(3x> — 4){x* — 4x)

In general it u = f{x) andy = glu) then using the chain rule gives

dy _dy

P R

Therefore, using integration as the reverse of differentiation
Jelw) Wax =gu)+c [

Now fg’[u]du =glu) + ¢ (2]

Comparing [1] and [2] gives
fg’[u] du =glu) +c¢
Replacing g’ (u) by f{u) gives
ff[u] Ldx = [flu)du
Therefore e g OX= ...du

This means that integrating ([a function of u) = ) with respect to x is

equivalent to integrating [the same function of u) with respect to u.

du

This means that the relationship .. e dx = ... du is not an equation or
an identity — it is a pair of equivalent operations.
For example, to find fSXZ[X-” + 4)*dx we can use the substitution

u=x+4

This gives fSXZ[X-” + 4)*dx = f3X2L14dX

Then as %Xli = 3x2, %dx = ...du becomes ...3x*dx = ...du
% f3X2u4dX = fu“du Since ... 3x%dx = ...du
= %u5 +c

=1(x}+4)5+¢



Example
Use the substitution u = sinx to find fcosx sin?x dx

g = .du = ..cosxdx =..du

Therefore fcosxsi_nzxdx = fuzdu

1
=sul+c

= %sin-”x +6

Example
Use the substitution u = v1 + x to find f(xv'l + x)dx

u=vyl+x = %z%[l—l—x]"%aﬂd w—-1=x
%% =.du = ...%[l-l—x]"i?dxz...du

= .dx=..2/1+xdu=..2udu

Hence f(Xv’l Fx)dx = f[ui — 1)(u){2u) du = f[Zu“ — 2u® du

o Fel8 Bl
=zu Fu +c

%[1+X1%—%[1+X]%+C

Z(1+x)(3(1+x) —5)+c

= % (3x — 21 + x)3 + ¢

Exercise 3.18

1

2

Use the substitution u = 2x to find fcos 2x dx
Use the substitution u = x> + 1 to find féx (x + 1)3dx

Use the substitution u = x — 4 to find f[x + 1)jx — 4)°du

4 Use the substitution u = tan 6 to find fsecz ftan? 0de

ol g
{Hlnt.de(tan 0) = sec? )
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319 Calculus and the area under a curve

Learning outcomes

m To examine the process of
finding the area under a curve

You needto know

m The meaning of limits

B The definition of differentiation
from first principles

Didyou know?

As with many branches of
mathematics, the build up to the full
development of calculus occurred
over many centuries, but the
defining step was made by Sir Isaac
Newton in about 1665-1667.

Gottfried Wilhelm Leibniz
independently made the same step,
but about 8 years after Newton. The
contribution that Leibniz made was
tointroduce symbols that are

still used today (including ig d f)

EX—an

Leibniz is considered by many to be

the founder of modern mathematics.

Calculus

The topics in Section 3 of this book all come under the umbrella name of
calculus.

Calculus is the study of limits, derivatives and integrals; it basically
studies how things change when the rate of change varies.

Our modern world would look very different without calculus. It is used to
model situations that involve change and to predict what will happen when
change takes place. It has applications in almost everything we do today,
from the exploration of space to the development of the tiny microchips
found in electronic devices. Apart from the obvious scientific uses, calculus
covers a range of disciplines such as economics and graphic design.

The area under a curve
We will now look at how the fundamental theorem of calculus is derived.

Consider the area A in the diagram below enclosed by the curve y = f(x),
the x- and y-axes and the vertical line through a value of x.

VA
y = flx]

o/ X
We can find an approximate value for this area by dividing it into vertical
strips as shown in the next diagram.

A y = flx)




The area of a typical strip of height v and width 8x is y 8x.

The area is then approximately the sum of all the strips.

We write this as A = Zyﬁx where Zyﬁx means the sum of all
x=0 x=0

values of ydx betweenx = 0 and x = a
This approximation improves as dx gets smaller, so we can write
A= aleE]n (Zﬂ: y&x)

Considered this way, the area under a curve is the process that involves
putting together (i.e. integrating) different elements.

We now look at a different approach to finding A.

If A is the area enclosed by the curve y = f{x), the x- and y-axes and the
vertical line through the point (x, v) on the curve, then a small increase in
x, dx, gives a corresponding small increase in A, 8A.

v4 y = fix)

=Y

y
8A is approximately equal to the area of the rectangle of height y and
width 8x,

ie. dA=ydx

% = y and this approximation gets better as 8x — 0

. dA  dA
Now al;}%&x_dx

dA _
hence &7

This gives the connection between finding A as a summation process and
the differential of A with respect to x, i.e. A is the reverse of a differential,
hence

A=fydx

This is called the fundamental theorem of calculus.
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3.20 Definite integration

Learning outcomes

m To define and compute definite

integration

You needto know

How to integrate simple
functions

How to use substitution to
integrate functions

Definite integration

We know that the area between a curve y = f(x], the x- and y-axes and the

line through a value of x is given by fy dx, i.e. by ff[x] dx.
To find this area up to the line x = b, we find f f{x) dx and substitute b for x.
To find this area up to the line x = a, we find f f(x) dx and substitute a for x.

Then the area between the curve, the x-axis and the lines x = a and
x = b is the difference between these two calculations.

"\

]
For example, wheny = x2 + 2, fydx = f[x2 + 2)dx

=%X3+2X+C

Then the areaupto x =1 is %[l]-” +2{1)+c= 2% +c

and the areaupto x =2 is %[2]5 +2(2)+c= 6% +c

Therefore the area between the curve y = x> + 2, the x-axis andx = 1
andx = 2 is

(6% + c) = (2% + c) = 4% Notice that the unknown constant disappears.

b
This process is called definite integration. It is written as f flx) dx and it

means the value of the integrand when x = b minus the value of the
integrand when x = a. The values a and b are called the limits of the
definite integral.

We can write the example above more precisely as
2
_n 2 _ (8 1 _ 1

~£EX2+2JdX_ B +2x]i=(E+4)-(§+2)=43
The unknown constant of integration does not need to be included
because it cancels out. The square brackets show the values of x to be
substituted and the order in which they are to substituted (top one first).
The second value is then subtracted from the first value.

ff[x] dx can be found only when f(x] is continuous fromx =atox = b

1
For example f 1 ()l() dx cannot be found because Xl is undefined when x = 0
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Example
Evaluate f *sinx dx
0

f’s'mx dx = [—cosx]g
)

T

= —cosy (—cos 0]

0-(-1)=1

Exercise 3.20a

Evaluate the following definite integrals:
2 1
3 o 2
(a)j;4xdx (:)L[x 1) dx

(b) f;[zx _ 3)dx (d) ftx — Blike

Definite integration using substitution

In general when we use a substitution u = g(x) to find an integral, we
need to substitute back to give the answer in terms of x. However, we do
not need to do this for a definite integral because we can use the values of
x given as the limits to find the corresponding values of u.

Example

2
Use the substitution u = x> + 2 to evaluate j; x* (x* + 2)4dx

u=x*+2 = ..du=..3x*dx

x=0 =2 ypg=12
and
x=2 = u=10

2 10
fxl (x* + 2)*dx = f éu“du
0 b

= [L ]
E [15u 2

_ 100000 _ 32 _ 99968

15 15 15

Exercise 2.20b

3
1 Use the substitution u = x — 1 to evaluate j; 7lx — 1)¢dx

2 Use the substitution u = sinx to evaluate fdcos x(1 + sinx)?dx
0

1
3 Use the substitution u? = 1 + x? to evaluate f x' 1 + x2dx
0




3.21 Areaunder acurve

Learning outcomes Calculating the area under a curve
m To calculate the area under a From Topics 3.19 and 3.20 we now VA
curve know that the area between the curve '
y = flx), the x-axis and the lines x = a 6 v =flx]
and x = b shown in the diagram is 54
b‘
You needto know the value of [ f(x) dx. 41
m How to integrate simple For example, the area between y = x2, 37
functions thex-axisandx = 1 and x = 2 is 5
o 2 |
[ ] How to evaluate a definite given byf = [%Xa]? - % _ % s % | .
integral 1 1 Jf{xldx
m How to sketch curves | - >
0] a b X
l-
Example
Find the area enclosed by the curve y = (1 — x}(2 + x) and the x-axis.
The curve is a parabola which cuts the x-axisatx = —2 and x = 1 VA

The sketch shows the area required. (It is always sensible to draw a sketch.)

A =£12[1—x][2+x]dx

The area is 4% square units.

--'""k-
(&8
=Y

Exercise 3.27a

Find the area enclosed by each of the following curves, the x-axis and the

lines given.
1 y=4x°, x=0, x=12
2 y=x*4+1,x=-1,x=1

3 y=vX,x=1,x=4

Find the area enclosed by each of the following curves and the x-axis.

4 y=1-x2
5 y=x{1—x]




The area between a curve and the y-axis

The diagram shows the area between the curve y = x* + 1, the y-axis and

the line y = 10.

We can find this area in two different ways.

First method

This uses the fact that the area required is equal to the area of the
bounding rectangle minus the area between the curve and the x-axis.

When y = 10, x = 3 so the area shown is equal to
(area of the rectangle bounded by x= 0,y = 0,x = 3 andy = 10)

— |area between the curve, the x-axis, x = 0 and x = 3]
Therefore the area required = 30 — ]{;s[xz + 1)dx
=30 - %X?’ + XE
=30—{Z+3)-(0}=30-12=18
The area is 18 square units.

Second method
This uses a direct approach.
Consider a horizontal strip of length x and width dy.

The area of this strip is approximately x dy

v=10
The area required = é}]ﬂlﬂ (ZI x oy

10
We know that this limit is equal to f xdy
1

10
Now f x dy means integrate x with respect to y so we need to find x in
1

terms of y.

Fromy=x*+1, x=,y—1

10 9 y
so the required area is f (fy — 1)dy= f urdu = [% ui]:’; = 18 squate units
1 0 :
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VA
10

o
[
w
o

N

yll
10

oy y
6_

Using the substitutionu =y — 1

Exercise 3.21b
1 Find the area enclosed by the curve y = VX, the 2 Find the area enclosed by the curve y = x?, the
y-axis and the liney = 3 y-axis and the line y= 4
y.lk h
4
2_
O 2 4 6 & 10% 7 X




3.22 Areabelow the x-axis and area between
two curves

Learning outcomes

m To calculate areas of curves
below the x-axis

m To calculate areas between
curves

You needto know

m How to integrate simple
functions

m How to find the area below a
curve and above the x-axis

How to sketch curves

How to find the points of
intersection of two curves

The area between a curve and the x-axis that is

below the axis
The definite integral

This can be interpreted as the area
between the curve y = x?, the x-axis
and the linesx = 1 and x = 2

The definite integral

f_;lx-”dx =P
=1-4=-3

If we look at the diagram, the area
between the curve y = x3, the x-axis
and the linesx = —2 andx = —1

is equal to the area found above,

16 3% square units.

(The curve has rotational symmetry
about O.)

But the integral ]: 12 x3 dx is negative.
This is because the value of y that
gives the length of a vertical strip is
negative, so fa by dx will be negative

when y is negative fora = x = b.

This means you need to be careful when finding the area between a curve
and the x-axis when part of the area is below the x-axis.

Example

First draw a sketch: The sketch shows that the area betweenx = 0 and x = 2
is below the x-axis and the area between x = 2 and x = 4 is above the x-axis.
Therefore we need to find each area separately.

2

A:L[SXZ— 6x)dx = [x* — 3x2]; = (8 — 12) — 0 = —4
4

B= f (3x2 — 6x)dx = [x3 — 3x2]% = (64 — 48) — (8 — 12) = 20
2

Therefore the area required = 20 + 4 = 24 square units.

4
Note that f (3x2 — 6x) dx gives the value of the area of B minus the area of A.
)

Find the area between the curve y = 3x(x — 2), the x-axis and the linesx = 0 andx =4

v

10
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Exercise 3.22a

1 (a) Sketch the curvey = x{x — 1){x — 2).
(b) Find the area enclosed between this curve and the x-axis.

2 (a) Sketch the curvey = x? — 1.
(b) Find the area enclosed by this curve and the x-axis.

Area between two curves

When you need to find the area between two curves, you should draw

a diagram. This will show any areas that may be below the x-axis and
give an idea where the points of intersection are. There are two methods,
which are shown in the next example.

Example

Find the area between the curvesy = x2 andy = 3x(2 — x| VA
4

The curves intersect where x? = 3x(2 — x| 3

- 4xr — 6x =0 2

= x(2x—3) =0 = x=0orx=13 \1_ .

First method

|
—
|
1
e
[FST
=Y

The area between y = 3x(2 — x), the x-axis and x = 1%

i & ka7 97 27
== 2 = o — o s

LSgwenbyL (6x SX]dX—[SX X]u— 2 3 =

The area between y = x?, the x-axis and x = l% is given by

13 _ Nl _9 _9
[Frea=frli=F-0-3%

Therefore the area between the curves is _281 = % = % square units

Second method
A vertical strip in the area has length (v = 6x — 3x?) — [y = x?) = 6x — 4x*

14 1 g
Therefore the area between the curves isj[; 6x — 4x?)dx = [C-’.X2 = %X"‘Ll) = —24—7 — % -0= %square units

Exercise 3.22b

1 Find the area between the curvesy = 2 — x*andy =2 — x

2 Find the area enclosed by the y-axis and the curves y = x* and
y=16-x°

3 Find the area enclosed by the curve y = [x — 2)(x + 2) and the line
v =3x




3.23 Volumes of revolution

Learning outcomes

m To calculate the volume formed
when part of a curve is rotated
round the x-axis

You needto know

B How to integrate simple
functions

m How to evaluate a definite
integral

m The formula for the volume of a
cylinder

Volume of revolution
/_/(JJ _}

When an area is rotated about a straight line, the three-dimensional
object formed is called a solid of revolution.

The volume formed is called a volume of revolution.

The line about which rotation takes place is an axis of symmetry of
the solid of revolution.

All cross-sections of the solid that are perpendicular to the axis of
rotation are circular.

The diagram shows the solid of revolution formed when the shaded area
is rotated completely about the x-axis.

_VJL y‘i
v = fx]
—_—
0 % 0 %

To calculate the volume of this solid we divide it into ‘slices’
perpendicular to the axis of rotation.

VA

When the cuts are close together, each slice is approximately a cylinder.

When one cut is through the point P(x, v) and the volume of the solid up
to this cut is V, and then another cut is made at a distance 8x from the
first, the volume of this slice is approximately a cylinder.

The volume of this slice is a small increase, 8V, of the volume V.



This ‘cylinder’ has radius y and depth x.

VA
P(x, v P(x, ¥|

Therefore 8V = wy?dx

8V

2
ax Y

=

This approximation improves as &x — 0,

dv _

ie. lim - =m* = s Tyt

Therefore V = f Tyldx

When the area between a curve y = f(x), the x-axis,x =g and x = b is
rotated completely about the x-axis the volume of the solid formed is

b
given by the definite integral V = l my?dx

Section 3 Calculus 1

Example

Find the volume generated when the area between the curve v = 3x,
the x-axis and the line x = 2 is rotated completely about the x-axis.

When we integrate with respect to x, the limits of the integration must
be values of x.

3 2
_ fa- 2 .
v Lfryzdx—wL (v3x )" dx

2
WfSXdX = ﬂ[%Xz]ﬁ =76 —0)=6m
0

Therefore the volume required is 67 cubic units.

Note that values for volumes of revolution are usually given in terms of .

——

S

oo

bl Y

Exercise 3.23

1 The area enclosed by the curve y = 4 — x? and the x-axis is rotated
completely about the x-axis. Find the volume of the solid generated.

2 The area enclosed by the curve y = x?, the x-axis and the lines
x = —1 and x = 1 is rotated completely about the x-axis. Find the
volume of the solid generated.




3.24 More volumes of revolution

Learning outcomes Rotation about the y-axis

m To find the volume generated When an area is rotated about the y-axis, the volume formed is calculated

when a2 secthionof-a curve is in a similar way to rotation about the x-axis.

rotated about the y-axis

yll

m To find the volume generated \/

when the area between two P o

curves is rotated about the x-axis

or the y-axis : he

oy P(x, y]

You need to know ﬁ
' @) X
m How to integrate simple \ /

functions

How to sketch curves Two slices parallel to the x-axis, a distance 8y apart, form an approximate

How to find the points of cylinder of radius x and depth dy.

intersection of tworcurves The volume of this cylinder is 7x? &y

m The formula for the volume of a q
cone %: X = d—;{z Tx: = V= fwxzﬁy
Therefore the volume generated when the part of the curve y = f(x)
between y = a and y = b is rotated completely about the y-axis is

b
given by V= £ wx2dy

Note that f ...dy means that the integration has to be done with respect
to y, so the function to be integrated must be in terms of y and the limits
must be values of y.

Example
The region defined by the inequalities y =x* + 2, 2 =y = 3 is rotated about the y-axis.
Find the volume of the solid generated. 74 VA
The equation of the curveis y = x> + 2 3 3

2 =xt4+2
szwxzdywith y=x>+2, y

2 2
ie. x?=y— 2, gives

0 % 0 %

3
V:frj;[y—Z]dy w[%yz—ZyE

(s

w3-6)-12-4a)} =}

Therefore the volume generated is % ar cubic units.




Exercise 3.24a

1 Find the volume generated when the area enclosed by y = 9 — x? and
the x-axis is rotated completely about the y-axis.

2 The region enclosed by v = x?, the y-axis and the line y = 1 is rotated
completely about the y-axis. Find the volume generated.

Rotation of an area between two curves

When an area between two curves is rotated about an axis, the salid
formed has a hollow section. We can find the volume of this solid by
subtracting the volume formed by rotation of the inner curve from the
volume formed by rotation of the outer curve,

i.e. ify; = f{x) is the equation of the outer curve and y, = g(x) is the
equation of the inner curve, then the volume between them is given by

b b
wj; yi2dx — eryde where a and b are the values of x where the

curves intersect.

Va Va

TR e

EOA

V

L

An alternative method may simplify the working. This involves just one
integral.

A slice through the solid gives a shape whose cross-section is an annulus.
(An annulus is the area between two concentric circles. )

It, for a value of x, v, is the y-coordinate of a point on one of the curves
and y, the corresponding point on the other curve, where y, > v,, then
the area of the cross-section is #{y,> — v,

The volume of a slice of thickness &x is then oy,> — y,?)8x
Therefore 3V = & (y,2 — y,?) dx

(1% dv
= i Tyt —yt) = de 7(y* — ¥2?)
V=l - y?)ex
This is useful when the equations of the curves are similar. For example,

2 2
whenylzé—l— 1 andyzzé, thenylz—y22=&+l) —&) 2%4—1

Each problem should be assessed to determine the best method.
A sketch of the curves involved will help you do this.
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Example

Find the volume of the solid formed when the area enclosed by the
curve y = vx — 1 and the line 2y = x — 1 is rotated completely
about the x-axis.

First find where the curve and line intersect.

(x—1)x—1—4)=0
(x—1)x—5)=0

A

x=1orx=35
Whenx =1,y =0 andwhenx =5y =2
Therefore the graphs intersect at (1, 0) and (5, 2)

Next sketch the graphs. V4

The hollow section formed by
rotating the line completely
about the x-axis is a cone, and 21
the volume of the cone can be
found without integration.

o]
s
-
(=)

_'10/1'2

y

This cone has base radius 2 units and height 4 units.

Therefore the volume of the hollow cone is % T
(us'mg the formula V = %’rrrzh )

The volume generated when the section of the curve y = vx — 1
between x = 1 and x = 5 is rotated completely about the x-axis is
given by
i 3 s 1 3
V= ﬂj: [x — 1)dx = N[EXZ —X]l

- r(E-5) - - 1) -8

Therefore the required volume is % a cubic units.




Example
The diagram shows the area enclosed V4
by the line y = x + 1, the curve 61 /
y = vx — 1, the x- and y-axes and the 5-
linex =4
44
Find the volume generated when this 34
area is rotated completely about the 1
X-axis. 2 //
This volume needs tg be calculatfad in Zol 133 1t %
two separate calculations as the limits 1

are different for the volume generated
by the rotation of the line and the
volume generated by the rotation of the
curve.,

The volume generated when the section of the liney = x + 1 between
x = 0 and x = 4 is rotated about the x-axis is

4 ZdX_ 42 dX
wL[x—l—l] —wL[X +9x + 1)

1. 3 2 4
TEX +x +X
3 0

11'(% (43 + (4)2 + 4 — 0) = 123“1”

The volume generated when the section of the curve y = vx — 1
between x = 1 and x = 4 is rotated about the x-axis is

x| =T

2
el =)= 1)) -3

Therefore the volume of the solid formed is

1247 97 _ 227 4. . .
3 5= g cubic units.

11']1‘4[)(— I]dxzw[lxz—x]:

Exercise 3.24b

1

Find the volume generated when the area between the curve y = x?
and the line y = 3x is rotated completely about the x-axis.

The area between the curves v = x2, v = x2 + 1 and the linesx = 0
and x = 2 is rotated about the x-axis. Find the volume generated.

(a) Draw a sketch showing the liney = x — 1 and the curve
y=(x— 1P betweenx = —landx = 2

(b) The area enclosed by the line and the curve, between x = 0 and
x = 1 is rotated completely about the x-axis. Find the volume
generated.
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3.25 Forming differential equations

Learning outcomes

m To use differential equations
to model situations involving
change

You needto know

B Themeaning of rates of change

m Therelationship between
quantities that are proportional

Differential equations
i : . dy dy :
Any equation with terms involving I T and so on, is called a

differential equation.

d
An equation involving only terms in &y is called a first order differential

equation.

d
For example x + y &y = 2 is a first order differential equation.

d2
If an equation involves EZ’ it is called a second order differential

equation.

Rates of increase

d : ; ;
We know that &y represents the rate at which y increases with respect to x.

When the varying value of a quantity P depends on the change in another
quantity Q, then the rate of increase of P with respect to Q is ccll_g

Such changes occur frequently in everyday life, for example, liquid
expands when it is heated. When the volume of a quantity of liquid is V
and the temperature is T, then the rate at which the volume of the liquid

increases with respect to changing temperature can be modelled by g—;

Another example is the profit, P, made by a bookseller. This depends on
the number, n, of books sold (among other factors). So the rate at which

profit increases as n changes can be modelled as %

Formation of differential equations

The motion of a particle is often modelled by a differential equation.

If you are studying mechanics you will be tamiliar with displacement,
velocity and acceleration, where velocity is the rate of change of
displacement with respect to time and acceleration is the rate of change
of velocity with respect to time.

If an object falls through a medium that causes its velocity v to decrease

with respect to time at a rate that is proportional to its velocity, then %

measures the rate of increase with respect to time, so % is negative.
As dv is proportional to v, we can model this movement with the

dt

differential equation % = —kv where k is a constant of proportionality.



Asv is the rate of change of the displacement, s, % = v, we can also

2,
model this movement with the equation % = —kv

Note that when we are told the rate at which a quantity is changing,
we assume that the change is with respect to time unless we are told
otherwise.

Example

Form a differential equation to model the following information.

in the tank.

The rate at which the depth, h, is changing is %
The volume of water in the tank is 7r2h.
%ht— is negative as h is decreasing,
% o —7r’h
7 and r are both constants so we can write this equation as

dh _ _
L

Water is leaking from a cylindrical tank such that the rate at which the
depth of water is decreasing is proportional to the volume of water left

Exercise 3.25

Form a differential equation to model the following data.

1 When bacteria are grown in a culture, the rate of increase of the
number of cells C is proportional to the number of cells present at
that time.

2 Abody moving in a straight line moves so that the rate of change
of its displacement, s, from a fixed point is inversely proportional
to s.

3 The rate at which a cereal crop grows is such that its height, h cm,

increases at a rate with respect to time which is proportional to the

difference between its final height, H, and its present height.

4 Grain is being drained from a hopper. The rate of change of the
volume, V, of grain in the hopper is inversely proportional to the
volume of grain remaining in the hopper.
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3.26 Solving differential equations

Learning outcomes

m To solve differential equations

You needto know

m How to integrate simple
functions

m How to find the constant
of integration from given
information

m How to use substitution to
integrate

Solving differential equations

Solving a differential equation means finding a direct relationship
between the variables.

d
For example, the general solution of the differential equation &y = 0x
isy=x+c¢
To get a unique solution, we need a pair of corresponding values of
x andy.

Differential equations often involve a constant of proportionality, so the
solution will involve two unknown constants. In this case we need two
additional pieces of information to get a unique solution.

For example, given the differential equation % = kt, and that s = 1 when
t = 0 and thats = 6 when t = 10, then

E=JT<t = s=%!<t3+c

dt

s=1 when t=0 gives 1 =¢

6 when t = 10 gives 6 =50k + 1 = I<=ll—0

s
s ==t + 1
=10
We also need two additional pieces of information when there is a
second derivative involved in the differential equation. In this case two

integrations are needed, each of which will introduce a constant.

d
For example, if % = 3x? then integrating once gives

dy
= =3

] x* + ¢
Integrating again gives

y = %X“-I— cx + k
If we know that y = 5 whenx = 2,
this gives 5=4+2c + k [1]

If we also know thaty = 1 whenx = 1,
we have l=%+c+k [2]

1

Solving [1] and [2] simultaneously gives ¢ = % and k =5

d2
Therefore the solution of the equation E); = 3x?is

y=ix*+ix+1
= dy=x*+x+2
To solve a differential equation, you need to know how to integrate it. You

do not need to understand every detail about the situation that gives rise
to the differential equation.



Example
A body moves so that at time ¢ seconds its displacement, s metres
"t

s = 2. Find the direct relationship between s and t. Hence find the
value of s predicted by this model when t = 4

d’s _ 4 ds _ 23
i 2 = It 5t +¢
ds .
When ¢ O,E—'J, c=35
%:%t%—i—fﬁ = SZ%t%‘FSt‘F}(
Whent=0,s=2, . k=2

Hence szﬁf}—k 5t+ 2
_ _ 128 _ 8
Whent=4,s =7 +22 =30

The model predicts thats = 30% whent =4

from a fixed point O is modelled byg—z{; =I. Whent =0 ds _ 5 and

Exercise 3.26a

1 The rate of change of a quantity r with respect to 0 is given by

%z&‘.sm&wheﬂ&:% r = 2. Find r in terms of 6.

2 The variation of a quantity P with respect to r is modelled by the
differential equation % = 12r2 — 6r. It is known that whenr = 1,
P = 6 and %g = —1. What does this model predict that the value of
P will be when r = 3?2

Integration by separating the variables

Many differential equations used to model situations are of the form
dy

3= fly]). We cannot integrate f(y) with respect to x, so we need to change

the form of the differential equation.

We know from Topic 3.18 that ff[u] %dx = ff[u] du, where u is a

function of x.

d
Therefore [fy| &de = [fly)dy
This means that integrating ([a function of y) %] with respect to x, is
equivalent to integrating (the same function of y] with respect to y.
Now we can write gx—y = fly] as ﬁ% =il

then I(T;]%)dx= fldx becomes f(ﬁ)dy=fldx
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This is called integration by separating the variables because what we
have effectively done in going from % = fly) to I(Ti’]] dy = fl dx

is to gather all the terms containing y on one side and all the terms
containing x on the other side, i.e. we have ‘separated’ the numerator

: dy
and denominator of i

r’ then multiplying by r gives rg‘; =),

; dr
For example, given 5=

S0 frdr=f2dt = 2Jrf =2t +c

Example

The atoms in a radioactive material are disintegrating at a rate that
is modelled as inversely proportional to the number of atoms present
at any given time, t, measured in days. Initially there are N atoms
present.

(a) Form and solve a differential equation to represent this
information.

(b) Half the mass disintegrates in 200 days. Find how long the
model predicts that it will take for three-quarters of the mass to

disintegrate.

(a) If n is the number of atoms present at any given time, then the
rate of change of n is negative,

dn k dn

W= = g - —k where k is a constant.

Therefore fndn = —f!( dt

= gnt = —kt +c
Initially, i.e. whent =0,n =N, . %NZ =
hence % = —kt + N2

(b) Whent = 200, n = 1N

1EN)" = —200k + N2

= 200k =3N? so k=i2:N?
ie. gn? =—_3 N%+IN?
1600
When% of the mass has disintegrated, n = iN

1122 _ 3 a2 2 1 - 3 1
= 2(4N) = “TeeVtt 2 N 3= " Teool T3

= 250

=~

=
=
The model predicts that it will take 250 days for% of the mass to
disintegrate.




Example

The rate of increase in the number, n, of people infected by a virus is
modelled as being proportional to the square root of the number of
people already infected. Nine people were infected 5 days after the first
person was infected.

(a) Form and solve a differential equation to represent this
information.

(b) How many days, to the nearest day, does the model predict that it
will take for 100 people to be infected?

(a) When n people are infected, %nt_ — kn® where k is a constant.
fn_'i—dn = fkdt = dr=kt+c

Whent=0,n=1

(This is not given explicitly but the days are counted from when
the first person is infected.)

c=12
Whent=5n=9 = 6=5k+2 = k:%
e =t 42

(b) When n =100, 20 =3t +2

=4

= t 3

The model predicts it will take approximately 23 days for

100 people to be infected.

Exercise 3.26b

1

The velocity, vims~!, of a ball rolling along the ground is such that,
t seconds after it started, fv_%clv = fk dt. Given that v = 5 when

t = 0 and that v = 2 when t =3, solve the differential equation to give
a direct relationship between v and t.

Water is dripping from a tap on to a concrete surface where it is
forming a circular damp patch. Two hours after the tap started
dripping, the radius of the damp patch was 20 cm.

The rate at which the radius, rcm, of the damp patch is increasing is
modelled as being proportional to %

(a) Form and solve a differential equation giving r in terms of ¢, the
number of hours elapsed after the tap starts to drip.

(b) How long, to the nearest hour, does the model predict it will take
for the radius of the damp patch to reach 1 m?

Grain is pouring from a hopper on to a barn floor where it forms a
conical pile whose height h is increasing at a rate that is inversely
proportional to h3. The initial height of the pile is 2m and the height
doubles after a time T. Find, in terms of T, the time after which its
height has grown to 6m.

Section 3 Calculus 1



Section 3 Practice questions

1 Find:
(a) lim —2
e e YA
2 el
by im ¢

(a) The function f is given by

2 =
fhx) = {X Sl e

R
2% x<2, *€

Find lirg flx) and lirg_l f(x).
Hence explain whether or not f(x] is
continuous atx = 2
(b) Repeat (a) for
fix] = {3x+ 1, x>3

xeR
CERH =

Differentiate from first principles:
(a) sin2x
(b) v!}?

Fi_nd%when:
(a) v=(2x— 1){3x + 2}
(b) v =4sinx — 3cosx

x2—2x+1

(c) y= % — 1

Given that y = xsinx
dy dy

Find f'(x]) when f(x) is:

(@) iji 1

(b) xvx + 1

X
(<) sinx

(d) vx2+1

(e) cos (ZX - g)sin ( - %T)

Find % in terms of t when:

(@) y=2t, x=1t>— 2t
(b) v =3cost, x=4 — 5Hsint

The equation of a curve is

y=3[x— 5P
A point is moving along the curve so that x is
increasing at the constant rate of 0.2 cm per

second. Find the rate of change of y when x is
1.5cm.

9 A spherical balloon is losing air at the rate of

10

11

12

13

14

15

16

17

18

19

0.5 cm? per second.
Find the rate of change of the radius of the
balloon when the radius is 20 cm.

(The volume of a sphere of radius r is %m“)

Find the range of values of x for which the

function given by f(x) = [Ziixx]z is increasing.

Show that
S
Y= 13x - ap
has one stationary value and find it.

Find the stationary points on the curve
¥—3x dxt 6y 10k h
and distinguish between them.

The curve y = ax® — x* + b has a maximum
value of 4 when x = 0 and a minimum value ¢
when x = 2.,

Find the values of a, b and c.

Sketch the curve whose equation is

_ 4
i _[2 — X]z
(You can use your results from question 10.)

Find the equation of the curve which goes
through the point (1—21:, 1) and for which
V= f[S cos 0)de

A curve passes through the points (0, 1) and
(1, 1). The equation of the curve is such that

%:4—6}(

Find the equation of the curve.

(a) Use the substitution u = sin 2x to find
cos 2x sin? 2xdx
(b) Use the substitution u = x2 — 1 to find
f6X[X2 — 1)*dx
Evaluate:

@) ]:[3;:—4](1;4 (b) f;ZCOSQdQ

(a) Use the substitution u = x> — 1 to evaluate
2 I
f (X\.-"IX2 — l)dX
1

(b) Use the substitution u = sin @ to evaluate

™

[: cos @ (sin® — 1)3d6



20

21

22

23

24

25

26

27

(a) Find the area enclosed by the curve
y = 4 — x* and the x-axis.

(b) Find the area enclosed by the curve y = x3,
the y-axis and the linesy = 1 and y = 2

(a) Sketch the curve
v={x+1)x— 1){x+ 2}

(b) Find the area enclosed by this curve and the
X-axis.

Find the area enclosed by the curves
y=x*+landy=5—x*

Find the volume generated when the area
enclosed by the curve y = x3 + 1, the y-axis, the
x-axis and the line x = 1 is rotated completely
about the x-axis.

Give your answer in terms of .

(a) Find the equation of the tangent to the curve
y = x® 4+ 2 at the point on the curve where
x=12

(b) Draw a sketch to show the area enclosed
between the curve and tangent in part (a) and
the x- and y-axes.

(c) Find the volume generated when the area
described in part (b) is rotated completely
about:

(i) the x-axis
(i) the y-axis.

Solve the differential equation

dy
=

given thaty = 3 whenx =1

6y°

Solve the differential equation
by _x

dx y
given thaty = —3whenx = 2

Air is escaping from a spherical balloon at a rate
that is proportional to V2, where Vem? is the
volume of the balloon.

(a) Use the information above to form a
differential equation in terms of V and ¢
where t seconds is the time in seconds that
has elapsed from when the air started to
escape.

28

29

30

31

32

33 [

Section 3 Practice questions

(b) The initial radius of the balloon was 10 cm.
Ten seconds after air started to escape, the
radius, r cm, of the balloon was 5cm.

How long will it be before the radius of the
balloon is 2cm?

(The volume of a sphere is % ar.)

Given that
v = 3cos2x,

find % in terms of y.

The point (%, %) is a point of inflexion on the
curve

y=ax’—6x>+bx+4
Find the equation of the tangent to the curve at
the point wherex = 1

1
1 dx = 10 where a = 0. Find the value of a.

x2
Solve the differential equation
d2
E); = 6x + 4

d
given that, when x = 0, &y =3 andy =9

Find the volume generated when the area
between the curves

y=x! and y =8 — x*

is rotated completely about the x-axis.

T T T T T T T T T O P T ]

The diagram shows the area enclosed by the
curve y = x2 — 2x + 2, the x- and y-axes and the
tangent to the curve at the point where x = 2

(a) Find this area.

(b) Find the volume generated when this area is
rotated completely about the x-axis.
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compound angle formulae 72-5, 78

compound angle identities 72-5, 76-7, 80

compound statements 16
conclusion 15
conditional statements 15
cones 98,178
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cosine formula 72

cosine function 64, 65-6

cosine graphs 66, 67, 86

cotangent function 68, 69

cotangent graphs 69

counter examples 19

cubes (solids) 109
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of composite functions 138-41, 164
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modulus 589
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subjective 48, 49, 50
trigonometric, reciprocal 68-9
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fundamental theorem of calculus 167
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table 142-3
general solution, differential equations
geometry, coordinate  90-1
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function 132-3
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graphs
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I
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compound angle 72-5, 76-7, 80
double angle 76-7
law 17
members 10-11
Pythagorean 70-1
trigonometric  82-3, 96-7
induction, proof by 20-1
image 45, 47,48
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improper expressions 36-7
improper fractions 36
increase, small 130, 131, 136, 137
increasing functions 146-7
indices 52
inequalities 61,176
quadratic 38-41
infinity, approaching 126, 154, 167
inflexion, points of 150, 151, 152, 153
injective function 48, 49, 50, 56
integers 10
integrals 160
definite 169,172, 175
integration 160-5
definite 168-9
of a difference of functions 162
of a multiple of functions 162
of a sum of functions 162
rule 160
using substitution 164-5
twice 163
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inverse functions 50-1, 56
irrational number e 52, 53
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Leibniz, Gottfried Wilhelm 166

length 104

limit notation 126-7
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non-parallel 116, 117

pairsof 116-17
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perpendicular 118,119, 120

segments of 104

skew 116,117

in three dimensions 112

vector equations of 112-13
liquid heating 180
loci of a point 92, 102
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logarithmic function 56-7
logarithms 52-3, 56

base of 52, 55

common 53

evaluating 53

laws of 53

natural (Napierian) 52, 53

of negative numbers 52
logical connectors 17
long division 36-7

M

mapping 44, 45, 46, 50, 51, 56
reverse 50
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mathematical operators 6, 8

maximum turning points 150, 151, 152, 153, 157

maximum values 30, 31, 80-1
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minimum values 30, 80-1
models 183, 184, 185
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Napier, John 53
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non-parallel lines 116, 117
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toaplane 118,120
numerator 13, 36, 39

o

obtuse angles 90, 110, 115

Omar Khayyam 98

one-to-one functions 48, 49, 50, 56
one-way stretches 34-5

onto functions 48, 49, 50
operations 8, 9, 164

operators, mathematical 6, 8

orbits of planets 99

origin 119, 120



P
pairs of lines 116-17
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Cartesian equations of 100
tangent to 42, 101
parabolic mirrors 99
parallel lines 114, 116
parallel vectors 107, 108, 110
parameter 96
parametric differentiation 142
parametric equations 96-7, 142, 158-9
of an ellipse 103
ofaline 113-14,116-17
of a parabola 101
perpendicular distance 91, 120
perpendicular lines 118, 120
perpendicular vectors 110, 111
piln) 64,175
planes 118,120
Cartesian equations of 120-1
vector equation of 118-20
planets’ orbits 99
point to a line 91
points of inflexion 150, 151, 152, 153
polynomial equations 26
polynomials 22, 36, 39
position vectors 105, 106, 109, 112
positive integers 20
pre-image  44-5, 47, 48, 50
prism 109
product rule 136, 140
profit 180
proof, direct 18-19
proof by induction 20-1
propertics of x 58
propositions 14-17, 20-1
algebra of 17
Pythagoras’ theorem 72, 105
Pythagorean identities 70-1

Q
quadratic equations 71

roots of 26-7
quadratic inequalities 38-41
questions 62-3, 122-3, 186-7
quotient 21
quotient rule 137, 142

R

radians 64, 129

radioactivity 184

radius 93, 94

range 45,47, 48

rate of change 144-5, 180, 181
rate of decrease 180

rate of increase 144, 180
rational expressions 36-7, 39-41
rational numbers 12, 13
rationalising the denominator 13
real numbers  8-9, 10-11, 44-5, 49

reciprocal trigonometric functions 68-9
reflection 33, 50-1
remainder theorem 21, 22
repeated roots 26
reversing differentiation 160
revolution, solid of 174-5
revolution, volume of 174-9
rotation
clockwise 64
of an area between curves 177-9
about the x-axis 178
about the y-axis  176-7

S
scalar product 110-11, 115
scalar quantities 104
secant function G68-9
second derivative 152-3
second order differential equations 180
sets, closed 10-11
simultaneous equations 7, 42-3, 60
sine 70, 82
sine function 64-5
sine graphs 65, 66, 67, 87
sines, sum of 78
sketching curves 30-1, 37, 38, 39, 154-7
skew lines 116, 117
small increase in 130, 131, 136, 137
solid of revolution 174-5
sphere, volume of 145
statements
bi-conditional 15-16
compound 16
conditional 15

stationary values/points 148-53, 155, 156-7

Index

straight line equations 30, 42-3, 90, 112-15, 116-17

straight lines in three dimensions 112
stretches, one-way  34-5
subjective functions 48, 49, 50
substitution 7

using integration 164-5

u 138, 139, 140, 164-5, 169, 171
subtraction 8§, 9, 10
sum of sines 78
surds 12-13
symbols 6-9, 14, 16, 52, 167
symmetry 30, 31, 102

axis of 174

T
tangents (lines) 158
to circles 94-5
to curves 130, 148
equations of 94, 158, 159
gradient of 130-1, 144
to parabolas 42, 101
tangents (trigonometric] 70, 82, 90
function 64, 66
graph 66, 67, 88
telescopes 99
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terminating decimals 12
terms 6
theorem of calculus 167
three dimensions

coordinates in  105-7, 108-9

straight lines in 112
transformation of curves 32-5
translations 32, 34, 59
triangles, interior angles 18
trigonometric equations 84-9
trigonometric functions, reciprocal 68-9
trigonometric identities 82-3, 96-7
truth tables 14-17
truth values 14-15
turning points 30, 31, 150-3

see also maximum, minimum, stationary points
types of function 48-51

U
u (substitution] 138, 139, 140, 164-5, 169, 171
unit vectors 108-9

v
variables 7, 182, 1834
vDU 137

vector equations
ofaline 112-13
of a plane 118-20
vectors 104-9
addition of 105, 106, 107
angle between two 110, 111

displacement 105, 106
equal 107
magnitude of 106
parallel 107,108, 110
toaplane 121

perpendicular 110,111
position 105, 106, 109, 112
properties of 104
subtraction of 106
unit 106, 108-9

velocity 180, 181

vertex 100

virus infection 185

volume
of acone 178
of a cylinder 175, 176
of revolution 174-9
ofasolid 175,176, 178,179
of a sphere 145

X
x-axis, rotation about 178
x" 18

Y
y=a* 56
y-axis, rotation about 176-7

Z
z (third axis| 105
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