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Introduction

This Study Guide has been developed exclusively with the Caribbean
Examinations Council {CXC®) to be used as an additional resource by
candidates, both in and out of school, following the Caribbean Advanced
Proficiency Examination (CAPE®| programme.

It has been prepared by a team with expertise in the CAPE® syllabus,
teaching and examination. The contents are designed to support learning
by providing tools to help you achieve your best in CAPE® Physics and
the features included make it easier for you to master the key concepts
and requirements of the syllabus. Do remember to refer to vour syllabus
for full guidance on the course requirements and examination format!

Inside this Study Guide is an interactive CD which includes electronic
activities to assist you in developing good examination technigques:

On Your Marks activities provide sample examination-style short
answer and essay type questions, with example candidate answers
and feedback from an examiner to show where answers could be
improved. These activities will build your understanding, skill level
and confidence in answering examination questions.

Test Yourself activities are specifically designed to provide experience
of multiple-choice examination questions and helpful feedback will
refer you to sections inside the study guide so that you can revise
problem areas.

Answers are included on the CD for multiple-choice questions and
questions that require calculations, so that you can check your own
work as you proceed.

This unique combination of focused syllabus content and interactive
examination practice will provide you with invaluable support to help you
reach your full potential in CAPE® Physics.



Physical quantities and units

1.1 S| quantities and units

Learning outcomes Physical quantities
On completion of this section, you A physical quantity is the property of an object or a phenomenon that
should be able to: can be measured with an instrument. It is typically expressed as the

product of a numerical magnitude and a unit. For example, suppose
a student measures his mass and records it as 55 kg. The numerical
magnitude in this case is 55. The unit of mass is the kilogram (kg).

B recall the SI base quantities and
units

m  determine the units of derived
quantities

S| base quantities and units

Scientists worldwide have agreed on a common system of units known as
convert units Le Systéme Internationale d’'Unites (The International System of Units)
or ST units. All scientific measurements are made using these units.

In this system there are seven base units which have been defined in
such a way that they can be easily reproduced (Table 1.1.1}). These units
represent the standard size of a particular physical quantity.

recall commonly used prefixes

define the mole and recall the
Avogadro’s constant.

Table 1.1.1 §I base quantities and units Derived quantltles and units

Physical .Symbol | Unit ' Ph;{sical quant-it.ies other than the base. quantities: are lmown as
. derived quantities (Table 1.1.2). A derived quantity is derived from a

quantity i o ; o .

- | - combination of base quantities. The corresponding unit is derived from

Mass m kilogram the relationship between the base quantities. Speed is a derived quantity.

(kg) It is defined by the following equation:

Length I metre (m) v = %where v is speed, s is distance travelled and t is the time taken.

Time t second (s) From the definition, distance is a base quantity with unit m (metre).

Temperature| 7 kelvin (K) Time is also a base quantity with unit s (second).

Electric / ampere (A) v=g1=g =ms

.current ! The SI unit for speed is therefore ms-!.

Amountof  n mole (mol) Table 1.1.2 Derivedquantities and derived units

substance : : i

0 . Derived quantity | Relationship Derived unit  Name of unit

Luminous l, candela in base units

intensity (cd) : ! -

: | Area (A) length x length m? -
Volume (V) length x length x length m -
Density (p) mass/volume kg m= -
Velocity (v) displacement/time . ms” -
Acceleration (a)  velocity/time ms2 -
Force (F) mass x acceleration | kgms? newton
Work (W) force x distance ' kg m?s? joule
Power (P) work/time . kgm?s? watt
Charge (Q) current x time As coulomb

Voltage (V) power/current kgm?s? A7 | volt



Chapter 1 Physical quantities and units

Prefixes

In order to avoid writing too many zeroes when a quantity being
measured is too small or too large, prefixes are used. Table 1.1.3 lists the
commonly used prefixes.

Examples:
6.2 kilometres 6.2km = 6.2 x 10°m
2.9milliamperes 2.9mA = 2.9 x 10°A
4.1 micrometre 4.lum = 4.1 x 10°m
100 picofarads 100pF = 100 x 10'F
3 megawatts 3MW = 3 X 10°W

Conversion of units

Physics often requires that you convert from one unit to another. The
key to converting between units is to first determine the relationship that
exists between them. The following examples will illustrate this point.

Example

a Convert 80kmh™ toms™.
b Convert 2.5mm? to m?.

¢ Convert 7.9gcm™ to kgm™.

80 x 10°m _ 80 xX 10°m
lh ~ 60 x 60s

a 80kmh! = = 22.2ms!

b Imm? = lmm X Ilmm 1 x10°mx1x10%m = 1 x 10-5m?

25mm? = 25 x 1 x 10°m? = 2.5 x 10-°m?

7.9¢ _ 7.9 x10%kg
lcm x lem x lem ~ 1 x 10-5m?

c 7.9gum™® = = 7900kgm

The mole and the Avogadro constant

One of the base quantities is ‘the amount of substance’. The amount of
substance can refer to the number of particles, number of molecules or
number of ions. The number in this case refers to a value of 6.02 x 10,
This number is called the Avogadro constant (N, ).

The mole is the amount of substance (n) that contains the same number
of particles as there are in 12 grams of carbon-12.

s 1mol = 6.02 x 10* particles
The amount of particles (N) present in an amount of substance (n) is
givenby N = nN,.

Example
Calculate the number of molecules present in 1.2 moles of helium gas.

Imol = 6.02 x 10%

1.2 x 6.02 x 10 = 7.224 x 10*® molecules of
helium gas

.~ 1.2mol

Table1.1.3 List of commonly used prefixes
Prefix  Multiplying Symbol

factor

.pico | 107 | p
nano 10° | n
.micro | 10°® | i
.milli 103 m
centi 102 C
.deci | 107 d
ko  10° k
.mega | 108 M
giga 10° G
tera 10" T
Key points

m A physical quantity consists of
the product of a numerical value
and a unit.

B The base quantities are mass,
length, time, temperature,
current, amount of substance
and luminous intensity.

B All other physical quantities are
derived from the base quantities.

W Prefixes are used as shorthand,
for writing very large or very
small quantities.

B Themole is equivalent to
6.02 x 102 particles.



1.2  Dimension and unit analysis

Learning outcomes

On completion of this section, you
should be able to:

m recall the dimensions of base
quantities

B determine the dimensions of
derived quantities

B understand the importance of
dimensional analysis.

Dimension of physical quantities

The dimension of a physical quantity shows the relation between the
physical quantity and the base quantities listed in Table 1.1.1. Table 1.2.1
lists some of the dimensions of the base quantities.

Table 1.2.1 Dimensions of base quantities

Base physical quantity = Dimension

Mass [M]
Length [
Time [T]
Temperature [6]
Electric current [A]

The dimensions of derived physical quantities can be determined once
the relationship between the corresponding base quantities is known. For
example,
. _ mass _ [M] _ "
density = lome 1] [ML

The dimension for density is therefore [M L.
Table 1.2.2 lists some derived physical quantities and their dimensions.
Table 1.2.2 Dimensions of derived quantities

Derived physical quantity Dimension

Area [L]?
Volume [LP
Density [ML7]
Acceleration [LT]
Power | [ML2TH

Importance of dimensions and units

Dimensions can be used

1 To deduce the dimensions of a derived quantity (as shown previously).
2 To check the homogeneity of an equation.

In any scientific equation, the units on the left-hand side of the equation
must equal to the units on the right-hand side of the equation. If the
units are not the same, then the equation is incorrect.

Consider the equation s = ut + %atl. It represents the displacement

s of a body after time t, where u is initial velocity and a is acceleration
(whete a is constant). On the left-hand side of the equation the unit of
displacement is the metre (m). On the right-hand side of the equation
there are two terms,

The unit forutisms! xs = m

The unit for %ﬂtl = ms? x s = m|(The coeﬁﬁcient% is ignored.|
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The unit on the right-hand side of the equation is m, even though the
two terms are being added.

Since the unit on the left-hand side of the equation is equal to the
units on the right-hand side of the equation, the equation is said to be
homogeneous.

An equation that is not homogeneous is not correct.
An equation that is homogeneous may not necessarily be correct.

Suppose the same equation above is rewritten as s = %atl. The units on
both sides of the equation are the same (i.e. m). However, the equation is
incorrect because it is missing a term.

3 To predict the form of equations.

Suppose that it is suggested that the velocity v of a wave on a stretched
string is related to the tension in the string T, mass of the string m and
length of the string /.

v o« T*m’F
x,y and z are constants.
The units of v = ms™ and the dimensions of v = [L T
The units of T = kgms-2 and the dimensions of T = [MLT=|
The units of m = kg and the dimensions of m = [M]
The units of I = m and the dimensions of / = [L]
Considering the dimensions in the suggested relationship we get
[LT] e [MLT}MJIL]
[LT] o [MJ L} AT

Now considering each dimension one at a time on the left-hand side and
right-hand side, we get the following

Mterm 0 = x+y
Ltetm 1 = x4z

Tterm -1 = -2x
1 1

Solving these equations we get x = 7 V=-5 Z=7%

The equation now becomes v o« T“m-"“I“orv o '\j%

A limitation of this method of trying to predict the form of an equation is
that it cannot determine the value of the constant of proportionality. This
equation can only be verified experimentally.

Key points

The dimension of mass, length and time are [M], [L] and [T] respectively.

The dimension of derived quantities can be determined from base
quantities.

Dimensional analysis can be used to check the homogeneity of equations.

An equation is incorrect if it is not homogenous.

(/] Exam tip

To check to see if an equation is
correct, determine the units on the
left-hand side and the right-hand
side of the equation. If they are the
same, the equation is homogeneous.



1.3

Learning outcomes

On completion of this section, you
should be able to:

m  differentiate between scalar and
vector quantities

B give examples of scalar and
vector quantities

add and subtract scalars
add and subtract vectors

resolve vectors.

direction of vector -~

magnitude of vector

Figure 1.3.1 representing a vector quantity

= o)

iy

Figure 1.3.2

Figure 1.3.3 Adding two vectors

y oy

oy
I

o
1

o

Figure 1.3.4 Subtracting two vectors

Scalar and vector quantities

Scalar and vector quantities

Quantities can be classified as either being a scalar or a vector.
A scalar quantity has magnitude only.

A vector quantity has magnitude and direction.

Examples of scalar quantities are mass, length, work, speed, distance,
energy and power.

Examples of vector quantities are weight, momentum, velocity,
acceleration, and displacement (Figure 1.3.1).

A vector can be represented as a straight line with an arrow at one
end. The length of the line represents the magnitude of the vector. The
direction of the arrow points in the direction of the vector.

Adding and subtracting scalars

Scalar quantities are added and subtracted numerically. For example, if you
were interested in finding the total mass of a student and his back pack you
would perform the calculation as follows:

Mass of student = 50kg, Mass of back pack = 4kg
Total mass of student and his back pack = 50 + 4 = 54kg

Suppose 907 of energy is supplied to a machine. If the useful energy output
of the machine is 607, determine the energy lost inside the machine.

Energy input = 90], Energy output = 60]
Energy lost inside the machine = 90 - 60 = 30]

Adding (combining) vectors

Adding vector quantities is not as simple as adding scalar quantities.
Vector quantities have direction that has to be taken into account.
Consider two vectors d and b as shown Figure 1.3.2.

In order to add these two vectors vector @ is first drawn. Vector b is then
drawn by starting from the point at which vector d ended. The vector

d + b is then drawn from the starting point of vector 4 to the ending point
of vector b. The vector @ + b is called the resultant vector (Figure 1.3.3).

Vector subtraction is a form of vector addition. For example the vector

d - b is the same as saying d@ + (-b). Using the previous example as guide
to perform vector addition, vector d is first drawn. The vector -b is then
drawn by starting from the point at which 4 ended. The vector -b is
simply an arrow drawn having the same length as b but pointing in the
opposite direction (Figure 1.3.4).

Vectors acting in the same direction

Force is a vector quantity. The unit of force is the newton (NJ. Suppose
two forces are acting on an object in the same direction. The resultant
force (combined effect of both forces) can be found by simply adding the
magnitude of the two forces. In Figure 1.3.5 two forces 3N and 5N are
acting in the same direction. The resultant force is 8 N to the right.
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Vectors acting in opposite directions

Suppose two forces are acting on an object in opposite directions as shown
in Figure 1.3.6. The resultant force is found by subtracting the magnitude
of the two forces. The resultant force will act in the direction of the larger

of the two forces. Therefore, the resultant force is 2N to the right.

Vectors acting at an angle to each other

Suppose two forces are acting at an angle of 8 to each other as shown in
Figure 1.3.7. In order to add the two vectors, the force 4N is drawn first.
The 5N force is then drawn by starting from the ending point of the 4N
force. The addition of the 4N force and the 5N force results in the force
R. The value of the force R can be determined by scale drawing. A scale
must first be decided upon. For example, 1 cm can represent 1 N. This
means that the 4N and 5N force can be represented as lengths 4cm and
5cm respectively. Once the scale drawing is completed, the length R is
measured using a ruler. Suppose 8 = 60°. The length of R will be 7.8 cm.

Therefore, R = 7.8cm X 1Ncm™ = 7.8N.

R can also be determined by calculation using the cosine rule.

ct = a*+ b*-2abcosé
c® = 5"+ 44— (2 x 5x 4 xcosl20°) = 61
c = 7.8N

Resolving vectors

A vector can be replaced by two other vectors acting at right angles to
each other. Consider the x-y plane shown in Figure 1.3.8. A vector P has
been drawn using the origin as the starting point. The vector P can be
replaced with two vectors acting at right angles to each other.

y—component

“ . > X-axis
(@]

x-component

v

Figure 1.3.8 Resolving a vector into two components

The horizontal component (x-component) is found by drawing a vertical

line from the tip of vector P parallel to the y-axis until it meets the x-axis.

The vertical component (y-component| is found by drawing a horizontal

line from the tip of vector P parallel to the x-axis until it meets the y-axis.

Suppose a ball is struck such that it travels with a velocity of 5ms™ at
307 to the horizontal as shown in Figure 1.3.9.

The horizontal and vertical components can be found by scale drawing or
by calculation.
Horizontal component = 5 X cos30° = 4.33ms"!

Vertical component = 5 X cos(90 -30) = 5 xsin30° = 2.5ms™!

E 8N .-

Figure 1.3.5 Adding vectors acting in the
same direction

3N

|

-

Figure 1.3.6 Adding vectorsacting in
oppositedirections

4N 4N

Figure 1.3.7 Finding the resultant of two
vectorsacting at an angle to each other

5sin30°
A

Sms™’

""""""""""""" + 5cos30°
Figure 1.3.9

Key points

m A scalar quantity has magnitude
only.

B Avector quantity has a
magnitude and a direction.

B Scalar quantities are added and
subtracted algebraically.

®  Vectors are added by taking into
account their directions.

B Anyvector can be resolved into
two vectors which act at right
angles to each other.



Measurements

21 Measurements 1

{.eammg outcomes . Meas uring le ngths
On completion of this section, you The metre rule, vernier calliper and micrometre screw gauge are common
should be able to: instruments used to measure lengths in a laboratory. The SI unit of

length is the metre {m). A metre rule would be used to measure the width
of a desk or the length of a pendulum. A vernier calliper would be used
to measure the dimensions of a small block of wood or the diameter

B measure lengths using a metre
rule, vernier calliper and a

micrometre screw gauge of a test tube. A micrometre screw gauge would be used to measure
B measure weights using a spring the diameter of a piece of copper wire. The choice of measuring device
and lever balance depends on the magnitude of the length being measured.

e e ariElss Measuring length using a vernier calliper

measure temperature using a . ; . ’ : g
P g Figure 2.1.1 shows a diagram of a vernier calliper. There is a main scale

thermometer : e s
and a vernier scale. When an object is placed between outside jaws, the
®  measure volumes using standard main scale is read first. On the vernier scale, one of the markings will
laboratory equipment. line up with the main scale. This gives the fraction of the millimetre

scale that must be added to the main scale. The vernier calliper in
Figure 2.1.2 is read as follows:

Reading = main scale + vernier scale = 56 + 0.7 = 56.7mm

main scale

50 60 mm
b ol
| P | T |
0 10
outside jaws
Figure 2.1.1 A vernier calliper Figure 2.1.2 Readinga vernier calliper

Measuring length using a micrometre screw gauge

Figure 2.1.3 shows a diagram of a micrometre screw gauge. It consists of
a main scale on the shaft and a fractional scale on a rotating barrel. The

fractional scale has 50 divisions. One complete turn represents 0.50mm.
The micrometre screw gauge in Figure 2.1.4 is read as follows:

Reading = main scale + rotating scale = 6.50 + 0.23 = 6.73mm

5
0 5101 o
45 0 5

30

25

20

HH]H i\\\\\\

15

Figure 2.1.3 A micrometre screw gauge Figure 2.1.4 Readinga micrometre screw gauge



Measuring mass and weight
The mass of an object is measured using a beam balance (Figure 2.1.5).

The weight of an object is the force exerted on it by gravity. Weight can
therefore be measured using a spring balance (Figure 2.1.6).

Measuring angles

It often required that angles be measured in some experiments. Angles
can be measured by taking accurate measurements of lengths and using
trigonometric calculations to determine angles. Where possible, angles
can be measured directly using protractors. Measurement of angles is
often required when performing ray optic experiments or demonstrating
the equilibrium of forces.

There are optics experiments that require very precise measurements
of angles. In these experiments a spectrometer is used. Figure 2.1.7
illustrates a spectrometer.

Measuring temperature

Temperature is measured using a thermometer. The SI unit of
temperatuzre is the kelvin (K). Temperature is also measured in degrees
Celsius (°C). (Refer to 14.2, Thermometers.)

Measuring volume

The volume of an object is the amount of space taken up by the object.
The volume of regular objects can be determined by calculation.

1 x b x h (length I, breadth b, height h)

Volume of a cuboid V

%m** (radius of sphere 1]

Volume of cylinder V = mr?h
(radius of base of cylinder r, height of cylinder h)

Volume of a sphere  V

Volume is commonly measured in cm? or m?,

The volume of an irregularly shaped object can be measured using a
displacement method. Suppose you are required to measure the volume
of a small stone. Some water is place into a measuring cylinder and the
initial volume recorded. The stone is gently placed into the water and the
final volume recorded. The difference between the two volumes gives the
volume of the stone |Figure 2.1.8).

Key points

m  Standard instruments used to measure lengths are the metre rule, vemier
calliper and the micrometre screw gauge.

Mass is measured using a beam balance or an electronic balance.

Weight is measured using a spring balance.

Angles are measured using a protractor.

A spectrometer is used when measuring angles in optical experiments.
Temperatures are measured using a thermometer.

The volume of a regular object is determined by calculation.

The volume of an irregularly shaped object is determined using a
displacement method.

Chapter 2 Measurements

[®|

Figure 2.1.5 A beam balance

Ibs o kg
U:E g O
24 E10
49 820
64 E3o
1%‘ 40
o] Eso
1+ Feo
wd B0
184 E8o0
204 Eo0
», 0.0

Figure 2.1.6 A spring balance

Figure 2.1.7 A spectrometer

ame || measuring |
—s500|  cylinder | —s00
= —
— 400 — 400
— 300 =300
:-:E—z- :_‘-_
=20 =200
= 1— water —z
=100 object , [=100

:

<=

Figure 2.1.8 Measuring volume using a
displacement method



2.2 Measurements 2

Learning outcomes

On completion of this section, you
should be able to:

B measure time using a clock, stop-
watch and the time base of a
cathode-ray oscilloscope

B measure electrical quantities
using standard laboratory
instruments

B understand how to use
calibration curves

®  understand how to rearrange an
equation into a linear form.

-

Tcm

Figure 2.2.2 A waveform onthe screen
ofaCRO

Measuring time

The SI unit of time is the second (s). Time durations are measured using
clocks or stopwatches. Suppose an experiment is performed to measure
the time taken for a pendulum to complete one oscillation. In order to get
an accurate value for this time interval, the time taken for 10 oscillations
T, is recorded using a stopwatch. The experiment is repeated several
times and the mean (average) time for ten oscillations is recorded. The
time for one oscillation T is determined as follows: T = T /10.

There are instances when the time interval of an event is so small

that a stopwatch cannot be used. An instrument called a cathode-ray
oscilloscope (CRO) can be used. The CRO consists of a pair of parallel
metal plates inside it called the X-plates. A sweep generator of known
frequency is attached to the X-plates. This frequency is adjusted using the
time-base setting on the front panel of the CRO (Figure 2.2.1).

electron gun deflection plates
r 1 r 1
cathode anode Y-plates
Ay
/
grid X-plates
| fluorescent
I --il electron beam screen

Figure 2.2.1 A simple diagram of a cathode-ray oscilloscope

Figure 2.2.2 shows a waveform on the screen of a CRO. The time-base
setting is calibrated at 2mscm™. Each square on the screen is 1 cm x 1cm.
Suppose it is required that the time interval between A and B be found.
The distance AB is 6cm. Therefore, the time interval between A and B is
6cm X 2msem™ = 12ms.

Measuring electrical quantities

Two important electrical quantities are electric current and potential
difference. An electric current is measured using an instrument called
an ammeter and its unit is the ampere (A). A potential difference is
measured using an instrument called a voltmeter and its unit is the
volt (V). The ammeter and the voltmeter can be an analogue or digital
type. In the case of the analogue-type meter the location of the pointer
in reference to a scale is recorded. In the case of a digital meter, the
measurement is recorded as seen on the display of the instrument.

Calibration curves

Suppose you were provided with a mercury-in-glass thermometer (A}
that had no markings on the length of it. The thermometer is of no use
if it is not calibrated. The thermometer is placed in known temperatures



[temperature of pure melting ice 0°C and the temperature of steam 100°C
above pure boiling water) and the length of mercury is measured. These
temperatures are easily reproducible and chosen for this reason. Another
thermometer (B which is already calibrated is used for comparison. Both
thermometers are placed in substances that have temperatures between 0°C
and 100°C. The temperature reading on the calibrated thermometer (B) is
recorded and the length of the mercury in the thermometer [A) is recorded.

A graph of temperature against length of mercury is then plotted
(Figure 2.2.3). This graph is the calibration curve for the thermometer
A. When the thermometer A is placed in a substance of unknown
temperature, the length of mercury is recorded. This length is read off
from the calibration curve to determine the unknown temperature.

Plotting linear graphs from non-linear relationships

In practical work it is often required to establish relationships between
two quantities. If two quantities x and y are related such that they have
a linear relationship, a straight line graph would be obtained when y is
plotted against x.

The equation of a straight line is of the form v = mx + ¢, where m is the
gradient of the straight line and c is the intercept on the y-axis.

It is often required that an expression be re-written so that it resembles the
form of the equation of a straight line. Table 2.2.1 shows some examples.

Table2.2.1
Expression What to plot? constants | Gradient | y-intercept
y=a’+h y against x? aandb a (0,b)
T= ki lgT againstlg! kand! n (0, lgk)
_ 2 2
y? = ax? +bx %againstx aandb a (0,b)
N = Ae™ InN againstt  Aandk -k (0,nA)

Chapter 2 Measurements

g s

calibration curve f

T
L=
N—
o
)
(]

E i 9 et U i o R CD B L0 g
i N IR NN RNt 3
HHHHHHH adaki P

Figure2.2.3 A calibration curve

(7] Exam tip

Recall the rules for logarithms

log, (A)" = nlog A
log, (A) + log, (B) = log, (AB)

g

log, (A) - log, (B) = log,

@ Exam tip

log, , is usually written as lg.

log_ is usually written as In,
wheree = 2.718

Suppose T and [ are related by the following equation T = ki,

lgT = lg (kP") Takelog,, on both sides of the equation
IgT = lgk + Ig(I?)
lgT = lgk + nlgl «— Linear form

A plot of a graph of lg T against lg! will produce a straight line. The
gradient is n and the y-intercept is lgk.

Suppose N and t are related by the following equation N = Ae™,
InN = In [Ae™]
InN = InA + In (e
InN = InA-ktlne
InN = InA - kt «<— Linear form

Take log, on both sides of the equation

A plot of a graph of In N against t will produce a straight line. The
gradient is -k and the y-intercept is In A.

Key points

B Time is measured using a clock or
stopwatch.

B A cathode-ray oscilloscope can
be used to measure very small
time intervals.

B Electrical current is measured
using an ammeter.

B Electrical voltage is measured
using a voltmeter.

m  Calibration curves are used to
calibrate instruments.

B Expressions involving two
quantities can be rearranged in
such a way that a linear graph
can be plotted.




2.3

Learning outcomes

On completion of this section, you
should be able to:

differentiate between systematic
and random errors

identify ways of reducing
systematic and random errors

differentiate between precision
and accuracy.

t

Figure 2.3.1 Graph showing the effect of
random errors

Vh

t

Figure 2.3.2 Graph showing the effect of
a systematic error

Errors in measurements

Systematic and random errors

Whenever a physical quantity is measured, there is the likelihood that
there will be an error or uncertainty in the measurement. Errors can

be divided into systematic and random errors. If a physical quantity is
measured a large number of times, it may be revealed that the readings
fluctuate around some value. Some readings may be larger or smaller.
This type of error is known as a random error and usually occurs as a
result of the experimenter. Suppose a student measures the time taken ¢,
for a steel ball to fall from rest through a known vertical distance h. The
distance h is varied and the corresponding time is measured.

It is known that h and t are related by the following equation

h = %gtl, where g is the acceleration due to free fall (g = 9.81ms?).

According to this relationship, a plot of Vh against t will give a straight line
through the origin. The graph in Figure 2.3.1 shows a plot of Vh against t.

All the data points do not lie on the straight line. They are scattered above
and below the line. The deviation of the points from the line indicates that
there are random errors in the experiment. Random errors can be reduced
by repeating measurements and finding the mean of the measurements. In
this experiment, the student could have taken several measurements of ¢
for a given height h, and find the average of those times.

Suppose a different student performs the same experiment. The results
obtained are shown in Figure 2.3.2.

All the data points are scattered about the main line. This illustrates a
random error. However, notice that the graph does not pass through the
origin. This indicates that there is a systematic error in the experiment.
In the case of a systematic error, there is a constant error in one direction.
Either all the readings are larger than their true value or all the readings
are smaller than their true value. A systematic error can occur because of

A zero error in the instrument being used. In this case, the
instrument gives a reading when the physical quantity is not present.
This error can be eliminated by zeroing the instrument, if possible,
before performing the experiment.

An incorrectly calibrated instrument. In this case, the instrument
may have been used for a long period of time and the readings are

no longer accurate. Instruments are to be calibrated as often as
recommended by the manufacturer of the instrument.

Improper techniques being used by the experimenter to perform the
experiment. If the experimenter consistently makes the same mistake
when measuring a quantity, all the results will be off by the same
amount. For example, suppose an experimenter accidentally assumes
that the smallest division on a scale is 0.2m when it is actually 0.1m.
A reading of 1.7 m may be recorded as 1.6m.

Precision and accuracy

An easy way to understand the difference between precision and accuracy
is to consider a game of darts. The objective of the game is to hit the bull’s
eye with the darts. Figure 2.3.3 illustrates the various scenarios.
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b Precise but not accurate
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S

a Precise andaccurate ¢ Accurate but not precise

Figure 2.3.3 A gameof darts

Notice that accuracy has to do with how close the darts are to the bull’s
eye.

Precision has to do with how close the darts are as a group.

Suppose a quantity has a true value of x,. A student measures the
quantity a large number of times n using an appropriate instrument. The
experiment is known to have systematic and random errors. A graph is
plotted to show the number of times n, a particular reading x, is obtained.
Figure 2.3.4 illustrates various scenarios. The graphs help illustrate the
difference between precision and accuracy.

A A [
n n n
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d Not preciseandnot accurate

0 Xp X 0 Xq e 0

a Precise andaccurate a Precise but not accurate a Accurate but not precise

Figure 2.3.4 Experiments having systematic and random errors

Measurements are accurate if the systematic errors are small.
Measurements are precise if the random errors are small.

Example

Suppose two students perform an experiment to determine the value for
the acceleration due to gravity g. ¢ is known to be 9.8 1 ms=2. The students
repeat the experiment several times and the value of g is recorded.

Student A - 9.80, 9.82, 9.83, 9.81, 9.82
Student B - 8.45, 8.41, 8.42, 8.45, 8.43

The results of the experiments performed by student A are both accurate
and precise.

The results of the experiments performed by student B are precise but
not accurate.

a Not preciseandnot accurate

Key points

Random errors occur as a result
of the experimenter and can
result in an error that is above or
below the true value.

Random errors can be reduced
by repeating measurements and
finding the mean.

Random errors cannot totally be
eliminated.

Systematic errors are constant
errors in one direction.

Systematic errors can be
eliminated.

Precision is a measure of the
reproducibility of a result.

Accuracy is a measure of the
closeness of the measured value
to the true value.



2.4 Uncertainties in measurements

Learning outcomes

On completion of this section, you
should be able to:

B understand the terms absolute
error, fractional error and
percentage error

m calculate the uncertainties in
derived quantities.

Uncertainties in derived quantities

When a quantity is measured, there is an error or uncertainty associated
with the measurement. Suppose a metre rule is used to measure the
length of a metal rod. The metre rule is able to give readings to nearest
0.1 cm. This means that when a reading is taken, the experimenter will
either record to the nearest marking above or below the actual length of
the rod. The reading will be either 0.05cm too high or too low from the
actual value. This error in the measurement is written as £0.05cm (half
the smallest reading on the metre rule). If a student measures the length
of the rod as 12.40cm, then the information is recorded as follows:

12.40 = 0.05cm.

The actual or absolute uncertainty (error) is 0.05cm.

The fractional or relative uncertainty (error) is % = 0.004.

The percentage uncertainty is 102040 x 100% = 0.4%.

Adding and subtracting
Consider two quantities P and Q.
P = 2510 =+0.05
Q = 62.50 = 0.05

The absolute uncertainty in P is 0.05

0.05
25.10

The fractional uncertainty in P is = 0.002

The percentage uncertainty in P is ~——— 0.05 X 100% = 0.2%

25.10
The absolute uncertainty in Q is 0.05
The fractional uncertainty in Q is & = 0.0008
62.50
’ ; 0.05
The percentage uncertainty in Q is ——~ %250 % 100% = 0.08%

Suppose it is required to find the absolute uncertainty in the quantity
P+ Qand Q-P.

P+Q = 251+ 625 = 87.6

The absolute uncertainty is found by adding the absolute uncertainties of
each quantity.

Therefore, the absolute uncertainty in P + Q is 0.05 + 0.05 = 0.1.
P+Q = 87.6+0.1
Q-P = 625-251 = 374

The absolute uncertainty is found by adding the absolute uncertainties of
each quantity.

Therefore, the absolute uncertainty in Q — P is 0.05 + 0.05 = 0.1.
Q-P=374+0.1



Multiplication, division, powers and roots

Whenever quantities are multiplied or divided the percentage uncertainty
is found by adding the percentage uncertainties of each of the quantities

involved.

Whenever a quantity is raised to a power, the percentage uncertainty
is found by multiplying the power by the percentage uncertainty of the
quantity involved.

Whenever the nth root of a quantity is being found, the percentage

uncertainty is found by multiplying 1/n by the percentage uncertainty of

the quantity involved.

Consider the following quantities:
P =182+0.1
Q = 6.24+0.02

Determine the percentage uncertainties in:

1 PxQ 2%
3 p 4 Yo

Percentage uncertainty in P is % x 100% = 0.5%

Percentage uncertainty in Q) is % x 100% = 0.3%

The percentage uncertainty in P x Qis 0.5 + 0.3 = 0.8%

The percentage uncertainty in g is 0.5+ 0.3 = 0.8%

The percentage uncertainty in P*is 2 x 0.5 = 1%

AW N =

The percentage uncertainty in }\fa is % x0.3=0.1%

Example

1 A student wishes to measure the volume V of a wire of length I and
obtains the following measurements.

Diameter of the wired = ({0.94 + 0.04) mm

Length! = (839 + 3)mm

The volume V of the wire is given by %erlf

Calculate the percentage uncertainty in the measurement of:
i the diameterd

ii the length !

iii the volume V.

Ad _ 0.04

1 0 a1 3 =E 0

i % uncertainty in the measurement of d = T = 093 % 100%
= 4%

o i _ AN _ 3 .

ii % uncertainty in the measurement of | = T = 839 X 100%
= 0.4%

R i _aAd A

iii % uncertainty in the measurement of V. = 2? + = 2(4)+0.4
= 8.4%
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Exam tip

Ensure that you understand the
worked examples. Uncertainty
questions pose a challenge to
students.

Key points

Measured quantities have an
error associated with them
known as the absolute error.

The absolute error is usually
taken as half the smallest reading
on the instrument scale.

The fractional error is the
absolute error divided by the
measured value.

When quantities are added
or subtracted, the absolute
uncertainties are added.

When quantities are multiplied
or divided, the fractional
uncertainties of the quantities
are added.

When a quantity is raised to a
power, the fractional uncertainty
of the quantity is multiplied by
the power.



3.1

Learning outcomes

On completion of this section, you
should be able to:

B define displacement, speed,
velocity and acceleration

m represent displacement, speed,
velocity and acceleration
graphically

m find the displacement from the
area under a velocity-time graph

B use the slope of a displacement-
time graph to find velocity

®  use the slope of a velocity-time
graph to find acceleration.

Definition

Displacement is the distance moved
from a fixed point in a stated
direction.

Kinematics

Kinematics

Kinematics is the term used to describe the motion of objects without
considering what is actually causing the motion.

Distance and displacement

Suppose a dog is playing in a park. He starts at the point A, moves
around the park and ends up at the point B. The dotted line in

Figure 3.1.1 shows the path taken by the dog. This path gives the
distance travelled by the dog. The arrow joining A and B represents

the displacement of the dog. Distance is a scalar quantity and has a
magnitude only. Displacement is, however, a vector quantity. This means
that it has a magnitude as well as a direction. It is possible for the dog

to have zero displacement after his walk around the park. If the dog had
returned to the point A (starting point) his displacement would be zero,
but his distance travelled would have a non-zero magnitude.

distance travelled
T
’

A
\ \

displacement

Figure 3.1.1 Differentiating between distance and displacement

Speed and velocity

Speed is defined as the rate of change of distance. Speed is a scalar
quantity. If an object changes its speed several times during its journey,
you might be interested in its average speed. The average speed is the
total distance travelled divided by the total time taken to complete the
journey. The SI unit of speed is metres per second {m/s or ms-!).

Definition Definition

Speedis the rate of change of distance. ~ Average speed is equal to half of the

initial speed plus the final speed.

Equation Equation

s
v = Average speed = YXV
v - speed/ms’’ —_— .
s - distance travelled/m 4. = Initlel speed/m s

£ _ tiffiafs v - final speed/ms™



Velocity is defined as the rate of change of displacement. Velocity is a
vector quantity. The SI unit of velocity is metres per second (ms™).

Definition Equation
Velocity is the rate of change of s
At

displacement.
v - velocity/ms™
As — change in displacement/m
At - change in time/s

Consider an object P moving in a circular path at a constant speed of
25ms™ (Figure 3.1.2). At any point on the circle, the speed of the object
is 25m s, The velocity at the points A and B are different since the
direction of motion has changed.

Acceleration

Acceleration is defined as the rate of change of velocity. An object
accelerates when its velocity changes. Acceleration is a vector quantity and
therefore the direction of motion of the object is taken into consideration.
The SI unit of acceleration is metres per second squared (ms2).
Definition Equation
Acceleration is the rate of change of
velocity. t
- - acceleration/ms=
— initial velocity/ms™
— final velocity/ms™
- time/s

)
Il

~ < = W

Graphical representation of motion in a straight line

The motion of an object moving in a straight line can be represented by
a graph. These graphs are particularly useful when the object is moving
with non-uniform acceleration. If the acceleration is uniform, the
equations of motion can be used to analyse motion. If the acceleration is
not uniform, graphical methods are used to analyse motion.

Displacement-time graphs

Suppose an object P is stationary at a point O. It then moves with

a constant or uniform velocity in a straight line for some time. The
displacement-time graph in Figure 3.1.3 shows the motion of the object.
The graph is a straight line through the origin. The velocity is determined
by finding the gradient of the straight line.

Suppose an object is dropped from a height of 2m above the ground.
Figure 3.1.4 shows the displacement-time graph for the motion. The
graph for this motion is a curve. The object is accelerating uniformly at
a rate of 9.81 ms. The velocity at any point on the curve is determined
by finding the gradient of a tangent drawn at that point on the curve.
The velocity at the point P on the curve is determined by first drawing a
tangent at that point. A tangent is a straight line drawn such that it just
touches the curve at the point P. The gradient of the tangent is equal to
the velocity at the point P.

Chapter 3 Kinematics

25ms!

’ 3
A 25ms

Figure 3.1.2 An object moving ina
circular path

[/] Exam tip

When the velocity of an object
increases, the acceleration is positive.
When the velocity of an object
decreases, the acceleration is negative
and is referred to as a deceleration.

displacement/m

_As
f Y;
As
At
time/s
Figure 3.1.3 Constant velocity
displacement/m
A
tangent
at point P
P
7 t ™

time/s

Figure 3.1.4 Non-uniform velocity
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Velocity-time graphs

The motion of an object can be represented using a velocity-time graph.
The area under a velocity-time graph measures the displacement of the
object. The gradient of a velocity—time graph measures the acceleration of
the object.

Consider Figure 3.1.5. It represents a velocity-time graph.

The various sections of the graph can be described as follows.

/ OA - The object accelerates uniformly from rest.
-1
g AB - The object is travelling at constant velocity.
A B
BC - The object decelerates uniformly.
Area CD - The object is stationary. Its velocity is zero.
D = DE - The object reverses direction and
" accelerates uniformly from rest.
o C area 2 t/s ¥
EF - The object decelerates uniformly and then
comes to rest.
E
Figure 3.1.5

The acceleration at any point in the journey is found by finding the
gradient of the curve at that point.

The area under a velocity—time graph measures displacement.
Area 1 gives the displacement of the object from O to C.
Area 2 gives the displacement of the object from D to E

Example
Figure 3.1.6 shows the velocity-time graph for a journey lasting 50 seconds.

T HH
HHH HH
R S HH
S EE N f T
3015 40 HE\50
: EEE
HHH
: . T
e

Figure3.1.6

Use the information from the graph to find:

i the velocity 10 seconds after the start of the journey
ii the acceleration during the first 10 seconds

ili the acceleration between 40 and 45 seconds

iv the distance travelled between 10 and 20 seconds

v the distance travelled between 20 and 40 seconds.



i v = 10ms"

i . . . = .

ii acceleration = gradient of line OP = To-g = lms

e e . _20-1[-10) _ i
iii acceleration = gradient of line ST = —A0-30 = -3ms
iv Distance travelled = AreaB =10 x 10 = 100m

v Distance travelled = Area C + Area D
= %(10 +20)10 + (20 x 10) = 150 + 200 = 350m

Example

Suppose a ball is dropped from a fixed height above the ground on a metal

surface and bounces several times. Sketch the velocity—-time graph and
hence deduce the acceleration—time graph for the motion of the ball.

The initial velocity of the ball is zero. As the ball falls, its velocity
increases uniformly because gravity makes it accelerate at a constant
rate of 9.81 ms-!. When it hits the metal surface, it changes direction

in a short time interval. Its velocity decreases until it is zero at the
highest point. The ball changes direction again and its velocity increases
again. The velocity-time graph for the motion of the ball is shown in
Figure 3.1.7. Acceleration is defined as the rate of change of velocity. The
gradient of a velocity—time graph gives acceleration. The straight line
portions of the velocity—time graph represent constant acceleration.

A '
1
v/ims™!

A
*// tis

a/ms—

t/s

Figure 3.1.7

Example

Figure 3.1.8 shows velocity—time graph for the motion of a car. Describe
the motion of the car and sketch the displacement-time graph for the
motion of the car.

The car accelerates uniformly from rest. The car then travels a constant
velocity for some time. The car then decelerates uniformly until it comes
to rest.

Figure 3.1.9 shows the displacement-time graph.

Chapter 3 Kinematics

velocity
[
time
Figure3.1.8
displacement
[
time
Figure3.1.9
Key points
m  Displacement is the distance

moved in a particular direction.
Speed is a scalar quantity.

Velocity and acceleration are
vector quantities.

Velocity is the rate of change of
displacement.

Acceleration is the rate of change
of velocity.

The slope of a displacement-time
graph measures velocity.

The slope of a velocity-time
graph measures acceleration.

The area under a velocity-time
graph measures displacement.



3.2  Equations of motion

Learning outcomes

On completion of this section, you
should be able to:

m  derive the equations of motion

B use the equations of motion to
solve problems.

velocity /ms™
J

0 t
time/s

Figure 3.2.2 Velocity-time graph for the
motion of P

[] Exam tip

Ensure that you know the conditions
under which the equations of
motions are applicable.

Derivation of the equations of motion

Consider an object P, initially travelling at u ms-'. It then accelerates
uniformly at a rate of ams= to achieve a final velocity of vims™. It takes
t seconds to do so and P travels through a distance of s metres (Figure 3.2.1).

o Q

'
5 '

Figure 3.2.1 Anobject P moving with uniform acceleration

When deriving the equations of motion, the following assumptions are
made.

1 The acceleration is uniform (constant].

2 The motion is in a straight line.

The velocity-time graph for the motion of P is shown in Figure 3.2.2.

Acceleration is defined as the rate of change of velocity.
v-u

t
Rearranging this equation we get the following:

Therefore, a =

v =u+at (1)
The displacement of P is given by s and is the area under the v—t graph.

Displacement = area under graph

area of rectangle + area of triangle

S

1
7 X tlv — u)

(u x t) +
But from equation 1, v—-u = at

1
7 X tlat)

s (u x t) +

ut + %atl (2)

v—-u

)
]

From Equation 1, t =

Substituting this into Equation (2) we get the following:

1
+5(1

M—=ill =

a

V=il
a

. 8

v -u) + [v-u)? 2uv - 2u* + v: - 2uv + u? vi-u?

§ = = =

2a 2a 2a
Rearranging, we get the following:

vi-u® = 2as

v = u?+ 2as (3)



Using the equations of motion

Example

A car starts from rest and accelerates at a rate of 2.5ms™? for 5.2s. It

maintains a constant speed for 90s. The brake is then applied and the car

comes to rest in 6s.
Calculate:

i the maximum velocity of the car
ii the total distance travelled.

i v=u+at =0+(2.5x52) = 13ms’!

ii Distance travelled during the acceleration stage is determined as
follows:

u = 0ms!,a=25ms?t = 52s

ut + %atl = (0 x 5.2) + %[2.5][5.2]1 = 33.8m

Distance travelled during the stage where the velocity is constant:

s

u = 13ms*, t = 90s,a = Oms™

(13 x 90) + %[01[9011 = 1170m

]' 2
s = ut+ yat

Distance travelled during the deceleration stage:

u = 13ms*', t = 6s,v = Oms™
a=Y"U - el o -2.17ms™?
t 6
v: = ut+ 2as
(0 = (13)* + 2(-2.17]s
s = 389m

Total distance travelled = 33.8+ 1170 + 38.9 = 1242.7m

Example
A ball is thrown vertically upwards with an initial velocity of 12ms-!.
Neglecting air resistance, determine:
i the distance travelled by the ball after 0.8 seconds
ii the velocity of the ball after 0.8 seconds
iii the time taken for the ball to reach its maximum height
iv the maximum height reached by the ball.
[g = 9.81ms?|

Since the ball is thrown upwards, it decelerates. The acceleration of the
ball is -9.81ms™
i s =ut +%at2 = (12 x 0.8) +%[—9.81][0.8]1 = 6.46m
ii v=u+at =12+ (-9.81 x0.8) = 4.15ms™!
iii At the maximum heightv = 0

v =u+at

0 = 12+ (-9.81 x t)

12

t = m= 1.228

iv v? = u?+ 2as
(0 = (12)* + 2(-9.81)s
(12)*

R T T
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Exam tip

When an object is thrown vertically
upwards and air resistance is ignored,
the acceleration is equal to —g
(-9.81ms?).

When an object is released and
falls vertically downwards, its
acceleration isg (9.81ms™) if air
resistance is ignored.

Key point

B The equations of motion are used
for objects travelling in a straight
line at a constant acceleration.



3.3  Projectile motion

Learning outcomes

On completion of this section, you
should be able to:

® show that the path taken by a
projectile is parabolic

®  perform calculations involving
projectile motion.

vims™!

vsinf \
vcost \ Vi

Yy
Y

Figure 3.3.1 Variation of the horizontal
and vertical components with time

velocity /ms™

P v

Figure 3.3.3 Anobjectprojected
horizontally

Projectile motion

Suppose a ball is projected with a velocity V at an angle of 6 to the
horizontal.

The horizontal component is given by V,, = Vcosé.
The vertical component is given by V,, = Vsiné.

Figure 3.3.1 shows the variation with time of the horizontal and vertical
components. The force of gravity acts vertically and only affects the
vertical component of the ball. The horizontal component is unaffected
by gravity and remains constant, provided that air resistance is ignored.

If air resistance is taken into account, the horizontal component is no
longer constant.

The path taken by the ball is parabolic as shown in Figure 3.3.2.

In order to analyse projectile motion, the horizontal and vertical
motion are treated separately.

vy = vsind

vy =vcosf

vsin® Leemm T Tmeug

vcosf

Figure3.3.2 Aprojectile

Showing that the path taken by a projectile is parabolic

Object projected horizontally (Figure 3.3.3)

Suppose a ball is projected horizontally with a velocity v at a height h
above the ground.

The horizontal componentv,, = v

If air resistance is ignored, this component remains constant. Therefore,
the acceleration is zero.

The horizontal displacement x at time t is given by

x = (vt + %[[}]t1 = (vt

X
LEE (1)

Initial vertical component of velocity v, = 0



The vertical displacement y at time ¢t is given by
1
y = (0]t + (=g’ (2)

[Assuming that positive velocity means that the ball is moving upwards,
the acceleration due to gravity becomes —g.]

Substituting Equation (1) into Equation (2):

X 1 X |2
y = 0)7] + 58~
- _|_ &8 2
y_ Q,VZX

This equation is a parabola of the form y = —ax’

Object projectedat an angle (Figure 3.3.2)

Suppose a ball is projected with a velocity v at an angle of @ to the
horizontal.

The horizontal component of velocity v, = vcosé

If air resistance is ignored, this component remains constant. Therefore,
the acceleration is zero.

The horizontal displacement x at time t is given by

(vcos@)t + %[0] t* = (vcosé)t

> e —
X
veosf 3]
Initial vertical component of velocity v, = vsiné
The vertical displacement y at time ¢ is given by
y = |vsind)t + %[—g]t1 (4)

[Using s = ut + %atz, a is taken as —g because the vertical component of
the velocity decreases as the ball moves upwards|

Substituting Equation (3) into Equation (4):
e 2

vcos

1
y 5] + 78

(v s.'1r18][L
Vv Cos

siné
cosé

Xtan@ -

¥

8 —
2vicostd x [tanﬁ? -

This equation is a parabola of the form y = ax - bx*

Example

A boy kicks a football such that the ball follows the path shown below
(Figure 3.3.4).

Figure3.3.4
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Exam tip

When asked to find the velocity of
the object at any point along the
parabolic path, remember to find the
horizontal and vertical components
at that point first.

Exam tip

Do not learn the formula for time
of flight, horizontal range and
maximum height. Just resolve the
initial velocity into a horizontal and
vertical component and apply the
equations of motion.



Chapter 3 Kinematics

vy =507ms"

Figure 3.3.5

vy =5ms™

Ignoring air resistance, calculate:

i the initial horizontal component of the velocity of the ball

ii the initial vertical component of the velocity of the ball

ili the maximum height h achieved by the ball

iv the time taken to reach the maximum height h

v the time taken to cover the distance R, where R is the range of the
projectile

vi the distance R

vii the velocity of the ball at the point P where P is 7m from the initial
starting point.

Sketch Figure 3.3.4 and label it A. Sketch the path B, such that the effect
of air resistance on the ball is not ignored.

i Initial horizontal component V,; = 10cos60° = 5ms™.
ii Initial vertical component V,, = 10sin60° = 8.66ms™.

iili u = 866ms',v = 0ms,a=-98lms>
v = u*+ 2as
0 = (8.66)2 + 2(-9.81)s
2(-9.81)s = (8.66)2
2
5 = 2[1?965111 = 3.82m
Maximum heighth = 3.82m
iv u = 866ms', v =0ms),a=-98lms>
v =u+at
0 = 8.66 + (-9.81]t
8.66
t = 98l = 0.883s

Time taken to reach maximum height = 0.883seconds
v Time taken to cover the horizontal distance:

R = 2(0.883] = 1.766seconds
vi u = 5ms!,a = Oms?t = 1.766s

]' 2
s = ut + 5at

(5 x 1.766) + %[0][1.766]2

= 8.83m
vii In order to find the velocity of the projectile at P, we need to find the
velocity in the vertical and horizontal direction at P. The velocity in
the horizontal direction is constant, since there is no component of
acceleration in that direction.

— =1
v, = 5ms

The time taken to reach the point P is determined as follows:

1
s = ut + zat?

2

7 = 5t +l[(}]t1
’ 2

t = I = l.4s

5



The vertical component of velocity at timet = 1.4seconds is
determined as follows (Figure 3.3.5):

Vv =1u-+at
V, = 8.66 + (-9.81](1.4)
V., = -5.07ms!

The resultant velocity is determined as follows:

— 2 2
v = \'IVH + vy

v = y57 + 5.07%

v = 7.12ms!
Vy 5.07

6 = tan’!|—| = tan-1|* '5 = 45.3°
VH

Figure 3.3.6 shows the effect of air resistance on the motion of the ball.

A

Figure 3.3.6 Effect of air resistance on the motion of the ball

Key points

When an object is projected at an angle it follows a parabolic path.
The object travels both horizontally and vertically simultaneously.

The horizontal and vertical motions are treated separately.

The horizontal component of the velocity remains constant if air resistance
is ignored.

B Gravity acts vertically and affects the vertical component of the velocity.

Chapter 3 Kinematics
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Learning outcomes

On completion of this section, you
should be able to:

m  define linear momentum

W state Newton's first and second
laws

® define the newton.

Definition

Linear momentum is defined as
the product of a body’s mass and
velocity in a given direction.

Equation

p=my
p — momentum/kgms™

m — mass of body/kg
v - velocity of body/ms™

Newton’s first law

Newton'’s first law of motion states
that a body stays at rest or if moving
continues to move with uniform
velocity unless acted upon by an
external force.

Newton'’s second law

Newton's second law states that

the rate of change of momentum is
proportional to the applied force and
takes place in the direction in which
the force acts.

Dynamics

Dynamics 1

Linear momentum

The linear momentum (p) of an object is the product of its mass (m)
and velocity {v]. Momentum is a vector quantity. The direction of the
momentum is in the same direction as the velocity |Figure 4.1.1). The
unit of momentum, by definition is kgms-'.

m

p=mv
Figure 4.1.1 Defining linear momentum

Newton'’s first law of motion

If a book is placed on a table it will stay there until a force is applied to
it to make it move. If a rock is thrown in outer space, it will continue

to move indefinitely in a straight line until the gravity of some object in
space affects its motion. It is difficult to grasp the concept that an object
can move in a straight line forever. On Earth frictional forces are always
present. If a ball is kicked it will eventually come to rest because friction
slows down the motion of the ball.

Newton stated that a body will stay at rest or if it is moving, will
continue to move with a constant velocity unless acted upon by an
external force. This law is stating that a force is required to produce a
change in velocity (acceleration) (Figure 4.1.2).

F a
—_——
v=0
A force is required to cause an object to accelerate from rest

F d

v = constant

A force is required to make an object accelerate when moving with a constant velocity
Figure 4.1.2

Newton'’s second law

Newton's second law states that the rate of change of momentum is
proportional to the applied force and takes place in the direction in which
the force acts.

Mathematically this law can be expressed as follows:

px%g (1)

Where F is force, Ap is the change in momentum and At is the change
in time.

Consider an object of mass m travelling with a velocity u. A force F is
applied to the object for t seconds and its velocity changes to v.

The initial momentum is mu.



The final momentum is mv.
The change in momentum is mv — mu.

Ap = mv-mu 2]
Substituting Equation (2) into Equation (1):

mv —mu
t

The proportionality sign is now replaced with an equal sign and a
proportionality constant k is included.

F= I((mv - mu)

o

E o

F = km(v_tu
v-u

But acceleration a = ;

F = kma
1 newton is the force required to give a mass of 1 kg an acceleration of

1 ms™. The reason why the newton is defined in this way is to make k in
the equation equal to 1.

Example

A wooden block of mass 0.50kg rests on a rough horizontal surface. A
force of 15N is applied to the block. The frictional force acting on the
block is 6N (Figure 4.1.3). Calculate the acceleration of the block.

Accelerationa = B, ety 18ms2
m 0.5

Example
A box of mass 60kg is being pulled along a rough surface as shown in
Figure 4.1.4. Calculate:
a the component of the 80.2N force in the OX direction
the component of the 50N force in the OX direction

c the acceleration of the box in the direction of OX if the frictional force
acting on it is 25N.

a Component in the OX direction 80.2 x cos35° = 65.7N
Component in the OX direction 50 x cos67° = 19.5N
¢ Total horizontal force acting in the direction OX to the right
65.7 + 19.5 = 85.2N
Resultant force acting on the box
F _ 602

“m - 60

85.2-25N = 60.2N

1.00ms™

Key points

Linear momentum is the product of a body's mass and velocity.

Newton's first law states that a body stays at rest or if moving continues to
move with uniform velocity unless acted upon by an external force.

B Newton's second law states that the rate of change of momentum is
proportional to the applied force and takes place in the direction in which
the force acts.

® 1 newton is the force required to give a mass of 1kg an acceleration of Tms™=.

Chapter 4 Dynamics

Equation
F=ma
F - force/N

m — mass/kg
a - acceleration/ms?

wooden a

block —_—

wl:—m
Figure 4.1.3

Exam tip

Always remember that in the
equation F = ma, F is resultant force.

80.2N

50N

Figure 4.1.4



4.2 Dynamics 2

Learning outcomes

On completion of this section, you
should be able to:

®  understand the term impulse

B draw and interpret force-time
graphs

B understand the concepts of mass
and weight

B state Newton's third law of
motion and give examples.

Impulse

Consider an object of mass m moving with a velocity u. A force F is
applied to the object for a period of time ¢ seconds. This force causes the
velocity to increase to v. According to Newton’s second law we can write

Ft = mv-mu

mv — mu represents the change in momentum of the object and can be
expressed as Ap, where p is momentum.

Ft = Ap

The quantity Ft is called impulse. The unit of impulse is the N's. The
concept of impulse takes into account the time effect of a force. For
example, in a game of cricket, the batsman can get the ball to go further
when he strikes it with his bat, by keeping the bat in contact with the
ball for a longer time. If the force exerted by the bat is exerted for a longer
period of time, the ball will have a greater change in momentum.

If a fieldsman had to catch the ball he would let the ball fall into his
hand, while at the same time moving his hand in the same direction the
ball was travelling in. It takes a longer time for the momentum of the ball
to reduce to zero. This reduces the force exerted on his hand by the ball.

F-t graphs
A force-time graph can be used to illustrate how a force varies over a

period of time as it acts on an object. The first graph shows a constant
force F being applied over a time interval ¢,

Suppose in a game of tennis, a player strikes the ball with his racket. The
second graph shows how the force exerted by the racket on the ball would
vary with time. In practice it is difficult for the player to apply a constant
force to the ball. The ball deforms as it is struck by the racket and the
force applied to it cannot be constant.

The area under a force-time graph represents the change in momentum
of the object in question. For example the area under the graph represents
the change in momentum of the tennis ball.

force/N force/N
1 A

Fl===-"1 — F

time/s = time/s

At
Figure 4.2.1 Force-time graphs



Mass and weight

The mass of a body is the amount of matter contained in it. Bodies have a
property associated with them, called inertia. It is the reluctance of a body
to start moving when it is at rest. It is also the reluctance of a body to stop
moving, once it is in motion. Mass is a measure of a body’s inertia.

Mass is a scalar quantity and the SI unit is the kilogram (kg). Suppose
your mass is 60kg on Earth. If you were to take a trip to the Moon, your
mass will still be 60 kg.

The weight of an object is the force exerted by gravity on it. Weight is
dependent on the gravitational field strength. Therefore, if you were to
travel to the Moon, where the gravitational field strength is less than that
of the Earth, you would have a much smaller weight than on the Earth.
Weight is a vector quantity and the SI unit is the newton (NJ.

Newton's third law

For an object resting on the surface of a table, there are two forces acting
on it. The weight of the object acts downwards. The object is not moving
in a vertical direction. Therefore, there must be an equal force acting
vertically upwards to balance the weight of the object. This force is called
the normal reaction to the surface (Figure 4.2.2).

R -normal reaction

W-weight

Figure 4.2.2 Forces acting on an object on a table

Examples of Newton'’s third law of motion
1. Force between parallel current-carrying conductors

When two parallel current-carring conductors are adjacent to each other,
a force is experienced. Consider two wires A and B parallel to each other,
each carrying a current [ in the same direction. Wire A exerts a force

F, on wire B. Wire B exerts a force F, on wire A. F, and F, are of equal
magnitude but act in opposite directions. When current in the wires
flows in the same direction, the force between them is attractive. When
the current in the wires flows in opposite directions, the force between
them is repulsive (Figure 4.2.3).

\ &

A B A B

Figure 4.2.3 Force between current-carrying conductors

Chapter 4 Dynamics

Definition
Mass is the measure of a body’s inertia.

Definition

The weight of an object is the force
exerted by gravity on it.
W = mg

W - weight/N
m — mass/kg
g - gravitational field strength/N kg™

Newton’s third law

If a body A exerts a force on body
B, then body B exerts an equal and
opposite force on body A.
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2. Force between charged objects

When two charges are placed close to each other, a force is experienced
between them. Consider two charged objects A and B. Object A exerts
a force F, on object B. Object B exerts an equal and opposite force F, on
object A. If the charges are the same (both positive or both negative),
the force is repulsive. If the charges are different, the force is attractive
(Figure 4.2.4).

e @~
A B
LY "
A B
Figure 4.2.4 Force between chargedobjects

3. Gravitational force between two masses

The Moon orbits the Earth. The Earth’s gravitational field provides the
centripetal force required for the Moon to orbit the Earth. The Earth
exerts a force F, on the Moon. At the same time, the Moon exerts a force
F,, on the Earth (Figure 4.2.5).

R
Moon

Earth

Figure 4.2.5 Force betweentwo masses

4. A rocket

When a rocket is launched, a large volume of gas is expelled from

the exhaust. As gas is being pushed out, it experiences a change in
momentum, resulting in a downward force. According to Newton'’s third
law, the gas exerts an equal and opposite force on the rocket, therefore
causing it to accelerate.

5. A hovering helicopter

A helicopter is able to fly because of Newton’s third law. The rotating
blades of a helicopter exert a downward force on the air around them.
The air has a change in momentum downwards, giving rise to a force.
According to Newton’s third law, the air exerts an equal and opposite
force on the blades. If this force is equal to the weight of the helicopter,
the resultant vertical motion is zero and the helicopter remains
stationary. If the force is greater than the weight of the helicopter, it
accelerates upwards.

When applying Newton’s third law it is important to note the following:
The two forces are at all times equal in magnitude.
The two forces act in opposite directions.

The two forces are of the same type (gravitational, electric, etc.)
The two forces act on different bodies.



Example

A ball of mass 0.35kg hits a wall with a speed of 12ms! and rebounds
from the wall along its initial path with a speed of 7.2ms". The impact
with the wall lasts for 0.2s. Calculate the average force exerted by the
wall on the ball.

g o B (0.35 X-7-2015[0-35 X o ahen

Example
Figure 4.2.6 below shows how the force acting on an object varies with
time. The mass of the object is 2 kg and is initially at rest.

force/N
i

40}----=---~1

= time/s

Figure 4.2.6
Calculate:

the change in momentum of the mass during the first 10 seconds
the velocity of the object after 10 seconds
the acceleration of the object during the first 10 seconds

a0 o o

area under graph
1 x 10 x 40 = 200Ns

a Change in momentum

b Ap = mv-mu
200 = 2(v) - 2(0)
v = 100ms!

¢ Avedertion =2 = $00=0 . §hed

t 10
d Change in momentum = total area under graph
h x 20 x 40 = 400Ns

Key points

Impulse is the time effect of a force.

The area under a force-time graph is equal to the change in momentum.
Mass is the measure of the inertia of a body.

Weight is the force exerted by gravity on it.

The mass of a body remains fixed and is not affected by location.

The weight of a body can vary if the gravitational field strength varies.

exerts an equal and opposite force on body A.

the change in momentum of the mass during the 20-second interval.

Newton's third law states that if a body A exerts a force on body B, body B

Chapter 4 Dynamics

Exam tip

Always take the direction of the
velocity into account when finding
the change in momentum of a body.



4.3

Learning outcomes

On completion of this section, you
should be able to:

W state the principle of
conservation of momentum

®  apply the principle of
conservation of momentum

m  distinguish between elastic and
inelastic collisions.

A B

O O

Collisions

Figure 4.3.1 Before collision

FBA W FAB

Figure 4.3.3 After collision

Definition

The principle of conservation of
momentum states that for any
system, the total momentum
before collision is equal to the total
momentum after collision provided
that no external forces act on the
system.

The principle of conservation of momentum

Figure 4.3.1 shows two identical balls A and B on a horizontal surface. Ball
B is at rest and ball A is moving towards B with a velocity of v. The mass of
each ball is m. Ball A eventually collides with ball B.

During the collision of the balls, the magnitude of the force that ball A

exerts on ball B is F,, and the magnitude of the force that ball B exerts on

ball A is F,, (Figure 4.3.2).
The balls are in contact for a length of time At. After the collision, the
speed of ball A is v, and the speed of ball B is v, in the directions shown
in Figure 4.3.3.
Analysis
Ball B
The initial momentum of ball B is zero because it is initially at rest.
The final momentum of ball B is mv,.
The change in momentum of the ball B is therefore mv,.
According to Newton’s second law
F At = mv,
Ball A
The initial momentum of ball A is mv
The final momentum of ball A is mv,.
The change in momentum of the ball A is therefore mv, - mv.
According to Newton’s second law

Fmﬁ\t = mv, -mv

Total momentum
Total momentum before the collision = mv

Total momentum after the collision = mv, + mv,

According to Newton’s third law, the magnitude of the force exerted on
ball B by ball A (F, ] is equal to the magnitude of the force exerted by ball
A by ball B (F,, ). They act in opposite directions.

F = -F [l]

AB AB

(Multiplying Equation (1) by At) F, At = -F, At

mv, = -(mv, - mv)
mv, = mv-mv,
mv = mv, + mv, (2)

Equation (2) shows that the total momentum just before the collision
is equal to the total momentum just after the collision. This example
illustrates the principle of conservation of momentum.

Momentum is conserved in all collisions.
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Elastic and inelastic collisions Definitions

In all collisions, momentum is conserved. This is not the case with
kinetic energy. Kinetic energy is the energy possessed by a body by virtue
of its motion. If kinetic energy is conserved in a collision, it is said to be

an elastic collision. If kinetic energy is not conserved, the collision is An inelastic collision is one in which
said to be inelastic. kinetic energy is not conserved.

An elastic collision is one in which
kinetic energy is conserved.

Table 4.3.1 compares elastic and inelastic collisions.

Example Table 4.3.1
An object of mass 3kg travelling at 6m s~ strikes another object of mass ' |Elastie: |inetaste |
5kg travelling at 1 ms™ in the same direction. The objects stick together

collision collision
and move off with a velocity v. Calculate v (Figure 4.3.4). -

Momentum  Yes Yes

-1 -1
G Ims conserved
Q O @ = Kinetic Yes No
energy
3kg 5kg 8kg conserved
. before collision after collision .Total energy | Yes "Yes
Figure 4.3.4 conserved
Assuming no external forces act on the system [the two objects): *
Total momentum before collision = total momentum after collision
3x6)+(5x1) =(3+5
23 = 8v
v = Qé—s = 2.88ms™!
Both objects move off with a velocity of 2.88ms-! in the same direction
both objects were originally moving in.
Always assume a sign convention.
Motion to the right is taken as positive velocities.
Motion to the left is taken as negative velocities.
Example
A stationary nucleus of mass 3.65 x 10-*kg decays to produce two
particles A and B. The particles A and B move off in opposite directions.
Mass of A = 6.64 x 107kg Key points
Mass of B = 3.59 x 107°kg ®  The principle of conservation
The initial speed of A is 1.7 X 107ms™!. Calculate the initial speed of B of momentum states that for a
(Figure 4.3.5). system, the total momentum
17 x 10" ms- before collision is equal to
the momentum after collision
Ea CA OB provided no external forces act
on the system.
before after
Figure 4.3.5 B [n an elastic collision, kinetic

Total momentum before = total momentum after energy is conserved.

® |n an inelastic collision, kinetic

0 = [6.64 x 107Y x -1.7 x 107) + (3.59 x 10 x v) ;
energy is not conserved.
ze g 19 25
. kLo 1(_}; ¥ by By ®  Total energy is conserved in all
v = 113 x 1077 _ 3.14 x 10°ms! collisions.

3.59 x 10



Revision questions 1

Answers to questions that require calculation can be
found on the accompanying CD.

1 When a substance is heated, the energy required to
raise its temperature is given by the expression:

Energy required = mass x ¢ x change in temperature
where c is a constant.
a State the quantities that are Sl base quantities. [2]
b Determine the units of the following, in terms of
Sl base units:
i energy required [2]
ii the constant c. [2]

2 State three base quantities and their corresponding
base units. [3]

3 A small metal sphere of radius r is dropped into a
viscous fluid. As it falls at a speed v, it experiences a
drag force F, where F = krv. k is a constant. State the
Sl base units of k. 3]

4 The frictional force acting on a glass marble falling
through a viscous fluid is given by F = 6zzrnv, where
r is the radius of the marble, 7 is the viscosity of the
fluid and v is the velocity of the marble. Determine
Sl units for viscosity. 3]

5 With the aid of an example, explain what is meant by
the statement “The magnitude of a physical quantity
is written as the product of a number and a unit”. [2]

6 Explain why an equation must be homogenous with

respect to the units if it is to be correct. [1]
7 Write an equation which is homogenous, but

incorrect. [2]
8 a Explain the principle which underlies the checking

of the balance of equations using base units. [2]

b State one limitation of using base units to
balance equations. [1]

State the difference between vector and scalar
quantities. [2]
b Give two examples of a vector quantity and two
examples of a scalar quantity. [4]

10 An object is being pulled with force of 5N acting
at an angle of 30° to the horizontal. Calculate the
horizontal and vertical components of the 5 N force.

[2]

11 Anobject is acted upon by two forces P and Q. The
two forces act at an angle of 6. Giventhat P = 6N
and Q = 8N, determine the resultant force acting
on the object when:

a 8=0° b
c 6=90° d

6 = 180°

6 = 120°. [8]

12 Distinguish between a systematic and a random
error. [3]

13 A student wishes to measure the diameter of a piece
of wire using a micrometre screw gauge.

a How can the student eliminate any systematic

error in the measurement? [2]

b How can he reduce the random error in
measuring the diameter? [2]
14 Distinguish between precision and accuracy. [3]

15 A quantity S is determined from the equation
§=P-0Q.
P=612+0.02mand Q =1.84 £ 0.02m. Calculate
the percentage uncertainty in S. [2]

16 The resistance of piece of wire is given by R = V/I. A
student wishes to determine the resistance of a piece
of wire. V and / are measured.

V=12+04V

/=10+0.2A
Calculate the resistance of the wire and include the
absolute uncertainty R. [3]

17 The mean diameter of a piece of wire is
0.6 = 0.02 mm. Calculate the percentage
uncertainty in:

a the diameter [2]
b the cross-sectional area of the wire. [3]

18 The volume of a cylinder is given by the expression
V =mreh. The volume and height of a cylinder is
measured as:

V=120+£05cm?
h=21.0£01cm

Calculate the radius of the cylinder, with its
uncertainty. [5]



19 a

Differentiate between displacement and distance

travelled. [2]
State how you would determine velocity from a
displacement-time graph. [1]

State how you would determine the displacement
and acceleration from a velocity-time graph. [2]

20 Define the following terms:

a
b

velocity [2]
acceleration. [2]

21 The variation with time t of the velocity v of a cyclist
travelling down a slope is illustrated below.

T T
el i L

10
i

The cyclist reaches a constant velocity after 40s.
Using the graph estimate:

a
b
c

the maximum velocity of the cyclist [1]
the initial acceleration of the cyclist [3]
the total distance travelled before reaching

constant velocity. [3]

22 A car approaches a traffic light with a speed of
20ms. The light changes to red. The driver applies
the brake when at a distance of 40 m from the lights.
Calculate the deceleration of the car if it comes to
rest at the lights. 3]

23 At a sports day at school, Akil runs a 100 m race. He
accelerates from the blocks at a rate of 2m s~ for
4.5 seconds. He runs the remainder of the race at a
constant speed.

a
b

Calculate his speed after the first 5s. [2]
Calculate the distance travelled during the first

B [2]
Determine the time taken for the race. 3]

Sketch the velocity-time graph for therace.  [3]

Revision questions 1

24 A metal ball is thrown vertically upwards with an
initial velocity of 15ms™.

Ignoring air resistance, determine:

i the distance travelled by the ball after

0.9 seconds [2]
ii the velocity of the ball after 0.9seconds  [2]
iii the time taken for the ball to reach its maxi-

mum height [2]
iv the maximum height reached by the ball. [2]
The ball falls to the ground and bounces twice.
Sketch the velocity—-time graph for the metal ball.

3]

Show how it is possible to determine the distance
travelled by the ball between the first bounce and
the second bounce. 2]

25 An object is projected with an initial velocity of
5ms™ at an angle of 30° to the horizontal.

Ignoring air resistance:

i Calculate the initial horizontal component of

the velocity of the object. [1]
ii Calculate the initial vertical component of the
velocity of the object. (1]
iii Sketch a graph to show the variation of the
horizontal component with time. (1]
iv. On the same graph, show the variation of the
vertical component with time. 2]
v Calculate the maximum height h achieved by
the object. 2]
vi Calculate the time taken to reach the maxi-
mum height h. 2]

vii Calculate the time taken to cover the distance
R, where R is the range of the projectile.  [2]

viii Calculate the range R. 2]

ix Calculate the velocity of the ball at the point
P, where P is 2m from the initial starting
point. 3]

26 A box of mass 25 kg is pulled up a smooth inclined
plane at 40° to the horizontal by a rope which is
parallel to the plane.

Sketch a diagram to show the forces acting on the

box. 3]
Calculate the component of the weight of the
box acting parallel to the inclined plane. [2]
The tension in the rope is 250N.

Calculate the acceleration of the box. 3]

Calculate the reaction force between the box and
the plane. 2]



5 Forces

51

Archimedes’ principle, friction

and terminal velocity

Learning outcomes

On completion of this section, you
should be able to:

B understand the origin of the

upthrust acting on an objectin
a fluid

m  explain the nature, cause and
effects of resistive forces

® understand and use the concept
of terminal velocity.

upthrust
P ball

—water

weight

Figure 5.1.1 The forcesacting onan
object immersedina fluid

s

P2
Figure 5.1.2 Origin of an upthrust

Definition

Archimedes’ principle states that
when a body is totally or partially
submerged in a fluid, it experiences
an upthrust which is equal to the
weight of the fluid displaced.

Archimedes’ principle
When a beach ball is placed in water there are two forces acting on it.

1 The weight of the ball, which acts vertically downwards.
2 The upthrust, which is a force acting vertically upwards.

When the ball is placed in water, it displaces some water. The weight of
this displaced water is equal to the upthrust (Figure 5.1.1).
Origin of the upthrust

Consider a cylinder of height h and cross sectional area A at a distance of
h, below the surface of a fluid of density p (Figure 5.1.2).

(See 19.1 and 19.2 for coverage of density and pressure.)

Ah
Mass of fluid displaced = density x volume = pAh

Weight of fluid displaced

Volume of fluid displaced = volume of cylinder

mass X gravitational field strength

= pAhg (1)
Pressure p, = pgh
Force exerted on top of surface F, = pA = pgh A
Pressure p, = pgh,
Force exerted on bottom surface F, = pA = pgh A
Upthrust = F,—F,
= pghA-pghA
= pgAlh, - h)
But h = h,-h
Upthrust = pgah 2)

upthrust = weight of fluid displaced.

From Equations (1) and (2],

Resistive forces

When a ball is rolled on the floor, it eventually comes to rest. The reason
why the ball comes to rest is because of friction. Friction is a force that
opposes the motion of an object. Frictional forces:

1 slow down the motion of moving objects and

2 prevent movement between two stationary objects in contact with
each other.

Heat is produced when work is done against friction.

In machines, there are frictional forces acting on moving parts. The
frictional forces cause thermal energy to be produced. This makes
machines less efficient. Lubricating moving parts with oil or grease,



inside the machine helps reduce friction. This reduces the amount of
wear and tear inside the machine and makes it more efficient.

Friction arises because surfaces are not completely smooth. Even though
they may appear that way, at the microscopic level they are actually
jagged and rough.

Frictional forces can be reduced by:

using lubricants such as oil or grease
using rollers and ball bearings between surfaces in contact

polishing surfaces to ensure they are smooth as possible.

Drag force is the force that opposes the motion of an object as it moves
through a fluid. Air resistance is a special type of frictional force which
acts on objects as they travel through air. At low velocities, the air
resistance is proportional to the velocity of the object |F = kv]. At higher
velocities, the air resistance is proportional to the square of the velocity of
the object (F = kv?).

Terminal velocity

Consider a parachutist jumping from an aircraft. When the parachutist
jumps from an aircraft, his initial velocity is zero. The initial acceleration
is 9.81 ms™. The initial force acting on the parachutist is his weight,
which acts downwards. There is no drag force acting on him at the start
because the initial velocity is zero. As he falls, his velocity increases and
his acceleration decreases. The drag force acting on him is proportional to
his velocity and acts upwards. The drag force therefore increases as he falls.
The resultant force acting on him is F, = W - D, where W is the weight

of the parachutist and D is the drag force acting on him. At some point in
the fall, his weight becomes equal to drag force. At this point, the resultant
force acting on him is zero. His acceleration is also zero, which means that
he is falling at a constant velocity. He has now reached terminal velocity
(Figure 5.1.3).

Example

An object has a mass of 2.2 kg. When the object falls in ait, the air
resistance F is given by F = kv? where v is the velocity of the object and
k = 0.039Ns’m™2.

Calculate:

a the weight of the object
b the terminal velocity of the object
c the acceleration of the object when it is falling with a velocity of 10ms™'.

a W=mg = 22x981 =21.6N
b At terminal velocity, the resultant force acting on the object is zero.

W =F
F = kv
21.6 = (0.039)v*
_ 1216 _ _1
v = 0,039 — 23.5ms

(0.039)(102 = 3.9N
W-F =216-3.9 = 17.7N

a = vl = —17_'7 = 8.04ms™?
m 2.

¢ When v = 10ms-!, air resistance F

Resultant force acting on object

Chapter 5 Forces

velocity
terminal velocity
0 time
drag force D

weight W

Figure 5.1.3 Terminal velocity

Key points

Archimedes' principle states that
when a body is totally or partially
submerged in a fluid, it experiences
an upthrust which is equal to the
weight of the fluid displaced.

Friction opposes motion.

When work is done against
friction, heat is produced.

An object reaches terminal
velocity when it falls through a
fluid.

At terminal velocity, the weight

of the object is equal to the drag
force. The resultant force is zero

and the acceleration is zero.



5.2  Polygon of forces and centre of gravity

Learning outcomes Polygon of forces

On completion of this section, you Suppose th.ree forces P, Q and R act on an object. Figure 5.2. l[a]. shows. the
-~ free body diagram. A free body diagram shows all the forces acting on it.

® use a vector triangle to represent The object is in equilibrium. The forces can be used to draw a vector

triangle (Figure 5.2.1(b)). The sides of the triangle represent the

magnitude of the forces. Since the object is in equilibrium, the triangle

® understand the concept of centre  qrawn will be a closed triangle. If the object was not in equilibrium, the
of gravity vector triangle will not be closed. The vector triangle is drawn as follows:

forces in equilibrium

W describe an experiment to
find the centre of gravity of an
irregular shaped lamina.

1 One of the forces acting on the object is selected and drawn first (e.g. P).

2 Moving in an anticlockwise direction, the next force is drawn. The
force R is drawn by starting from the arrowhead of P.

3 The force Q is then drawn by starting at the arrowhead of R.

Q The directions of all the forces in the vector triangle are exactly the same
p as in the free body diagram.

Suppose an object is in equilibrium when acted upon by four forces, P, Q, R
&0 and S. In this case a vector polygon can be drawn. Using the same principles
p used for the vector triangle, the polygon can be drawn (Figure 5.2.2).

Suppose two forces P and Q act on an object. The object is not in

k equilibrium. The resultant force acting on the object is R. In order for the
0 object to be in equilibrium, a force of equal magnitude to R, acting in a
! direction opposite to R must be exerted on the body (Figure 5.2.3).
(a) (b) p 5
Figure 5.2.1
(a) Three forces acting on a body
(b) Avectortriangle
@
R
Q
Q/\P Q
(a) (b)
R s P o
-R
(b) (©
Figure 5.2.2 Figure5.2.3 (a)Free body diagram (b) Resultant force (c) The vector triangle

(a) The free body diagram
(b) The vector polygon

Example

A particle of mass 0.51 kg is supported by a string attached to a fixed
point. It is being pulled by a horizontal force of 3.2N.

a Sketch a diagram to show the forces acting on the particle.

b Draw a vector triangle and hence calculate the tension in the string,
¢ Calculate the angle that the string makes with the vertical.



32N

3.2N

W=mg

Figure 5.2.4

W = mg = 0.51 x 9.81 = 5.0N
Using Pythagoras’ theorem

T = 52 + 322
T = 43524 = 59N
3.2
tanf = W
=139 4 . .
a8 = teml[W] = 32.6 (Figure 5.2.4)

Centre of gravity

Finding the centre of gravity of an irregular-
shaped lamina

A lamina is a thin sheet of stiff material. In order to locate the centre of
gravity of an irregular-shaped lamina, the following steps are taken:
1 Two small holes are made near the edge of the lamina.

2 A nail is placed through one of the holes and the lamina is made to
hang freely from it.

3 A string with a mass attached to it is then attached to the nail.

4 A pencil is used to mark several points on the lamina where the string
hangs.

5 The mass and string is removed and a straight line is drawn through
the points made in step 4.

6 A nail is placed through the second hole and the lamina is made to
hang freely.

7 The string with a mass attached to it is then attached to the nail.

8 A pencil is used to mark several points on the lamina where the string
hangs.

9 The mass and string is removed and a straight line is drawn through
the points made in step 8.

10 The point of intersection of the two lines drawn is the centre of
gravity of the lamina (Figure 5.2.5).

Key points

A free body diagram shows all the forces acting on a body.

For an object in equilibrium when several forces act on it, a closed vector
polygon can be drawn.

®  The centre of gravity of a body is the point through which all the weight of
a body seems to act.

Chapter 5 Forces

Definition
The centre of gravity of a body

is the point through which all the
weight of a body appears to act.

lamina

mass attached
©——toastring

centre of
gravity

[+]

Figure5.2.5 Finding the centre of gravity
of anirreqular shaped lamina
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Learning outcomes

On completion of this section, you
should be able to:

® understand the concept of torque
and couple

B understand the concept of
moment of a force

state the conditions for equilibrium
state the principle of moments

apply the principle of moments.

Definition

The moment of a force is defined

as the product of the force and the
perpendicular distance of the line of
action of the force from the pivot.

Fs

Figure 5.3.3 Applying the principle of
moments

Definition

The principle of moments states
that for a body to be in equilibrium,
the sum of the clockwise moments
must be equal to the sum of the
anticlockwise moments about the
same pivot.

Torque and moment

The moment of a force

There is a reason why a door knob is positioned at the edge of a door. It

is not positioned at the middle of the door where a larger force would be
required to open the door. It is positioned at the edge the door in order for
there to be a large moment about the hinges of the door. The moment of a
force about a pivot is the turning effect of a force. The moment of a force is
defined as the product of the force and the perpendicular distance of the line
of action of the force from the pivot. The SI unit is the newton metre (Nm).

Consider Figure 5.3.1.

d—-

F

Figure 5.3.1 Defining moment of a force Figure 5.3.2
The moment of force F about O = F x d

Always remember, when calculating the moment of a force, the distance
used is at right angles to the line of action of the force from the pivot. In
Figure 5.3.2, the moment of the force F determined as follows:

The moment of force F about O = F X dcosé

The principle of moments

Consider a plank P balancing on a pivot O. Forces F,, F, and F, act on the
plank as shown in Figure 5.3.3.

The force F, produces an anticlockwise moment F. d, about O.
The force F, produces an anticlockwise moment F,d, about O.
The force F, produces a clockwise moment F,d, about O.
Therefore, for the plank P to be in equilibrium
Sum of clockwise moments = Sum of anticlockwise moments
F,d, = F.d, + Fd,
Example
Consider a wheelbarrow filled with some sand. A construction worker is
about to lift the wheelbarrow with a force P (Figure 5.3.4).
Calculate:
i the minimum value of the vertical force P, needed to raise the legs of
the wheelbarrow off the ground

ii the magnitude of R when the legs of the wheelbarrow just leave the
ground.

i Taking moments about the centre of the wheel.

Sum of clockwise moments = Sum of anticlockwise moments



480 x 0.6 = Px14
480 x 0.6
P= 1.4
= 206N

ii Just as the wheelbarrow is about to leave the ground, it will be in
equilibrium.
Sum of downward forces

Sum of upward forces

R + 206 = 480
R = 480 - 206
R = 274N

The torque of a couple

A couple consists of two equal and opposite forces whose lines of action
do not coincide. A couple tends to produce rotation only. Consider two
forces F, and F, acting on a steering wheel of a car (Figure 5.3.5).

The forces F| and F, are equal and have a turning effect or moment called
a torque.

Torque of couple =F d or F,d
The SIunit of torque is the newton metre (Nm).

It should be noted that the resultant turning effect is not zero. The
steering wheel rotates anticlockwise. The steering wheel is not in
equilibrium when subjected to forces F, and F, only.

Example

A ruler of length 0.5m is pivoted at its centre. Calculate the magnitude of
the torque of the couple when equal and opposite forces of magnitude 31N
are applied as shown in Figure 5.3.6.

Torque of couple = Fx d = 3 x0.58in60° = 1.3Nm

Conditions for equilibrium
In order for a system to be in equilibrium, the following conditions must
apply.

The resultant force acting on the system is zero.

The resultant torque is zero.

The resultant moment is zero.

Key points
B The moment of a force is the product of the force and the perpendicular

distance of the line of action of the force from the pivot.

m  The principle of moments states that for a body to be in equilibrium, the
sum of the clockwise moments is equal to the sum of the anticlockwise
moments.

B A couple consists of two equal and opposite forces whose lines of action do
not coincide.

A couple tends to produce rotation only.

The torque of a couple is the product of one of the forces and the
perpendicular distance between the forces.

Chapter 5 Forces

E!—O.Gm—bln—O.Sm—bi

Figure5.3.4

Fa
Figure 5.3.5 Thetorque of acouple

W 3N

3N @

Figure5.3.6



Work, energy and power

6.1  Work and energy

Learning outcomes

On completion of this section, you
should be able to:

B identify various forms of energy

W state the principle of
conservation of energy

B describe examples of energy
conversion

B define work.

Table 6.1.1 Examplesof energy conversion
Example
1 An incandescent bulb being switched on
" Abook falling from a shelf to the floor
. A photovoltaic cell
. A”battery
A hydroelectric plant
. Alighted candle

Il ~lolwvslw| ]

A catapult being released

Definition

The principle of conservation of
energy states that energy can neither
be created nor destroyed, but can be
converted from one form to another.

Energy
Energy is the capacity or ability to do work.

Various forms of energy include:

mechanical (kinetic and potential) electrical
thermal nuclear
chemical solar (Table 6.1.1).

Energy conversion

The Sun is the primary source of energy for the Earth. Most of the energy
reaching the Earth is in the form of light and infrared radiation (heat energy).
Energy cannot be created but can be converted from one form to another. For
example, gasoline has chemical energy locked up inside it. When burnt, the
chemical energy converts to thermal and mechanical energy.

;"Energy conversion

‘.Electrical energy to light and heat

Gravitational potential energy to kinetic energy and sound energy

-.“.Light energy into electrical energy

.-‘.Cﬁ-emical.t-a.r.lergy into electrical énergy

' Gravitational potential energy into kinetic energy and then into electrical energy
Chemical energy into light and heat .

Elastic potential energy into kinetic energy

Energy conservation

Renewable sources of energy are derived from natural sources (sunlight,
waves, wind, geothermal, hydroelectric) and are replenished over time.

Most of the energy used in homes, factories and transportation comes from
fossil fuels. Fossil fuels are non-renewable. This means that they cannot be
replenished. The Caribbean depends heavily on fossil fuels, such as oil and

gas. As global reserves of oil and gas diminish, prices of these fuels increase.
Therefore, in the Caribbean, there is a greater need for energy conservation.

To conserve energy:

Switch off lights when leaving a room.

Use fluorescent bulbs instead of incandescent bulbs.
Use natural lighting.

Do not leave refrigerator doors open.

Switch off electrical appliances when not in use.
Car pool with other people.

Walk or use a bicycle instead of a car.



Alternative sources of energy in the Caribbean

Table 6.1.2

Alternative
source of energy

“1 Solar

2 | Wind

3 | Hydroelectric

4 | Geothermal

5  Biofuels
Biogas
Gasohol
Biodiesel
Work

. Main feature/use

Solar energy harnessed
from the Sun.

Solar water heaters -
homes and hotels.

Solar panels that convert

sunlight into electricity.

Solar driers — used to dry
crops.

Kinetic energy of wind

converted into electrical
energy using wind turbines.

Gravitational potential

energy of water stored in
dams flow through turbines

to produce electricity.

Thermal energy inside
the Earth is used to

produce steam to generate

electricity.

Produced by bacteria
breaking down plant
and animal waste. Main
constituent — methane.

Mixture of gasoline and
alcohol.

Made by chemically reacting

. Advantages

Abundance of sunlight
in the Caribbean.

Can be attachedto
the roof of existing
buildings.

Direct conversion of
sunlight into electricity.
Very effective at drying

crops.

Efficient method of
converting wind into
electricity.

Efficient, reliable
method of producing
electricity.

Small land area
required.

Gas can be used for
cooking and heating.
One way of getting rid
of waste material.

Used as a fuel in some
cars.

Used as a fuel in diesel

vegetable oilwith an alcohol. engines.

Chapter 6 Work, energy and power

Disadvantages

Sunlight varies throughout the day so

insulated storage tanks are required.

For large amounts of electricity
many solar panels are required.

Batteries are required to store energy.

I Large capital cost. Affects

environment.
Wind is seasonal and variable.

Batteries are required to store energy.

. Huge capital cost.

Affects ecology.
Problems with flooding.

Very site-specific and expensive.

Harmful gases may come up from
the ground.

Greenhouse gases produced.

Agricultural land is used to plant
crops for fuel instead of food for
consumption.

Some of the feedstock used for
biodiesel is also used for food.

The work done by a force is the product of the force and the distance
moved in the direction of the force.

W = Fs

w Fscos@

The SI unit of work is the joule {]).
1 joule is the work done by a force
of 1N when it moves through a

(Figure 6.1.1)
|Figure 6.1.2)

distance of 1 m in the direction of

the force.
1] = INm

When someone lifts an object, work is done by the upward force of the
hand. If the object is held stationary in its final position, no work is being
done by the upward force of the hand because it is stationary. However,

W=Fs
Figure 6.1.1

Figure 6.1.2

——S—»

W = Fscos@

Key points

to do work.

form to another.

. Region for

potential use

'All Caribbean

territories

.Cuba

Jamaica
Barbados

Dominica

Guyana
(Amaila falls)

Guadelope
Stlucia

Dominica

All Caribbean
territories

B Energy is the capacity or ability

®  The principle of conservation of
, energy states that energy can
neither be created nor destroyed,
but can be converted from one

®  The work done by a force is the

of the force.

the muscles in the arm get tired even though no work is being done.

product of the force and the
distance moved in the direction



6.2

Learning outcomes

On completion of this section, you
should be able to:

m  distinguish between kinetic and
potential energy

®  derive the formula for kinetic
energy

®  derive the formula for
gravitational potential energy
define power

appreciate the concept of
efficiency.

Definition

The kinetic energy of a body is the
energy possessed by virtue of its
motion.

Figure 6.2.1 Deriving the formula for
kinetic energy

Definition

The potential energy of a body is
the energy possessed by it by virtue
of its state or position.

Figure 6.2.2

Energy and power

Kinetic energy

A cricket ball travelling through the air possesses kinetic energy. If the
ball strikes a glass window it will break the glass. The energy used to
break the glass comes from the kinetic energy possessed by the ball.

An object of mass m moving with a velocity v has a kinetic energy of

1. 2
EK—sz.

Deriving the equation for the kinetic energy of a body

Consider an object of mass m, travelling with a velocity of v. A constant
force F acts on the object and brings it to rest while travelling through a
distance s. The object decelerates at a rate of a (Figure 6.2.1).

Work done by the force F is W = Fs.
Using Newton’s second law (F = ma)
W = mas
Considering the motion of the object:
Acceleration = -a

Initial velocity = v Final velocity = 0

v = u?+ 2as

0* = v2-las
vi = 2as

— ]‘2
as = ZV

Work done by the force Fis W = m %Vl

The loss in kinetic energy of the object is equal to the work done by the force.

Therefore, the kinetic energy of the object is E, = %mvl

Potential energy

Potential energy can be classified as follows:
Gravitation potential energy — The energy of a body by virtue of its
position in a gravitational field.

Electrical potential energy — The energy possessed by a charged body
due to its position in an electric field.

Elastic potential energy — The energy possessed by a body when
deformed. (Example - a stretched spring has elastic potential energy.)

Deriving the equation for the change in gravitational
potential energy of a body

Consider an object of mass m at a height above the ground. It moves
vertically upwards with a constant velocity v and travels through a distance
of h. In order to maintain a constant velocity, the upward force acting on
the object must be equal to the weight of the object (Figure 6.2.2).

F

mg

Upward force
Downward force (Weight) W
F

=
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Work done by force = F xd = mgh

The work done by the force is equal to the gain in gravitational potential
energy of the object.

Equation

Efficiency () = % x 100%

Power and efficiency . ~ B SRR LR

Power is defined as the rate at which work is being done. The SI unit of P, - input power/W
power is the watt (W).

The work done by a force is defined as the product of the force and the

distance moved in the direction of the force. W = F x d

Example

Equation
Power is defined as the rate at which work is being done. P = g p_ W
Tt
Therefore, we can write P = Ex d. But recall thatv = d
t P - power/W
P = Fv W - energy/|
. o ) t - time/s
The efficiency of a machine is defined as the ratio of the useful power
output to the power input. It is expressed as a percentage.
Machines are not 100% efficient. There are energy losses present in Equation
machines. Friction between moving parts generate unwanted heat. Oiling '
and greasing moving parts reduces friction and increases the efficiency of P =Fv
machines. P - power/W
F - force/N

v - velocity/ms™

A cyclist pedalling along a horizontal road provides a power of 210 W and
reaches a steady speed of 6.2ms!. The combined mass of the cyclist and

bicycle is 112kg.

v=6.2ms"!

a Calculate: F=(549 + 33.9)N

i the kinetic energy of the cyclist and bicycle
ii the total resistive force acting on the forward motion. (112 x 9.81 x 5in30°) N

The cyclist stops pedalling and allows the bicycle to come to rest.
Assuming that the resistive force remains constant, calculate the

distance travelled by the cyclist before coming to rest. weight = (112 x 9.81)N
The cyclist decides to go up a slope. The angle of the slope is 30° to

the horizontal. In order to maintain a constant speed of 6.2ms™' up Fgme62.3
the slope, the cyclist pedals harder and supplies more power to the
bicycle. Calculate this power.
i E = %mvl - %[112][6.2]1 = 2.15 x 10°] Key points
ii P=Fv ® The kinetic energy of a body is
_ P _ 210 _ the energy possessed by virtue of
b=y = go=3889N its motion.
Loss in kinetic energy = work done by resistive force m The gravitational potential
215 x 108 = 33.9xd energy of a body is the energy
" : :
d e 2.15 x 10° _ 63.5m pos;st?ssed by virtue of its
33.9 position.
Component of the weight of the cyclist and bicycle down the slope is: W Povesiicdebnadsotha rstaat

mgsin® = 112 x 9.81 x sin30° = 549N WHICH WoRK 5 e doRe
Frictional force = 33.9N

Therefore, the cyclist must supply power to provide a force of
549 + 33.9 = 582.9N up the incline to maintain a speed of 6.2ms™.

P =Fv = 5829 x 62 = 3.61 x 10°W (Figure 6.2.3)

m  Efficiency is defined as the ratio
of the useful power output to the
power input.



Revision questions 2

Answers to questions that require calculation can be
found on the accompanying CD.

1 Asmalltoy of mass 50¢ attached to a string hangs

from the roof of the inside of a car. The car accelerates
horizontally and the string attached to the toy takes
up a steady position at an angle of 25° to the vertical.
a Sketch a diagram to show the forces acting on the
toy and indicate the direction of the acceleration

of the car. [2]
b Calculate the magnitude of the resultant force

acting on the toy. 3]
¢ Calculate the acceleration of the toy. [2]

a State Newton’s first and second laws of motion.
[4]
b Using Newton’s laws of motion, explain how a
helicopter is able to hover above the ground. [4]

a Define linear momentum. [2]
State the Sl unit of linear momentum. [1]
¢ An object of mass 0.6kg is travelling with a
velocity of 25ms.
Calculate the kinetic energy and the momentum

of the object. [3]
Explain why a direction is required for one
quantity and not the other. [2]

4 A cricketer throws a ball of mass 0.15kg. The figure

below shows how the force on the ball from the
cricketer’s hand varies with time. The ball starts from
rest and is thrown horizontally to another player.

e i Ea

£ _ fcrce /N

a Estimate the area under the graph. [2]

b What change in physical quantity does the area
under the graph represent? [1]

c Calculate the horizontal velocity of the ball when
it is released. [2]

10

d Calculate the maximum horizontal acceleration

of the ball. [2]
e Sketch the force-time graph to show the force
exerted by ball on the player’s hand. [2]
a Explain what is meant by the term ‘impulse’.  [1]
b Distinguish between mass and weight. [2]
c State Newton's third law of motion. [2]
d Use Newton's laws to explain how a rocket is able
to leave the Earth’s surface. [3]
a Define linear momentum. [1]
b State the law of conservation of linear
momentum. [3]

c An object of mass 4 kg travelling at 5m s’ strikes
another object of mass 2 kg travelling at Tms™in
the opposite direction. The objects stick together
and move off with avelocity v. Calculatev.  [3]

The north poles of two bar magnets are held
together. When released, the magnets move off

in opposite directions. Explain how the principle

of conservation of momentum is applied to this
situation. [3]

State two physical quantities that are conserved in
an elastic collision. [2]

A skydiver has a mass of 80 kg. He jumps from an
aircraft and free falls. He reaches a terminal velocity
of 80m s before opening his parachute. Calculate:

a the weight of the skydiver [1]
b the air resistance F acting on the skydiver when
travelling at terminal velocity [1]
¢ the magnitude of k if F= kv2. [2]
d the acceleration of the skydiver when his velocity
is 42ms. [3]

a Explain what is meant by terminal velocity.  [2]
b Explain why a small metal sphere falling through
a viscous oil eventually reaches a terminal
velocity. [3]
¢ An object has a mass of 1.9kg. When the
object falls in air, the air resistance F is given by
F =kv?, where v is the velocity of the object and
k=0.028Ns*m™=

Calculate:
i the weight of the object [2]
ii the terminal velocity of the object [3]

ili the acceleration of the object when it is falling
with a velocity of 5ms™. [3]



11 A cuboid with dimensions 30 cm x 25 cm x 15¢cm
and a mass of 3.8kg is floating in water of density
1 x 10°kgm= so that its largest faces are horizontal.

Calculate:
a the upthrust on the cuboid 3]
b the fraction of the cuboid that is beneath the
surface of the water. [2]
12 a State two conditions for a body to be in

equilibrium. [2]
b Three co-planar force A, B and C act on a body
that is in equilibrium.,

i Explain how a vector triangle can be used to

represent the forces A, B and C. [3]
ii Explain how the triangle illustrates that the
forces A, B and C are in equilibrium. [1]

c Atoy of mass 0.75kg hangs from two strings as
shown below.

9

The toy is in equilibrium. Draw a vector triangle
to determine the magnitudes of T, and T.. [4]

13 Explain what is meant by the centre of gravity of a
body. [2]

14 Distinguish between the moment of a force and the
torque of a couple. [2]

Revision questions 2

15 A uniform plank of weight 90 N and length 2.00m
rests on two supports A and B. The supports A and
B are located 0.2 m from each end of the plank. A
construction worker of weight 800N stands 0.45 m
from one end. (Side closer to support B)

a Sketch a diagram of the plank to show the forces

acting on it. [2]
b Calculate the force acting on the plank at support
B. 3]
¢ Calculate the force acting on the plank at support
A. [2]

16 State two conditions necessary for a body to be in
equilibrium. [2]

17 Three forces act on an object O as shown in the
figure below. Find the resultant of these forces and
its direction with respect to the horizontal.

38N

28°

40° 24

27N 20N

18 A car of mass 500kg is travelling along a horizontal
road with a constant velocity of 10 ms™. The car
then descends a hill of length 300 m while travelling
through a vertical distance of 20 m. A constant
frictional force of 200 N acts on the car as it moves
down the hill. Calculate:

a theinitial kinetic energy of the car

the total energy possessed by the car at the top
of the hill

c the work done by the frictional force
d the velocity of the car at the bottom of the hill.



Circular motion

71 Motion in a circle

Learning outcomes
On completion of this section, you
should be able to:

B express angular displacement in
radians

®  understand the concept of
angular velocity

B understand the concepts of
centripetal force and centripetal
acceleration.

Figure 7.1.1 Defining the radian
Definition

The radian is defined as the angle
subtended at centre of a circle by an
arcequalin length to the radius of
the circle.

Definition

Angular velocity , is defined
as the rate of change of angular
displacement. The Sl unit israds™.

Equation

V =Trw

v - linear velocity/ms™
r - radius/m
@ - angular velocity/rads™

Angular velocity

Consider an object attached to a string of length r (Figure 7.1.1). The
object is made to travel in a circular path at a constant speed v. The
object is initially at the point A. As it travels in an anticlockwise direction
an angle is swept out. When the object reaches the point B, an angle of

6 is swept out. The distance travelled along the arc of the circle is s. An
angle of one radian is defined such thats = r.

Therefore if the radius of the circle is r and the arc length is s, then # = %

When the object returns to the point A, the distance travelled will be the
circumference of the circle.

Therefore, the arc length in one revolution s = 2mr

g=5=2"_ 9,
T r

Therefore, one complete revolution is equivalent to 2 radians.

a radians = 180° 1 radian = 57.3°

The angular velocity w is the rate of change of angular displacement.

The angular displacement during one revolution is 2.

raln
o

The linear velocity of the object at any point in the circle is given by v = %
Since the angular velocity is w, the angle swept out in time t is wt.

But

s
i wt = —
r

s
Therefore, v = T =

Centripetal acceleration

An object moving in a straight line at a constant speed is not
accelerating. However, an object moving in a circular path at a constant
speed is accelerating. Consider an object travelling at a constant speed v
in a circular path as shown in Figure 7.1.2. The speed of the object at any
point on the circular path remains unchanged. The direction of the object
is continuously changing. Since velocity is a vector quantity, the velocity
at the point A, v, is different from the velocity at the point B, v,. The
change in velocity is found using vector subtraction.

Change in velocity Av = v, - v,

Vector subtraction can be thought of as a vector addition as follows:



Av = vy—v, = v + (-v,)

In order to perform the addition, the vector v, is first drawn. The vector
-v, is then drawn. The starting point for this vector is the ending point of
vector v,.

Av Ve

Figure 7.1.2 Uniform circular motion

Av = v —v

B A = Vs + (_V,-\)

Acceleration is the rate of change of velocity.

g B
T Mt
If At is small, A@is small and Av = vA#.
_ VAB _ v
- A @

Butv = re@ .. a (to)w = w?r

This acceleration is always directed towards the centre of the circle.

Centripetal force

It has already been established that the acceleration of an object travelling
in a circular path with constant speed is directed towards the centre

of the circle. According to Newton’s second law of motion, a force is
required to produce this acceleration, This force is called the centripetal
force. This force must also act towards the centre of the circle.

According to Newton'’s second law F = ma.

2 2
\% mv
Buta =— s F=
r r

Since a = w?r, the centripetal force can be written as F = mw’r.

Example

An object of mass 1.2kg is travelling in a circular path of radius 0.8 m,
with a constant speed of 0.5ms™'. Calculate:

the angular velocity of the object

the time taken for the object to complete one revolution

the centripetal acceleration of the object

an o w

the centripetal force acting on the object.

v _05_ -1

Sl ¥ 0.625rads

2w 27w

o ~ 0.6 — 101s

r = (0.625)*(0.8) = 0.313ms™

d F=ma = 12x0.313 = 0.375N

n
R

Il
g
ok
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Equation

a = wr

a - acceleration/ms=?
@ - angular velocity/rads™

r - radius/m
Equation
F=mv

r

F - centripetal force/N
m — mass/kg

v - velocity/ms™

r - radius/m

Key points

® Angular velocity is the rate of
change of angular displacement.

B An object travelling in a circular
path at a constant speed is
accelerating.

B The direction of the object is
changing and hence its velocity is
changing.

B The object is accelerating and is
directed towards the centre of
the circle.

B Anunbalanced force called the
centripetal force is required
to produce a centripetal
acceleration.



7.2

Learning outcomes
On completion of this section, you
should be able to:

B analyse motion in a horizontal
circle

analyse motion in a vertical circle

analyse the motion of a conical
pendulum.

W=mg

Figure 7.2.1 Anobjectmovingina
harizontal circle

[V] Exam tip

Make sure that you understand
the diagrams and method used to
calculate the tension in the string,
when an object is whirled in a
vertical circle.

)
W=mg
F = ma
2
T = IV
r

Examples of circular motion 1

An object attached to a string being whirled in a
circular path

If a stone is attached to a string and whirled in a circular path, the
tension in the string provides the centripetal force necessary to maintain
the circular motion.

Horizontal circle

Consider an object of mass m, attached to a string of length r being
whirled in a horizontal circle with a constant speed v as in Figure 7.2.1.

As mentioned earlier, the tension T in the string provides the centripetal
force needed for the object to move in a circular path. The acceleration
of the object is directed towards the centre of the circle. According to
Newton’s second law

F = ma
2
mv
=
¥

If the string breaks, the tension T will not be present. As a result, the
centripetal force acting on the object will no longer exist. According to
Newton'’s first law, the object will fly off in a straight line {tangent to the
circle), in the direction of the instantaneous velocity at the time when the
string breaks. The object does not move off in a direction radially away
from the centre of the circle.

Vertical circle

Consider an object of mass m, attached to a string of length r being
whirled in a vertical circle with a constant speed v. Figure 7.2.2 shows
the object at different positions and how the tension in the string is
determined. The tension is at a minimum at the top of the circle. The
tension is at a maximum at the bottom of the circle.

Figure 7.2.2 Anobject moving in a vertical circle

O
O

F = ma F = ma
2 W= mv?

T+mg=mrv mg T-mg = T

2 mv?

T =" -mg T = =g
Example

An object of mass 0.80kg is attached to a string and spun in a vertical
circle of radius 0.90m with a constant speed of 9ms'. Calculate:



a the minimum tension in the string

b the maximum tension in the string

a Minimum tension occurs when the mass is at the highest point in the
circular path.

- : _mv? _ 0.80(9)
Minimum tension T = T ~M& = —595 -(0.80)(9.81)
= 64.2N

b Maximum tension occurs when the mass is at the lowest point in the
circular path.
mv? N _ 0.80(9)*
r ™8 = 70090

79.8N

Maximum tension T + (0.80}(9.81)

A conical pendulum

Consider an object of mass m attached to a string PQ of length 1.

The point P is fixed to a support and the mass is made to rotate in a
horizontal circle of radius r shown in Figure 7.2.3. When the velocity of
the object is constant, the string makes an angle of 8 to the vertical.

Figure 7.2.4 shows the forces acting on the object.

Since the mass is moving in a circular path, there must be a centripetal
force acting toward the centre of the circle O. The horizontal component
of the tension, Tsiné provides the centripetal force.

F = ma
2
Tsing = 27 (1)
The mass does not move in a vertical direction.
Tcosf = mg (2)
Equation (1) divided by (2}
Tsin® _ mv* | i
Tcos® ~ r M8
2
tanf = ¥
rg

Example

A small mass of 60g is attached to a string. One end of the string is fixed
to a rigid support. The mass is made to travel in a horizontal circle of
radius 0.18m. The string makes an angle of 60° to the vertical. The mass
takes 0.65s to complete one revolution. Calculate:

a the angular velocity of the mass

b the centripetal acceleration of the mass

c the centripetal force acting on the mass

d the tension in the string.

a T = 06550 = M 2 o 9.67rads™!
’ T 0.65

b a = wr = (9.67)}0.18) = 16.8ms™

€C F=ma = 006 x168 = 1.0IN

d Tcos60° = 0.06 x9.81
= 0.06 x9.81

= 1.18N (Figure 7.2.5)

cos 60°

Chapter 7 Circular motion

W=mg

Figure7.2.3 A conical pendulum

Figure 7.2.4 Analysing the forces acting
onthe object

(0.06 x9.81)N
Figure7.2.5

Key points

For a mass attached to a string the
tension in the string provides the
centripetal force required to keep
an object moving in a circular path.

The tension acting on a mass
being whirled in a horizontal circle
with a constant speed is constant.

The tension acting on a mass
being whirled in a vertical circle
with a constant speed varies.

When analysing a conical
pendulum it is necessary to
resolve the tension into its vertical
and horizontal components.



/.3  Examples of circular motion 2

Learning outcomes

On completion of this section, you
should be able to:

®  analyse the motion of a vehicle
going around a bend

B analyse the motion of an aircraft
banking.

Vehicles going around a bend

In order for a car to go around a bend (arc of a circle), the friction between
the tyres and the road provide the necessary centripetal force. When
roads are being designed, care is taken to ensure that cars do not skid off
the road while going around bends. Instead of making curved roads flat,
they are banked. Figure 7.3.1 shows a vehicle on a banked road.

R

AR cost

W=mg
Figure7.3.1 A vehicle travelling along a banked road

Using Newton’s second law  F = ma

Rsing = % (1)

Assuming the vehicle does not move in a vertical direction.
Rcosf = mg (2)

Equation (1) divided by Equation (2]
Rsinf _ mv*

Rcosf ~ 1
tanf = e
18

An aircraft banking

An aircraft flying horizontally experiences a lift force L which balances
the weight W of the aircraft. In order for the aircraft to turn, it tilts its
wings at an angle 8 to the vertical. As the aircraft banks, the horizontal
component of the lift, L sin 6 provides the necessary centripetal force to
make the aircraft turn.

L L cos@
i
0
Lsin® %
f W=mg

Figure7.3.2 An aircraft banking
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Using Newton’s second law  F = ma
mv?

Lsinf = (3)
Assuming the aircraft does not move in a vertical direction.
Lcos8 = mg (4)

Equation (3) divided by Equation (4]
Lsinf _ mv?

Leos8 1 B8
tanf = T,
1g

Example

An aircraft of mass 3.5 x 10*kg flies with its wings tilted in order to fly
in a horizontal direction of radius r. It is travelling at a constant speed of
200ms.

Calculate:

a the vertical component of L
the lift force L

the horizontal component of L

(]

the acceleration of the aircraft towards the centre of the circle

(o

the value of r.

m

Figure 7.3.3

weight of aircraft

a Vertical component L

W =mg = 3.5x10*x 981 = 3.43 x 10°N .
] Key points
b Lcos40° = 3.43 x 10° :
e 3.43 x }305 = 4.48 x 10°N ®  The friction between the tyres
_ cos 40 . and the road provides the
¢ Horizontal component of L = Lcos(90 - 40| centripetal force required to keep
_ = 4.48 x 10® x cos 50°= 2.88 x 10°N a car moving in a circular path.
d a= - m = 8.23ms>? B The horizontal component
m 3.5 x 10 : b a :
5 of an aircraft’s lift, while
e a = VT banking, provides the necessary

centripetal force required for it to
(200)2

=53 = 4.86 x 10°m (Figure 7.3.3) travel along an arc.

n|*€M



8.1

Learning outcomes
On completion of this section, you
should be able to:

B understand the concept of a
gravitational field

define gravitational field strength
state Newton'’s law of gravitation

describe an experiment to
determine the acceleration due
to gravity.

Definition

A gravitational field is a region around
a body where a mass experiences a
force when placed in the field.

Figure 8.1.1 Diagram showing the
gravitational field around the Earth

Definition

The direction of a gravitational field
is the direction of the force on a test
mass placed in the field.

Figure 8.1.2 Newton'’s law of gravitation

Didyou know?

If there is no negative sign, it should
be stated that the force is attractive.

Gravitation

Cravitational field

Gravitational field and field lines

A gravitational field exists around bodies that have mass. If an object is
placed inside this field, it experiences a force. This force is attractive in
nature,

Figure 8.1.1 illustrates the gravitational field around spherical object such
as the Earth. If an object P of mass m, is placed inside the gravitational
field of the Earth, it experiences a force. The direction of this force is
towards the centre of the Earth.

The gravitational field around the Earth is represented by using field
lines. The spacing of the field lines gives an idea of the strength of the
field. The closer the field lines are, the stronger the field. The more
spaced out the field lines are, the weaker the field.

The direction of the gravitational field is the direction of the force on a
test mass placed in the field.

Newton'’s law of gravitation

All bodies that have mass exert a force on each other. The Earth exerts
an attractive force on the Moon. The Moon exerts an equal and opposite
force on the Earth according to Newton'’s third law. This force is what
keeps the Moon in orbit around the Earth.

Consider two bodies having masses of m, and m respectively and separated
by a distance r. Newton stated that there exists a force of attraction between
these two bodies. The magnitude of the force is directly proportional to the
product of the masses of the bodies. It is also inversely proportional to the
square of the distance between the two bodies (Figure 8.1.2).

Newton’s law can be expressed as follows.

Definition Equation
Newton’s law of gravitation states Fo _Gm1m2
that the force of attraction between (i
any two bodies is directly proportional
to the product of their masses and
inversely proportional to the square of
the distance between them.

G - gravitational constant
(6.67 x 107" N m?kg™?)

m, — mass of one body/kg

m, — mass of other body/kg

r - distance between the centres
of mass of the two bodies/m

The constant of proportionality G is called the gravitational constant. It
has been experimentally determined as 6.67 x 10"'Nm*kg2 The minus
sign in the equation indicates that the force is attractive. It is important
to remember that Newton'’s third law applies. This means that if one
body A, is exerting a force F on another body B, then body B will exert an
equal and opposite force on body A.



Gravitational field strength

The gravitational field strength is the force acting per unit mass. This
means that the gravitational field strength is the force exerted on a 1kg
mass placed in the field. On the Earth’s surface the gravitational field
strength isg = 9.81Nkg'. Gravitational field strength is a vector quantity.

GMm

In Figure 8.1.1, the force exerted on object P is F = -————, wherer is

the distance between the centre of mass of M and m.
The gravitational field strength at P due to the mass M is g.
The force exerted on P in terms of the gravitational field strength is F = mg.

GMm
mg = -~
GM
£ == =)

From this equation, it can be seen that the gravitational field strength at
the point P is dependent on the mass of the object creating the field and
distance from its centre of mass.

The acceleration due to gravity

When an object is released it falls to the ground. The force of gravity acts
on the object. The gravitational force produces an acceleration which is
equal to 9.81 ms2. This magnitude can be determined experimentally as
follows. An iron bearing is made to fall through a known distance h and
the time t taken is recorded.

= ]' 2
S—Ht+zﬂt

s=h u=0 a=g
= Lown o Lo
h—[[}]t+23t = 58t

2h

g =737

Two light gates are set up as shown in Figure 8.1.3 and the vertical
distance between them is measured. The metal ball is held in place using
an electromagnet. When the electromagnet is switched off, the metal ball
begins falling. As the ball passes through the first light gate, the timer
starts. When the ball passes through the second light gate, the timer
stops. The height h and the measured time t are used to calculate the
acceleration due to gravity g.

Key points

B A gravitational field is the region around a body where a mass experiences
a force.

®m  The direction of a gravitational field is the direction of the force on a test
mass placed in the field.

B Newton's law of gravitation states the force of attraction between
two bodies is proportional to the product of their masses and inversely
proportional to the square of the distance between them.

Gravitational field strength is the force per unit mass.

The acceleration due to gravity is 9.81m s and can be determined by
measuring the time taken for a mass to travel through a known vertical
distance.

Chapter 8 Gravitation

Definition

The gravitational field strength is the
force acting per unit mass.

Equation
_WF
I=m
g - gravitational field
strength/Nkg™
F - force/N

m — mass/kg

electromagnet
© metal ball

light gate
‘ [ D [ F—
h
l light gate

[ b I

Figure 8.1.3 Measuring the acceleration
due to gravity (free fall method)

Did you know

g varies around the Earth. The Earth
is not a perfect sphere. It is squashed
at the poles.



8.2

Learning outcomes

On completion of this section, you
should be able to:

m  define gravitational potential
B understand the term equipotential

m  discuss the motion of
geostationary satellites

B state the applications of
geostationary satellites.

4 1kg
O B
.‘_
force of —_— -
gravity _ Eris
increasing

Figure 8.2.1 Moving a 1 kg mass to a
point far away from the Earth

I
s :
I

«—work done—

$=0
PEEE

Figure 8.2.2 Defining gravitational
potential

Definition

The gravitational potential ¢, ata
point is the work done in moving
unit mass from infinity to that point.

Equation
oM
= =

¢ - gravitational potential/| kg™
G - gravitational constant
(6.67 x 10" N m?kg™)

M — mass/kg
r - distance from the centre of
mass/m

Gravitational potential and satellites

Gravitational potential

When an object is present in a gravitational field, it possesses
gravitational potential energy. If an object of mass m is moved from one
floor of a building to a higher one, while travelling through a vertical
distance of h, the mass gains gravitational potential energy. Work is
done against the force of gravity. The work done is equal to the gain in
gravitational potential energy. The gain in gravitational potential energy
is given by AE, = mgAh.

It was assumed that the gravitational potential ¢ remains constant as the
mass is being moved vertically upwards. For distances close to the Earth's
surface, this can be assumed to be true. However, as we move further
away from the Earth’s surface, the gravitational field strength no longer
remains constant and the equation for gravitational potential energy no
longer applies. Recall that the gravitational field strength due to a mass M
varies with distance r as follows:
_GM

rl

g:

Consider a 1 kg mass moving away from the Earth’s surface to some
point where the gravitational field strength due to the Earth is negligible.
Assume that this point is infinity. As the mass moves away from the
Earth, work is done against the force of gravity. The mass therefore
gains gravitational potential energy. At infinity, the mass would have its
maximum gravitational potential energy.

Suppose a 1kg mass is moved from infinity to some point P as shown in
Figure 8.2.1. The movement of the mass and the force of gravity act in

the same direction. Therefore, negative work is being done on the mass.
The gravitational potential at the point P is defined as the work done

in moving unit mass (1kg) from infinity to that point. Gravitational
potential is a scalar quantity. The gravitational potential at infinity is
defined as being equal to zero. We have already indicated that at infinity,
the gravitational potential energy is at a maximum. Therefore, at any point
closer to the Earth, the gravitational potential energy will be less than zero.
Therefore, gravitational potentials have negative values {Figure 8.2.2).

The gravitational potential ¢, at a distance r from a point mass M is given

GM
by: ¢l = —T

Figure 8.2.3 shows the variation of gravitational potential with distance

from the Earth.

gravitational
potential/J kg™

distance/m

Figure 8.2.3 Variation of gravitational potential with distance from the centre of the Earth



Field lines and equipotentials

A gravitational field is represented using field lines. The direction of field at a
point is the direction of the force acting on a point mass placed at that point.
There are points within a gravitational field where the gravitational potentials
are the same. A line drawn through points having the same gravitational
potential is called an equipotential line (Figures 8.2.4 and 8.2.5).

Geostationary satellites

Satellites orbit the Earth in distinct paths. There are particular satellites
called geostationary satellites. They orbit the Earth above the equator.
They have a period of 24 hours and orbit at a distance of 3.6 X 10*km
above the Earth’s surface. Since the satellite has a period of 24 hours
(1 day), it appears to be stationary above the same point on the equator
all the time. These satellites orbits from west to east. Geostationary
satellites have many uses.
Geostationary satellites are used in:
weather monitoring telephone communication

television transmission.

Global positioning satellites (GPS) are not geostationary. They have a
period of 12 hours. They orbit at a height of approximately 2.02 x 10*km.

Global positioning satellites are used:

for time synchronisation to track vehicles

in cellular telephony to guide missiles

to determine precise location on the Earth.

Example

A satellite of mass 2500 kg is placed in a geostationary orbit at a distance
of 4.23 x 10"m from the centre of the Earth.

Calculate:

i the angular velocity of the satellite

the speed of the satellite in its orbit

the acceleration of the satellite

the force exerted by the Earth on the satellite
the mass of the Earth.

The period of a geostationary satellite = 24 hours

2m _ 2 _ : D [ |
T = 94 % 3600 — 7.27 x 10-*rads

Speed of satellite v = rw
=423 x 10" x 7.27 x 10° = 3.08 x 10°ms!
Acceleration of satellite a = -wr
= (7.27 x 10 x 423 x 107 = 0.224ms>

Angular velocity @ =

iv Force exerted by the Earth on the satellite F = ma
= 2500 x 0.224
= 560N
v Using F = _Gi/fm
2 72
Miss i Barthy = 2 = D80 X {428 X 1P _ 50 100

Gm ~ 6.67 x 107" x 2500

Chapter 8 Gravitation

equipotential lines
field lines ——n
Figure 8.2.4 Diagram showing field lines
around a spherical body

field lines

surface of the Earth

Figure 8.2.5 Diagram showing field lines
closeto the surface of the Earth

Key points

B The gravitational potential at a
point is the work done in moving
unit mass from infinity to that
point.

B Anequipotential line is aline
drawn through points having the
same gravitational potential.

W A geostationary satellite has a
period of 24 hours and appears to
be at the same point above the
Earth all the time.



Revision questions 3

Answers to questions that require calculation can be
found on the accompanying CD.

1

2

w

Explain what is meant by:

a energy [1]
b the principal of conservation of energy 3]
c work. [2]

a Explain what is meant by the terms ‘work’ and
‘power’. [2]
b Atanamusement park in Trinidad, a ride consists of
a cariage being pulled up a ramp by a steel cable.
The carriage and the passengers have a combined
mass of 480kg. Initially, the carriage is being pulled
such that itis travelling at 8 ms™ towards the
ramp which is inclined at 30° to the horizontal. The
carriage is brought to rest after travelling for some
time up the slope. During the process, the carriage
travels a vertical distance of 3.0m.
Calculate:

i theinitial kinetic energy of the carriage and
the passengers 3]
ii the gain in gravitational potential energy of
the carriage and the passengers [2]
iii the work done against the resistive force F
acting on the carriage as it moves up the ramp.
[1]

iv the magnitude of F. [2]
Explain what is meant by the concept of work. Use
your answer to derive an expression for the increase
in gravitational potential energy when an object of

mass m is raised vertically through a distance h near
the Earth’s surface. [4]

A force F is acting on a body that is moving with a
velocity v in the direction of the force. Derive an
expression relating power P dissipated by the force to

Fandv. [2]
a Define the radian. [1]

Convert the following to radians

i 30° i 140° 2]
¢ Convert the following to degrees

i 3l14radians ii 1.57radians [2]
a Explain what is meant by angular velocity. [2]

Describe qualitatively how it is that a body which
is travelling in a circular path with uniform speed
has acceleration. 3]
¢ Derive the equation for circular motiona = w4,
where a is the centripetal acceleration, w is the
angular velocity and r is the radius of the circle.[5]

An object of mass 0.85 kg is travelling in a horizontal
circular path of radius 0.5m, with a constant speed
of 1.2ms™. Calculate:

a the angular velocity of the object [2]
b the time taken for the object to complete

one revolution [2]
¢ the centripetal acceleration of the object [2]
d the centripetal force acting of the object. [2]

Calculate the force required to keep a mass of 1.2 kg
revolving in a horizontal circle of radius 0.6 m with a
period of 0.8 seconds. [3]

An object of mass 200g is attached to a string

and spun in a vertical circle of radius 0.50 m with a
constant speed of 6ms™. Calculate:

a the minimum tension in the string [3]
b the maximum tension in the string. [3]

10 A small mass of 80g is attached to a string. One end

of the string is fixed to a rigid support. The mass is
made to travel in a horizontal circle of radius 0.60 m.
The string makes an angle of 40°to the vertical.

The mass takes 0.15s to complete one revolution.
Calculate:

a the angular velocity of the mass [2]
b the centripetal acceleration of the mass [2]
c the centripetal force acting on the mass [2]
d the tension in the string. [2]

11 a A massof 0.50kg is attached to a string and

whirled in a horizontal circle of radius 110 m. The
string will break when the tension exceeds 50N.
Calculate the maximum frequency of rotation. [5]
b Describe the motion of the mass if the string
breaks. [3]

12 a State Newton's law of gravitation. [2]

b The Earth can be considered to be a uniform

sphere of radius R. R is assumed to be

6.4 x 10°m. A geostationary satellite is orbiting

the Earth.

i Explain what is meant by a geostationary
orbit. 3]

ii Show that the radius of a geostationary orbit
is given by the expression

39)‘?2
r=A

where g is the acceleration due to gravity
at the Earth’s surface and w is the angular



velocity of the satellite about the centre of
the Earth. [3]
Determine the radius of a geostationary orbit.

[3]

13 a Explain what is meant by:

i gravitational potential [1]

ii equipotential. [1]
b Explain why gravitational potentials are always

negative. [3]

14 A communications satellite is located at a height of

385km above the Earth. The mass of the satellite is
4.2 x 10°kg. The radius of the Earth is assumed to be
6370 km. The Earth is assumed to be a point mass of
6.0 x10* kg. Calculate:

a the force acting on the satellite [2]
b the centripetal acceleration [2]
¢ the speed of the satellite. [2]

15 A global positioning system (GPS) uses a number of

satellites that orbit the Earth in circular orbits at a
distance of 2.22 x 10* km above the Earth’s surface.
Calculate the angular speed of one such satellite.

Massof Earth = 5.99 x 10**kg
Radius of Earth = 6.38 x 10 km 3]

Revision questions 3

16 The Earth may be assumed to be a sphere of mass
6.0 x 10*kg. The Moon may also be considered a
sphere of mass 7.35 x 10°kg. The distance from the
centre of the Earth to the centre of the Moon is
3.84 x 108 m. Assume that the Moon travels at a
constant speed in a circular orbit around the Earth.
i Calculate the gravitational force exerted by the
Earth on the Moon.

ii Calculate the acceleration of the Moon.

iii Sketch a diagram showing the direction of this
acceleration.

iv Explain why this acceleration does not increase
the speed of the Moon.

v Determine the gravitational field strength of the
Earth at the Moon.



Module 1 Practice exam questions

Answers to the multiple-choice questions and to
selected structured questions can be found on the

8 Which of the following is not true about inelastic
collisions?

accompanying CD.

Multiple-choice questions

1

Which of the following pairs of units are S| base units?
a ampere, degree celsius

b coulomb, kelvin

c kilogram, kelvin

d metre, degree Celsius

A student wishes to measure the density of material
X. He has cube of material X. He measures the mass
and the average length of one side of the cube.

Massof cube = 16.5 £ 0.5g

Length of one side = 4.2 £ 0.1cm

What is the percentage error when the student
determines the density of material X?

a 3% b 2% c 9% d 5%

The Sl unit for specific heat capacity in terms of base
units is:

a Momentum is conserved

b Total energy is conserved

¢ Kinetic energy is conserved

d Kinetic energy is not conserved

A compact disc (CD) is placed inside a CD player and
starts to rotate. A pointY is at the outer edge of the
disc. A point X on the disc is ¥z the distance as the
point Y is from the centre of the axis of rotation. The
linear velocity of Y is a. The linear velocity of X is b.
At any point in time, the ratio a/b is

a Yz b 2 c 4 d %

10 A satellite has a weight W before launch. It is then

placed in orbit at a height h = 5R above the Earth's
surface. R is the radius of the Earth. What is the
gravitational force acting on the satellite when it is
orbiting the Earth?

a%'/ bw cﬂ d

a kgm?s*K™ b m?s?K" Structured questions
¢ m?s*K’ d m?s?K”
(Refer to 15.1) 11 a Distinguish between precision and accuracy. [2]

What is the number of atoms present in 0.090 kg of
carbon-12?

b Explain what is meant by a systematicand a
random error and give an example of each type of
error. [4]

a 45x10% b 4.5x10% ¢ Astudent is given five marbles and asked to
c 45x10% d 4.5x10* determine the density of the material used to
1 make the marbles. The student decides to line the
5 Whatis the ratio %? marbles up in a straight line against the edge of
2 102 b 10_812 c 10 d 10° ametre rule. She notes the beginning and ending

A small object is projected horizontally from a wall
of height 7m with a speed of 30 ms™. What is the
velocity of the object just before striking the ground?
a 322ms’ b 30.0ms”

¢ T.8ms’ d 342ms’

A uniform plank of length ( is supported by two

point along the ruler. She then uses a balance to
measure the mass of the five marbles. Her results
are as follows:

X =125 + 01cm

Y =20.0 £ 01cm

Mass of five marbles = 20.5 £ 0.5g
Calculate:

i the diameter of one marble, including the

straps as shown below. What is the ratio ;? absolute uncertainty 2]
2 ii the mass of one marble, including the
absolute uncertainty [2]
h T2 iii the density of the material used to make the
[ marbles, including the uncertainty. [3]
/4 31/4

a Yz b 2 c Y d 4



12 A cyclist is training in a hilly region in Jamaica. The
total mass of the cyclist and his bicycle is 85 kg.
Initially he is travelling at a constant speed of 12 m s
on a level dirt road. He then travels down a slope
on to another level road while travelling through a
vertical distance of 5.0 m.

Calculate:

b

13 a

14 a

the kinetic energy of the cyclist and his bicycle on
the level road [2]
the loss in potential energy while travelling
through a vertical distance of 5.0 m [2]
the speed of the cyclist and his bicycle at the
bottom of the slope. [3]
Given that the cyclist was providing a power

of 320 W when he was travelling at 12 ms,
calculate the total resistive force acting on the
cyclist. [2]

Explain what is meant by the terms ‘work’ and
‘energy’. [2]
A car of mass 900 kg is travelling at a constant
speed of 18 ms™' down a sloped road. The angle

of the road to the horizontal is 12°. The driver
notices another vehicle in front of her. She applies
the brakes to bring the car to a complete stop. A
constant force of 3000 N opposes the motion of
the car.

i Sketcha diagram to show forces acting on the
car when it is at rest on the slope. [2]
ii Calculate the component of the weight of the
car down the slope. [2]
ili Calculate the normal reaction acting on the
car. [2]
iv Calculate the deceleration of the car when the
brakes are applied. [2]
v Calculate the distance travelled by the car
from the point where the brakes are applied
to the point where the car stops. [2]
vi Calculate the loss of kinetic energy of the car.
[2]
vii Calculate the work done by the 3000 N force.
[1]
Distinguish between scalar and vector quantities.
[2]
Give an example of each. [2]
A cannon in Tobago is positioned such that it lies
horizontally on the edge of a cliff 20m high. A
cannon ball is fired horizontally with a velocity of
45ms™.

15
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Calculate:

i the time taken for the cannon ball to hit the
surface of the sea [2]

ii the horizontal distance travelled by the
cannon ball [2]

ili the velocity of the cannon ball just before
hitting the sea. 3]

State two conditions that must be satisfied for a
body to be in equilibrium. [2]
Three forces P, Q and R act on an object O. The
object O is in equilibrium. Explain using a sketch
how a vector triangle is drawn to represent these

forces. 3]
How does the triangle show that the object O is

in equilibrium? [1]
State Newton's law of gravitation. 2]

The mass and radius of the Earth are assumed to
be 5.98 x 10** kg and 6.40 x 10° m respectively.
Determine a value for the gravitational field
strength g at the Earth’s surface. 3]
A geostationary satellite is at a distance of
423 x 10’ m from the centre of the Earth and is
orbiting above the equator.
i Explain what is meant by a geostationary
satellite. [1]
ii Calculate the gravitational field strength at
the point where the satellite is located. [1]
iii Calculate the speed of the satellite. 3]
iv Calculate the acceleration of the satellite. [2]

Explain what is meant by linear momentum.  [2]
State the law of conservation of linear

momentum. 3]
Distinguish between an elastic collision and an
inelastic collision. [2]

Explain how is it that an object travelling
in a circular path with uniform speed has
acceleration. State the direction of the force
producing this acceleration. [4]
Derive the equation for circular motiona = w?,
where a is the centripetal acceleration, w is the
angular velocity and r is the radius of the circle.
[4]
A mass of 0.85 kg is attached to a string and
rotated in a vertical circle of radius 1.50 m. The
minimum tension in the string is 2.5 N.
i Determine speed of rotation. 3]
ii Determine the maximum tension in the string.

3]



9

Oscillations

N Free oscillations

Learning outcomes

On

completion of this section, you

should be able to:

describe examples of free
oscillations

understand the term simple
harmonic motion

state the conditions necessary for
simple harmonic motion

illustrate simple harmonic
motion graphically.

spring

oscillation

mass I
of mass

Figure 9.1.3 A mass oscillating on a spring
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i

displacement/m
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Figure 9.1.4 Graph showing the
relationship between acceleration and

displacement
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Figure 9.1.5 Simple harmonic motion

Examples of free oscillations

Examples of free oscillations are shown in Figures 9.1.1-3.

air track

Figure 9.1.1 A glider oscillating back and Figure 9.1.2 Asmall marble oscillating
forth on an air track using two springs inadish

Simple harmonic motion (SHM)

Simple harmonic motion is a periodic motion in which the acceleration
of a mass is proportional to the displacement from a fixed point and
directed towards the fixed point.

The following equation is used to define SHM. Note that the negative
sign (-] indicates that the direction of the acceleration is always opposite
to the direction of the displacement.

Definition Equation

SHM is a periodic motion in which: a = -wx

1 the acceleration is proportional to the a - acceleration/ms®
displacement from a fixed point and @ - angularfrequency/rads’

2 directed towards the fixed point. x - displacement/m

Figure 9.1.4 shows the relationship between acceleration and
displacement for an object undergoing SHM.

Consider a particle M initially starting at the point O (equilibrium

or fixed position). It begins to oscillate with SHM about the point

O. The points A and B represent the maximum displacement from

the equilibrium position O. A snapshot of its motion is illustrated in
Figure 9.1.5. At point P the velocity and acceleration of M are v and a
respectively. The displacement of M from the equilibrium position is x. It
can be seen that v and a are in opposite directions.

The conditions necessary for SHM are as follows:

A mass that oscillates.
A fixed point at which the mass is in equilibrium.

A restoring force which returns the mass to its equilibrium position if
it is displaced.

Displacement, velocity and acceleration

Consider the motion of a simple pendulum. When the bob is displaced to
one side gently and then released, gravity pulls on it. This force causes it



to return to its equilibrium position. However, the bob passes this point
and causes the process to be repeated again. So the bob oscillates to the
left and right of the equilibrium position.

SHM can be illustrated graphically Figure 9.1.6). The pendulum bob is
initially at O at timet = 0. The pendulum is displaced to the right until
it reaches the point A. One oscillation is the motion of the pendulum bob
as follows O —> A —» O —» B — 0. The time taken to complete
one oscillation is T. This time is called the period of oscillation.

Figure 9.1.7 (Graph I) illustrates a displacement-time graph for the
motion of a simple pendulum. The graph is sinusoidal in shape.

If the amplitude of the
displacement (maximum distance
from the equilibrium position)

is A, then the displacement as a
function of time is x = Asinwt.

Equation

X = Asinwt

x - displacement/m

A - amplitude/m

To determine the velocity at any o - angular frequency/rads™
point on a displacement—time t - time/s

graph the gradient of the tangent

at that point must be determined.

Therefore, at time t = 0, the gradient is a maximum and is positive.
At time t = T/4, the gradient is zero. At time t = T/2, the gradient is a
maximum and negative. At time t = 3T7/4, the gradient is zero. At time
t = T, the gradient is 2 maximum and positive.

The velocity-time graph |Figure
9.1.7 Graph II) can be expressed
mathematically in the equation
opposite.

Equation

v = v, coswt

v - velocity/ms™
v, — maximum velocity/ms™
o - angular frequency/rads™

t - time/s

Similarly, the velocity-time
graph can be used to obtain the
acceleration—-time graph for the
motion of the pendulum. The
acceleration-time graph is found
by finding the gradient at various points on the velocity-time graph
|Figure 9.1.7 Graph III).

The equation gives the Equation

mathematical expression for the PRERTS

velocity of an object undergoing V= (XD ~x)

SHM related to displacement v - velocity/ms™

(Figure 9.1.8). @ - angular frequency/rads™
X, — maximum displacement/m
x - displacement/m

Key points

B Free oscillations include the motion of a simple pendulum and a mass
attached to a spring.

B SHMis a periodic motion in which the acceleration is proportional to the
displacement from a fixed point and directed towards the fixed point.

The conditions for SHM are an oscillating mass and a restoring force.
The displacement-time graph for an object undergoing SHM is sinusoidal.

The velocity—time graphs and the acceleration-time graphs for an object
undergoing SHM are also sinusoidal.
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Figure 9.1.8 Graph of velocity against
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9.2

Learning outcomes

On completion of this section, you
should be able to:

® understand the terms amplitude,
period, frequency, angular
frequency and phase difference

W express period in terms of
frequency and angular frequency.

Definitions

Displacement is the distance moved
in a stated direction from the
equilibrium position.

Amplitude is the maximum
displacement from the equilibrium
position.

Definitions
The period is the time taken for one
oscillation.

The frequency is the number of
oscillations per unit time.

Equation
1
f=7
f - frequency/Hz
T - period/s

Amplitude, period and frequency

Displacement and amplitude

Displacement is the distance moved in a stated direction from the
equilibrium position. Figure 9.2.1 shows part of a displacement-time
graph for a simple pendulum. The dashed line represents the equilibrium
position. The point P represents the position of the pendulum at a
particular instant in time. The distance x represents the displacement.
The maximum displacement from the equilibrium is called the
amplitude. The SI unit for displacement and amplitude is the metre.

Figure9.2.1 Diagram illustrating displacement and amplitude

Period, frequency and angular frequency

Suppose a simple pendulum is displaced and left to oscillate. The period
T is the time taken for one oscillation. The SI unit is the second (s).
Figure 9.2.2 illustrates a displacement-time graph and shows how the
period T is determined.

displacement/m

0 -—r\—] \/ tmefs

Figure9.2.2 Determining T froma displacement~time graph

Frequency f is the number of oscillations per unit time. The SI unit is the
hertz (Hz). If one oscillation is produced in a time T, then it follows that
1/T oscillations are produced in 1 second.

Angular frequency (angular velocity) w is defined as the rate of change of
angular displacement (see 7.1, Motion in a circle). The SI unit is rad s

Angular frequency and frequency are related by the following equations.

Equation Equation
w = 2nuf _ 2t
2=

@ - angular frequency/rads™

f - frequency/Hz o - angular frequency/rads™

T - period/s
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Linking simple harmonic motion and circular motion

Simple harmonic motion and circular motion are closely related.
Consider a vertical peg attached to a disc of radius r, attached to a
turntable. The disc rotates at a constant angular velocity w. A horizontal
beam of parallel light produces a shadow of the peg on a screen. At time
t = 0, the shadow is at O. At time ¢, the disc rotates through an angle 6.
The shadow moves from O to P.

6 = wt

Distance OP

rsin (wt)

The shadow of the peg moves back and forth between the points A and
B. The amplitude of this movement is r. The shadow moves with simple
harmonic motion (Figures 9.2.3 and 9.2.4).

parallel beam of light parallel beam of light wooden peg screen
—_— —_—
S—— wooden peg shadow .
_— —_——
_— —_——
—_— —_— turntable
turntable screen
Figure 9.2.3 Experiment showing the relationship between SHM Figure 9.2.4 Experiment to show the relationship between
and circular motion (side view) SHM and circular motion (top view)
Example
The graph in Figure 9.2.5 shows how the acceleration of an &
: 2 : ; S a/ms
object undergoing simple harmonic motion varies with time. : :
Determine: St i . .
a the period of oscillation 5 \ '
b the frequency " t/mst
¢ the angular frequency, @ /
d the amplitude x, of the oscillation. —45 fHHE 2 fspaE s 100
vt e ! ] 'S &Y
a Period T = 50ms -
—E 1 i Figure 9.2.5
b frequencyf = T = S eI~ 20Hz
¢ angular frequency @ = 2af = 2x(20) = 126rads™
d a = -ox
Maximum acceleration occurs at maximum displacement (amplitude)
a 45
%, = —0; = —qyggp = ~283 X 109m
Key points

® Displacement is the distance moved in a stated direction from the
equilibrium position.

Amplitude is the maximum displacement from the equilibrium position.
The period is the time taken for one oscillation.

The frequency is the number of oscillations per unit time.

Circular motion and simple harmonic motion are closely related.




9.3  Asimple pendulum and a mass-spring system

Learning outcomes A Simple pend ulum

On completion of this section, you The mass m is displaced to the right through an arc x (Figure 9.3.1).

should be able to: Restoring force = mgsiné

m  derive the equation for the period 2 s : X
of a simple pendulum For small angles (in radians| sin@ = 8 = T

®m  derive the equation for the period Therefore, the restoring force = mg %
of amass on a spring
m  describe the interchange between Using Newton'’s second law F = ma
kinetic and potential energy - F mgx &
during simple harmonic motion. Acoeleration towards O “m -1 MmT
Acceleration in the direction of x, a = —%
Comparing with the equation for simple harmonic motiona = -wx
0 % = w'x
2r
[ = &
But w T
& _ |[2n) _ AT
1 T T?
,_._..ax/ T = 47l
mgsin @ 8 i
mg T = Zar\g

Figure 9.3.1 A simple pendulum
A mass attached to a spring

Consider a spring with mass m attached to it. Assume that the spring
obeys Hooke’s law F = ke, where k is the spring constant, F is the force
applied and e is the extension produced (Figure 9.3.2).

mg = ke

When the mass is pulled downwards a distance x and released, it makes
small oscillations in a vertical plane. The tension T in the spring is given
by k(e + x]. The resultant downward force is

ke-kle +x) = ke -ke -kx = -kx.

Using Newton’s second law F = ma

T -kx = ma
. - T a= —% (downwards) in the direction of x
. i ' I Comparing with the equation for simple harmonic motiona = -w’x
i"".".'.'s.--l- N . Gt
Lo ] m
bt
Butw = ?
2 k _ [22 _ 4=
“\T] T T

Figure 9.3.2 A mass-spring system m
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4z’m enelrigy /)
72 = T
- total
Rewriting in termsofeandg: T = Zn\j% since mg = ke \ ; |
The period of oscillation for two similar springs in series is T = 2 2?6 - ._7:_. : timefs=
Y

The period of oscillation for two similar springs in parallel is T = Q:r\)@ potential energy ——

g kinetic energy ~ -------

s s . . Figure 9.3.3 Relationships between

Energy in simple harmonic motion energy and time
When a system is oscillating with simple harmonic motion, there is an energy/|

interchange between the potential and kinetic energy of the system. The
total energy of the system remains constant, provided that the system is
not damped. Consider the motion of a simple pendulum. When the bob
is displaced to one side and released, the system oscillates with simple
harmonic motion. When the bob is at its maximum displacement, its
potential energy is at a maximum. The kinetic energy at this point is zero
(velocity = 0]. When the bob passes the equilibrium position, its velocity
is at a maximum and therefore its kinetic energy is also at a maximum.
At the equilibrium position, its potential energy is at a minimum. Y  displacement/m
Figure 9.3.3 shows the variation of kinetic energy, potential energy and potential energy
total energy with time for the motion of a simple pendulum.

kineticenergy = -------

The energy of a system oscillating with simple harmonic motion can
be represented graphically as a function of displacement. At maximum
displacement, the potential energy is at a maximum and the kinetic
energy is at a minimum. At zero displacement the kinetic energy is at a E/m)
maximum and the potential energy is at a minimum (Figure 9.3.4).

Figure 9.3.4 Relationship between
energy and displacement

Example 200

A spring is hung from a fixed point. A mass of 150g is hung from the free
end of a spring. The mass is pulled downwards from its equilibrium position
through a small distance y and is released. The mass undergoes simple
harmonic motion. Figure 9.3.5 shows the variation with displacement x - xfem

from the equilibrium position of the kinetic energy of the mass. 12 12
Using the figure: Figure9.3.5

a Determine the distance v through which the mass was initially displaced.

Key points
b Determine the angular frequency. yP

¢ Determine the frequency of oscillation. ®m  To derive an equation for the
period of oscillation of a system
in simple harmonic motion, the
restoring force must first be
determined. The acceleration of

v = l.2¢cm
b Maximum kinetic energy = 3.00m]

Maximum kinetic energy = %mvl = %mwzmz - x?) the mass is then compared with
the defining equation for simple
%x 150 x 107 x @?{(1.2 x 102 =02} = 3.00 x 107 harmonic motion.
2 x 3.00 x 107 . B There is a constant interchange
\(150 X 10° x (1.2 X 102 16.7rads between potential and kinetic
o @ i energy for a system oscillating
¢ Frequency of oscillation f = B gt i 2.66Hz with simple harmonic motion.



9.4 Resonance

Learning outcomes

On completion of this section, you
should be able to:

W describe practical examples of
damped oscillations

®  describe practical examples of
forced oscillations

B understand the concept of
resonance

m identify situations where
resonance is useful and when it
should be avoided.

displacement/m

I Light damping

Aﬂﬂnn
U U V'V timerss

Figure 9.4.2 Lightly dampedoscillations
displacement/m

|

V time/s

11 Critical damping

Figure 9.4.3 Critically damped oscillations

displacement/m

_

11l Heavy damping

time/s

Figure 9.4.4 Heavily damped oscillations

Damped oscillations

When a simple pendulum is displaced slightly and released, it begins to
oscillate with simple harmonic motion. The amplitude of the oscillation
gradually decreases over time and the pendulum eventually comes to
rest at its equilibrium position. Since the pendulum is oscillating in air,
air resistance causes energy to be transferred away from the oscillating
pendulum. That is to say, work is done against the air resistance. The
amplitude decreases in an exponential manner. The oscillation of the
pendulum is said to be damped (Figure 9.4.1).

displacement/m

Velooty is higher, larger air resisitance;
energy lost rapidly, amplitude decreases

[\ rapidly
[\ A A time/s

fifbre

et " Velocity is lower, smaller
N N air resistance;
energy lost more slowly,

exponential amplitude decreases less
decay of the rapidly
amplitude

Note: the period of oscillation remains constant

Figure 9.4.1 Graph showing damped oscillations

Initially, the pendulum has its maximum energy when it was displaced.
This is in the form of potential energy. This energy is converted

into kinetic energy as the pendulum bob begins moving back to the
equilibrium position. Since the magnitude of the air resistance is
dependent on velocity, it will be greatest at the start of the oscillations.
The oscillating pendulum will therefore lose energy at a rapid rate. The
amplitude of oscillation therefore reduces rapidly. As some time passes,
the velocity of the bob is smaller than the initial oscillations. The air
resistance is now smaller. Energy will be lost at a slower rate and the
amplitude would decrease more slowly. This explains why the amplitude
decreases in an exponential manner. It should be noted that even though
the motion of the pendulum is damped, the amplitude of the oscillations
decreases but the period of oscillation remains constant.

There are different degrees to which a system can be damped. They are:
lightly damped oscillations (e.g. a pendulum oscillating in air)
critically damped oscillations (e.g. a car suspension system)

heavily damped oscillations.

For a system that is lightly damped the amplitude of the oscillation
eventually decreases to zero as the system comes to rest (Figure 9.4.2).

For a system that is critically damped, the system comes to rest after one
oscillation |Figure 9.4.3).

For a system that is heavily damped, the system fails to oscillate
|Figure 9.4 .4).



Resonance

Systems that oscillate with simple harmonic motion do so at a particular
frequency. This particular frequency is known as the natural frequency
f, of the system. In the case of a simple pendulum of length J, the natural
frequency is given by

1 g
fo =

AT

In the case of mass m attached to a spring, having a spring constant k,
the natural frequency is given by

_ 1K
07 27\m

If a periodic force is applied to a system such that it forces it to oscillate,
the amplitude of vibration increases significantly when the frequency of
the periodic force is equal to the natural frequency of the system. This
phenomenon is known as resonance. At resonance, energy is transferred
to the system by the periodic force. The periodic force is sometimes
referred to as the driver.

Figure 9.4.5 illustrates how the amplitude of an oscillating system varies
as the frequency of the periodic force changes. The amplitude of the
oscillations is at a maximum when the frequency of the periodic force is
equal to the natural frequency of the system.

A
0 :
0 fa driver
frequency
fiHz

Figure 9.4.5 Resonance

A simple laboratory experiment can be set up to demonstrate the
phenomenon of resonance. The arrangement is referred to as Barton’s
pendulums. A string AOB is set up as shown in Figure 9.4.6. The ends

are fixed at A and at B. The arrangement consists of several pendulums of
varying lengths attached to OB. Each pendulum will have a different period
of oscillation. The pendulum OD has a mass attached to it and is called
the driver pendulum. The pendulums P, Q, R and S have small inverted
paper cones attached to them. The driver pendulum is displaced slightly
and begins oscillating. Since all the pendulums are attached to the string
OB, P Q, R and S begin oscillating. The pendulum having a length similar
to the driver pendulum, builds up a larger amplitude than the rest of them.

driver
pendulum P

Figure 9.4.6 Investigating resonance

Chapter 9 Oscillations
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Figure 9.4.8 Results of experiment
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DOSItIOH-----:- card
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Figure 9.4.9 Use of a card to damp the
oscillations

Experiment to investigate the effect of damping
A mass is attached between two springs as shown in Figure 9.4.7.

] fixed support

ruler | =

spring

dd.-FeEed .- equilibrium
E position
; spring
] ; signal
] oscillator generator

[ ] |

Figure 9.4.7 Experiment to demonstrate resonance

A ruler is placed adjacent to the mass so that displacements can be
measured. The equilibrium position is first noted on the ruler. An
oscillator is connected to a signal generator. The mass is displaced
slightly. The amplitude of the oscillation is measured from the metre
rule. The period of the oscillation is determined using a stop watch.

The frequency f, = 2,l7t ?g_ is then determined. The signal generator

is then turned on. The signal generator is set to produce a sinusoidal
signal. This signal causes the oscillator to move the spring and forces the
mass to oscillate. The frequency of the signal generator is varied and the
amplitude of oscillation of the mass is recorded. The frequency of the
signal generator is measured using a cathode ray oscilloscope.

Figure 9.4.8 shows the results of the experiment.

The same experiment can be used to show the effect of damping on
the resonance curve. A small card is attached to the mass as shown in
Figure 9.4.9.

The card damps the motion of the mass by increasing the drag. The
experiment is repeated and the resonance curve is plotted. Figure 9.4.10
shows the effect of damping on the resonant curve. There are two things
that are important to note. The peak of the curve is flatter and wider and
the resonant frequency is also lower.

A .. U
peak is no damping
flatter :
iy ping
0 y
0 i f
lower resonant
frequency when
damped

Figure 9.4.10 Effect of damping on the resonant curve



Unwanted problems associated with resonance

In cities, tall buildings oscillate naturally. In areas where earthquakes are
common, large amounts of destruction can occur. The waves produced
by earthquakes forces buildings to oscillate. Large amounts of energy are
transferred to buildings. As resonance occurs, buildings are destroyed

in seconds. In 2010, an earthquake of magnitude 7.0 caused major
destruction in Haiti. In wealthy countries, buildings are designed with
dampers to reduce the effects of earthquakes.

Situations where resonance is useful
Microwave cookers

Even though the effects of resonance can be disastrous, there are many
examples where resonance is useful. A common household appliance
is the microwave. Microwave ovens make use of resonance. Water
molecules oscillate at a frequency that lies in the microwave region

of the electromagnetic region. Microwave cookers exploit this fact.
The microwaves force the water molecules inside the food to oscillate.
The temperature of the water increases and thermal energy spreads
throughout the food, thereby warming it.

Magnetic resonance imaging (MRI)

Magnetic resonance imaging is a non—-invasive medical diagnostic
technique used to view internal structures and processes occurring in the
human body. In the human body there are huge amounts of hydrogen
nuclei present. Hydrogen nuclei are used as the basis for this imaging
technique. The patient is placed in a large magnetic field. Radio frequency
pulses are transmitted to the person and cause resonance to occur. The
hydrogen nuclei emit radio frequency signals which are detected and
processed to produce an image.

Electric circuits

Tuning circuits in electrical devices such as radios, make use of
resonance. These types of circuits have reactive elements such as
capacitors and inductors. An electric current will oscillate between the
two components at the circuit’s resonant frequency.

Key points

Air resistance and friction cause oscillations to be damped.
The amplitude of oscillations decreases when damped.

Oscillations can be lightly, critically or heavily damped.

Resonance occurs when the frequency of the driveris equal to the natural
frequency of the oscillating system.

Damping affects a resonant frequency curve.

There are situations where resonance can be useful and situations where
the effects can be catastrophic.

Chapter 9 Oscillations



10.1

Learning outcomes

On completion of this section, you
should be able to:

B state the laws of refraction of
light

B understand the term refractive
index

B understand the terms critical
angle and total internal reflection

B discuss the practical applications
of total internal reflection.

shallow water

deep water

Figure 10.1.1 A container of water

deep water

.
.
| ‘\
‘}A

shallow water

Note:

» speed and wavelength decreases
e« frequency is unchanged

o direction of wavefronts change

Figure 10.1.2 Refraction of water waves

0 Refraction

Refraction

normal
€
i medium 1

Figure 10.1.3

Refraction

Consider a large container of water. A piece of wood is placed on one

side of the container to create a deep water section and a shallow

water section [Figure 10.1.1). A straight bar is then used to produce
straight wavefronts travelling from the deep water to the shallow water
(Figure 10.1.2). If the wavefronts strike the deep water-shallow water
boundary at some angle, the wavefronts change direction. This change in
direction occurs as a result of a change in speed of the wave and is called
refraction. The wavelength of the wave also changes. The frequency
remains constant as the wave travels from deep water to shallow water.

Refraction of light

Light behaves as a wave and as such can be refracted. Refraction occurs
when a ray of light travels between two media of different optical
densities. Consider a ray of light travelling from medium 1 to medium 2
as shown in Figure 10.1.3. The normal is a line drawn at right angles to
the surface where the ray strikes the boundary between the two media.
The angle of incidence i is the angle between the normal and the
incident ray. The angle of refraction r is the angle between the normal
and the refracted ray.

. sini
The ratio —
sinr

is a constant, and is called the refractive index.
The refractive index of medium 2 with respect to medium 1 is n,.

sini oo
Therefore, n, = —7— This is known as Snell’s law.

c
It can also be shown that \n, = -4, where ¢, is the speed of light in
c
medium 1 and c, is the speed of light in medium 2.

If the ray of light was travelling from medium 2 to medium 1, the
refractive index of medium 1 with respect to medium 2 is ,n,.

Therefore, n, = %

1772
.. L1 C,
The absolute refractive index, n, of a material is defined asn = o

m
where c_ is the speed of light in a vacuum and c_ is the speed of light in
the material.

Suppose the absolute refractive index of medium 1 and medium 2 were
n, and n, respectively.

¢
For medium 1, n = C—" Equation (1)
1
CV
For medium 2, By = Equation (2)
2
. : nl C\' C\' C\' l"'-‘1 C1
Equation {2) + Equation {l} —=—+— = =X — = —
n, e B g, 5



sini n

Therefore, Snell’s law can be rewritten as

sir 1,

Laws of refraction

1 The incident ray, the refracted ray and the normal at the point of
incidence lie in the same plane.

. sini | .. . .
2 The ratio Sinp | constant, where i is the angle of incidence and r is

the angle of refraction.

When a ray of light travels from a medium of lower optical density, to
a medium of higher optical density, the refracted ray bends towards the
normal (e.g. air to glass).

When a ray of light travels from a medium of higher optical density, to a
medium of lower optical density, the refracted ray bends away from the
normal (e.g. glass to air).

Critical angle and total internal reflection

Consider a ray of light travelling from glass to air. There is an angle of
incidence called the critical angle, C, for which the angle of refraction is
90°. There are three scenarios to consider (Figure 10.1.4).

1 The angle of incidence < C. The ray is refracted out of the glass.

2 The angle of incidence = C. The angle of refraction is 90° and the ray
is refracted along the surface of the glass.

3 The angle of incidence > C. The ray is reflected back inside the glass.
n, sin90° = n,sinC, but sin90° =1

n
Therefore, sinC = —* = %

a g a
In scenario 3, the ray of light is said to be totally internally reflected. The
angle of incidence and the angle of reflection are equal.

Conditions for total internal reflection

1 Light must be travelling from an optically dense to an optically less
dense medium (e.g. glass to air).

2 The angle on incidence must be greater than the critical angle.

Applications of total internal reflection

Total internal reflection is used in fibre optic cables, very thin glass fibres
surrounded by a material called cladding. The cladding has a lower optical
density than glass. A ray of light, typically a laser, is projected into the glass
fibre at one end. The angle of incidence inside the fibre is greater than the
critical angle for the glass-cladding boundary and total internal reflection
occurs. The light is guided along the fibre until it reaches the other end.
Fibre optic cables are used extensively in the field of communications to
transmit data in the form of light pulses (Figure 10.1.5).

Expensive engagement rings contain diamond crystals which ‘sparkle’.
Cheaper rings made from glass sparkle much less, because glass has

a refractive index of 1.50, while diamond has a larger refractive index
of 2.42. The critical angles for glass and diamond are 41.8° and 24°
respectively. Each ray of light that enters diamond reflects many times
from the flat surfaces inside the diamond before finally emerging. The
many reflections are perceived by our eyes as ‘sparkle’. The smaller
critical angle of diamond means that there is a greater chance for many
total internal reflections, hence more ‘sparkle’ than in glass.

= —ornsini = n,sinr

Chapter 10 Refraction
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Figure 10.1.5 A fibre optic cable

Key points

m  Refraction is the change in
direction of a wave that occurs as
a result of a change in speed of
the wave.

B Theratio m is a constant, and
sinr

is called the refractive index.

B The critical angle, C, is the angle
of incidence for which the angle
of refraction is 90°.

m  Total intemal reflection occurs
when the angle of incidence is
greater than the critical angle.



Revision questions 4

Answers to questions that require calculation can be
found on the accompanying CD.

1 Explain what is meant by:
a oscillations [1]
b free oscillations [1]
¢ simple harmonic motion. [2]
2 Describe an example of a free oscillation. [2]

3 The centre of a cone of aloudspeaker is oscillating

with simple harmonic motion of frequency 1200 Hz
and amplitude 0.07 mm. Calculate

a the angular frequency of the oscillations [2]
b the maximum acceleration of the centre of the
cone. [2]

Sketch a graph to show the variation with
displacement x of the acceleration of the centre of
the cone. [3]

A pendulum bob oscillates with simple harmonic
motion. Its displacement varies with time as shown
below.

displacement/m

018 k . T, ::
o i ii
Tk t/sH
0 a 4L
018 A 2 et 4
HHH R
Determine:
a the amplitude of the oscillation [1]
b the period of the oscillation [1]
¢ thefrequency [1]
d the angular frequency [1]
e the acceleration [1]
i when the displacement is zero [1]

ii when the displacement is at a maximum  [2]
f the maximum velocity of the pendulum bob. [2]

Derive an expression for the period of oscillation of a
simple pendulum. [6]

Derive an expression for the period of oscillation of
two identical springs in parallel. [6]

a Calculate the gain in potential energy when a
mass of 120 g is raised through 11 mm. [2]

b A simple pendulum consists of a light
inextensible string and a bob of mass of 120 g.
The variation of the potential energy with x, the
horizontal displacement of the bob is shown

below.
R potential energy/ 1074 | Hf =
151 23
N y d i EE
i .
fr : X/ mm
H10 £ 203HE 30

T
1T - L

The bob of the pendulum is displaced sideways
until its centre of mass is raised through a vertical
distance of 1.1mm and then released.

c Copythe figure and sketch graphs to show the
variation, as the pendulum oscillates, of x with:

i the total energy [2]

ii the kinetic energy. [2]
d Determine the amplitude of oscillation of the

pendulum. [2]

8 a Explain what is meant by the term ‘resonance’. [2]

b A piece of Plasticine® is attached to one end of
a spring. The spring is attached to a support that
is able to vibrate in a vertical plane. The support
begins to vibrate and the mass-spring system is
forced to oscillate.

i Explain what is meant by forced oscillations.
2]
ii Sketch a graph to show the variation of ampli-
tude of the mass with frequency of vibration
of the support. [3]
iii The Plasticine® is now flattened so that it
causes the oscillations to be damped. On the
same axes as in b (ii) sketch another graph to
show the effect of damping. [3]
c State one situation in which resonance is useful.
U
d State one situation in which resonance can be a
hazard. [1]



Revision questions 4

9 a Statethe laws of refraction. [2] 10 Discuss one application of total internal reflection.[2]
b The speed of light in air is 3.00 x 10°ms™". The
speed of light in glass is 1.99 x10®° ms™". Consider
aray incident on a face of a prism as shown

11 The refractive index of glass for red light is 1.510. Red
light travelling at 3.00 x 10®*ms™is incident at an
angle of 32° on an air-glass boundary. Calculate:

below.
a the angle of refraction for red light
e b the speed of red light in glass
¢ the critical angle for the air-glass interface.
M 30°
i Calculate the refractive index of the glass
used to make the prism. [2]
ii Calculate the critical angle for a glass/air
interface. [2]

ili Sketch a diagram to show what happens to
the ray inside the prism and as it leaves the
prism. 3]

iv Calculate the angle of refraction when the ray
emerges from the prism. [4]
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Waves

Learning outcomes

On completion of this section, you

should be able to:

B understand that a wave transmits
energy

m  define the terms displacement,
amplitude, period, frequency and
speed when applied to a wave.

B understand the terms phase and
phase difference.

direction of travel of the wave

Q surface
"7 of lake

—_—
flow of energy

point at which the
stone is dropped

Figure 11.1.1 Profile of a wave

crest

Figure 11.1.2 Snapshot of a wave

displacement/m

—

NAN

time/s

Figure 11.1.3 Variation of displacement
of P withtime

Describing a wave

When a stone is dropped into a lake at a point P, circular ripples are seen
moving away from P. The ripples or waves transmit energy away from the
point of impact on the surface of the lake. The point Q is a short distance
away from P. A side profile from the point P to Q is shown in Figure 11.1.1.

It is important to understand that the water wave transfers energy from
the point P to QQ, without any water particles actually travelling from P
to Q. The water particles along the line PQ oscillate about a fixed point.
It is the energy that is transmitted by the wave. There are various ways
of classifying waves. A mechanical wave is one that requires a substance
through which to propagate. Mechanical waves can be classified as
either transverse or longitudinal waves. In order to describe a wave, a
transverse wave will be considered. The wave produced in the lake when
the stone was dropped into it is an example of a transverse wave. The
particles that make up this type of wave oscillate at right angles to the
direction of propagation of the wave.

Another way to produce a transverse wave is to fix one end of a rope and
move the free end up and down with your hand until waves are produced.
Viewing the wave from the side will produce a picture similar to the wave
in the lake.

Figure 11.1.2 illustrates the main characteristics of the wave.

The dashed line represents the rope in its undisturbed or rest position. The
up and down motion of the hand generates a transverse progressive wave.
A progressive wave is one that moves in a particular direction, carrying
energy along with it. The wave in Figure 11.1.2 is made up of a series of
crests and troughs. The distance x, represents the displacement of the
point P on the wave from the rest position. The SI unit is the metre.

The wavelength A of a wave is the distance between two successive crests
or two successive troughs. The SI unit is the metre.

The amplitude a of a progressive wave is the maximum displacement
from the rest position. The SI unit is the metre.

Suppose that the movement of a single particle [point P) is observed over
a period of time. The point P oscillates about the rest or equilibrium
position of the rope. Figure 11.1.3 shows how the displacement of the
particle varies with time. The graph shows that the displacement of the
particle varies sinusoidally with time.

One complete cycle or oscillation is made up of one crest and one trough. The
time taken for one cycle or oscillation is the called the period of oscillation of
the wave and is shown by T in Figure 11.1.3. The SI unit is the second.

The number of oscillations per unit time of a point on a wave is known
as the frequency of the wave and is measured in hertz (Hz).

The frequency and period of a wave are related by the following equation.

1
T = 7
T - period/s; f - frequency/Hz



The speed of a wave is the distance travelled per unit time. Speed in this
case refers to the rate at which energy is being transferred. The frequency
and the wavelength can be used to determine the velocity of a wave. The
derivation is shown below.

Time taken for one oscillation = T

During this time the wave would travel a distance = A

distance
speed = e
1
Vv =AX T
_ A
I &
1
But T = 7
v =fA
v - speed/ms; f - frequency/Hz; A —wavelength/m

Phase and phase difference

All the particles in a mechanical wave vibrate about their mean positions.
Not all the particles that make up the wave move together. At any
particular instant in time, some particles may be moving upwards, while
some particles may be moving downwards.

For example, the particles P and Q on the transverse wave in Figure 11.1.4
are both moving upwards at the same time. P and Q are said to be in phase
with each other. The particle at the point R is moving downward and is
therefore out of phase with particle Q. The phase of a particular point on a
wave is a measure of the fraction of the oscillation that has been completed.
Phase relationships are sometimes measured in degrees or radians. Particles
that are in phase with each other have zero phase difference. Particles that
are completely out of phase have a phase difference of 7 radians orl1 80°.

Consider two waves P and Q shown in Figure 11.1.5

The two waves are not in phase with each other. A phase difference
exists between the two waves. The phase difference ¢ between them is
determined by the following;

Phase difference ¢ = % x 27
The graph in Figure 11.1.6 shows two waves P and Q that completely out

of phase. The phase difference between them is & radians or 180°.

displacement/m displacement/m

P Q P Q

;i i s \ A A T
A ; distance along \ h ) p d!;]t: r:::vzl’,?:g
7
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Figure 11.1.5 Phase difference between Figure 11.1.6 Wavesthatare out of phase
two waves
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Exam tip

When reading the wavelength or
period from a graph check the label
on the x-axis.

displacement/m

direction of the wave

P Q R
-I_ 1 distance along
the wave/m

Figure 11.1.4 The phase of a point ona
wave

Key points

Waves transmit energy.

Mechanical waves require a
material medium through which
to travel.

®m  Mechanical waves can either be
transverse or longitudinal.

® Displacement of a pointon a
wave is the distance from the
equilibrium position.

B The wavelength of a wave is the
distance between two successive
points in phase.

B The amplitude of awave is the
maximum displacement from the
equilibrium position.

B The period of a wave is the time
taken for one oscillation.

B The frequency of a wave is
the number of oscillations per
second.

B The speed of a wave is the rate at
which energy is being transferred.

B The phase of a particular point
on awave is a measure of the
fraction of the oscillation that
has been completed.



11.2 Transverse and longitudinal waves

Learning outcomes

On completion of this section, you
should be able to:

understand the difference
between a transverse and a
longitudinal wave

appreciate that a progressive
wave transmits energy from one
point to another

understand that the intensity of a
progressive wave is proportional
to the amplitude squared

explain the term polarisation.

understand that transverse waves
can be polarised and longitudinal
waves cannot.

Definitions

In a transverse wave, the particles in
the medium vibrate at right angles
to the direction of energy transfer.

In a longitudinal wave, the particles
in the medium vibrate in the same
direction of energy transfer.

Transverse and longitudinal waves

Mechanical waves can be classified based on the movement of the
particles that make up the wave. Two types of mechanical waves are
transverse waves and longitudinal waves.

In order to differentiate between the two types of waves, a slinky spring
can be used. In order to produce a transverse wave, one end of the slinky
is fixed and the other end is moved up and down repeatedly. In this type
of wave, the particles oscillate at right angles to the direction of travel of
the wave. Light is an example of a transverse wave.

In order to produce a longitudinal wave, one end of the slinky is fixed
and the other end is moved back and forth as shown in Figure 11.2.1. In
this type of wave, the particles oscillate in the same direction of travel of
the wave. Sound is an example of a longitudinal wave.

a Transverse wave direction of travel of the wave

direction of travel of the wave

Cee—

vv\'lr" oy 000 !""Y OO
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Figure 11.2.1 How aslinky spring can be used to illustrate transverse and longitudinal
waves

b Longitudinal wave

A transverse wave is easily illustrated using a sinusoidal curve. In the
case of a longitudinal wave, visualising it can be difficult.

When a longitudinal wave is travelling through a medium, it consists
of a series of compressions and rarefactions. A compression is a region
in which the particles are moving towards each other. A rarefaction is a
region where the particles are moving away from each other.

A longitudinal wave is sometimes illustrated as a transverse wave.
However, the compressions and rarefactions correspond to peaks

and troughs on a sinusoidal waveform. Figure 11.2.2 illustrates a
longitudinal wave produced by a loudspeaker. The sinusoidal wave
illustrates the variation of pressure of the air molecules in front of the
loudspeaker. At a compression, the air molecules are moving towards
each other and this corresponds to a high pressure. At a rarefaction, the
air molecules are moving away from each other and this corresponds to
a low pressure.
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Figure 11.2.2 Visualising a longitudinal wave

direction of travel of

the longitudinal wave

o

pressure

Progressive waves

A progressive wave is a wave that is produced as a result of vibrations
and transfers energy from one location to another.

Both transverse and longitudinal waves can be progressive waves. Light
is an example of a traverse progressive wave. Sound is an example of

a longitudinal progressive wave. As the wave moves in a particular
direction, energy is transmitted in that same direction. The intensity of a
wave is related to its amplitude.

I < A?

The intensity of a wave is proportional to the square of the amplitude

of the wave. This means that a wave with a large amplitude transmits
more energy than a wave with a smaller amplitude. Take for example,
the sound waves being produced by a loudspeaker. When the volume

is low, the speaker produces longitudinal progressive waves with small
amplitudes. This is perceived by the human ear as a low decibel level.
These waves transmit a small amount of energy. When the volume is
increased, the speaker produces longitudinal sound waves with larger
amplitudes. This is perceived by the human ear as a high decibel level. In
some instances, you will be able to feel the vibrations from the speaker.

Example

A sound wave of amplitude 0.15mm has an intensity of 3.2 Wm-2.
Calculate the intensity of a sound wave of the same frequency, which has
an amplitude of 0.45mm.

Recall that I o A?
I = kA2
Initially, A = 0.15mm and I = 3.2Wm™2,
3.2 = k x (0.15 x 103

32
[0.15 x 1092

Now the frequency of the sound wave is the same, but the amplitude has
changed to 0.45mm.

k = = 1.422 x 108

kAl
(1.422 x 10°) x (0.45 x 10-3)?
28.8Wm™

I
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Figure 11.2.3 An unpolarisedwave
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Figure 11.2.4 A polarisedwave

Polarisation

In transverse waves, the oscillations are perpendicular to the direction
of propagation of the wave. In an unpolarised transverse wave, the plane
of oscillation can be in any one of an infinite number of planes. This is
illustrated in Figure 11.2.3.

In a polarised wave, the oscillations are restricted to one plane as shown
in Figure 11.2.4.

An easy way to understand the concept of polarisation is to fix one end

of a rope and move the free end up and down with your hand until waves
are produced. The waves produced are in a vertical plane. These waves
are said to be vertically polarised. If you move your hand horizontally
from side to side, the waves produced lie in a horizontal plane. These
waves are said to be horizontally polarised. It is possible to produce waves
in different planes of polarisation by simply adjusting the angle at which
your hand moves.

Consider a situation where the light from a filament lamp is viewed with
the naked eye. An intensity, I, will be observed. When a sheet of Polaroid®
is placed in front of the lamp and then viewed, the intensity of the light
appears to have reduced. The reason for this is that the sheet restricts the
oscillations of the light waves to one plane. It therefore prevents most

of the light waves from reaching the eye. If the sheet of Polaroid® is now
rotated in a plane perpendicular to the direction of travel of light, the
intensity is unchanged (Figure 11.2.5).

g —— >

light waves
are not
polarised

Polarcid® sheet

intensity
of lightis  light waves
reduced  are polarised

Figure11.2.5 The effect ofa sheet of Polaroid®

Suppose a second sheet of Polaroid® now placed in front of the first, but
rotated through 90° to the first sheet. The intensity of the light is now
reduced to zero. When the light waves pass through the first sheet, only
one plane of light is allowed to pass through. Since the second sheet is
rotated through 907, it will not allow these light waves to pass through
and hence the intensity is reduced to zero (Figure 11.2.6).

Polarisation is a property that is only exhibited by transverse waves.
Transverse waves have oscillations which are perpendicular to the
direction of propagation. In a transverse wave, the oscillations can
be in different planes. Polarisation restricts the oscillation to one
plane. Longitudinal waves have oscillations parallel to the direction
of propagation. Longitudinal waves cannot be polarised. Therefore,
polarisation is a test used to distinguish between transverse and
longitudinal waves.



There are many examples of the polarising effect of light. Polaroid®

sunglasses reduce glare by limiting the amount of light entering the eye.

Liquid crystal displays found in digital watches are polarised. Structural
engineers often use the effect of polarisation to perform experiments
to measure the amount of stress distributed throughout a component

under test.
J .
g =] | D
Polaroid® sheet Polaroid® intensity is
sheet rotated reduced to
through 90° Zero
Figure 11.2.6

Table 11.2.1 summarises the similarities and differences between a
transverse wave and a longitudinal wave.

Table 11.2.1 Comparing transverse and longitudinal waves

Transverse wave Longitudinal wave

Similarities  Transfers energy in the Transfers energy in the
direction of propagation of direction of propagation of
the wave the wave

Shows reflection, refraction,
diffraction and interference

Shows reflection, refraction,
diffraction and interference

Differences  Particles that make up the Particles that make up the
wave oscillate at right angles  wave oscillate in the same
to direction of energy transfer direction of energy transfer
Can be polarised Cannot be polarised

Examples Light, microwaves Sound

Key points

B |natransverse wave, the particles in the medium vibrate at right angles to
the direction of energy transfer.

B [na progressive wave, the particles in the medium vibrate in the same
direction as energy transfer.

A progressive wave transfers energy from one point to another.

squared.

Transverse waves can be polarised.

Longitudinal waves cannot be polarised.

The intensity of a progressive wave is proportional to the amplitude

In an unpolarised wave, the oscillations are in various planes.

In a plane polarised wave, the oscillations are restricted to one plane.

Chapter 11 Waves



11.3  Superposition and diffraction

Learning outcomes

On completion of this section, you
should be able to:

W state the principle of
superposition
understand the term diffraction

draw diagrams to show narrow
and wide gap diffraction

® recall the formula to determine
wavelength using a diffraction
grating.

wave 2

A

\b\aq?- P source 2

source 1
Figure 11.3.1

Definition

Principle of superposition —when two
or more waves arrive at a point, the
resultant displacement at that point
is the algebraic sum of the individual
displacements of each wave.

The principle of superposition

When two particles are projected towards each other, they collide and
move off in different directions. It is easy to visualise this if you project
two steel marbles towards a point P on a table.

The situation is very different with two waves. When two waves are
directed towards a point P in space, they pass through each other.
Howevert, something interesting happens at the point P. Suppose the
amplitude of one of the waves is A and the amplitude of the second wave
is 4A. Assuming that the two waves arrive at the point P in phase with
each other, the amplitude of the resultant wave at the point P is 5A. If
the waves arrive at the point P completely out of phase with each other,
the amplitude of the resultant wave at P is 3A. This phenomenon can be
explained using the principle of superposition (Figure 11.3.1).

The principle of superposition states that when two or move waves arrive
at a point, they superimpose on each other and the resultant displacement
is the algebraic sum of the individual displacements of each wave.

Consider two waves, wave 1 and wave 2 as shown in Figure 11.3.2. Both
waves are in phase with each other. (Phase difference is zero.| When these
two waves combine, by applying the principle of superposition, wave 3

is produced. Notice that the amplitude of the resultant wave is twice as
large as wave 1 and wave 2. Figure 11.3.3 shows what happens when
wave 1 and wave 2 arrive out of phase.
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Figure11.3.2 Applyingthe principle of
superposition (waves in phase)

Figure 11.3.3 Applying the principle of
superposition (waves out of phase)



Diffraction

Diffraction is the spreading out of wavefronts, when a wave passes the
edge of an object or through a gap. In order for significant diffraction to be
observed through a gap, the wavelength of the wave must be comparable
to the width of the gap. It is important to note that there is no change
in the wavelength of the wave when diffraction occurs. This information
should be illustrated when sketching diffraction diagrams. Light has a
very small wavelength. This means that in order for diffraction of light
to occur, the width of the gap should be comparable to the wavelength.
For this reason the diffraction of light is not normally observed in our
everyday experiences. Sound waves on the other hand, have much

larger wavelengths. They can be easily diffracted through a doorway.
This explains why a CD player can be heard in another room but not
necessarily be seen. The light doesn’t bend around corners to allow the
CD player to be seen.

Diffraction can be easily demonstrated in a ripple tank. Plane waves are
generated using a straight bar. As the bar vibrates on the surface of the
tank, plane waves are produced and move towards a gap. Figure 11.3.4
(a), (b) and (c) shows what is seen from above the ripple tank when the
experiment is performed using gaps and the edge of an object.

wavelength before =4 B )— wavelength after=4

Figure 11.3.4 (a) Narrow gap diffraction

wavelength before =4 wavelength after =4

Figure 11.3.4 (b) Wide gap diffraction

wavelength before =4 wavelength after =4

object
Figure 11.3.4 (c) Diffraction at the edge of an object

If the gap is made much smaller than the wavelength of the wave, no
diffraction will occur. The waves will not pass through the gap. It is this
same principle that applies to a microwave cooker. The metal grid on
the door allows light to pass through so that you can view the food, but
doesn’t allow the microwaves to escape from inside the microwave.

Chapter 11 Waves

Definition

Diffraction is the spreading out of
wavefronts of a wave when they pass
through a gap or pass the edge of an
obstacle.
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Single slit diffraction

When a single slit is placed in front of a parallel beam of light, diffraction
occurs. The intensity distribution is shown in Figure 11.3.5.

intensity
i
T e s
—--::14:1‘_._ ____________ 0 ’ ‘
I’ \\
single slit ~reen 0 distance along screen
Figure11.3.5(a) Single slit diffraction Figure 11.3.5 (b) Variation of intensity

with distance along screen

Diffraction gratings

A diffraction grating consists of a large number of equally spaced lines
ruled on a piece of glass or plastic. When monochromatic light (a single
wavelength e.g. red light) is incident at right angles to the grating, an

interference pattern of bright and dark fringes are observed on a screen.

The bright fringes are called maxima. The fringe at the centre is called
the zeroth order maximum (n = 0). The next fringe is called the first
order maximum (n = 1). The fringe pattern is symmetrical about the
zeroth order maximum. Figure 11.3.6 illustrates how a diffraction grating
produces a fringe pattern.

monochromatic

light
screen
diffraction

grating

Figure11.3.6 Producinga fringe pattern with a diffraction grating
Figure 11.3.7 shows the variation of intensity along the fringe pattern.

intensity

n=3 n=2 n=1 n=0 n=1 n=2n=3

Figure 11.3.7 Variation of intensity along the fringe pattern



The light incident on the grating diffracts at every slit, producing
coherent sources of waves. At regions where bright fringes are observed,
the path difference from the slits is a whole number of half wavelengths.
The light waves are in phase and constructive interference occurs.

At regions where dark fringes are observed, the path difference from

the slits is an odd number of half wavelengths. The light waves are
completely out of phase and destructive interference occurs. The
wavelength of light incident on the diffraction grating is related to the
angular deviation as follows:

Equation

dsin® =ni

— separation of slits in grating/m

angle between the zeroth order fringe and the nth order fringe
wavelength of light/m

nth order fringe

d
0
A
n

Example

When monochromatic light of wavelength 4 is incident normally on a
plane diffraction grating, the second order diffraction lines are formed
at angles of 30° to the normal to the grating. The diffraction grating has
500 lines per millimetre. Calculate the value of A.

Separation of slits d = IETBOJ = 2 x 10°m
dsin® = nl
(2 x 10-)(sin30°) = 2 x A
5 = [2x109(sin307)
2
A= 5x%x10"m

Example

Determine the highest order of diffracted beam that can be produced
when a grating with a spacing of 2 x 10-°m is illuminated normally with
light of wavelength 640 nm.

dsin® = nl

Recall, sinf < 1 (i.e. the sine of an angle cannot exceed 1|
nl
s o
7 < 1
n x (640 x 107 &9
2.5 x 10° -

2.5 x 10
640 x 107

3.91

n <

I

n
Since n has to be an integer, the highest order possible isn = 3.

This corresponds to 7 principal maxima (the zero order maxima, plus the

three on either side).
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Exam tip

When white light passes through a
diffraction grating, a central bright
fringe is observed. On either side of
the central bright fringe, a series of
spectra (red — violet) are seen.

Key points

B Principle of superposition — when
two or more waves arrive at a
point, the resultant displacement
at that point is the algebraic sum
of the individual displacements
of each wave.

m Diffraction is the spreading out of
wavefronts of a wave when they
pass through a gap or pass the
edge of an obstacle.



11.4

Learning outcomes

On completion of this section, you
should be able to:

m  explain what is meant by
interference

B understand the terms coherence
and path difference

®  explain Young's double slit
experiment using the principle of
superposition

W state the conditions necessary

to produce an observable
interference pattern.

0

A Vo B
A bright fringe
central bright fringe

Figure 11.4.2 Fringe pattern producedon
the screen

Definition

Two waves are said to be coherent if
there is a constant phase difference
between them.

Definitions

Constructive interference occurs
when the waves arrive in phase
(crests coincide). The resultant
displacement is greater than either
of the two waves.

Destructive interference occurs when
the waves arrive out of phase (crest
and trough coincide). The resultant
displacement is zero.

Interference

Young’s double slit experiment

Thomas Young performed an experiment that showed that light was a wave
and produces an interference pattern. Monochromatic light is made to shine
on a card with two slits in it. The slits are a fraction of a millimetre in width
and are about one millimetre apart. A screen is set up about one metre or
more away from the slits (Figure 11.4.1). A series of equally spaced bright
and dark fringes is observed on the screen (Figure 11.4.2). Figure 11.4.3
shows the variation of the intensity of light along the fringe pattern.

screen
double slit
single slit
S A
monochromatic : I interference
light source — region
5 B

Figure 11.4.1 Young's double slit experiment (Top view)

intensity

P 0 distance
A TR B

Figure 11.4.3 Variation of intensity of light along the fringe pattern

Coherent waves

Coherent waves have the same frequency and hence a constant phase
difference between them. Consider two waves P and Q. If P and Q are in
phase with each other, the phase difference between them is zero. P and
Q are said to be coherent waves. If P and Q are completely out of phase
with each other, the phase difference between them is 180°. P and Q are
still coherent waves,

To produce coherent light sources, a single slit is used. As the light passes
through the double slit, diffraction takes place and the light waves overlap.

Explaining the experiment (light as a wave)

At points where the crests of waves coincide, constructive interference
occurs (Figure 11.4.4). These points correspond to bright fringes on

the screen. At points where crests and troughs coincide, destructive
interference occurs (Figure 11.4.5). These points correspond to dark
fringes on the screen. In both cases, the waves are superposed.

Path difference

Figure 11.4.6 illustrates two slits, S, and S,. The distance between them
is a. The central bright fringe is at O and the first bright fringe occurs at
the point P
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Figure11.4.4 Constructive interference Figure 11.4.5 Destructive interference

Suppose S, and S, emit wave crests at the same time. The point P is a
bright fringe and therefore constructive interference must occur at this
point. The distance S P is greater than S P. Therefore, the wave crest

from S, has to travel a longer distance to arrive at P when compared to

the wave crest from S,. In order for constructive interference to occur at P,

the two crests must coincide. This can only happen if the extra distance
travelled by the wave from S, is equal to exactly one wavelength 4. This
extra distance is called the path difference {Figure 11.4.7).

For constructive interference to occur at P the path difference must be

zero or a whole number of wavelengths.

S,P-SP = ni n=0
So the path difference must be 0, 4, 24, ...
Where P is the first dark fringe, destructive interference must occur at P.
For destructive interference to occur, a crest and a trough must coincide.

This can only happen if the extra distance travelled by the wave from S,
is equal to exactly A (Figure 11.4.8).

For destructive interference to occur at P, the path difference must be an

odd number of half-wavelengths.
1
SIP—SIP=(n+§)A n =20

So the path difference must be ‘44, 344, %4, ...

Conditions for interference to take place

Under normal conditions, the interference of light is not easily observed.
There are conditions that must be satisfied to produce observable
interference patterns:

The waves must be coherent.,

The waves must meet at a point.

If the waves are polarised, they must be in the same plane of
polarisation.

The waves must be of the same type.
The amplitudes of the waves must be similar.
The waves must have the same frequency.
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Figure 11.4.6 Understanding path
difference

30
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E
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' "distance
Figure 11.4.7 Condition for constructive
interference

distance

Figure 11.4.8 Condition for destructive
interference

Key points

B Young's double slit experiment
shows that light behaves as a
wave.

®  The principle of superposition
can be used to explain the
experiment.

m  Constructive interference occurs
when waves arrive in phase with
each other.

B Destructive interference occurs
when waves arrive out of phase
with each other.

m  Coherent waves are waves that
have a constant phase difference
between them.

B Observable interference patterns
can only be observed only when
certain conditions are met.



11.5 Interference experiments

Learning outcomes

On completion of this section, you
should be able to:

W describe experiments to
demonstrate interference of
water waves, sound waves and
microwaves.

Figure 11.5.1 Demonstrating interference
in a ripple tank

Demonstrating interference in a ripple tank

A straight piece of wood can be used to produce plane wave fronts that
travel towards two gaps as shown in Figure 11.5.1. Diffraction occurs at
each of the gaps. This causes the waves to overlap in the region beyond
the openings. As a result, an interference pattern is produced. There are
points on the surface of the water where it is stationary, and points where
it is disturbed. If we assume that the wavefronts represent crests, then
points of intersection would be points at which constructive interference
occurs. This corresponds to points of intersection of the line AB with the
curved wavefronts. At points where crests and troughs meet, destructive
interference occurs. This corresponds to the points of intersection of the
line CD with the curved wavefronts.

The experiment can also be performed using two dippers attached to the
same vibrating strip (Figure 11.5.2). This would ensure that the sources
of waves are coherent. The interference pattern would be similar to that
produced in Figure 11.5.1.

vertical
vibrations

dipper D

Figure 11.5.2 Usingdippers to produce circular wavefronts

Demonstrating the interference of sound waves

In order to demonstrate the interference of sound waves the following are
required:

two identical loudspeakers
a signal generator.

The two loudspeakers are connected to a signal generator. The
loudspeakers are adjusted so that they are about 0.5 to 1.0m apart and
facing the same direction (Figure 11.5.3). The signal generator is adjusted
so that it produces a signal of frequency in the range 500Hz to 2 kHz.
A microphone is connected to an oscilloscope. An observer walks along
the line XY in front of the loudspeakers. The observer will notice a
variation in loudness along the line XY. At the point O, sound is heard
(large amplitude on the oscilloscope). The path difference in this case is
zero and constructive interference occurs at O. When the microphone
is moved from O towards Y, the loudness will reach a minimum value
[small amplitude on the oscilloscope). At a point of minimum loudness,
the sound waves are out of phase and destructive interference occurs.
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loudspeaker

microphone

%

Figure 11.5.3 Demonstrating interference of sound waves

Demonstrating the interference of microwaves

In order to demonstrate the interference of microwaves the following are
required:

a microwave transmitter
a metal plate with two slits

a microwave detector,

Microwaves from the transmitter T are incident on the two slits S,

and S, which are equidistant from T. §, and S, act as coherent sources
of microwaves. The waves are diffracted by the slits and superpose in
the region beyond it. A microwave detector is moved along the line AB,
which is parallel to the plane of the slits (Figure 11.5.4). The intensity
measured at O is a maximum. The path difference in this case is zero
and constructive interference occurs at O. When the microwave detector
is moved from O towards A, the intensity decreases to a minimum
before increasing to another maximum at the point X. At a point of
minimum intensity, the microwaves are out of phase and destructive
interference occurs. In this demonstration, the distance between the slits
is approximately 1-8 cm.

metal plate A
with two slits ;
I X
}
4
microwave microwave
transmitter detector

Figure 11.5.4 Demonstrating interference of microwaves

Key points

An interference pattern of water waves can be produced in a ripple tank.

Interference of sound waves can be produced using two loudspeakers
connected to the same signal generator.

m [nterference of microwaves can be produced by using a microwave source,
a metal sheet with two slits and a microwave detector.

Chapter 11 Waves



11.6 Measuring the wavelength of light

Learning outcomes

On completion of this section, you
should be able to:

p—

derive the formula for the fringe
separation in Young's double slit
experiment

describe an experiment to
measure the wavelength of
light using Young's double slit
experiment

describe an experiment to
measure the wavelength of light
using a diffraction grating.

-

Ny

(diagram not drawn to scale)

Figure 11.6.1 Deriving the formula for
wavelength

——— X ——

Derivation of the formula 1 = %x

Consider two coherent light sources S, and S, separated by a distance a.
M is the midpoint of S, and S,.The distance between the slits and the
screen is D. A central bright fringe is located at the point O. In this case,
the path difference is equal to zero. Constructive interference occurs at O.
The first bright fringe occurs at the point P (Figure 11.6.1).

The formula can be derived by considering the distance between the
central bright fringe and the first adjacent bright fringe. The path
difference S,P - S P is equal to one wavelength A.

Consider the triangle PMO.

X
tanf = D

Consider the triangle 5,5 Q
sinf = i

If D >> a, the angle 6 is very small.

For small angles 6 = sinf = tan#

A _ x
a D

ax
4 = gy

The equation is only applicable when D >> a and that S, and S, act as
coherent sources of light.

Measuring the wavelength of light using the Young’s
double slit arrangement

light of
wavelength4  ||S

= oy

5, " ;
¢ travelling
1 microscope
double slit " with scale

(diagram not drawn to scale)

Figure11.6.2 Measuring the wavelength of light using Young's double slit experiment

The wavelength of a monochromatic light source can be determined using
Young's double slit arrangement. In this experiment a parallel beam of
monochromatic light of wavelength 4, is incident normally on a pair of slits
S, and S,. The width of the slits is approximately 0.5mm and the distance
between the slits is approximately 1 mm. In this experiment, a travelling
microscope is used to measure the distance between the bright fringes
produced (Figure 11.6.2). The distance between the slits and the travelling
microscope is approximately 2m. In order to measure the distance between



the fringes accurately, the distances between several fringes are measured
and the average separation taken. This minimises the random error in the
measurement. The disadvantage of this method is the intensity of the light
decreases as you move away from the central bright fringe. This makes it
difficult to know exactly where a bright fringe is located. The wavelength of
the monochromatic light source is calculated as shown (right].

Measuring the wavelength of monochromatic light
using a diffraction grating

A laser can be used as a monochromatic light source for this experiment.

A laser is used because it produces a highly collimated light source. This
means that it produces a very thin beam of light with little spreading. A
diffraction grating of known number of lines per metre N is used. The
diffraction grating is set up on a spectrometer. The light from the laser

is projected on the diffraction grating such that it is at right angles to it
(Figure 11.6.3). The angular deviation can be measured accurately using the
spectrometer. The wavelength of the light is calculated as shown (right).

The experiment can also be done using a screen. The screen is placed
about 1.5m from the diffraction grating. The separation between the
zero-order diffracted light and the nth-order diffracted light is measured
using a metre rule. The angular deviation of the nth order diffracted light
is found by calculation.

One advantage of measuring the wavelength using the second-order
diffracted light is that it allows for a larger distance to be measured
accurately.

One disadvantage of measuring the wavelength using the second-order
diffracted light is that it is difficult to pinpoint its actual position, because
intensity of the light decreases as you move away from the zero-order

diffracted light.

top view n=2
spectrometer n=1
angular deviation measured
directly from spectrometer
n=0

diffraction grating
(known spacing)

Figure 11.6.3 Measuring the wavelength of monochromatic light using a diffraction grating

Example

A laser produces monochromatic light which is incident at right angles
to a diffraction grating. The diffraction grating has 5.6 x 105 lines per
metre. A screen is located 1.50m from the diffraction grating. Bright
spots are observed at 0.54 m on either side of the central bright spot.
Calculate the wavelength of the monochromatic light.

; ; _ 1 1 _ i
Distance between slits d = T R 1.79 x 10°m
: ,10.54 3
Angle between zero-order and first-order light 6 = tan ‘( 5 ) = 19.8
) Bt o
1= dsinf _ 1.79x 10 x sin19.8° _ 606 nm

n 1
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Equation
ax
A=D1
x — fringe separation/m
A - wavelength of light/m

D - perpendicular distance

between the screen and the
double slits/m

a - the separation between the
slits/m

Equation

i dsinf

n

A - wavelength of monochromatic
light/m

d - distance between slits/m

6 - angular deviation for the nth
order

n — nth order diffracted light

Key points

B Thewavelength of a

monochromatic light source can
be determined experimentally
using Young's double slit
experiment.

The wavelength of a
monochromatic light source can
be determined experimentally
using a diffraction grating.



11.7 Stationary waves

Learning outcomes

On completion of this section, you
should be able to:

® understand what is meant by a
stationary wave

®  describe experiments to produce
stationary waves

B compare progressive and
stationary waves.

stationary wave

-t wave 1

Figure 11.7.1 Producing a stationary wave

pulley
e

oscillator

weight B

Figure 11.7.2 Producing a stationary
wave on a string

first harmonic
(fundamental)

second harmonic
(first overtone)

third harmonic
(second overtone)

Figure 11.7.3

Stationary waves

Stationary waves (standing waves| are formed by the superposition of
two progressive waves of the same type, of equal amplitude and frequency
travelling with the same speed in opposite directions. Both longitudinal
and transverse waves can form stationary waves. Figure 11.7.1 shows

a transverse progressive wave travelling from left to right. Another
transverse progressive wave, of same speed, frequency and amplitude is
travelling from right to left. These two progressive waves superpose to
produce a stationary wave (dashed line).

A stationary wave can be produced on a string by causing it to oscillate
rapidly. In this experiment, one length of a long string is attached to a
mechanical oscillator. The string passes over a frictionless pulley and is
kept taut by means of several small weights. The mechanical oscillator
produces progressive waves which travel from left to right. The waves are
reflected as they reach the pulley and travel from right to left. The waves
leaving the oscillator superpose with the reflected waves and produce a
stationary wave. See Figure 11.7.2.

The velocity of the incident wave and the reflected wave along the string
is given by:

Equation

T

m

v - velocity of wave/ms™
T - tension in the string/N
m — mass per unit length of the string/kgm’

Suppose a stretched string is fixed at its end and then made to vibrate.
Only specific modes of vibrations are possible on the string. Figure 11.7.3
illustrates the three simplest modes of vibrations (i.e. first, second and
third harmonics). The first harmonic is called the fundamental and the
frequency at which it vibrates is called the fundamental frequency. The
higher frequencies are called overtones.

The fundamental frequency, f , of a vibrating, stretched string is given by:

Equation

1.7
fﬁm[;

f, — fundamental frequency/Hz
[ - length of string/m

T - tension in the string/N

m — mass per unit length/kg m~

o

There are points along a stationary wave where particles are permanently
at rest. These points are called nodes. The displacement at these points
is zero. At points midway between nodes on a stationary wave the
displacement is twice the amplitude of either progressive wave. These
points are called antinodes (Figure 11.7.4).
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The wavelength of the wave is given by:

Equation

A =2d

A — wavelength of wave/m N -node A~ antinode
d - distance between two adjacent nodes/m Figure 11.7.4 Nodes and antinodes
Figure 11.7.5 shows the position of the string at various points in time. positions of string

From this diagram it can be seen that all the particles between adjacent at various POinT_S _

nodes are in phase with each other. All the particles between N, and N, AhisEIFRE string  string

are in phase with each other. All the particles between N, and N, are JB:‘,\:P& J;\?\,Vspi
also in phase with each other. However, the particles between N, and N,
are out of phase with the particles between N, and N,. All the particles

between N, and N, are moving downwards, while the particles between

N, and N, are moving upwards.

Consider the phase of the particles in a progressive wave. Each point
within one cycle of the wave is at a different phase from each other.

string  string

Therefore, points A, B, C and D are at a different phase in their cycle. moving  moving
Points A and D are moving upwards, while points B and C are moving downwards  downwards
downwards. Figure 11.7.5

Points A and E are in phase with each other. They are both moving upwards.

a progressive
wave

Points C and F are in phase with each other. They are both moving
downwards (Figure 11.7.6).

The amplitude of the stationary wave depends on the position along the
wave. It varies from zero at a node to a maximum at the antinode.

The speed of sound can be measured using a long cylindrical tube with Figure 11.7.6 A progressive wave
one end open and the other closed as shown in Figure 11.7.7. The tube is

lined with a fine powder. A loudspeaker, connected to a signal generator,

is placed at the open end. The frequency of the signal generator is loudspeaker long tube
adjusted so that the powder eventually settles. The sounds waves inside
the tube create a stationary wave. The powder settles at displacement
nodes. The distance between the nodes is used to determine the
wavelength of the sound waves and since the frequency is known, the
speed of the wave can be determined.

Fat B

i L
N N N y N
heaps of powder

ZzZp

Comparing stationary and progressive waves Figure 11.7.7 Producinga stationary
sound wave
Progressive wave Standing wave
Transfers energy from one | Even though the wave has energy, it does not Key points

Ipoint to another. “transfer energy from one point to another. B Stationary waves (standing

All the particles that make | The particles that make up the wave have waves) are formed by the

up the wave have the same | different amplitudes. The amplitude ranges from superposition of two progressive
amplitude. zero (nodes) to a maximum (antinodes). waves of the same type, of

equal amplitude and frequency
travelling with the same speed in
opposite directions.

All the particles that make | There are particles that make up the wave that
up the wave are in motion. | are stationary (antinodes).

A phase difference exists | Between two nodes the phase difference between
between neighbouring neighbouring particles is zero. (A and B)
particles of the wave.

B Anode is a point on a wave that
is permanently at rest.
The phase difference between particles A and C -

: : An antinode is the point midway
is T radians.

between nodes.



11.8 Sound waves

Learning outcomes

On completion of this section, you
should be able to:

m  describe practical applications of
sound waves in industry

m  discuss the application of sound
waves to musical instruments

B understand that sound waves can
be reflected and refracted.

first harmonic
(fundamental)

_4
L_Z

<> second harmonic
"E £ " (first overtone)

L=4

¥ N7 N~ third harmonic
A@@L (second overtone)
_34
L= 2

Figure 11.8.1 Stationary waves in an
open-endedtube

—> tuning fork

antinode

resonant —-=
tube

node N

-———water

—

Figure 11.8.2 A resonance tube

Sound waves in industry

Sound waves are used widely in industry. In the field of medicine,
ultrasound (very high frequency sound waves) is used to produce images
of foetuses in pregnant women, and internal organs such as the kidney
and liver. Ultrasound is also used in physiotherapy.

The same principle is used to determine if there are hairline fractures in
mechanical components used in industries.

Submarines use sonar to determine depths of objects. It operates in a
similar way to how bats determine the location of objects. Sound waves
are transmitted from the submarines and the time taken for the reflected
wave is determined. The distances can then be calculated.

Geologists use sound waves to determine the structure of the underlying
earth. In countries such as Trinidad this technique is crucial in
determining the location of oil and gas.

Sound waves and musical instruments

The lowest frequency that a vibrating string or pipe can produce is called
the fundamental frequency. This note is called the fundamental.

If a note is n times the fundamental, it is called the nth harmonic.

When a string of a guitar is plucked, notes of high frequencies are produced
together with the fundamental note. These notes are called overtones.

A musical note is characterised by loudness, pitch and timbre. Loudness
of a note depends on the amplitude of sound. Pitch of a note is dependent
on the frequency of sound. Timbre or quality of a note is dependent on
the relative strengths of the overtones produced with the note.

Percussion instrument - steel pan

The steel pan 