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Preface

The main goal of this text is to present different ways of building and analyzing mathe-
matical models in a format that can be read by students, not just instructors. This is not a
text on how to use Excel. Rather, Excel is seen as a tool to further the goal of building and
analyzing mathematical models. No prior knowledge or experience with Excel is required
to use this text.

Excel is chosen as the only software used to implement and analyze models for two main
reasons:

1. It is easy to use and most everyone is familiar with it, so it takes very little time to
become comfortable with the software.

2. It is everywhere. Students will have access to Excel for every mathematical modeling
project they encounter inside and outside of academics.

Each section contains step-by-step instructions for building the models in Excel. These
instructions were originally written for use with Office Excel 2016. Some of the instructions
may be slightly different for other versions of Excel.

Pedagogical Approach

This text presents a wide variety of common types of models found in other mathematical
modeling texts, as well as some new types. However, the models are presented in a very
unique format. A typical section begins with a general description of the scenario being
modeled. The model is then built using the appropriate mathematical tools. Then it is
implemented and analyzed in Excel via step-by-step instructions. In the exercises, we ask
students to modify or refine the existing model, analyze it further, or adapt it to similar
scenarios.

In each section, we try to focus on the main mathematical modeling concept being
illustrated and not get too bogged down in details. We also focus on the analysis of models,
and in each case try to address the question, “What does this mean?”

This is not a “plug-and-chug” textbook. We do not ask students to simply plug numbers
into some “black-box” Excel formula and accept the results. Rather, we discuss the mathe-
matics behind the analysis of the models and, where appropriate, build the analytical tools
in Excel from scratch.

Each section ends with several exercises of varying degree of difficulty. In addition, each
chapter ends with a “For Further Reading” section which contains resources for additional
information.

vii



viii Preface

Audience/Prerequisites

This text is appropriate for mathematics majors (including secondary mathematics educa-
tion majors) who need an introductory mathematical modeling course. Some sections require
calculus, linear algebra, differential equations, or basic statistics, so this text is appropri-
ate for use with junior or senior level students. However, many other sections require only
mathematical maturity, so this text could also be used with sophomore level students.

The Flow of Material

This text contains a wide variety of modeling techniques, mathematical concepts, and types
of applications. Here we give a brief overview of the highlights of each chapter.

Chapter 1 – What is Mathematical Modeling? This chapter begins with the defini-
tions of the terms model and mathematical modeling. It then discusses the steps involved in
mathematical modeling, and concludes with a discussion of the importance of assumptions
in the process of mathematical modeling.

Chapter 2 – Proportionality and Geometric Similarity This chapter begins with
an introduction to graphing and working with data in Excel which includes a discussion of
fitting straight lines to data. Then the geometric concepts of proportionality and similarity
are used to model systems such as free-falling objects. We stress the point that data are
used to test the validity of the models. The chapter ends with an introduction to fitting
straight lines to data, empirical modeling, and the coefficient of determination.

Chapter 3 – Linear Algebra This chapter begins with a brief introduction to topics in
linear algebra used throughout this book including matrices, vectors, and systems of linear
equations. We give a few examples of using linear equations to create models. We then use
linear equations to fit polynomials, multiple regression, and spline models to data.

Chapter 4 – Discrete Dynamical Systems This chapter begins with the definitions of
a discrete dynamical system, a solution, and an equilibrium value. We stress the point that
we are usually interested in the long–term behavior of the system, not necessarily the value
at a single point in time, and how equilibrium values are important in the analysis. The
chapter includes several different types of applications modeled with discrete dynamical
systems including population growth, predator–prey systems, and simple epidemics.

Chapter 5 – Differential Equations This chapter begins with a discussion of the fact
that it is often easier to describe how a quantity changes over time than it is to describe the
value of the quantity at any particular time. This motivates the use of differential equations
for modeling dynamical systems. We focus on finding approximate numerical solutions to
differential equations rather than finding exact analytical solutions. To this end, we discuss
Euler’s method for approximating solutions to differential equations and apply it to several
applications of systems of differential equations. We also introduce Runge-Kutta methods
for approximating solutions to differential equations.

Chapter 6 – Simulations We cover the topic of simulations more extensively than most
other mathematical modeling text books. The main goal of this chapter is to illustrate
several different types of simulation models including games of chance, queuing models,
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inventory models, and scheduling models. We also discuss how pseudo-random number
generators work and how to model random variables using density functions.

Chapter 7 – Linear Optimization The main focus of this chapter is linear programming
and the simplex method. We do not discuss much theory; rather we try to give students
an overview of the basic ideas behind the simplex method. We introduce the assignment
problem and the transportation problem as examples of linear programs and how to model
with linear programs.

Chapter 8 – Nonlinear Optimization In this chapter we cover several numeric tech-
niques for approximating solutions to nonlinear optimization problems including Newton’s
method, gradient methods, and Lagrange multipliers. We also discuss the inherent difficul-
ties of solving nonlinear problems.

Selection of Material

There is more than a semester’s worth of material in this text. An instructor can easily pick
and choose the sections that are appropriate for the students. Most sections can easily be
covered in one 50-minute class period. We give three suggestions for choosing material:

1. We suggest starting with Chapters 1, 2, and 3. Chapter 1 gives an essential overview
of the mathematical modeling process which can be covered in one class period. We
have embedded an introduction to working with Excel throughout Chapter 2. Chapter
2 also introduces many concepts used throughout the rest of the text. Chapter 3
is a continuation of Chapter 2 focused on linear algebra. If students have a solid
background in linear algebra, Sections 3.1 and 3.2 can be skipped. Section 3.5 can be
skipped without loss of continuity.

2. If the instructor wishes to focus on dynamical systems, we suggest covering Chapters 4
and 5. In Chapter 4 we model systems using discrete time increments, and in Chapter
5 we model time continuously. Sections 4.6, 5.6, 5.7, and 5.8 can be skipped without
loss of continuity. Selected topics from Chapters 6 and 7 can round out the semester.

3. If the instructor wants to focus on topics from operations research, we suggest covering
Chapters 6, 7, and 8. These chapters do not depend on Chapters 4 and 5. Sections 7.7,
8.6, 8.7, and 8.8 can be skipped without loss of continuity.

What’s New in the Second Edition

Work on the second edition began as soon as the first edition was published. The authors
would like to thank their students for finding mistakes and suggesting improvements and
new exercises. Changes made from the first edition include:

• All directions for using Excel have been updated for Excel 2016.

• Numerous new exercises have been added throughout the text.

• Chapter 3 on linear algebra has been added. This chapter includes topics from Chapters
2 and 3 in the first edition as well as new material.
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• Chapter 5 on differential equations has been expanded to include mixing problems and
an introduction to Runge-Kutta methods.

• Chapter 6 on simulation models has been revised.

• Chapter 8 on nonlinear optimization has been added.

• Many chapters have a subsection containing project ideas. A project is defined as a
problem devised by a student, the end-result of which is a short written report describing
the problem, the analysis, and the conclusions. These project ideas are inspired by actual
student projects and can serve as kernels of inspiration for future students.
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1

What is Mathematical Modeling?

Chapter Objectives

• Define the terms model, mathematical model, and mathematical modeling

• Understand the purpose and process of mathematical modeling

• Understand the importance and significance of assumptions behind a mathematical
model

Every student of mathematics has done some “mathematical modeling” in his/her educa-
tional career. These instances of mathematical modeling are typically called “applications”
and are used to illustrate how mathematics is implemented in the “real world.”

In most math classes, the main goal is to learn the theory of some particular mathe-
matical discipline. The applications are used to help achieve this goal by providing a more
concrete context in which to study and understand the theory. For instance, in Calculus I,
the real goal is to understand the idea of the limit and the derivative. An applied maxi-
mization problem is used to motivate the idea of the derivative and to provide practice in
calculating and interpreting derivatives.

In mathematical modeling, the opposite is true. Here we will start with some “real world”
problem and use mathematical theory and techniques to better understand the phenomena
behind the problem.

1.1 Definitions

To define the phrase mathematical modeling, we will first define the term model. The word
model is used frequently in everyday language. We talk about model airplanes, model houses,
models on a runway, etc. What does the term model mean in a mathematical sense?

Lucas (Lucas, William F., The Impact and Benefits of Mathematical Modeling, in
Applied Mathematical Modeling (D.R Shier and K.T. Wallenius eds.), Chapman and
Hall/CRC, 1999, pg. 5) defines a model as “a simpler realization or idealization of some
more complex reality.” The real world is a very complex place. To better understand it, we
need to try to simplify it to a reasonable degree, describe the simplification in ways we can
understand and work with, and then study the simplification. This is what we call modeling .

A mathematical model then can be defined as a model constructed using mathematical
terms, symbols, and ideas. Giordano et. al. (Frank. R. Giordano, M. D. Weir, and W. P.
Fox, A First Course in Mathematical Modeling, Third ed., Thomson Brooks/Cole, 2003,
pg. 54) defines a mathematical model as “a mathematical construct designed to study a
particular real world system or phenomenon.” Mathematical models can take many different
forms. They may involve equations, inequalities, differential equations, matrices, logic, or
any other type of “mathematical” idea.

1



2 What is Mathematical Modeling?

The key idea is that we use mathematics to describe a portion of the real world. There-
fore, a very simple but general definition of the process of mathematical modeling is:

Definition 1.1.1. Mathematical modeling is the application of mathematics to real world
problems.

1.2 Purpose

Why do we do mathematical modeling? Since we want to answer a question about real world
phenomena, we could just sit back, observe, and take notes. Suppose we put 500 bacteria
in a Petri dish. The next day we count 525 in the dish, and the next we count 551.

Obviously, the number of bacteria is growing. Based on this observation, we might ask
these questions:

1. How long will it be until there are 600 bacteria in the dish?

2. If we need 900 bacteria for an experiment in 3 days, how many must we put into the
dish today?

We could answer each question as follows:

1. Wait until we count 600 bacteria in the dish.

2. Put 1 bacterium in a dish, 2 in a second dish, 3 in a third, etc. up to 900, wait 3 days,
and determine which dish contains 900 bacteria.

These solutions only require us to make simple observations of this real world phenomenon
of bacteria growing in a Petri dish. However, these solutions are obviously impractical for
they might require too much time or too many resources (the second solution requires 900
Petri dishes and a total of 1 + 2 + · · ·+ 900 = 405, 450 bacteria).

A much more practical approach to answering these questions is to construct a function
that gives the number of bacteria in the dish in terms of time (i.e. construct a mathematical
model of the bacteria growth).

In other situations, making observations may itself be a complicated ordeal. For instance,
suppose we wanted to find the optimal mixture of doctors and nurses (i.e. the number of
doctors and number of nurses) to staff a hospital emergency room. The concept of “optimal”
may take into account several factors, including:

1. Quality of patient care. (Do they get the care they need?)

2. Patient waiting time. (Do they have to wait a long time?)

3. Time spent with patients. (Are the doctors and nurses over-worked, or do they have
too much “free time?”)

4. Resources. (Is there enough floor space or are people running into each other?)

One approach to finding an optimal number is to choose some mixture of doctors and nurses
(say 3 doctors and 8 nurses), put them to work, and have a team of people record data for
a series of weeks or months. Then choose another mixture (say 2 doctors and 7 nurses) and
repeat the process. Repeat this until all possible combinations of doctors and nurses have
been tried, analyze the data, and pick the optimal mixture.
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This approach has many of the same problems as the bacteria growth problem. It would
take too much time and be too expensive. Plus there are additional problems. If there are
too few doctors and nurses on staff, patients might unnecessarily die. Plus we may not
observe how the different mixtures handle infrequent events such as a bus crash that floods
the ER with dozens of patients at once.

A much more practical solution would be to try to replicate the behavior of the ER
on a computer (i.e. create a type of mathematical model called a simulation) where the
numbers of doctors and nurses can be easily changed. Each mixture can be simulated for a
long period of time under many different situations and at low cost. Plus, nobody dies.

1.3 The Process

We will illustrate the process of mathematical modeling with an example of modeling the
number of bacteria in a Petri dish as described in Section 1.2.

Step 1: State the question to be answered

In many situations, this step is almost trivial; in others it is the most difficult part of
the process. The question should be narrow enough to make the problem manageable, but
not too narrow so that the problem is trivial. Initially we may want to focus on a narrow
question, and then use the knowledge gained to broaden the question at a later time. The
question should also be stated in precise mathematical terms so it can easily be translated
into mathematical notation.

In this example we will answer the question “How long will it be until the number of
bacteria in the dish reaches 600?”

Step 2: Select the modeling approach

In this step we determine the form of the model. In some situations this is easy to do;
in others we may have several reasonable choices. Making the right choice requires at least
some knowledge of all the possibilities. It also depends on the nature of the assumptions
being made.

Often times this step begins with some simple observations. Note that we started with
500 bacteria. After 1 day, it increased by 25, which is 5% of 500. After a second day
it increased by 26, which is approximately 5% of 525. The growth rate (or change per
day) appears to be relatively constant. This suggests a simple relationship between the
populations on consecutive days:

Population on one day = Population on the previous day + 5%

This relationship indicates that we may be able to derive a simple equation to model the
population.

Step 3: Define variables and parameters

Variables are quantities that could change within a problem. Parameters are quantities
that are constant within a problem, but that could change between problems of the same
type. The first part on this step is to determine what variables and parameters are involved.
This may be simple and obvious, or very complicated. Often times there are potentially hun-
dreds of quantities involved. To make the model manageable, we need to make assumptions
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as to which are the most important and which can be ignored. At a later time we could add
additional variables and parameters to refine the model.

In this example, variables include:

1. Time

2. Population

3. Temperature

4. Amount of food present

5. Amount of available space in the dish

These are all values that change as the population grows. Since the initial observation did
not give any information on temperature, food, or space, we will ignore these variables and
focus on only time and population.

Possible parameters to consider include:

1. The initial population

2. Growth rate (we will assume this is constant)

3. Size of the dish

4. Initial amount of food

These are all values that are constant once we put the bacteria in the dish and allow them
to grow. But if we consider a different dish with a different population of bacteria, they
could change. Again, since we don’t know anything about the size of the dish or the amount
of food, we will ignore these parameters.

The second part of this step is to choose symbols to represent the variables and param-
eters. For this example, let

n = time in days from the present (n = 0, 1, ...)

r = the growth rate (in decimal form)

an = the population at the beginning of day n

a0 = the initial population

Step 4: State the assumptions

Making assumptions is an essential aspect of creating a valid and manageable model.
Assumptions fall into many different categories. Some are used to simplify the model, such
as those used to select the important variables. Some are needed to define relationships
between the variables because the precise relationships are not known. Others are needed
to determine the values of parameters when the exact values are not known.

Clearly stating the assumptions is an important part of interpreting and presenting
the results. The results of a model are only as valid as the underlying assumptions. If the
assumptions are unreasonable, then the conclusion will be unreasonable regardless of the
precision of the mathematical analysis.

In this problem, we have already chosen to ignore temperature, size of the dish, and
many other possible variables and parameters. This is a simplification. Furthermore, we
will assume that the population growth is constant (i.e. the population will increase 5%
each day).
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Step 5: Formulate the model

This is where the “mathematics” starts. We have observed that the number of bacteria
on day 1 is equal to the number on day 0 plus 5%. The number on day 2 is equal to the
number on day 1 plus 5%, etc. In mathematical notation using our variables and parameters,
we have

a1 = a0 + r a0 = (1 + r) a0

a2 = a1 + r a1 = (1 + r) a1

...

an+1 = an + r an = (1 + r) an

This forms a recursively defined sequence. To form an explicit description of an in terms of
n, note that

a1 = (1 + r) a0

a2 = (1 + r) a1 = (1 + r)(1 + r) a0 = (1 + r)2a0

a3 = (1 + r) a2 = (1 + r)(1 + r)2 a0 = (1 + r)3a0

...

an = (1 + r)na0

This last equation is our model.

Step 6: Solve the model and state the solution

Here we use the term “solve” loosely. Solving a model may involve solving a single
equation, as in this example, it may involve constructing a graph and qualitatively describing
its behavior, or it may involve running a simulation several hundred times and summarizing
the resulting data. The meaning of the term solve is relative to the type of model.

In this example, the question is “when will the population be 600?” In terms of our
variables, this can be stated as “find n such that an = 600.” This yields the equation

600 = (1 + 0.05)n500

Solving this equation using logarithms yields n ≈ 3.7. This means that at the beginning of
the fourth day we will have over 600 bacteria. This is our solution.

Often times the results of a model are used to guide decisions. In many practical situ-
ations, such as in business or the military, the person doing the modeling is not the final
decision maker. The final decision maker is a CEO or officer who is not a mathematician.
Therefore, the solution should be stated in as non-technical language as reasonably possible.

Step 7: Verify the model

Verification is necessary to test the reasonableness of our assumptions. Typically we
verify a model by comparing it to some real world data. Let’s suppose we let the bacteria
grow for a total of 7 days and collect the data in Table 1.1. Next to the actual observed
populations are the populations predicted by the model.

We see that on day 4, the actual population is just below 600. Even though the predicted
population does not equal the actual population, our solution of 4 days is reasonable.

Note that on days 5 and 6, the actual and predicted populations differ considerably.
The data indicates that the growth rate slows down. This means that our assumption of a
constant growth rate is incorrect.
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TABLE 1.1

Actual Predicted
Day Population Population

0 500 500
1 525 525
2 551 551
3 575 579
4 598 608
5 610 638
6 620 670

Our model is accurate up to day 4, but inaccurate for later days. This example illustrates
that we must be very cautious about using data from the past to make predictions about
the future.

Step 8: Refine the model

Refine means to improve the model in some way. One way to do this is to add variables
that we chose to ignore in step 3 to make a more accurate model. Another way is to generalize
the model so that it can be used to solve other similar problems. Either one will require us
to repeat steps 3 – 7 to some degree.

We have already noted that the data indicates the growth rate slows down over time.
This could be a result of diminishing food supplies or room to grow. These are two variables
we chose to ignore.

One possible refinement is to redo the model incorporating these two variables. This
would require additional observations and data to determine how these variables are related
to the other variables. Another possible refinement is to use the available data to model a
decreasing growth rate. We will illustrate how to do this in Chapter 2.

A simple diagram that illustrates the basic process of mathematical modeling is given
in Figure 1.1. The process begins in the upper left-hand corner with observations (or data).
From this we get the basic problem we want to solve. We then make assumptions, construct
the model, solve it using appropriate mathematical tools, and obtain a mathematical result.
Then we must interpret the mathematical result in light of the assumptions to make our
conclusions. We then verify the model using more observations.

This figure also illustrates the cyclic nature of mathematical modeling. We rarely stop
once we answer the original question. We continually repeat the process, to some extent, to
test, refine, and implement the model.

The right half of this diagram is done in the “math world” and the left half is done in
the “real world.” In the math world, we use the absolute certainty of mathematics. The
real world contains no such certainties. Making assumptions and interpreting are necessary
steps to move between these two worlds.

1.4 Assumptions

Every model is based on some set of assumptions. Sometimes those assumptions are rather
trivial and obvious, but most times they are significant enough to potentially affect the
validity of the model. We will never be able to describe each component of a real world
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system exactly. Assumptions are needed to fill in these gaps, and whenever possible, the
reasonableness of assumptions should be tested. In fact, assumptions are so important that
any mention of a model should include the assumptions behind it.

Here are a few examples of well–known models and some of their underlying assumptions

Example 1.4.1 (Range of an Electric Car)
When considering the purchase of an electric car, the first question most consumers ask
is, “what’s the range?” The exact answer depends on many factors including the battery
size and condition, driving style, vehicle speed, wind speed and direction, temperature, and
elevation change. Any numeric answer to this question must be accompanied with many
assumptions about these factors.

Example 1.4.2 (Carbon–14 Dating)
Carbon–14 dating methods are used to date organic material, such as a piece of bone,
found at archaeological sites. The underlying mathematical model requires knowledge of
the proportion of Carbon–14 originally present in the sample. Obviously we cannot measure
this precisely, so we assume that this proportion is the same as in a modern bone. This
assumption can’t be tested directly, but if a date can be confirmed via independent means,
it would be an indication that the assumption is correct.

Example 1.4.3 (Newtonian Mechanics)
Newton’s second law says that the force exerted on an object is equal to its rest mass times
the acceleration, or F = ma. This was assumed to hold at any velocity. In the 20th century,
it was discovered that for speeds approaching the speed of light, this rest mass must be
replaced with the relativistic mass, which is larger.

Example 1.4.4 (Relativity)
Einstein’s theory of special relativity is really a mathematical model. It is based on several
postulates (a type of assumption), one of which is that the speed of light in a vacuum is
constant to any observer in an inertial frame of reference. These assumptions cannot be
tested in every circumstance imaginable, but the results of Einstein’s theory can be tested.
These results have been shown to be correct, so it suggests that the underlying assumptions
are also correct.
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Exercises

1.4.1 Each part below describes a calculated number. Think about how this number was
calculated and identify at least one assumption behind the calculation.

a. A consumer magazine reports that a laundry detergent costs $0.31 per load.

b. An exercise bike displays the number of calories burned.

c. A jogging pedometer measures the distance jogged.

d. A dashboard display in a car shows that it can travel 220 miles on the remaining fuel
in the tank.

e. A small business owner predicts that his company will spend $500,000 on phone bills
next year.

f. A cooking magazine lists one ingredient for a recipe as 1-2 cups of shredded cheddar
cheese. It then claims that each serving has 320 calories.

1.4.2 Identify at least two possible variables and two parameters involved in each of the
following models. Clearly identify which is a variable and which is a parameter.

a. A biologist wants to model the population of foxes and rabbits in a forest over a period
of time.

b. A consumer wants to model the monthly balance in his credit card.

c. A public health researcher wants to model the amount of alcohol in the bloodstream
of a college student during an evening of partying.

d. An ecologist wants to model the amount of pollution in a lake over a period of time.

e. A market researcher wants to model the number of viewers of a TV show over the
span of the season.

1.4.3 To predict the time at which the bacteria population in Section 1.3 reached 600, we
solved the equation 600 = (1 + 0.05)n500 and concluded that at the beginning of day 4 we
will have over 600.

a. Show how this equation was solved for n.

b. A student argues that we should be more precise in our conclusion. She argues that
we should say, “on day 3.736850652 there will be exactly 600 bacteria” because this
is the value given by her calculator. How would you explain to her that such a level
of precision is not appropriate?

1.4.4 A cashier at a supermarket can checkout, on average, 3 customers a minute (this is
called the service rate). Customers arrive, on average, 2 a minute (this is called the arrival
rate). The manager figures that since the service rate is greater than the arrival rate,
customers will never have to wait in line. What assumptions is the manager making? Do
these assumptions seem reasonable? What does this say about the validity of the conclusion?
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1.4.5 A college student plans to ask 100 different girls for a date. He calculates the number
who will say yes with the following reasoning:

Since every girl can say yes or no, exactly half will say yes. Since half of 100 is 50,
exactly 50 girls will say yes.

What, if anything, is faulty with this model? Explain.

1.4.6 A model for the population of the United States (in millions) for the years
1800-1960 is

P (t) = 0.0063t2 + 0.0719t+ 5.0747

where t is the number of years since 1800. A student predicts that the population in the
year 2050 will be P (250) ≈ 416.8 million. What assumption is the student making when
doing this calculation? Do you think this assumption is reasonable? What does this say
about the validity of the prediction?

1.4.7 Watch the Numberphile video which claims to give a “proof” that 1 + 2 + 3 + · · · =
−1/12 (https://www.youtube.com/watch?v=w-I6XTVZXww or Google “numberphile sum
of natural numbers”). Believe it or not, there are mathematically valid and rigorous ways of
assigning the number −1/12 to the sum 1+ 2+ 3+ · · · , but we will think about the errors
made in this proof from a Calculus II perspective.

a. At about the 2:20 mark, the presenter makes the claim (or we could call it the assump-
tion) that 1−1+1−1+ · · · = 1/2. He does this by considering the sequence of partial
sums:

1, 0, 1, . . .

According to the Calculus II definition of convergent series, a series converges to a
number S if and only if the sequence of partial sums converges to the number S. Does
this sequence of partial sums converge to 1/2? What does this mean about the validity
of the assumption that 1− 1 + 1− 1 + · · · = 1/2?

b. The rest of the proof is based on the assumption that 1−1+1−1+ · · · = 1/2. Without
considering the details of the rest of the proof, what can we say about the validity of
the final conclusion that 1 + 2 + 3 + · · · = −1/12?

For Further Reading

• For a further discussion of the modeling process and related issues, see Frank. R. Gior-
dano, M. D. Weir, and W. P. Fox, A First Course in Mathematical Modeling, Third ed.,
Thomson Brooks/Cole, 2003, pg. 52–63.

• For more information on modeling methodology, tips on writing reports, and numer-
ous example problems, see Dilwyn Edwards and Mike Hamson, Guide to Mathematical
Modelling, CRC Press, 1990.

• For a discussion of the benefits of mathematical modeling, see Lucas, William F., The
Impact and Benefits of Mathematical Modeling, in Applied Mathematical Modeling (D.R
Shier and K.T. Wallenius eds.), Chapman and Hall/CRC, 1999, pg. 1–25, and the
included references.

https://www.youtube.com/watch?v=w-I6XTVZXww
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• For a lengthy discussion of how assumptions impact environmental models, see Orrin
H. Pilkey and Linda Pilkey–Jarvis, Useless Arithmetic: Why Environmental Scientists
Can’t Predict the Future, Columbia University Press, 2007.

• For a brief discussion of some of the assumptions behind global–warming models, see
K. K. Tung, Topics in Mathematical Modeling, Princeton University Press, 2007, pg.
146–157.
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Proportionality and Geometric Similarity

Chapter Objectives

• Introduce the basics of graphing with Excel

• Use proportionality and geometric similarity as simplifying assumptions in the modeling
process

• Fit straight lines to data

• Use data to find constants of proportionality

• Use geometric similarity to construct models

• Fit various types of models to a set of data to predict values

• Use the coefficient of determination to assess how well a model fits a set of data

2.1 Introduction

One of the first steps in modeling is to make simplifying assumptions, and one of the simplest
assumptions is that one variable is simply a constant multiple of the other. This type of
relationship is called proportionality.

Definition 2.1.1. The variable y is said to be proportional to the variable x if there exists
a nonzero constant c (called the constant of proportionality) such that

y = cx (2.1)

The expression y ∝ x is used to indicate that y is proportional to x. Often times
the phrase “directly proportional” is used to describe this type of relationship. We must
point out that a proportionality relationship between two variables does not mean that one
variable causes the other.

Note that if y = cx, then x = 1
cy so that x is proportional to y. Thus if y is proportional

to x, we immediately know that x is proportional to y (i.e. a proportionality relationship
is symmetric). For this reason, if y is proportional to x, we simply say that x and y are
proportional.

Graphically, y ∝ xmeans that a graph of y vs. x (y on the vertical axis and x on the hor-
izontal axis), should form a straight line through the origin. The constant of proportionality
is the slope of this line.

11
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2.2 Using Data

One famous proportionality relationship is Hooke’s Law which relates the force applied to
a spring to the distance it is stretched or compressed. Hooke’s Law simply states that

d = kF (2.2)

where F is the force applied to a spring, d is the distance stretched or compressed, and k is
a constant related to the stiffness of the spring.

Example 2.2.1 (Bucket on a Spring)
Suppose that we hang a bucket from a spring, fill the bucket with varying amounts of sand,
and measure the distance the spring is stretched. The results are recorded in Table 2.1.

TABLE 2.1

Weight (newtons) Distance (cm)

5 1.02
10 1.86
15 3.00
20 3.94
25 4.95
30 5.82
35 6.95
40 7.80

We will plot this data to (1) verify that Hooke’s law holds for this spring, and (2) find
the constant of proportionality. This data comes from the real world, so it is subject to
errors and uncertainty. Therefore, we cannot expect the data to lie perfectly on a straight
line as predicted by the idealized Hooke’s law. However, the data should lie very near a
straight line. The slope of this line is the constant of proportionality.

In this and following examples we will provide instructions for producing worksheets
that allow us to explore the mathematical models we will be building throughout the rest
of the text. As you become more familiar with building worksheets you will be expected to
be able to construct worksheets for models with fewer instructions.

1. Rename a blank worksheet “Spring.” Format the worksheet as in Figure 2.1 and enter
the rest of the data from Table 2.1.

1
2
3
4

A B
Weight Distance

5 1.02
10 1.86
15 3

FIGURE 2.1

2. Follow these steps to form a scatter plot as in Figure 2.2:

(a) Highlight the data (including the headings).

(b) Click on the Insert tab.
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(c) In the Charts section of the ribbon, click on Scatter, and select the type in the
upper left-hand corner called Scatter only with Markers. This will create a
chart similar to that in Figure 2.2. Next we will format it.

(d) Left-click on the legend in the graph, and press Delete. Do the same to the vertical
lines in the chart and the chart title.

(e) To add axis titles, click on the Layout tab. Select Axis Titles in the Labels
section of the ribbon. Select Primary Horizontal Axis Title and then Title
Below Axis. Type the name of the horizontal axis and press Enter. For the
Primary Vertical Axis Title, select Rotated Title.

(f) To change the min and max values on the axes, right-click on a number on one
of the axes and select Format Axis. Next to Minimum: and Maximum: select
Fixed and enter the appropriate value. Press Close. Do the same to the other
axis.
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FIGURE 2.2

3. Next we need to estimate the slope of a line that “fits” these points. If we were doing
this with paper and pencil, we would use a ruler or straight edge to draw a line through
the origin that goes close to each data point and then find the slope. We will do the
electronic version of this in Excel. Format the spreadsheet as in Figure 2.3.

1
2
3
4

D E F
Line

x y Slope
0 0 0.1
40 =D4*F3

FIGURE 2.3

4. Next we will add these points in Figure 2.3 to the graph.

(a) Right-click anywhere on the graph and choose Select Data... Press Add and
format the window as in Figure 2.4. Press OK twice. This adds the two points to
the graph.
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FIGURE 2.4

(b) To connect these two points with a straight line, right-click on one of the points
and select Format Data Series. Select Line Color, choose Solid Line, and the
desired color. Press Close. Your graph should look similar to Figure 2.5.
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FIGURE 2.5

5. Change the value of the slope in cell F3. Notice that the graph of the line automatically
changes.

6. Next we will “move” the line so it better fits the data and find the slope of this line.
Follow these steps:

(a) Insert a scroll bar by selecting the Developer tab. In the Controls section of
the ribbon, select Insert. Under ActiveX Controls, select the Scroll Bar on
the right-hand side of the first row and draw a horizontal bar anywhere on the
worksheet.

(b) Right-click on the scroll bar and select Properties. Set the LinkedCell to G2
and the Max to 1000. (For more details on creating scroll bars, see Appendix A.4.)

(c) Add the formula in Figure 2.6 to calculate the slope of the line using the scroll bar.
This allows us to vary the slope between 0 and 1 in increments of 0.001.

3
F

=G2/1000

FIGURE 2.6
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(d) Slide the scroll bar back and forth until the line “fits” the data.

(e) Your graph should look similar to Figure 2.7 and the value of the slope in cell F3
should be approximately 0.195.
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FIGURE 2.7

Conclusion: We see that the data do indeed lie very near a straight line, so Hooke’s
law is verified (at least in this example). The constant of proportionality is approximately
0.195. Therefore, if we know the amount of weight w on the spring we can approximate the
distance the spring has been stretched, d, by

d = 0.195w

Likewise, if we know the distance the spring has been stretched we can approximate the
amount of weight on the spring by

w =
1

0.195
d ≈ 5.128 d

Example 2.2.2 (No Correlation)
A mathematics professor claims that the grade on the final exam is directly proportional
to the amount of time spent studying. To test this claim, he asked each student how much
time he/she studied and recorded it along with the grade. A graph of the collected data is
shown in Figure 2.8.

Notice that the points do not lie close to a straight line through the origin, so the grade is
not directly proportional to time spent studying. In fact, the points appear to be randomly
scattered. This indicates that there is not much of a relationship at all between the two
variables.

Example 2.2.3 (Boyle’s Law)
Another well-known proportionality relationship is Boyle’s law which relates the pressure
of a gas to its volume at a constant temperature,

V =
k

P

where V denotes the volume of the gas, P denotes its pressure, and k is a constant. To test
Boyle’s law, a student measures the pressure of a gas at different volumes while keeping the
temperature of the gas constant. The resulting data is shown in Table 2.2.



16 Proportionality and Geometric Similarity

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

Gr
ad

e

Hours

No Correlation

FIGURE 2.8

TABLE 2.2

Volume (V) 50 45 40 35 30 25 20 15 10

Pressure (P) 27.24 30.36 34.01 38.73 45.5 54.35 68.03 90.53 135.73

We will use this data to verify Boyle’s law and find the constant of proportionality for
this gas. Note that the law does not say that V is proportional to P . It says that V is
proportional to 1

P . Therefore we will plot V vs. 1
P and fit a straight line through the origin

to this transformed data.

1. Rename a blank worksheet “Boyle” and format it as in Figure 2.9. Enter the data from
Table 2.2 in columns A and C. Left-click on cell B2. Double-click on the small box in
the lower right-hand corner of the border. The formula in B2 will be copied down to
row 10.

1
2

A B C
P 1/P V

27.24 =1/A2 50

FIGURE 2.9

2. Use the transformed data in column B and the original data in column C to form a
scatter plot as in Figure 2.10.

3. We see in Figure 2.10 that the data do lie very near a straight line as expected. To
estimate the slope of this line, we will simply pick one of the data points and calculate
the slope of the line through the origin and the point. Let’s choose the right-most point
(0.036711, 50). The slope of a line through this point and the origin is

slope =
50− 0

0.036711− 0
≈ 1362

4. To examine how well a line through the origin with this slope fits the data, format the
spreadsheet as in Figure 2.11.

5. Add the line to the scatter plot as in Example 2.2.1. Your graph should look similar to
Figure 2.12.
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FIGURE 2.11
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Conclusion: We see that V is clearly proportional to 1
P and the constant of proportionality

is near 1362. Note that the constant of proportionality may be different for a different
gas.

Exercises

2.2.1 For each of the data sets below, determine if it is reasonable to assume that y is
proportional to x. If it is, approximate the constant of proportionality. If it is not, describe
why this assumption is not reasonable.



18 Proportionality and Geometric Similarity

a.

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

y 1 1.21 1.44 1.69 1.96 2.25 2.56 2.89

b.

x 1 5 7 2 10 12 3 6

y 0.79 10.89 14.37 5.75 23.36 26.29 3.76 16.12

c.

x 2 6 9 15 7 25 39 4

y 26 20 18 26 6 19 20 13

2.2.2 For NBA teams, it seems reasonable to assume that if the percentage of 3-point shots
made increases, the winning percentage should also increase. That is, it seems reasonable
to assume that 3-point percentage is proportional to winning percentage. The table below
shows the 3-point and winning percentages of 22 randomly selected NBA teams between the
years 1996 and 2016 (data collected by Philip Yox and Seth Euken, 2016). Create a graph
of winning percentage vs. 3-point percentage. Based on these data, does the assumption of
proportionality seem reasonable? Briefly explain.

3 pt % Winning % 3 pt % Winning %

0.358 0.500 0.332 0.512
0.355 0.488 0.345 0.451
0.341 0.476 0.347 0.439
0.381 0.329 0.354 0.402
0.347 0.605 0.381 0.646
0.342 0.427 0.379 0.634
0.368 0.512 0.361 0.740
0.356 0.561 0.339 0.512
0.349 0.476 0.364 0.744
0.350 0.402 0.339 0.488
0.362 0.280 0.376 0.512

2.2.3 Suppose you drive your car on a perfectly flat road at a constant speed with no
wind. In this case, the amount of fuel, y, (in gallons) needed is directly proportional to the
distance traveled, x (in miles).

a. If the distance traveled increases, what can we say about the amount of fuel needed?

b. If the relationship is given by y = 0.04x and x increases by 50 miles, how much does
y increase?

c. Now, suppose it takes 12 gallons of fuel to travel 282 miles. Find the constant of
proportionality.

d. In words, describe the meaning of this constant of proportionality.

2.2.4 A variable y is said to be inversely proportional to x if there exists a constant c such
that y = c

x .

a. If y is inversely proportional to x, sketch what a graph of y vs. x would look like.
What would a graph of y vs. 1/x look like?

b. If y is inversely proportional to x, show that x is inversely proportional to y.

c. If y is inversely proportional to x and x increases, what happens to the value of y?
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2.2.5 For the data set below, determine if it is reasonable to assume that y is inversely
proportional to x. If it is, approximate the constant of proportionality. If it is not, describe
why this assumption is not reasonable.

x 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4

y 6.85 6.21 4.24 4.32 3.92 3.18 2.93 2.96

2.2.6 Newton’s Law of Universal Gravitation states that the force of attraction F between
two objects with masses m1 and m2 is proportional to the product of the masses and
inversely proportional to the square of the distance d between them. In mathematical nota-
tion,

F = k
m1m2

d2

For two given objects, if m1 and m2 are constant, we may combine them with the constant
of proportionality k to describe the relationship by

F =
C

d2

where C is a constant. If one of the two objects is a planet, the distance d is the distance
from the center of the planet to the second object.

a. The radius of the Earth is approximately 4,000 miles. A satellite weighs 15 tons on the
surface of the Earth (i.e. the force of attraction between the Earth and the satellite is
15 tons at the surface of the Earth). Use this information to calculate the constant of
proportionality C.

b. Find the weight of the satellite (in tons) at an altitude of 500 miles above the surface
of the Earth.

c. Use Excel to graph the weight of the satellite vs. altitude for values of altitude
between 0 and 4,000 miles (ignore the effects of all other celestial bodies like the
Moon).

2.2.7 Kepler’s third law of planetary motion states that the cube of the semi-major axis
of the orbit of a planet is directly proportional to the square of its orbital period. The
table below shows the semi-major axis l (in astronomical units) and the orbital period
p (in terrestrial years) of the planets in our solar system (data from the Wolfram Alpha
Knowledgebase, 2019). Use this data to determine if Kepler’s third law appears valid. If so,
estimate the constant of proportionality.

Planet l p

Mercury 0.3871 0.2408
Venus 0.7233 0.6152
Earth 1.0000 1.0000
Mars 1.5237 1.8808

Jupiter 5.2034 11.8624
Saturn 9.5371 29.5015
Uranus 19.1913 84.0154

Neptune 30.0696 164.7884
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2.2.8 Determine which of the following models best fits the data below by transforming the
data appropriately and fitting a straight line to the transformed data. Find the constant of
proportionality for this model. Explain why your choice is the best model.

y ∝ x, y ∝ 1

x
, y ∝ x2, y ∝ √

x, y ∝ 1

x3

x 0.5 0.7 0.9 1.2 1.5

y 7.8 3.5 2.2 0.85 0.36

2.2.9 An online braking distance calculator allows the user to input the speed
of a car (in miles per hour) and outputs the braking deceleration distance
(in feet) (see https://nacto.org/docs/usdg/vehicle stopping distance and time upenn.pdf).
The table below gives several different speeds x and their resulting distances y. Determine
which, if any, of the models in Exercise 2.2.8 were used to calculate the distances. Briefly
explain your choice.

x 10 20 30 40 50 60 70 80 90

y 5 19 43 76 119 172 234 305 386

2.2.10 When a satellite has been orbiting a planet for a long time (such as the Moon
orbiting the Earth), the satellite can become in tidal lock where the satellite’s orbital period
equals its rotational period. The Moon is in tidal lock with the Earth explaining why we can
only see one side of the Moon. Assuming a constant satellite mass and orbital distance, a
simple model for the amount of time needed for the satellite to become in orbital lock, tl, is

tl ∝ 1

m2
p

where mp is the mass of the planet. The table below shows the mass of four planets and
the value of tl calculated using this model (data collected by Joshua Hendrickson, 2019).
Use the data to estimate the constant of proportionality in the model.

Planet mp (×1024 kg) tl (×107 years)

Jupiter 1898 0.003812
Saturn 568 0.042562
Uranus 86.8 1.822561

Neptune 102 1.31984

2.2.11 In Figures 2.7 and 2.12 we drew the straight line fit to the data (or the transformed
data) so that the line went through the origin.

a. If y ∝ x, explain why the straight line fit to the data should go through the origin.

b. If y ∝ u(x), where u(x) is some function of x, explain why the straight line fit to graph
of the transformed data (y vs. u(x)) should go through the origin.

2.2.12 A common assumption regarding the metabolism of a drug in the blood stream is
that the rate of change of the concentration of the drug is proportional to the concentration.
That is, if A(t) is the concentration of the drug at time t, then dA/dt ∝ A. The data below

https://nacto.org/
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shows the concentration of a certain drug in a person’s blood stream, A, taken t hours after
the drug was administered.

t 0 1.2 2.4 3.5 4.8 6.4 9.4 10.5 12.4 15.6 18.8

A 10.2 8.6 7.3 6.2 5.2 4.2 2.7 2.3 1.8 1.2 0.7

a. The change in the concentration at hour t is approximately

dA

dt
≈ A(t+Δt)−A(t)

Δt

where Δt is some small change in t. Use the data to approximate dA/dt for the given
values of t.

b. Graph dA/dt vs. A. Does it appear reasonable to assume that dA/dt ∝ A? If so,
approximately what is the constant of proportionality?

2.2.13 The kinetic energy (in J) of a moving object is KE = 0.5mv2 where m is the mass of
the object (in kg) and v is the velocity (in m/s). Suppose a researcher measures the kinetic
energy of an object at different velocities as shown below. Use the data to estimate the mass
of the object by transforming the data appropriately and fitting a straight line through the
origin to the transformed data.

v (m/s) 1.3 2.5 3.4 5.2 8.4 9.1 10.1 10.9

KE (×10−5 J) 0.132 0.502 0.891 2.22 5.63 6.41 8.15 9.84

2.2.14 Fit a model of the form y ∝ sin(3x+ 1)/
(
x2 − 2

)
to the data below. Approximate

the constant of proportionality

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y -2.42 -2.54 -2.39 -2.14 -1.64 -0.98 -0.15 0.95 2.15 3.84

2.2.15 Prove each of the following properties of proportionality:

a. If ab ∝ ac and a �= 0, then b ∝ c.

b. If am ∝ ac and a �= 0, then am−1 ∝ c.

c. If a ∝ cm, then a1/m ∝ c.

d. If y ∝ (x/z), x ∝ hn, and z ∝ hm where n, m > 0, then y ∝ hn−m.

2.2.16 A snow-cone seller at a county fair wants to model the number of cones he will sell,
C, in terms of the daily attendance a, the temperature T , the price p, and the number of
other food vendors n. He makes the following assumptions:

a. C is directly proportional to a.

b. C is also directly proportional to the difference between T and 85 ◦F.

c. C is inversely proportional to p and n.

Derive a model for C consistent with these assumptions. For what values of T is this model
valid?
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2.3 Modeling with Proportionality

One important observation about a proportionality relationship is that if one of the variables
increases, so does the other, and if one variable decreases, so does the other. This can be
seen in Figure 2.2 and Figure 2.10. Whenever we encounter a situation where two variables
increase or decrease at the same time, we should consider a proportionality relationship.

Example 2.3.1 (Population Growth)
In many situations involving populations, the larger the population, the faster it grows.
This suggests a proportionality relationship between the population and the rate of growth.
Table 2.3 shows the population (in thousands) of bacteria in a Petri dish at different points
in time. The third column contains the change in population between time periods.

TABLE 2.3

Actual Change in
Day Population Population
n pn Δpn = pn+1 − pn

0 10.3 6.9
1 17.2 9.8
2 27 18.3
3 45.3 34.9
4 80.2 45.1
5 125.3 50.9
6 176.2 79.4
7 255.6

Observe that as n increases, pn increases, and so does Δpn. This suggests that pn is
proportional to Δpn. A graph of Δpn vs. pn is shown in Figure 2.13.
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FIGURE 2.13

We see that the points do fall near a straight line through the origin, suggesting that
proportionality is a reasonable assumption. The slope of this line is approximately 0.5. This
gives a model that relates the population at one day, pn, to the population at the next,
pn+1:

Δpn = pn+1 − pn = 0.5pn ⇒ pn+1 = 1.5pn
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This model predicts that the population grows by about 50% each time period, which means
the population will grow without bound. This seems unreasonable, so the model needs to
be refined. We will do just this in Chapter 4.

Example 2.3.2 (Radioactive Decay)
One-half of the amount of a radioactive substance decays after each half-life. Radioactive
Carbon-14 (14C) has a half-life of 5715 years. If we start with 10g of 14C, Table 2.4 shows
the amount of material remaining after each half-life along with the rate of change between
time periods.

TABLE 2.4

Time (years) Amount Change

0 10 5
5,715 5 2.5
11,430 2.5 1.25
17,145 1.25 0.625
22,860 0.625

Note that as the amount of 14C decreases, the rate at which it decreases also changes.
This suggests a proportionality relationship between the amount of 14C and the rate at
which it decreases.

If we let y(t) represent the amount of 14C at time t, this proportionality relationship
gives the differential equation

dy

dt
= ky.

Solving this differential equation yields the exponential model for growth y(t) = Cekt where
C is the initial amount of material.

In the previous examples we used data of some type to suggest a proportionality relation-
ship. Often times, as in the next example, we simply use logic to assume a proportionality
relationship.

Example 2.3.3 (Free-falling Object)
An object in free–fall encounters two basic forces. The first is its weight due to gravity. The
second is air resistance which slows the rate of fall. Air resistance is typically negligible at
low speeds so it is often not modeled. If we ignore air resistance, then the only force acting
on the object comes from acceleration due to gravity. This leads to the simple differential
equation

dv

dt
= g

where v(t) = velocity of the object at time t and g = 9.8 m/sec2 (the acceleration due
to gravity). Solving this differential equation yields the model v(t) = gt + v0 where v0 is
the initial velocity. This model predicts that the velocity grows without bound, which is
inaccurate. Physics tells us that a free-falling object reaches a “terminal velocity” where
the deceleration due to air resistance equals the acceleration due to gravity. At this point
the object remains at a fairly constant velocity.

To refine this model for velocity, we can incorporate a simple model for air resistance.
It seems reasonable to assume that as velocity increases, the force due to air resistance
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increases. This implies a proportionality relationship between velocity and the force due to
air resistance:

Force due to air resistance = kv

This force acts upward on the object. There is also a force acting downward on the object
due to its mass m:

Downward force = mg

Now, by Newton’s second law,

F = ma = m
dv

dt
(2.3)

Also,
F = Downward Force - Upward Force (2.4)

Putting Equations (2.3) and (2.4) together we get,

m
dv

dt
= mg − kv ⇒ dv

dt
+

k

m
v = g

Solving this last differential equation gives the model

v(t) =
mg

k

(
1− e−kt/m

)
Note that in this model,

lim
t→∞ v(t) =

mg

k

This suggests a terminal velocity, so this model is more realistic.

Proportionality relationships satisfy the following transitive property:

Theorem 2.3.1. If a ∝ b and b ∝ c, then a ∝ c

Proof. By definition, a ∝ b and b ∝ c mean that a = k1b and b = k2c for some non-zero
constants k1 and k2. So, substituting we get

a = k1k2c

but k1k2 is a non-zero constant, so a ∝ c by definition.

The next example illustrates an application of this property.

Example 2.3.4 (Work Done by a Train)
If a constant force is applied to an object moving it some distance, the work done is defined
to be

Work = Force×Distance

Suppose a train engine pulls a car along a flat stretch of track until it runs out of fuel, and
assume that the force needed is constant. We want to model the total work done by the
engine in terms of the amount of fuel it carries.

Since the force is constant, work is proportional to the distance pulled. Let W denote
work and D denote distance. In standard notation,

W ∝ D
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Now, the total distance the train can pull the car is related to the amount of fuel. The more
fuel, the farther it can pull the car. So distance pulled is proportional to the amount of fuel.
If A denotes the amount of fuel, we have

D ∝ A

Combining these two proportionality relationships, we arrive at the model:

W ∝ A

Although we do not know the constant of proportionality, we can use this relationship to
find relative values. For instance, if the constant of proportionality were 10 and the tank
holds 1000 gallons, with a full tank the train could perform

W = 10 (1000) = 10000

units of work. If the fuel tank were one–quarter full, it could perform

W = 10 (250) = 2500

units of work, which is exactly one–quarter as much work as if the tank were full.

Exercises

2.3.1 A very simple assumption about the population of rabbits in a forest is that it grows
at a rate proportional to the size of the population and the rabbits die at a rate proportional
to the number of foxes in the forest. If pn denotes the population of rabbits at time n, and
F denotes the (constant) number of foxes, this assumption yields a model for the change in
the rabbit population:

Δpn = pn+1 − pn = k1pn − k2F

where k1, k2 ≥ 0.

a. Solve this model for pn+1.

b. If p0 = 500, k1 = 0.15, and k2 = 0.25, algebraically find the values of F for which
the population of rabbits is decreasing, for which it is increasing, and for which it is
constant for all n ≥ 0. (Hint: If the population is constant, p1 = p0.)

c. Create a spreadsheet to numerically and graphically support your answer above.

2.3.2 Refer back to Example 2.3.1. We will analyze a refined model. Assume that Δpn is
proportional to the product of the population and its difference from 621, that is,

Δpn = pn+1 − pn = kpn(621− pn)

a. Use the data in Table 2.3 to test this assumption by plotting Δpn vs. pn(621 − pn).
Use the graph to estimate the constant of proportionality.

b. Starting with p0 = 10.3, use this refined model to predict the population for days 1
through 20.

c. Does this model seem more or less reasonable than the original one? Why or why not?
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2.3.3 Refer again to Example 2.3.1 and consider the assumption that Δpn is proportional
to p2n. Use the data in Table 2.3 to test this assumption. Does this assumption appear to
be reasonable? Why or why not?

2.3.4 Answer the following questions about proportionality:

a. If the amount of calories you consume at a meal is proportional to the length of the
meal (in minutes), how does the calorie consumption of a meal lasting 5 minutes
compare to that of a meal lasting 15 minutes (i.e. do you consume twice as many
calories, half as many calories, etc.)?

b. If the surface area of a raindrop is proportional to the square of its radius, how does
surface area of a raindrop with radius 2 compare to the area of a raindrop with
radius 1?

c. If the volume of a potato is proportional to the cube of its length, how does the volume
of potato A compare to potato B if the length of A is three times that of B?

d. If the maximum velocity of a car is inversely proportional to its mass, how much faster
will a car go if you cut its mass in half?

2.3.5 A student wishes to determine how the size of a cloud affects the speed of a falling
raindrop. She makes the following assumptions:

1. The speed is proportional to the weight of the raindrop.

2. The weight is proportional to the size, or volume, of the raindrop.

3. The size of the raindrop is proportional to the size of the cloud.

Use these assumptions to model the speed in terms of the size of the cloud. Don’t forget to
define the variables. Does this model seem reasonable? Why or why not?

2.3.6 Consider a charger for an electric vehicle. Assume the time needed to charge the
battery from no charge to full charge is inversely proportional to the power of the charger.
The power of the charger is the product of the voltage and the current supplied to the
charger.

a. Model the charging time in terms of the voltage and current. Don’t forget to define
the variables.

b. If it takes 3 hours to charge the battery with a 240 volt, 72 amp charger, how long
will it take to charge the battery with a 120 volt, 12 amp charger?

2.3.7 Prove the following statement: If a is inversely proportional to b and b is directly
proportional to c, then a is inversely proportional to c.

2.3.8 Martin wants to determine how the amount of money he has in his wallet will affect
his grade in Math Modeling class. Consider the following assumptions:

1. His grade is directly proportional to the amount of time studied.

2. The amount of time studied is directly proportional to the amount of free time he has.

3. The amount of free time he has is inversely proportional to the amount of time he spends
going out with his girlfriend.

4. The amount of time he spends going out with his girlfriend is directly proportional to
the amount of money he has in his wallet.
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Use these assumptions to model his grade in terms of the amount of money in his wallet.
Don’t forget to define the variables. If he wants a high grade, should he have more or less
money in his wallet?

2.3.9 The amount of money A in a savings account with an interest rate of 100 r% that is
continuously compounded is

A = Pert

where P is the amount of the initial deposit and t is time from the initial deposit.

a. A man puts $5000 in an account with an interest rate of 0.4% a month so that r = 0.004
and t is measured in months. Find a model for A in terms of t.

b. Suppose at the same time the man opens the account, he goes on a diet and expects
to lose 8 pounds a month. If w represents the total amount of weight lost by month t,
find a simple model for w in terms of t.

c. Combine the models in part a. and b. to find a model for A in terms of w.

d. At the time the man has lost a total of 26 pounds, find the amount of money in the
account.

e. When the account has $5125, find the total amount of weight lost.

2.3.10 The variable y is said to be exponentially proportional to the variable x if there
exist non-zero constants k and a such that

y = kax.

a. For the savings account in Exercise 2.3.9 part a., show that A is exponentially pro-
portional to t and find the values of k and a.

b. Show that if y is exponentially proportional to x, and x is directly proportional to z,
then y is exponentially proportional to z.

2.3.11 When modeling the spread of an infectious disease, the population is often divided
into two categories: susceptible (those capable of getting the disease) and infected (those
who have the disease). Let Sn and In denote the numbers of susceptible and infected peo-
ple, respectively, at the beginning of time period n. One simple assumption is that the
change in the number of infected people, ΔIn = In+1 − In, is proportional to the prod-
uct of Sn and In. Write down a model for ΔIn based on this assumption and solve it for
In+1. If we consider the product of Sn and In as modeling the “interaction” of susceptible
and infected people, do you think the constant of proportionality is positive or negative?
Explain.

2.3.12 Consider a forest containing foxes and rabbits where the foxes eat the rabbits. Let Fn

and Rn denote the numbers of foxes and rabbits in the forest at the beginning of time period
n. Ignoring all factors except the interaction of foxes and rabbits, a simple assumption about
the change in the number of rabbits, ΔRn = Rn+1 −Rn, is proportional to the product of
Rn and Fn. Write down a model for ΔRn based on this assumption and solve it for Rn+1.
Do you think the constant of proportionality is positive or negative? Explain.

2.3.13 Translate each of the following descriptions of a physical scenario into a differential
equation. Be sure to define the variables.
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a. The rate of change of a population at time t is proportional to the population at
time t.

b. The rate of change of the volume of a raindrop at time t as it falls through a cloud is
proportional to the square of the volume at time t.

c. The velocity at time t of an object moving in a straight line is proportional to the
third power of the object’s distance from its starting point.

2.3.14 Let A1(t) and A2(t) denote the sizes of two opposing armies engaged in battle.
One assumption we could make about these variables is that the rate of change of A1 is
proportional to A2. Set up a differential equation that is consistent with this assumption.
Ignoring reinforcements of the armies, is the constant of proportionality positive or negative?
Explain.

2.3.15 When a hot cup of coffee is set on a desk, it initially cools very quickly. As its tem-
perature decreases, it does not cool as quickly. This suggests a proportionality relationship.
Newton’s law of cooling states that the rate at which a hot object (such as a hot cup of
coffee) cools is proportional to the difference in the room temperature and the tempera-
ture of the object (assuming the room temperature stays constant). Define variables for the
temperature of the object and the room temperature and set up a differential equation to
model Newton’s law of cooling (do not solve the equation).

2.3.16 A simple assumption for the spread of a contagious disease is that the rate at
which the number of infected individuals changes is proportional to the product of the total
number infected and the number not yet infected. Assume that initially one resident carries
the flu viruses into a dorm with n residents. Let x (t) represent the number of residents that
are infected at time t. Set up a differential equation to model the spread of the flu through
the dorm (do not solve the equation).

2.3.17 To model the force due to air resistance in Example 2.3.3, we assumed that the force
is proportional to velocity. Briefly explain how you might collect data and use the data to
determine if this assumption is reasonable.

2.4 Fitting Straight Lines Analytically

As we have seen, modeling with proportionality often requires us to fit a straight line to a
set of data. In earlier sections we used a graphical approach, which can be rather subjective.
In this section we will look at different definitions of a “best fit” line and find formulas for
the slope and y-intercept of a best-fit line in terms of the x- and y-coordinates of the data
points. This will give an objective approach to fitting a straight line.

The first step is to define criteria for a good-fitting line. The line in the left graph in
Figure 2.14 fits the data “better” than the line in the right graph. What’s the difference
between these two lines? There are probably many ways to answer this question.

We see that in the right graph, the line is very close to the right-most point, but further
from the other two points than the line in the left graph. We might say that the line in the
left graph is “closer” to the data points in general than the line in the right graph. The
idea of minimizing the distance between the line and the points will form the basis of the
definition of a best-fit line.

These distances (also called errors) are illustrated in Figure 2.15 with the dashed lines.
If the coordinates of the points are given by

(xi, yi) for i = 1, 2, . . . , n
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and the line is described by the function f(x) = mx + b, then the values of the distances
are

|yi − f(xi)| for i = 1, 2, . . . , n.

There are many ways to define how the best-fit line minimizes these distances. One way,
called Chebyshev’s criterion, is based on the idea that the best-fit line should make the
largest of these distances as small as possible. In more technical terms, this criterion says
that the function f(x) = mx+b giving the best-fit line is the one that minimizes the number

C = Maximum of {|yi − f(xi)| : i = 1, 2, . . . , n} .

Our goal is to find formulas for the slope m and y-intercept b. Since we want to minimize
something, we might think about using derivatives. Chebyshev’s criterion makes logical
sense, but it’s not obvious how to take the derivative or use it to find simple formulas for
m and b.

Another criterion is based on the idea that the best–fit line should minimize the sum of
the distances. In mathematical notation, f(x) = mx+ b should minimize the number

A =

n∑
i=1

|yi − f(xi)|.

This criterion is also very logical, but the absolute values make the derivative difficult to
calculate. To make the derivative simpler, we might consider getting rid of the absolute
values in the above summation altogether and add the criterion that the sum must be non–
negative. This, however, would make some of the terms in the summation positive and some
negative. So, there might be some large positive values that cancel out some large negative
values resulting in a small sum, but a poor-fitting line.
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The most widely used criterion, called the least–squares criterion, uses squares rather
than absolute values to make all the terms positive. In mathematical notation, this criterion
says that the function f(x) = mx+ b should minimize the number

S =

n∑
i=1

(yi − f(xi))
2
.

This number is called the sum of squares.

Example 2.4.1 (Illustrating the Least-Squares Criterion)
To illustrate the idea of finding a straight line that best fits a set of data and what this
means in terms of the least-squares criterion, consider the data in columns A and B of
Figure 2.16.

1. Rename a blank worksheet “Least-Squares” and format it as in Figure 2.16. Cells
B10 and B11 store the slope and y-intercept of the line we will fit to the data. Note
that we are not claiming that the values shown in the figure are the best values. We will
experiment with changing these values.

1
2
3
4
5
6
7
8
9
10
11

A B C D E
x y f(xi) (yi-f(xi))2 Sum of Squares

0.8 2
2.5 4.2
3.5 3.5
4.2 5.3
5.8 4.5
7.5 7.5

x y
m = 0.5 0 =B11
b = 2 8 =C11*B10+B11

Fitted Line

FIGURE 2.16

2. Create a scatterplot with the data in the range A2:B7. Add the data in the range
C10:D11 to the resulting graph and connect these two data points with a straight line.
Format the graph to resemble Figure 2.17.

3. Note that this line in Figure 2.17 fits the data, but it appears that we could find a better-
fitting line by adjusting the slope. To do this, add a scroll bar, set the min and max to
0 and 1000, and set the linked cell to B12. (See Appendix A for more information on
adding scroll bars.) Add the formula in Figure 2.18 to change the value of m between 0
and 1 in an increment of 0.001.

4. As we change the value of m, observe that the line fits the data better for some values of
m than others. To understand what this means in terms of the least-squares criterion,
add the formulas in Figure 2.19. Copy the range C2:D2 down to row 7.

Use the scroll bar to change the value of m. Observe that when the line graphically fits
the data better, the sum of squares is smaller. The sum of squares takes its minimum value
of about 3.4993 when m = 0.634. Therefore, when the y-intercept is b = 2, we would say
the best-fit line has a slope of m = 0.634.
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1
2

C D E
f(xi) (yi-f(xi))2 Sum of Squares

=$B$10*A2+$B$11 =(B2-C2)^2 =SUM(D2:D7)

FIGURE 2.19

In Example 2.4.1, we might be able to get an even better-fitting straight line (meaning
get a smaller sum of squares) by adjusting the value of b. But if we adjust b, we would
then need to adjust the value of m. This could get rather complicated. So instead, we use
calculus to find formulas for m and b in terms of the data values that minimize the sum of
squares.

We want to find values of m and b that minimize the quantity

S =

n∑
i=1

(yi − f(xi))
2
=

n∑
i=1

(yi −mxi − b)
2
.

Note that S is really a function of the variablesm and b. A necessary condition for optimality
is that the partial derivatives with respect to each of these variables is zero. This gives the
equations

∂S

∂m
=
∑

2 (yi −mxi − b) (−xi) = −2
∑

(yi −mxi − b)xi = 0 (2.5)

∂S

∂b
=
∑

2 (yi −mxi − b) (−1) = −2
∑

(yi −mxi − b) = 0 (2.6)

where all summations are from 1 to n. Rewriting these equations and solving for m and b
yield the formulas

m =
n
∑

xiyi −
∑

xi

∑
yi

n
∑

x2
i − (

∑
xi)

2 and b = ȳ −mx̄ (2.7)
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where x̄ =
∑

x/n and ȳ =
∑

y/n are the averages of the x- and y-values, respectively. The
line with the slope and y-intercept calculated with these formulas is called the least-squares
regression line.

Example 2.4.2 (Calculating a Least-Squares Regression Line)
Implementing formulas (2.7) is relatively easy. Add the formulas in Figure 2.20 to the
worksheet Least-Squares.

1
2
3
4
5
6
7
8
9

F G H
Sums Averages

x =SUM(A2:A7) =AVERAGE(A2:A7)
y =SUM(B2:B7) =AVERAGE(B2:B7)
x2 =SUMSQ(A2:A7)
xy =SUMPRODUCT(A2:A7,B2:B7)

n = 6
m = =(G7*G5-G2*G3)/(G7*G4-G2^2)
b = =H3-G8*H2

FIGURE 2.20

These formulas give m ≈ 0.694 and b ≈ 1.689 so that the least-squares regression line
is y = 0.694x + 1.689. If we change the values of m and b in cells B10 and B11 to 0.694
and 1.689, respectively, we see that the sum of squares is approximately 3.3699. This is a
much smaller value than found in Example 2.4.1, illustrating the fact that the least-squares
regression line minimizes the sum of squares.

Formulas (2.7) are also built into Excel. To implement these, add the formulas in Figure
2.21. Note that these built-in formulas give the same values of m and b as formulas (2.7).

11
12
13

F G

m = =SLOPE(B2:B7,A2:A7)
b = =INTERCEPT(B2:B7,A2:A7)

Built-in Formulas

FIGURE 2.21

There is yet another way to calculate the least-squares regression line with built-in
formulas. On the scatterplot of the data created in step 1 of Example 2.4.1, right-click on
one of the data points and select Add Trendline... Under Trend/Regression Type
choose Linear. Check the box next to Display Equation on chart and press Close. The
graph should resemble Figure 2.22.

Exercises

2.4.1 To determine if there is a relationship between shoe length and height of a person,
the author had ten of his students measure their shoe length (to the nearest quarter of
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an inch) and height (to the nearest half inch). The resulting data are shown below. Graph
Height vs. Shoe Length and fit a straight line. How well does this model fit the data?

Shoe Length 9 10 10.5 11 11.5 11.75 12 12.5 12.75 13

Height 62 64 64.5 69 70 73 72 75 74 77

2.4.2 The table below shows the price (in dollars) of several name-brand items and their
generic equivalents at a large retail store (data collected by Amanda Schroeder, 2010).

Name 7.68 9.56 7.62 1.58 2.98 3.58 6.54 8.97 4.06 6.46

Generic 4.47 2.97 3.34 0.67 3.12 2.98 5.34 6.97 1.76 4.12

a. For each product, calculate the percent savings if the generic product is purchased
instead of the name-brand.

b. Fit a straight line to the graph of percent savings vs. price of name-brand product.
How well does this model fit the data?

2.4.3 Suppose a biologist records the number of pulses per second of the chirps of a cricket
at different temperatures (in ◦F). The data collected is shown below.

Temperature 72 73 89 75 93 85 79 97 86 91

Pulses/sec 16 16.2 21.2 16.5 20 18 16.75 19.25 18.25 18.5

a. Fit a straight line to this data (where temperature is on the x-axis). How well does
the model fit the data?

b. What is the slope of this line? What does the sign of the slope tell you about the
relationship between pulses/sec and temperature?

2.4.4 The table below gives the average corn and soybean yields (in bushels per acre) on a
Nebraska farm for the years 1995 - 2018 where Year 1 corresponds to 1995 and a − indicates
a missing data value (data collected by Ross Briggs, 2018).
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Year Corn Beans Year Corn Beans

1 149.53 47.51 13 187.55 −
2 172.95 − 14 194.14 70.97
3 196.8 61.54 15 221.79 71.38
4 163.38 57.57 16 204.19 57.41
5 186.94 56.28 17 189.9 62.23
6 189.22 57.19 18 172.94 57.46
7 153.17 59.12 19 215.31 56.76
8 144.25 60 20 217.91 67.76
9 187.84 61.65 21 202.28 65.43
10 206.95 61.51 22 209.8 68.61
11 200.2 61.6 23 230.04 66.54
12 174.82 69.64 24 238.05 66.71

a. For each crop, fit a straight line to the graph of yield vs. year.

b. Comment on how well each line fits the set of data. Could we use the line for soybeans
to predict the missing data values? Briefly explain.

c. What does the slope of each line mean about the quality of the farming practices used
on this farm? Do they appear to be increasing or decreasing? Briefly explain.

2.4.5 When the temperature of a fixed volume of gas decreases, the pressure of the gas also
decreases. The table below gives the pressures (in bars) and corresponding temperatures
(in degrees C) of a gas at a fixed volume (data collected by Zachary Klatt, 2012).

Pressure 1.01 1.04 1.06 1.10 1.13 1.16 1.20

Temperature 12.6 20.0 30.0 40.0 50.0 60.0 70.0

a. Fit a straight line to the graph of temperature vs. pressure.

b. Absolute zero can be thought of as the temperature at which the pressure is 0. Accord-
ing to the model in part a., what is the predicted value of this temperature?

c. The accepted value of absolute zero is −273 ◦C. How close is your prediction?

2.4.6 The table below gives the win/loss percentage and other key statistics of 15 NCAA
Division 1 women’s basketball teams (data collected by Quinn Wragge, 2019).

a. Create graphs of win/loss percentage vs. each of the other statistics (one graph per
statistic) and fit a straight line to the data.

b. Comment on how well each line fits the data. Which line appears to fit the data the
best?

c. Comment on the sign of the slope of each line. Does the sign make sense? Briefly
explain.
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Win/Loss Rebounds Turnovers Steals 3 pt Shots Field Goal
Percent per Game per Game per Game Made/Game Percent

93.8 48.8 13.1 7.4 3.3 51.5
52.6 32.89 13.4 4.6 10.3 42.9
89.5 39.89 14.2 10.2 4.8 45.3
77.8 42.67 14.6 8.1 8.9 45.2
68.8 36.19 13.8 8.8 7.7 41.2
100 45.53 14.3 5.6 8 46.3
50 40.82 15.7 7.8 7.2 42.9
94.7 44.17 14.5 8.7 4.1 51.7
68.4 38.26 13.7 7.4 7.5 46.6
70.6 46 16.8 9.7 6.2 42.9
83.3 43.28 16.4 7.6 5.6 45.5
70.6 38.41 15.9 9.6 6.2 43.3
94.1 42.13 11.8 7.3 7.9 49.1
33.3 38.29 16.7 7.4 5.4 39
85 38.84 13.4 9.5 8.2 44.4

2.4.7 Starting with Equations (2.5) and (2.6), derive the formula for m in Equation (2.7).
(Hint: Multiply Equation (2.5) by −n and (2.6) by

∑
xi. Add the resulting equations and

solve this result for m.)

2.4.8 As we saw in Section 2.2, often times we want to fit a straight line that goes through
the origin to a set of data. This means we want the y-intercept of the straight line to be 0.
So the equation of the line is simply y = mx. In this case, the least–squares criterion says
that we want to minimize

S =

n∑
i=1

(yi −mxi)
2
.

a. Take the derivative of this equation with respect to m, set it equal to 0, and solve it
for m to find a formula for m in terms of the x- and y-coordinates.

b. Implement this formula in Excel and use it to fit a straight line through the origin to
the data in Table 2.1 on page 12. How does the slope of this line compare to the slope
of the line found in Example 2.2.1?

c. This formula can be implemented by adding a trendline to the data and selecting
Set intercept = under Options. Do this to the data and compare the slope of the
trendline to the slope calculated by your formula. Are they indeed equal?

d. If the data are modeled by y = mx, then yi ≈ mxi for each i. Algebraically show that

m ≈
∑

yi∑
xi

.

e. Use the data in Table 2.1 to demonstrate that the formula in part d. gives similar
results as the formula in part a.

2.4.9 Generalize your result in 2.4.8. Suppose you have specified a value of b, say b = b0,
so that the model is now y = mx+ b0. In this case, the least-squares criterion says that we
want to minimize

S =

n∑
i=1

[yi − (mxi + b0)]
2
.
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a. Take the derivative of this equation with respect to m, set it equal to 0, and solve it
for m to find a formula for m in terms of the x- and y-coordinates and b0.

b. Suppose you hang a bucket from a spring that stretches it 15 mm from its natural
length. You then fill the bucket with different weights of sand and record the total
distance stretched as recorded below.

Weight (N) 10 15 20 25 30 35

Distance (mm) 57.4 67.6 71.6 104.5 106.9 136.0

Because the spring was stretched before the first amount of sand was added, Hooke’s
law predicts that the relationship between the distance stretched, D, and the weight
of sand, W , is

D = mW + 15.

Create a graph of the data to test if this prediction is reasonable. If it is, use your
formula from part a. to estimate the value of m.

c. We could also estimate the value of m by transforming the data by subtracting 15
from each distance measurement, and then fitting a straight line through the origin
to the transformed data. The slope of this line is m. Do this and compare the value
of m to that found in part b.

2.4.10 In Exercise 2.4.9 we dealt with the problem of fixing the y-intercept of a linear
model and fitting it to a set of data. Suppose we instead fix the slope. That is, we want
to fit a model of the form y = m0x + b to the data where m0 is some given value. Show
that when using the least-squares criterion, the appropriate formula for the parameter b is
b = ȳ −m0x̄ where ȳ and x̄ are the means of the y- and x-values, respectively.

2.4.11 Consider the problem of fitting a model of the form y = a to a set of data. Show
that when using the least-squares criterion, the appropriate formula for the parameter a is
a = 1

n

∑n
i=1 yi.

2.4.12 The sum of squares can be calculated using the Excel formula SUMXMY2.
Research this formula, then modify the worksheet Least-Squares to calculate the sum
of squares using it. Verify that you get the same results.

2.4.13 When using Chebyshev’s criterion to fit a straight line to data, we find the values
of m and b that minimize the number

C = Maximum of {|yi − (mxi + b)| : i = 1, 2, . . . , n} .

Consider the problem of fitting a straight line to the data in Figure 2.16, but set m = 0.694.
Use a scroll bar to estimate the value of b that minimizes the value of C in Chebyshev’s
criterion. Graph the resulting line on the data and compare it to the line found using the
least-squares criterion. Does Chebyshev’s criterion give the exact same value of b as the
least-squares criterion?

2.4.14 When using the sum of the distances criterion to fit a straight line to data, we find
the values of m and b that minimize the number

A =

n∑
i=1

|yi − (mxi + b)|.
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Consider the problem of fitting a straight line to the data in Figure 2.16, but set b = 1.69.
Use a scroll bar to estimate the value of m that minimizes the value of A in this criterion.
Graph the resulting line on the data and compare it to the line found using the least-squares
criterion. Does this criterion give the exact same value of m as the least-squares criterion?

2.4.15 Sports Manufacturing Inc. manufactures footballs, basketballs, and soccer balls.
Each week the company manufactures a different type of ball in varying quantities. Manu-
facturing costs fall into two different categories: start-up and unit. Start-up costs are costs
necessary to begin production of a particular product (retool machinery, etc.). Unit costs
($/unit) are the costs associated with manufacturing individual units (labor, materials,
etc.).

The table below shows data for 15 weeks of production. The column “Total Cost” gives
the total cost to produce the given number of units of that type of ball in a week. Your
goal is to model the total cost, estimate the start-up and unit costs for each product, and
implement the model.

Footballs Basketballs Soccer balls
Units Total Cost Units Total Cost Units Total Cost

2222 3125 962 1520 2481 4300
2263 3250 2246 2850 1825 3190
1267 1955 2430 2990 2238 3930
2177 3120 1395 1920 949 1890
2266 3090 2405 2750 1250 2350

a. Define variables and create a model for the total cost for producing a given number
of units of each product in terms of the start-up and unit costs. List the assumptions
you make.

b. Estimate the start-up and unit costs for each product.

c. Create a spreadsheet in which a user can easily input production data, such as that
shown above, along with the number of units of a product that are planned for pro-
duction in a given week and see an estimated total production cost for that week.
Make sure the spreadsheet is logical and easy to use.

2.5 Geometric Similarity

Shapes such as circles and rectangles are easy to work with. We can calculate the area and
volume of objects with these shapes using very simple formulas. Real world objects rarely
come in these simple forms. This necessitates some simplifying assumptions. Geometric
similarity is one such assumption.

Definition 2.5.1. Two objects are geometrically similar if the following two conditions are
met:

1. There is a one-to-one correspondence between points of the objects (i.e. the two objects
have the same “shape”).

2. The ratio of distances between corresponding points is the same for all pairs of points.
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In simpler terms, two objects are geometrically similar if one is a scaled up or down version
of the other.

What does geometric similarity allow us to do? Let’s start with a very simple example.
Consider a rectangle of length 3 cm and height 2 cm. Its area is 6 cm2. Note that this area
is proportional to the square of the length of the rectangle since

6 =
6

32
(
32
)
=

2

3

(
32
)

Now consider another rectangle of length 5 cm and height 4 cm. Its area is 20 cm2 which is
again proportional to the square of the length since

20 =
20

52
(
52
)
=

4

5

(
52
)

Consider a third rectangle of length 6 cm and height 4 cm. This rectangle is a scaled up
version of the first rectangle (its dimensions are simply 2 times the dimensions of the first
one). In other words, these two rectangles are geometrically similar. Its area is 24 cm2 which
is again proportional to the square of the length since

24 =
24

62
(
62
)
=

2

3

(
62
)

Notice that the constants of proportionality are the same for these two geometrically similar
rectangles. The second rectangle is not geometrically similar to the other two rectangles,
and its constant of proportionality is not the same as the others.

Let’s generalize this example. Suppose we have a rectangle of length 3k cm and width
2k cm where k is some positive number. This rectangle is geometrically similar to the first
rectangle. Its area is 6k2 cm2, which is proportional to the square of the length since

6k2 =
6k2

(3k)
2 (3k)

2
=

2

3
(3k)

2

Again note that the constant of proportionality is the same as the other geometrically similar
rectangles. What does this mean? Suppose we have a bag of rectangles each of length 3k
cm and width 2k cm where k > 0 is different for each rectangle. If we reached into the bag
and pulled out one rectangle and wanted to know its area, we wouldn’t need to measure
both the length and the height. We could simply measure the length, square it, and take it
times 2/3. This simplifies the process of finding the area.

The length is an example of a characteristic dimension. A characteristic dimension is
simply a dimension of the object that is easy to measure. We could have chosen height
as the characteristic dimension and done the same analysis as above, but the constant of
proportionality would have been different.

This generalization illustrates the first important property of geometrically similar
objects.

Theorem 2.5.1. Suppose H is a set of geometrically similar objects. Let A denote the
surface area of an object and l denote a characteristic dimension. Then

A ∝ l 2,

and the constant of proportionality is the same for every object in H.

Notice that no certain shape, or dimension, of the objects is assumed in Theorem 2.5.1.
This property allows us to simplify the modeling of the area of complex shapes.
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Example 2.5.1 (Wool From a Sheep)
A shepherd wants to predict the volume of wool he will get from a sheep, V , in terms of
the girth of the sheep (the distance around the fattest part of the belly). The volume is
the thickness of the wool times the area from which it is shaved. This area is not a simple
shape, so we will use geometric similarity to simplify the model. Consider the following
assumptions:

1. The thickness of the wool is the same for every sheep.

2. The area on each sheep from which the wool is shaved is geometrically similar.

The first assumption allows us to model

V ∝ A (2.8)

where A is the area from which the wool is shaved. The second assumption allows us to
model

A ∝ l 2 (2.9)

where l is some characteristic dimension. We will choose the girth (the distance around the
belly of the sheep) to be this dimension. Combining (2.8) and (2.9) using transitivity, we
get

V ∝ l 2 (2.10)

To find the constant of proportionality, and test the assumptions, we would need to collect
data of volume and girth.

Now let’s consider a three-dimensional object. Specifically consider a rectangular box
with width 4 cm, height 3 cm, and depth 2 cm. Its volume is 24 cm3, which is proportional
to the height cubed since

24 =
24

33
(
33
)
=

8

9

(
33
)
.

Consider a geometrically similar box with width 4k cm, height 3k cm, and depth 2k cm
where k > 0. Its volume is 24k3 cm3, which again is proportional to the height cubed since

24k3 =
24k3

(3k)
3 (3k)

3
=

8

9
(3k)

3
.

Note that the constant of proportionality is the same. This generalization illustrates the
second important property of geometrically similar objects.

Theorem 2.5.2. Suppose H is a set of geometrically similar objects. Let V denote the
volume of an object and l denote a characteristic dimension. Then

V ∝ l 3,

and the constant of proportionality is the same for every object in H.

As in the first property, no special shape of the objects is assumed. This property allows
us to relate the volume of an object to some characteristic dimension, and combining this
with the first property we can relate volume to surface area.

Example 2.5.2 (Surface Area of a Potato)
Suppose we want to fix a large batch of the recipe “Crispy Potato Skins” for an appetizer
at our Super Bowl party. This recipe requires only the skin from a potato, so when we buy
the potatoes, we want to get the maximum surface area for our money.

At the supermarket we have the choice of several different sizes of potatoes. We have to
decide if we want to buy several small potatoes or a few large ones (we are assuming that
we can choose individual potatoes). Let’s restrict ourselves to the following problem:
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Should we buy 8 small baking potatoes weighing 0.25 lbs each, or 4 large baking
potatoes weighing 0.5 lbs each?

To answer this question, we want to relate the surface area of a potato, A, to its weight,
W . Consider the following assumptions:

1. Potatoes have a constant density.

2. Potatoes are geometrically similar.

The first assumption seems very reasonable. The veracity of the second is arguable. However,
potatoes have a very irregular shape, so we need some sort of simplifying assumption to
model their surface. Similarity is a reasonable assumption.

Now, Weight = density × volume, so the first assumption allows us to model

W ∝ V (2.11)

where W is the weight and V is the volume. The second assumption allows us to model

V ∝ l 3 (2.12)

where l is any characteristic dimension (such as length). Combining (2.11) and (2.12) we
get

W ∝ l 3. (2.13)

The second assumption also allows us to model

A ∝ l 2. (2.14)

where A is the surface area of a potato and l is the same characteristic dimension used in
(2.13). Rewriting (2.13) and combining it with (2.14), we get

l ∝ W 1/3 → A ∝
(
W 1/3

)2

= W 2/3 (2.15)

Since potatoes are sold by the pound, each choice in the original problem will cost the same
amount, so we want the choice with the largest surface area. If AS and AL represent the
total surface area of the small and large potatoes, respectively, then (2.15) gives

AS = 8k (0.25)
2/3

and AL = 4k (0.5)
2/3

where k is some constant (note k is the same for both AS and AL). Thus

AS

AL
=

8k (0.25)
2/3

4k (0.5)
2/3

≈ 1.26 ⇒ AS ≈ 1.26AL

Therefore, the surface area of the small potatoes is approximately 26% greater than the
surface area of the larger potatoes. So we should buy the smaller potatoes.

Exercises

2.5.1 Answer the following questions related to geometric similarity and proportionality:
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a. If water bottles are geometrically similar, how much more water will a bottle that is
30 cm tall hold than one that is 10 cm tall?

b. If air resistance is proportional to the surface area of a falling object at a given velocity,
how much more air resistance will a sphere of diamater 5 cm encounter than one with
a diameter of 1 cm?

c. If gymnasts have a constant density, then weight is proportional to volume. If we
further assume that they are geometrically similar, how much less would a gymnast
who is 5 ft. tall weigh than one who is 5.5 ft. tall?

d. If hearts are geometrically similar and the volume of blood pumped in one beat is
proportional to the volume of the heart, how much more blood will a heart 4 cm wide
pump in one beat than a heart that is 1 cm wide?

e. If the amount of heat lost by a submarine over a unit of time is proportional to its
surface area, how much more heat will a submarine that is 50 ft. long lose over a given
period of time than a scale model that is 10 ft. long?

f. If objects are geometrically similar and have a constant density, we saw in Example
2.5.2 that A ∝ W 2/3 where A = Surface Area and W = Weight. If the weight of one
such object is 5 times the weight of another, how much larger is the surface area?

g. Suppose that an ice cube melts so that at any point in time, the remaining cube is
geometrically similar to the initial cube (i.e. before it started melting). At one point
in time, the length is half the initial length. What fraction of the initial volume has
melted?

h. Suppose that two elephants are geometrically similar and have a constant density. If
one elephant weighs 3,500 lbs and another weighs 7,000 lbs, how much more surface
area does the large elephant have than the small elephant?

2.5.2 Derive proportionality models in the following scenarios. Be sure to define variables
in each model.

a. If some right triangles drawn on a page are geometrically similar, model the area of a
triangle in terms of the length of its hypotenuse.

b. If some cubes in a bag are geometrically similar, model the volume of a cube in terms
of the distance between opposite corners.

c. If some rocks in a bag are geometrically similar and have a constant density, model
the surface area of a rock in terms of its weight.

d. If the sides of certain hollow aluminum tubes are 1 mm thick and the outer surface
of the tubes are geometrically similar, model the volume of aluminum used to make a
tube in terms of its length.

e. If some cargo airplanes are geometrically similar, the lift capacity of the wings is
proportional to the surface area of the wings, and the cargo capacity of an airplane is
directly proportional to the lift capacity of its wings, model the cargo capacity of an
airplane in terms of its wing span.

f. If some books on a shelf are geometrically similar with a constant density and the
thickness of a book is directly proportional to the number of pages, model the weight
of a book in terms of its number of pages.
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2.5.3 Consider two geometrically similar objects where the ratio of distances between cor-
responding points is some constant k > 1 called the scaling factor . This means that if ls
is a characteristic dimension of the “small” object, then the corresponding characteristic
dimension of the “big” object is lb = k · ls.

a. Prove that the areas of the small and big objects are related by Ab = k2As.

b. Prove that the volumes of the small and big objects are related by Vb = k3Vs.

c. Suppose that two elephants are geometrically similar and have a constant density. If
one elephant weighs 3,500 lbs and another weighs 7,000 lbs, how much more surface
area does the large elephant have than the small elephant?

2.5.4 When a pineapple is peeled, the resulting edible fruit has approximately the shape
of a right–circular cylinder. Let d denote the diameter of this cylinder.

a. Assuming pineapples are geometrically similar and have a constant density, derive a
model for the weight of a pineapple’s edible fruit in terms of d.

b. Consider 6 small pineapples each of diameter 5 in, and 6 large pineapples each of
diameter 5.5 in. In terms of a percentage, how much more total fruit do the large
pineapples have than the small pineapples?

2.5.5 Grapes are approximately spherical in shape. Let d denote the diameter of this sphere.

a. Assuming grapes are geometrically similar and have a constant density, derive a model
for the weight of a grape in terms of d. Then derive a model for the surface area in
terms of d.

b. Consider 10 large grapes each of diameter 1 cm and 20 small grapes each of diameter
0.5 cm. Which set of grapes has more total weight? How much more?

c. Which set of grapes has more total surface area? How much more?

2.5.6 An asparagus spear has approximately the shape of a right–circular cone. Let d and
V denote the diameter of the base and volume of this cone, respectively. Assume that all
asparagus spears are geometrically similar. Some parts of a spear are tender and very edible,
but some are tough and not edible. Typically spears with a larger diameter are tougher than
those with a smaller diameter. In parts a–c, model the edible volume of a spear in terms of
d under the given assumption.

a. The edible volume is some fraction (or proportion) of V .

b. The edible volume is proportional to V/d.

c. The edible volume is proportional to V/d3.5.

d. Which, if any, of the above assumptions seems most reasonable to you? Explain.

e. Consider the assumption in part c. Suppose you have the option of ordering 10 “small”
spears each of diamater 0.3 in, or 10 “large” spears each of diamater 0.4 in. Which
option will have more edible volume? Which option would you choose?

2.5.7 Suppose it takes 0.75 fluid ounces of sunscreen to cover all exposed areas of a 3-foot
tall child. Derive a model for the volume of sunscreen needed to cover a person in terms of
height. Use the model to estimate the amount of sunscreen it would take to cover a 6-foot
tall man. List all assumptions you make.
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2.5.8 Ace manufacturing company owns a warehouse in the shape of a rectangular box
that measures 100 ft. wide by 200 ft. long by 10 ft. high. It has a furnace with an output of
500,000 BTU’s. They want to build a larger warehouse measuring 200 ft. by 400 ft. by 20
ft. and are trying to determine what size of furnace needs to be installed.

a. If they assume that the size of the furnace is proportional to the volume of the building,
what size furnace should be installed?

b. If they assume that the size of the furnace is proportional to the total surface area of
the building (including the floor), what size furnace should be installed?

c. If they assume that the size of the furnace is proportional to the surface area of the
walls and roof only (meaning the floor is not a factor), what size furnace should be
installed?

2.5.9 In Example 2.5.2 we assumed potatoes are geometrically similar and of constant
density. This yielded the model W ∝ l3 where W is weight and l is some characteristic
dimension. To test these assumptions, a student measured the length (inches) and weight
(pounds) of several yellow and Idaho russet potatoes as shown in the table below (data
collected by Brennan DeForest, 2019).

a. Use the data to determine if the model W ∝ l3 is reasonable for the yellow potatoes.

b. Repeat part a. for the Idaho russet potatoes.

c. Combine the two types of potatoes into one large sample and repeat part a.

d. What do these results suggest about the validity of the assumptions?

Yellow Idaho Russet
Length Weight Length Weight

2.5 0.2 4.75 0.55
3.5 0.4 5.5 0.55
3 0.3 5 0.7

2.75 0.2 5.25 0.7
3.5 0.4 4.75 0.4
3.25 0.35 5.5 0.7
2.5 0.25 5.75 0.75
3 0.3 5 0.55

3.25 0.4
3.25 0.4
3.25 0.35
2 0.25

2.5.10 The table below gives the overall length (inches) and weight (pounds) of several
male black bears (data collected by Brett Troyer, 2011). If we assume male black bears are
geometrically similar, then we would expect that Weight ∝ Length3. Use this data in the
table to determine if geometric similarity is a reasonable assumption.

Length 138 166 180 129.5 150 132 148 140 137 149
Weight 60 155 220 105 110 75 105 90 75 115

Length 102 173 104.5 138 144.5 164 129 158 150 142
Weight 35 220 33 90 80 180 77 120 100 100
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2.5.11 A rowing shell is a slim, needle–like boat built for speed that is powered by one,
two, four, or eight rowers. We want to build a model that predicts the boat’s speed, v, in
terms of the number of rowers, r. The table below contains data on boat length and winning
race times at four world championships (data collected from Science News, 2008).

Time for 2,000 m (min)
Rowers, r Length, l I II III IV

8 18.28 5.87 5.92 5.82 5.73
4 11.75 6.33 6.42 6.48 6.13
2 9.76 6.87 6.92 6.95 6.77
1 7.93 7.16 7.25 7.28 7.17

Consider the following assumptions:

1. l ∝ r1/3 where l is the length of the boat.

2. The only drag slowing down the boat is from the water, which is proportional to Sv2

where S is the wetted surface area of the boat.

3. The boats travel at a constant speed. This means that the force applied by the rowers
equals the force of drag.

4. All boats are geometrically similar with regard to S.

5. The power available to the boat is proportional to r. (Power = Force × Speed where
Force is the force applied by the rowers)

Is the first assumption reasonable? Test it with the given data. Build a model that predicts
v in terms of r and test it with the given data. Here are a few suggestions:

1. Start with the relationship Power = Force × Speed and substitute the proportionality
relationships from the other assumptions.

2. Remember, velocity = distance/time.

3. Use the average time for the 2,000 m race to calculate the velocity.

2.5.12 Consider a raindrop falling from a cloud. Ignoring any effects of wind, it is influenced
by two forces, weight due to gravity and air resistance. At some point, the raindrop reaches
a terminal velocity, vt, where these two forces are equal. Consider the following assumptions:

1. All raindrops are geometrically similar.

2. All raindrops have the same density.

3. Air resistance is proportional to the product of its surface area and the square of its
speed.

Use these assumptions to model the terminal velocity of a raindrop in terms of its weight.

2.5.13 Agility is an important characteristic for athletes in sports such as gymnastics.
Anyone who has watched gymnastics has noted that there are very few tall gymnasts. Why
is this? The goal of this exercise is to model agility in terms of height to help answer this
question. Consider the following assumptions:

1. Agility ∝ Strength
Weight

and

2. Strength ∝ height2.
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The first assumption is basically a mathematical “definition” of agility. The second
assumption is supported by the physiological argument that a muscle’s strength is propor-
tional to its cross-sectional area.

a. Use these assumptions to model agility in terms of height. What additional assump-
tions do you use?

b. According to your model do shorter athletes or taller athletes tend to be more agile?

c. Critique the given assumptions. Do you think they are reasonable? How might you
modify them?

2.6 Linearizable Models

In previous sections we used theory of one form or another to construct models and then
used data to determine the values of parameters within the model. This process is called
model fitting and the resulting models are called analytical models . The model never fit the
data perfectly, but we were willing to accept some error because the model helps explain
the behavior of the system. In this section, and the next chapter, we build models guided
solely by data. We will not even attempt to use theory to explain behavior. Rather, we will
find a model that captures the trend of the data and use it to predict values rather than
explain the behavior. These models are called empirical models. Many of the topics related
to empirical modeling are closely related to the field of statistics, and particularly the topic
of regression.

Linearizable models are those which can be fit to a set of data by making an appropriate
transformation and then fitting a linear model to the transformed data. Listed below are
the three common types of linearizable models:

Logarithmic Power Exponential

y = a+ b ln (x) y = axb y = aebx

The variable x is called the predictor variable while the variable y is called the response
variable. Graphs of these different types of models are shown in Figure 2.23. Note the
“shape” of the different graphs. Each one of these different functions increases as x increases,
but they increase at different rates. The logarithmic function and the power functions with
exponents less than 1 increase much slower than the other types of functions. They almost
appear to “level off” whereas the other types grow very quickly. Being able to recognize the
shapes of the different graphs will help us to select an appropriate type of model.

To illustrate how to use these models, consider the data in Table 2.5 which gives the
number of people per physician and male life expectancy (in years) for various countries
around the world (data from World Almanac Book of Facts, 1992, Pharos Books). Our goal
is to predict life expectancy in terms of the number of people per physician.

Obviously there are many factors involved with life expectancy; the number of people per
physician is only one of them. It seems reasonable to believe that as the number of people
per physician increases (meaning fewer physicians per person), life expectancy decreases
since people would not have as easy access to health care. We do not claim that the number
of people per physician causes life expectancy, but there is probably a relationship between
the two variables. It is not at all clear how the variables of people per physician and life
expectancy are related theoretically, so we will not even attempt to construct an analytical
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TABLE 2.5

People/Physician Life Expectancy
Country P L

Spain 275 74
United States 410 72

Canada 467 73
Romania 559 67

China 643 68
Taiwan 1,010 70
Mexico 1,037 67

South Korea 1,216 66
India 2,471 57

Morocco 4,873 62
Bangladesh 6,166 54

Kenya 7,174 59

model. We will construct an empirical model by fitting various linearizable models to this
data and analyzing how well each one fits.

When constructing any type of empirical model, the first step is plot y vs. x (L vs. P in
this case) and look at the shape. The second step is to select an appropriate type of model
and fit it to the data.

A graph of the data is shown in Figure 2.24. Notice that as the number of people per
physician increases, the life expectancy decreases, agreeing with our intuition. Also note
that the points seems to form a curve that initially decreases rapidly, but then levels off.
This suggests that a logarithmic or power model might be appropriate.

Example 2.6.1 (Logarithmic Model)
We will fit a curve of the form L = a + b ln (P ) to the data by graphing L vs. ln (P ) and
fitting a straight line. The value of b is the slope of this line and the value of a is the
y-intercept.

1. Name a blank worksheet “ln” and format it as in Figure 2.25. Enter the rest of the
data from Table 2.5 in columns A and C. Copy cell B2 down to row 13.
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275 =LN(A2) 74

FIGURE 2.25

2. Create a graph of L vs. ln(P ), add a linear trendline, and display the equation of the
line as in Figure 2.26. Using the slope and y-intercept of this line, we get our model:
L = 103.4− 5.2376 ln (P )

y = -5.2876x + 103.4
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FIGURE 2.26

3. Next we need to compare the model to the original data. Add the formula in Figure
2.27 and copy cell D2 down to row 13.

1
2

D
Predicted

=103.4-5.2876*LN(A2)

FIGURE 2.27

4. Create a graph to compare the observed values of L to the predicted ones as in Figure
2.28. Notice that the two sets of values are fairly close together, indicating that we
have a good model.
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5. To further analyze how well the model fits the data, for each data point define

Residual = (Observed value)− (Predicted value)

Note that a positive residual means that the predicted value is less than the observed
value. A negative value means that the predicted value is greater than the observed
value. To calculate the residual for each data point, add the formula in Figure 2.29
and copy cell E2 down to row 13.

1
2

E
Residual

=C2-D2

FIGURE 2.29

6. Create a graph of Residual vs. P as in Figure 2.30. Note that roughly half the residuals
are positive and half are negative. This indicates that the model does not tend to
over predict or under predict the values of L. Also note that the magnitudes of the
residuals (i.e. the absolute values) are all relatively small, less than 6, and that there
is no “pattern” to the residuals. These three observations indicate that this model fits
relatively well.
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Example 2.6.2 (Power Model)
We will fit a curve of the form L = aP b to the data. To find the values of a and b, we take
the natural logarithm of both sides of the model to get

lnL = ln(aP b) = ln a+ lnP b = ln a+ b lnP.

Thus a straight line fit to the graph of lnL vs. lnP will have a slope of b and a y-intercept
of ln a.

1. Name a blank worksheet “Power” and format it as in Figure 2.31. Copy the rest of
the data from worksheet ln into columns A and B. Copy the range C2:D2 down to
row 13.

1
2

A B C D
P L ln(P) ln(L)

275 74 =LN(A2) =LN(B2)

FIGURE 2.31

2. Graph lnL vs. lnP , fit a straight line, and display the equation on the graph as in
Figure 2.32.

y = -0.0823x + 4.7675

3.9

4

4.1

4.2

4.3

4.4

5.5 6 6.5 7 7.5 8 8.5 9

ln
(L

)

ln(P)

Power Model Transformed Data

FIGURE 2.32

The equation of the line is y = −0.0823x+ 4.7675, so b = −0.0823 and

ln a = 4.7675 ⇒ a = e4.7675 = 117.62

Therefore, the model is L = 117.62P−0.0823.

3. Add the formulas in Figure 2.33 to calculate the predicted values and the residuals.
Copy row 2 down to row 13.

4. Create a graph of Residual vs. P as shown in Figure 2.34. Note that again roughly
half of the residuals are positive and half are negative, they all have magnitudes less
than 5, and there is no pattern. This indicates a good model.



50 Proportionality and Geometric Similarity

1
2

E F
Predicted Residual

=117.62*A2^-0.0823 =B2-E2

FIGURE 2.33

-6
-5
-4
-3
-2
-1
0
1
2
3
4

0 1000 2000 3000 4000 5000 6000 7000 8000

Re
sid

ua
l

P

Power Model Residuals

FIGURE 2.34

Example 2.6.3 (Exponential Model)
The plot of the data does not resemble the graph of an exponential model, so this type of
model may not be the best. However, we will fit one to the data to illustrate the process.
The exponential model has the form L = aebP . To find the values of a and b, we take the
natural logarithm of both sides of the model to get

ln(L) = ln(aebP ) = ln a+ ln(ebP ) = ln a+ bP.

Thus a straight line fit to the graph of lnL vs. P will have a slope of b and a y-intercept of
ln a.

1. Name a blank worksheet “Exponential” and format it as in Figure 2.35. Copy the
rest of the data from the worksheet Power and copy cell C2 down to row 13.

1
2

A B C
P L ln(L)

275 74 =LN(B2)

FIGURE 2.35

2. Create a graph of lnL vs. P and fit a straight line to the data as in Figure 2.36. Display
the equation on the chart. Notice that this line does not fit the data as well as with
the other two models. This is an indication that an exponential model does not fit the
data as well as the others.

The equation of this line is y = −0.00003x+ 4.2561, so b = −0.00003 and

ln a = 4.2561 ⇒ a = e4.2561 = 70.53

Therefore, the model is L = 70.53 e−0.00003P .
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y = -3E-05x + 4.2561
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3. Add the formulas in Figure 2.37 to calculate the predicted values and the residuals.
Copy row 2 down to row 16.

4. Create a graph of Residual vs. P as shown in Figure 2.38. Notice that all the residuals
are at least 1 in magnitude and that one is almost -9. This indicates that the model
doesn’t predict any of the values of L very accurately. Therefore, this is not the best
fitting model, as previously suspected.
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Example 2.6.4 (Trendlines)
Excel will automatically calculate these different models for us. Create a graph of L vs. P ,
add a trendline, select the type of model you want under Type, and display the equation
on the chart. The results are shown in Figure 2.39. Note that these are exactly the same
models we derived. Also note that the graphs of the logarithmic and power models capture
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the trend of the data very well while the exponential model does not. This confirms our
conclusions based on the graphs of the residuals.

y = -5.288ln(x) + 103.4
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Out of the three models, the logarithmic and power models are the “best” based on an
analysis of the graph of the models and of the residuals. In the next section we will look at
more analytical techniques for measuring how well a model fits a set of data.

Now that we have two good–fitting models for the data, what can we do with them?
There are at least two uses. First of all, the graphs of the models help us to see the trend
of the data. The graphs decrease from left to right, helping us to illustrate the point that
as the number of people per physician increases, life expectancy decreases. The plot of the
data also shows this, but a curve helps exemplify the relationship.

Second of all, we can use the models to predict life expectancy if we know the number of
people per physician. For instance, suppose a country has 3,500 people per physician. The
logarithmic model predicts that life expectancy is

L = 103.4− 5.2876 ln (3500) ≈ 60.25 years

while the power model gives

L = 117.63 (3500)
−0.0823 ≈ 60.10 years.

We certainly could plug P = 3, 500 into the exponential model and get

L = 70.537e−0.00003(3500) ≈ 63.51 years.

However, we saw that the exponential model did not fit the data very well, so it would not
be appropriate to use it for making predictions. This illustrates the first caution when using
empirical models: If a model does not fit a set of data, do not use it for making
predictions.
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Now suppose a country has 100 people per physician. We could plug P = 100 into the
logarithmic model and get

L = 103.4− 5.2876 ln (100) ≈ 79.04 years.

However, note that P = 100 is outside the range of the original data. We do not know the
trend of the data for values of P less than 275. It could change or stay the same; we simply
do not know. Therefore, it would be inappropriate to use any of these models to predict
values of L for P less than 275. This value of 79.04 years may or may not be accurate,
so we should not report this “prediction.” This illustrates the second caution when using
empirical models: Only use values of the predictor variable that are within the
range of the original set of data.

Exercises

2.6.1 For each data set below, determine which model - exponential, power, or logarithmic
- best fits the data. Briefly explain your reasoning.

a.

x 1 2 3 4 5 6

y 1.66 2.41 6.04 9.89 17.31 31.54

b.

x 1 2 3 4 5 6

y 2.68 5.61 8.71 9.83 11.16 11.03

2.6.2 The table below contains the total length and weight of 20 black bears (data collected
by Brett Troyer, 2011). Graph weight vs. length, fit different linearizable models to the data,
and select the one that best fits the data. Briefly explain your reasoning.

Length 139 138 139 120.5 149 141 150 166 180 129.5
Weight 110 60 90 60 85 95 85 155 220 105

Length 150 142 162 148 140 134 137 149 102 151.5
Weight 110 115 255 105 90 75 75 115 35 140

2.6.3 The table below contains data on overall fuel economy (measured in miles per gallon,
MPG) and acceleration (measured in seconds to accelerate from 0 to 60 miles per hour) of 20
gasoline powered passenger cars (data from https://www.consumerreports.org/cro/news/20
13/06/fuel-economy-vs-performance/index.htm, accessed 5/16/2018):

MPG 33 31 29 38 26 25 24 35 35 33
Acc. 9.9 10 9.8 7.6 6.3 6.9 9.2 9 10.3 10

MPG 33 30 29 27 25 25 28 27 26 24
Acc. 10.9 7 7.3 7.2 6.4 5.2 7.5 7.4 7.5 6.6

a. Plot acceleration vs. MPG and fit different linearlizable models. Do any of them fit the
data particularly well? What, if anything, can we say about the general relationship
between MPG and acceleration time?

https://www.consumerreports.org/
https://www.consumerreports.org/
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b. The table below contains similar data on six electric passenger cars. The overall fuel
economy is measured in miles-per-gallon equivalent (MPGe). Plot these data on the
same graph as part a. Is there any model that fits all these data points? What can we
say about the relationship between gasoline powered and electric passenger cars?

MPGe 139 107 106 105 94 87

Acc. 7.5 10.2 10.3 8 8.1 3.5

2.6.4 For each set of data below, fit a model of the given form by transforming the data
appropriately and fitting a straight line to the transformed data. Graph the resulting model
on top of the data and analyze how well the model fits the data.

a. Model: y = ax2 + b

x 1 2 3 4 5 6

y 16.3 23.1 37.4 46.9 58.7 91.0

b. Model: y = a sin (x) + b

x 1 2 3 4 5 6

y 1.34 1.61 -0.98 -3.80 -4.55 -2.30

c. Model: y = a
x2 + 1

ln (x)
+ b

x 2 3 4 5 6 7

y 3.30 5.63 9.52 14.31 19.84 26.061

2.6.5 Consider the data below:

x 0 2 4 6 8 10

y 3.000 3.061 3.122 3.186 3.250 3.316

a. Fit a linear model to the data. How well does the model appear to fit the data? Create
a graph of the residuals. What do you notice about the pattern of the residuals?

b. Fit an exponential model to the data. How well does the model appear to fit the data?
Calculate and graph the residuals. What does this tell you about how well this model
fits the data?

2.6.6 Use algebra or the natural logarithm to derive the given linearization of each of the
following models:
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Model Linearization

a. y =
1

a+ bx

1

y
= a+ bx

b. y =
x

a+ bx

1

y
=

a

x
+ b

c. y = 1 + aebx ln (y − 1) = ln a+ bx

d. y = 1− e−xa/b ln

[
ln

(
1

1− y

)]
= a lnx+ ln

1

b

2.6.7 Growing populations typically have a maximum size called the carrying capacity .
The size of a population y at time t can often be modeled with the logistic model

y =
L

1 + ea+bt

where L is the carrying capacity and a and b are parameters.

a. Linearize this model with simple algebra and the natural logarithm by showing that

ln

(
L− y

y

)
= a+ bt.

b. The data below show the size of a bacteria population at certain points in time.
Assuming the carrying capacity is L = 625, fit a logistic model to the data using the
linearization in part a.

t 0 1 2 3 4 5 6 7 8 9
y 10.3 17.2 27 45.3 80.2 125.3 176.2 255.6 330.8 390.4

t 10 11 12 13 14 15 16 17 18 19
y 440 520.4 560.4 600.5 610.8 614.5 618.3 619.5 620 621

c. Create a graph of the residuals for the model found in part b. What does this say
about the quality of the fit of this model?

2.6.8 In 1965, Intel co-founder Gordon Moore predicted that the number of transistors
in integrated circuits would double approximately every 24 months. This prediction has
become known as Moore’s law. In the data below, y denotes the number of transistors
(in millions) in various integrated circuits between years 1971 and 2014 (data collected by
Jonathan Grant, 2018).

Year 1971 1972 1974 1976 1978 1979 1982 1988 1989 1993 1995 1998
y 0.0023 0.0035 0.0045 0.0065 0.029 0.029 0.134 0.25 1.18 3.1 5.5 7.5

Year 1999 2000 2001 2002 2003 2004 2006 2008 2010 2011 2012 2014
y 27.4 42 45 220 410 592 1700 1900 2300 2600 5000 5560

Mathematically speaking, we can think of Moore as predicting that y is described by a
model of the form

y = c02
t/r

where c0 is the initial number of transistors (corresponding to 1971 in the data), t is the
number of months since 1971, and r is the number of months needed for y to double.
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a. Linearize this model.

b. Use the linearization to fit the model to the data and estimate a value of r.

c. Based on these data, does Moore’s law appear to be accurate?

2.6.9 This problem will illustrate that we have to be careful when working with big num-
bers. Consider the problem of fitting an exponential model to the data in the table below.

x 1947 1957 1965 1977

y 21500 13500 8000 7500

a. Graph the data and fit an exponential trendline. Graphically, how well does this model
appear to fit the data?

b. Use the exponential model found in part a. to predict the values of y (note that the
symbol 2E+35 means 2× 1035). How good are these predictions?

c. We might wonder if the poor predictions are caused by rounding errors in the parame-
ters. To investigate this, right-click on the trendline label and select Format Trend-
line Label. Under Category choose Scientific and set the number of Decimal
places to 6. Use the resulting model to predict the values of y. Are these predictions
any better?

d. Another way to work with big numbers is to scale them to smaller numbers. For
instance, consider dividing each y-value by 1,000 and subtracting 1947 from each x-
value. This yields the modified model

y

1000
= aeb(x−1947).

Transform the data by subtracting 1947 from each x-value and dividing each y-value
by 1,000, plot the transformed data, and fit an exponential trendline to the trans-
formed data. The parameters in this exponential trendline match the parameters in
the modified model.

e. Solve the modified model for y and use the parameters found in part d. to predict the
values of y. How good are these predictions?

2.6.10 As we have seen, logarithms can be used to linearize models. They can also help us
work with big or small numbers. Consider the problem of finding the constant of propor-
tionality in the model

tl ∝ 1

m2
p

where tl is the amount of time needed for the satellite to become in orbital lock and mp is
the mass of the planet, as described in Exercise 2.2.10. The table below shows the values
for the eight planets in our solar system (data collected by Joshua Hendrickson, 2019).
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Planet mp (×1024 kg) tl (×107 years)

Mercury 0.33 126094
Venus 4.87 578.98
Earth 5.97 385.28
Mars 0.642 33315.9

Jupiter 1898 0.003812
Saturn 568 0.042562
Uranus 86.8 1.822561
Neptune 102 1.31984

Using the approach introduced in this section, we could graph tl vs. 1/m
2
p and fit a straight

line through the origin the slope of which is the constant of proportionality. However, some
of the numbers are so much bigger than the others that many of the data points are so close
together that they cannot be distinguished from each other. To help solve this problem, we
can take the natural log of both sides of the model tl = k/m2

p where k is the constant of
proportionality and algebraically rewrite yielding

ln (tl) = ln(k) + ln

(
1

m2
p

)
.

Thus a graph of ln (tl) vs. ln
(
1/m2

p

)
should have a slope of 1 and a y-intercept of ln(k).

Such a graph is called a log-log plot .

a. Calculate ln (tl) and ln
(
1/m2

p

)
for all the planets.

b. Graph ln (tl) vs ln
(
1/m2

p

)
and fit a straight line to the data.

c. Use the straight line to estimate the constant of proportionality k.

Directions for Exercises 2.6.11 - 2.6.13: In this section, we found the values of the
parameters in the models by transforming the data appropriately and then fitting a straight
line to the transformed data. Another approach is to find formulas for the parameters using
the least-squares criterion. That is, if the model is y = f(x), then the parameters should
minimize the quantity

S =

n∑
i=1

(yi − f(xi))
2
.

This can be done, in principle, by taking the partial derivatives of S with respect to each
of the parameters, setting the derivatives equal to 0, and solving for the parameters, much
like we did in Section 2.4.

In Exercises 2.6.11 - 2.6.13 you are given a type of linearizable model and formulas for
the parameters. For each exercise:

a. Design a spreadsheet to show, by example, that the given formulas give the same
values of the parameters as we would get if we transformed the data appropriately
and fit a straight line to the transformed data.

b. Derive the given formulas using the approach described above.

2.6.11 Model: y = ax3

a =

∑
yix

3
i∑

x6
i
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2.6.12 Model: y = ax2 + b

a =
−n

∑
x2
i yi +

∑
yi
∑

xi

(
∑

x2
i )

2 − n
∑

x4
i

, b =

∑
yi − a

∑
x2
i

n

2.6.13 Model: y = a+ b lnx

b =

∑
yi
∑

lnxi − n
∑

y lnxi

(
∑

lnxi)
2 − n

∑
(lnxi)

2 , a =

∑
yi − b

∑
lnxi

n

2.7 Coefficient of Determination

The coefficient of determination, denoted R2, is a numerical measure of how well a line fits
a set of data. To illustrate the fundamental concepts, we will generate some hypothetical
data according to the relationship y = 3 + 2x.

1. Rename a blank worksheet “R2” and format it as in Figure 2.40. Copy row 3 down
to row 11 to generate 10 data points.

1
2
3

A B
x y

0 =3+2*A2
=A2+1 =3+2*A3

FIGURE 2.40

2. Create a graph of the data and add a trendline as in Figure 2.41. Note that the line
goes through each data point and the equation of this line (also called the regression
equation) is exactly what was used to generate the data.

y = 2x + 3
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Hypothetical Data

FIGURE 2.41

One purpose of fitting a line to data is to use it for predicting the value of y when x is
known. If we did not have a graph of the data or the regression equation and we were given
a value of x, the best guess as to the corresponding value of y would be the mean of the
y-values. This mean is denoted by ȳ and equals 12 in this case.
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We test this simple prediction strategy by examining the “error” it would cause for the
given data points. This error, or deviation, y − ȳ, is illustrated in Figure 2.42.

If a y-value predicted by the regression equation is denoted ŷ, we measure how well a
regression equation fits the data by comparing the deviation to the difference between ŷ
and ȳ, ŷ − ȳ. In this case the regression line goes through each data point, so ŷ = y. So,

ŷ − ȳ = y − ȳ ⇒ ŷ − ȳ

y − ȳ
= 1

Thus we give this regression equation an R2 value of 1. This value is often interpreted
by saying that the regression equation “explains” 100% of the deviation. The definition
of the coefficient of determination is based on this idea of comparing the deviation to the
difference between ŷ and ȳ to measure the percentage of deviation “explained” by the
regression equation.

This set of data is highly idealized because it was generated exactly according to the
linear relationship y = 3 + 2x. In reality, data never conforms to an exact relationship like
this. Real data with a linear relationship satisfies an equation of the form

y = β0 + β1x+ ε

where ε is some “noise.” This noise may be due to measurement error, sampling variation,
or some other random event outside of our control.

The relation y = β0 + β1x is called the “true” linear trend of the population while
the regression equation has the generic form ŷ = β̂0 + β̂1x. The “hats” indicate that the
parameters β̂0 and β̂1 are estimates of the population values based on sample data. Likewise,
ŷ is an estimate of y.

Example 2.7.1 (Including Noise)
To generate data with some noise modify the worksheet R2 as in Figure 2.43. Copy cell B2
down to row 11. Here our noise is given by NORMINV(RAND(),0,2) which is a normally
distributed pseudorandom variable with mean 0 and standard deviation 2 (see Chapter 6,
particularly Section 6.6, for more details on how this formula works).

The graph of this noisy data should resemble Figure 2.44. Note that your graph will
probably look different due to the random noise. Also note that the regression equation is
not y = 3 + 2x.
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=3+2*A2+NORMINV(RAND(),0,2)

FIGURE 2.43
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FIGURE 2.44

To define the R2 value for a line fit to noisy data, we introduce three different types of
deviation, explained , unexplained , and total deviation. Figure 2.45 illustrates these types of
deviations. We see from the figure that

(total deviation) = (explained deviation) + (unexplained deviation)
(y − ȳ) = (ŷ − ȳ) + (y − ŷ) .

y y
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y y
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FIGURE 2.45

If we square these deviations and add them together for all data points, we get amounts
of variation (measures of the total deviation). The total variation is called the total sum of
squares and is given by

SSTot =
∑

(yi − ȳ)2

The explained variation is called the regression sum of squares and is given by

SSReg =
∑

(ŷi − ȳ)2

The unexplained variation is called the residual sum of squares and is given by

SSRes =
∑

(yi − ŷi)
2
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Analogous to the relationship between the deviations we get

(total variation) = (explained variation) + (unexplained variation)∑
(yi − ȳ)

2
=

∑
(ŷi − ȳ)

2
+

∑
(yi − ŷi)

2

(proving this relationship is true is not a trivial matter). Rewriting this equation we get

(explained variation) = (total variation) − (unexplained variation)∑
(ŷi − ȳ)

2
=

∑
(yi − ȳ)

2 − ∑
(yi − ŷi)

2

SSReg = SSTot − SSRes.

Therefore, the “percentage” of the total variation explained by the regression equation is

R2 =
SSTot − SSRes

SSTot
. (2.16)

This is the definition of the coefficient of determination . The closer R2 is to 1, the better
the line fits the data. An R2 value close to 0 indicates a very poor fitting line.

Example 2.7.2 (Calculating R2)
To use formula (2.16) to calculate R2 for the regression line fit to the noisy data, follow
these steps:

1. Modify the worksheet R2 as in Figure 2.46.

14
15
16

A B

Average = =AVERAGE(B2:B11)
Slope = =SLOPE(B2:B11,A2:A11)

y-int = =INTERCEPT(B2:B11,A2:A11)

FIGURE 2.46

2. Add the formulas in Figure 2.47 and copy row 2 down to row 11.

1
2

C D E
Predicted SSTot SSRes

=A2*$B$15+$B$16 =(B2-$B$14)^2 =(B2-C2)^2

FIGURE 2.47

3. Add the formulas in Figure 2.48.

13

14

C D E
Sum = =SUM(D2:D11) =SUM(E2:E11)

R2 = =(D13-E13)/D13

FIGURE 2.48

4. Add a linear trendline to the graph of the data. Under Options, select “Display R-
squared value on chart.” Note that this R2 value is equal to what we calculated.
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5. Press the F9 key several times. Each time you press it, the random numbers in the
noise are regenerated and a new set of data is created. Your R2 value in cell E14
should equal the one automatically generated by Excel each time.

Notice that the R2 value is not exactly one. That is because our data has some noise,
so the underlying linear relationship y = 3+ 2x, or any other linear relationship, does
not account for all of the variation from the mean. The R2 value is, however, very
close to 1. This indicates that the regression line does fit the data very well.

6. To add more noise to the data, modify the formulas in the worksheet R2 as in Figure
2.49 and copy cell B2 down to row 11. Now the noise is normally distributed with
mean 0 and standard deviation 4, so it is more “spread out” than before.

1
2

B
y

=3+2*A2+NORMINV(RAND(),0,4)

FIGURE 2.49

Notice that the R2 value is less than before. The straight line cannot account for as
much of the variation from the mean because of the greater noise.

As mentioned above, one purpose for finding a regression equation is to estimate the
values of β0 and β1 in the relationship y = β0 + β1x+ ε. The R2 value is not a measure of
the accuracy of these estimates. It is simply a measure of how well the regression line fits
the observed data.

Example 2.7.3 (Applying R2 to Linearizable Models)
Consider the linearizable models fit to the life expectancy data in Section 2.6. We can
compare how well the different models fit the data by calculating the R2 value for each
model and then comparing the R2 values. To calculate the R2 value for a linearizable
model, we calculate the R2 value for the straight line fit to the transformed data.

1. In the worksheet Power from Section 2.6, display the R2 value for the linear trendline
on the graph of lnL vs. lnP by right-clicking on the trendline, and selecting Format
Trendline. . . → Options → Display R-squared value on chart. Note this value
is 0.8152 indicating a good fitting model.

2. Also in the worksheet Power, right-click on the power trendline on the graph of L
vs. P . Select Format Trendline. . . → Options → Display R-squared value on
chart. This is the same R2 value.

Repeat this process for the logarithmic and exponential models derived in Examples
2.6.1 and 2.6.3. We can now compare how well these models fit the data by comparing their
R2 values:

Logarithmic Power Exponential
0.8255 0.8152 0.6864

We see that the power and logarithmic models fit the data very well with the logarithmic
model being slightly better. The exponential model does not fit as well. Thus, based strictly
on the R2 values, we would conclude that the logarithmic model fits the data the best. This
agrees with our earlier conclusion.
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We warn against blindly using R2 values to choose a best model. These values should be
used as only one factor when choosing a best model. Other factors that should be considered
are the nature of the behavior being analyzed and the simplicity of the model.

For instance, population growth is often exponential. So if we fit curves to some data of
a population, we may want to favor an exponential model over other types even if it has a
lower R2 value.

In “Modeling the U.S. Population” (AMATYC Review, Vol. 20, No. 2, Spring 1999, pages
17–29), Sheldon Gordon makes the point that, “The best choice (of a model) depends on the
set of data being analyzed and requires an exercise in judgement, not just computation.”

Exercises

2.7.1 The data below contain the weights (in lbs) and highway miles per gallon (MPG) of
several cars. Calculate SSReg, SSRes, SSTot, and R2 for the linear regression equation fit
to this data.

Weight (x) 3250 3425 2400 2250

MPG (y) 26 28 37 38

2.7.2 The data below contain the amounts of nitrogen applied to different corn fields (in
lbs/acre) and the resulting yields (in bushels/acre). Use the definitions to calculate SSReg,
SSRes, SSTot, and R2 for the linear regression equation fit to this data.

Nitrogen (x) 0 60 120 180 240

Yield (y) 78 90 140 162 210

2.7.3 The table below gives average rebounds per game (RPG) and average points scored
per game (PPG) of 11 players on a university basketball team (data collected by Alexa
Hopping, 2012). Calculate R2 for the linear regression equation fit to this data. Based on
the R2 value, is RPG a very good predictor of PPG?

RPG (x) 3.1 2.8 6.7 2.5 1.5 1.4 4.8 1.4 3.7 4.1 3.6

PPG (y) 8.6 4.5 7.1 15.8 1.6 5.2 8 2.8 4 14.5 5

2.7.4 The data below contain the diameter of the trunk at chest height and volume of
wood in several pine trees. Use the trendline function in Excel to model Volume in terms of
Diameter with several different linearizable models and select the best one. Briefly explain
how you decided which one is best.

Diameter 32 29 24 45 20 30 26 40 24 18

Volume 185 109 95 300 30 125 55 246 60 15

2.7.5 Another measure of how well a linear regression line fits a set of data is the standard
error of estimate, denote by se. It is defined by

se =

√∑
(yi − ŷ)

2

n− 2
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Equivalently, we could define it by

se =

√
SSRes

n− 2

The smaller se is, the better the fit. This quantity is also an estimate of the standard
deviation of the noise ε in the relationship y = β0 + β1x+ ε.

Modify the worksheet R2 to calculate se for the linear model fit to the data with some
noise. How close is se to the true standard deviation of the noise? Try different values of
the standard deviation of the noise.

2.7.6 Let ŷ = β̂0 + β̂1x be the least–squares regression equation fit to a set of data
{(xi, yi) : i = 1, . . . , n} and let ŷi be an estimate of yi based off this equation.

a. Modify the worksheet R2 to illustrate these two properties:

n∑
i=1

(yi − ŷi) = 0 and

n∑
i=1

xi(yi − ŷi) = 0

b. Also modify the worksheet R2 to illustrate this property:

n∑
i=1

(yi − ȳ)
2
=

n∑
i=1

(ŷi − ȳ)
2
+

n∑
i=1

(yi − ŷi)
2

In other words, show that

SSTot = SSReg + SSRes

c. Illustrate that none of these three properties hold if we use a slope other than β̂1 or a
y–intercept other than β̂0 to calculate ŷi. In other words, show that these properties
do not hold if we use a slope other than that given by the Excel formula SLOPE or a
y–intercept other that that given by INTERCEPT to calculate the predicted value
of y.

d. Use the properties in part 1 to prove the property in part 2. Hint: Start with

n∑
i=1

(yi − ȳ)
2
=

n∑
i=1

(yi − ȳ + ŷi − ŷi)
2
=

n∑
i=1

((ŷi − ȳ) + (yi − ŷi))
2

expand the right–hand side and rewrite so that you get the terms
n∑

i=1

(ŷi − ȳ)
2
,

n∑
i=1

(yi − ŷ)
2
,

n∑
i=1

(yi − ŷi), and
n∑

i=1

xi (yi − ŷi).

2.7.7 Let ŷ = β̂0 + β̂1x be the least–squares regression equation fit to a set of data
{(xi, yi) : i = 1, . . . , n}. Modify the worksheet R2 to illustrate this property:

R2 = β̂2
1 ·

n
∑

x2
i −

(∑
xi

)2

n
∑

y2i −
(∑

yi

)2 .
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2.7.8 The R2 value for a linearizable model is defined to be the R2 value for the straight
line fit to the transformed data. We might wonder if we could also use the definition of R2,
Equation (2.16), directly from the model. The answer is, it depends.

a. In the worksheet ln, use Equation (2.16) to calculate the R2 value directly from the
model. This means, use the logarithmic model to calculate ŷi (the predicted values),
and then use these values to calculate SSRes. Calculate SSTot using the definition
(note that the y-values in the definition are the values of L), and then use Equation
(2.16) to calculate R2. Does this give the same results as the power trendline function
and the linear trendline fit to the transformed data?

b. Repeat part a. for the worksheet Power.

c. Repeat part a. for the worksheet Exponential.

For Further Reading

• For more examples of modeling with proportionality, see GIORDANO/WEIR/FOX, A
First Course in Mathematical Modeling, 3e, 2003, pages 95 – 96, c©Brooks/Cole, a part
of Cengage Learning, Inc.

• For examples of modeling biological systems with proportionality, see A.J. Clark, Com-
parative Physiology of the Heart, Macmillan, 1927.

• For more information on least–squares solutions and their applications to linearizable
models, see Lay, David C., Linear Algebra and its Applications, Third edition, Pearson
Addison Wesley, 2006, pg. 409 – 425. Also see the references given on page 424 of this
text.
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Linear Algebra

Chapter Objectives

• Introduce the basics of using matrices and solving systems of equations

• Model with systems of equations

• Fit polynomial models to data

• Introduce multiple regression

• Introduce spline models

3.1 Linear Algebra Basics

Elementary linear algebra deals with solving systems of linear equations and operations on
matrices. As we will see throughout this chapter, systems of linear equations and matrices
have a wide variety of applications. In this section we introduce some basic matrix operations
and techniques for solving systems of equations used in this book. We begin with an example
of solving simple systems of linear equations.

Example 3.1.1 (Systems of Linear Equations)
Consider the system of linear equations

x+ 2y = 2

3x− 4y = 6.

A solution to this system is a value of x and a value of y that satisfy both equations
simultaneously. To algebraically find a solution, if it exists, one approach is to multiply the
equations by appropriate non-zero constants and add them in such a way that only one
variable remains. For instance, we could multiply the first equation by −3:

−3x− 6y = −6

3x− 4y = 6,

and then add the two equations together to get

0x− 10y = 0,

which can easily be solved to get y = 0. Then we can plug this value into one of the original
equations, say the first equation, to get

x+ 2(0) = 2 ⇒ x = 2.

67
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Thus the unique solution is x = 2, y = 0. Graphically, we can think of solving a system
of equations such as this as finding the point of intersection of the lines x + 2y = 2 and
3x − 4y = 6 (or equivalently, y = −x/2 + 1 and y = 3x/4 − 3/2). This graph is shown in
Figure 3.1. We see the lines intersect at the unique point (2, 0).

-3

-1

1

3

-1 1 3

x + 2y = 2

3x - 4y = 6

FIGURE 3.1

Not every system of linear equations has a unique solution. Consider the system

x+ 2y = 2

x+ 2y = −2.

The graphs of these two lines are shown in Figure 3.2. We see that the lines are parallel, so
they never intersect meaning there is no solution.

-3

-1

1

3

-1 1 3

x + 2y = 2

x + 2y = -2

FIGURE 3.2

Other systems have infinitely many solutions. Consider the system

x+ 2y = 2

2x+ 4y = 4.

Note that the second equation is simply 2 times the first equation. This means that any
solution to the first equation will be a solution to the second equation. Graphically, this
means these two equations have the same graph. The graphs of these two lines are shown
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in Figure 3.3. There appears to be only one line because the lines lie on top of each other.
These two lines intersect in infinitely many points, so there are infinitely many solutions to
this system.

-3

-1

1

3

-1 1 3

x + 2y = 2

2x + 4y = 4

FIGURE 3.3

This analysis applies to systems with any number of variables. In general, a system
of linear equations can have either one unique solution, no solution, or infinitely many
solutions.

Observe that the method for algebraically solving a system of equations presented in
Example 3.1.1 involved only arithmetic and that the most important part of the process is
the numbers involved. If we keep our work neatly organized, we don’t really need to write
the variables in each step. To this end, we write the coefficients of the variables and the
constants on the right-hand sides of the equations in the following form:[

1 2
3 −4

]
and

[
2
6

]
.

This leads to our definition of a matrix and a vector.

Definition 3.1.1.

• A matrix is a two-dimensional array of numbers.

• The size of a matrix is denoted a× b where a is the number of rows and b is the number
of columns (rows are horizontal and columns are vertical).

• A column vector is a matrix with one column and a row vector is a matrix with one
row. In this book when we refer to a generic vector, we mean a column vector.

• The size of a vector is denoted by the number of rows and is referred to as the dimension
of the vector.

• The symbol Rn denotes the set of all vectors of dimension n.

Matrices are usually named with capital letters, such as A, and vectors are named with
bold-face lower-case letters, such as b. When writing a vector by hand, we often use a
lower-case letter with an overhead arrow, such as �b. For example,

A =

[
1 2 3
4 0 −1

]
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is a 2× 3 matrix and

b =

⎡
⎣ −2

1
3

⎤
⎦

is a 3× 1 matrix, or a 3-dimensional vector. A vector can be written vertically using square
brackets, as above, or it may be written horizontally using parentheses, as b = (−2, 1, 3).

The numbers inside a matrix are called elements. The position of an element is described
by its row and column. For example, the element −1 in matrix A is in row 2, column 3. We
say that it is in location (2, 3).

Next we present by example some operations we can do with matrices and vectors.

Example 3.1.2 (Scalar Multiplication)
In the context of linear algebra, a scalar is another word for a real number. So scalar
multiplication means we multiply a real number by a matrix or vector. To do this, we
simply multiply each element of the matrix or vector by the real number. For the matrix A
and vector b defined above we can calculate, for example,

3A =

[
3(1) 3(2) 3(3)
3(4) 3(0) 3(−1)

]
=

[
3 6 9
12 0 −3

]
and − 2b =

⎡
⎣ −2(−2)

−2(1)
−2(3)

⎤
⎦ =

⎡
⎣ 4

−2
−6

⎤
⎦ .

Note that we cannot do a calculation such as 3+A or −2−b. In other words, we cannot do
“scalar addition” or “scalar subtraction,” although we can add or subtract two scalars.

Example 3.1.3 (Matrix Addition)
Matrices of the same size may be added by adding corresponding entries. For example[

1 2
3 4

]
+

[
5 6
7 8

]
=

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8
10 12

]
.

Subtraction works in the same way. Note that only matrices, or vectors, of the same size
may be added or subtracted.

Example 3.1.4 (Matrix Multiplication)
Consider multiplying the matrix A times the vector b as defined above. This can be done
as follows:

Ab =

[
1 2 3
4 0 −1

]⎡⎣ −2
1
3

⎤
⎦ =

[
1(−2) + 2(1) + 3(3)

4(−2) + 0(1) + (−1)(3)

]
=

[
9

−11

]

Note that this calculation involves multiplying a 2 × 3 matrix by a 3 × 1 matrix and the
product is a 2× 1 matrix. For a product of matrices to be defined, the “inside” dimensions
of the factors must be equal. The “outside” dimensions of the factors give the size of the
product. More precisely, the column dimension of the first matrix must equal the row
dimension of the second matrix. The row dimension of the first matrix and the column
dimension of the second matrix give the size of the product. In this example the product
bA is not defined because the dimensions do not match up. Also note that we do not use
the symbols × or · to denote matrix multiplication. These symbols are reserved for other
linear algebra operations.

To multiply Ab in Excel, format a blank worksheet as in Figure 3.4.
Next, select the range G2:B2, type =MMULT(A2:C3,E2:E4), and press the com-

bination of keys Ctrl-Shift-Enter (this combination tells Excel to compute an array for-
mula). The results are shown in Figure 3.5. Notice that when you select any cell in the
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1
2
3
4

A B C D E F G
A b Ab

1 2 3 -2
4 0 -1 1

3

FIGURE 3.4

1
2
3

G
Ab

9
-11

FIGURE 3.5

range G2:G3, the formula is in curly brackets, {...}. This indicates that an array formula
has been entered. Also note that to perform a matrix calculation in Excel, you must first
know the size of the result.

We can also multiply a matrix by a non-vector matrix as follows:

CD =

[
1 2
3 4

] [ −1 0
−2 1

]
=

[
1(−1) + 2(−2) 1(0) + 2(1)
3(−1) + 4(−2) 3(0) + 4(1)

]
=

[ −5 2
−11 4

]

The product DC can be calculated,

DC =

[ −1 0
−2 1

] [
1 2
3 4

]
=

[ −1(1) + 0(3) −1(2) + 0(4)
−2(1) + 1(3) −2(2) + 1(4)

]
=

[ −1 −2
1 0

]
,

but note that CD �= DC. This illustrates that matrix multiplication is not commutative.
To calculate the product CD in Excel, format a blank worksheet as in Figure 3.6.

1
2
3

A B C D E F G H

1 2 -1 0
3 4 -2 1

C D CD

FIGURE 3.6

Next, select the range G2:H3, type =MMULT(A2:B3,D2:E3), and press Ctrl-
Shift-Enter. The result is shown in Figure 3.7.

1
2
3

G H

-5 2
-11 4

CD

FIGURE 3.7
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Example 3.1.5 (Transpose)
To calculate the transpose of a matrix A, denoted AT , we simply switch the rows and
columns. Using the matrix A given above,

AT =

⎡
⎣ 1 4

2 0
3 −1

⎤
⎦

Note that the dimensions of AT are the dimensions of A switched around. To perform this
calculation in Excel, format a blank worksheet as in Figure 3.8.

1
2
3

A B C D E F

A
1 2 3
4 0 -1

AT

FIGURE 3.8

Next, select the range E2:F4, type =TRANSPOSE(A2:C3), and press Ctrl-Shift-
Enter.

Example 3.1.6 (Length of a Vector)
Geometrically a 2-dimensional vector b = (b1, b2) can be thought of as an arrow that starts
at the origin (0, 0) and terminates at the point (b1, b2) on the x − y plane. The length of
the vector b, denoted ‖b ‖, is the distance of this point from the origin. The length is also
called the norm or Euclidean norm of the vector and is calculated as

‖b ‖ =
√

b21 + b22.

This definition can be generalized to vectors of any dimension. The distance between
two vectors d and c of the same dimension is defined as

‖d− c ‖
where d − c is the component-by-component difference of the vectors. For d = (1, 1) and
c = (2, 1) we have

‖d− c ‖ =

∥∥∥∥
[

1
1

]
−
[

2
1

]∥∥∥∥ =

∥∥∥∥
[ −1

0

]∥∥∥∥ =

√
(−1)

2
+ 02 = 1.

To perform this calculation in Excel, format a blank worksheet as in Figure 3.9.

1
2
3

A B C D E F G
d c d - c |d - c|

1 2 =A2-C2 =SQRT(SUMSQ(E2:E3))
1 1 =A3-C3

FIGURE 3.9

Next we defined an important special matrix, the identity matrix.
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Definition 3.1.2. The identity matrix In is an n×n matrix (meaning the number of rows
equals the number of columns, called a square matrix) with 1’s along the main diagonal
(from the top left corner to the bottom right corner) and 0’s everywhere else. For example,
the 2× 2 identity matrix is

I2 =

[
1 0
0 1

]
In is called an identity matrix because Inv = v for any n-dimensional vector v.

Earlier we defined matrix multiplication, so the reader might wonder about matrix
division. We cannot divide matrices, but we can multiply a matrix by its inverse, when it
exists.

Definition 3.1.3. The inverse of an n× n matrix A, denoted A−1, is a matrix such that

AA−1 = A−1A = In.

We stress three important points about inverse matrices:

1. Only square matrices can have inverses.

2. Not every square matrix A has an inverse. If an inverse exists, A is said to be invertible.

3. Calculating an inverse is not a trivial matter (see Exercise 3.1.10 for one invertibility
requirement and related algorithm).

See, for example, Lay, D., Linear Algebra and its Applications, 5th edition, 2016, Pearson,
for more details about matrix inverses.

Example 3.1.7 (Calculating a Matrix Inverse)

To calculate the inverse of the matrix A =

[
1 2
3 −4

]
, format a blank worksheet as in

Figure 3.10.

1
2
3

A B C D E

1 2
3 -4

A A-1

FIGURE 3.10

Next, select the range C2:E3, type =MINVERSE(A2:B3), and press Ctrl-Shift-
Enter. The result is shown in Figure 3.11.

1
2
3

D E

0.4 0.2
0.3 -0.1

A-1

FIGURE 3.11

The reader should confirm by direct calculation that AA−1 = A−1A = I2.
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Example 3.1.8 (Systems of Linear Equations)
Consider again the system of linear equations

x+ 2y = 2

3x− 4y = 6

from Example 3.1.1 which we solved algebraically and graphically. Now we show how it can
be solved with matrices. First we write the system in the following matrix form:[

1 2
3 −4

] [
x
y

]
=

[
2
6

]
,

or more generically, Ax = b. Matrix A =

[
1 2
3 −4

]
is called the coefficient matrix, vector

x =

[
x
y

]
is called the unknown vector, and vector b =

[
2
6

]
is called the constant vector.

To solve a system Ax = b where A is n× n we can multiply both sides by A−1 (assuming
A−1 exists):

A−1 (Ax = b)

A−1Ax = A−1b

Inx = A−1b

x = A−1b.

To solve this particular system in Excel, format a blank worksheet as in Figure 3.12.

1
2
3
4

5
6
7

A B C D
b

1 2 2
3 -4 6

A-1b

A

A-1

FIGURE 3.12

Next, select the range A6:B7, type =MINVERSE(A2:B3), and press Ctrl-Shift-
Enter. Then select the range D6:D7, type =MMULT(A6:B7,D2:D3), and press Ctrl-
Shift-Enter. The result is shown in Figure 3.13.

5
6
7

A B C D

A-1b
0.4 0.2 2
0.3 -0.1 0

A-1

FIGURE 3.13
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The results in the range D6:D7 show that the solution to the system is x = 2, y = 0, the
same as is found algebraically and graphically in Example 3.1.1. Observe that the coefficient
matrix in this example is invertible and there is a unique solution. This observation is true
in general for systems with any number of variables.

Example 3.1.9 (Augmented Matrices)
A linear system such as the previous example can also be solved using an augmented matrix.
To form this augmented matrix we combine matrix A and vector b into one 2× 3 matrix:[

1 2 2
3 −4 6

]

Next we perform elementary row operations on the augmented matrix. There are three
possible elementary row operations:

1. Switch two rows of a matrix.

2. Multiply all elements of a row by a nonzero constant.

3. Add the elements of a row to the corresponding elements of another row.

These row operations are inspired by the algebraic solution in Example 3.1.1. Any combi-
nation of these operations is also allowed. In this example, we first multiply the first row by
−3 and add it to the second row and place the result in row 2, denoted −3R1 +R2 → R2:[

1 2 2
0 −10 0

]

The first row does not change. Next we perform −(1/10)R2 → R2:[
1 2 2
0 1 0

]

Lastly we perform −2R2 +R1 → R1: [
1 0 2
0 1 0

]

Call this matrix B. The sequence of operations we just performed is generically called
row-reduction or Gauss-Jordan elimination. Matrix B is called the reduced row echelon
form (RREF) of the system. We say that B is row equivalent to the original matrix. This
means that B represents a system of equations with the same set of solutions as the original
system. Converting B to a system of equations yields x = 2 and y = 0, the solution to the
original system.

A matrix is in RREF if the following two conditions are met:

1. The first non-zero element in each row is a 1 (called a leading 1).

2. Each element above or below a leading 1 is 0.

Once an augumented matrix is reduced to its RREF, we can simply read the solution off
the matrix (assuming there is a unique solution). No additional work is necessary. We can
show theoretically that every matrix is row equivalent to exactly one matrix in RREF. The
sequence of row operations used to find the RREF of a matrix is not unique, but the final
result is unique.
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We can perform this row-reduction in Excel by formatting a blank worksheet as in Figure
3.14. Note that the entries in column E simply denote the operations done in each step. The
’ (a single quotation mark) at the beginning of each cell prevents Excel from interpreting
the entry as a formula.

1
2
3
4
5
6
7
8
9
10
11

A B C D E
Step 1 1 2 2

3 -4 6

Step 2 =B1 =C1 =D1
=-3*B1+B2 =-3*C1+C2 =-3*D1+D2 '-3R1 + R2

Step 3 =B4 =C4 =D4
=-1/10*B5 =-1/10*C5 =-1/10*D5 '-(1/10)R2

Step 4 =-2*B8+B7 =-2*C8+C7 =-2*D8+D7 '-2R2 + R1
=B8 =C8 =D8

FIGURE 3.14

The final result is shown in Figure 3.15.

10
11

A B C D E
Step 4 1 0 2 -2R2 + R1

0 1 0

FIGURE 3.15

Example 3.1.10 (Solving a System with 3 Variables)
Row-reduce the augmented matrix to its RREF to solve the system

2x+ y + 3z = 10

x+ y + z = 6

x+ 3y + 2z = 13

The augmented matrix is ⎡
⎣ 2 1 3 10

1 1 1 6
1 3 2 13

⎤
⎦

First we perform the row operations R1 − 2R2 → R2 and R1 − 2R3 → R3:⎡
⎣ 2 1 3 10

0 −1 1 −2
0 −5 −1 −16

⎤
⎦

Next we perform −5R2 +R3 → R3:⎡
⎣ 2 1 3 10

0 −1 1 −2
0 0 −6 −6

⎤
⎦
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Then we perform R1 +R2 → R1, −R2 → R2, and −(1/6)R3 → R3:⎡
⎣ 2 0 4 8

0 1 −1 2
0 0 1 1

⎤
⎦

Lastly, we perform (1/2)R1 − 2R3 → R1 and R2 +R3 → R2:⎡
⎣ 1 0 0 2

0 1 0 3
0 0 1 1

⎤
⎦

This final matrix is in RREF and we see the solution is x = 2, y = 3, and z = 1.
To do this row-reduction in Excel, format a blank worksheet as in Figure 3.16.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

A B C D E F
Step 1 2 1 3 10

1 1 1 6
1 3 2 13

Step 2 =B1 =C1 =D1 =E1
=B1-2*B2 =C1-2*C2 =D1-2*D2 =E1-2*E2 'R1 - 2R2
=B1-2*B3 =C1-2*C3 =D1-2*D3 =E1-2*E3 'R1 - 2R3

Step 3 =B5 =C5 =D5 =E5
=B6 =C6 =D6 =E6
=-5*B6+B7 =-5*C6+C7 =-5*D6+D7 =-5*E6+E7 '-5R2 + R3

Step 4 =B9+B10 =C9+C10 =D9+D10 =E9+E10 'R1 + R2
=-B10 =-C10 =-D10 =-E10 '-R2
=-1/6*B11 =-1/6*C11 =-1/6*D11 =-1/6*E11 '-(1/6)R3

Step 5 =1/2*B13-2*B15 =1/2*C13-2*C15 =1/2*D13-2*D15 =1/2*E13-2*E15 '(1/2)R1 - 2R3
=+B14+B15 =+C14+C15 =+D14+D15 =+E14+E15 'R2 + R3
=B15 =C15 =D15 =E15

FIGURE 3.16

The final result is shown in Figure 3.17.

17
18
19

A B C D E F
Step 5 1 0 0 2 (1/2)R1 - 2R3

0 1 0 3 R2 + R3
0 0 1 1

FIGURE 3.17
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Example 3.1.11 (A System with No Solution)
As shown in Example 3.1.1, some systems have no solution. In this example we examine
what this means in terms of an augmented matrix. Consider the system

3x+ 6y − 3z = 6

3x+ 6y − 2z = 10

−2x− 4y − 3z = −1

The augmented matrix for this system is⎡
⎣ 3 6 −3 6

3 6 −2 10
−2 −4 −3 −1

⎤
⎦

Row-reducing this matrix with an appropriate sequence of row operations yields⎡
⎣ 1 2 0 0

0 0 1 0
0 0 0 1

⎤
⎦

Converting this last row to an equation yields 0 = 1, an obvious contradiction. This means
there is no solution to this system.

Example 3.1.12 (A System with Many Solutions)
As shown in Example 3.1.1, some systems have infinitely many solutions. In this example
we examine what this means in terms of the reduced form of an augmented matrix. As we
will see in the next section, systems of this type occur frequently in applications. Consider
the system

x+ 2y − z = 3

2x+ 4y − 2z = 6

3x+ 6y + 2z = −1

The augmented matrix for this system is⎡
⎣ 1 2 −1 3

2 4 −2 6
3 6 2 −1

⎤
⎦

Row-reducing this matrix with an appropriate sequence of row operations yields⎡
⎣ 1 2 0 1

0 0 1 −2
0 0 0 0

⎤
⎦

Converting this augmented matrix back to a system of equations yields

x+ 2y = 1

z = −2

0 = 0

The last equation is meaningless. The second equation gives us the value of z. The first
equation doesn’t give a specific value of any variable, but it does give us a relationship
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between x and y. We can rewrite this equation as x = 1− 2y. The variable y is called a free
variable, meaning it can take any value it wants. We rewrite the result in this form:

x = 1− 2y

y is free

z = −2

This result is called the general solution of the system. We get a specific solution by choosing
a value of y and calculating x. For instance, choosing y = 1 yields the specific solution
x = −1, y = 1, z = 0.

Exercises

Directions: In Exercises 3.1.1 - 3.1.6, calculate each in Excel. Make sure you label the
calculations in the worksheets appropriately as done in the examples.

3.1.1

⎡
⎣ 1 7 −8

5 0 −1
2 7 0

⎤
⎦
⎡
⎣ 4

0
−3

⎤
⎦

3.1.2

⎡
⎣ 1 7 5 −1

−5 0 −3 2
7 1 6 −3

⎤
⎦
⎡
⎢⎢⎣

5 7
3 3
5 −5
8 1

⎤
⎥⎥⎦

3.1.3

⎡
⎣ 1 0

2 3
4 5

⎤
⎦
T

3.1.4 Find the distance between

⎡
⎣ 1

7
−9

⎤
⎦ and

⎡
⎣ −9

1
7

⎤
⎦.

3.1.5 Let B =

⎡
⎣ 7 1 −8

2 7 −3
−1 0 2

⎤
⎦. Calculate B−1 and show that B−1B = I3.

3.1.6 Use matrices to solve the system

2x+ 3y + z = 2

−3x− 4y + 9z = 1

8x+ 6y − 9z = 3.

Directions: In Exercises 3.1.7 - 3.1.9, write the augmented matrix for each system of linear
equations and find the solution by row-reducing.

3.1.7

x1 + 5x2 = 7

−2x1 − 7x2 = −5
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3.1.8

2x1 + 4x2 = −4

5x1 + 7x2 = 11

3.1.9

x1 − 3x2 = 5

−x1 + x2 + 5x3 = 2

x2 + x3 = 0

3.1.10 One theoretical requirement for an n×n matrix A to be invertible is that it be row
equivalent to the n×n identity matrix In. That is, we must be able to row-reduce A to In.
This leads to the following algorithm for finding A−1:

1. Form the augmented matrix B = [A | In]. That is, form an n × 2n matrix where the
left half is A and the right half is In.

2. Row-reduce B to the form
[
In |A−1

]
. That is, row-reduce B until the left half is In.

The right half will be A−1.

Use this algorithm to find the inverse of each of the following matrices. Show the row-
reduction steps used and check your work by using the MINVERSE function as in Example
3.1.7.

a.

[
1 2
3 −4

]

b.

⎡
⎣ 1 −1 −2

2 −3 −5
−1 3 5

⎤
⎦

c.

⎡
⎢⎢⎣

−1 0 −1 −1
−3 −1 0 −1
5 0 4 3
3 0 3 2

⎤
⎥⎥⎦

3.1.11 A simple formula for the inverse of a 2× 2 matrix A =

[
a b
c d

]
is

A−1 =
1

(ad− bd)

[
d −b

−c a

]
.

The quantity (ad− bd) is called the determinant . A is invertible if and only if its determinant
is not 0.

a. Show that

1

(ad− bd)

[
d −b

−c a

] [
a b
c d

]
= I2 and

[
a b
c d

](
1

(ad− bd)

[
d −b

−c a

])
= I2.

That is, show that the formula for A−1 satisfies the definition of the inverse of A. Note
that 1/ (ad− bd) is simply a scalar. You may do the matrix multiplication first and
then multiply the product by the scalar.

b. Use this formula to find the inverse of A =

[
4 −6
2 −2

]
.
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3.2 Modeling with Systems of Equations

Elementary applications of linear algebra often involve describing a scenario with a system
of equations and then solving the system. In this section we present four such applications:
traffic flow, balancing chemical equations, and two economics applications.

Example 3.2.1 (Traffic Flow)
Consider the network of streets in Figure 3.18. The numbers and variables in the figure
represent the traffic flow, measured in vehicles per hour (vph), along each street segment.
The goal is to find the values of x1 through x4 and analyze the flow of traffic. 
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850  350 

650 
 ଷݔ

D C

 ଶݔ
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FIGURE 3.18

Our model is based on the following rather obvious assumption:

All traffic that enters an intersection must leave the intersection.

We organize the flow in and out of each intersection in the following table:

Intersection Traffic In Traffic Out Equation

A x1 + x2 450 + 275 = 725 x1 + x2 = 725
B 400 + 175 = 575 x1 + x4 575 = x1 + x4

C x3 + x4 650 + 350 = 1000 x3 + x4 = 1000
D 850 + 300 = 1150 x2 + x3 1150 = x2 + x3

Rewriting the four equations results in the final model:

x1 + x2 = 725

x1 + x4 = 575

x3 + x4 = 1000

x2 + x3 = 1150

To solve this system, we use techniques from Section 3.1. We can write this system in the
form Ax = b and try to calculate x = A−1b, but it turns out the matrix A is not invertible.
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Thus we must use row-reduction. We write the augmented matrix and row-reduce it:⎡
⎢⎢⎣

1 1 0 0 725
1 0 0 1 575
0 0 1 1 1000
0 1 1 0 1150

⎤
⎥⎥⎦ ⇒

⎡
⎢⎢⎣

1 0 0 1 575
0 1 0 −1 150
0 0 1 1 1000
0 0 0 0 0

⎤
⎥⎥⎦

This yields the general solution

x1 = 575− x4

x2 = 150 + x4

x3 = 1000− x4

x4 is free

The fact that there is a free variable means that traffic can flow through this network in
infinitely many ways, a result that should not be surprising. For example, if we know that
on a given day, x4 = 250, we would have x1 = 325, x2 = 400, and x3 = 750 vph.

With this general solution we can do more than simply calculate specific traffic flows.
From the equation x1 = 575−x4 we see that the maximum value of x4 is 575 vph; otherwise
x1 would be negative. Also, the equation x2 = 150+ x4 tells us the minimum value of x2 is
150 since x4 cannot be negative. Thus if we were planning roadwork along the road segment
corresponding to x2 resulting in restricted traffic flow, we would need to make sure the road
could handle at least 150 vph.

Example 3.2.2 (Balancing Chemical Equations)
In a chemical reaction, substances (called reactants, often in the form of molecules) com-
posed of atoms react to form new substances (called products). A simple assumption behind
every chemical reaction is:

Atoms cannot be created or destroyed in a reaction.

As a simple example, sulfur (S8) reacts with oxygen (O2) to form sulfur dioxide (SO2). This
is represented by the chemical equation

S8 +O2 → SO2.

A quick inspection of this equation reveals there are more sulfur atoms (S) on the left than
the right, which violates the assumption. Thus we need to determine how many of each
molecule react to form how many molecules of the product. This is called balancing the
equation. By inspection, a balanced version of this equation is

S8 + 8O2 → 8SO2.

Not every chemical equation can be balanced so easily by inspection. For example, ethylene-
diamine (C2H8N2) reacts with dinitrogen tetroxide (N2O4) to form nitrogen (N2), carbon
dioxide (CO2), and water (H2O) according to the equation

x1C2H8N2 + x2N2O4 → x3N2 + x4CO2 + x5H2O.

The coefficients x1, . . . , x5 represent the unknown number of each molecule involved. The
goal is to find appropriate integer values of these unknowns. We begin by equating the
number of each atom from each side of the equation:
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Atom Equation

C 2x1 = x4

H 8x1 = 2x5

N 2x1 + 2x2 = 2x3

O 4x2 = 2x4 + x5

Rewriting the four equations results in the final model:

2x1 − x4 = 0

8x1 − 2x5 = 0

2x1 + 2x2 − 2x3 = 0

4x2 − 2x4 − x5 = 0

We solve this model by row-reduction:⎡
⎢⎢⎣

2 0 0 −1 0 0
8 0 0 0 −2 0
2 2 −2 0 0 0
0 4 0 −2 −1 0

⎤
⎥⎥⎦ ⇒

⎡
⎢⎢⎣

1 0 0 0 −1/4 0
0 1 0 0 −1/2 0
0 0 1 0 −3/4 0
0 0 0 1 −1/2 0

⎤
⎥⎥⎦

This yields the general solution

x1 = 1/4x5

x2 = 1/2x5

x3 = 3/4x5

x4 = 1/2x5

x5 is free

To find a particular solution, we choose the smallest positive integer value of the free variable
so that all the other variables are positive integers. We choose x5 = 4, yielding x1 = 1,
x2 = 2, x3 = 3, and x4 = 2 so that the balanced equation is

C2H8N2 + 2N2O4 → 3N2 + 2CO2 + 4H2O.

Example 3.2.3 (Equilibrium Prices)
Consider a simple economy that consists of three sectors: Chemical, Electric, and Metal.
Each sector produces some yearly output (measured in millions of dollars). Each sector also
consumes a certain proportion of the output of the other sectors as illustrated in Figure
3.19. (A sector consuming a portion of its own output can be thought of as an operational
expense.)

Table 3.1, called an exchange table, summarizes this information. Note that each column
in this table adds up to exactly 1 to model the fact that each sector’s output is totally
consumed by the other sectors.
A reasonable assumption about a healthy economy is:

The total expenses of each sector must equal its output.
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FIGURE 3.19

TABLE 3.1

Proportion of Output from
Chemical Electrical Metal Purchased by

0.1 0.6 0.7 Chemical
0.5 0 0.1 Electrical
0.4 0.4 0.2 Metal

In other words, a sector’s expenses must equal its income. An economy satisfying this
assumption is said to be in equilibrium, and the resulting outputs are called equilibrium
prices . To find equilibrium prices, let xc, xe, and xm denote the outputs from chemical,
electrical, and metal, respectively. The assumption yields the system of equations

0.1xc + 0.6xe + 0.7xm = xc

0.5xc + 0.1xm = xe

0.4xc + 0.4xe + 0.2xm = xm

We rewrite this system by subtracting the quantities on the right hand side of the equation:

−0.9xc + 0.6xe + 0.7xm = 0

0.5xc − xe + 0.1xm = 0

0.4xc + 0.4xe − 0.8xm = 0

Then we solve by row-reduction:⎡
⎣ −0.9 0.6 0.7 0

0.5 −1 0.1 0
0.4 0.4 −0.8 0

⎤
⎦ ⇒

⎡
⎣ 1 0 −19/15 0

0 1 −11/15 0
0 0 0 0

⎤
⎦

This yields the general solution

xc = 19/15xm

xe = 11/15xm

xm is free.
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Any nonnegative choice for xm yields a specific set of equilibrium prices. For example, if
xm = 15, then xc = 19 and x3 = 11.

The previous applications all involved systems with infinitely many solutions. The next
example involves a unique solution.

Example 3.2.4 (The Leontief Input-Output Model)
In this example we present another economics application that resembles equilibrium prices,
but there are some key differences. One difference is that there will be an “open” sector
which consumes products but doesn’t produce anything.

Consider an open economy with three sectors: mining, electrical, and auto. To produce
$1 of mined material, the mining operation must purchase $0.1 of its own product, $0.3 of
electricity, and $0.1 worth of autos for its transportation. To produce $1 of electricity, it
takes $0.25 of mined material, $0.4 of electricity, and $0.15 of autos. Finally, to produce $1
worth of autos, the auto-manufacturing plant must purchase $0.2 of mined material, $0.5
of electricity, and consumes $0.1 of autos. Assume also that during a period of one year,
the open sector has a demand of $50 million worth of mined material, $75 million worth of
electricity, and $125 million worth of autos. Find the annual output of each sector in order
to satisfy demand.

To solve this problem we first organize the inter-sector demands in Table 3.2 called an
input-output matrix. This matrix looks much like an exchange table, but the entries of the
matrix represent dollar amounts, not proportions. Also note that the columns do not add
up to one and that the columns represent the purchaser, not the rows as in an exchange
table.

TABLE 3.2

$ Purchased by
Mining Electrical Auto Purchased from

0.1 0.25 0.2 Mining
0.3 0.40 0.5 Electrical
0.1 0.15 0.1 Auto

A reasonable assumption about this scenario is:

The total demand from each sector must equal its output.

Let xm, xe, and xa denote the annual outputs from mining, electrical, and auto, respectively.
The assumption yields the system of equations

0.1xm + 0.25xe + 0.2xa + 50 = xm

0.3xm + 0.40xe + 0.5xa + 75 = xe

0.1xm + 0.15xe + 0.1xa + 125 = xa

We could solve this system by rewriting and row-reducing like we did in Example 3.2.3,
but we’ll take a different approach. First we’ll rewrite the system in matrix form⎡

⎣ 0.1 0.25 0.2
0.3 0.40 0.5
0.1 0.15 0.1

⎤
⎦
⎡
⎣ xm

xe

xa

⎤
⎦+

⎡
⎣ 50

75
125

⎤
⎦ =

⎡
⎣ xm

xe

xa

⎤
⎦
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or more generically,
Ax+ d = x

where A is the input-output matrix, d is the demand vector from the open sector, and x is
the unknown output vector. Then we rewrite this matrix equation:

x−Ax = d

(In −A)x = d

x = (In −A)
−1

d.

For this example,

(In −A) =

⎡
⎣ 0.9 −0.25 −0.2

−0.3 0.60 −0.5
−0.1 −0.15 0.9

⎤
⎦

Using the MINVERSE function in Excel, we calculate

(In −A)
−1 ≈

⎡
⎣ 1.465 0.803 0.772

1.008 2.488 1.606
0.331 0.504 1.465

⎤
⎦

Thus

x ≈
⎡
⎣ 1.465 0.803 0.772

1.008 2.488 1.606
0.331 0.504 1.465

⎤
⎦
⎡
⎣ 50

75
125

⎤
⎦ =

⎡
⎣ 229.9

437.8
237.4

⎤
⎦

So mining should produce $229.9 million, electricity $437.8 million, and auto $237.4 million.
One benefit of doing the calculations with matrices rather than row-reduction is that if the
demand from the open sector were to change, then all we need to do is change d in the
calculation x = (In −A)

−1
d.

Exercises

3.2.1 Consider the road network in Figure 3.20.

a. Construct a system of linear equations that models the traffic flow and find the general
solution.

b. If x4 = 250 vph, find the values of x1, x2, and x3.

c. What is the minimum possible value of x4?

3.2.2 Consider the road network in Figure 3.21.

a. Construct a system of linear equations that models the traffic flow and find the general
solution.

b. What is the minimum possible value of x3?

c. What is the maximum possible value of x4?
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d. Suppose the 650 vph flowing into intersection D from the bottom were changed to
600 vph. Explain why there would be no solution to the resulting system of linear
equations that models the traffic flow.

3.2.3 Consider the road network in Figure 3.22.

a. Construct a system of linear equations that models the traffic flow and find the general
solution.

b. If x4 = 550 vph and x5 = 100 vph, find the values of x2, x3, and x4.

c. What is the minimum possible value of x4?

d. What is the minimum possible value of x4 − x5?

e. Can x5 ever be greater than x4? Briefly explain.

3.2.4 Balance each of the following chemical equations.

a. Propane reacts with oxygen to form carbon dioxide and water:

C3H8 +O2 → CO2 +H2O.

b. Potassium permanganate reacts with hydrochloric acid to form potassium chloride,
manganese(II) chloride, water, and chlorine gas:

KMnO4 +HCl → KCl +MnCl2 +H2O+Cl2.
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c. Benzoic acid reacts with oxygen to form carbon dioxide and water:

C6H5COOH+O2 → CO2 +H2O.

d. Sodium bicarbonate reacts with citric acid to form sodium citrate, water, and carbon
dioxide:

NaHCO3 +H3C6H5O7 → Na3C6H5O7 +H2O+CO2.

3.2.5 Consider an economy with two sectors: Manufacturing and Services. Each year, Man-
ufacturing sells 75% of its output to Services and the rest is an operational expense. Likewise,
Services sells 85% of its output to Manufacturing and consumes the rest.

a. Set up an exchange table for this economy.

b. Find the equilibrium prices if the annual output from Services is $30 million.

3.2.6 Consider an economy whose exchange table is given below. Find the equilibrium
prices if the annual output from Services is $46 million.

Prop. of Output from
Auto Services Food Purchased by

0.1 0.35 0.1 Auto
0.6 0.45 0.7 Services
0.3 0.2 0.2 Food

3.2.7 Consider an economy whose exchange table is given below. Find the equilibrium
prices if the annual output from Chemical is $10 million.

Proportion of Output from
Auto Metal Electrical Food Chemical Purchased by

0.15 0.3 0.25 0.05 0.3 Auto
0.4 0.05 0.15 0.3 0.3 Metal
0.25 0.25 0.23 0.35 0.15 Electrical
0.15 0.25 0.15 0.15 0.2 Food
0.05 0.15 0.22 0.15 0.05 Chemical
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3.2.8 Consider an economy consisting of two sectors, electrical and water, plus an open
sector. Suppose that the production of each dollar of electricity requires $0.3 of electricity
and $0.1 of water, and the production of each dollar of water requires $0.2 of electricity and
$0.4 of water. The demand of the open sector is $12 million for electricity and $8 million
for water. How much electricity and water should be produced to meet demand?

3.2.9 An economy is based on three sectors, agriculture, energy, and manufacturing, plus
an open sector. Production of each dollar of agriculture requires an input of $0.2 from the
agriculture sector and $0.4 from the energy sector. Production of each dollar of energy
requires an input of $0.2 from the energy sector and $0.4 from the manufacturing sector.
Production of each dollar of manufacturing requires an input of $0.1 from the agriculture
sector, $0.1 from the energy sector, and $0.3 from the manufacturing sector. Find the output
from each sector that is needed to satisfy a demand of $20 billion for agriculture, $10 billion
for energy, and $30 billion for manufacturing from the open sector.

3.3 Polynomials

Polynomial models are often convenient to use because they are easy to differentiate and
integrate. Theorem 3.3.1 is a well-known result from algebra about fitting a polynomial
model to data.

Theorem 3.3.1. Given a set of data, {(xi, yi) : i = 1, . . . , n}, where xi �= xj for all i �= j,
there exists a unique polynomial p (x) of degree at most n− 1 such that

p(xi) = yi for all i = 1, . . . , n

Graphically, this theorem means that the graph of y = p (x) goes through each data point
(i.e. it is a perfect fitting model). This sounds like a utopia, but is it really?

Example 3.3.1 (Three Data Points)
Consider the problem of fitting a second-degree polynomial of the form y = ax2 + bx+ c to
the set of three data points {(1, 2), (2, 4), (3, 5)}. This means we want values of a, b, and
c such that

a
(
12
)
+ b (1) + c = 2

a
(
22
)
+ b (2) + c = 4

a
(
32
)
+ b (3) + c = 5

This set of linear equations can be written in matrix form as⎡
⎣ 12 1 1

22 2 1
32 3 1

⎤
⎦
⎡
⎣ a

b
c

⎤
⎦ =

⎡
⎣ 2

4
5

⎤
⎦

This matrix equation has the generic form Ax = b where x = (a, b, c) is the vector of
unknowns. It can be shown that A is invertible. Thus there is a unique solution to this
matrix equation, x = A−1b. Doing this calculation using techniques from Section 3.1 yields
the solution x = (−0.5, 3.5, −1) so that the model is y = −0.5x2 + 3.5x− 1.
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Excel will automatically calculate this polynomial for us using an algorithm equivalent
to the one described above. Create a scatter–plot of the data in a blank worksheet and
right–click on one of the data points, select Add Trendline and add a polynomial curve
of degree 2. Under the Options tab, select Display equation on chart. The results are
shown in Figure 3.23. Note that the polynomial it gives is exactly the same as what we
calculated and that its graph goes through all three data points.

y = -0.5x2 + 3.5x - 1
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FIGURE 3.23

Next we add the point (4, 2) to the data set and fit a second degree polynomial to these
four data points. Ideally, we want to find a, b, and c such that

a
(
12
)
+ b (1) + c = 2

a
(
22
)
+ b (2) + c = 4

a
(
32
)
+ b (3) + c = 5

a
(
42
)
+ b (4) + c = 2

This set of equations can be written in matrix form as⎡
⎢⎢⎣

12 1 1
22 2 1
32 3 1
42 4 1

⎤
⎥⎥⎦
⎡
⎣ a

b
c

⎤
⎦ =

⎡
⎢⎢⎣

2
4
5
2

⎤
⎥⎥⎦ (3.1)

which, as before, has the generic form Ax = b. However, note that A is not square, so it is
not invertible. Further analysis reveals that this equation does not even have a solution, so
there is no polynomial that fits these four data points perfectly. We will have to settle for a
“best–fit” polynomial model. As in Chapter 2 when we fit a linear model to a set of data,
we will use a least–squares criterion to find our model. That is, we want a polynomial p (x)
that minimizes the number

S =

n∑
i=1

(yi − p(xi))
2
.

The resulting model is called a least–squares polynomial model. To find this model we will
find a least-squares solution to the matrix Equation (3.1).

Definition 3.3.1 (Least–squares Solution). Let A be an m × n matrix and b ∈ Rm. A
least-squares solution of Ax = b is a vector x̂ ∈ Rn such that

‖b−Ax̂‖ ≤ ‖b−Ax‖ for all x ∈ Rn.
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The idea behind this definition is that x̂ ∈ Rn gets Ax as close to b as possible. The
following theorem which we present without proof tells us how to find x̂.

Theorem 3.3.2. Every least–squares solution of Ax = b must satisfy the Normal equation

ATAx = AT b.

If ATA is invertible, then there is a unique least–squares solution x given by

x =
(
ATA

)−1
AT b (3.2)

Note that Theorem 3.3.2 does not say that a general matrix equation Ax = b has
a unique least-squares solution. In general, there may be many least-squares solutions.
However, if ATA is invertible, then the solution is unique. When fitting curves to data,
ATA is usually invertible so we can use Formula (3.2) to calculate x̂. This technique can
also be used to fit other types of models to data, as we will see later.

Example 3.3.2 (Calculating a Least–squares Solution)
To calculate x̂ using Formula (3.2) in Excel, we will first calculate AT , then ATA, then(
ATA

)−1
, then

(
ATA

)−1
AT , and then finally

(
ATA

)−1
AT b.

1. Rename a blank worksheet “Poly 4 points” and format it as in Figure 3.24.

1
2
3
4
5
6

A B C D E F G H
A b

x y =A3^2 =A3 1 =B3
1 2 =A4^2 =A4 1 =B4
2 4 =A5^2 =A5 1 =B5
3 5 =A6^2 =A6 1 =B6
4 2

Data

FIGURE 3.24

2. Format the spreadsheet as in Figure 3.25 to hold the various matrix calculations
needed.

8
9
10
11
12

13
14
15
16
17

18

A B C D E F G H

AT ATA

(ATA)-1 (ATA)-1AT

(ATA)-1ATb

FIGURE 3.25
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3. Highlight range A9:D11, type =TRANSPOSE(D2:F5), and press Ctrl-Shift-
Enter.

4. Highlight range F9:H11, type =MMULT(A9:D11,D2:F5), and press Ctrl-Shift-
Enter.

5. Highlight range A14:C16, type =MINVERSE(F9:H11), and press Ctrl-Shift-
Enter.

6. Highlight range E14:H16, type =MMULT(A14:C16,A9:D11), and press Ctrl-
Shift-Enter.

7. Highlight range B19:B21, type =MMULT(E14:H16,H2:H5), and press Ctrl-
Shift-Enter. The results are shown in Figure 3.26. This means our polynomial model
is y = −1.25x2 + 6.35x − 3.25. Such a model is called a least–squares 2nd degree
polynomial model.

18
19
20
21

B

(ATA)-1ATb
-1.25
6.35

-3.25

FIGURE 3.26

8. Create a graph of the data points, add a 2nd degree polynomial Trendline, and display
the equation on the chart as in Figure 3.27. Note that this model is exactly the same
as what we calculated.

y = -1.25x2 + 6.35x - 3.25
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FIGURE 3.27

Example 3.3.3 (Calculating R2 Value)
In Section 2.7 we defined the coefficient of variation R2 as a measure of how well a line fits
a set of data. We then applied this idea to linearizable models by calculating the R2 value
for the straight–line fit to the transformed data. Polynomial models are not linearizable, so
to calculate R2 values for these types of models, we must use the definition. The definition
is

R2 =
SSTot − SSRes

SSTot
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where SSTot =
∑

(yi − ȳ)2, SSRes =
∑

(yi − ŷi)
2, ȳ is the mean of all the y-values in the

data set, and ŷi is the predicted value of yi based on the model. Here we use our polynomial
model y = −1.25x2 + 6.35x− 3.25 to calculate ŷi.

1. Rename a blank worksheet “Poly R2” and format it as in Figure 3.28. The R2 value
is 0.9333 indicating a very good fit.

1
2
3
4
5
6

7

A B C D E
x y Predicted SSTot SSRes

1 2 =-1.25*A2^2+6.35*A2-3.25 =(B2-$B$6)^2 =(B2-C2)^2
2 4 =-1.25*A3^2+6.35*A3-3.25 =(B3-$B$6)^2 =(B3-C3)^2
3 5 =-1.25*A4^2+6.35*A4-3.25 =(B4-$B$6)^2 =(B4-C4)^2
4 2 =-1.25*A5^2+6.35*A5-3.25 =(B5-$B$6)^2 =(B5-C5)^2
Mean = =AVERAGE(B2:B5) Totals = =SUM(D2:D5) =SUM(E2:E5)

R2 = =(D6-E6)/D6

FIGURE 3.28

2. Excel will automatically calculate this R2 value. On the graph of y vs. x in the work-
sheet Poly 4 points, add the R2 value to the polynomial trendline by right-clicking
on the trendline and selecting Format Trendline. . . → Options → Display R-
squared value on chart. This value is equal to what we calculated.

Example 3.3.4 (Selecting a Best Polynomial Model)
Consider the data in Table 3.3 which gives the area A (in thousands of square miles) and
the total length of railroad track R (in thousands of miles) of seven different countries (data
from The World Almanac and Book of Facts, 2007, World Almanac Books). We want to
use a polynomial to model R in terms of A.

TABLE 3.3

Luxembourg Ireland Azerbaijan S Korea Greece Finland Japan

A 0.998 27.135 33.436 38.023 50.942 130.559 292.26
R 0.170 2.058 1.834 2.157 1.598 3.635 4.092

According to Theorem 3.3.1, there is a unique polynomial of degree at most 6 that fits
this data perfectly. We can easily graph R vs. A and fit a sixth degree polynomial trendline.
The result is shown in Figure 3.29.

Notice that the R2 value is 1 (within round error), so the model fits the data perfectly.
However, note the large oscillation between A = 130 and 300 and that the model predicts
negative values of R for A around 100. This is totally unreasonable, so this is a terrible
model even though it fits the data perfectly. The large oscillation seen in the graph of this
model is typical of a high–degree polynomial model such as this. To find a better model,
we can fit polynomials of degree 1 through 5 to the data, and keep track of their R2 values.
The graphs of these models are shown in Figure 3.30.

To choose the best model, we need to examine more than just the R2 values. We also
need to consider how well they will make predictions and their simplicity. The fourth and
fifth degree models have the highest R2 values, but they both have oscillations that seem
unreasonable in the context of the problem, so they are not the best options. The first
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degree model does not capture the trend of the data very well, so it is not a good option
either. The second and third degree models have very similar R2 values and their graphs
look very similar. So we will choose the simpler of the two options, the second degree model,
as the best. However, one could make a case that the third degree model is the best.

This least-squares matrix approach can be applied to models other than polynomials as
illustrated in the next example.

Example 3.3.5 (Deer Population)
Table 3.4 gives the number of deer in a hypothetical forest for various years between 1941
and 1982. Our goal is to model the population in terms of the year.

TABLE 3.4

Year 1941 1947 1951 1957 1962 1965 1971 1977 1982

Population 12,500 28,500 7,000 20,000 6,500 12,000 4,000 11,000 3,500

To make the data values smaller and easier to work with, we transform them by sub-
tracting 1941 from the year and dividing the population by 1000, yielding the data in Table
3.5.
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TABLE 3.5

x 0 6 10 16 21 24 30 36 41

y 12.5 28.5 7 20 6.5 12 4 11 3.5

Examining the graph of the transformed data in Figure 3.31 we see that the population
fluctuates from a high to a low and back to a high in about a 10–year cycle.
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FIGURE 3.31

The periodic nature of the data suggests we use sine or cosine functions to model it.
Since the period is approximately 10, our model will have terms of cos (πx/5) and sin (πx/5).
Also note that the population shows a downward trend. So we will include an x term in the
model with a (likely) negative coefficient. Thus our model is of the form

y = a+ bx+ c cos
(πx

5

)
+ d sin

(πx
5

)
.

Ideally we want to satisfy the system of equations

a+ b(0) + c cos

(
0π

5

)
+ d sin

(
0π

5

)
= 12.5

a+ b(6) + c cos

(
6π

5

)
+ d sin

(
6π

5

)
= 28.5

...

a+ b(41) + c cos

(
41π

5

)
+ d sin

(
41π

5

)
= 3.5

which has the matrix form⎡
⎢⎢⎢⎣

1 0 cos (0π/5) sin (0π/5)
1 6 cos (6π/5) sin (6π/5)
...

...
...

...
1 41 cos (41π/5) sin (41π/5)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

12.5
28.5
...
3.5

⎤
⎥⎥⎥⎦
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As before, this matrix equation has the generic form Ax = b. Calculating the least-squares

solution, x̂ =
(
ATA

)−1
AT b, to this system as done in Example 3.3.2, gives the approximate

solution x̂ = (18.965, −0.314, −5.693, −2.915). So the model is

y = 18.965− 0.314− 5.693 cos
(πx

5

)
− 2.915 sin

(πx
5

)
.

Figure 3.32 shows a graph of the model on top of the data. The model appears to fit the
data relatively well, but many refinements could be made. In the next section you will be
asked to make one such refinement in the exercises.
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General Guidelines for Selecting a Best Model

In general when constructing empirical models, one has many different types of models
from which to choose. Deciding which one is best is not easy and is often very subjective,
but here are a few simple guidelines:

1. Consider the R2 value, but don’t rely solely on it.

2. Look for a pattern in the residuals. If there is a pattern, the model should be refined.

3. Consider how good the model is for making predictions between data values. If it
oscillates or would give unreasonable values, look for a better model.

4. Consider “end” behavior. If the data appears to be “leveling off” at the end, but the
model is increasing (or vice-versa), consider a different model.

5. Consider the simplicity of a model. In general, the fewer the terms, the better.

We must also stress that when using an empirical model such as those discussed in this
section and in Chapter 2 to make predictions, the predictions are always point–estimates of
the true values. These predictions should never be presented as precise certainties. Books on
statistics and regression discuss how to use a point–estimate to form a confidence interval
for the true value (a range of possible values), but this topic is beyond the scope of this
book.
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Exercises

3.3.1 Use the least–squares matrix approach to fit a linear model y = a+mx to a randomly
generated set of data with 4 points. Show by examples that this gives the same results as
the formulas given in Section 2.4.

3.3.2 Fit different polynomial models to the data in the table below and select the best
one. Explain how you determined which one is best.

x 1.4 2.4 7.1 13.8 34.2 109.3 134

y 2.7 2.27 3.31 3.39 3.81 4.88 4.62

3.3.3 Calculate the R2 value for the model fit to deer population data in Example 3.3.5.

3.3.4 Consider the problem of fitting a 2nd polynomial to a set of 4 data points as discussed
in Example 3.3.2. However, suppose we require that the y-intercept of the model is some
specified valued c0. In other words, we want to fit a model of the form y = ax2 + bx + c0
where c0 is a given number. Design a spreadsheet to fit such a model where the user can
input 4 data points and specify the value of c0.

3.3.5 One useful property of polynomials is that they are easy to differentiate and integrate.
Suppose a researcher observes a particle moving in a straight line and measures the particle’s
velocity relative to its starting position at several points in time as shown in the table below.

t 0 1.2 2.5 3.2 4.6 5.4 6.3 7.3

v(t) 0 3.6 5.5 7.4 6.7 5.8 3.5 0

a. Fit several polynomial models to the data and choose the one that best models the
velocity. (Suggestion: When choosing the best model, don’t rely strictly on the R2

value. Put a large emphasis on simplicity.)

b. The acceleration of the particle at time t is a(t) = v′(t). Use your model in part a. to
estimate a(1.8).

c. The total distance traveled over the time interval [a, b] is

Total distance travled =

∫ b

a

|v(t)| dt.

Use your model in part a. to estimate the total distance the particle traveled over the
interval [0, 7.3].

3.3.6 The table below contains the temperatures over one day in Seward, NE starting at
midnight. The goal of this exercise is to predict the temperature y at time x. Notice that
the temperature is periodic, so we will use a model of the form y = a sin (bx+ c)+d. Follow
these steps to design a spreadsheet to implement a simple “sine regression” algorithm for
fitting a model of this type to the data:

Hour 0 2 4 6 8 10 12 14 16 18 20 22

Temp 44.5 45.3 52.6 60.4 70.2 75.9 79.8 79.1 72.8 63.5 52.5 44.6
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a. Enter the data in a spreadsheet, create a graph of the data, and designate cells to hold
the values of a, b, c, and d.

b. The period of the function y = a sin (bx+ c) + d is 2π/b. Estimate the period of the
data and use this to estimate the value of b.

c. Initially, let c = 0.

d. To find the values of a and d, create a graph of y vs. sin (bx+ c) and fit a linear
trendline to this transformed data. Display the R2 value. The slope is the value of a
and the y-intercept is the value of d. Use the functions SLOPE and INTERCEPT
to calculate the values of a and d, respectively.

e. Create a scroll bar to vary the value of b between -1 and +1 and another scroll bar
to vary the value of c between -2 and +2 (see Appendix A.4 for more information on
scroll bars).

f. Use the scroll bars to find values of b and c that maximize the R2 value.

g. Graph the model on top of the original data. How well does the model fit the data?

3.4 Multiple Regression

In previous sections we have discussed predicting the value of one response variable y with
one predictor variable x. In this section we will discuss using two or more predictor variables
x1, x2, . . . , xn. This topic is called multiple regression.

Consider the problem of predicting the selling price of a house. The selling price is
affected by many factors including the age of the house, living area, number of bedrooms,
etc. Table 3.6 lists the selling price, living area (in ft2), acres of land, and the number of
bedrooms of 10 homes in a neighborhood.

TABLE 3.6

Selling Price Area Acres Bedrooms

100,000 2,205 2.5 3
93,500 2,155 0.8 3
95,650 2,600 1.1 4
75,025 1,900 0.35 3
95,000 1,200 2.5 2
80,250 2,050 1.8 3
85,250 2,250 0.9 4
121,250 2,490 1.8 3
94,575 2,390 1.6 2
109,000 3,100 1.0 4

Example 3.4.1 (Single Predictor Variable)
Consider the graphs of Selling Price vs. Area and Selling Price vs. Acres as shown in Figure
3.33 along with the linear regression equation for each.

Notice that the R2 value for the predictor variable Area is higher than the R2 value for
Acres. This means that the regression equation for Selling Price in terms of Area will give a
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y = 12.852x + 66239
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FIGURE 3.33

better predicted Selling Price than the equation in terms of Acres. We say that out of these
two variables, Taxes is the best single-variable predictor of selling price.

Suppose a house has an area of 2,800 ft2. We could use the regression equation for Selling
Price in terms of Area to predict that the house would sell for 12.852(2,800) + 66,239 =
$102,224. This, of course, is only a point–estimate of the price, and probably not a very
good estimate because the R2 value for the regression equation is only 0.2232.

Example 3.4.2 (Multiple Predictor Variables)
Considering only one predictor variable is a bit too simple. Many variables affect the selling
price, so we should consider more than one predictor variable in our regression equation.
Suppose we consider both Area and Acres.

If we let y = Selling Price, x1 = Area, and x2 = Acres, we want to fit a model of the
form

y = a0 + a1x1 + a2x2

to the data where a0, a1, and a2 are constants. As in Section 3.3, ideally we want to satisfy
the system of equations

a0 + a1(2205) + 2.5a2 = 100000

...

a0 + a1(3100) + 1a2 = 109000

We could take a matrix approach to find a least–squares solution to this system as we did
in Section 3.3, but Excel will do this automatically for us.

1. Rename a blank worksheet Homes and format it as in Figure 3.34. Enter the rest of
the data from Table 3.6 in columns A–D.

1
2

A B C D
Selling Price Area Acres Bedrooms

100000 2205 2.5 3

FIGURE 3.34

2. Select Tools → Data Analysis. . . → Regression and press OK (if Data Analy-
sis. . . is not available, select Tools → Add-Ins. . . → Analysis ToolPak, press OK
and try selecting Data Analysis. . . again).
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1. Next to Input Y Range: select $A$1:$A$11.

2. Next to Input X Range: select $B$1:$C$11.

3. Check the box next to Labels.

4. Next to Output Range: select $A$13

5. Press OK

Excel generates many outputs. For the purposes of this example, we focus on two
subsets (see Example 3.4.3 for a description of some of the other outputs). The first
subset of outputs shown in Figure 3.35 gives the coefficients in our model (i.e. the
values of a0, a1, and a2). We see that our model is

y = 36669.6 + 18.9x1 + 11239.2x2

Such a model is called a multiple-regression equation.

28
29
30
31

A B
Coefficients

Intercept 36669.57782
Area 18.86847037
Acres 11239.20513

FIGURE 3.35

The second subset of outputs is shown in Figure 3.36. Here we see the R2 value which
is calculated by Formula (2.16). The other important output is the Adjusted R2 value
which is defined by

Adjusted R2 = 1−
[

n− 1

n− (k + 1)

] (
1−R2

)
(3.3)

where n is the number of data points and k is the number of predictor variables (n = 10
and k = 2 in this case).

15
16
17
18
19
20

A B
Regression Statistics

Multiple R 0.736297484
R Square 0.542133985
Adjusted R Square 0.411315124
Standard Error 10308.18525
Observations 10

FIGURE 3.36

The adjusted R2 value takes into account the number of data points (the more data
points, the higher the adjusted R2 value) and the number of predictor variables (the
more predictor variables, the lower the adjusted R2 value). We want as simple a model
as possible, so the fewer the variables, the better. We will compare different sets of
predictor variables using adjusted R2 values.

3. Now let’s consider the combination of predictor variables Acres and Bedrooms. Repeat
step 2, except select $C$1:$D$11 for the Input X Range:. The R2 and adjusted
R2 values for this combination are 0.209 and -0.017, respectively, which are lower than
for the previous combination indicating that this combination does not give a better
model for predicting the selling price.
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The results for all the different combinations of predictor variables are shown in Table
3.7. Note that including the variable Bedrooms results in low R2 values. This indicates that
the number of bedrooms is not a good predictor of the selling price. Also note that the R2

value for the set of all three predictor variables is the highest, but the adjusted R2 value is
lower than that for Area and Acres. This indicates that the set of three variables gives better
predictions (a higher R2 value), but the additional variable makes it more complicated, so
it is less desirable as a model (a lower adjusted R2 value).

TABLE 3.7

Predictor Variables R2 Adjusted R2

Area, Acres 0.542 0.411
Area, Bedrooms 0.327 0.135
Acres, Bedrooms 0.209 -0.017

Area, Acres, Bedrooms 0.552 0.328

If we simply compare the adjusted R2 values, we conclude that the best combination of
predictor variables is Area and Acres. To refine our model we might want to collect data on
other variables that might affect the selling price such as age, total number of rooms, etc.
With more variables, there are many different combinations of predictor variables we could
consider. The process of determining which set of variables is best is very complicated. We
have presented a very simple strategy here.

Example 3.4.3 (Other Statistical Outputs)
Consider again the problem of predicting Selling Price in terms of Area and Acres from
Example 3.4.2. In that example we focused on only two sets of the many statistics outputs.
In this example we briefly discuss some of the other outputs.

Figure 3.37 shows the set of outputs from an Analysis of Variance (ANOVA) hypothesis
test. For our purposes, the most important output here is the “Significance F.” Informally,
Significance F is a measure of how well the overall model fits the data. A smaller value means
a better fitting model. More formally, Significance F is the P -value for the hypothesis test
with the null and alternative hypotheses

H0: All the coefficients are 0, H1: Not all the coefficients are 0.

The value of F shown in the ANOVA table is the test statistic for this hypothesis
test. The other values are part of the calculations. We can use Significance F as part of
our comparison of different combinations of predictor variables. A better combination of
variables has a lower Significance F.

22
23
24
25
26

A B C D E F
ANOVA

df SS MS F Significance F
Regression 2 880705468.3 440352734.2 4.14416 0.064950789
Residual 7 743810781.7 106258683.1
Total 9 1624516250

FIGURE 3.37

The second set of outputs is shown in Figure 3.38. Note that this is an expanded version
of the outputs shown in Figure 3.35.
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28
29
30
31

A B C D E F G
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 36669.57782 20772.38015 1.7653 0.120862 -12449.296 85788.45167
Area 18.86847037 7.471230069 2.52548 0.039493 1.201818568 36.53512218
Acres 11239.20513 5090.208538 2.208 0.062982 -797.225418 23275.63568

FIGURE 3.38

Here are some brief explanations of these outputs:

• Formally, the P -value is the P -value for the hypothesis test

H0: The coefficient is 0, H1: The coefficient is not 0.

Informally, the P -value is a measure of how “significant” the variable is in the presence of
the other variables. A smaller P -value indicates the variable is more significant. These
results indicate that Area is more significant that Acres. See Exercise 3.4.11 for an
example of how to use these P -values to help determine the best combination of predictor
variables.

• The t Stat is the test statistic for the hypothesis test.

• The Lower 95% and Upper 95% give a 95% confidence interval estimate of the true
value of the coefficient.

• The Standard Error is a number used in the calculation of the confidence interval.

For a more complete description of all the outputs see, for instance, Sincich, Terry;
Levine, David M.; and Stephan, David, Practical Statistics by Example Using Microsoft
Excel and Minitab, Second ed., Prentice Hall, 2002, pp. 602.

Example 3.4.4 (Polynomial Models)
Let’s return to the problem of fitting a 2nd degree polynomial model of the form y =
a+bx+cx2 to the set of 4 data points {(1, 2) , (2, 4) , (3, 5) , (4, 2)} as considered in Example
3.3.2. We could think of this as predicting the values of y with the “predictor” variables x
and x2, so it can be treated as a multiple regression problem.

1. Rename a blank worksheet Polynomial and format it as in Figure 3.39. Enter the
rest of the data in columns A and B and copy the formula in C3 down to row 6.

1

2
3

A B C

y x x2

2 1 =B3^2

Data

FIGURE 3.39

2. Repeat step 2 from Example 3.4.2. Select $A$2:$A$6 as the Input Y Range: and
$B$2:$C$6 as the Input X Range:. Check the box next to Labels and select $A$8
as the Output Range:. The coefficients are shown in Figure 3.40.

These results give us the model y = −3.25+6.35x− 1.25x2, which is exactly the same
as in Example 3.3.2. Also note that the R2 value is 0.9333, exactly the same as that
calculated in Example 3.3.3.
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23
24
25
26

A B
Coefficients

Intercept -3.25
x 6.35
x2 -1.25

FIGURE 3.40

Example 3.4.5 (Deer Population Again)
We can use a multiple regression approach to fit a model of the form y = a + bx +
c cos (πx/5) + d sin (πx/5) to the transformed deer population data in Table 3.5. In this
case we have 3 predictor variables: x, cos (πx/5), and sin (πx/5).

1. Rename a blank worksheet Deer Population and format it as in Figure 3.41. Enter
the rest of the data from Table 3.5 in columns A and B, and copy the range C2:D2
down to row 10.

1
2

A B C D
y x cos sin

12.5 0 =COS(PI()*B2/5) =SIN(PI()*B2/5)

FIGURE 3.41

2. Repeat step 2 from Example 3.4.2. Select $A$1:$A$10 as the Input Y Range: and
$B$1:$D$10 as the Input X Range:. Check the box next to Labels and select
$A$12 as the Output Range:. The coefficients are shown in Figure 3.42.

27
28
29
30
31

A B
Coefficients

Intercept 18.96480399
x -0.314217087
cos -5.692825862
sin -2.914769196

FIGURE 3.42

These coefficients give us the approximate model

y = 18.965− 0.314− 5.693 cos
(πx

5

)
− 2.915 sin

(πx
5

)
,

which is exactly the same as in Example 3.3.5. Also note that the R2 value is 0.8771
which should be (approximately) the same as that calculated in Exercise 3.3.3.
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Exercises

3.4.1 In an attempt to predict the final grade of students in an Introduction to Statistics
class, the professor gives each student a 20-point pretest at the beginning of the year. The
table below gives the final grade, pretest score, ACT score, and year (1 = freshman, 2 =
sophomore, etc.) of 10 students.

Grade 84.5 82.3 69.2 65.1 80.1 85.9 88.1 90.7 87.2 92.7
Pretest 9 8 18 10 6 8 16 11 15 19

Year 1 2 2 4 3 3 1 4 4 3
ACT 25 20 18 17 20 22 30 28 27 31

a. Find the regression equation that predicts Grade in terms of Pretest Score. Repeat
using Year and then ACT. Which of these single-variable predictors is best at predict-
ing the final grade based on the R2 values? Does the pretest score alone appear to be
a good predictor of the final grade? Explain.

b. Consider all four different combinations of two or three predictor variables. Determine
which combination is best at predicting the final grade using the methods described
in this section. Based on your results, does it seem worthwhile to give the pretest as
a way of predicting the final grade? Does the year of the student appear to affect the
final grade? Explain.

c. Use the multiple regression equation that predicts Grade in terms of Pretest and ACT
to predict the grade of a student who has a pretest score of 18 and an ACT score of
28.

3.4.2 Use a multiple regression approach to fit a 7th degree polynomial to the 8 data points
shown in the table below. Create a graph of the resulting polynomial on top of the data
points.

x 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

y 0.90 9.00 2.10 7.80 13.50 9.30 0.40 6.20

3.4.3 Use the definition of R2 in Formula (2.16) to calculate the R2 value for the multiple-
regression equation for predicting selling price in terms of area and acres as found in Example
3.4.2. Compare this value to the R Square value given in Figure 3.36. Also verify that the
Adjusted R Square value in the figure is calculated according to Formula (3.3).

3.4.4 The sin and cos terms in the deer population model in Example 3.3.5 were included
to capture the oscillating pattern of the data. One might wonder if both terms are really
necessary. Fit a model of the form y = a + bx + c cos(πx/5) and then fit a model of the
form y = a + bx + d sin(πx/5) to the data. Compare the R2 value for each model to the
original model. Does the inclusion of both sin and cos terms yield a significantly better
model? Explain why or why not.

3.4.5 The amount of a radioactive substance remaining after time t, y (t), is described by
the exponential model y (t) = Ce−kt where C is the initial amount (the amount at time
t = 0) and k is a constant. Suppose two radioactive substances A and B have constants
kA = 0.03 and kB = 0.05. A mixture of these two substances contains CA grams of A and
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CB grams of B at time t = 0, both of which are unknown. The total amount of the mixture
at time t is modeled by

y (t) = CAe
−0.03t + CBe

−0.05t (3.4)

A researcher measures the total amount of the mixture at several times and records the
data in the table below. Estimate the values of CA and CB by fitting a model of the form
(3.4) to the data. (Hint: Use a multiple regression approach to fit the model, but note that
there is no intercept term in the model. Select the appropriate option in Excel.)

Time 5 6 7 8

Amount 8.8 8.6 8.2 7.9

3.4.6 Consider a refinement to the deer population model in Example 3.3.5. Note that as
time increases, the difference between a high point and the next low point (the amplitude)
tends to decrease. Our original model did not take this into account.

a. For the x-values 6, 16, 24, and 36, calculate the amplitude by subtracting the next
y-value.

b. Create a graph of amplitude vs. x using the data in part a.

c. Fit an exponential model, g(x) = mekx, to the data in part a.

d. Fit a model of the form

y = a+ bx+ c g(x) ∗ cos
(πx

5

)
+ d g(x) ∗ sin

(πx
5

)
to the original data. Create a graph of this model. Does this model seem to fit the
data any better than the original one?

e. Compare the R2 value for this refined model to the original model found in Example
3.3.5. How does this refined model compare to the original model?

3.4.7 Use a multiple regression approach to fit a model of the form

y = a+ bx+ c ln(3x+ 1) +
d

1− x2
+ e cos(3x)

to the data in the table below. Graph the resulting model on top of the data. Comment on
how well the model fits the data.

x 2 3 4 5 6 7 8 9 10

y -2.3 -4.8 11.2 4.1 16.2 11.1 20.3 17.9 22.9

3.4.8 The table below gives the poverty level, unemployment rate, high school graduation
rate, and divorce rate (all in percentages) of 10 randomly selected states in 2007 (data
collected by Matthew Schranz, 2011). Determine which combination of predictor variable(s)
is best at predicting poverty level. Based on this data, does divorce rate appear to be related
to poverty level at all?
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Poverty Unemployment High School Divorce
Level Rate Graduation Rate Rate

14.3 4.3 69.6 3.9
9.3 3.8 71.9 3.7
8.9 3.8 86.5 2.6
12.8 5.3 81.9 3.8
5.8 3.5 81.7 3.8
15.5 5 68.6 4
12.8 5.3 73.8 3.9
9.4 2.7 82.5 3.1
10 4 88.6 3.6
11 4.5 88.5 2.9

3.4.9 The table below gives the average points scored per game (PPG), total number
of turnovers, average minutes per game played, and free-throw percentage of 11 college
basketball players over the course of a season (data collected by Alex Hopping, 2012).
Determine which combination of predictor variable(s) is best at predicting PPG.

PPG Turnovers Min/Game Free-Throw %

8.6 75 19.8 0.797
4.5 60 18.7 0.532
7.1 22 22.7 0.780
15.8 48 29.1 0.767
1.6 16 9 0.500
5.2 20 12.7 0.750
8 56 21.6 0.726
2.8 13 8.6 0.706
4 19 15.8 0.583

14.5 62 25.3 0.848
5 30 16 0.577

3.4.10 The process we presented in this section for selecting the best combination of pre-
dictor variables in a multiple regression model is to try all possible combinations of predictor
variables and then pick the combination with the highest adjusted R2 value. In general, the
number of possible combinations is 2n − 1 if there are n predictor variables. This number
grows exponentially large as n increases, making this process impractical if there are a large
number of predictor variables. A more intelligent method for selecting the best combination
is called forward stepwise regression. Here is a simplified algorithm:

1. Try all single predictor variables. Choose the one with the highest adjusted R2 value
as the best.

2. Try all combinations of two predictor variables that include the best variable from step
1. Choose the pair with the highest adjusted R2 value as the best.

3. Try all combinations of three predictor variables that include the best pair from step
2. Choose the triplet with the highest adjusted R2 value as the best.

4. Repeat until there are no more combinations to try, or adding another variable does
not increase the adjusted R2 value.
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The data below give the average teacher salaries in 12 states along with six education-related
statistics (data collected by Quinn Wragge, 2019). Use the forward stepwise regression
algorithm to determine which set of statistics is best at predicting teacher salaries.

Avg. % of Grad. % to ACT Cost of Diversity
State Salary US pop. Rate College Score Living Ind. Score

AZ $47,403 2.17 77.4 52.3 19.2 97.7 67.81
CA $78,711 12.13 82 60.9 22.7 138.7 70.89
CO $46,506 1.73 77.3 58.2 23.9 105.5 66.25
HI $57,674 0.43 81.6 60.8 18.9 190.1 69.69
IL $61,602 3.89 85.6 61.5 23.9 95.7 67.93

ME $51,077 0.41 87.5 54.6 24 117.2 58.4
MI $62,200 3.05 79.8 64 24.4 89.3 62.84
NE $52,388 0.59 88.9 62.5 20.1 93.3 64.24
NC $49,837 3.17 85.6 62.9 19.1 94 65.82
SD $42,668 0.27 83.9 67.2 21.9 98.5 63.13
TX $52,575 8.75 89 58.7 20.6 91.3 70
WY $58,650 0.17 79.3 53.8 20 90.5 62.49

3.4.11 Another process for more intelligently selecting the best combination of predictor
variables is called backward stepwise regression. Here is a simplified algorithm:

1. Fit a model using all predictor variables.

2. Throw out the variable with the largest P-value.

3. Fit a model using the remaining predictor variables.

4. Repeat until all the remaining predictor variables have P-values less than 0.05. The
remaining variables give the best combination.

The data below give the win-loss percentage (W-L%), average runs scored (R), average runs
allowed (RA), batting average (Avg), save percentage (Sv %), earned run average (ERA),
and fielding percentage (Field %) of 11 MLB teams over a season (data collected by Sam
Otte, 2019). Use the backward stepwise regression process to find the best combination of
predictor variables for predicting win-loss percentage.

W-L% R RA Avg Sv % ERA Field %

0.506 4.3 4 0.235 0.59 3.72 0.988
0.290 3.8 5.5 0.239 0.61 5.18 0.982
0.414 4.3 5.1 0.254 0.67 4.63 0.984
0.558 4.8 4.6 0.256 0.65 4.33 0.988
0.494 4.5 4.5 0.242 0.57 4.15 0.987
0.391 3.7 5 0.237 0.56 4.76 0.986
0.617 5.3 4.1 0.249 0.73 3.78 0.984
0.407 3.8 4.7 0.235 0.68 4.4 0.983
0.556 4.4 4 0.258 0.7 3.74 0.986
0.451 4.4 5.1 0.244 0.65 4.85 0.983
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3.5 Spline Models

Consider the data in Table 3.8 which gives the liters of milk given by a dairy cow on each
of several different days after she begins producing. A graph of this data is shown in Figure
3.43. Our goal is to model Liters in terms of Day so that we can predict how much milk
was given on the days not listed in the table.

TABLE 3.8

Day 5 13 25 42 50 62 75 90 100 120

Liters 10 19 30 25 22 35 50 55 40 35
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FIGURE 3.43

The graph of the data certainly does not resemble an exponential, logarithmic, or power
curve, so a linearizable model does not seem appropriate. Low-degree polynomials do not
capture the trend of the data, and higher-degree polynomials produce oscillations which do
not seem appropriate. We will instead consider spline models where we simply “connect the
dots” with either straight lines, forming a linear spline model, or with cubic polynomials,
forming a cubic spline model.

Example 3.5.1 (Linear Spline Model)
The graph of a linear spline model is easy to form.

1. Rename a blank worksheet “Linear” and format it as in Figure 3.44. Enter the rest
of the data from Table 3.8 in columns A and B.

1
2

A B
Day Liters

5 10

FIGURE 3.44

2. Create a graph similar to Figure 3.45. The straight lines form the graph of the linear
spline model.
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FIGURE 3.45

3. To use this model to make predictions, we need to know the slope and y-intercept of
each line segment. We know two points on each line segment, call them (xn, yn) and
(xn+1, yn+1) where xn < xn+1, so we can easily find the slope using the formula

slope = m =
yn+1 − yn
xn+1 − xn

Once we know the slope m we can find the y-intercept b using the slope-intercept form
of a straight line

y = mx+ b ⇒ b = y −mx

To implement these formulas, format the spreadsheet as in Figure 3.46. Copy row 2
down to row 10.

1
2

C D
Slope Intercept

=(B3-B2)/(A3-A2) =B2-C2*A2

FIGURE 3.46

Looking at the column Slope, we see that the amount of milk produced is increasing
most rapidly, on average, between days 62 and 75 and decreasing most rapidly between
days 90 and 100.

4. Now that we know the slopes and y-intercepts of each piece of the spline we can easily
calculate a predicted value of Liters given a value of Day by

Liters = m(Days) + b

wherem and b are the slope and y-intercept, respectively, of the appropriate piece of the
spline. To do this, add the formulas in Figure 3.47. (Note: The function VLOOKUP
in Figure 3.47 will look down the left column of the range A2:D11 and find the largest
value less than or equal to the value in cell F2. It will then return the value in the
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3rd or 4th column of that range, the slope or the y-intercept, respectively. For this to
work properly it is necessary that the x-values are in ascending order.)

1
2

F G
Day Liters
12 =VLOOKUP(F2,A2:D10,3)*F2+VLOOKUP(F2,A2:D10,4)

FIGURE 3.47

Example 3.5.2 (Cubic Spline Model)
Linear spline models are easy to calculate, but they do not form smooth curves. In fact,
the curve is not differentiable at any of the data points. This type of model predicts sharp
changes at each data point, which does not seem reasonable. To solve this problem, we will
connect the dots with cubic polynomials instead of straight lines and put conditions on the
derivatives of each segment.

To illustrate this process, we will consider a set of 3 data points

{(x1, y1) , (x2, y2) , (x3, y3)}
where x1 < x2 < x3. Each x-value is called a knot . We will connect them using 2 cubic
polynomials:

p1 (x) = a1 + b1x+ c1x
2 + d1x

3 for x1 ≤ x < x2

p2 (x) = a2 + b2x+ c2x
2 + d2x

3 for x2 ≤ x ≤ x3

We now need to find the values of the 8 parameters a1, b1, c1, d1, a2, b2, c2, and d2. For
the model to form a smooth curve that goes through each data point, we need to satisfy
the following three conditions:

1. Each polynomial must pass through the two data points at the ends of the interval
over which it is defined.

2. The first derivatives of two polynomials that meet must be equal at the point at which
they meet.

3. The second derivatives of two polynomials that meet must be equal at the point at
which they meet.

The first condition gives us the following four equations:

p1 (x1) = a1 + b1x1 + c1x
2
1 + d1x

3
1 = y1 (3.5)

p1 (x2) = a1 + b1x2 + c1x
2
2 + d1x

3
2 = y2 (3.6)

p2 (x2) = a2 + b2x2 + c2x
2
2 + d2x

3
2 = y2 (3.7)

p2 (x3) = a2 + b2x3 + c2x
2
3 + d2x

3
3 = y3 (3.8)

The first derivatives of the polynomials are:

p′1 (x) = b1 + 2c1x+ 3d1x
2, p′2 (x) = b2 + 2c2x+ 3d2x

2

The second condition gives us the equation

p′1 (x2) = b1 + 2c1x2 + 3d1x
2
2 = b2 + 2c2x2 + 3d2x

2
2 = p′2 (x2) (3.9)
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The second derivatives of the polynomials are:

p′′1 (x) = 2c1 + 6d1x, p′′2 (x) = 2c2 + 6d2x

The third condition gives us the equation

p′′1 (x2) = 2c1 + 6d1x2 = 2c2 + 6d2x2 = p′′2 (x2) (3.10)

Equations (3.5) – (3.10) give us six equations for the eight unknowns. To uniquely determine
the values of these unknowns, we need two more equations. To this end, we will specify the
values of the second derivatives at the end points of the data sat (i.e. at x1 and x3).

If we want these second derivatives to be some known values, say m1 and m2, we would
add the equations

p′′1 (x1) = 2c1 + 6d1x1 = m1

p′′2 (x3) = 2c2 + 6d2x3 = m2

The resulting model is called a clamped spline. If, however, we do not know the values of
the second derivatives, we simply set them equal to 0 and have the equations

p′′1 (x1) = 2c1 + 6d1x1 = 0 (3.11)

p′′2 (x3) = 2c2 + 6d2x3 = 0 (3.12)

This is the approach we will take. The resulting model is called a natural spline. Rewriting
Equations (3.5) – (3.12) so that the constants are on the right–hand side, we get the system

a1 + x1b1 + x2
1c1 + x3

1d1 = y1
a1 + x2b1 + x2

2c1 + x3
2d1 = y2

a2 + x2b2 + x2
2c2 + x3

2d2 = y2
a2 + x3b2 + x2

3c2 + x3
3d2 = y3

b1 + 2x2c1 + 3x2
2d1 − b2 − 2x2c2 − 3x2

2d2 = 0
2c1 + 6x2d1 − 2c2 − 6x2d2 = 0
2c1 + 6x1d1 = 0

2c2 + 6x3d2 = 0

Rewriting this system in matrix form yields⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 x3

1 0 0 0 0
1 x2 x2

2 x3
2 0 0 0 0

0 0 0 0 1 x2 x2
2 x3

2

0 0 0 0 1 x3 x2
3 x3

3

0 1 2x2 3x2
2 0 −1 −2x2 −3x2

2

0 0 2 6x2 0 0 −2 −6x2

0 0 2 6x1 0 0 0 0
0 0 0 0 0 0 2 6x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
b1
c1
d1
a2
b2
c2
d2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y2
y3
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

which has the general form Ax = b where x = (a1, b1, c1, d1, a2, b2, c2, d2) is the vector of
unknowns. We can solve this system using inverses, x = A−1b. (Note that matrix A has a
distinct structure and a lot of 0’s. These facts can be exploited to find more computationally
efficient ways to solve this system.)

To fit a cubic spline to the three data points {(75, 50) , (95, 55) , (100, 40)} from Table
3.8, follow these steps:

1. Rename a blank worksheet “Cubic” and format it as in Figure 3.48.



112 Linear Algebra

1
2
3
4
5
6
7
8
9

10

A B C D E F G H I J K L M
x y b

75 50 1 =A2 =A2^2 =A2^3 0 0 0 0 =B2
90 55 1 =A3 =A3^2 =A3^3 0 0 0 0 =B3
100 40 0 0 0 0 1 =A3 =A3^2 =A3^3 =B3

0 0 0 0 1 =A4 =A4^2 =A4^3 =B4
0 1 =2*A3 =3*A3^2 0 =-E6 =-F6 =-G6 0
0 0 2 =6*A3 0 0 =-F7 =-G7 0
0 0 2 =6*A2 0 0 0 0 0
0 0 0 0 0 0 2 =6*A4 0

A-1b

A

A-1

FIGURE 3.48

2. To calculate A−1, highlight the range D11:K18. Type =MINVERSE(D2:K9), and
press the combination of the keys Ctrl-Shift-Enter. To calculate A−1b, highlight the
range M11:M18. Type =MMULT(D11:K18,M2:M9), and press the combination
of the keys Ctrl-Shift-Enter. The results show that our model is:

p1 (x) = 1015− 40.37x+ 0.55x2 − 0.0024x3 for 75 ≤ x < 90
p2 (x) = −3440 + 108.13x− 1.1x2 + 0.0037x3 for 90 ≤ x ≤ 100

3. To graph the resulting model, add the formulas in Figure 3.49. Copy row 9 down to
row 58. Use these results, along with the original data, to form a graph similar to
Figure 3.50.

1
2
3
4

O P

x y
=A2 =IF(O3<$A$3,$M$11+$M$12*O3+$M$13*O3^2+$M$14*O3^3,$M$15+$M$16*O3+$M$17*O3^2+$M$18*O3^3)
=O3+0.5 =IF(O4<$A$3,$M$11+$M$12*O4+$M$13*O4^2+$M$14*O4^3,$M$15+$M$16*O4+$M$17*O4^2+$M$18*O4^3)

Spline

FIGURE 3.49
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FIGURE 3.50

From the graph we see that the model forms a smooth curve that goes through each
data point, as required.
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For large sets of data the calculations for a cubic spline model can get quite complicated.
For 11 data points, the model is made up of 10 separate cubic polynomials with a total
of 40 unknown parameters. This results in a 40 × 40 matrix A. Excel can handle up to a
52 × 52 matrix, but setting it up is quite tedious. Fortunately, there are optional add-ins
(and other software) that do the work automatically.

Exercises

3.5.1 To get the necessary 8 equations to determine the values of the 8 parameters in
our cubic spline model, we added the conditions that p′′1 (x1) = p′′2 (x3) = 0. Setting these
second derivatives equal to 0 is somewhat arbitrary. Let’s experiment with changing these
conditions.

a. In the worksheet Cubic, change the condition p′′2 (x3) = 0 to values other than 0 (i.e.
change the number in cell M9 to values other than 0). Does this change the shapes
of the graphs of p1 (x) and p2 (x)? (Use the data points shown in Figure 3.48 where
x3 = 100.)

b. In the original natural cubic spline model (with p′′2 (x3) = 0), the model predicts a
sharp decrease in milk production around day 100 (in other words, p′2 (x3) is a large
negative number). In the graph of the original data shown in Figure 3.43, we see that
the milk production begins to “level off” between days 100 and 120. Find a value of
p′′2 (x3) that gives a model that “levels off” near x = 100.

c. Instead of specifying the value of p′′2 (x3) in the last row of matrix A, we could replace
this with any condition on p1 (x) or p2 (x), or their derivatives, that is independent
of the other conditions. Notice that in the linear spline model the slope between days
100 and 120 is -0.5. Modify the worksheet Cubic by replacing the last row of matrix
A with the condition that p′2 (x3) = −0.5. Does the resulting model “level off” near
x = 100?

3.5.2 Modify the worksheet Cubic to calculate and graph a cubic spline model fit to four
data points.

3.5.3 Consider the problem of fitting a quadratic spline model to a set of 3 data points
{(x1, y1) , (x2, y2) , (x3, y3)} where x1 < x2 < x3. The two polynomials have the general
form

p1 (x) = a1 + b1x+ c1x
2 for x1 ≤ x < x2

p2 (x) = a2 + b2x+ c2x
2 for x2 ≤ x ≤ x3

a. If these polynomials must satisfy the same 3 conditions as the cubic polynomials, find
a set of 6 equations that determine the values of the parameters a1, b1, c1, a2, b2,
and c2.

b. Design a spreadsheet to calculate the values of the parameters (use the same data
points as in Example 3.5.2). What do you observe about the 2 polynomials p1 (x) and
p2 (x)?

c. Fit a 2nd degree polynomial trendline to the data. How does this polynomial compare
to p1 (x) and p2 (x)? Why is this?
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3.5.4 A researcher observes a particle moving in a straight line and measures its velocity
at three points in time as recorded in the table below. He wants to estimate how far the
particle traveled over the interval of time [0, 5].

Time (sec) 0 2 5

Velocity (m/sec) 0 60 85

In general, if f (t) = velocity of an object at time t, we can calculate the distance it
traveled over an interval of time [t0, t1] by

Distance =

t1∫
t0

|f (t)| dt

a. Fit a linear spline model to the data to estimate f (t) and use the result to estimate
the distance traveled. What is the meaning of the slope of each of the line segments?

b. Fit a cubic spline model to the data to estimate f (t) and use the result to estimate
the distance traveled. Also, estimate the acceleration at time t = 1.5.

c. Which of the two estimates of the distance traveled do you think is more accurate?
Why?

Project Ideas

1. In Section 3.4 we used multiple regression models to find a good set of predictor
variables for a response variable. Collect some data on a response variable of your
choice and some possible predictor variables. Then apply the methods in Section 3.4 to
find a good set of predictor variables. Here are some possibilities for response variables:

1. Average life expectancy of residents of countries

2. Golf scores of professional golfers

3. Weight-lifting ability of college athletes

4. College tuition rates

5. Winning percentage of college basketball teams

6. Mortality rates of residents of countries

7. Cross country race times

8. Salaries of NFL quarterbacks

9. The collective GPA of college sports teams

10. The population of pheasants (or any other type of wildlife) in a state

11. Free throw percentage among NBA basketball players

12. Fuel economy of vehicles

13. Winning percentage of MLB baseball teams

14. The number of shark bites in Florida per year

15. Winning percentage of English Premier League teams
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16. Crime rate of cities

17. Number of Olympic medals won by countries

18. Number of passing yards per year of NFL teams

19. Selling price of a vehicle

20. Cost of a computer

21. Personal income

22. Vertical jump height of NBA players

23. Batting averages of MLB players

2. Create a workbook that automatically fits a 19th degree polynomial to 20 pairs of data
inputted by the user.

3. Create and analyze an empirical model for the population growth of a city.

4. Research the topic of stepwise regression.

5. Research the topic of moving average.

6. Research the topic of standardized regression.

7. Zipf’s law is a prediction of the frequencies of words in books. Research Zipf’s law and
apply it to one or more books of your choice.

8. Model the stopping distance of a vehicle in terms of its speed.

9. Model how a sports team winning percentage in one year affects the winning percentage
in the next year.

10. Create a workbook that automatically calculates the eigenvalues and eigenvectors of
a 4× 4 matrix.

11. Research the details of the statistics in a multiple regression output (i.e. the confidence
intervals).

12. Model the population of a country over time.

13. Model the Dow Jones Industrial Average over time.

For Further Reading

• For a good introduction to linear algebra, see Lay, D., Linear Algebra and its Applica-
tions, 5th edition, 2016, Pearson or Williams, Gareth, Linear Algebra with Applications,
8th edition, Jones and Bartlett, 2014.

• For more information on the 10–year fluctuations of wildlife populations, see L.G. Keith,
Wildlife’s Ten Year Cycle, University of Wisconsin Press, 1963.

• For a much more detailed theoretical discussion of most of the topics discussed in this
chapter, see Hines, William W. et. al., Probability and Statistics in Engineering, Fourth
edition, John Wiley & Sons, Inc, 2003, pg. 409 – 486.

• For a much more detailed discussion of spline models, see Bartels, Richard H., et. al., An
Introduction to Splines for Use in Computer Graphics and Geometric Modeling, Morgan
Kaufmann Publishers, Inc., 1987.
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4

Discrete Dynamical Systems

Chapter Objectives

• Define and solve discrete dynamical systems

• Analyze the long–term behavior of discrete dynamical systems numerically and graphi-
cally

• Model different scenarios with linear and nonlinear discrete dynamical systems

4.1 Introduction

A dynamical system is simply a system that changes over time. The bacterial growth mod-
eled in Chapter 1 is one such example. When time is measured in discrete increments, such
as in the bacterial growth model, the system is called a discrete dynamical system.

Dynamical systems are “easy to [model] and hard to solve” (Meerschaert, Mark M.,
Mathematical Modeling, Second ed., Academic Press, 1999, p. 127). In this chapter we will
introduce basic techniques for formulating dynamical models and graphical approaches to
their analysis.

In mathematical terms, a discrete dynamical system is simply a sequence of numbers.
Consider a savings account that is compounded yearly and the interest is added at the end
of each year. If an is the amount in the account at the end of year n (n = 0, 1, . . . ) and r
is the interest rate, we have the sequence

a1 = a0 + r a0 = (1 + r) a0
a2 = a1 + r a1 = (1 + r) a1

...
an+1 = an + r an = (1 + r) an

This last equation leads us to the formal definition of a dynamical system.

Definition 4.1.1 (Discrete Dynamical System). A discrete dynamical system is a sequence
of numbers { an |n = 0, 1, ...} defined by a relation of the form

an+1 = f (an)

where f is some real–valued function.

The variable an is generically called the state of the system. In simpler terms, a discrete
dynamical system is one in which the state of the system is determined by the previous state.
In the savings account example there is only one component to the system (the amount in
the account), so it is called one-dimensional.

When the function f has the form f(x) = bx where b is a constant, the dynamical system
is called linear.

117
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Definition 4.1.2 (Linear Discrete Dynamical System). A linear discrete dynamical system
is a sequence of numbers { an |n = 0, 1, ...} defined by a relation of the form

an+1 = ban

where b �= 0 is a constant.

Any dynamical system that does not have this linear form is generically referred to as
nonlinear . A solution of a discrete dynamical system is an explicit description of an in terms
of n and the initial state a0.

Theorem 4.1.1. The solution of a linear dynamical system an+1 = ban for b �= 0 is

an = bna0 (4.1)

where a0 is the initial state.

Proof. We first need to show that (4.1) satisfies the initial condition. Note that in (4.1),

a0 = b0a0 = a0,

so the initial condition is satisfied. Next, we need to show that (4.1) satisfies the definition
of a linear discrete dynamical system. Note that

an+1 = bn+1a0 = b(bna0) = ban

as required.

4.2 Long–Term Behavior and Equilibria

Theorem 4.1.1 gives us an easy–to–use formula for finding the exact value of an. However
we are usually more interested in describing the long–term behavior of the system than in
finding exact values at points in time. That is, we want to know what happens to an for
large values of n.

Example 4.2.1 (Long–term Behavior)
Let’s graphically examine the long–term behavior of a linear dynamical system an+1 = ban
for various values of b. For simplicity, suppose that a0 = 0.1.

1. Rename a blank worksheet “Linear” and format it to look like Figure 4.1. Copy the
formulas inA3:B3 down to row 17. This will give the first 16 values of an (0 ≤ n ≤ 15)
with b = 0.5.

1
2
3

A B C
n an b

0 0.1 0.5
=A2+1 =B2*$C$2

FIGURE 4.1



Long–Term Behavior and Equilibria 119

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14

a n

n

Dynamical System

FIGURE 4.2

2. Highlight the column titled n and an and create a graph similar to Figure 4.2. Set the
x-axis min and max to 0 and 15, respectively. Notice that for this value of b, the state
of the system approaches 0 as n gets larger.

3. Next open the control toolbox by selecting View → Toolbars → Control Toolbox.
Draw a Scroll Bar by selecting the icon on the left side of the Control Toolbox window
second from the bottom. Your cursor will turn into a cross. Draw a horizontal Scroll
Bar near the top of the worksheet (see Appendix A.4 for more information on drawing
scroll bars).

4. Right–click on the Scroll Bar and select Properties. Set the LinkedCell to D5, the
max to 100, and the min to 0. Close the Properties window. Exit Design Mode by
selecting the icon in the upper left-hand corner of the Control Toolbox.

5. Slide the Scroll Bar left and right. The number in D5 should change between 0 and
100. Enter a formula in C2 as shown in Figure 4.3. This will allow us to change the
value of b between −2 and +2 with the Scroll Bar.

1
2

C
b

=-2+0.04*D5

FIGURE 4.3

6. Move the slider on the scroll bar left and right and notice how the behavior of the
system changes, especially when b passes -1, 0, and +1. Our observations are summa-
rized in Table 4.1. As we can see, the long–term behavior of the system is dramatically
affected by the value of b.

Now consider a savings account that pays 5% interest compounded yearly. We saw in
Section 4.1 that a model for an account with an interest rate r is

an+1 = (1 + r) an.

In this case, we have r = 0.05, so our model is

an+1 = 1.05 an.
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TABLE 4.1

Value of b Behavior of an

b < −1 Oscillates between pos. and neg., |an| grows without bound
b = −1 Oscillates between −a0 and +a0

−1 < b < 0 Oscillates between pos. and neg., |an| approaches 0
b = 0 an = 0 for n > 0

0 < b < 1 an approaches 0

b = 1 an = a0 for all n

b > 1 an grows without bound

Suppose now that we want to withdraw $2,000 at the end of each year to supplement our
income. We want to know how much money we need to deposit now so that we never run
out of money.

To answer this question, we will analyze a slightly more general problem: What happens
to the amount in the account in terms of the initial deposit? First we will construct our
model. The amount in the account grows at 5% compounded yearly but we are withdrawing
$2,000 each year. A dynamic model that describes this scenario is

an+1 = 1.05 an − 2000.

As before, an is the amount in the account at the end of year n. We are also assuming that
there is no penalty for withdrawing money each year and that we withdraw the money after
the interest from the previous year has been added. This system is an example of an affine
dynamical system.

Definition 4.2.1 (Affine Discrete Dynamical System). An affine discrete dynamical system
is a sequence of numbers { an |n = 0, 1, . . .} described by a relation of the form

an+1 = ban +m

where b �= 0.

Central to the analysis of the long–term behavior of any dynamical system are equilib-
rium values (also called fixed points).

Definition 4.2.2 (Equilibrium Value). A number a is called an equilibrium value for the
dynamical system an+1 = f(an) if an = a for all n whenever a0 = a.

To find equilibrium values, note that if a is an equilibrium value, we must have

an+1 = an = a ⇒ f(a) = a

So finding equilibrium values simply requires us to solve the equation f (a) = a. For an
affine system, we have

a = ba+m ⇒ a =
m

1− b

In this example, b = 1.05 and m = −2000, so the equilibrium value is a = −2000
1−1.05 = 40, 000.

Thus if we start with $40,000 in the account and withdraw $2,000 at the end of each year,
we will always have the same amount in the account at the end of each year.



Long–Term Behavior and Equilibria 121

Example 4.2.2 (Savings Account)
We will take a graphical approach to analyze what happens for initial values other than the
equilibrium value of $40,000.

1. Rename a blank worksheet “Savings” and format it as in Figure 4.4. Copy the range
A3:B3 down to row 27 to model the account over the first 25 years.

1
2
3

A B C D
n an r m

0 40000 0.05 2000
=A2+1 =(1+$C$2)*B2-$D$2

FIGURE 4.4

2. Use the data in columns A and B to form a graph as in Figure 4.5. Set the y-axis min
and max to 0 and 80,000, respectively, and the x-axis min and max to 0 and 25. Note
that the value in the account does not change if we start with $40,000, as expected.
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Savings Account

FIGURE 4.5

3. Next add a scroll bar. Set the linked cell to B2 and the min and max to 0 and 80,000,
respectively. This will allow us to vary the value of a0 between $0 and $80,000 in
increments of $1.

4. Move the slider on the scroll bar left and right and observe how the long–term behavior
of the system changes. Specifically, note that for a0 less than $40,000, the amount in
the account eventually decreases to 0 and for a0 greater than $40,000, the amount
grows without bound.

In Example 4.2.2 we saw that the long–term behavior of the system changed quite
dramatically with a small change in a0. In situations like this we say that the system is
sensitive to the initial condition.

Also note that if a0 �= 40,000, the system either approaches 0 or increases without bound.
The equilibrium value of 40,000 is an example of an unstable or repelling equilibrium.

Definition 4.2.3 (Repelling and Attracting Equilibria). An equilibrium value a is unstable
or repelling if there is a number ε such that

|an − a| > ε whenever |a0 − a| < ε
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for some n. The equilibrium a is stable or attracting if there is a number ε such that

lim
n→∞ an = a whenever |a0 − a| < ε

In less technical terms, an equilibrium value a is repelling if the system starts near it,
but does not approach it. This is exactly what we saw in Example 4.2.2. The equilibrium
is attracting if the system starts near a and approaches it.

Example 4.2.3 (Antibiotic in the Bloodstream)
An infant is given an antibiotic to treat an ear infection. When taking an antibiotic, it is
important to keep the amount of the drug in the bloodstream fairly constant. If it gets too
low, the bacteria can begin to regrow. If it gets too high, it could cause other complications.

Suppose the half-life of the drug is 1 day (meaning that half the drug remains in the
blood after each 1-day period) and a dosage of 0.1 mg is given at the end of each day.
We want to examine what happens to the amount of the drug in the bloodstream in the
long–run.

A simple affine model for this system is

an+1 = 0.5 an + 0.1

where an = the amount of the drug in the blood at the end of day n. Since the problem did
not specify the initial dosage, a0, we need to experiment with different values.

1. Rename a blank worksheet “Antibiotic” and format it as in Figure 4.6. Copy row 3
down to row 17 to model the system from day 0 to day 15.

1
2
3

A B
n an

0 0
=A2+1 =0.5*B2+0.1

FIGURE 4.6

2. Create a graph similar to that in Figure 4.7. Notice that even with an initial dosage
of 0 mg, the amount of antibiotic in the blood appears to approach 0.2 mg at the end
of each day. Note that this does not mean that the amount eventually equals 0.2 mg
at every point in time, only that is equals 0.2 mg at the end of every day.

3. Next, add a scroll bar, set the min to 0, the max to 100, and the linked cell to C1.
Add the formula in Figure 4.8 to allow us to vary the initial dosage from 0 to 1 mg in
increments of 0.01 mg.

4. Move the slider on the scroll bar left and right and observe the long–term behavior of
the system. Specifically note that when a0 = 0.2, the system remains at 0.2, mean-
ing that 0.2 is an equilibrium value. Also note that no matter what the value of a0
is, the system appears to always approach 0.2. This shows that 0.2 is an attracting
equilibrium.
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FIGURE 4.8

Example 4.2.4 (Generalized Savings Account)
Let’s generalize the model of the savings account. Suppose that we want to withdraw $5,000
every other year (starting in year 2) instead of every year. This makes our model

an+1 =

{
1.05an − 5000 if n+ 1 is a multiple of 2
1.05an otherwise

This system is neither linear nor affine. We will take a strictly graphical approach to analyze
the behavior in terms of the initial deposit.

1. Modify the worksheet Savings as in Figure 4.9 and copy the range B3:C3 down to
row 27. The MOD function in cell C3 returns the remainder when the year n (cell
A3) is divided by the number of years between withdrawals (cell F3). If this remainder
is 0, then the year is a multiple of the years between withdrawals, and a withdrawal is
taken that year. Otherwise, no withdrawal is taken. Note also that we have designed a
cell to hold the parameter “Years between withdrawals” so that we can easily change
its value to analyze other scenarios.

1
2
3

A B C D E F
n an Withdrawal? r Amount of Years between

0 30000 0 0.05 withdrawal withdrawals
=A2+1 =(1+$D$2)*B2-C3*$E$3 =IF(MOD(A3,$F$3)=0,1,0) 5000 2

FIGURE 4.9

2. Move the slider on the scroll bar left and right to change the value of a0 and observe the
long–term behavior of the system. Specifically, note that for a0 below approximately
$48,000, the account eventually is depleted. For a0 above $48,000 the value tends to
increase. For a0 around $48,000, the value fluctuates around $48,000.
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Exercises

4.2.1 Consider the linear dynamical system an+1 = ban. Use the worksheet Linear to
answer the following questions.

a. Verify that a = 0 is an equilibrium value by showing that if a0 = 0, then an = 0 for
all n.

b. Let’s think about the stability of the equilibrium value a = 0. Informally, an equi-
librium value is attracting if the system starts near the value and gets closer to the
value. So suppose we start at a0 = 0.1. Find the values of b for which the equilibrium
value a = 0 appears to be attracting.

c. Informally, an equilibrium value is repelling if the system starts near the value, but
gets further from the value. Find the values of b for which the equilibrium value a = 0
appears to be repelling.

4.2.2 Consider the affine system an+1 = ban + 1 where a0 = 0.

a. Calculate an for 0 ≤ n ≤ 15. Graph these values. Set up a scroll bar to vary the value
of b between −2 and +2.

b. Calculate the equilibrium value.

c. For what values of b is the equilibrium value attracting?

d. For what values of b is the equilibrium value repelling?

e. For what values of b is lim
n→∞ an = ∞?

f. For what values of b is lim
n→∞ an = −∞?

4.2.3 Your grandparents have their life savings of $750,000 in a savings account that pays
6.7% interest compounded yearly. They want to spend all of it before they die. If they plan
to live 15 more years, how much should they withdraw at the end of each year to accomplish
their goal?

4.2.4 In the generalized model of the savings account where we withdraw $5,000 every two
years, find a value of a0 such that a2 = a0. If the initial deposit is this value, what is the
long–term behavior of the system?

4.2.5 In the savings account examples in this section we considered only accounts that
were compounded yearly, meaning that interest was added to the account at the end of
each year. In this exercise we generalize this idea and allow interest to be added multiple
times a year, such as monthly or daily. In this case the model is given by

ai+i =
(
1 +

r

n

)
ai (4.2)

where

• i = the number of compounding periods from the time of the initial deposit,

• r = the annual interest rate (in decimal form), and

• n = the number of times compounded per year.
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For instance, if the account were compounded daily, then i would represent days since
the initial deposit and n = 12. Consider an account compounded monthly with an annual
interest rate of 5% and an initial deposit of $1,000.

a. Use the model (4.2) to calculate the amount in the account at the end of each of the
first 24 compounding periods.

b. The formula for compound interest given in most high school algebra books is

A(t) = P
(
1 +

r

n

)nt

where A(t) in the amount in the account at the end of year t and P is the initial
deposit. Verify that this formula gives the same results as part a.

4.2.6 Kayla receives a $6,000 high school graduation present which she puts in a savings
account paying 4.15% annual interest, compounded monthly (see Exercise 4.2.5). She plans
to work for two years before starting college, put her earnings in the account, and then live
off the money in the account during college. Here are the details of her plan:

• She will deposit the same amount into the account at the end of each month for the two
years she works (starting in month 1).

• In month 25 she will stop making deposits and start withdrawing $1,000 each month
for her first year in college.

• During her second year she will withdraw $1,250 each month. During her third and
fourth years she will withdraw $1,500 and $1,750 each month, respectively.

Figure out how much she must deposit each month for the first two years so she has $0
left in the account at the end of her fourth year of college. Approximately how much total
interest does she earn over the six years?

4.2.7 Suppose the amount of a drug in a patient’s blood stream decreases at the rate of
50% per hour and that an injection is given at the end of each hour which increases the
amount of drug in the blood stream by 0.2 units.

a. Formulate a model of the amount of drug in the blood stream at the end of each hour.

b. Find all equilibrium value(s) of your model.

c. Graphically, classify each equilibrium value as attracting or repelling.

d. Suppose we give the injection every 3 hours. Describe what happens to the long–term
level of the drug in the blood stream.

4.2.8 Suppose two countries are engaged in an arms race. Further suppose that the two
countries have economies of similar strength and they have similar levels of distrust of each
other. A simple model for Tn, the total amount of money spent by the two nations, is given
by the affine system

Tn+1 = (1− r + d)Tn + c

where r is a positive constant that measures the restraint of growth due to the strength (or
weakness) of the economies of the countries, d is a positive constant that measures the level
of distrust between the countries, and c is a constant. If Tn eventually grows too large, then
the countries will not be able to support the arms race and they must either negotiate an
end or war breaks out. If Tn approaches a constant level, then they have a “stable” arms
race. If Tn eventually decreases to 0, or lim

n→∞Tn = −∞, then the race ends.
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a. Suppose r = 0.3, d = 1, and c = −10. Calculate Tn for 0 ≤ n ≤ 15. Graph these
values. Set up a scroll bar to vary the value of T0 between 0 and 100. For what values
of T0 does the race end?

b. Now suppose r = 0.3, d = 1, and c = 10. For what values of T0 does the race end?

c. Now suppose r = 0.3, d = 0.1, and c = 10. What happens to the arms race now?

4.2.9 Consider the affine system an+1 = ban +m where b �= 0.

a. Analytically (meaning without using Excel) show that an = bn
(
a0 − m

1−b

)
+ m

1−b is

the solution to the system when b �= 1.

b. Under what conditions is lim
n→∞ an = ∞ (meaning what must be true about the values

of m, b, and a0 for which this limit holds)? Under what conditions is the limit equal
to −∞? In these cases, is the equilibrium value a = m

1−b attracting or repelling?

c. Under what conditions is lim
n→∞ an = m

1−b? In this case, is the equilibrium value a = m
1−b

attracting or repelling?

d. Consider the case where b = 1. Find lim
n→∞ an.

4.2.10 Suppose you open a savings account that pays 5% interest compounded yearly with
a $500 initial deposit and make a $200 deposit at the end of each year.

a. Construct a model of the amount of money in the account at the end of each year and
define the variables.

b. Use this model and the solution in Exercise 4.2.9a to find the amount of time it would
take to build a value of $12,000.

4.2.11 Consider the nonlinear discrete dynamical system

an+1 = an + 0.2an (1− an) (2− an) .

a. Calculate an for 0 ≤ n ≤ 30 and graph the system. Add a scroll bar to vary the value
of a0 between 0 and 2.1.

b. Describe how the long-term behavior of the system is related to a0.

4.3 Discrete Logistic Equation

Table 4.2 gives the number of bacteria in a Petri dish, an, at the end of each hour n. This
data is graphed in Figure 4.10. We want to model an in terms of n.

When modeling a dynamical system, it is often convenient to think about the way the
variable(s) change between time periods. Specifically, we consider the change between time
periods Δan = an+1 − an. The values of Δan for the first 7 values of n are given in Table
4.3.

Notice that as an increases, Δan also increases. This suggests that Δan is proportional
to an, which leads to the equation

Δan = an+1 − an = r an (4.3)
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TABLE 4.2

n 0 1 2 3 4 5 6 7 8 9
an 10.3 17.2 27 45.3 80.2 125.3 176.2 255.6 330.8 390.4

n 10 11 12 13 14 15 16 17 18 19
an 440 520.4 560.4 600.5 610.8 614.5 618.3 619.5 620 621
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FIGURE 4.10

TABLE 4.3

n 0 1 2 3 4 5 6

an 10.3 17.2 27 45.3 80.2 125.3 176.2
Δan 6.9 9.8 18.3 34.9 45.1 50.9 79.4

where r is some positive constant. An equation describing the difference in populations
between time periods, such as (4.3), is called a difference equation. Forming a difference
equation is often the first step in modeling a discrete dynamical system. Solving this equation
for an+1 yields the model

an+1 = (1 + r) an

The parameter r can be interpreted as the constant hourly growth rate. However, the graph
of population vs. hour shows that the population does not grow at a constant rate. Also
note that this constant hourly growth rate would predict a population that grows without
bound, which the data do not support either.

To refine the model, note that the graph shows that the rate of growth decreases as the
population nears 621. This number is called the carrying capacity of the system. So instead
of assuming a constant growth rate r, we assume a growth rate that approaches 0 as the
population approaches 621. An equation implementing this assumption is

Δan = an+1 − an = b(621− an) an (4.4)

where b > 0 is a constant. Solving for an+1 yields the model

an+1 = an + b(621− an) an (4.5)

Equation (4.5) is an example of a discrete logistic equation.

Definition 4.3.1 (Discrete Logistic Equation). A discrete logistic equation (also called a
logistic map or a constrained growth model) is an equation of the form

an+1 = an + b (c− an) an
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where b and c are constants. This type of equation is often used to model population growth
where an is the population at time n. The constant b is called the intrinsic growth rate and
c is called the carrying capacity.

Example 4.3.1 (Bacteria Growth)
To implement the model (4.5) we need to find the value of b. Equation (4.4) predicts that
(an+1 − an), is proportional to (621 − an) an. If a graph of (an+1 − an) vs. (621 − an) an
is approximately a straight line through the origin, then the assumption is reasonable and
the slope of the line is the value of b.

1. Rename a blank worksheet “Bacteria” and format it as in Figure 4.11. Enter the data
from Table 4.2 in columns A and B and copy range D2:E2 down to row 20.

1
2

A B C D E
n an Predicted an(621 - an) an+1 - an

0 10.3 =B2*(621-B2) =B3-B2

FIGURE 4.11

2. Create a graph of the transformed data in columns D and E and fit a straight line
through the origin as in Figure 4.12. We see that the line fits the data well, so our
model appears to be reasonable.

y = 0.0008x
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FIGURE 4.12

3. Using the slope of the line in Figure 4.12, our model is

aa+1 = an + 0.0008 (621− an) an

To test this model against the given data add the formula in Figure 4.13 and copy row
3 down to row 21.

1
2
3

C
Predicted

10.3
=C2+0.0008*(621-C2)*C2

FIGURE 4.13
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4. Use the data in columns A, B, and C to form a graph as in Figure 4.14. Notice that
the “shape” of the predicted values is relatively close to the shape of the observed
values, so the reasonableness of our model is verified. In Exercise 4.3.2 we will fit a
logistic equation to this data in a different way which will yield a better fitting model.
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Example 4.3.2 (Sensitivity to the Intrinsic Growth Rate)
In Section 4.2 we looked at how the long–term behavior of the savings account changes as
the initial deposit changes. Now we look at how the behavior of our constrained population
model changes as the value of b changes. We take a strictly graphical approach.

1. Rename a blank worksheet “Bacteria 2” and format it as in Figure 4.15. Copy row
3 down to row 100.

1
2
3

A B C
n an b 

0 10.3 0.0008
=A2+1 =B2+$C$2*(621-B2)*B2

FIGURE 4.15

2. Highlight columns A and B and form a graph as in Figure 4.16. Set the y-axis min
and max to 0 and 800, respectively.

3. Next add a scroll bar, set the linked cell to D2, set the min and max to 0 and 900,
and add the formula in Figure 4.17. This will allow us to vary the value of b between
0 and 0.0045.

4. Move the slider left and right and notice how the behavior of the system changes,
especially when b increases above 0.0026. Several examples are shown in Figure 4.18.

Notice that the behavior of the system changes quite dramatically as b changes. For
small values of b, the behavior is very regular. But for larger values, it is quite chaotic. This
illustrates that we must be careful about using a model of this form if we are unsure of the
value of b. The value of b dramatically affects the behavior of the system. If we use a wrong
value of b, our analysis of the system could be very inaccurate.
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Exercises

4.3.1 The table below contains data on the population of foxes in a forest over a period of
several years. Fit a discrete logistic equation to the data. How well does the model fit the
data?
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n 0 1 2 3 4 5 6 7 8 9 10

an 50 85 110 130 175 200 215 221 228 232 234

4.3.2 In this exercise we will fit a discrete logistic equation to the data in Table 4.2 using
the least–squares criterion. This criterion says, informally, that when predicting the values
of data {an |n = 1, . . . , m}, the number

m∑
i=1

(an − Predicted)
2

(called the sum of squares) should be as small as possible. With a carrying capacity of 621,
use a scroll bar to find a value of b in the discrete logistic equation that minimizes the sum
of squares. Does this give the same model as the one found in Example 4.3.1? Does this
new model fit the data any better than the model found in the example?

Here are some suggestions:

1. Modify the worksheet Bacteria by adding a column titled “(an − Predicted)
2
.” Sum

the values in this column to calculate the sum of squares.

2. Create a cell to hold the value of b. Reference this cell in your formula for the predicted
values.

3. Add a scroll bar with a min and max of 0 and 1,000. Create a formula for the value
of b equal to the scroll bar linked cell divided by 500,000.

4. Move the slider back and forth to find a value of b that minimizes the sum of squares.

4.3.3 Suppose we estimate that a forest can support a population of 10,000 deer and that
the population of deer is described by the model an+1 = an+0.00006(10000−an) an where
an is the population at the end of year n.

a. Suppose that we let hunters kill 700 deer at the end of each year. Write a model
to describe this situation and analyze the long–term behavior of the population for
different initial populations.

b. Suppose we start with a population of 9,000 deer and we allow hunters to kill m deer
at the end of each year. Analyze the long–term behavior of the population for different
values of m. What is the maximum value of m for which the population survives in
the long–term?

c. Suppose we start with a population of 9,000 deer and we allow hunters to kill a certain
proportion of the population (such as 0.25) at the end of each year. Write a model
to describe this situation and analyze the long–term behavior of the population for
different values of the proportion.

4.3.4 Consider a cup of coffee that is initially 100 ◦F, cools to 90 ◦F in 10 minutes, and
sits in a room whose temperature is a constant 60 ◦F. A simple assumption for how the
coffee cools is that the amount the temperature changes from one minute to the next is
proportional to the difference between the coffee temperature and the room temperature.
That is,

an+1 − an = k (an − 60)

where an is the coffee temperature at minute n and k is some constant.
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a. Implement this model to predict the coffee temperature for 0 ≤ n ≤ 150. Use a scroll
bar to find the value of k that yields a10 ≈ 90.

b. Create a graph of an vs n.

c. Does this model seem reasonable? Briefly explain why or why not.

4.4 A Linear Predator–Prey Model

Consider a forest containing foxes and rabbits where the foxes eat the rabbits for food. We
want to examine whether the two species can survive in the long–term. A forest is a very
complex ecosystem. So to simplify the model, we will use the following assumptions:

1. The only source of food for the foxes is rabbits and the only predator of the rabbits is
foxes.

2. Without rabbits present, foxes would die out.

3. Without foxes present, the population of rabbits would grow.

4. The presence of rabbits increases the rate at which the population of foxes grows.

5. The presence of foxes decreases the rate at which the population of rabbits grows.

We will model these populations using a discrete dynamical model. Each state of the
system consists of the populations of foxes and rabbits at a point in time. Since this state
consists of two components, this is a two–dimensional discrete dynamical system.

To create our model, we first need to define some variables. Let

Fn = population of foxes at the end of month n

Rn = population of rabbits at the end of month n

As in the bacteria model, the assumptions are stated in terms of rates of change, ΔFn =
Fn+1 − Fn and ΔRn = Rn+1 − Rn. There are many ways we could model these rates of
change with the assumptions. In this section we will create a linear model. In the next
section we will create a nonlinear model.

Assumptions 2 and 3 deal with the rates of change of each population in the absence of
the other. A reasonable way to model these is to say that the rates are proportional to the
populations. This yields the difference equations

ΔFn = Fn+1 − Fn = −aFn (4.6)

ΔRn = Rn+1 −Rn = dRn (4.7)

where both a and d are between 0 and 1. Note that the coefficient of proportionality in
(4.6) is negative to reflect the fact that the foxes would die out (a negative rate of change)
without rabbits. The coefficient in (4.7) is positive because the population of rabbits grows
(a positive rate of change) without foxes.

Now, assumptions 4 and 5 say that these rates in Equations (4.6) and (4.7) either increase
or decrease in the presence of the other species. So to incorporate these assumptions, we
will simply add one term to each of Equations (4.6) and (4.7) yielding:

Fn+1 − Fn = −aFn + bRn (4.8)

Rn+1 −Rn = −cFn + dRn (4.9)
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where b and c are non-negative. Note that the added term in (4.8) is positive to reflect the
fact that the presence of rabbits increases the rate at which the population of foxes grows.
The added term in (4.9) is negative since the presence of foxes decreases the rate at which
rabbits grow.

Rewriting Equations (4.8) and (4.9) yields our model in the form of a system of linear
equations

Fn+1 = (1− a)Fn + bRn (4.10)

Rn+1 = −cFn + (1 + d)Rn (4.11)

Because our model has the form of a system of linear equations, it is called a two-dimensional
linear discrete dynamical system.

The model could be written in matrix form as[
Fn+1

Rn+1

]
=

[
1− a b
−c 1 + d

] [
Fn

Rn

]
(4.12)

For a description of how to analyze this model using matrix and eigenvalue techniques, see,
for instance, Lay, David C., Linear Algebra and its Applications, Third ed., Addison Wesley,
2003, pp. 342. We will take a strictly graphical approach to analyze the model.

The parameters (1− a) and b are called the fox death and birth factors, respectively,
while the parameters −c and (1 + d) are called the rabbit death and birth factors, respec-
tively.

1. Rename a blank worksheet “Linear Predator–Prey” and format is as Figure 4.19.
The initial values of the parameters and populations are shown in the figure. Copy
row 8 down to row 37 to model 30 months.

1
2
3
4
5
6
7
8

A B C

Death Birth
Foxes 0.5 0.4
Rabbits -0.17 1.1

Month Foxes Rabbits
0 500 200
=A7+1 =$B$3*B7+C7*$C$3 =B7*$B$4+C7*$C$4

Factors

FIGURE 4.19

2. Next, add the graphs in Figure 4.20. The graphs of rabbits versus month and foxes
versus month are called time plots . The curve in the graph of rabbits versus foxes is
called a trajectory of the system. The plane on which a trajectory is drawn is called
the phase plane. Notice that the trajectory tends toward the origin (0 foxes and 0
rabbits). This means that both species eventually die out. This is also shown in the
time plots. If we change the initial populations, we note that the trajectories always
tend toward the origin. This indicates that the populations always die out, regardless
of the initial populations.

As in a one-dimensional discrete dyanmical system, two-dimensional systems can have
an equilibrium.
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Definition 4.4.1. Let

an+1 = f (an, bn) , bn+1 = g (an, bn)

be a two-dimensional discrete dynamical system. A point (a, b) is an equilibrium point if
an = a and bn = b for all n whenever a0 = a and b0 = b.

Stated another way, (a, b) is an equilibrium point if f (a, b) = a and g (a, b) = b. For
the system given by (4.10) and (4.11), the origin, (0, 0) is an equilibrium point since

f (0, 0) = (1− a)0 + b0 = 0 + 0 = 0

g (0, 0) = −c0 + (1 + d)0 = 0 + 0 = 0

Since the trajectories appear to be attracted to the origin, we have graphical evidence that
the origin is an attracting equilibrium. If the trajectories tended to go away from the origin,
we would say the origin is a repelling equilibrium.

Example 4.4.1 (Bifurcation)
Let’s examine what happens if the rabbit death factor changes.

1. Add a scroll bar to the worksheet, set the min and max to 0 and 500, respectively, and
the linked cell to H1.

2. Add the formula in Figure 4.21 to vary the rabbit death factor from 0 to -0.50 in
increments of 0.001.

3. Move the slider on the scroll bar left and right and notice how the behavior of the
system changes. For values of the death factor less than −0.123, the origin appears
to be attracting and both populations die out, as in Figure 4.20. For values greater
than −0.123, the origin appears to be repelling and both populations grow without
bound, as in Figure 4.22. This change of behavior caused by a change in the value of
a parameter is called a bifurcation.
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Notice that this model predicts that both populations either grow without bound or die
off. These are two extremes. The model in Section 4.5 is a refinement of this one that allows
for other possibilities.

Exercises

4.4.1 Suppose the rabbit death factor is -0.05 and the other factors are as shown in Figure
4.19. For initial populations of 500 foxes and 200 rabbits, we saw that the populations grow
without bound in the long–run. Here we will investigate whether this is true for all initial
populations.

a. Fix the initial rabbit population at 200. What happens if the initial fox population
increases or decreases? How large can the initial fox population be for both species to
survive?

b. Fix the initial fox population at 500. What happens if the initial rabbit population
increases or decreases? How small can the initial rabbit population be for both species
to survive?

4.4.2 Investigate sensitivity to the parameter rabbit birth factor using values of the other
parameters and the initial populations shown in Figure 4.19 (i.e. increase and decrease the
rabbit birth factor and observe what happens to the populations in the long–run).

a. For what values of the rabbit birth factor do the populations die out? For what
values do the populations grow without bound? Are there any values for which the
populations appear to reach an equilibrium?
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b. A forest ranger knows that the populations will both die out under the parameters
in Figure 4.19. To prevent this, she advocates building rabbit shelters in an attempt
to increase the rabbit birth factor. Does this model predict that this would have any
effect on the survival of the populations? Why or why not?

4.4.3 With the parameters and the initial populations shown in Figure 4.19 both popula-
tions die out. A hunting club claims that if they were allowed to kill (or harvest) a few foxes
each month the populations would survive.

a. Modify the model to include this harvesting. Does the model support this claim? If it
does, how many foxes could be harvested each month for both species to survive?

b. A conservation group claims that more foxes should be put into the forest each month
for the populations to survive. Does your model support this claim?

4.4.4 A biologist models the populations of foxes and rabbits in another forest with the
model

Fn+1 = 1.3Fn + 0.4Rn

Rn+1 = −0.6Fn + 1.05Rn

What does this model suggest about the growth or death of foxes in the absence of rabbits?
Is this model consistent with the assumptions used in building the model in this section?
Why or why not?

4.4.5 Consider a two-dimensional system of the form

xn+1 = axn + byn

yn+1 = cxn + dyn

a. If 1− d− cb
1−a �= 0, show that the only equilibrium point is (0, 0).

b. If 1− d− cb
1−a = 0, show that any point of the form (x, x(1− a)/b) is an equilibrium

point.

4.4.6 Consider the linear two-dimensional discrete dynamical system

xn+1 = 0.5xn + 0.4yn

yn+1 = −0.104xn + 1.1yn.

a. Numerically verify that the solution to the system is

xn = 10c1(1.02
n) + 5c2(0.58

n) where c1 =
y0
11

− x0

55

yn = 13c1(1.02
n) + c2(0.58

n) c2 =
13x0

55
− 2y0

11

for any initial conditions x0 and y0. (That is, calculate the state of the system for
several values of n, say n = 0 to 30, as we did in Figure 4.19. Then calculate the state
at each value of n using the claimed solution. Try different initial conditions. Verify
that the solution always gives the correct value of the state.)

b. Using this solution, explain why the origin is a repelling equilibrium point.
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4.5 A Nonlinear Predator–Prey Model

Let’s consider a similar population of foxes and rabbits along with the same set of assump-
tions as in Section 4.4, but we will model the assumptions differently. We will start with
modeling assumptions 2 and 3 the same way:

ΔFn = Fn+1 − Fn = −aFn (4.13)

ΔRn = Rn+1 −Rn = dRn (4.14)

where 0 < a ≤ 1 and 0 < d ≤ 1. In Section 4.4, the coefficients of Fn and Rn were kept
constant. In this section we will model them as increasing or decreasing in the presence of
the other population. Assumption 4 says that the presence of rabbits increases the rate of
growth of foxes, so we write

Fn+1 − Fn = (−a+ bRn)Fn (4.15)

where b ≥ 0. Likewise, assumption 5 says that the presence of foxes decreases the rate of
growth of rabbits, so we have

Rn+1 −Rn = (d− cFn)Rn (4.16)

where c ≥ 0. Rewriting (4.15) and (4.16) we get our model:

Fn+1 = (1− a)Fn + bRnFn (4.17)

Rn+1 = −cRnFn + (1 + d)Rn (4.18)

This type of model is called a Lotka-Volterra model, named after the researchers that first
devised it in the 1920s and 1930s.

Note that both equations have a term involving RnFn; thus the model in nonlinear. This
term can be interpreted as modeling the number of interactions of the two species. These
interactions increase the number of foxes while decreasing the number of rabbits. Also note
the similarities between this nonlinear model and the linear model in (4.10). We will refer
to the parameters in this model using the same names as in the linear model.

This model can easily be implemented in Excel.

1. Rename a blank worksheet “Nonlinear Predator–Prey” and format it as in Figure
4.23. Copy row 8 down to row 507 to model 500 months. (Note that the parameters in
this model do have similar meanings as in the linear model, but they do have different
values. Also we have different initial populations.)

1
2
3
4
5
6
7
8

A B C

Death Birth
Foxes 0.88 0.0001

Rabbits -0.0003 1.039

Month Foxes Rabbits
0 110 900
=A7+1 =$B$3*B7+$C$3*B7*C7 =$B$4*B7*C7+$C$4*C7

Factors

FIGURE 4.23
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FIGURE 4.24

2. Create graphs similar to those in Figure 4.24.

This model predicts that the populations oscillate with the same period of oscillation,
but with a phase shift, meaning they don’t reach their peaks at the same time. These
oscillations cause the spiraling nature of the trajectories in the graph of rabbits versus
foxes. Oscillations such as this are actually observed in nature; thus this model appears to
be more reasonable than the linear model.

Now let’s calculate the equilibrium point of the system. Suppose (f, r) is an equilibrium
point. By definition, this point must satisfy the system of equations

f = 0.88f + 0.0001fr

r = −0.0003fr + 1.039r

Assuming that f �= 0 �= r yields the solution f = 130 and r = 1, 200. Another equilibrium
is (0, 0). Note that the point (130, 1200) is at the center of the spiral in the phase plane. If
we change the starting populations in the worksheet to 130 foxes and 1200 rabbits we note
that the populations do not change, as expected.

To determine if this equilibrium is attracting or repelling, we need to consider starting
populations near the equilibrium. Changing the initial populations to 129 foxes and 1201
rabbits yields the trajectory shown in Figure 4.25. Notice that the trajectory moves away
from the equilibrium. Trying other initial populations yields similar results. The fact that
the trajectories move away from the equilibrium is evidence that the equilibrium is repelling.
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Example 4.5.1 (Hunting)
Suppose that a local hunting club wants to have a fox hunt at one of their next two meetings.
The first meeting is 36 months from now and the next is 36 months after that. If they limit
themselves to killing 50 foxes, how would the two options affect the long–term populations
of the foxes and rabbits?

Starting with 110 foxes and 900 rabbits, the model predicts that at month 36, there
will be approximately 88 foxes. Killing 50 foxes would reduce this number to 38. In the
worksheet, changing the number of foxes in month 36 to 38 results in the graph shown
in Figure 4.26. Notice that this causes a dramatic change in the behavior of the system.
The populations fluctuate much more than they did in Figure 4.24. So, hunting 50 foxes in
month 36 would have a great effect on the long–term populations.
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Now change the number of foxes in month 36 back to the original formula. In month
72, the model predicts a population of 212. Killing 50 foxes would leave 162. Changing the
number of foxes in month 72 to 162 results in the graph shown in Figure 4.27. Notice that
the fox population drops in month 72 which causes the rabbit population to initially grow.
However, in the long–term the populations behave much as they did in Figure 4.24.
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Why is there such a dramatic difference between these two cases? Note that originally
near month 36, the fox population was near a local minimum. At month 72, it was near a
local maximum. Killing 50 foxes near a time of a local minimum has a much greater effect
than near a local maximum.
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Thus the hunting club should not schedule the hunt at month 36; this would cause too
great an effect on the populations. The hunt at month 72 would not cause a long–term
effect.

Exercises

4.5.1 In the fox-rabbit model, we saw that the equilibrium point (130, 1200) is technically
repelling.

a. Comment on how “repelling” this point is. That is, if the populations start near
(130, 1200), do they very quickly move away from this point or not?

b. In Figure 4.23 we started with initial populations of (110, 900) and saw that the
populations fluctuate quite a bit. Suppose a biologist advocates introducing about 20
new foxes and 300 new rabbits to the forest so that the initial populations are near
(130, 1200) Would this help stabilize the populations, or would they fluctuate more?
Explain.

4.5.2 Consider the parameter fox death factor.

a. Investigate the sensitivity of the system to the value of this parameter (use initial
populations of 110 foxes and 900 rabbits). Specifically, comment on how the amplitudes
of the oscillations change as this parameter changes.

b. Can this death factor ever be greater than or equal to 1? Why or why not? (Hint:
See Equations (4.13) and (4.17).)

c. This parameter could be interpreted as the proportion of foxes that survive from one
month to the next in the absence of rabbits. Suppose that a disease infects the fox
population, decreasing the proportion that survives each month. What effect might
this have on the populations?

4.5.3 Consider a model of the form

Fn+1 = aFn + bFnRn

Rn+1 = cRn + dFnRn

where a, b, c, and d are non–zero constants. Find a formula for the equilibrium points of
the system in terms of a, b, c, and d.

4.5.4 Suppose hunters are allowed to kill m rabbits at the end of each month.

a. Modify the model to take this into account (use the parameters and initial populations
shown in Figure 4.23).

b. What effect will this have in the long–term? Would you say the system is sensitive to
the parameter m?

c. How many rabbits could the hunters kill each month and still have the populations
survive in the long–term?
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4.5.5 A biologist is concerned by the large fluctuations in the fox and rabbit populations.
To combat this, she advocates the building of rabbit shelters to help increase the survival
of baby rabbits, thus increasing the rabbit birth factor. Does our model predict that this
would have the intended effect (start with the parameters and initial conditions in Figure
4.23)? Explain your answer.

4.5.6 Consider a forest that contains Foxes and Wolves which compete for the same food
resources. If Fn and Wn represent the populations of foxes and wolves, respectively, at the
end of month n, a model for their populations is

Fn+1 = 1.2Fn − 0.001FnWn

Wn+1 = 1.3Wn − 0.002FnWn

a. Consider the parameters 1.2 and 1.3. Explain why both of them are greater than 1.

b. Why are the parameters -0.001 and -0.002 both negative?

c. Find the equilibria for this system and graphically determine if they are attracting or
repelling (consider only values up to n = 25).

d. Is this model sensitive to the initial populations? Why or why not?

4.6 Epidemics

Consider a community of 1,000 people in which three members get sick with the flu. The
following week, five new cases of the flu are reported. We are interested in modeling the
spread of the disease through the community.

Consider the following assumptions:

1. Nobody enters or leaves the community and no one in the community has contact with
anyone outside the community.

2. Each person is either Susceptible (able to get the flu), Infected (currently has the flu
and able to spread it), or Removed (already had the flu and is not able to get it again).
Initially each person is either susceptible or infected.

3. A susceptible person can get the flu only by contact with an infected person.

4. Once a person gets the flu, he/she cannot get it again.

5. The average duration of the flu is 2 weeks, during which time an infected person can
spread the disease to a susceptible person.

The model we are going to build is called an SIR model (see, for instance, Allman,
Elizabeth Spencer and John A. Rhodes, Mathematical Models in Biology: An Introduction,
Cambridge University Press, 2004 for more information on this type of model). We begin
by dividing the population into three categories: Susceptible, Infected, and Removed, as
described in assumption 2. People move between these three categories as illustrated in
Figure 4.28.

Let Sn, In, and Rn represent the numbers of people that are susceptible, infected, and
removed, respectively, at the end of week n. As in previous models, we will begin by modeling
the change of these variables in terms of difference equations.
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FIGURE 4.28

Let’s begin by modeling Rn. Assumption 5 says that the average duration of the flu
is 2 weeks. This means that, on average, about half the infected people will be healed (or
removed) each week. Therefore, if γ = 0.5, a difference equation for Rn is

ΔRn = Rn+1 −Rn = γIn (4.19)

yielding the model
Rn+1 = Rn + γIn (4.20)

The parameter γ is called the removal rate and represents the proportion of the infected
people that are removed each week. The quantity γIn can be thought of as the number of
“newly removed” people each week.

Now for In. This quantity will increase due to some newly infected people that come as
a result of the interactions of the susceptible and infected people, and it will decrease due
to the newly removed people. Therefore, a difference equation is

ΔIn = In+1 − In = αSnIn − γIn (4.21)

The first term, αSnIn, models the number of interactions of the susceptible and infected
people, similar to the nonlinear predator–prey model. This quantity can be thought of as
the number of “newly infected” people. Notice that the number of newly infected people in
a week is a product of the number of infected and susceptible people in the previous week.
The parameter α is called the “transmission coefficient.” It is a measure of the likelihood
that an interaction between an infected person and a susceptible person will result in an
infection and is most likely a very small number. Equation (4.21) yields the model

In+1 = In + αSnIn − γIn (4.22)

Lastly, to model Sn, note that this quantity is decreased only by the number of newly
infected people and it does not increase. Thus a difference equation is:

ΔSn = Sn+1 − Sn = −αSnIn (4.23)

Therefore the model is
Sn+1 = Sn − αSnIn (4.24)

The overall model is given by the three equations

Sn+1 = Sn − αSnIn

In+1 = In + αSnIn − γIn

Rn+1 = Rn + γIn

Now to determine the values of the parameters α and γ. We already noted that γ is the
proportion of infected people removed each week. In this case, γ = 0.5. In general,

γ =
1

average duration of the infectious period
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To find the value of α, we need to use the fact that we started with 3 sick people and had
5 new cases the first week. In terms of the variables, this means that in week 0,

I0 = 3 and S0 = 997

In week 1, the number of newly infected people is 5, so

5 = αS0I0 = α(3 · 997) (4.25)

⇒ α =
5

3 · 997 = 0.00167 (4.26)

Now we can implement the model.

1. Rename a blank worksheet “Epidemics” and format it as in Figure 4.29. Copy row
8 down to row 32 to model 25 weeks.

1
2
3
4
5
6
7
8

A B C D E F
Population 1000

Transmission Coefficient 0.00167
Removal Rate 0.5

Newly Newly
Week Susceptibles Infectives Removals Infected Removed

0 =C1-C7 3 0 =$C$2*B7*C7 =$C$3*C7
=A7+1 =B7-E7 =C7+E7-F7 =D7+F7 =$C$2*B8*C8 =$C$3*C8

FIGURE 4.29

2. Next, use the data in columns Susceptibles, Infectives, and Removals to form a graph
as in Figure 4.30.
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Notice that the graph shows that the worst of the epidemic will occur during week 8
when a total of approximately 427 people will have the flu. Also note that the numerical
results show that approximately 9 people will never get the flu. In mathematical notation,

lim
n→∞Sn ≈ 9

The fact that this limit is not 0 is typical for an SIR model.
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Now let’s examine sensitivity to the initial number of cases. It is often the case that at
the beginning of an epidemic, the number of initial cases (I0) is underreported. Using our
model we can easily assess this impact.

We will assume that the number of new cases in week 1, 5, is accurate. If the number
of initial cases changes, the transmission coefficient will also change. Generalizing equation
(4.26), we see that

α =
number of new cases in week 1

(initial number of cases)(population – initial number of cases)
(4.27)

We can use Formula (4.27) to easily calculate the value of α for different numbers of initial
cases. To this end, modify the worksheet as in Figure 4.31.

1
2
3
4

B C
Population 1000

Transmission Coefficient =C4/(C7*B7)
Removal Rate 0.5

Number of New Cases in Week 1 5

FIGURE 4.31

Change the number of infectives in week 0 to between 4 and 10 and note how the system
changes. Three examples are given in Figure 4.32
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Notice that with 4 initial cases the value of the transmission coefficient decreases, the
worst of the epidemic occurs about 2 weeks later, and the severity decreases. At the peak,
only 277 people have the flu and in the long–run, about 69 people never get the flu.

As the number of initial cases increases, the severity decreases. Particularly note that
with 10 or more initial cases, the number of infectives never increases. In this case we say
that there is no epidemic. We see that if the initial number of infectives is higher than
originally thought, the epidemic may not be as bad as originally thought.
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Exercises

4.6.1 In this section we argued that the initial number of cases may be under-reported. If
this were the case and the number of new cases in week 1 was constant, then the model
predicts that the epidemic may not be as bad as originally thought. One could argue that the
number of new cases in week 1 could also be under-reported. Use the model to investigate
the severity of the epidemic if the number of new cases in week 1 is higher than 5 but
the initial number of cases is 3. What happens if both numbers are higher than originally
suspected?

4.6.2 In the original model we assumed that the population is constant. Now let’s relax
this assumption. Suppose that 25 people move into the community each week starting in
week 1. Assume that each of these people is susceptible.

a. Modify the worksheet to incorporate this influx of people and describe what happens
to the spread of the flu over a 100 week period (use α = 0.00167, γ = 0.5 and I0 = 3).

b. What happens if 100 new people move in each week?

4.6.3 Suppose the population is a constant 1,000, that initially 50 people have the flu
(I0 = 50), α = 0.00167, and that γ = 0.5. To try to decrease the severity of the epidemic,
the community quarantines some of those with the flu. One way to model quarantining is
to simply modify the transmission coefficient. For instance, if 25% of those with the flu are
quarantined, then only 75% of the interactions between those infected and those susceptible
are capable of producing an infected person. Therefore, the number of newly infected people
is given by

(0.75α)SnIn

Thus the new “effective” transmission coefficient is (0.75α).

a. Add a cell to the worksheet “Epidemics” to hold the new parameter “Proportion
Quarantined,” set it equal to 0.25, and modify the model to incorporate this parameter.
Describe what effect quarantining 25% has over not quarantining.

b. Add a scroll bar that allows the user to vary the proportion quarantined between 0
and 1. Describe what happens as the proportion quarantined changes. What happens
if it equals 0? What if it equals 1?

c. Add a scroll bar that allows the user to vary the number of initial cases, I0, between
0 and 1000.

d. Find a value of Proportion Quarantined that prevents an epidemic from occurring (i.e.
the number of infectives never increases) regardless of the value of I0. Estimate the
smallest such value of Proportion Quarantined.

4.6.4 Consider a disease such as the common cold where a person is not immune once they
are “healed.” Once healed, a person becomes susceptible again. Such a disease could be
modeled with an SIS model as illustrated in Figure 4.33.

a. Devise a set of equations for an SIS model. (Hint: There is no Removed category.
Infected people are healed and are immediately added to the susceptible category.)

b. Implement your model in an Excel worksheet to describe the spread of the common
cold through a population of 1,000 where initially 4 people have the cold and assuming
that the cold lasts an average of 2 weeks (use α = 0.00167). What do you observe?
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S I
FIGURE 4.33

Project Ideas

1. Try to use a simple epidemic model to model the spread of diabetes in the US over
time.

2. Use an epidemic model to model a hypothetical invasion of zombies.

3. Investigate different ways of modeling vaccinations in an epidemic model.

4. Model an epidemic involving both quarantining and vaccinations.

5. Use an epidemic model to model the infestation of lodgepole pine trees by the mountain
pine beetle.

6. Create a worksheet to model the balance of a savings account over time. The worksheet
should allow the user to input parameters such as interest rate, monthly income,
percentage of monthly income for savings, etc.

7. Research and model the battle of Trafalgar.

8. Try to model the US population over time with a discrete logistic equation.

9. Research how eigenvalues and eigenvectors can be used to find analytic solutions of
two-dimensional discrete dynamical systems.

10. Model the spread of the black plague in 14th century London.

11. Suppose you just graduated college and have student loans to pay off. But you also
think you need a new car. Should you A. hold on to your old junker car for as long as
possible and pay its repair bills, or B. buy a new car now, pay fewer repair bills, and
pay more toward your student loans? Create a worksheet to analyze this question.

12. Suppose you are a student just graduating from college, about to head into the work
force, and you have a few student loans you will have to start thinking about paying
off. Although you are just graduating, you are already thinking about saving for a
house. Now you want to know, depending on the interest rates, would it be better to
pay off all of your loans as fast as you can, or begin investing and saving for a house
while making smaller payments on your student loans? Create a worksheet to analyze
this question

For Further Reading

• For an extremely well–written treatise on discrete dynamical systems, see Sandefur,
James T, Discrete Dynamical Systems Theory and Applications, Clarendon Press, 1990.
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• For additional examples of discrete dynamical systems, see Meerschaert, Mark M.,Math-
ematical Modeling, Second ed., Academic Press, 1999, pg. 141 – 152. Also see the bibli-
ography given on page 152.

• For examples of discrete dyanmical systems applied to compound interest and mortgage
payments, see Tung, Ka–Kit, Topics in Mathematical Modeling, Princeton University
Press, 2007, pg. 54 – 67.

• For additional information on epidemic models, see Allman, Elizabeth Spencer and John
A. Rhodes, Mathematical Models in Biology: An Introduction, Cambridge University
Press, 2004.

• For information on analyzing discrete dynamical systems with eigenvalue and eigenvec-
tor methods, see Lay, David C., Linear Algebra and its Applications, Third ed., Addison
Wesley, 2003, pg. 342 – 353.

• For a much different approach to modeling dynamical systems, see Hannon, Bruce and
Matthias Ruth, Dynamic Modeling, Springer, 2001.
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Differential Equations

Chapter Objectives

• Use Euler’s Method to find numerical solutions to differential equations

• Numerically solve systems of differential equations

• Model mixing problems, population growth, and military combat with differential equa-
tions

• Introduce Runge-Kutta methods for numerically solving differential equations

5.1 Introduction

Often times it is very easy to describe how fast a quantity changes. For instance, in the
bacteria population example in Chapter 4, we observed from the data that the rate at
which the culture grows decreases as the population nears 621. This observation led to the
difference equation

Δ an = an+1 − an = b(621− an) an (5.1)

Note in this example we worked with discrete increments of time. In reality, time is contin-
uous so using discrete time units is a simplification. It is a convenient simplification because
a difference equation such as (5.1) is very easy to solve for an+1 in terms of an giving a
recursive solution.

When measuring time continuously, we describe change with a differential equation.
Differential equations are formed in the same basic way as difference equations, but finding
their solutions can be much more complicated.

To illustrate how differential equations are formed, consider the following observation:

When a hot cup of coffee is set on a desk, it initially cools very quickly. As the coffee
gets closer to room temperature, it cools less quickly.

This simple observation is an example of Newton’s Law of Cooling:

The rate at which a hot object cools (or a cold object warms) is proportional to
the difference between the temperature of the object and the temperature of its
surrounding medium.

This law can be translated into the following differential equation:

dy

dt
= k (y − T )

149
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where

y (t) = temperature of the object a time t

T = temperature of the medium (assumed to be constant)

k = constant of proportionality

This differential equation can be solved using basic techniques yielding the general solution:

y (t) = T + Cekt

where C is an arbitrary constant.

Example 5.1.1 (Newton’s Law of Cooling)
Consider a cup of coffee that is initially 100 ◦F, cools to 90 ◦F in 10 minutes, and sits in a
room whose temperature is a constant T = 60 ◦F.

The general solution to Newton’s Law of Cooling is y (t) = T +Cekt. To find the specific
solution in this case we need to find the values of the constants C and k. The initial condition
y (0) = 100 gives

100 = 60 + Cek(0) ⇒ C = 40

The condition y (10) = 90 gives

90 = 60 + 40ek(10) ⇒ k ≈ −0.02877

Thus the model is:
y (t) = 60 + 40e−0.02877t. (5.2)

A graph of this model is shown in Figure 5.1. This curve is called the solution curve.
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In this chapter, we do not analytically solve differential equations as done in Example
5.1.1. Instead we use a technique called Euler’s Method to numerically approximate solution
curves and then graphically analyze the results.
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5.2 Euler’s Method

Euler’s method is a technique for approximating points on the solution curve of a differential
equation. To illustrate the method, consider a differential equation of the form

dy

dt
= F (y)

along with the initial condition y (t0) = y0 where t0 are y0 are some given values. As shown
in Figure 5.2, the point (t0, y0) is a point on the solution curve. Now, let h be some small
positive quantity and define time t1 to be t1 = t0 + h. Our goal is to approximate the
y-coordinate of the point (t1, y (t1)) on the solution curve.
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y0 
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 t1 t0 

Tangent line at point (t0, y0) 
Slope = F(y0) 

(t1, y1) 

FIGURE 5.2

In the triangle in Figure 5.2, the base has length h and the hypotenuse is on a line with
slope F (y0). Therefore, the height is

height = hF (y0)

The y-coordinate of the base of the triangle is y0. Thus the y-coordinate of the top of the
triangle is

y1 = y0 + hF (y0) (5.3)

This y-coordinate is an approximation of y (t1). To approximate y(t2) where t2 = t1+h, we
can repeat this process, replacing y0 with y1. We continue to repeat this process as follows:

t1 = t0 + h y1 = y0 + hF (y0)
t2 = t1 + h y2 = y1 + hF (y1)

...
...

tn+1 = tn + h yn+1 = yn + hF (yn) .

This algorithm is called Euler’s method. The results from Euler’s method can be inter-
preted in at least two ways:

a. Numerically: For each n, yn ≈ y (tn).

b. Graphically: Each point (tn, yn) is approximately a point on the solution curve.
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Example 5.2.1 (Applying Euler’s Method)
Euler’s method is easy to implement in Excel. Here we apply it to the Newton’s law of
cooling problem in Example 5.1.1 and examine how the value of h affects the approximation.
Rename a blank worksheet “Euler” and format it as in Figure 5.3. Copy row 5 down to
row 1004 to calculate values at 1000 different time values.

1
2
3
4
5

A B
h = 0.5

Time Approximate
0 100
=A4+$B$1 =B4+$B$1*(-0.02877*(B4-60))

FIGURE 5.3

Numerically, these results tell us the approximate temperatures at different times. For
instance, row 24 tells us that at time 10 min, the temperature is approximately 89.94 ◦F.
Graphically, we can use the results to approximate the solution curve. Use columns Time
and Approximate to create a graph as in Figure 5.4.
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Observe that the approximate solution curve in Figure 5.4 looks very similar to the
exact solution curve in Figure 5.2. To numerically compare these curves, add the formulas
in Figure 5.5. The formulas in column Exact come from Equation (5.2) and yield the exact
temperatures. The error is simply the difference between the approximate temperatures and
the exact temperatures.

3
4
5

C D
Exact Error

100 =C4-B4
=60+40*EXP(-0.02877*A5) =C5-B5

FIGURE 5.5

To analyze the errors, use the columns Time and Error to create a graph as in Figure
5.6. Set the y-axis min and max to 0 and 0.25, respectively, and the x-axis min and max
to 0 and 200, respectively.
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Figure 5.6 shows that errors are always less than about 0.12 and that as time increases,
the errors get smaller. This shows that Euler’s method gives very accurate results in this
example.

To analyze how the value of h affects the errors, add a scroll bar with min and max of
0 and 1000, and set the linked cell to E1. Add the formula in Figure 5.7 to vary the value
of h between 0 and 1.

1
B

=E1/1000

FIGURE 5.7

Use the scroll bar to vary the value of h and observe what happens to the error. Two
examples are shown in Figure 5.8. Note that as h gets smaller, the error decreases; as it gets
larger, the error increases. However, note that the error is never greater than 0.25, which is
very small relative to the exact values.
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Example 5.2.1 illustrates that in general, the smaller h is, the better the approximation.
But there is a trade-off. If we use a smaller value of h, we must do more iterations to graph
the solution curve over the same interval of t-values. This begs two questions:

1. How do we choose the value of h?

2. How do we know if the approximate solution curve is accurate?
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There is no perfect answer, but we do offer the following guideline:

Cut the value of h in half. If the approximate solution curve does not change “sig-
nificantly,” then the approximation is probably accurate.

Example 5.2.2 (Logistic Equation)
Suppose that 25 panthers are released into a game preserve. Initially the population grows
at a rate of approximately 25% per year, but because of limited food supplies, the preserve
is believed to support only 200 panthers. We want to model the population over time.

Note that the information given deals with the rate of change. This suggests we create
a differential equation to model the rate of change of the population. If y (t) represents the
population at year t, the initial rate of 25% suggests that we model

dy

dt
= 0.25y

However, this model does not take into account the fact that the preserve can support only
200 panthers. It seems reasonable to assume that the rate of growth will decrease as y
approaches 200. One way to model this is

dy

dt
= 0.25

(
1− y

200

)
y (5.4)

Note that as y → 200,
(
1− y

200

) → 0 meaning that dy
dt → 0. Equation (5.4) is called a

logistic differential equation. Also note that this logistic differential equation is very similar
to the logistic difference equation we derived for the bacteria population in Chapter 4. The
general form of a logistic equation is

dy

dt
= k

(
1− y

L

)
y

The parameter L is called the carrying capacity and the parameter k is called the uncon-
strained (or intrinsic) growth rate.

To approximate the solution curve of Equation (5.4), rename a blank worksheet
“Logistic” and format it as in Figure 5.9. Copy row 5 down to row 129 to model 25
years.

1
2
3
4
5

A B
h = 0.2

Year Population
0 25
=A4+$B$1 =B4+$B$1*(0.25*(1-B4/200)*B4)

FIGURE 5.9

Next, create a graph as in Figure 5.10.
Figure 5.10 shows that the rate of growth slows down as the population approaches 200,

as expected. The population reaches the carrying capacity by year 25. Also note that this
graph looks very similar to the graph of the bacteria population in Example 4.3.1.
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To get an idea of whether the approximate solution curve in Figure 5.10 is accurate or
not, we follow the guideline given above. We change the value of h in cell B2 to 0.1, copy
row 5 down to row 254, and create a graph as in Figure 5.11.
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FIGURE 5.11

Observe that Figures 5.10 and 5.11 look almost identical. Thus h = 0.2 appears to
give an accurate result. If the two figures were much different, then we would need to keep
cutting h in half until the curves do not change much.

Non-autonomous differential equations (meaning equations where the right-hand side
explicitly depends on t) of the form

dy

dt
= F (t, y)

arise frequently in applications. Euler’s method can be easily adapted to these types of
differential equations. The basic algorithm is given by

tn+1 = tn + h, yn+1 = yn + hF (yn, tn) .

The next example illustrates an application of a non-autonomous differential equation.

Example 5.2.3 (Bacteria Growth)
Let y(t) denote the population of bacteria in a Petri dish t days after the bacteria begin
growing. Suppose y(t) is described by the differential equation

dy

dt
= 150

√
t
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for t between 0 and 10. If the initial population is 500, approximate the solution curve over
the interval 0 ≤ t ≤ 10 and approximate the population at time t = 7.

Rename a blank worksheet“Bacteria” and format it as in Figure 5.12. Copy row 5 down
to row 104.

1
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4
5

A B
h = 0.1

Day Population
0 500
=A4+$B$1 =B4+$B$1*150*SQRT(A4)

FIGURE 5.12

Create a graph of the solution curve as in Figure 5.13. Note that as time increases, the
population grows faster.
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FIGURE 5.13

To determine if this approximate solution curve is accurate, we change the value of h in
cell B1 to 0.05, copy row 5 down to row 204, and graph the resulting approximate solution
curve. Observe that this curve looks very similar to that in Figure 5.13. This indicates that
h = 0.1 yields accurate results.

Now note that for h = 0.1, the calculations give y(7) ≈ 2331. We interpret this result
by saying that at the beginning of day 7, there will be approximately 2300 bacteria.

Exercises

Directions: Use Euler’s method to approximate the solution curve of the differential equa-
tion in each problem. Choose a value of h and justify that this value gives accurate results
using the guideline given in the text.

5.2.1 Consider a cylindrical can with radius r filled with water which drains out through
a small hole in the bottom of the can. Let h(t) denote the height of the water in the can
(in inches) at time t (in seconds). Using a principle called Torricelli’s law , it can be shown
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that h(t) is described by the differential equation

πr2
dh

dt
= −k

√
h

where k > 0 is a constant. If r = 1, k = 0.372, and the initial height is 8 inches, graph the
approximate solution curve. At approximately what time is the can empty?

5.2.2 Suppose a certain population at time t, y(t), is described by the differential equation

dy

dt
= 0.00008(300− y)(y − 200)2.

Graph an approximate solution curve over the interval 0 ≤ t ≤ 20, use a scroll bar to vary
the initial population between 100 and 300, and describe the long-term behavior of the
population for different initial populations.

5.2.3 Suppose the mass of a yeast culture is described by a logistic equation with a carrying
capacity of 8 grams. At time t = 0, the culture weighs 0.5 grams. Two hours later, it weighs
2 grams.

a. Graph an approximate solution curve over the interval 0 ≤ t ≤ 10. Use a scroll bar to
vary the value of k.

b. Use the scroll bar to approximate the value of k so that the condition y (2) = 2 is
satisfied.

c. At what time is the weight increasing most rapidly? Support your answer numerically.

5.2.4 Let y(t) denote the population of rabbits (in thousands) in a certain forest at time t
(in months). Suppose y is described by the differential equation

dy

dt
= 1 + 3 cos

(
5
√
t− 9

)
.

a. Graph an approximate solution curve over the interval 0 ≤ t ≤ 10 if the initial
population is 3000.

b. Describe, in words, the behavior of the population over this interval of time.

c. What is the approximate population at time t = 5?

5.2.5 In Example 5.2.1 we considered a Newton’s law of cooling problem where the room
temperature is a constant T = 60 ◦F. Now suppose the room is warming up and that the
room temperature is described by the function T (t) = (60+ 0.05t) ◦F. This means that the
differential equation describing the temperature of the cup of coffee is

dy

dt
= −0.02877 [y − (60 + 0.05t)] .

a. Graph an approximate solution curve over the interval 0 ≤ t ≤ 120 if the initial
temperature of the cup of coffee is 100 ◦F.

b. Graph the room temperature on the same plane as the solution curve and compare
the two graphs. At approximately what time does the coffee temperature equal the
room temperature?
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5.2.6 Let T (t) denote the temperature at time t hours from some starting point inside a
building that is heated with a furnace. A simple model for T is

dT

dt
= −k (T −M(t)) + kU (TD − T )

where

• k > 0 is a parameter measuring the level of insulation of the building (the more insula-
tion, the lower the value of k),

• M(t) is the temperature outside the building at time t,

• kU > 0 is a parameter measuring the power of the furnace (the more powerful the
furnace is, the higher the value of kU ), and

• TD is the “desired” temperature inside the building.

a. According to this model, is the furnace heating the building faster when T is “close”
to TD or when T is “far” from TD? Explain why.

b. Let k = 0.25, M(t) = 8◦C, kU = 3, and TD = 21. If T (0) = 12, Use Euler’s method to
estimate the time at which the temperature reaches 18◦C. Does the temperature ever
reach the desired temperature of 21?

c. Consider the same building as in part a., but suppose the outside temperature is
described by M(t) = 12 + 4 cos(πt/12). Use Euler’s method to estimate the inside
temperature at time t. Graph both the inside and outside temperatures over the time
interval [0, 72]. Do both temperatures reach their minimum and maximum values at
the same time?

5.2.7 In Chapter 2, we modeled the velocity of a free-falling object with air resistance by
assuming that the force due to air resistance is proportional to the velocity (FA = k v). This
yielded the differential equation

dv

dt
+

k

m
v = g

where g = 9.8m/sec2 and m = mass of the object.

a. Suppose m = 10 g, v (0) = 0, and k = 3. Use Euler’s method to approximate lim
t→∞ v (t).

b. Use a scroll bar to examine what happens to lim
t→∞ v (t) as k changes. Do your results

make sense? Why or why not?

c. Add a scroll bar to vary the value of m. What happens to lim
t→∞ v (t) as m changes?

Does this make sense?

5.2.8 Consider again the model of the velocity of a free-falling object with air resistance
from Chapter 2. Now assume that the force due to air resistance is described by FA =
(3/n) vn where 0 < n < 5. This assumption yields the differential equation

dv

dt
+

3

m · n vn = g

where g = 9.8m/sec2 and m = mass of the object.

a. Suppose m = 10 g and v (0) = 0. Use Euler’s method to approximate lim
t→∞ v (t).
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b. Use a scroll bar to examine what happens to lim
t→∞ v (t) for different values of n.

c. Compare the terminal velocity for n > 1 to that for n = 1. Also compare the amount
of time needed to reach the terminal velocity. Repeat for n < 1.

d. If we wanted to model the free-fall of an object that is very aerodynamic, would we
want to use a small value of n or a large value? Explain.

5.2.9 When two liquids of different temperatures are mixed together, the final temperature
of the resulting mixture can be calculated with the following formula:

tf =
m1c1t1 +m2c2t2
m1c1 +m2c2

where m1 and m2 are the masses (in g), c1 and c2 are the specific heats (in J/g◦C), and
t1 and t2 are the initial temperatures (in ◦C) of the respective liquids. Suppose Sam pours
some boiling water (100◦C) over some instant coffee granules in a mug and then lets the
coffee sit for 10 min to cool. Sam also wants to add some cold milk (5◦C) to the coffee before
he drinks it. He considers two options for when to add the milk:

i. At time t = 0 min, immediately after the water is poured into the mug.

ii. At time t = 10 min, immediately before he begins drinking the coffee.

Sam wants to know how each option would affect the final temperature of the coffee/milk
mixture. Ignore the effects of the mug and the granules on the temperature. Assume the
room temperature is 20◦C, the constant of proportionality in Newton’s law of cooling is
k = −0.06, and the parameters are m1 = 240, m2 = 5.15, c1 = 4.2, c2 = 3.77 (liquid 1 is
the coffee and liquid 2 is the milk).

a. Determine the temperature of the coffee/milk mixture at time t = 10 for each option.

b. Is there much of a difference between the two options?

c. Investigate the sensitivity of the system to the parameter m2. Describe your observa-
tions.

5.3 Mixing Problems

A derivative dy/dt describes the rate of change of the quantity y(t). In some situations a
quantity is being increased by one factor and decreased by another. In such situations we
can describe the overall rate of change using the following principle:

Overall rate of change = Rate of increase− Rate of decrease.

As an application of this principle, consider a tank that contains 50 gallons of a solution
composed of 90% water and 10% alcohol. A second solution containing 50% alcohol is added
to the tank at the rate of 2 gallons per minute. At the same time, solution is being drained
from the tank at the rate of 3 gallons per minute. This situation is illustrated in Figure
5.14. Assuming the tank is continuously stirred, find the amount of pure alcohol in the tank
from 0 to 50 min. Also calculate the concentration of alcohol in the tank at each time.
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Initially 
50 gal 

10% Alcohol 

2 gal/min 

50% alcohol 

3 gal/min 

FIGURE 5.14

Let y(t) denote the gallons of pure alcohol in the tank at time t min. The solution being
added to the tank increases the value of y and the solution being drained out of the tank
decreases the value of y. The principle from above suggests the following general differential
equation model:

dy

dt
= Rate of change of alcohol (in gal of alcohol/min)

= Rate in− Rate out

Now we need to model the rate in and the rate out. Modeling the rate in is relatively easy.
A 50% alcohol solution is being added to the tank at a constant 2 gallons per minute.
Therefore,

Rate in =

(
0.5 gal alcohol

1 gal solution

)(
2 gal solution

min

)
=

1 gal alcohol

min

Modeling the rate out is a little more complicated because the proportion of the solution
in the tank that is alcohol is changing. Note that the volume of solution in the tank is
decreasing at the rate of 1 gal/min. Therefore, the volume of solution in the tank at time t
is simply 50− t. The amount of alcohol in the tank at time t is simply y. Therefore, similar
to the model for rate in, we have

Rate out =

(
y gal alcohol

(50− t) gal solution

)(
3 gal solution

min

)
=

3y

50− t

gal alcohol

min

Thus, the differential equation is

dy

dt
= 1− 3y

50− t
. (5.5)

In general, the differential equation describing y(t) has the form

dy

dt
=

(
Rate of sol
flowing in

)(
Conc of sol
flowing in

)
−
(

Rate of sol
flowing out

)( y

Vol of sol in tank

)

The concentration of the solution in the tank is then

Concentration =
y

Vol of sol in tank
.

Example 5.3.1 (Solving a Mixing Problem)
We can easily use ideas from Section 5.2 to approximate a solution curve of (5.5). Rename
a blank worksheet “Mixture” and format it as in Figure 5.15. Copy row 5 down to row
504.
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Time Vol Solution in Tank Vol Alcohol Concentration
0 50 =5 =C4/B4
=A4+$B$1 =50-A5 =C4+$B$1*(1-3*C4/B4) =C5/B5

FIGURE 5.15
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FIGURE 5.16

Create a graph as in Figure 5.16. To determine whether these approximate solution
curves are accurate we change the value of h from 0.1 to 0.05 and observe that the curves
do not change significantly. Thus h = 0.1 appears to give accurate results.

From Figure 5.16 we see that the amount of alcohol initially increases and then decreases
to 0 as time approaches 50. The concentration increases from 0.1 and starts to level off
near 0.5. We can also use the results to approximate, for instance, the time at which the
concentration in the tank is 0.4. Examining the numerical results we see the concentration
is approximately 0.4 at time 25 min.

Example 5.3.2 (Tank with Valve)
Using Euler’s method, we can easily solve mixing problems much more complicated than
in Example 5.3.1. Consider the following scenario as illustrated in Figure 5.17: A solution
of 50% alcohol and 50% water is poured at a constant rate of 1 L/min into a tank initially
containing 5 L of pure water. The tank is well-stirred and the solution flowing out of the
tank is controlled by a valve which is open for 1 min, closed for 1 min, open for 1 min, and
so on. When the valve is open, solution flows out at a rate of 2 L/min. Approximate the
time at which the concentration of alcohol in the tank is 0.4.

Initially 
5 L 

Pure Water 

1 L/min 

50% Alcohol 

2 L/min 

Valve 

FIGURE 5.17

To model this scenario, note that the volume of solution in the tank is changing. When
the valve is open, the volume decreases by 1 L/min. When the valve is closed, the volume
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increases by 1 L/min. Thus over a time of h min,

Change in volume =

{
1 · h L if the valve is closed
−1 · h L if the valve is open.

Let y(t) denote the volume of pure alcohol in the tank at time t. The differential equation
describing y is

dy

dt
= 1 · 0.5−

(
0 if the valve is closed
2 if the valve is open

)( y

Vol of sol in tank

)
.

To approximate a solution curve to this differential equation, title a blank worksheet
“Tank with Valve” and format it as in Figure 5.18. Copy row 5 down to row 254 and
then create graphs as in Figure 5.19. To verify that these graphs are accurate, we change h
from 0.2 to 0.1 and observe that the graphs do not change significantly.
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A B C D E
h = 0.2

Time Valve Open? Vol Solution in Tank Vol Alcohol Concentration
0 =IF(MOD(INT(A4),2)=0,1,0) 5 0 =D4/C4
=ROUND(A4+$B$1,1) =IF(MOD(INT(A5),2)=0,1,0) =IF(B4=1,C4-$B$1,C4+$B$1) =D4+$B$1*(0.5-2*D4/C4*B4) =D5/C5

FIGURE 5.18

The formulas in column B round the time down to the nearest whole number, calculate
this rounded time modulus 2 and return a 1 if this result is 0, meaning the valve is open,
and return 0 otherwise. The ROUND function in column A rounds off the time to one
decimal point. This is necessary because when Excel adds a number repeatedly (as in adding
h to the time in each step) it introduces a hidden “rounding” error. Thus when the time
is supposed to be a whole number, Excel thinks it is not a whole number. The ROUND
function corrects this error.
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Notice that the volume of alcohol in the tank initially increases but then begins to
fluctuate. The concentration initially increases and then levels out near 0.5. This is what we
expect because the concentration of solution coming into the tank is 0.5. From the graph
and the numerical results, we see that the concentration is 0.4 at approximately time 7
min.
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Exercises

Directions: Use Euler’s method to solve the following problems. Choose a value of h and
justify that this value gives accurate results using the guideline given in the text.

5.3.1 A 100-gal tank is full of a solution that contains 15 lb of salt. Starting at time t = 0,
distilled water is poured into the tank at the rate of 5 gal per minute. The solution in the
tank is continuously well-stirred and is drained out of the tank at the rate of 5 gal per
minute.

a. Let y(t) denote the weight of salt in the tank at time t. Form a differential equation
to model dy/dt.

b. Approximate the amount of salt in the tank at time t = 10.

c. At approximately what time is the concentration of salt in the tank 0.1 lb/gal?

d. Approximate lim
t→∞ y(t). Is this what you expect?

5.3.2 A solution containing 0.05 kg of salt per L flows at a constant rate of 6 L/min into a
tank that initially holds 50 L of pure water. The tank is well-stirred and the solution flows
out of the tank at a rate of 6 L/min.

a. Let y(t) denote the mass of salt in the tank at time t. Form a differential equation to
model dy/dt.

b. Approximate the time at which the concentration of salt in the tank is 0.035 kg/L.

c. Now suppose there was initially 0.5 kg of salt in the tank. Find the time at which the
concentration is 0.03 kg/L.

5.3.3 A solution containing 0.07 kg of salt per L flows at a constant rate of 5 L/min into
a tank that initially holds 15 L of water in which 0.5 kg of salt is dissolved. The tank is
well-stirred and the solution flows out of the tank at a rate of 7 L/min.

a. Let y(t) denote the mass of salt in the tank at time t. Form a differential equation to
model dy/dt.

b. Approximate the time at which the amount of salt in the tank is maximized.

c. Approximate the time at which the concentration of salt in the tank is 0.06 kg/L.

5.3.4 A tank initially contains 50 L of pure water. A solution of 50% water and 50%
alcohol is poured into the tank at a rate described by r(t) = 1 + cos(t) L/min. The tank is
well-stirred and the solution flows out of the tank at a constant rate of 1 L/min.

a. Graph the approximate volume of alcohol in the tank over the interval 0 ≤ t ≤ 250.
(Hint: From time tn to time tn+1 = tn + h, the volume in the tank increases by
h · r (tn) L and decreases by h · 1 L.)

b. Approximate the time at which there is 17.5 L of alcohol in the tank.

c. Graph the concentration of the alcohol in the tank over the interval 0 ≤ t ≤ 250.
What is the limit of the concentration as t → ∞? Does this make sense? Explain why
or why not.
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5.3.5 A tank initially contains 50 L of a solution composed of 90% water and 10% alcohol.
A second solution containing 25% alcohol is added to the tank at a constant rate of 1 L/min.
The tank is well-stirred and the solution flowing out of the tank is controlled by a valve
which is open for 2 min, closed for 2 min, open for 2 min, and so on. When the valve is
open, solution flows out at a rate of 3 L/min.

a. Approximate the first time at which the volume of solution in the tank is 0 (Hint:
The valve is open if the time modulus 4 is less than 2.)

b. Graph the volume of alcohol in the tank from time 0 to the time found in part a.

c. At approximately what time is the volume of alcohol in the tank maximized?

5.3.6 Let y(t) denote the population (in thousands) of bacteria in a Petri dish at time
t (in days). Suppose the population grows at the rate of 3y. However, suppose that an
antibiotic is continuously added to the Petri dish and kills off bacteria at a rate described
by f(t) = 100t.

a. Form a differential equation to model dy/dt.

b. Graph an approximate solution curve if the initial population is 10,000.

c. At approximately what time does the population die out?

5.3.7 A radioactive isotope R1 decays into another radioactive isotope R2 which then decays
into stable atoms. Let y(t) denote the mass (in g) of R2 at time t (in min). Suppose R1

decays at a rate described by 50e−10t g/min and that R2 decays at a rate described by 2y
g/min.

a. Form a differential equation to model dy/dt.

b. Graph an approximate solution curve if the initial mass of R2 is 40 g.

c. At approximately what time is there 10 g of R2 left?

5.3.8 Consider the heating and cooling of a building as described in Exercise 5.2.6 where
k = 0.25, kU = 3, TD = 21, T (0) = 12, and M(t) = 12 + 4 cos(πt/12).

a. Suppose the furnace is turned on between times 0 and 12, then off between 12 and 24,
then on between 24 and 36, and so on. Graph an approximate solution curve over the
interval 0 ≤ t ≤ 20.

b. Now suppose the furnace is turned on all the time. Graph an approximate solution
curve on the same plane as part a.

c. Suppose the building is a store that is open only when the furnace is turned on. Based
on the results of parts a. and b., would you recommend leaving the furnace on all the
time, or shutting it off when the store is closed? Explain.

5.3.9 Consider a reservoir with a volume of 8 billion cubic meters (m3) and an initial
pollution concentration of 0.0025 kg/m3. There is a daily inflow of 500 million m3 of water
with a pollution concentration of 0.0005 kg/m3 and an equal daily outflow of the well-
mixed water in the reservoir. Approximately how long will it take to reduce the pollution
concentration in the reservoir to 0.001 kg/m3?
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5.4 Systems of Differential Equations

A system of differential equations is a set of two or more related differential equations
involving two or more unknown functions. In this section we restrict ourselves to a set of
two equations with the general form

dx

dt
= F (x, y) ,

dy

dt
= G (x, y)

along with the initial conditions x (t0) = x0, y (t0) = y0. Euler’s method for a system such
as this is:

t1 = t0 + h x1 = x0 + hF (x0, y0) y1 = y0 + hG (x0, y0)
t2 = t1 + h x2 = x1 + hF (x1, y1) y2 = y1 + hG (x1, y1)

...
...

...
tn+1 = tn + h xn+1 = xn + hF (xn, yn) yn+1 = yn + hG (xn, yn) .

Example 5.4.1 (Connected Tanks)
Consider the two connected tanks filled with salt water shown in Figure 5.20. Let x(t) and
y(t) denote the masses of salt (in kg) in the tanks at time t where x(0) = 4 and y(0) = 2. We
assume perfect mixing in both tanks. The goal of this example is to describe the long-term
behavior of x and y.

 
 
 
 
 
 

 

Tank 1 (࢚)࢞ 
24 L 

Tank 2 (࢚)࢟
24 L 

2 L/min

8 L/min 6 L/min 

6 L/min 
Water 

FIGURE 5.20

To set up the system of differential equations, we use the following principle from Section
5.3:

Overall rate of change = Rate in− Rate out.

First, observe that each tank is losing solution at the overall rate of 8 L/min and gaining
solution at the rate of 8 L/min, so the volume of each tank is not changing. Now consider
tank 1. This tank has pure water entering on the left at 6 L/min and solution from tank 2
entering on the right at 2 L/min. Therefore,

Rate in =
0 kg

L
× 6 L

min
+

y kg

24 L
× 2 L

min
=

y kg

12 min
.

Likewise, tank 1 has solution leaving on the right at the rate of 8 L/min, so

Rate out =
x kg

24 L
× 8 L

min
=

x kg

3 min
.

Therefore, the differential equation for tank 1 is

dx

dt
=

y

12
− x

3
.
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By a similar argument, the differential equation for tank 2 is

dy

dt
=

x

3
− y

3
.

To numerically solve this system using Euler’s method with a step size of h = 0.2, rename
a blank worksheet “Connected Tanks” and format it as in Figure 5.21. Copy row 5 down
to row 204.
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A B C
h = 0.2

t x y
0 4 2
=A4+$B$1 =B4+$B$1*(C4/12-B4/3) =C4+$B$1*(B4/3-C4/3)

FIGURE 5.21

To graphically analyze the results, create graphs of x vs. t and y vs. t as in Figure 5.22.
These graphs are called time plots . In these graphs, we see that the mass of salt in tank 1
drops to 0 by about time 20 min. The mass of salt in tank 2 initially increases, but then
drops to 0 by about time 30 min.
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FIGURE 5.22

We can combine the two time plots into a single graph by graphing y vs. x as in Figure
5.23. The x−y plane in this graph is called the phase plane and the curve is called a trajec-
tory . The trajectory shows that the system starts at the point (4, 2) (the initial condition).
Moving along the trajectory to the left, we see that x decreases while y initially increases,
but then begins to decrease. Both x and y eventually approach 0. This is exactly what we
saw in the time plots.

The point (0, 0) on the phase plane in Example 5.4.1 is called an equilibrium point of the
system. Equilibrium points are central to the analysis of systems of differential equations.

Definition 5.4.1. An equilibrium point of a system of differential equations

dx

dt
= F (x, y) ,

dy

dt
= G (x, y)

is a point (x0, y0) such that F (x0, y0) = 0 = G (x0, y0).
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In simpler terms, an equilibrium point is a point on the phase plane where if we start
there, we stay there forever. As with discrete dynamical systems, equilibrium points of
systems of differential equations are points on the phase plane which typically attract or
repel trajectories. Equilibrium points that attract trajectories are called attracting, stable,
or asymptotically stable. Equilibrium points that repel trajectories are called unstable or
repelling.

Example 5.4.2 (Analyzing an Equilibrium Point)
Consider again the system of connected tanks in Example 5.4.1. To confirm that (0, 0) really
is an equilibrium point, change x(0) and y(0) to 0 in the worksheet Connected Tanks and
observe that x and y stay at 0 forever. To determine whether (0, 0) is attracting or not, add
the formulas in Figure 5.24 to randomly change the initial conditions to values between −5
and 5.

3
4

B C
x y

=RANDBETWEEN(-5,5) =RANDBETWEEN(-5,5)

FIGURE 5.24

On the graph of the trajectory, change the axes mins and maxes to −5 and 5 as in Figure
5.25. Press the F9 key several times. Each time, a new set of initial conditions is generated.
Observe that the trajectory always approaches the point (0, 0). This is graphical evidence
that (0, 0) is an attracting equilibrium point.

Example 5.4.3 (Finding Equilibrium Points)
Graphically we have determined that (0, 0) is an equilibrium point of the system in Example
5.4.1, but are there possibly other equilibrium points? To algebraically find the equilibrium
point(s) of a system of the form

dx

dt
= F (x, y) ,

dy

dt
= G (x, y) ,
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FIGURE 5.25

we need to set both F (x, y) and G (x, y) equal to 0 and solve for x and y. In Example
5.4.1, this yields the system of linear equation

y

12
− x

3
= 0

x

3
− y

3
= 0.

Solving this system using elementary linear algebra techniques (see Section 3.1) yields
the only solution x = y = 0. Therefore, (0, 0) is the only equilibrium point of the system.

Exercises

5.4.1 Consider the connected tanks in Figure 5.26. 
 
 
 
 
 
 
 

 

Tank 1 (࢚)࢞ 
30 L 

Tank 2 (࢚)࢟
20 L 

1.5 L/min

3 L/min 2.5 L/min 

1.5 L/min 
1 kg/L 1 L/min 

3 kg/L 

FIGURE 5.26

a. Find a system of differential equations for x and y.

b. Find the equilibrium point(s) of the system.

c. Graphically determine if the equilibrium point(s) are attracting or repelling. Use initial
values between 0 and 50.
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5.4.2 Consider a 60-L tank filled with water in which 2 kg of salt are dissolved. Fresh water
is pumped into the tank at a rate of 3 L/min and the resulting mixture flows out at the
rate of 3 L/min into another 60-L tank that initially is filled with pure water. From there,
the mixture spills onto the ground at the rate of 3 L/min.

a. Assuming perfect mixing in both tanks, graph the approximate mass of salt in each
tank over the interval 0 ≤ t ≤ 40.

b. At what time is the mass of salt in the second tank at a maximum?

c. At what time do both tanks contain the same mass of salt?

5.4.3 The motions of a certain pendulum are described by the system of differential equa-
tions:

dx

dt
= y,

dy

dt
= −5 sinx− 9

13
y

where x = θ, the angle between the rod and the downward vertical direction, and y = dθ
dt ,

the speed at which the angle changes. Find the equilibrium points for this system.

5.4.4 Consider a system of linear differential equations of the form

dx

dt
= ax+ by

dy

dt
= cx+ dy.

a. Show that the origin (0, 0) is an equilibrium point for any values of a, b, c, and d.

b. For each of the following values of the parameters (a, b, c, d), graphically determine if
the origin is an attracting equilibrium point (meaning trajectories always move toward
the origin) or repelling (meaning trajectories always move away from the origin).

i.(−2, −5, 1, 4) ii.(7, −1, 3, 3)
iii(−3, −2, −1, −1) iv.(3, 1, −2, 1)
v.(−3, −9, 2, 3)

5.4.5 Insurgent forces have a strong foothold in the city of Urbania, a major metropolis in
the center of the country of Ibestan. Intelligence estimates they currently have a force of
1570 fighters. The local police force has 2250 officers, many of which have had no formal
training in law enforcement methods or modern tactics for addressing insurgent activity.
Based on data collected over the past year, approximately 8% of insurgents switch sides and
join the police each week whereas about 11% of police switch sides and join the insurgents.
Intelligence also estimates that around 120 new insurgents arrive from the neighboring
country of Moronka each week. Recruiting efforts in Ibestan yield about 85 new police
recruits each week as well. In armed conflict with insurgent forces, the local police are able
to capture or kill approximately 10% of the insurgent force each week on average while
losing about 3% of their force. If P (t) and I(t) denote the number of police and insurgents,
respectively, in week t, we can model this scenario with the system of differential equations

dP

dt
= −0.03P (t)− 0.11P (t) + 0.08I(t) + 85

dI

dt
= 0.11P (t)− 0.10I(t)− 0.08I(t) + 120

with the initial conditions P (0) = 2250 and I(0) = 1570.
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a. Use Euler’s method to graph the time plots over the interval 0 ≤ t ≤ 50. Are the
police able to maintain their numeric superiority over the insurgents?

b. Suppose the police were to increase their recruiting efforts. How many total new
recruits do the police need each week to maintain their numeric superiority?

5.4.6 Consider a lake containing both bass and trout who compete for the same food source.
Let B(t) and T (t) denote the populations, in thousands, of bass and trout, respectively, in
month t. Suppose these functions are described by the system of differential equations

dB

dt
= (10−B − T )B

dI

dt
= (15−B − 3T )T.

a. Find the equilibrium point(s) of the system.

b. Use Euler’s method with h = 0.1 to graph both the time plots and trajectory over the
interval 0 ≤ t ≤ 7. Use random initial populations between 0 and 5.

c. Are the equilibrium point(s) from part a. attracting or repelling?

d. Does it appear the bass and trout can coexist? Briefly explain why or why not.

5.4.7 Consider two tanks of salt water separated by a thin permeable membrane through
which salt can diffuse. Let x1(t) and x2(t) denote the masses of salt in the two tanks. If
we assume that the rate at which salt diffuses though the membrane is proportional to the
difference between the concentrations of the two solutions, we get the system of differential
equations

dx1

dt
= P

(
x2

V2
− x1

V1

)
dx2

dt
= P

(
x1

V1
− x2

V2

)

where P is a constant, called the permeability and V1 and V2 are the volumes of the respective
tanks.

a. Suppose that P = V1 = V2. Plug these values into the system and simplify.

b. Show that any point where x1 = x2 is an equilibrium point of the system.

c. Use Euler’s method with h = 0.1 to graph the time plots over the interval 0 ≤ t ≤ 3.
Use random initial values between 0 and 10.

d. What happens to the values of x1 and x2 in the long-term? Hypothesize how these
long-term values are related to the initial values. Give numerical support for your
hypothesis.

5.4.8 Consider the connected tanks in Figure 5.27 where each tank contains 100 L of salt
water and solution flows through each pipe at the rate of 1 L/min.
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Tank 1 ࢞૚(࢚) Tank 2 ࢞૛(࢚)

 
Tank 3 ࢞૜(࢚) 

FIGURE 5.27

a. Find a system of differential equations for x1, x2, and x3.

b. Suppose x1(0) = 5, x2(0) = 12, and x3(0) = 16. Estimate x1(250), x2(250), and
x3(250).

c. Hypothesize how the values of x1(250), x2(250), and x3(250) relate to the values of
x1(0), x2(0), and x3(0). Explain how you came up with this hypothesis.

d. Support your hypothesis in part c. numerically and graphically by letting x1(0), x2(0),
and x3(0) be random values between 0 and 20. Does your hypothesis always seem to
be true?

5.4.9 Suppose the motion of a particle on the x − y plane is described by the system of
differential equations

dx1

dt
= x2,

dx2

dt
= 2x4 − 3x1,

dx3

dt
= x4,

dx4

dt
= −2x2 − 3x3,

where

• x1(t) = x(t) (the x-coordinate of the particle at time t),

• x2(t) = x′(t) (the rate at which the x-coordinate changes),

• x3(t) = y(t) (the y-coordinate of the particle at time t), and

• x4(t) = y′(t) (the rate at which the y-coordinate changes).

Consider the initial conditions x1(0) = 1, x2(0) = x3(0) = x4(0) = 0.

a. Use Euler’s method with h = π/500 to approximate the solution to this system over
the interval 0 ≤ t ≤ 2π.

b. Graph y vs. x, that is, x3 vs. x1. This graph is an approximation of a curve called an
astroid , also known as a hypocycloid with four cusps.
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5.5 Quadratic Population Model

In this section we model the populations of two species with a system of two differential
equations and graphically analyze the behavior of the system using Euler’s method.

Example 5.5.1 (Competing Foxes and Wolves)
Consider a forest that contains foxes and wolves (we ignore all other animals in the forest).
In the absence of any competition, foxes grow at the rate of 10% per year and wolves at a
rate of 25% per year. The forest can support about 10,000 foxes or 6,000 wolves. The two
species compete for the same resources, but the extent of this competition is not known.
We want to know if both species can coexist or if one will dominate.

To model this scenario, define

F (t) = fox population at time t

W (t) = wolf population at time t

We can use logistic equations as in Example 5.2.2 to model the two growth rates in terms
of the carrying capacities:

dF

dt
= 0.10

(
1− F

10, 000

)
F

dW

dt
= 0.25

(
1− W

6, 000

)
W

Now to model the effect of competition, we will assume that competition decreases the
growth rates by an amount proportional to the product of the two populations (this product
models the interaction of the two species). This yields the system

dF

dt
= 0.10

(
1− F

10, 000

)
F − c1FW

dW

dt
= 0.25

(
1− W

6, 000

)
W − c2FW

where c1 and c2 are some unknown positive parameters. Rewriting this system, we get the
model

dF

dt
= 0.10F − 0.10

10, 000
F 2 − c1FW

dW

dt
= 0.25W − 0.25

6, 000
W 2 − c2FW.

The problem does not specify the values of c1 and c2, so let’s think about possible values.
The FW terms can be thought of as modeling competition between species while the square
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terms model competition within a species. Different species compete for similar, but different
resources. Members within a species compete for the exact same resources. Therefore, it
seems reasonable that competition within a species has a larger effect than competition
between species. In other words, it seems reasonable that the coefficients of the FW terms
are smaller in absolute value than the coefficients of the square terms. This suggests a model
of the form

dF

dt
= 0.10F − 0.10

10, 000
F 2 − λ

0.10

10, 000
FW

dW

dt
= 0.25W − 0.25

6, 000
W 2 − λ

0.25

6, 000
FW,

where λ is some parameter between 0 and 1.

The model in Example 5.5.1 is an example of a Quadratic Population Model which has
the general form

dx

dt
= a1x+ b1x

2 + c1xy

dy

dt
= a2y + b2y

2 + c2xy.

The parameter a describes how each population changes in the absence of any competi-
tion. The parameter b can be thought of as describing how competition within the species
affects the rate of growth. The parameter c describes how competition between species
affects the rate. The signs of these parameters tell us a lot about the system. For instance,
in both the equations in Example 5.5.1, a is positive and b and c are negative. This tells
us that both populations would grow in the absence of competition and that competition
within each species and competition between species decrease both rates of growth.

The question in Example 5.5.1 is, “can the two species coexist?” To answer this question
we need to analyze the long-term behavior of the populations and determine how this is
affected by the value of λ.

Example 5.5.2 (Analyzing a Quadratic Population Model)
To graphically analyze the model in Example 5.5.1, follow these steps:

1. Rename a blank worksheet “Quadratic” and format it as in Figure 5.28. (Note that
in this example, Species 1 is fox and Species 2 is wolf.)

1
2
3
4
5

A B C D

a1 = 0.1 a2 = 0.25
b1 = =-0.1/10000 b2 = =-0.25/6000
c1 = =B5*B3 c2 = =B5*D3
λ = 0.5

Species 1 Species 2

FIGURE 5.28

2. Add the formulas in Figure 5.29 and copy row 15 down to row 214.
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12
13
14
15

A B
h = 1

Time Species 1
0 1000
=A14+$B$12 =B14+$B$12*($B$2*B14+$B$3*B14^2+$B$4*B14*C14)

13
14
15

C
Species 2

1000
=C14+$B$12*($D$2*C14+$D$3*C14^2+$D$4*B14*C14)

FIGURE 5.29

3. Create a graph as in Figure 5.30. Set the x-axis min and max to 0 and 10,000 and
the y-axis min and max to 0 and 6000. The graph shows that the populations start at
(1000, 1000) and stop changing at around (9333, 1333). Thus, with these parameters
and initial populations, the foxes and wolves can indeed coexist.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 2000 4000 6000 8000 10000

Sp
ec

ie
s 2

Species 1

Trajectory

FIGURE 5.30

4. The initial populations of (1000, 1000) are arbitrary, so let’s try different values and see
what happens. Add the formulas in Figure 5.31 to generate random initial populations.
(If these formulas do not work, selectTools→Add-Ins. . . , selectAnalysis ToolPak
and press OK.)

13
14

B C
Species 1 Species 2

=RANDBETWEEN(0,10000) =RANDBETWEEN(0,6000)

FIGURE 5.31

Press the F9 key several times to try different initial populations. Note that for each
one, the populations settle down at around (9333, 1333). Therefore, it appears that the
populations can coexist regardless of the initial populations (at least with this value
of λ).
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It appears that the point (9333, 1333) is an equilibrium point of the system. Equilibrium
points are important in population models because they can indicate what happens to the
populations in the long–term.

Example 5.5.3 (Equilibrium Points of a Quadratic Population Model)
To find equilibrium points of a quadratic population model, we need to solve the algebraic
system

0 = a1x+ b1x
2 + c1xy (5.6)

0 = a2y + b2y
2 + c2xy. (5.7)

Obviously, (0, 0) is one equilibrium point. If x �= 0 and y = 0, then (5.6) gives

0 = a1x+ b1x
2 = x(a1 + b1x)

⇒ 0 = a1 + b1x

⇒ x = −a1
b1

Thus (
−a1
b1

, 0

)
(5.8)

is another equilibrium point. If x = 0 and y �= 0, similar calculations give(
0,−a2

b2

)
(5.9)

as another. Assuming that x �= 0 and y �= 0 requires us to solve the system of equations

0 = a1x+ b1x
2 + c1xy

0 = a2y + b2y
2 + c2xy

for x and y. Dividing the first equation by x and the second by y and rewriting yields

b1x+ c1y = −a1

c2x+ b2y = −a2

Writing this in matrix form gives[
b1 c1
c2 b2

] [
x
y

]
=

[ −a1
−a2

]

Now, Cramer’s rule gives

x =

∣∣∣∣ −a1 c1
−a2 b2

∣∣∣∣∣∣∣∣ b1 c1
c2 b2

∣∣∣∣
=

−a1b2 + a2c1
b1b2 − c1c2

and y =

∣∣∣∣ b1 −a1
c2 −a2

∣∣∣∣∣∣∣∣ b1 c1
c2 b2

∣∣∣∣
=

−a2b1 + a1c2
b1b2 − c1c2
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Thus the fourth equilibrium point is(−a1b2 + a2c1
b1b2 − c1c2

,
−a2b1 + a1c2
b1b2 − c1c2

)
(5.10)

as long as b1b2 − c1c2 �= 0. This one is particularly important because both x- and y-
coordinates are (potentially) positive. At this equilibrium, the two species coexist and the
populations do not change.

Example 5.5.4 (Calculating Equilibrium Points)
We can easily implement Formulas (5.8), (5.9), and (5.10) in Excel and use the results to
analyze the fox-wolf model in Example 5.5.1. In the worksheet Quadratic, add the formulas
in Figure 5.32.

8
9
10

A B C D E

x = =(-B2*D3+D2*B4)/(B3*D3-B4*D4) =-B2/B3 0 0
y = =(-D2*B3+B2*D4)/(B3*D3-B4*D4) 0 =-D2/D3 0

Equilibrium Points

FIGURE 5.32

We see that the system has equilibrium points of (9333.3̄, 1333.3̄), (10, 000, 0), (0, 6, 000)
and (0, 0). Since all trajectories appear to be attracted to the point (9333.3̄, 1333.3̄), we
have graphical evidence that this equilibrium point is attracting. The other equilibrium
points appear to be repelling.

Now let’s see what happens to the equilibrium points as λ changes. Add a scrollbar, set
the min and max to 0 and 1000, respectively, and the linked cell to B6. Add the formula
in Figure 5.33.

5
A B
λ = =B6/1000

FIGURE 5.33

Using the scroll bar, we see that for λ between 0 and 0.6, the first equilibrium point has
positive x- and y-coordinates, and it appears to always be attracting. Thus the two species
can coexist. For λ > 0.6, the y-coordinate of the equilibrium point is negative. This means
that Species 2 (the wolves) will die out and the foxes will dominate.

So to answer the question “can the two species coexist?” we need to determine which
is more likely: λ < 0.6 or λ > 0.6. It seems reasonable that competition within a species is
much greater than competition between species. This means that ci is much less than bi, so
λ must be very small (i.e. λ < 0.6). Therefore, we conclude that the two species can coexist.

The general quadratic population model can be adapted to fit a variety of different
scenarios, as the next example illustrates.

Example 5.5.5 (Predator–Prey System)
Consider the example of foxes and rabbits discussed in Chapter 4 where rabbits are the
sole source of food for foxes. Let’s suppose that without rabbits, foxes die at a rate of 8%
per month, and without foxes, the rabbit population grows at a rate of 4% per month. The
presence of rabbits increases the growth of the fox population and the presence of foxes
decreases the growth of the rabbit population.
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If F (t) and R (t) represent the populations of foxes and rabbits at time t, respectively,
we can model this system using the differential equations (instead of difference equations
as in Chapter 4):

dF

dt
= −0.08F + c1FR

dR

dt
= 0.04R+ c2FR

In Chapter 4, we took c1 = 0.0001 and c2 = −0.0003. Note that this model is a quadratic
population model without the square terms (i.e. b1 = b2 = 0). Entering these values of the
parameters into the worksheet Quadratic, with a initial population of 100 foxes (Species
1) and 1000 rabbits (Species 2) and h = 0.6, yields a trajectory as shown in Figure 5.34
(you may need to change the scales on the axes to reproduce this graph).
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FIGURE 5.34

Note that the first equilibrium point is (133.3̄, 800) and the trajectory forms a loop
around this point. (Note that in theory, the trajectory is a closed loop, but since our graph
is only an approximation, the loop is open. Using a smaller value of h and more iterations
of Euler’s method would produce a more accurate graph.) Other initial populations give
similar results. Initial populations further from the equilibrium produce larger loops. This
means that the two populations vary more over time. Since the trajectories are not attracted
to the equilibrium, we have evidence that it is repelling.

These loops mean that the populations oscillate over time. Some biologists argue that
this type of model is not realistic because in nature, populations do not tend to oscillate.
Rather, they tend to move toward an equilibrium point, as in the fox–wolf model.

Exercises

Directions for Exercises 5.5.1 - 5.5.4: For each given quadratic population model,

a. Modify the worksheet Quadratic to graph the trajectory. Set each initial population
to a random number in the given interval. Use the given value of h.

b. Classify each of the four equilibrium points as attracting or repelling.

c. Will the populations be able to coexist? Why or why not?
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5.5.1 Initial population interval: [0, 40], h = 0.01

dx

dt
= 14x− 0.5x2 − xy

dy

dt
= 16y − 0.5y2 − xy

5.5.2 Initial population interval: [0, 10], h = 0.01

dx

dt
= 14x− 2x2 − xy

dy

dt
= 16y − 2y2 − xy

5.5.3 Initial population interval: [0, 100], h = 0.1

dx

dt
= 0.2x− 0.005xy

dy

dt
= −0.5y + 0.01xy

5.5.4 Initial population interval: [0, 10], h = 0.01

dx

dt
= 5x− x2 − xy

dy

dt
= −2y + 2xy

5.5.5 Investigate sensitivity of the fox–wolf model in Example 5.5.1 to the carrying capaci-
ties. That is, change the carrying capacities a small amount and analyze the resulting model.
Does your final conclusion change?

5.5.6 Consider the predator–prey system model in Example 5.5.5. Use a scroll bar to inves-
tigate the sensitivity of the model to the parameter c2.

a. What happens to the first equilibrium point (the point given by (5.10)) as c2 gets
closer to 0? What if it gets further from 0?

b. What happens to the variation within each population as c2 gets closer to 0? What if
it gets further from 0?

c. If shelters were built to protect the rabbits from the foxes, would c2 get closer to 0
or further from 0? What does the model predict might happen to the populations?
Would it increase the size of the rabbit population?

5.5.7 Suppose two populations, call them x and y, are described by a quadratic population
model. Further suppose that in the absence of competition both populations grow. For each
of the following scenarios, give possible values of the parameters a1 through c2.

a. For both populations, there is no competition within or between species.

b. For both populations, there is no competition within species and competition between
species decreases the rate of growth of both species.

c. For both populations, competition within species decreases the rate of growth and
competition between species increases the rate of growth.

d. For population x, competition within species increases the rate of growth and compe-
tition between species decreases the rate of growth. For population y, the opposite is
true.

e. For both populations, competition decreases the rate of growth, but competition
between species is much greater than competition within species.
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5.5.8 Suppose the populations of two species are described by the following system of
differential equations:

dx

dt
= −x+ y

dy

dt
= −y + x.

a. According to this model, can either species survive without the other? Explain why
or why not.

b. Find the equilibrium points of this system.

c. Describe the long-term behavior of the system for different initial populations.

d. Would you describe this system as being sensitive to the initial populations? Explain
why or why not.

5.5.9 A predator–prey model that takes into account harvesting (i.e., hunting) of the two
species is

dx

dt
= a1x− b1xy − cx

dy

dt
= −a2y + b2xy − cy

where x(t) and y(t) are the populations of the prey and predator species, respectively. All
parameters are assumed to be positive. Assuming that x �= 0 �= y, find a formula for the
equilibrium point in terms of the parameters.

5.5.10 Consider the predator-prey system in Example 5.5.5 with initial populations of 100
foxes and 1000 rabbits. In this model we used constant values of a1 and a2 (the numbers
-0.08 and 0.04). In the terminology of Chapter 4, these are the fox death and rabbit birth
factors, respectively. Now suppose these factors change throughout the year. Suppose that
during the “summer”, these factors are -0.08 and 0.04, respectively, but during the “winter”
they are -0.1 and 0.01, respectively.

a. Use Euler’s method to estimate the populations from month 0 to month 250 using
h = 1. Create one graph of the fox population vs. month and another graph for the
rabbit population. Let the winter occur from month 0 through 5, then 12 through 17,
and so on.

b. Compare the populations when the factors are constant to the populations when the
factors vary. Do the varying factors cause the ranges of the populations to increase or
decrease?

5.5.11 Our original fox-wolf quadratic population model has the general form

dx

dt
= a1x− a1

L1
x2 − λ

a1
L1

xy

dy

dt
= a2y − a2

L2
y2 − λ

a2
L2

xy

where a1 and a2 are the intrinsic growth rates, L1 and L2 are the carrying capacities of
the respective species, and λ measures the effect of competition between species relative to
competition between species (λ < 1 means competition between has less effect than within).
The goal of this exercise is to explore the relationship between λ and the intrinsic growth
rates.
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a. Suppose L1 = L2 = 2, 000 (i.e. the environment can support 2,000 of each species),
a1 = 0.1, a2 = 0.2, λ = 0.5, and x(0) = y(0) = 1, 000. Modify the worksheet
Quadratic to calculate the equilibrium points and graph the trajectory.

b. Use a scroll bar to vary λ between 0 and 2. For what values of λ do the species coexist?
What happens for other values of λ?

c. Now suppose a1 = 0.2 and a2 = 0.1. That is, suppose the intrinsic growth rates switch.
Repeat part b.

d. Now suppose a1 = a2 = 0.1. Repeat part b.

e. Generalize your results. In the case with equal initial populations, which species has
a better chance of surviving, the one with the higher intrinsic growth rate, or the one
with the lower rate?

5.6 Volterra’s Principle

The following scenario is described by Braun (Braun, Martin, “Why the Percentage of
Sharks Caught in the Mediterranean Sea Rose Dramatically during World War I,” in Mod-
ules in Applied Mathematics Volume 1 Differential Equation Models, ed. William F. Lucas,
Springer-Verlag, 1983, p. 221, used by permission):

In the mid-1920’s the Italian biologist Umberto D’Ancona was studying variations
in the population of various species of fish that interact with each other. In the
course of his research, he came across data on percentages-of-total-catch of several
species of fish that were brought into different Mediterranean ports in the years that
spanned World War I. In particular, the data gave the percentage-of-total-catch of
selachians (sharks, skates, rays, etc.) which are not very desirable as food fish. The
data for the port of Fiume, Italy, during the years 1914 – 1923 is as follows:

1914 1915 1916 1918 1919 1920 1921 1922 1923
11.9% 21.4% 22.1% 36.4% 27.3% 16.0% 15.9% 14.8% 10.7%

D’Ancona was puzzled by the very large increase in the percentage of selachians
during the period of the war. Obviously, he reasoned, the increase in the percentage
of selachians was due to the greatly reduced level of fishing during this period, but
how does the intensity of fishing affect the fish populations. . . . It was also a concern
to the fishing industry, since it would have obvious implications for the way fishing
should be done.

D’Ancona took this problem to the famous Italian mathematician Vito Volterra. Volterra
noted that the selachians are predators and the food fish are their prey. So he devised a
simple predator–prey model:

dx

dt
= a1x− b1xy

dy

dt
= −a2y + b2xy
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where x(t) and y(t) are the populations of the prey (the food fish) and predator (the
selachians), respectively, and a1, a2, b1, b2 > 0. To model the impact of fishing, Volterra
added an additional term to each equation:

dx

dt
= a1x− b1xy − cx (5.11)

dy

dt
= −a2y + b2xy − cy (5.12)

The parameter c > 0 could be thought of as the proportion of each population caught per
unit of time. Rewriting (5.11) and (5.12) we get:

dx

dt
= (a1 − c)x− b1xy

dy

dt
= (−a2 − c)y + b2xy

We see that this model is really just a special case of the quadratic population model studied
in Section 5.5. Using the formula derived in Exercise 5.5.9, we calculate that there is an
equilibrium point at (

a2 + c

b2
,
a1 − c

b1

)
Let’s examine a system such as this graphically:

1. Rename a blank worksheet “Volterra” and format it as in Figure 5.35. Note that the
value of these parameters do not come from the data. They are simply values we use
to illustrate the point we want to make.

1
2

3
4
5
6
7
8

A B C D

a1 = 0.04 a2 = 0.08
b1 = 0.0004 b2 = 0.0001
c = 0.03

x = =(D2+B4)/D3
y = =(B2-B4)/B3

Prey Predator

Equilibrium

FIGURE 5.35

2. Add the formulas in Figure 5.36 to compute numerical solutions using Euler’s method.
Copy row 13 down to row 1012. Use the calculations to create a graph as in Figure
5.37. As with the parameters, these initial populations are arbitrary.

Notice that we get a loop as in the fox and rabbit predator–prey model. This means
that the populations are periodic (like a sin or cos curve). Mathematically, this means
there exists a time T such that

x (T ) = x (0) and y (T ) = y (0)

3. To approximate the value of T for this model, we will use a scroll bar to graph the
trajectory in Figure 5.37 over an interval of time so that it makes only one full “loop.”
Add a scroll bar, set the linked cell to I1 and the min and max to 0 and 1000,
respectively. Add the formulas in Figure 5.38.
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10
11
12
13

A B
h = 0.25

Time Prey
0 1000
=A12+$B$10 =B12+$B$10*($B$2*B12-$B$3*B12*C12-$B$4*B12)  

 

11
12
13

C
Predator

100
=C12+$B$10*(-$D$2*C12+$D$3*B12*C12-$B$4*C12)  

FIGURE 5.36
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1
2

F
Time

=I1*B10

FIGURE 5.38

4. Modify the formulas in Euler’s method as in Figure 5.39. Copy this modified row 13
down to row 1012. These formulas will calculate the two populations only at each time
less than the time in cell F2. For larger values of time, the formula will return #N/A
which means “value not available” and is equivalent to a blank cell.

13
B

=IF(A13<=$F$2,B12+$B$10*($B$2*B12-$B$3*B12*C12-$B$4*B12),NA())

13
C

=IF(A13<=$F$2,C12+$B$10*(-$D$2*C12+$D$3*B12*C12-$B$4*C12),NA())

FIGURE 5.39

5. Use the scrollbar to find a time so that the graph looks similar to Figure 5.40. Notice
that in Figure 5.40, the populations return to where they started, so they have each
completed one full cycle. The corresponding time is approximately 220. This means
T ≈ 220.
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FIGURE 5.40

6. Next let’s look at the average of each population over the period of time [0, T ]. Add
the formulas in Figure 5.41.

7
8

E F
Prey Average = =SUMIF(B12:B1012,">0")/I1

Predator Average = =SUMIF(C12:C1012,">0")/I1

FIGURE 5.41

The results of the calculations are shown in Figure 5.42. Comparing the averages to the
equilibrium point we note that they’re the same (at least approximately)!! If we change the
initial populations and the parameters, and each time find T , we observe that the averages
are always approximately equal to the equilibrium points. This illustrates theorem 5.6.1.

6
7
8

A B C D E F

x = 1100 Prey Average = 1104.35
y = 25 Predator Average = 25.33

Equilibrium

FIGURE 5.42

Theorem 5.6.1. Let (x (t) , y (t)) be a periodic solution of the system described by (5.11)
and (5.12) with period T . Define the average values of x and y as

x̄ =
1

T

T∫
0

x (t) dt and ȳ =
1

T

T∫
0

y (t) dt

Then

x̄ =
a2 + c

b2
and ȳ =

a1 − c

b1

Theorem 5.6.1 explains D’Ancona’s observations. We see that a moderate amount of
fishing (c < a1) increases x̄ (the average number of prey, or food fish) and decreases ȳ (the
average number of predators, or selachians). Conversely, decreased fishing (as happened
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during WWI) increases the number of selachians and decreases the number of food fish, on
average. The fact that some fishing increases the number of food fish is known as Volterra’s
Principle.

Exercises

5.6.1 In the original “fishing” model, we assumed that both the predator and prey are
caught at the same rate. Now consider a refined “insecticide” model where the predator
and prey are killed at different rates:

dx

dt
= 0.05x− 0.0004xy − c1x

dy

dt
= −0.04y + 0.0001xy − c2y

where c1 �= c2 are positive numbers.

a. Assume that c2 = 0.01. Modify the worksheet Volterra to graph trajectories for this
refined model.

b. Assume that we start with 100 prey and 50 predator insects. For what values of c1 is the
prey species killed off before the predator species? For what values is the the predator
species killed off first? For what values is neither species killed off? (Suggestion:
We could consider the prey species be to be ”killed off“ first when its population
drops below 1 before the population of the predator species does. Graphically, this is
when the trajectory touches, or nearly touches, the predator–axis (the y-axis). Neither
species is killed off when neither population drops below 1.)

5.6.2 Consider the competing foxes and wolves model from Example 5.5.1 with an addi-
tional term to model the hunting, or harvesting, of both species:

dF

dt
= 0.10F − 0.10

10, 000
F 2 − 0.5

(
0.10

10, 000

)
FW − h0F

dW

dt
= 0.25W − 0.25

6, 000
W 2 − 0.5

(
0.25

6, 000

)
FW − h0W

where h0 is a parameter measuring the amount of hunting.

a. Rewrite this model so it fits the form of a standard quadratic population model given
in Section 5.5. Modify the worksheet Quadratic to implement this rewritten model.
Create a cell for the value of h0 (suppose we start with 1,500 foxes and 1,000 wolves).

b. Find the largest value of h0 so that both coordinates of the equilibrium given by
Formula (5.10) are positive. What does it mean if both of these coordinates are posi-
tive? What if one is negative?

c. Suppose that at time t = 0, when people started hunting the two species, the popu-
lations were 1,500 foxes and 1,000 wolves and that at time t = 50, the fox population
is around 100. Find the value of h0 necessary for this to happen.

d. What would happen to the two populations if the level of hunting found in part c.
were to continue?
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5.7 Lanchester Combat Models

In this section we present an application of systems of differential equations that is very
much different than the population models presented earlier. However, we will see that the
resulting models are not that much different.

During World War I, F. W. Lanchester devised several mathematical models of warfare.
Since then, his models have been widely studied and adapted to a variety of scenarios
ranging from “isolated battles to entire wars.” In this section we will graphically analyze
one such model described by Courtney S. Coleman in the chapter “Combat Models” in the
book Modules in Applied Mathematics Volume 1, ed. William F. Lucas, Springer-Verlag,
1983, pp. 109–131.

Let A(t) represent the number of combatants in army A at time t. The rate at which
A(t) changes with respect to time, dA/dt, is affected by several factors including casualties
caused by the opposing army, disease, desertions, and reinforcements. For simplicity, we will
only consider the first factor.

The rate at which combatants are lost due to casualties caused by the opposing army is
often referred to as the combat loss rate (CLR). In mathematical notation, this is described
by the differential equation

dA

dt
= −CLR

Armies are divided into two general categories: conventional and guerrilla. A conventional
army operates in relative large units with an identifiable front line while a guerilla army
operates in small units without a front line.

Consider a battle where a conventional army C goes against a smaller guerrilla army G.
We can describe this scenario with a basic system of differential equations:

dC

dt
= −CLRC

dG

dt
= −CLRG

Suppose that army C is out in the open in some formation and army G is hidden in the
trees of a forest and that each combatant in each army is firing a gun.

Let’s consider CLRC . This is the rate at which combatants are killed or wounded. Obvi-
ously the larger G (t) is, the higher the rate. This suggests a proportionality relationship:

dC

dt
= −g G (t) (5.13)

The constant of proportionality g is called the combat effectiveness coefficient of army G
and is defined as:

g = rGpG

where

rG = Firing rate of army G (shots/day/combatant), and
pG = Probability that a single shot from army G will hit an opponent.

Now consider CLRG. It seems reasonable that this is proportional to C (t). However,
combatants in army C cannot see those in army G. So they are blindly firing into the forest
(this has been called “spray and pray”). Thus, the larger G (t) is, the larger the probability
that a shot will hit an opponent. This suggests another proportionality relationship:

dG

dt
= −cC (t) G (t) (5.14)
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The combat effectiveness coefficient c is defined in a similar fashion as g, c = rCpC . Since
army C is blindly firing into the forest, the probability that a shot will hit an opponent can
be described by

pC =
Area of the exposed part of the body of a single guerilla

Total area occupied by the guerrillas

=
Area of the exposed part of the body of a single guerilla

(Area occupied by a single guerilla) ·G0

Where G0 = G (0) (the initial number of guerilla combatants). Putting (5.13) and (5.14)
together, we have our model:

dC

dt
= −g G (5.15)

dG

dt
= −cC G (5.16)

(the time variable t has been dropped for simplicity). The type of battle modeled here was
common in Vietnam where the conventional American and South Vietnamese army fought
the guerilla North Vietnamese and Viet Cong army. For this reason, this model is called
the “Vietnam” model.

Now we will use this model to analyze the question “what ratio of initial combatants
(C0/G0 = n) is necessary for army C to win?” We say that army C “wins” when army G
runs out of combatants first.

To answer this question, we will solve the system (5.15) and (5.16) for G in terms of C.
Note that

dC

dG
=

−g G

−cC G
=

g

cC

Cross-multiplying, we get
g dG = cC dC (5.17)

Now integrating both sides of (5.17) yields

g G =
1

2
cC2 +M

where M is an arbitrary constant. Dividing by g gives

G =
c

2g
C2 +

M

g
(5.18)

Equation (5.18) does not give us G (t) or C (t) in terms of t, but it does give us a relation
between G (t) and C (t). We can use this to answer the question graphically.

Now to find the value ofM we need to use the conditions thatG (0) = G0 and C (0) = C0.
Evaluating (5.18) at t = 0 gives

G (0) =
c

2g
C(0)2 +

M

g

⇒ G0 =
c

2g
C2

0 +
M

g

⇒ M = g G0 − c

2
C2

0

To implement this model and analyze it to find the value of n so that army C wins, follow
these steps:
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1. Rename a blank worksheet “Vietnam” and format it as in Figure 5.43. Copy row 11
down to row 309 to calculate 300 pairs of values of C and G. Note that the values of
C in column A are in increments of 15 (i.e. they aren’t calculated using any formula).
The corresponding values of G in column B are calculated using Equation (5.18). Also
note that the values of the parameters in Figure 5.43 are somewhat arbitrary, but
reasonable.

1
2
3
4
5
6
7
8
9
10
11

A B
Firing Rate = 10

Exposed Area = 2
Area/Guerrilla = 1000

pG = 0.1
n = =D1/100
g = =B1*B4
c = =B1*B2/(B3*B10)

M = =B6*B10-B7/2*A10^2
Conventional Guerrilla

=B5*B10 150
=A10-15 =$B$7/(2*$B$6)*A11^2+$B$8/$B$6

FIGURE 5.43

2. Add a scroll bar, set the linked cell to D1 and the min and max to 0 and 1500,
respectively. Create a graph similar to those in Figure 5.44.
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FIGURE 5.44

In 5.44 we see that for n = 8 (that is when army C is initially 8 times as large as army
G), when C (t) = 0, G (t) ≈ 54. This means that army G wins. We do not know the time t
at which this happens, but this is not terribly important for our analysis.
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For n = 12, when G (t) = 0, C (t) ≈ 1, 000. This means that army C wins. For n = 10,
C = 0 = G at approximately the same time (in other words they are both totally destroyed
at the same time and nobody wins). Using the scroll bar to vary the value of n, we see that
army C wins for n > 10 and loses for n < 10.

To perform a sensitivity analysis on the model, we change one initial condition or param-
eter at a time and find the approximate minimum value of n for army C to win. Changing
G0 or the Firing Rate we get the same results as above. Table 5.1 shows ranges of values of
the other parameters and the associated ranges of the minimum values of n.

TABLE 5.1

Exposed Area Area/Guerrilla pG

Range of Values 1.5 – 4 500 – 1,750 0.05 – 0.15
Range of n 11.5 – 7 7 – 13.1 7 – 12.2

Summarizing our sensitivity analysis, we conclude that for army C to win, n must be
at least 7, and probably more.

To verify our model we need some data. Table 5.2 (data adapted from a graph given
by Coleman, p. 119) gives n for several guerrilla–conventional conflicts since WWII and
the victors. In this data, n is computed using average force strengths over the period of
time and does not take into account reinforcement rates or non–combat loss rates. Thus we
should be careful about interpreting the data. Nevertheless, we see that the data do tend
to support our conclusion.

TABLE 5.2

Conflict n Victor

Greece: 1946 – 49 9
Malaya: 1945 – 54 18 Conventional
Kenya: 1953 10
Philippines: 1948 – 52 4

Indochina: 1945 – 54 2
Indonesia: 1945 – 47 2
Cuba: 1958 – 59 6 Guerrilla
Laos: 1959 – 62 3
Algeria: 1956 – 62 10

Vietnam: 1959 9
Vietnam: 1968 6
Vietnam: 1975 ≈ 4

Example 5.7.1 (Application to the Vietnam War)
In the spring of 1968 there were approximately 1,680,000 conventional forces lead by the U.S.
and 280,000 guerrilla forces lead by the North Vietnamese and Viet Cong in Vietnam. This
means the ratio of conventional forces to the guerrilla forces was approximately 1,680,000

280,000 = 6

(i.e. n ≈ 6). Around this time, General Westmoreland, then commander of U.S. forces in
South Vietnam, requested an additional 206,000 troops from President Johnson. Could this
have actually helped?

With an additional 206,000 troops, the ratio of conventional forces to the guerrilla forces
would have increased to 1,866,000

280,000 ≈ 6.7 (assuming the size of the guerrilla force did not
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change). This ratio is too small for the conventional forces to win (at least as predicted by
our model and supported by the data). Analysis such as this, and a myriad of other factors,
caused President Johnson to reject the request for additional troops.

Exercises

5.7.1 Suppose two conventional armies, x and y, are engaged in battle modeled by the
system

dx

dt
= −by

dy

dt
= −cx

where x (t) and y (t) represent the number of combatants in armies x and y, respectively.
Solving this system yields the relationship

y =

√
c(x2 − x2

0)

b
+ y20

Parameters c and b are the combat effectiveness coefficients of armies x and y, respectively.
They represent the strengths of the respective armies. Assume that army y is more powerful
than army x (i.e. b > c).

a. Assume that c = λ b for some λ < 1. Define n = y0

x0
(the ratio of initial forces). Create

a spreadsheet to graph y (t) vs. x (t) for different values of λ and n. (Suggestions:
Use x0 = 100 with values of x in increments of 1. Also initially take b = 1.5. Try
different values of b. Does the value of b really make a difference?)

b. Since army y is more powerful, for it to win it seems reasonable that y0 can be less
than x0. How much less can y0 be so that army y wins? To answer this question, define
n0 to be the value of n so that both armies are destroyed (i.e. the graph of y(t) vs.
x(t) goes through the origin). Choose several values of λ and find the corresponding
value of n0 for each. Find a formula for n0 in terms of λ. (Hint: It’s a very simple
formula.)

5.7.2 Suppose two conventional armies, x and y, are engaged in battle using weapons that
can be aimed at specific targets (such as rifles) and weapons that can impact a large area
(such as grenades). If x (t) and y (t) represent the number of combatants in army x and y,
respectively at time t, a Lanchester model of this battle is:

dx

dt
= −ay − bxy

dy

dt
= −cx− dxy

The parameters a and b represent the effectiveness of army y’s specific target weapons and
their area weapons, respectively. The parameters c and d have the same meaning for army x.

Army x has a three-to-one numerical superiority at the beginning of the battle. However,
army y is better trained, better equipped, and their weapons are more effective. This means
that a > c and b > d.
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a. Assume that c = 0.1, d = 0.001, x (0) = 3, y (0) = 1, a = λc, and b = λd for some
λ > 1. Let λ0 be the minimum value of λ necessary for army y to win the battle. Use
a graphical approach and Euler’s method to approximate the value of λ0.

b. Repeat part 1, but now assume that army x has a 4:1 numerical superiority (i.e.
x (0) = 4 and y (0) = 1). What about a 5:1 superiority?

c. Generalize your results in part 2. Suppose army x has an n:1 numerical superiority
where n ≥ 1. Conjecture a sufficient condition for λ guaranteeing army y wins. This
sufficient condition should be in the form of a simple relationship between λ and n.

d. (Extra Credit) Prove your conjecture in part c. analytically (i.e. don’t use graphs).
Hint: Use the differential equations to find dy

dx in terms of a, b, c, d, x, and y. Substitute
in the relationships a = λc, and b = λd. Calculate this slope on the line x = ny. Show
that your relationship in part c. guarantees this slope is less than 1

n .

5.7.3 Consider the conventional vs. guerilla combat modeled in the worksheet Vietnam.
We used the worksheet to graphically estimate the value of n so that the conventional army
wins. In this exercise we find this value analytically.

a. Let G1 denote the number of guerilla troops left when C = 0. Use Equation (5.18) to
show that

G1 = G0 − c

2g
C2

0 .

b. If G1 < 0, then the conventional army wins. Use the fact that n = C0/G0 to show
that the conventional army wins if

n >
2g

cC0
.

c. Use the result from part b. and the facts that c = rCpC and pC = A1/ (A2G0), where
A1 = area of the exposed part of the body of a single guerilla and A2 = area occupied
by a single guerilla, to show that the conventional army wins if

n >

√
2gA2

rCA1
.

Graphically confirm this result with the spreadsheet.

5.8 Runge-Kutta Methods

Consider the problem of estimating the solution curve of a differential equation of the form

dy

dt
= F (t, y)

along with the initial condition y (t0) = y0 where t0 and y0 are some given values. In Section
5.2 we did this using Euler’s method. Euler’s method is relatively simple to implement, but
as we’ve seen, it can give inaccurate results. In this section we present two improved methods
developed in the early 1900’s by the German mathematicians Carl David Tolmè Runge and
Martin Wilhelm Kutta.
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Runge-Kutta 2nd Order Method

To motivate the first Runge-Kutta method, observe that as shown in Figure 5.2, Euler’s
method approximates y′ (t, y) over the interval [tn, tn+1] with the constant value F (tn, yn).
Then the change in y over the interval is approximated by hF (tn, yn). Stated another way,
Euler’s method approximates the change in y over the interval using the left end-point
of the interval. One could argue that the midpoint of the interval would give a better
approximation.

This idea leads to the following algorithm, called the Runge-Kutta 2nd order method , or
simply RK2 :

k1 = hF (tn, yn)

k2 = hF

(
tn +

1

2
h, yn +

1

2
k1

)
xn+1 = xn + h

yn+1 = yi + k2

Informally, k1 is an approximate change in y over the interval [tn, tn+1]. The point(
tn + 1

2h, yn + 1
2k1

)
is an approximate point on the solution curve at the midpoint of the

interval. k2 is an approximate change in y over the interval based on this point. Hopefully,
k2 is a better approximation than k1.

Example 5.8.1 (Implementing RK2)
Let y(t) represent the population (in thousands) of rabbits in a forest at year t. Suppose y
is described by the differential equation

dy

dt
= −t+ 2y

with the initial condition y(0) = 0.3. To approximate the value of y(3) using RK2 with
h = 0.1, rename a blank workbook “RK2” and format it as in Figure 5.45. Copy row 6
down to row 35.

1
2
3
4
5
6

A B C D E F
h = 0.1

RK2
Time k1 t + h/2 y + k1/2 k2 y

0 0.3
=A5+$B$1 =$B$1*(-A5+2*F5) =A5+$B$1/2 =F5+B6/2 =$B$1*(-C6+2*D6) =F5+E6

FIGURE 5.45

It can be shown that the exact solution to this problem is given by y(t) = 0.25(2t+1)+
0.05e2t. To compare RK2 to the exact solution and the results from Euler’s method, add
the formulas in Figure 5.46. Copy row 6 down to row 35.

Lastly, to compare the errors, add the graph in Figure 5.47.
We see that the exact value is y(3) = 21.92143967, RK2 gives y(3) ≈ 21.23789471, and

Euler’s method gives y(3) ≈ 13.61881569. RK2 yields smaller errors over the entire interval
[0, 3]. Thus RK2 is more complicated than Euler’s method, but it gives more accurate
results.
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3
4
5
6

G H I J
Euler Exact RK2 Euler's

y y Error Error
0.3 0.3 =H5-F5 =H5-G5
=G5+$B$1*(-A5+2*G5) =0.25*(2*A6+1)+0.05*EXP(2*A6) =H6-F6 =H6-G6

FIGURE 5.46
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Runge-Kutta 4th Order Method

As mentioned above, k2 in RK2 is an approximate change in y over the interval [tn, tn+1]
based on the midpoint of the interval. One could argue that we could get a better approx-
imation by using the left endpoint, the right endpoint, and the midpoint, and then taking
an average.

This idea leads to the following algorithm, called the Runge-Kutta 4th order method , or
simply RK4 :

k1 = h · F (tn, yn)

k2 = h · F
(
tn +

1

2
h, yn +

1

2
k1

)

k3 = h · F
(
tn +

1

2
h, yn +

1

2
k2

)
k4 = h · F (tn + h, yn + k3)

tn+1 = tn + h

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

Informally, k1 is an approximation of the change in y over the interval based on the left
endpoint of the interval, k2 and k3 are approximations based on the midpoint, and k4 is
an approximation based on the right endpoint. The quantity 1

6k1 +
1
3k2 +

1
3k3 +

1
6k4 is a

weighted average of these approximations.

Example 5.8.2 (Implementing RK4)
Consider Example 5.8.1. To approximate y(3) using RK4 with h = 0.1, rename a blank
worksheet “RK4,” format it as in Figure 5.48 and copy row 6 down to row 35.
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1
2
3
4
5
6

A B C D E
h = 0.1

Time k1 t + h/2 y + k1/2 k2

0
=A5+$B$1 =$B$1*(-A5+2*J5) =A5+$B$1/2 =J5+B6/2 =$B$1*(-C6+2*D6)

3
4
5
6

F G H I J
RK4

y + k2/2 k3 y + k3 k4 y
0.3

=J5+E6/2 =$B$1*(-C6+2*F6) =J5+G6 =$B$1*(-A6+2*H6) =J5+B6/6+E6/3+G6/3+I6/6

FIGURE 5.48

We see that RK4 gives y(3) ≈ 21.92007319, which is a better estimate of the exact
value, y(3) = 21.92143967 than either Euler’s method or RK2 give. This illustrates that
even though RK4 is somewhat complicated, it gives much more accurate results.

Runge-Kutta 4th Order Method for Systems

Consider a system of two differential equations of the form

dx

dt
= F (t, x, y)

dy

dt
= G (t, x, y) ,

along with the initial conditions x (t0) = x0, y (t0) = y0. We can numerically approximate
the solution to this system with the following algorithm, motivated by the RK4 algorithm
from above:
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Example 5.8.3 (Connected Tanks)
Consider the connected tanks in Example 5.4.1 described by the differential equations

dx

dt
=

1

12
y − 1

3
x

dy

dt
=

1

3
x− 1

3
y

with the initial conditions x(0) = 4 and y(0) = 2. To approximate x(5) and y(5) with RK4
using a step size of h = 0.1, rename a blank worksheet “RK4 System” and format it as
in Figure 5.49. Copy row 6 down to row 55.

1
2
3
4
5
6

A B C D E F
h = 0.1

Time k1 l1 t + h/2 x + k1/2 y + l1/2
0
=A5+$B$1 =$B$1*(R5/12-Q5/3) =$B$1*(Q5/3-R5/3) =A5+$B$1/2 =Q5+B6/2 =R5+C6/2

4
5
6

G H I J K L
k2 l2 x + k2/2 y + l2/2 k3 l3

=$B$1*(F6/12-E6/3) =$B$1*(E6/3-F6/3) =Q5+G6/2 =R5+H6/2 =$B$1*(J6/12-I6/3) =$B$1*(I6/3-J6/3)

4
5
6

M N O P Q R
x + k3 y + l3 k4 l4 x y

4 2
=Q5+K6 =R5+L6 =$B$1*(N6/12-M6/3) =$B$1*(M6/3-N6/3) =Q5+B6/6+G6/3+K6/3+O6/6 =R5+C6/6+H6/3+L6/3+P6/6

FIGURE 5.49

From the worksheet, we see that x(5) ≈ 1.209623037 and y(5) ≈ 1.926736014

Exercises

5.8.1 The reader might wonder what the “2” and the “4” stand for in RK2 and RK4. To
answer this question, first note that as in Examples 5.8.1 and 5.8.1, RK2 and RK4 yield
approximate values of the function. In these examples, we ended with approximations of
y(3). Now, define the global truncation error (GTE) as

GTE = |exact− approximate| .
The numbers in RK2 and RK4 stand for the order of convergence. Informally, a numeric

approximation method is said to be kth order convergent if dividing the step size h by some
numberM results in a GTE that is divided by approximatelyMk, when h is “small enough.”
For instance with RK2, if we divide h by 2, the GTE should be divided by approximately
22. With RK4, the GTE should be divided by 24.

a. In Example 5.8.1 we approximated y(3) with h = 0.1. Calculate the resulting GTE.

b. Redo Example 5.8.1 with h = 0.05, that is, divide h by 2. Calculate the resulting
GTE.
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c. Is the GTE from part b. approximately the GTE from part a. divided by 22?

d. Repeat parts a. and b. for RK4 in Example 5.8.2. Does dividing h by 2 result in a
GTE divided by approximately 24?

e. Euler’s method is 1st order convergent. Repeat parts a. and b. for Euler’s method in
Example 5.8.1. Does dividing h by 2 result in a GTE divided by approximately 21?

5.8.2 In Example 2.3.3 we modeled a free-falling object with air resistance by assuming
that the force due to air resistance is proportional to the velocity. This yielded the following
differential equation for the velocity v:

m
dv

dt
= mg − kv.

The solution to this differential equation showed the terminal velocity is

lim
t→∞ v(t) =

mg

k
.

In certain cases, the force due to air resistance is proportional to vr where r > 1 is some
constant. This leads to the differential equation

m
dv

dt
= mg − kvr,

a nonlinear equation, which is much more difficult to solve than a linear equation. The goal
of this problem is to approximate the terminal velocity with RK4. Suppose m = 1, g = 9.81,
k = 2, and v(0) = 0.

a. Use RK4 with a step size of h = 0.2 to approximate the terminal velocities for r = 1.1,
1.5, and 2.0.

b. If r increases, does the terminal velocity increase or decrease? Does this agree with
your intuition? Why or why not?

5.8.3 Stefan’s law of radiation states that the rate of change in temperature of a blackbody
radiator at T (t) degrees in a medium at M(t) degrees is proportional to M4 −T 4 . That is,

dT

dt
= k

[
(M(t))

4 − (T (t))
4
]

where k is a constant. Suppose k = 40−4, M(t) = 70 + 15 cos(3.14t), and T (0) = 100. Use
RK4 with a step size of h = 0.1 to graph the approximate solution curve over the interval
0 ≤ t ≤ 20.

5.8.4 Consider a rocket blasting off straight upward from the surface of the earth with a
constant thrust from the engines. As it accelerates upward, the rocket’s velocity increases
and its mass decreases from the burning of fuel. It can be shown that the rocket’s velocity
is described by the differential equation

m
dv

dt
− cβ = −mg − kv

where

β = burn rate of fuel m0 = initial mass of rocket with fuel

m(t) = m0 − βt = mass of rocket at time t c = speed of exhaust gases relative to rocket

k = constant measuring air resistance g = acceleration due to gravity (9.81 m/s
2
)

The V-2 rocket that was used to attack London in WWII had an initial mass of 12,850 kg,
a burn rate of 125.746 kg/sec, c = 2,000 m/s, k = 1.45 N per m/s, and v(0) = 0.
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a. Plug these parameters into the differential equation and solve for dv/dt.

b. The engines burn for 70 seconds. Use RK4 with a step size of h = 0.5 to estimate the
velocity at burnout.

5.8.5 This problem will illustrate that although RK4 is typically very accurate, it isn’t
perfect. Consider the differential equation

dy

dt
= 5y − 6e−t

with the initial condition y(0) = 1.

a. The exact solution to this differential equation is y(t) = e−t. Graph this solution over
the interval 0 ≤ t ≤ 5.

b. Use RK4 to graph the approximate solution curve over the interval 0 ≤ t ≤ 5 using
step sizes of 0.1, 0.01, 0.005, and 0.001. Comment on the accuracy of these approximate
curves.

Project Ideas

1. Model a guerrilla vs. guerrilla combat scenario.

2. Model the World War II battle of Iwo Jima with a Lanchester combat model.

3. Create a model of a traffic light to determine how long the light should remain yellow.

4. Create a worksheet to determine how long it will take an object in free-fall to hit the
ground.

5. Create a worksheet to model the position of a parachutist. Consider different scenarios,
one where the parachute opens instantly at some point during the fall, and another
where the parachute takes a few seconds to fully open.

6. Use a quadratic population model to model the populations of wolves and elk in
Yellowstone National Park.

7. Model a scenario involving three competing species.

8. Model a predator-prey-scavenger system.

9. Research the Solow economic growth model.

10. Model the velocity of a water rocket.

11. Model the trajectory of a baseball hit with a bat.

12. Model the motion of a damped harmonic oscillator.

13. Model a battle with reinforcements.

14. Model the blood alcohol content of a person over time while at a party.
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15. Research numerical methods for approximating solutions to differential equations other
than Euler’s method, RK2, and RK4. Possible methods include Heun’s method, middle
point rule, Ralston’s method, three eights method, RK5, and RK6.

16. Model pollution levels in the Great Lakes.

17. Devise a complicated system of connected tanks with valves and solve it.

18. Model the voltage across a capacitor in an RC circuit.

19. Analyze an SIR model where the susceptibles are broken into two categories: vaccinated
and non-vaccinated. Assume the transmission coefficient for those vaccinated is lower
than the non-vaccinated.

20. Model the flow of traffic through a stoplight.

For Further Reading

There are more books and articles written on differential equation models than any other
type of model. Here are a few suggestions.

• For a good introduction to setting up and solving elementary differential equations, see
Boyce, William E., and Richard C. DiPrima, Elementary Differential Equations and
Boundary Value Problems, Seventh ed., John Wiley & Sons, 2001.

• For another good introduction, see Ledder, Glenn, Differential Equations: A Modeling
Approach, McGraw–Hill, 2005.

• For applications of differential equations to a wide variety of scenarios, see Modules in
Applied Mathematics Volume 1, Differential Equation Models, ed. William F. Lucas,
Springer-Verlag, 1983.

• For several classic differential equation models, see Haberman, Richard, Mathematical
Models – Mechanical Vibrations, Population Dynamics, and Traffic Flow, Society for
Industrial and Applied Mathematics (SIAM), 1998.

• For more examples of differential equation models, see Dym, Clive L., Principles of
Mathematical Modeling, Second edition, Elsevier, 2004.
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Simulations

Chapter Objectives

• Define and motivate the idea of a simulation model

• Discuss ways of generating pseudorandom numbers

• Use density functions to model random events

• Model various scenarios with simulation models

6.1 Introduction

Mathematical modeling is all about describing systems (a system being a collection of
components that operate together). Systems come in two general categories: Deterministic
and Probabilistic. A deterministic system is one in which the behavior is determined once
its parameters are set. A probabilistic system is one in which the behavior is determined,
in part, by random events. Similarly, models can be put into these same two categories.

An example of a deterministic system is the area under a curve y = f (x) over an interval
[a, b]. The parameters of this system are the function f (x) and the interval [a, b]. Once these
parameters are set, the area is determined. Nothing else affects it. We can model this system
with a deterministic model using elementary calculus:

Area =

b∫
a

f(x) dx

Most real world systems are probabilistic. Inevitably a real world system involves some
type of random event. Probabilistic systems are more difficult to model, so we typically
treat them as if they were deterministic and create a deterministic model. Every model of
a real world system we have created to this point in this book has been deterministic.

In this chapter we will introduce one very common type of probabilistic model, simula-
tion. A simulation, in general, is any model that uses random numbers. Often simulations
are used to imitate some type of real world behavior, but this does not have to be the case.

There are many reasons why one would construct a simulation model.

1. System is far too complex to model analytically. Consider a military air cargo
transportation network. This system consists of many components including aircraft
of different type, parking spots at airfields, fuel availability at airfields, different types
of cargo, etc. It seems impossible to construct an analytical model that incorporates
all of these components. Many simplifications would be needed, resulting in a very
low-fidelity model.

199
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2. It may be difficult, costly, or dangerous to collect data for creating an empir-
ical model. Consider a hospital emergency room. If we were interested in modeling
the waiting time of patients in terms of the number of doctors on staff, we could vary
the number of doctors from week-to-week, collect data on waiting time, and construct
an empirical model. This approach would certainly take much time and could result
in dead patients. A much more practical approach is to simulate the behavior of the
emergency room on a computer and vary the number of doctors in the simulation.

3. The system may not exist yet. Consider an aircraft on the drawing board. If we
want to study the drag on the fuselage, we can’t go fly it and collect data because it
doesn’t exist yet! We could simulate its behavior using a computer based on its design.

4. System may contain random events that we do not want to over-simplify.
Consider a check-out line at a supermarket where customers arrive at an average of
2 per minute and the cashier can service an average of 3 customers per minute. If
we wanted to model the waiting time of customers, we might be tempted to say that
they won’t have to wait at all because the service rate is greater than the arrival rate.
This is a vast oversimplification. Instead, we will simulate the arrival and service of
customers and analyze waiting time.

In this chapter, we focus on Monte Carlo Simulations . These simulations get their name
from the fact that they are often used to study games of chance (such as those played in
Monte Carlo). These simulations consist of three basic steps:

1. Construct a model that uses random numbers.

2. Evaluate, or “run,” the model many times (possibly hundreds or thousands) using
different random numbers each time.

3. Statistically analyze the results.

One advantage of using simulations to study real world behavior is that it allows the modeler
to test “what–if” scenarios at very little cost. For example, in a simulation of a hospital
emergency room, we could easily change the number of doctors or nurses on staff and observe
the results. We could simulate many months or years of time in a matter of a few minutes
at very little cost and no danger to anybody.

In this chapter we present a wide range of common types of simulation models and
discuss some important topics related to the construction of simulation models.

6.2 Basic Examples

In this section we illustrate some of the basic concepts involved with a Monte Carlo simu-
lation with three different examples.

Example 6.2.1 (Flipping a Coin)
Here we approximate the probability of getting at least 7 tails when a coin is flipped 10 times.
In the terminology of elementary probability theory, flipping a coin 10 times is a random
experiment, and getting at least 7 tails is an event. One way of estimating the probability
of an event is to perform the random experiment many times, each time is called a trial,
and count the number of times the event occurred, called the number of successes. We then
calculate
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P(event) ≈ Number of successes

Total number of trials
.

We apply this approach to estimate P (at least 7 tails).

Algorithm

a. Simulate 10 random flips of a coin and determine the number of tails obtained. This
is one trial.

b. Repeat for 1000 trials.

c. Calculate the number of trials in which at least 7 tails were obtained. This is the
number of successes.

d. Calculate P(least 7 tails) ≈ Number of successes

1000
.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Coins.” Format the worksheet as shown in Figure 6.1.
The formula in B2 will select an integer between 0 and 1 with equal probability. An
output of 1 indicates a Tail and a 0 indicates a Head. Copy the formulas in B2 to
the range B2:K3 and then copy row 3 down to row 1001. (Note: If Excel returns the
#NAME? error in cell B2, install and load the Analysis ToolPak add-in.)

1
2
3

A B C D E F G H I J K L
Trial Number 1 2 3 4 5 6 7 8 9 10 Total Tails
1 =RANDBETWEEN(0,1) =SUM(B2:K2)
=A2+1 =SUM(B3:K3)

FIGURE 6.1

2. Add the formula in Figure 6.2 to calculate the number of trials with at least 7 tails
and the probability.

1
2
3
4

N
# successes

=COUNTIF(L2:L1001,">=7")
P(at least 7 tails)

=N2/1000

FIGURE 6.2

Press the F9 key several times to repeat these 1000 trials. Note that each time you press
F9, you will probably get a different estimate of P (at least 7 tails). This illustrates that
a simulation like this can only give an approximation of the true theoretical probability.

One benefit of a simulation like this is that we can easily modify it to consider different
what-if scenarios. For instance, what if we use a biased coin where the probability of a tail
on a single flip is different than 0.5? Add the cells in Figure 6.3 to store the probability of
a tail on a single flip.
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6
7

N
P(tail)

0.4

FIGURE 6.3

Next, modify the formula in cell B2 as shown in Figure 6.4, and copy B2 to the range
B2:K1001. Now we can easily set P (tail) to any value between 0 and 1 and estimate P (at
least 7 tails).

2
B

=IF(RAND()<$N$7,1,0)

FIGURE 6.4

Next we create a table that stores estimate of P (at least 7 tails) for different values of
P (tail). Add the formulas in Figure 6.5 to begin setting up this table. Copy row 4 down to
row 23 to calculate values of P (tail) between 0 and 1 in increments of 0.05.

1
2
3
4

P Q
P(tail) P(at least 7 tails)

=N4
0
=P3+0.05

FIGURE 6.5

Next, highlight the range P2:Q23, and select Data → What-If Analysis → Table. . .
Select N7 as the Column input cell:, leave the Row input cell: blank, and press OK.
Here’s what this does:

1. The first number in the left column of the table (0 in this case) is “pasted” into the
cell N7. This causes the random numbers to regenerate, which means another 1000
trials are run with P (tail) = 0. The results from the simulation are displayed in the
cell Q2 and then copied to the cell next to the 0 (Q3).

2. The next number in the first column of the table (0.05 in this case) is pasted into the
cell N7. The simulation is run again and the results are copied to cell Q4.

3. This process is repeated until the bottom of the table is reached.

We can create a graph of the results as in Figure 6.6.

Example 6.2.2 (Area Under a Curve)
Here we construct a probabilistic model of a deterministic system. Specifically, we use a
simulation to estimate the area under the curve y =

√
1− x2 over the interval [−1, 1]. This

curve forms the top-half of a circle with radius 1, so the area under the curve is exactly
π/2. This simulation could be seen as a way of estimating the value of π.

A graph of the curve is shown in Figure 6.7 along with a rectangle of height h = 1 and
width w = 2 drawn around it.
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FIGURE 6.6

0

1.2

-1.2 0 1.2

FIGURE 6.7

In the simulation, we randomly pick points inside the rectangle and determine if each
one is above or below the curve. We then estimate the area under the curve using the
relationship

Area under the curve

Area of the rectangle
≈ Number of points under the curve

Total number of points

or equivalently,

Area under the curve ≈ Number of points under the curve

Total number of points
(Area of the rectangle) (6.1)

Algorithm

a. Randomly pick 200 points inside the rectangle.

b. Determine if each point lies under the curve.

c. Count the number of points under the curve.

d. Use (6.1) to estimate the area under the curve. This is one trial.

e. Repeat for a total of 200 trials.
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To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Area” and format it as in Figure 6.8. The parameters
a and b are simply the lower and upper limits of the interval of interest. Copy row 6
down to row 205. The formula in cell C6 tests whether the y–coordinate of the point
lies under the curve y =

√
1− x2 which forms the top half of a circle. If it does, then

the formula returns a 1. If not, it returns a 0.

1
2
3
4
5
6

A B C
a = -1
b = 1
h = 1

x y Under Curve?
=$B$1+RAND()*($B$2-$B$1) =RAND()*$B$3 =IF(B6<SQRT(1-A6^2),1,0)

FIGURE 6.8

2. Add the formulas in Figure 6.9 to estimate the area. Press the F9 key several times
to repeat the simulation. Note that the estimated area fluctuates quite a bit from
repetition to repetition, but the estimates are near the actual area of approximately
1.5708.

1
2
3
4

E
# Points Under the Curve

=SUM(C6:C205)
Area Under the Curve

=E2/200*(B2-B1)*B3

FIGURE 6.9

3. To repeat the simulation 200 times, format the spreadsheet as in Figure 6.10 and copy
row 4 down to row 202.

1
2
3
4

G H
Trial # Area

=E4
1
=G3+1

FIGURE 6.10

4. Next, we calculate a data table in the range G2:H202 as done in the flipping a coin
simulation. Select F1 as the column input cell and leave the row input cell blank.
In this case, the trial number is not a meaningful parameter, so we simply paste it
into a blank cell (we arbitrarily chose F1). Each time the trial number is pasted, the
simulation is run again, and the result is stored in the table.

5. Add the formulas in Figure 6.11 to calculate the average of the 200 trials. Press F9
several times and note the variation of the average. The average in general is closer to
the true area than the single trial case. The average also has less variation.
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5
6

E
Average

=AVERAGE(H3:H202)

FIGURE 6.11

This example illustrates a very important point when analyzing results from simulations:

The more trials, the closer the average value is to the theoretical value.

The point is that if you want to estimate something with a simulation, you will get a
more accurate estimate if you use many trials and take an average than if you use only a
few trials. This concept is called the Law of Large Numbers.

Example 6.2.3 (Car Dealership Contest)
A car dealership is sponsoring a contest where the grand prize is a new car. Contests are
to gather tickets which contain the letter “C,” “A,” or “R” from participating merchants.
To win, one must obtain all three letters. 55% of the tickets contain a “C”, 44% contain an
“A”, and 1% contain an “R.” What is the expected number of tickets a contestant must
gather to win the car?

Algorithm

a. Randomly generate 500 tickets.

b. Keep running totals of the number of each letter obtained.

c. Determine if at least one of each letter has been obtained.

d. Repeat for a total of 500 trials.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Car.” Format the worksheet as shown in Figure 6.12. Copy
row 6 down to row 504 to simulate 500 tickets. The letter on the ticket is determined
by breaking up the interval (0, 1) into three sub-intervals of lengths 0.55, 0.44, and
0.01. Then we generate a random number between 0 and 1 with the RAND function.
If this number is in the first sub-interval, the letter is an “A,” etc.

3
4
5
6

A B C
Random

Ticket Number Letter
1 =RAND() =IF(B5<0.55,"C",IF(B5<0.99,"A","R"))
=A5+1 =RAND() =IF(B6<0.55,"C",IF(B6<0.99,"A","R"))

FIGURE 6.12

2. To keep running totals of the number of each letter obtained, add the formulas in
Figure 6.13. Copy row 6 down to row 504.
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4
5
6

D E F
Total C's Total A's Total R's

=IF(C5="C",1,0) =IF(C5="A",1,0) =IF(C5="R",1,0)
=IF(C6="C",1,0)+D5 =IF(C6="A",1,0)+E5 =IF(C6="R",1,0)+F5

FIGURE 6.13

3. To determine when the contest is won and how many tickets were needed, add the
formulas in Figure 6.14. Copy row 8 down to row 504. On the ticket the contest is
won, “WIN” is displayed. If the contest should go on, a blank is displayed. If the contest
is already over, “NA” is displayed. The total number of tickets needed is displayed in
cell G2. This is the result of one trial.

1
2
3
4
5
6
7
8

G
Number of Tickets
=COUNTBLANK(G5:G504)+1

Win?

=IF(AND(D7>=1,E7>=1,F7>=1),"WIN","")
=IF(G7="",IF(AND(D8>=1,E8>=1,F8>=1),"WIN",""),"NA")

FIGURE 6.14

4. Lastly, to store the results of 500 trials and calculate the overall average, add the
formulas in Figure 6.15. Copy row 5 down to row 503. Then create a data table in the
range I3:J503, selecting any blank cell as the column input cell.

1
2
3
4
5

H I J
Average # Tickets Number
=AVERAGE(J4:J503) Play of Tickets

=G2
1
=I4+1

FIGURE 6.15

The simulation shows that the expected number of tickets needed to win the contest is
just over 100.
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Exercises

6.2.1 Modify the formulas in the worksheet Coins so there are a total of 5000 trials. Press
F9 several times. Compare the variability of the value of P (at least 7 tails) with 1000 trials
as compared to 5000 trials.

6.2.2 Modify the worksheet Coins to approximate the probability that the number of Tails
is between 4 and 7, inclusive.

6.2.3 Suppose you roll a fair four-sided die three times. Design a spreadsheet to estimate
the probability that

a. the sum of the three rolls is at least 7,

b. at least one of the rolls is greater than 2, and

c. the first roll or the third roll is even.

(Suggestion: To determine whether a trial is a success for probabilities b. and c., use the
OR function which works much like the AND function in Figure 6.14.)

6.2.4 Consider the area under a curve model in Example 6.2.2.

a. Increase the value of h in the simulation. How does this affect the quality of the
estimation of the area?

b. Increase the number of points selected inside the rectangle. How does this affect the
estimate?

c. Create a graph of the curve y =
√
1− x2 and the rectangle along with a dot for each

randomly selected point, similar to Figure 6.16.

0

1.2

-1.2 0 1.2

FIGURE 6.16

6.2.5 Design a simulation to estimate the value of
∫ 0.5

0
xex sin (50x) + 1 dx.

6.2.6 A square is constructed such that the length of a side is randomly chosen between 2
and 3 inches (not necessarily an integer). Design a simulation to estimate the probability
that the area of the square is between 5 and 6 in2.

6.2.7 Consider the following game:
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In each round, two numbers, call them N1 and N2, are chosen. In the first round,
N1 = 1, in the second, N1 = 2, and so on until round 11 when N1 = 1. This pattern
repeats until the game is over. In each round, the number N2 is a randomly chosen
integer between 1 and 10, inclusive. The game is over when N1 = N2.

a. Simulate this game to estimate the expected number of rounds in the game.

b. Generalize the simulation by replacing the number 10 with any positive integer N .
Allow the user to enter the value of N .

6.2.8 Consider the following game:

You choose an integer y between 1 and 20, inclusive. Then the dealer randomly
chooses a number x, not necessarily an integer, between 0 and 10. The amount of
money you “win” is given by z = −x2 + 8x− y2 + 24y − 175 (if z > 0, you get that
many dollars, if z < 0, you pay that many dollars).

Simulate this game and determine the value of y you should choose to maximize the average
winnings from many plays of the game. Consider using a data table which stores the average
winnings for different values of y.

6.2.9 Consider the following coin-flipping game:

1. A single play of the game consists of repeatedly flipping a fair coin until the difference
between the number of heads tossed and the number of tails is 4.

2. You are required to pay $1 for each flip of the coin, and you may not quit during the
play of the game.

3. You receive $10 at the end of each play of the game.

The “winnings” from the game is defined as the $10 received at the end minus the
amount paid.

a. Simulate this game to estimate the expected winnings from many plays of the game.

b. Suppose we use a biased coin. Find value(s) of P (tail) that make the game fair,
meaning the expected winnings is $0.

6.2.10 Ally and Bernita are playing a simple game of tennis where the player who gets to
4 points first wins the game. Suppose Ally has a 60% probability to win any given point,
and points cannot end in a tie.

a. Use a simulation to estimate Ally’s probability of winning.

b. Now suppose the winner is the first player to score at least 4 points and score at least
2 more points that the opponent. Estimate Ally’s probability of winning. Assume the
game could go on indefinitely.

6.2.11 Consider the following game:

A card is selected from a well-shuffled standard deck of 52 cards. The player guesses
the suite (4 possibilities) and the rank (13 possibilities) of the card. If only the suite
is correct, the player receives $2. If only the rank is correct, the player receives $5.
If both the suite and rank are correct, the player receives $10. If neither is correct,
the player receives nothing. Each play costs $1. After each play the card is returned
to the deck and the deck is shuffled.

Simulate this game to estimate the expected winnings.
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6.2.12 Suppose a fair coin is flipped repeatedly.

a. Estimate the expected number of flips until the sequence HTH is observed. Repeat
for HTT and HHH.

b. Now suppose the coin is flipped exactly 300 times. Estimate the expected number of
times the sequence HTH is observed. Repeat for HTT and HHH.

6.3 Three Famous Problems

In this section we show how simulations can be used to approximate the solutions to three
famous problems in elementary probability: the Monty Hall Problem, the Birthday Problem,
and Buffon’s Needle Problem.

Example 6.3.1 (The Monty Hall Problem)
In the famous game show Let’s Make a Deal, hosted by Monty Hall, one of the games
required a contestant to choose one of three doors. Behind one of the doors was a prize
(like money or a car), and behind the other two doors were dummy prizes (like a donkey).
Once the choice was made, Monty Hall would open up one of the un-chosen doors revealing
one of the dummy prizes. The contestant was then given a choice to either switch to the
remaining unopened door or keep the door that was already chosen. The contestant would
get whatever “prize” was behind the door.

To illustrate this game, consider the scenario in Figure 6.17 where the real prize is behind
door 2 (unbeknownst to the contestant) and the contestant chooses door 1. Monty would
then open door 3 revealing a dummy prize. The contestant then had to decide whether to
switch to door 2 (and consequently win the real prize) or don’t switch (and consequently
not win the real prize).

Monty Opens

Door 31 2 3
Contains Prize

Door Chosen

1 2 X
Switch

Don't Switch

FIGURE 6.17

The dilemma facing the contestant is the decision of whether to switch or not. To help
make this decision, we will use a simulation to estimate the following two probabilities:

1. Probability of winning if switching and

2. Probability of winning if not switching.

The key to estimating these probabilities is to realize that if not switching, the only way
to win is to initially choose the door with the real prize. If not switching, the prize is won
if the door with the real prize is not initially chosen.
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Algorithm

a. Randomly designate the door with the real prize.

b. Randomly choose a door.

c. Determine if the real prize is won if switching.

d. Determine if the real prize is won if not switching.

e. Repeat for 1,000 trials.

f. Calculate P (win if switch) ≈ number of times won when switching

number of trials
.

g. Calculate P (win if don’t switch) ≈ number of times won when not switching

number of trials
.

Rename a blank worksheet “Monty” and format it as in Figure 6.18. Copy row 8 down
to row 1007 to perform 1000 trials.

1
2
3
4
5
6
7
8

A B C D E

Win if Win if don't
switch switch

=AVERAGE(D8:D1007) =AVERAGE(E8:E1007)

Door Door Win if Win if don't
Trial with prize chosen switch? switch?
1 =RANDBETWEEN(1,3) =RANDBETWEEN(1,3) =IF(B8<>C8,1,0) =IF(B8=C8,1,0)

Probabilities

FIGURE 6.18

We see from the simulation that the probability of winning if switching is 2/3 and the
probability of winning if not switching is 1/3. Thus the contestant should switch. This does
not guarantee that the contestant will win, but the contestant is twice as likely to win if
switching than if not switching.

Example 6.3.2 (The Birthday Problem)
In a class of n students, what’s the probability that at least two students will share a
birthday (month and day)? This famous problem is known as the birthday problem. We
assume that birthdays are uniformly distributed throughout the year (i.e. no day is more
or less likely to be a birthday than any other day) and we ignore leap years.

Algorithm

a. Randomly generate an integer between 1 and 365 for each student in the class to
represent birthdays (1 = January 1, 2 = January 2, etc.).

b. For each day of the year, count the number of students in the class that have that day
as their birthday.

c. Determine if some birthday is shared by at least two students. This is considered a
success.

d. Repeat for 200 trials.
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e. Determine the number of successes.

f. Calculate P (at least two people sharing a birthday) ≈ number of successes

number of trials
.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Birthday” and format it as in Figure 6.19. Copy row 3
down to row 102 to simulate a class of up to 100 students.

1
2
3

A B
# Students = 23

Student Birthday
1 =IF(A3<=$B$1,RANDBETWEEN(1,365),0)

FIGURE 6.19

2. Add the formulas in Figure 6.20 and copy row 4 down to row 367. These formulas count
the number of students who have a birthday on each day of the year and determine
whether the trial is a success.

1
2
3
4

D E
Success? =IF(COUNTIF(E3:E367,">=2")>=1,1,0)

Day Count
1 =COUNTIF($B$3:$B$102,D3)
=D3+1 =COUNTIF($B$3:$B$102,D4)

FIGURE 6.20

3. Add the formulas in Figure 6.21 to set up a table to store the results of 200 trials
and calculate the estimated probability. Copy row 6 down to row 204. Create a table
in the range G4:H204 to store the results from 200 trials. Select F1 as the column
input cell. Press F9 to repeat the simulation several times. Note that for a class of 23
students the simulation gives a probability of approximately 0.50.

1
2
3
4
5
6

G H
Probability =AVERAGE(H5:H204)

Trial Success?
=E1

1
=G5+1

FIGURE 6.21

One benefit of using a simulation is that we can easily modify it to estimate more
complicated probabilities. For instance, if we wanted to estimate the probability that at
least 3 students share a birthday in a class of 50 students, we could simply change the value
of “# Students” to 50 and modify the formula to determine whether the trial is a success
as in Figure 6.22.
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1
2
3
4
5
6

G H
Probability =AVERAGE(H5:H204)

Trial Success?
=E1

1
=G5+1

FIGURE 6.22

Example 6.3.3 (Buffon’s Needle Problem)
A version of this problem was first solved by the French naturalist and mathematician, the
Comte de Buffon (1707-1788). Suppose we randomly drop a needle of length L ≤ 1 on a
wood floor in which the joints between the planks are 1 unit apart. Find the probability
that the needle “hits,” or intersects, one of the joints.

Let x denote the distance of the midpoint of the needle to the nearest joint between
the planks and θ denote the angle as illustrated in Figure 6.23. Note that 0 ≤ x ≤ 0.5 and
0 ≤ θ ≤ π/2.

θ

Midpoint

Needle

Joints Midpoint

Needle

Joints

x

FIGURE 6.23

To determine whether the needle intersects a joint, observe that this can only occur
if the hypotenuse of the right triangle in Figure 6.23 is less than L/2 (if the needle does
not intersect a joint, then the needle must be “extended” to form the triangle, making
the hypotenuse more than L/2). If h denotes the length of the hypotenuse, then using
trigonometry we have

cos θ =
x

h
⇒ h =

x

cos θ
.

Thus the needle intersects a joint if x/ cos θ < L/2.

Algorithm

a. Randomly generate a number x between 0 and 0.5.

b. Randomly generate a number θ between 0 and π/2.

c. Calculate h = x/ cos θ.
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d. Determine if h ≤ L/2. If this is true, then the trial is a success.

e. Repeat for 1000 trials.

f. Calculate P (intersecting a joint) ≈ number of successes

number of trials
.

Rename a blank worksheet “Buffon” and format it as in Figure 6.24. Adjust the value
of L and observe that as L gets smaller, so does the probability.

1
2
3
4

A B C D E
L = 1 Probability = =AVERAGE(E4:E1003)

Trial x θ h Hit Joint?
1 =0.5*RAND() =PI()/2*RAND() =B4/COS(C4) =IF(D4<=$B$1/2,1,0)

FIGURE 6.24

Exercises

6.3.1 Consider the Monty Hall problem.

a. In the simulation, the “door chosen” was random. What if the contestant always
chooses door 1? Does this change either of the probabilities of winning? What if door
2 is always chosen? What about door 3?

b. Consider the following strategy:

Always initially choose door 1. If door 2 is opened, then switch. Otherwise
don’t switch.

Create a simulation to estimate the probability of winning if this strategy were used
every time. Assume that if the prize is behind door 1 then doors 2 and 3 are equally
likely to be opened. Does this strategy do any better than switching every time?

6.3.2 Consider a generalization of the Monty Hall problem where there are N doors, exactly
one of which contains the real prize. Assume the game is played the following way:

1. The contestant always initially chooses door 1.

2. If the door with the prize is door 1 or door N , then door 2 is opened. In this case, if
the contestant switches, the door switched to is randomly selected between 3 and N ,
inclusive.

3. If the door with the prize is not door 1 or door N , then door N is opened. In this
case, if the contestant switches, the door switched to is randomly selected between 2
and N − 1, inclusive.

Create a simulation of this game where the user can input the value of N and estimate the
probabilities of winning if switching and if not switching. (Suggestion: Create a column to
determine the door to switch to. Use this to determine whether the game is won if a switch
is made.)
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a. Create a table which gives the probabilities for values of N between 3 and 25.

b. What happens to the difference between the probabilities of winning if switching and
the probability if not switching as N gets larger? For “large” values of N , does it
really matter if the contestant switches or not?

6.3.3 Consider the birthday problem and let Pn denote the probability that in a class of n
students, at least 2 students share a birthday. It can be shown that Pn satisfies the following
recursive relationship:

Pn = 1− (1− Pn−1) · N − (n− 1)

N

where N is the number of days in a year and P1 = 0.

a. Create a spreadsheet to calculate the values of Pn for n between 1 and 100. Allow the
user to enter the value of N . If N = 365, what is the value of P23? Does this agree
with the results of the simulation?

b. Graph Pn vs. n when N = 365. For what values of n is Pn > 0.90?

c. Use the relationship to find the probability that in a class of 6 students, at least 2
students share a birth month.

6.3.4 Modify the worksheet Birthday to estimate the solution to the following general-
ization of the birthday problem: If a teacher asks a class of n students to write down an
integer between a and b, what’s the probability that at least m of them will write down the
same number.

1. Your simulation should allow the user to input the values of n, a, b, and m, and
automatically calculate the results.

2. Use a total of 500 trials.

3. Assume that n ≤ 200, 0 ≤ a < b ≤ 365, and that the students’ choices are uniformly
distributed.

4. If the value of m is in cell E1, then consider modifying the formula to determine a
success as in Figure 6.25.

2
D E

Success? =IF(COUNTIF(E4:E368,">="&E1)>=1,1,0)

FIGURE 6.25

6.3.5 For Buffon’s needle problem, create a table which gives the probability of an inter-
section for different values of L between 0 and 1. Create a graph of the probability vs. L, fit
a curve to the data, and use the curve to hypothesize the theoretical relationship between
the probability and L. (Hint: It is a very simple relationship involving the number 2/π.)

6.3.6 Two numbers x and y are randomly chosen from the interval (0, 1). Design a simu-
lation to estimate the probability that the closest integer to y/x is even. (Hint: Calculate
y/x and round it off to a whole number using the ROUND function. To determine if this
number is even, use the MOD function.)
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6.3.7 Suppose we randomly choose 50 pairs of numbers (x, y), each number from the inter-
val (0, 1). Let ε be a small positive number. Design a simulation to estimate the probability
that for at least one pair, the ratio x/y or y/x is less than ε from the golden ratio (a number
approximately equal to 1.618 and denoted φ). Allow the user to input the value of ε.

6.3.8 Consider a mouse in a maze consisting of three connected rooms. When in each room,
the mouse performs the following actions:

Room 1

• With probability 1/3, wander around for 2 minutes and then exit the maze.

• With probability 2/3, wander around for 5 minutes and then move to room 2.

Room 2

• With probability 1/2, move to room 1.

• With probability 1/2, move to room 3.

Room 3

• With probability 1, wander around for 3 minutes and then move to room 2.

Suppose the mouse starts in room 2. Create a simulation to estimate the expected
amount of time spent in the maze.

6.3.9 Another famous problem in elementary probability is the drunkard’s walk : Suppose
a drunk man stands one step from a cliff and then takes a sequence of steps. In each step,
he moves one step closer to the cliff with probability p and one step farther from the cliff
with probability (1− p).

a. Design a simulation to estimate the probability the man falls off the cliff. Allow the
user to enter the value of p.

b. Create a graph P (falling) vs. p for various values of p between 0 and 1. What, if
anything, do you note of interest?

6.3.10 Consider a circle of radius 1 centered at the origin. Suppose 3 points are randomly
selected on the circle. What is the probability the resulting triangle contains the origin?
Design a simulation to estimate this answer. Here are some suggestions:

a. Generate three random angles between 0 and 2π. These angles determine the polar
coordinates of the three points.

b. Sort the angles from smallest to largest using the SMALL function. These sorted
angles determine points A, B, and C, respectively, as in Figure 6.26. Calculate the x-
and y-coordinates of each point.

c. Consider the lines AB, BC, and CA. As illustrated in Figure 6.26, the triangle contains
the origin if one of these lines has an x-intercept in the interval (−1, 0), and another
has an x-intercept in (0, 1). Find the x-intercept of each line.

d. Count the number of x-intercepts in the interval (−1, 0), and the number in (0, 1).
Use this to determine if the triangle contains the origin.

e. Repeat this for many trials and summarize the results.
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A

B

C

FIGURE 6.26

6.4 The Poker Problem

Each card in a standard deck of 52 cards is described by its rank (also called the face value),
ace, 2, 3, . . ., 10, jack, queen, or king; and its suit, hearts, diamonds, clubs, or spades. Five
cards are randomly dealt from the deck. A classic problem in elementary probability theory
is calculating the probability of obtaining the different types of poker hands. Table 6.1 lists
the ten different types of poker hands. In this section we build a simulation to estimate the
probability of getting a full house. In the exercises you will estimate the probabilities of the
other hands.

TABLE 6.1

Name Description

0. No Value None of the following types
1. One Pair Four distinct ranks, one rank occurs twice, each of the other

three occurs once
2. Two Pair Three distinct ranks, two ranks occur twice each, one occurs

once
3. Three of a Kind Three distinct ranks, one rank occurs three times, two ranks

occur once each
4. Straight Five distinct ranks in sequential order, at least two distinct suits
5. Flush One suit, but the ranks are not arranged in sequential order
6. Full House Two distinct ranks, one rank occurs three times, one occurs

twice
7. Four of a Kind Two distinct suits, one suit occurs four times, one occurs once
8. Straight Flush One suit, the ranks are arranged in sequential order, but not a

royal flush
9. Royal Flush One suit, the ranks are in the sequential order 10, J, Q, K, A

Algorithm

a. Assign a number to each card in the deck.

b. Shuffle the deck.
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c. Select the first five cards as our hand.

d. Determine the number of each suit in the hand.

e. Determine whether the hand is a full house.

f. Repeat for 5000 trials.

g. Calculate P (full house) ≈ number of successes

number of trials
.

To implement this algorithm, rename a blank workbook Full House and add the formulas
in Figure 6.27 to assign a number to each card. Copy cell A3 down to row 53 for a total
of 52 cards. The ranks should go in order 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, and A. This
sequence should restart with card 14. The first 13 cards are of suit Spades, the next 13 are
Clubs, then Diamonds, and finally Hearts.

1
2
3

A B C
Number Rank Suit
1 2 Spades
2 3 Spades

FIGURE 6.27

Next we need to shuffle the deck and select the first five cards as our hand. We might
consider doing this by choosing random numbers between 1 and 52 with the RAND-
BETWEEN function, but then we might get the same card twice. (In the language of
probability theory we want to select five cards without replacement.) Instead, we will choose
52 random numbers with the RAND function, rank them from 1 to 52, and let the sequence
of ranks represent the shuffled deck. Add the formulas in Figure 6.28. Copy row 2 down to
row 53.

1
2

E F
Rand Card

=RAND() =RANK(E2,$E$2:$E$53)

FIGURE 6.28

Next we need to convert the cards to rank and suit. Add the formulas in Figure 6.29. The
VLOOKUP function in columns G and H will look at the left-most column in columns
A–C, find the number that matches the card, and return the corresponding value in column
B or C. Copy row 2 down to row 53.

1
2

G H
Rank Suit

=VLOOKUP(F2,$A$2:$C$105,2) =VLOOKUP(F2,$A$2:$C$105,3)

FIGURE 6.29
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Next we need to count the number of each rank in the hand. Add the formulas in Figure
6.30. The ranks should go in order 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, and A. Copy cell K2
down to row 14.

1
2

J K
Rank Frequency

2 =COUNTIF($G$2:$G$6,J2)

FIGURE 6.30

A full house could be described as getting a three-of-a-kind and a two-of-a-kind. Add
the formulas in Figure 6.31 to determine if the hand is a full house.

16
17
18
19

J K
3 of a Kind? =COUNTIF(K2:K14,3)

# Pairs =COUNTIF(K2:K14,2)
One Pair? =IF(K17=1,1,0)

Full House? =IF(AND(K16=1,K18=1),1,0)

FIGURE 6.31

Lastly, add the formulas in Figure 6.32 to store the results of 5000 trials and calculate
the estimated probability. Create a data table in the range M2:N5002, selecting any blank
cell as the column input cell.

1
2
3

M N O
Trial Result P(Full House)

=K19 =AVERAGE(N3:N5002)
1

FIGURE 6.32

The theoretical value of P (full house) is 0.0014. Our estimate of the probability is in
the neighborhood of 0.0014. Notice that each time the F9 key is pressed, we get a different
estimate of the probability. These estimates vary quite a bit in part because full houses
occur so infrequently that even in 5000 trials, we don’t observe a full house very many
times.

Exercises

6.4.1 Estimate P (one pair), P (two pair), and P (three of a kind). (Hint: When determining
if a hand is a one pair or a three of a kind, make sure it’s not a full house.)

6.4.2 Estimate P (straight). Here are some suggestions:

a. A straight means, in part, that the hand contains 5 ranks in sequential order. Add a
column to determine if the hand contains each individual rank.
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b. For each rank, calculate the total number of that rank and the next 4 higher ranks in
the hand. The hand contains 5 ranks in sequential order if one of these totals is 5.

c. An ace could be the high card or low card in the sequential order. Determine if this
order has been obtained with ace as the low card.

d. A straight also means that the hand contains at least 2 distinct suits. Count the
number of each suit in the hand. Determine if the hand contains at least two distinct
suits.

6.4.3 Estimate P (flush). (Hint: A flush means the hand contains only one suit, but it’s
not a straight.)

6.4.4 Estimate P (four of a kind), P (straight flush), and P (royal flush).

6.4.5 Consider a simple variation of a poker game where just 4 cards are dealt from a
well-shuffled deck instead of the usual 5. In this variation there are only two types of hands:

• Two pair: 2 cards of one rank and 2 cards of a different rank

• All suits: 4 cards of different suits.

Use a simulation to estimate the probability of getting a hand that is both two pair and all
suits.

6.4.6 The procedure used to shuffle the deck can be used to simulate any scenario where
selections are made without replacement. Consider a bag containing five red and three blue
marbles. The bag is shaken and two marbles are chosen without replacement. Design a
simulation to estimate the following probabilities.

a. P (2 red)

b. P (2 blue)

c. P (1 red and 1 blue)

6.5 Random Number Generators

In this section we look at how computers generate “random” numbers. Random numbers
are an essential part of all computer simulations. A simple definition of a list of random
numbers is that it is a list of numbers in which there is no pattern and all possible numbers
occur with equal frequency. The only way to get a truly random list of numbers is by
mechanical means (i.e. numbered balls tumbling in a cage, rolling a die, etc.).

A computer generates a list of random numbers by using an iterative function where one
output becomes the next input. The initial input, called the seed, is arbitrary (it is often
chosen according to the clock time at which the algorithm begins) and each output becomes
a number in the list.

Because the computer uses a deterministic algorithm, there will be a pattern to the
list of numbers. Therefore, computers can never generate a true list of random numbers.
The random numbers they generate are called pseudorandom numbers and the algorithm
is called a pseudorandom number generator. A good list of pseudorandom numbers will, at
the very least, have a pattern that is not at all obvious.
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Excel has a built-in pseudorandom generator called RAND which generates numbers
between 0 and 1. First we create a graph of numbers generated by this function to illustrate
what we mean by “no pattern.” Rename a blank worksheet “Rand,” add the formulas in
Figure 6.33, and copy row 2 down to row 501 to form a list of 500 pseudorandom numbers.

1
2

A B
n Random

1 =RAND()

FIGURE 6.33

Create a graph of Random vs. n as in Figure 6.34. Push F9 several times to create new
lists of pseudorandom numbers. Note that the graph does not reveal any sort of relationship
between the pseudorandom number and its position in the sequence and no number (or range
of numbers) appears more frequently than any other (i.e. there is no pattern). There are
many types of statistical tests that can be done to measure the randomness of a list of
numbers. We will not discuss these here, but our simple graphical analysis indicates that
RAND creates a good list of pseudorandom numbers.
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FIGURE 6.34

Because pseudorandom number generators form the heart of simulations and many secu-
rity systems, much research has been done into developing and testing generators. Here we
present some simple generator algorithms.

Example 6.5.1 (Linear Congruence)
This method uses modular arithmetic to generate pseudorandom integers. Three integers,
a, b, and m, are chosen along with a seed x0. Random integers are then generated using the
function:

xn+1 = (a · xn + b) mod (m)

This method will produce a sequence of up to m integers between 0 and m− 1, inclusively,
before repeating, or cycling. For this reason, m is generally a very large integer such as 232

or 264.
To implement this method using the values of a = 1, b = 3, x0 = 9, and m = 8, rename

a blank worksheet “Linear,” and add the formulas in Figure 6.35. Copy row 6 down to row
25 to create a list of 20 pseudorandom numbers.

Figure 6.36 shows graphs of the lists of pseudorandom numbers for a = 1 and a = 3.
Note how the lists start to repeat after n = 8 and n = 4, respectively. This is NOT what
we want in a good list of pseudorandom numbers.
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1
2
3
4
5
6

A B
a = 1
b = 3
m = 8

n xn

0 7
=A5+1 =MOD($B$1*B5+$B$2,$B$3)

FIGURE 6.35
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FIGURE 6.36

Example 6.5.2 (Old Excel Algorithm)
This algorithm was used by the RAND function in older versions of Excel and gener-
ates a list of up to 1 million different numbers [Microsoft Help and Support webpage,
http://support.microsoft.com/kb/q86523/, June 2008.]:

1. x0 = an arbitrary number between 0 and 1

2. xn+1 = fractional part of (9821 ∗ xn + 0.211327)

To implement this algorithm with x0 = 0.5, rename a blank worksheet “Old Rand,” add
the formulas in Figure 6.37, and copy row 3 down to row 502.

1
2
3

A B
n xn

0 0.5
=A2+1 =MOD(9821*B2+0.211327,1)

FIGURE 6.37

A graph of xn vs. n is shown in Figure 6.38. There does not appear to be any pattern.
Other values of x0 give similar results.

Example 6.5.3 (New Excel Algorithm)
The old Excel algorithm was sufficient for “casual” users (i.e. those who needed fewer
than 1 million pseudorandom numbers). However, it did not pass a standard battery
of tests for randomness named Diehard, so it was not sufficient for “power” users.

http://support.microsoft.com/
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FIGURE 6.38

A new algorithm was developed that produces a list of up to 1013 numbers before
cycling. It is a variation on the Linear Congruence method and is based on the idea
“that if you take three random numbers on [0, 1] and sum them, the fractional part
of the sum is itself a random number on [0,1]” [Microsoft Help and Support webpage
http://support.microsoft.com/default.aspx?scid=kb;en-us;828795, June 2008].

The algorithm to generate a list of pseudorandom numbers between 0 and 1,
{xn : n = 0, 1, . . .}, is given by:

a. Set a0, b0, and c0 to integer values between 1 and 30,000

b. xn = fractional part of (an/30269 + bn/30307 + cn/30323)

c. an+1 = (171× an) mod (30269)

d. bn+1 = (172× bn) mod (30307)

e. cn+1 = (170× cn) mod (30323)

To implement this algorithm, rename a blank worksheet “New Rand,” add the formulas
in Figure 6.39, and copy row 3 down to row 502.

1
2
3

A B C D
n an bn cn

0 15843 16235 9842
=A2+1 =MOD(171*B2,30269) =MOD(172*C2,30307) =MOD(170*D2,30323)  

 

1
2
3

E
xn

=MOD(B2/30269+C2/30307+D2/30323,1)
=MOD(B3/30269+C3/30307+D3/30323,1)  

FIGURE 6.39

A graph of xn vs. n is shown in Figure 6.40. Again note that there does not appear to
be any pattern.

http://support.microsoft.com/
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Exercises

6.5.1 Suppose we want to generate a list of pseudorandom numbers each of which has the
value a, b, or c where a occurs p1 × 100% of the time, b occurs p2 × 100% of the time, and
c occurs p3 × 100% of the time where p1 + p2 + p3 = 1.

a. Design a spreadsheet which generates this list. You may use the RAND function.
Make sure the user is able to input the values of a, b, c, p1, p2, and p3.

b. Use the COUNTIF function to verify that the list contains the proper percentage of
each number a, b, and c.

6.5.2 In each part below, use theRANDBETWEEN function to generate a list of equally
likely pseudorandom numbers with the given specifications.

a. Even integers between 0 and 20, inclusive.

b. Numbers between 0 and 20, inclusive, with 2 decimal places.

c. Numbers from the set {−1, 1}. (Hint: Use RANDBETWEEN to choose between
2 numbers. Use the IF function to output a −1 for one of the numbers and a 1 for
the other.)

d. Numbers from the set [−10, −5] ∪ [5, 10] with 2 decimal places.

6.5.3 Consider the following function for generating pseudorandom integers between the
integers a and b, where a < b:

x = [RAND · (b− a) + a] rounded to the nearest integer.

a. Use this function to generate a list of 1000 integers. Allow the user to input the values
of a and b.

b. Count the number of times each integer between a and b, inclusive, appears in the
list. Do all the integers appear with nearly equal frequency?

c. Suggest a modification to this function so that it generates a list in which the integers
between a and b, inclusive, appear with nearly equal frequency. Use your modification
to generate another list of 1000 integers. Does the modification generate a list with
nearly equal frequencies? Do not use the RANDBETWEEN function.
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6.5.4 Another pseudorandom number generator is the middle-square method . The basic
algorithm is as follows:

1. Start with an n-digit number x0, called the seed (n is typically even).

2. Square x0 to obtain an 2n-digit number (add leading zero(s) if necessary).

3. Take the middle n digits as the next random number.

Implement this method to generate a list of 100 4-digit pseudorandom numbers. Use
RANDBETWEEN to generate the seed. How well does this generator work? (Suggestion:
After x is squared, first “chop” off the first two digits, then chop off the last two digits.)

6.5.5 Suppose a pseudorandom number generator gives integers between 0 and 9. One way
to test if this generator gives integers with equal frequency is to apply a χ2 Goodness–of–fit
test. This can be done by generating a long list of integers (say 500) and then counting the
number of times each integer appears in the list. These are called the observed frequencies,
denoted by O. We then calculate the expected frequencies, denoted by E, which is the
number of times we expect each integer to appear in the list if they do indeed occur with
equal frequencies. If we have 10 different integers in a list of 500, we would expect each one
to appear 50 times.

Then we calculate the test statistic χ2 by

χ2 =
∑ (O − E)

2

E

If this test statistic is “small” (for 10 different integers small is less than 16.9) then we
can be 95% confident that the generator gives integers with equal frequencies. If it is large
then we reject the claim that it gives integers with equal frequencies. (For a more detailed
description of this test, see any introductory statistics textbook.)

a. The Excel function RANDBETWEEN gives pseudorandom integers between two
specified values. Use it to generate a list of 500 integers between 0 and 9. Calculate the
χ2 test statistic as described above and press F9 several times to get several different
lists of integers. Does the RANDBETWEEN appear to give integers with equal
frequencies?

b. Use the linear congruence algorithm with a = 6, b = 9, m = 10, and x0 = 2 to
generate a list of 500 integers between 0 and 9. Calculate the χ2 test statistic. Does
this linear congruence algorithm appear to give integers with equal frequencies? Try
different values of a, b, and x0. What do you observe?

6.6 Modeling Random Variables

Simulation is a useful tool for modeling the interaction of random events. A random event
is an activity where we do not know the outcome until it occurs. Constructing a simulation
involves modeling random events. One of the most important concepts used in modeling
random events is the random variable.

Definition 6.6.1 (Random Variables). A random variable is a rule for assigning real num-
bers to the observations of a random event. A discrete random variable can take only certain
distinct values (such as integers). A continuous random variable can take any value within
some interval.
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In most cases, defining the random variable involved is rather obvious. For instance,
suppose we roll a standard six–sided die, and we define the random variable X as the
number on the top face of the die. This is an example of a discrete random variable. In
another example, suppose we observe customers arriving at a check–out line at the grocery
store. We define the random variable Y as the time between customer arrivals (called the
inter-arrival times). This is an example of a continuous random variable.

In a simulation of a dice game, we need to generate values of the roll of the dice. In
a simulation of a check–out line, we need to generate values of the inter–arrival times. In
other words, simulations involve generating values of random variables. In this section we
discuss how to do this using the RAND function.

We focus on continuous random variables. One of the most important tools used to
model continuous random variables is the density function. Any function f (x) is a density
function if it satisfies the following two properties:

1. f (x) ≥ 0 for all x ∈ R

2.
∞∫

−∞
f (x) dx = 1

For a given random variable X, its density function f (x) is used to calculate probabilities
regarding the value of X by

P (X ≤ a) =

a∫
−∞

f (t) dt (6.2)

This means that the probabilities are related to the area under the graph of the density
function. Related to the density function is the cumulative distribution function (cdf ), F (x),
defined by

F (x) =

x∫
−∞

f (t) dt

From Equation (6.2) we see that F (x) = P (X ≤ x). In terms of the graph of f (x), F (x)
is the area under the curve y = f (t) to the left of x.

Many functions could be density functions. We single out three important types of
density functions that occur frequently in applications.

Example 6.6.1 (Uniform Density Function)
If a random variable X, a ≤ X ≤ b, has a uniform density function (we say X is uniformly
distributed), the values are “spread out evenly” between a and b. The RAND function
gives values of a pseudorandom variable that is uniformly distributed between 0 and 1. The
density function of a uniformly distributed random variable is

f (x) =

{
1

b−a if a ≤ x ≤ b

0 otherwise.

A graph of this density function is shown in Figure 6.41.
The mean of a random variable X with a uniform distribution is (b+ a) /2 and the

standard deviation is (b− a) /
√
12.

Example 6.6.2 (Normal Density Function)
A normally distributed random variable X has a density function

f (x) =
1√
2πσ

e−
(x−μ)2

2σ2
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FIGURE 6.41

where μ is the mean and σ is the standard deviation. The graph of this density function is
the familiar bell curve shown in Figure 6.42. In the graph we see that the variable X has a
higher probability of taking values near the mean μ than farther away.

μ

FIGURE 6.42

Example 6.6.3 (Exponential Density Function)
An exponential density function is often used to model waiting time between events. It has
the form

f (x) =

{
λe−λx if x ≥ 0
0 otherwise.

where λ > 0 is a parameter. A graph of this density function is shown in Figure 6.43. In
the graph we see that the variable X has a higher probability of taking values near 0 than
those much larger.

The mean and standard deviation of a random variable with an exponential distribution
are both equal to 1/λ.

Once we know the density function, f (x), for a random variable, X, we can generate
values of it using the RAND function with the following general algorithm:

1. Find the cdf y = F (x) =
x∫

−∞
f (t) dt

2. Find the inverse of the cdf, x = F−1 (y)
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λ

FIGURE 6.43

3. Use the RAND function to generate values of y and calculate a value of X by
x = F−1 (y).

Example 6.6.4 (Generating Values of an Exponential Distribution)
To illustrate this algorithm, consider generating values of an exponentially distributed ran-
dom variable X.

Step 1: Find the cumulative distribution function

F (x) =

x∫
−∞

f (t) dt =

x∫
0

λ e−λ tdt = 1− e−λx

Step 2: Set F (x) = y and solve for x.

y = 1− e−λx ⇒ x = − 1

λ
ln (1− y) ⇒ F−1 (y) = − 1

λ
ln (1− y)

Step 3: Let y = RAND, so the formula is:

x = − 1

λ
ln (1−RAND) (6.3)

Formula (7.5) can be implemented in Excel very easily. Rename a blank worksheet
“Exponential” and format it as in Figure 6.44. Copy row 3 down to row 1002 to generate
a list of 1000 values of this random variable.

FIGURE 6.44

In Example 6.6.4 we generated 1000 values of an exponentially distributed random
variable. The calculations were rather easy to do, but they beg at least two questions:
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1. What does it really mean to generate values of an exponentially distributed random
variable?

2. How can we check if these calculations work the way we intended?

We can answer these questions by creating a very important type of graph called a histogram.

Example 6.6.5 (Generating a Histogram)
Generating histograms is rather easy to do in newer versions of Excel. Here we create and
analyze a histogram of the 1000 values generated in Example 6.6.4. Follow these steps:

1. In the worksheet Exponential, select the range B3:B1003.

2. In the Insert ribbon, choose Insert Statistic Chart and select Histogram as shown
in Figure 6.45.

 

FIGURE 6.45

3. Right-click on the horizontal axis of the resulting graph. Select Format Axis. Under
Axis Options, change the Number of bins to 8. Under Number, select Category
and Number, and set the number of decimal places to 2. The resulting graph should
resemble Figure 6.46.

FIGURE 6.46

Excel generated this histogram by dividing the range of values into 8 bins, also called
subintervals or classes, and then counting the number of values in each bin. The graph
shows, for instance, that about 275 of the values are between 0 and 0.27. Larger values are
less frequent. Most importantly, note that the “shape” of the histogram resembles the graph
of the exponential density function in Figure 6.43.

The histogram answers our two questions:

1. Generating values of an exponentially distributed random variable means that we get
many values close to 0. Larger values occur less frequently.
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2. The calculations work if the shape of the histogram resembles the graph of the density
function.

Example 6.6.6 (Generating Values of a Uniform Random Variable)
It can be shown that the inverse CDF of a uniformly distributed random variable is F−1 =
a+ (b− a)y (see Exercise 6.6.1) is

F−1 = a+ (b− a)y.

Rename a blank worksheet “Uniform” and format it as in Figure 6.33. Copy row 4 down
to row 1003 to generate a list of 1000 values of this random variable.

1
2
3
4

A B
a = 5
b = 10

x
=$B$1+($B$2-$B$1)*RAND()

FIGURE 6.47

Generate a histogram of these values as in Figure 6.48. Note that all values occur with
relatively equal frequency, and the shape of the histogram resembles the graph of the uniform
density function in Figure 6.41.

FIGURE 6.48

Example 6.6.7 (Generating Values of a Normal Random Variable)
We can derive a formula for generating values of a normally distributed random variable
by calculating F and F−1, but these calculations are very complicated. Fortunately, F−1

is built into Excel. Rename a blank worksheet “Normal” and format it as in Figure 6.49.
Copy row 4 down to row 1003 to generate 1000 values of this random variable.

A histogram of these values is shown in Figure 6.50. The shape resembles the normal
distribution bell curve, graphically confirming the formulas work correctly.
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1
2
3
4

A B
µ = 0
σ = 1

x
=NORM.INV(RAND(),$B$1,$B$2)

FIGURE 6.49

FIGURE 6.50

Example 6.6.8 (Application to Real Data)
Let’s suppose we want to simulate the activity at a local grocery store check–out line.
One random event we need to model is the arrival of customers. To do this, we observe
30 customers arriving at the check–out line and record the time between their arrivals (in
minutes) as shown in Table 6.2.

TABLE 6.2

1.40 2.79 0.91 1.87 0.87 0.21 0.10 0.96 0.92 0.47
1.60 1.76 3.46 1.51 3.90 5.75 0.90 0.66 1.56 2.74
0.03 0.36 0.21 2.36 3.24 0.22 1.33 0.04 0.33 1.84

In our simulation, we need a density function to describe this random variable. Earlier we
claimed that an exponential distribution is often used to describe the waiting time between
events. We can easily test this claim by drawing a histogram of these data as shown in
Figure 6.51. We see the histogram resembles the graph of the exponential density function,
confirming the claim.

To generate values of this exponentially distributed random variable, we need to know
the appropriate value of λ. Since the mean of a random variable with an exponential dis-
tribution is 1/λ, we have λ = 1/mean. This is easily calculated using the formula in Figure
6.52 yielding λ = 0.6772.
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FIGURE 6.51

2
C D

λ = =1/AVERAGE(A2:A31)

FIGURE 6.52

Exercises

6.6.1 Show that the inverse CDF of a uniformly distributed random variable is F−1 =
a+ (b− a)y.

6.6.2 A random variable X has the density function

f (x) =

{
1/ (2

√
x) for 0 < x < 1

0 elsewhere
.

a. Find the cumulative distribution function, F (x).

b. Find the inverse cumulative distribution function, F−1 (y).

c. Use the inverse cumulative distribution function to generate 100 values of X.

d. Graph the density function over the interval 0 < x < 1

e. Create a histogram of the 100 values generated in part c. Does the shape of the
histogram resemble the graph of the density function?

6.6.3 Repeat Exercise 6.6.2 with the density function

f (x) =

{
x3/4 for 0 < x < 2
0 elsewhere

,

but graph the density function over the interval 0 < x < 2

6.6.4 Repeat Exercise 6.6.2 with the density function

f (x) =

{
2 (1− x) for 0 < x < 1
0 elsewhere

.

(Hint: Use the quadratic formula to solve for x in terms of y.)
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6.6.5 Create a graph of the exponential density function over the interval 0 ≤ x ≤ 10. Use
a scroll bar to vary the value of λ. Describe what happens to the shape of the graph as λ
changes.

6.6.6 Create a graph of the normal density function over the interval μ− 3σ ≤ x ≤ μ+3σ.
Use scroll bars to vary the values of μ and λ. Describe what happens to the shape of the
graph as μ and λ change.

6.6.7 Suppose we want to simulate the packaging of 16–ounce packages of carrots. One
random variable involved is the actual weight of the packages. We measure and record the
weight (in ounces) of 30 packages as shown in the table below.

15.99 16.18 16.16 16.38 16.10 16.38 16.11 16.43 16.21 16.36
16.28 16.34 16.20 16.21 16.27 16.08 16.15 16.31 16.06 16.06
16.26 16.10 15.94 16.52 16.16 16.01 16.26 16.19 16.30 16.08

Graphically determine if this random variable has a normal distribution. If so, estimate
the mean μ and the standard deviation σ. (Hint: To estimate the standard deviation use
the formula STDEV.)

6.6.8 Suppose we want to simulate the activity at a gas station. One random variable
involved is the daily demand of gasoline. Given below are the daily demands (in thousands
of gallons) on 30 randomly selected days at three different gas stations. For each gas station,
determine which distribution, uniform, exponential, or normal, best models the random
variable. For your choice of distribution, give appropriate value(s) of the parameter(s) (a
and b for uniform, λ for exponential, and μ and σ for normal). Briefly explain your answers.

a.

3.44 2.88 0.25 6.04 0.25 3.07 1.88 5.62 3.74 5.41
1.15 7.82 1.06 1.85 0.30 1.40 9.93 0.17 1.31 2.49
2.78 7.10 3.19 4.28 1.51 1.11 1.06 1.27 1.69 1.46

b.

16.22 15.89 15.45 17.50 18.77 12.14 14.97 18.84 17.93 18.5
12.39 15.99 14.64 14.17 15.73 10.56 17.60 13.44 15.17 14.34
13.42 18.97 12.86 11.93 13.65 16.51 16.15 14.72 14.74 12.32

c.

19.87 22.89 22.10 20.49 21.19 18.27 20.94 16.25 16.29 14.17
22.60 24.13 19.79 16.65 23.53 21.51 24.03 15.17 14.29 17.27
18.64 24.87 21.62 15.69 21.34 14.81 21.03 22.18 20.99 20.78

6.6.9 Suppose the manager of a small board game store would like to simulate the activity
in his store. One random variable involved is the daily sales. The manager looks over his
records from the past 930 days and summarizes the daily sales data in the table below. (The
first row, for instance, says that on 5 days the sales were between $1000 and $1099.)
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Sales Frequency

1000-1099 5
1100-1199 15
1200-1299 45
1300-1399 100
1400-1499 200
1500-1599 250
1600-1699 170
1700-1799 80
1800-1899 35
1900-1999 30

a. What type of distribution does this random variable appear to have? Briefly explain
your reasoning.

b. The mean and standard deviation of summarized data such as these can be approxi-
mated using the formulas

x̄ ≈ 1

n

∑
(f · x) and s ≈

√
n
∑

(f · x2)− [
∑

(f · x)]2
n(n− 1)

where n is the total number of data values (the sum of the frequencies), x is the
midpoint of an interval, and f is the corresponding frequency. Use these formulas to
approximate the mean and standard deviation.

6.6.10 In the worksheet Exponential we generated values of an exponential random
variable with the formula x = − 1

λ ln (1−RAND). Suppose we used the formula x =
− 1

λ ln (RAND) instead. Try using this formula. Does it change the shape of the resulting
histogram? Explain why or why not.

6.6.11 One of the most important theorems in probability theory is the central limit the-
orem. Informally, this theorem states that if we generate several independent values of a
random variable and calculate the mean of these values, the mean is a value of a random
variable with an approximately normal distribution regardless of the distribution of the
original random variable. The purpose of this exercise is to graphically demonstrate this
theorem is true.

a. Generate 30 values of a random variable with an exponential distribution (choose your
own value of the parameter λ) and calculate the mean of these 30 values.

b. Repeat step a. 250 times.

c. Generate a histogram of the 250 values of the mean. Does this histogram resemble a
bell curve?

d. Change the value of the parameter to several different values. What do you note about
the shape of the histogram?

e. Repeat steps a. - d. for an original random variable with a normal distribution. Then
repeat for a uniform distribution.

f. The central limit theorem also says that the mean of the means should approximately
equal the mean of the original random variable. Also, the standard deviation of the
means should approximately equal the standard deviation of the original random
variable divided by the square root of the sample size (the sample size is 30 in this
exercise). Check if these two points are true for each distribution.
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g. What does all this say about the validity of the central limit theorem?

6.6.12 As mentioned in Section 6.5, Diehard is a battery of tests for random number
generators. One of these tests is called the 3-D spheres test . To illustrate the basic idea
behind this test, consider the following simplified version:

1. Use the RANDBETWEEN function to generate 10 points in 3-D space inside a cube
with sides of length 100. That is, generate 10 points of the form (x, y, z) with each
coordinate is an integer between 0 and 100. (The real 3-D spheres test uses 4,000 points
inside a sphere with sides of length 1,000.)

2. Calculate the Euclidean distance between each pair of points. This yields 45 distances.

3. Let r = minimum of the distances in step 2. Calculate the volume of a sphere with
radius r.

4. Repeat steps 1-3 a total of 500 times to collect 500 volumes. Calculate the average
volume and generate a histogram of the volumes using 8 bins.

The average and distribution found in step 4 are the benchmarks by which a pseudo-
random number generator is judged. If a generator does not yield the same average and
distribution, it fails the test.

a. Perform steps 1-4. What is the average volume? What type of distribution does the
volume appear to have?

b. Apply the test to the linear congruence generator described in Example 6.5.1 with
parameters a = 99, b = 3, and m = 101. That is, perform steps 1-4, but generate
the coordinates using the linear congruence generator. Use the RANDBETWEEN
function to generate the seed x0. Does this generator pass the test?

c. Now apply the test to the linear congruence generator with parameters a = 54, b = 70,
and m = 101. Does this generator pass the test?

d. Try the parameters a = 54, b = 68, and m = 101. Does this generator pass the test?

e. Suppose we were to generate more points (like 4,000 in the real 3-D spheres test).
Would this increase or decrease the average volume found in step 4? Explain.

6.7 A Theoretical Queuing Model

In simple terms, a queue is a waiting line. A prototypical example is people standing in
line to buy movie tickets. Another example is an assembly line where bottles of soda wait
to be filled with liquid. There are two important entities involved in a queue: customers
and servers. Servers are whatever are used to process customers. In the movie ticket line, a
customer is a person wanting to buy a ticket, and a server is a person selling tickets.

Suppose you arrive at a movie ticket booth to buy a ticket and see a long line of people
waiting. Two questions might come to mind:

1. How long must I expect to wait?

2. What is the average number of people waiting in line?
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In this section we build a simulation of a single-server queue to help answer these questions.
Figure 6.53 illustrates the arrival of the first three customers. The arrival time of each
customer is random and so is the service time. The wait time and service start time are
calculated based on the completion of the previous customer.

0
0

Customer 
1

Customer 
2

Customer 
3

Time

Arrival 

Service Starts 

Completion 

Wait Time

Service Time

FIGURE 6.53

There are two random variables we need to model: (1) the time between arrivals and
(2) the service time.

Time Between Arrivals: Theoretically it can be shown that the exponential distribu-
tion is a good model for time between arrivals. So we use this distribution with a parameter
λ1 to generate the time between arrivals. By properties of the exponential distribution,

• 1/λ1 = mean time between arrivals; and

• λ1 = mean number of arrivals per time unit, called the arrival rate.

Service Time: This random variable could be modeled using any type of distribu-
tion, but often an exponential distribution is used. Call the associated parameter λ2. By
properties of the exponential distribution,

• 1/λ2 = mean service time; and

• λ2 = mean number of customers serviced per time unit, called the service rate.

Example 6.7.1
Consider a single-server queue where the time between arrivals and the service time are
described by exponential distributions (such a queue is called an M/M/1 queue) with an
arrival rate of λ1 = 2 customers per minute and a service rate of λ2 = 3 customers per
minute. Here we build a simulation to estimate the average wait time.

Algorithm

a. For each customer:

(a) Generate a time between arrivals.

(b) Calculate the arrival time.

(c) Calculate the start time based on the finish time of the previous customer.

(d) Generate the service time.

(e) Calculate the completion time.
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(f) Calculate the amount of time spent waiting in line.

(g) Calculate the cumulative wait time for all customers up to this point.

(h) Calculate the average wait time for all customers up to this point.

b. Repeat for 5000 customers.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet “Queue.” Format the worksheet as shown in Figure 6.54.

1
2
3
4
5

A B C D E F
Arrival Rate 2 Customer Time Between Arrival Start
Service Rate 3 Number Arrivals Time Time

1 =-1/$B$1*LN(1-RAND()) =D4 =E4
=C4+1 =-1/$B$1*LN(1-RAND()) =E4+D5 =MAX(E5,H4)

FIGURE 6.54

2. Add the formulas in Figure 6.55. Copy the formulas in the range C5:K5 down to row
5003 to simulate 5000 customers arriving.

1
2
3
4
5

G H I J K
Service Completion Wait Cumulative Average

Time Time Time Wait Time Wait Time

=-1/$B$2*LN(1-RAND()) =F4+G4 =F4-E4 =I4 =J4/C4
=-1/$B$2*LN(1-RAND()) =F5+G5 =F5-E5 =J4+I5 =J5/C5

FIGURE 6.55

3. The overall average wait time is the average wait time of the last customer. To easily
see this value, add the formula in Figure 6.56. We see that the overall average is about
0.666. This number can be verified theoretically (see Exercise 6.7.5).

1
2
3

M
Overall Average

Wait Time
=K5003

FIGURE 6.56

4. Create a graph of Average Wait Time vs. Customer Number as in Figure 6.57
(fix the y–axis min and max to 0 and 1.2, respectively). The values on your graph
may be different than in the figure due to the randomness of the simulation. Notice
how much the average wait time varies as the number of customers increases. The
average wait time doesn’t settle down to close to the overall average wait time until
about customer 1500.

In Exercise 6.7.2 we examine the number of people standing in line.
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Exercises

6.7.1 In Example 6.7.1 we simulated a queue with a arrival rate of 2 and a service rate of
3. This means, theoretically, that an average of 2 customers will arrive per minute and an
average of 3 customers will be serviced per minute. In the simulation, calculate the average
number of customers that arrive per minute and the average number of customers that are
serviced per minute. Do these averages agree with the theoretical values?

6.7.2 The Queue Length is the number of customers standing in line waiting to be serviced
when a customer arrives. This does not include any customers being serviced at the time, nor
does it include the arriving customer. Add a column to the worksheet Queue to calculate
the Queue Length at the moment each customer arrives. Calculate the overall average queue
length. (Hint: Stated another way, the queue length is the number of customers who have
arrived but not yet started being serviced. Consider the scenario shown in Figure 6.58.
When customer 81 arrives, customers 78, 79, and 80 have not yet started being serviced
and are waiting in line, so the queue length is 3. Use the COUNTIF function to count the
number waiting in line.)

Customer Arrival Start Completion Queue
Number Time Time Time Length

76 30.58 30.72 31.20 0
77 30.86 31.20 31.86 0
78 31.16 31.86 32.19 1
79 31.43 32.19 32.40 1
80 31.56 32.40 32.68 2
81 31.73 32.68 32.71 3

FIGURE 6.58

6.7.3 Use the worksheet from Exercise 6.7.2 to estimate the probabilities in parts a. and b.

a. The probability that a single customer has a wait time of 0.

b. The probability that the queue length when a single customer arrives is 0.

c. Briefly explain why the answers to parts a. and b. are not the same
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6.7.4 Consider a queue with an arrival rate of 1 and a service rate of 2.

a. Suppose both the time between arrivals and the service time are exponentially dis-
tributed, as in Example 6.7.1. Use a simulation to estimate the average wait time and
average queue length.

b. Suppose the time between arrivals is exponentially distributed, but the service time is
uniformly distributed between 0 and 1. Use a simulation to estimate the average wait
time and average queue length. (Hint: This is very similar to part a, but we need to
modify the formula for the service time. It’s a very simple modification.)

c. Compare the average wait times and average queue lengths from parts a and b. Does
changing the distribution of the service time significantly change the averages? Explain
why or why not.

6.7.5 Using probability theory, it can be shown that in a single-server queue, if the time
between arrivals has an exponential distribution and the service time has any distribution,
then the expected number of customers waiting in line (called the expected queue length),
Lq, and the expected waiting time in the queue, Wq, are given by

Lq =
λ2σ2 + ρ2

2 (1− ρ)
and Wq =

Lq

λ

where

• λ = mean number of arrivals per time unit (the arrival rate),

• μ = mean number of customers serviced per time unit (the service rate),

• σ = standard deviation of the service time, and

• ρ = λ/μ.

a. Calculate Lq and Wq for the queue in Example 6.7.1. Do these numbers agree with
those found in the simulation?

b. Calculate Lq and Wq for a queue with an arrival rate of 5 and a service rate of 6, and
verify these numbers with a simulation.

c. Calculate Lq and Wq for each of the two queues in Exercise 6.7.4. (Hint: See Example
6.6.1 to calculate the mean and standard deviation of the service time of the queue
with the uniform service time.)

6.7.6 Suppose that customers arrive at the rate of 2 per minute into a single queue, but
that there are two identical servers, each with a service rate of 3 per minute. Assume the
time between arrivals and the service time both have exponential distributions.

a. Simulate this queue and estimate the expected wait time.

Suggestions:

• Start with the worksheet Queue.

• Add two columns titled “Start Time Server 1” and “Start Time Server 2” and cal-
culate the time that each customer would start if being serviced by the respective
server.
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• Add a column titled “Actual Start Time” and determine the time each customer
will actually start being served.

• Add a column titled “Server Number” and determine which server each customer
uses. Assume the default server is server 1. That is, if the customer could start
with either server at the same time, server 1 is chosen.

• Add two columns titled “When is Server 1 Open?” and “When is Server 2 Open?”
and calculate when each server would be available for another customer after the
current customer is finished. For instance, if the current customer uses server 1,
then server 1 will be open at the customer’s actual start time plus the service
time. This customer doesn’t affect server 2, so server 2’s open time will be the
same as the previous customer.

b. Use the result given in Exercise 6.7.5 to calculate the expected waiting time if there
were a single server with a service rate of 6. Does doubling the service rate yield the
same expected waiting time as doubling the number of servers?

c. Suppose a theater has a single ticket-seller and wants to reduce customer waiting time.
Assuming both of the following options cost the same, use the results of parts a. and
b. to determine which would be the better option:

i. Add equipment to double the service rate of the single ticket seller.

ii. Add a second ticket seller.

6.8 A Scheduling Model

The Handyman Remodeling Company is considering placing a bid on a contract to remodel
a living and dining room. The contract includes a large penalty if the job is not completed
by the deadline of 3 weeks (21 days) from the start. The job would consist of 8 separate
tasks with various precedence constraints as illustrated in Figure 6.59.

For each task, the project manager has estimated amost likely duration,m, an optimistic
duration, a, and a pessimistic duration, b, in terms of the number of days. These numbers
are given in Table 6.3.

TABLE 6.3

Task a m b

Demolition 2 3 4
Electrical 2 3.5 4
Plumbing 1 2 2.5
Drywall 5 6 8
Painting 2 3 4.5
Lights 3 4 5
Carpet 1 1.25 1.5
Trim 2 3 4

Management wants to know the expected project duration and the probability of meeting
the deadline so they can decide whether or not to place the bid. We will create a simulation
to help answer this question.
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Demolition

PlumbingElectrical

Painting

CarpetLights

Drywall

Trim

Finish

Start

FIGURE 6.59

The duration of each task is a random variable with a distribution. The problem is
that we do not know what the distribution is, and there is no reasonable way to determine
what the density function is by collecting data. Therefore the best we can do is use a
reasonable distribution to model these random variables. The distribution we will use is
called a triangular distribution. Its density function is graphed in Figure 6.60.

a m b

2
b a−

FIGURE 6.60

If we model the duration of a task with a triangular distribution, we see in Figure
6.60 that the probability the duration is near m is much higher than the probability it is
near the optimistic or pessimistic estimate. This observation indicates that the Triangular
Distribution is indeed a reasonable model.
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It can be shown that the pdf for a Triangular Distribution is

f(x) =

{
2

(b−a)(m−a)x− 2a
(b−a)(m−a) , a ≤ x ≤ m

2
(a−b)(b−m)x− 2b

(a−b)(b−m) , m < x ≤ b,
(6.4)

the cdf is

F (x) =

{
(x−a)2

(m−a)(b−a) , a ≤ x ≤ m

1− (b−x)2

(b−m)(b−a) , m < x ≤ b,
(6.5)

and the inverse cdf is

F−1 (y) =

{
a+

√
y (m− a) (b− a), 0 ≤ y ≤ m−a

b−a

b−√
(1− y) (b−m) (b− a), m−a

b−a < y ≤ 1.
(6.6)

Algorithm

a. For each task:

1. Determine the start time based on the finish times of the preceding activities.

2. Generate the task duration.

3. Calculate the finish time.

b. Determine the overall project duration.

c. Determine whether the deadline was met.

d. Repeat for 500 trials.

e. Calculate the average project duration and the percentage of the trials in which the
deadline was met.

To implement this algorithm, follow these steps:

1. Rename a blank worksheet Remodel and format it as in Figure 6.61.

1
2
3
4
5
6
7
8
9
10
11
12

A B C D E F G H
Task a m b Start Time rand Duration Finish Time
Demo 2 3 4 0 =RAND() =E2+G2
Electrical 2 3.5 4 =H2 =RAND() =E3+G3
Plumbing 1 2 2.5 =H2 =RAND() =E4+G4
Drywall 5 6 8 =MAX(H3,H4) =RAND() =E5+G5
Painting 2 3 4.5 =H5 =RAND() =E6+G6
Lights 3 4 5 =H6 =RAND() =E7+G7
Carpet 1 1.25 1.5 =H6 =RAND() =E8+G8
Trim 2 3 4 =H8 =RAND() =E9+G9

Project Duration = =MAX(H7,H9)
Deadline Met? =IF(H11<=21,1,0)

FIGURE 6.61

2. Add the formula for the inverse cdf as shown in Figure 6.62, and copy cell G2 to the
range G3:G9.
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2
G

=IF(F2<=(C2-B2)/(D2-B2),B2+SQRT(F2*(C2-B2)*(D2-B2)),D2-SQRT((1-F2)*(D2-C2)*(D2-B2)))

FIGURE 6.62

3. Start a table to store the results of 500 trials and find the average duration and
percentage of successes as in Figure 6.63. Copy cell J4 down to row 502. Create a
table in the range J2:L502 to store the results of 500 trials. Choose any blank cell for
the Column input cell.

1
2
3
4

I J K L
Average Duration Trial Project Duration Success

=AVERAGE(K3:K502) =H11 =H12
% Success 1

=AVERAGE(L3:L502)*100 =J3+1

FIGURE 6.63

From the results we see that there is approximately an 81% chance of finishing on time
and the average duration is just over 20 days. If this chance of finishing on time is too low,
the project manager can experiment with different estimates to improve the chances.

Exercises

6.8.1 The quantity “Project Duration” is a random variable.

a. Approximate the mean and standard deviation of this random variable.

b. Create a histogram of the 500 values of this variable generated from the simulation,
and determine which type of density function, uniform, exponential, or normal, best
models this random variable.

6.8.2 Instead of modeling the duration of each task as a continuous random variable over
the interval [a, b], model it as a discrete variable which will take a value of a, m, or b each
with a certain probability. For instance, suppose it equals a with probability 0.25, m with
probability 0.5, and b with probability 0.25. Modify the worksheet from Exercise 6.8.1 to
model the durations in this way. How does this change the mean, standard deviation, and
distribution of the variable Project Duration? Try different values of the probabilities.

6.8.3 In this exercise we will graphically verify that our Excel formula for generating values
of a random variable X described by a triangular distribution really does work.

a. Generate 500 values of a task duration with parameters a = 3, m = 5.25, and b = 9.
Allow the user to change these parameters.

b. Create a histogram of the values in part a. Does the shape of the histogram resemble
the graph of the triangular distribution density curve? Try some other values of the
parameters.

6.8.4 Analytically show that the pdf, cdf, and inverse cdf of a triangular distribution are
as given in Equations (6.4) - (6.6).
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6.8.5 Martin has 4 days to study for his Mathematical Modeling final exam. At the end
of day 0 he has an entire 100 pages of notes to read. He figures that if he spends h hours
studying on any given day he will absorb 11.12

√
h pages of notes. He also figures that

overnight he’ll forget 10% of what he knew at the end of that day. So if we let hi = the
number of hours spent studying on day i and xi = the number of pages absorbed by the
end of day i, we have x0 = 0 and

xi = 0.9xi−1 + 11.12
√

hi

He’d like to go into the exam having absorbed everything (i.e. x4 = 100), and has planned
to study a certain number of hours each day. However, he realizes that he may get lazy
and might not be able to study as many hours as he planned. On the other hand, he may
get very motivated and study more hours than anticipated. Therefore, for each day he has
estimated a most likely study duration, an optimistic duration, and a pessimistic duration
as shown in the table below. Design a simulation to estimate the probability that he will
absorb everything and the expected number of pages he will absorb. Should he revise his
time estimates? If so, how?

Day Pessimistic Most Likely Optimistic

1 2 4 6
2 5 6 7.5
3 6 7 9
4 7.5 9 11

6.9 An Inventory Model

Consider the following scenario:

The produce department at a neighborhood grocery store gets its bananas from a
local supplier. To better schedule its deliveries, the supplier has asked the produce
manager to place his order on a regular basis (i.e. every 5 days). The manager is
trying to decide how often to place his order.

The manager has room to store 50 boxes of bananas. Each time he places an order,
he will order enough to completely replenish his stock. He will place his order at the
end of the day and it will be delivered that evening. There is a $25 delivery fee for
each delivery, regardless of the size of the order.

The manager looks over his records from the previous month (30 days) for daily
demand and notes that he sold between 1 and 10 boxes of bananas each day. The
daily demand data is summarized in Table 6.4.

Ideally, the manager wants to place his order before he runs out of bananas. For
instance, if on the end of day 8 he has 2 boxes left and on day 9 he has demand
for 5 boxes, he would have wished he had ordered 48 boxes on day 8. However, he
doesn’t want to place an order too often because of the delivery fee, so he’s willing
to occasionally run out of bananas.
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TABLE 6.4

Demand 1 2 3 4 5 6 7 8 9 10

Number of Days 3 3 2 2 3 5 2 4 3 3

The above scenario is somewhat vague. So we first need to state a precise question to
answer:

How often should the manager place his order so that the department can meet
demand at least 95% of the time?

Our simulation will consist of replicating the sale and delivery of bananas over a period of
one year. We will vary the number of days between deliveries and keep track of the number
of days demand was met.

The only random variable in this simulation is the daily demand. This is a discrete
random variable and we will use the data in Table 6.4 to model the cdf. To do this, rename
a blank worksheet Bananas and format it as in Figure 6.64. Enter the rest of the data from
Table 6.4 and copy the range O4:P4 down to row 12.

1
2
3
4

M N O P
Num of Relative Cumulative

Demand Days Frequency Frequency
1 3 =N3/30 =O3
2 3 =N4/30 =O4+P3

FIGURE 6.64

The graph of the Cumulative Distribution Function, F (x), is shown in Figure 6.65. (It
is not necessary to create this graph.) To generate values of the demand based on this cdf
we will first pick a uniformly distributed random number y using the RAND function.
From that y-value on the graph, we will move horizontally until we hit a column. The
corresponding x-value will be the value of F−1 (y). For instance, F−1 (0.065) = 1 and
F−1 (0.75) = 8.
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FIGURE 6.65

To calculate F−1 (y), add the formulas in Figure 6.66 and copy row 4 down to row 12.
The simulation will refer to the “lookup chart” to calculate the daily demand.
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1
2
3
4

R S

Frequency Demand
0 1
=P3 2

Lookup Chart

FIGURE 6.66

Algorithm

a. Choose a value for Days Between Deliveries.

b. For each day:

1. Generate a demand.

2. Determine if the demand can be met.

3. Determine if a delivery will be made.

4. Calculate inventory at the end of the day.

c. Calculate the percentage of days the demand was met.

d. Repeat for 100 trials.

e. Try different values of Days Between Deliveries.

To implement this algorithm, follow these steps:

1. In the worksheet Bananas, add the formulas in Figure 6.67. Copy row 6 down to
row 370. The VLOOKUP function in column C will look at the left-most column in
the lookup chart, find the largest value less than or equal to the value of the random
number, and return the corresponding value in the second column of the chart. This
value will be the demand for that day.

1
2
3
4
5
6

A B C D E F
Days Between Deliveries = 5

Demand Inventory
Day rand Demand Delivery? Met? at End of Day

0 50
=A5+1 =RAND() =VLOOKUP(B6,$R$3:$S$12,2) =IF(MOD(A6,$D$1)=0,1,0) =IF(F5>=C6,1,0) =IF(D6=1,50,F5-C6)

FIGURE 6.67

2. Add the formulas in Figure 6.68 to calculate the percentage of days that demand was
met, store the results from 100 trials, and calculate the overall results. Create a table
in the range I4:J104 to store the results from 100 trials. Choose any blank cell for the
column input cell. Press F9 several times to repeat the simulation. Note that with 5
days between deliveries, demand is met 100% of the time.

3. Change the value of Days Between Deliveries and rerun the simulation until you
find the largest value that gives at least a 95% Overall Average. Note that for 8
days between deliveries demand is met about 95.5% of the time. For 9 days between
deliveries demand is met only about 90% of the time. Thus 8 days between deliveries
is the answer to the question. In the exercises we will consider a refinement to the
model.
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1
2
3
4
5
6

I J
% Days Demand Met = =AVERAGE(E6:E370)*100

Overall Average = =AVERAGE(J5:J104)
Trial %

=J1
1
=I5+1

FIGURE 6.68

Exercises

6.9.1 In this exercise we will test whether our method for generating values of the daily
demand works properly.

a. Create a spreadsheet that generates 2000 values of the daily demand.

b. The theoretical expected daily demand is
∑10

x=1 x · f (x) where f (x) is the relative
frequency of demand x. Use the data in Table 6.4 to calculate the expected daily
demand.

c. Calculate the average of the 2000 values of the daily demand and compare this number
to the theoretical number from part b.

d. Calculate the relative frequencies of the 2000 values of the daily demand and compare
these to the relative frequencies from the data in Table 6.4. Does our method for
generating values of the daily demand appear to work properly?

6.9.2 We modeled the demand random variable as a discrete variable whose distribution
is motivated by Table 6.4. In this exercise we consider other distributions. Modify the
simulation to model the demand with each given distribution and find the answer to the
original question. Is this answer any different from the answer of 8 days found using the
original distribution?

a. Discrete and uniform over the interval [1, 10]

b. Continuous and uniform over the interval [1, 10]

c. Normal with mean μ = 5.7 and standard deviation σ = 1.5.

6.9.3 Suppose that the produce department makes $4 profit for each box of bananas sold
(if we don’t take into account delivery costs).

a. Add a column of formulas to calculate daily profit. (Note: The daily profit is the
number of boxes sold times $4, not the number demanded times $4.)

b. Add a formula to calculate the total delivery cost for the year (each delivery costs
$25).

c. Add a formula to calculate the total yearly profit from the sale of bananas.

d. Modify your table to store the profit and add a formula to calculate the average profit
from all 100 trials.
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e. Find the value of Days Between Deliveries that gives the maximum profit. How
does this value compare to the solution to the original problem of 8 days between
deliveries?

6.9.4 Consider a generalization of Exercise 6.5.1. Suppose we want to generate a list of
pseudorandom numbers each of which has the value x1, x2, . . ., or x6 where x1 occurs with
probability p1, x2 occurs with probability p2, etc. where p1 + · · ·+ p6 = 1.

a. Design a spreadsheet which generates this list. Make sure the user is able to input the
values of the x’s and the p’s. (Hint: Create a lookup table like we did in this section.)

b. Use the COUNTIF function to verify that the list contains the proper proportion of
each number.

6.9.5 A local manufacturing plant produces a variety of products. The distribution of the
total monthly demand is shown in the table below. Depending on conditions the average
manufacturing cost per item is between $60 and $80 in integer values, and returns from
distributors are between 120% and 130% of manufacturing costs. There is a fixed cost of
$2000/month for tooling, processing, etc. Build a simulation to estimate the average monthly
profit. State all assumptions used.

Demand Probability

300 0.05
320 0.10
340 0.20
360 0.30
380 0.25
400 0.10

6.9.6 The management at a bank is trying to improve customer satisfaction by offering
better service. They want customers to wait on average less than 2 minutes and the average
length of the queue to be 2 or fewer. The bank estimates it serves about 150 customers per
day. Management observes that the service time and time between customer arrivals (in
minutes) are typically whole numbers and that the distributions are as given in the tables
below.

Time Between Service
Arrivals Probability Time Probability

0 0.10 1 0.25
1 0.15 2 0.20
2 0.10 3 0.40
3 0.35 4 0.15
4 0.25
5 0.05

a. Modify a worksheet from Section 6.7 to simulate customers arriving and being served
at the bank. Use the simulation to estimate the average queue length and average wait
time.

b. Are the bank’s goals being met? If not, suggest improvements the bank can make.



248 Simulations

6.9.7 In the Birthday Problem (Example 6.3.2) we simulated selecting a random class of
n students and estimated the probability that at least two students share a birthday. Our
model was based on the simplifying assumption that birthdays are uniformly distributed
throughout the year and we ignored leap years. Table 6.9.7 shows the number of births (in
tens of births) in the United States on each day of the year, including February 29, for
the years 1994-2014 (data from http://thedailyviz.com/2016/09/17/how-common-is-your-
birthday-dailyviz/ as accessed by Brennan DeForest, March 22, 2019). The upper left-hand
corner corresponds to January 1, below that is January 2, etc. Redo the birthday problem
simulation using these data to generate the birthdays. Estimate the smallest class size
necessary so the probability that at least two students share a birthday is at least 0.50. Is
this class size different than in the original simulation? (Hint: Create a lookup table like
we did in this section.)

TABLE 6.5

15,584 22,298 22,022 21,634 21,594 17,592 22,982 24,144 22,092 21,528
18,614 22,126 21,546 21,754 21,564 20,808 23,216 24,296 22,552 21,710
21,626 21,786 22,274 21,728 21,802 22,974 23,498 24,110 22,366 22,502
22,038 22,030 21,908 21,690 21,438 24,216 22,936 24,458 21,856 22,364
21,906 22,030 21,828 21,992 22,328 23,888 23,384 24,214 22,064 22,284
21,822 21,796 22,006 21,764 22,690 23,538 23,842 23,626 22,204 21,962
21,850 21,208 22,362 21,328 22,512 23,476 23,576 23,840 22,024 22,264
21,220 23,272 21,934 21,606 22,442 23,588 23,096 23,948 21,630 21,916
21,248 22,376 21,478 21,470 22,328 23,130 23,362 23,890 19,956 21,482
22,046 21,896 21,842 21,462 22,480 22,362 23,274 23,732 22,700 21,786
21,950 21,708 21,948 22,004 22,320 23,360 23,542 23,986 22,162 21,698
21,868 21,880 21,776 22,226 22,050 23,508 23,286 23,722 22,260 21,902
21,244 21,346 21,790 21,806 22,166 23,536 23,650 23,108 22,258 21,766
21,952 21,772 22,090 21,434 22,444 23,436 23,310 23,144 22,382 22,880
21,092 22,016 21,746 22,146 22,320 23,544 22,904 22,978 22,162 21,710
21,246 22,222 21,428 21,898 22,392 23,090 23,152 23,440 22,616 21,904
21,802 21,854 21,558 21,890 22,082 22,856 23,240 23,144 22,360 22,382
21,766 21,808 20,600 21,910 22,576 23,328 23,474 23,348 21,854 22,704
21,382 21,948 22,008 22,080 22,156 23,372 23,710 22,980 22,078 22,962
21,650 21,454 21,798 22,142 22,530 23,398 23,848 22,544 22,282 23,350
21,648 21,716 22,438 21,488 22,506 23,214 23,600 22,670 22,154 23,870
21,346 22,106 21,800 22,032 22,678 23,536 23,110 22,648 21,484 24,018
21,730 5,231 21,278 21,394 22,352 23,162 21,860 22,618 22,480 23,360
22,098 22,258 21,718 22,140 23,004 22,820 22,000 22,274 22,458 22,776
21,902 21,604 21,780 22,314 22,596 23,228 22,238 23,112 22,044 20,676
21,686 22,148 21,660 22,566 22,260 23,186 22,432 22,536 22,250 16,138
21,646 21,978 21,652 22,244 22,488 23,198 22,862 22,028 22,346 13,148
21,670 21,958 22,118 21,798 22,656 23,032 22,586 21,536 22,510 19,086
21,134 21,842 21,906 21,998 22,812 23,550 22,796 22,298 22,884 23,330
21,504 22,174 20,778 22,386 22,748 23,160 23,984 22,522 23,134 23,710
21,766 21,952 21,624 22,508 23,180 22,664 24,602 22,230 21,328 23,912
21,858 21,530 21,766 22,576 23,114 23,138 24,286 22,592 19,766 23,778
21,898 21,880 21,818 23,050 22,702 23,220 23,006 22,298 20,030 20,788
21,686 21,862 21,794 22,734 23,094 23,172 24,448 21,700 19,908
21,810 22,006 22,008 21,654 23,720 23,178 23,602 22,130 20,088
21,370 21,308 21,782 20,802 23,656 23,902 23,764 22,114 19,436
21,588 22,238 21,428 21,386 22,608 23,442 24,174 22,312 20,192

http://thedailyviz.com/
http://thedailyviz.com/
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Project Ideas

A popular general topic for a simulation project is to simulate a simple game of chance
involving cards, dice, or spinners. The simulation can be used to answer questions such as

• What’s the average length of the game?

• What’s the average score?

• What’s the distribution of the scores?

• What would happen if we used a biased die or deck of cards.

Many games of chance do involve some strategy. In the simulation, the strategy may have
to be simplified, but the simulation can be used to compare different strategies. Here are a
few specific simulations to consider:

1. Simulate the card game Blackjack (a.k.a. 21) to compare different strategies for when
to hit (e.g. should you always hit at 16 or less, 17 or less, etc.).

2. Simulate the golf dice game GOLO to compare different strategies for keeping the dice
in each round.

3. Simulate rolling dice from the game Dungeons and Dragons.

4. Simulate a fast food drive-thru. Compare different scenarios, one where the customers
order and receive their food at the same window, and the other where they order their
food at one window and pick up at a second window.

5. Simulate a variation of Buffon’s needle problem where the needle has the shape of a
circle, rectangle, or triangle.

6. Simulate a simple basketball game between two teams, each containing players of
different abilities, and compare different substitution patterns.

7. Simulate a restaurant that seats 20 people. Compare the scenario where there are 5
tables that each seat 4 to another where there are 4 tables of 5. Which scenario allows
the most number of customers to be served in a day?

8. Research the Die Hard battery of tests for randomness and try to implement one of
the tests, or at least a simplified version of one.

9. Research ways of using simulations to estimate the value of π.

10. Research the Ant Colony Simulation optimization heuristic.

11. Simulate the board game Chutes and Ladders to estimate the average number of turns
it takes for a player to win. How does this number change if there is more than one
player?

12. Simulate the dice game Yahtzee.

13. Simulate the game Pokemon to estimate the probability of catching a wild Pidgey.

14. Simulate the casino game Roulette.
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15. A bag contains several marbles of different colors. Suppose you randomly choose x
marbles. Create a simulation to estimate the probably that exactly y of the chosen
marbles are a certain color. Let the user input the values of x and y, the number of
colors, and the number of marbles of each color.

16. Simulate the card game Up the River, Down the River.

17. Simulate the dice game Bunco.

18. Simulate the game Bingo.

19. Simulate the game Sorry.

20. Simulate the game Keno to test different strategies for picking the numbers.

21. Simulate the board game Battleship. Will a player find the battleship faster if they
guess randomly or in a diagonal pattern?

22. Simulate the game of Nim.

23. Research an M/M/c queuing system where there are c > 1 servers.

24. Simulate spinning the Big Wheel on the game show The Price is Right!

25. Simulate the dice game Farkle.

26. Simulate the board game Axis & Allies to estimate the probability of winning with
different combinations of attacker and defender forces.

27. Simulate rolling dice in the game of Risk.

28. Simulate the game Plinko from the game show The Price is Right to estimate the
distribution of the outcomes.

29. Simulate the board game Hi Ho Cherry-O.

30. The game of Clue involves trying to solve a crime. Because the game ends when
someone guesses the correct solution, players will try to guess the correct solution
before the other players can, and may have to guess without fully eliminating every
possible conclusion. Create a simulation to estimate the chances of winning a game of
Clue if you were to guess knowing only a certain number of cards were eliminated.

For Further Reading

• For a classic reference on many of the concepts related to simulation, see Hillier, F.
and G. Lieberman, Introduction to Operations Research, Seventh Edition, McGraw Hill,
2001, pg. 1084 – 1155.

• For a classic reference on everything related to simulation, see Law, Averill M. and W.
David Kelton, Simulation Modeling and Analysis Second Edition, McGraw–Hill, Inc.,
1991.

• For more examples of the concepts in this chapter, see Maki, Daniel and Maynard
Thompson, Mathematical Modeling and Computer Simulation, Thomson Brooks/Cole,
2006.
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Linear Optimization

Chapter Objectives

• Discuss the basic concepts of optimization problems

• Introduce linear programming

• Model transportation and assignment problems

• Discuss the basics of the Simplex Method

7.1 Introduction

In Calculus I, we solve problems such as

Maximize f (x) = −2x2 + 3x+ 2

by taking the derivative of the function f and setting it equal to 0. This is a very simple
Optimization Problem (abbreviated OP). Practical situations often involve finding solutions
to more complex optimization problems such as when a business is trying to decide how
many units of a product to produce in order to maximize profit.

Every OP has two components: decision variable(s) and an objective function. The objec-
tive function is the function being maximized. The decision variable(s) are the variable(s)
involved. The basic goal of an OP is to find values of the decision variable(s) that maximize
the objective function.

Optimization problems are classified into two general categories, constrained and uncon-
strained . A constrained OP is one in which there are constraints on the values of the decision
variable(s). An unconstrained OP has no such constraints. These constraints can be of many
different forms, including:

1. Non-negativity (the decision variables must be non-negative)

2. Integrality (the decision variables must be integers)

3. Binary (the decision variables must be 0 or 1)

4. Equality (e.g. x+ y = 5)

5. Inequality (e.g. x+ y ≥ 6)

Optimization problems are also classified into two other categories: linear or nonlinear . A
linear OP is one in which the objective function and constraints are equations or inequalities
of the form

2x1 − 6x2 + 8x3 = 2

251
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where x1, x2, and x3 are decision variables (i.e. the objective function and constraints are
equations or inequalities of the type studied in linear algebra). A nonlinear OP has an
objective function or at least one constraint that is not of this type.

7.2 Linear Programming

The type of optimization problem we focus on in this chapter is called a linear program
(LP), which is simply a linear constrained OP. More specifically, an optimization problem
is called a linear program if it satisfies the following five properties:

1. There is a unique objective function.

2. Whenever a decision variable appears in either the objective function or a constraint
function, it must appear with an exponent of 1, possibly multiplied by a constant.

3. No term contains products of decision variables.

4. All coefficients of decision variables are constants.

5. Decision variables are permitted to assume fractional as well as integer values.

An example of an LP is:

Maximize Z = 25x1 + 30x2

Subject to 20x1 + 30x2 ≤ 600
5x1 − 4x2 ≤ 4
x1 ≥ 4, x2 ≥ 2.

(7.1)

The objective function in this case is 25x1 + 30x2, and its value is denoted Z. A solution
to an LP (also called a schedule or a feasible solution) is any set of values of the decision
variables that satisfies the constraints. A solution to the LP (7.1) is, for example, x1 = 5,
x2 = 6. An optimal solution is a solution that gives the maximum (or minimum) value
of the objective function over all possible solutions. Finding a solution is relatively easy.
Finding an optimal solution is not as easy.

The algorithm used to find optimal solutions to linear programming problems is called
the Simplex method. Excel uses this algorithm as part of its Solver tool. In Section 7.6 we
will discuss the basics of how the Simplex method works. In this section we use Solver to
solve some simple linear programs.

Example 7.2.1 (Making Fruit Baskets)
The manager of a produce department at a neighborhood supermarket is making fruit
baskets for the busy holiday season. He sells two sizes of baskets: small and large. He has
only 200 apples and 100 oranges remaining and is trying to decide how many of each size of
basket he should make. Each small basket returns a profit of $3 and requires 3 apples and
1 orange while each large basket returns a profit of $4 and requires 2 apples and 2 oranges.
Assuming he will sell all that he makes, how many of each size should he make to maximize
his profit?

The first step in modeling a problem such as this is to organize all the information given
into a mixture chart as shown in Table 7.1. The two sizes of baskets are generically called
the products and the apples and oranges are called the resources .
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TABLE 7.1

Products
Resources Small Large Amount Available

Apples 3 2 200
Oranges 1 2 100

Profit 3 4

The next step is to define variables and write a set of inequalities to model the situation.
If s denotes the number of small baskets to produce and l denotes the number of large baskets
to produce, the model is:

Maximize P = 3s + 4l
Subject to 3s + 2l ≤ 200

1s + 2l ≤ 100
s, l ≥ 0

The objective function 3s + 4l gives the total profit. The first constraint says we can’t
use more than 200 apples while the second says we can’t use more than 100 oranges. The
last two constraints are non–negativity constraints which say we can’t produce a negative
number of baskets.

To solve this LP, rename a blank worksheet “Fruit Baskets” and format it as in Figure
7.1. The numbers in the range B2:C2 are the values of s and l (these are not the optimal
values, yet).

1
2
3
4
5
6

A B C D E
Small Large

Number 1 1 Amt Used Amt Available
Apples 3 2 =SUMPRODUCT($B$2:$C$2,B3:C3) 200

Oranges 1 2 =SUMPRODUCT($B$2:$C$2,B4:C4) 100
Total Profit

Profit 3 4 =SUMPRODUCT($B$2:$C$2,B6:C6)

FIGURE 7.1

Select Data → Analysis → Add-Ins. . . (If Solver is not available, select File →
Options → Add-Ins. Then select Excel Add-ins next to Manage: and press the Go. . .
button. Check the box next to Solver Add-in and press OK.) Format the Solver window
as in Figure 7.2 and press the Solve button.

The drop-down box next to Select a Solving Method contains three different algo-
rithms for solving optimization problems:

1. GRG Nonlinear - This is an algorithm for solving linear and nonlinear programs
based on the gradient method. The basics of this method are discussed in Sections 8.4
and 8.5.

2. Simplex LP - This is an algorithm for solving linear programs that utilizes the simplex
method. We choose this algorithm in this example because the program is linear. The
basics of this method are discussed in Sections 7.5 and 7.6

3. Evolutionary - This algorithm falls into a general category called evolutionary meth-
ods . This method is used in Section 8.8.
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FIGURE 7.2

The worksheet should now look like Figure 7.3. From this we see that our optimal
solution is to produce 50 small baskets and 25 large baskets (called the optimal production
schedule), which will yield a profit of $250. Also note that we use all 200 apples and 100
oranges.

1
2
3
4
5
6

A B C D E
Small Large

Number 50 25 Amt Used Amt Available
Apples 3 2 200 200

Oranges 1 2 100 100
Total Profit

Profit 3 4 250

FIGURE 7.3

Example 7.2.2 (A Diet)
John has decided to go on a diet to lose weight and has limited himself to two types of food:
protein shakes and pasta (plus vitamin supplements). He is concerned with getting enough
protein and carbohydrates, but not too much fat. Table 7.2 lists the amounts of these nutri-
ents provided by each type of food along with his daily requirements and cost information.
How many servings of each food should he eat each day to meet the requirements and
minimize the cost?
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TABLE 7.2

Grams per serving
Shake Pasta Daily Requirement

Carbs 1 35 ≥ 80
Protein 7 6 ≥ 75

Fat 5 1 ≤ 50

Cost per serving $0.75 $1.25

If we let s denote the number of protein shake servings and p denote the number of
pasta servings per day, our mathematical model is:

Minimize C = 0.75s + 1.25p
Subject to 1s + 35p ≥ 80

7s + 6p ≥ 75
5s + 1p ≤ 50

s, p ≥ 0

Note that in this case, the objective function gives the cost, not the profit. Solving this
problem in a similar fashion to the previous example gives the results shown in Figure 7.4.
Observe that the solution is not integral, which may or may not be an issue. It certainly
is possible to make fractional servings, but we typically think of servings in terms of whole
numbers. We could have added the constraint that the decision variables be integers, but
then the problem would not be linear. A simpler way to interpret this mathematical solution
in the real-world is to simply round-off the values to 9 shakes and 2 servings of pasta. This
rounded-off solution does not meet the carbohydrate requirement (it provides only 79 grams
of carbohydrates), but arguably this is close enough.

1
2
3
4
5
6
7

A B C D E
Shake Pasta

Number 8.975 2.029 Amt Consumed Amt Needed
Carbs 1 35 80 80

Protein 7 6 75 75
Fat 5 1 46.90376569 50

Total Cost
Cost 0.75 1.25 9.267782427

FIGURE 7.4

Exercises

Directions: Formulate each problem below as an LP and solve it with Solver. Make sure
that all the constraints and the objective functions are linear.

7.2.1 A toy company manufactures plastic cars and trucks. Each car yields a profit of $1.25
and requires 5 units of plastic and 15 minutes of labor to produce. Each truck yields a profit
of $0.95 and requires 2 units of plastic and 18 minutes of labor to produce. If the company
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has 60 units of plastic and 360 minutes of labor available, how many of each vehicle should
they produce to maximize their profit?

7.2.2 The Sweetie Pie Baking Company operates three different plants. Two are used for
mixing ingredients and baking, and the third is used strictly for packaging. Management
is considering adding two new products to their line-up, a chocolate-chunk cookie and a
raisin bread. The cookie will be baked in plant 1 while the bread will be baked in plant
2. They will both be packaged in plant 3. One batch of each product requires a certain
amount of time in the different plants and each plant has a certain amount of production
time available each week. The data is summarized in the table below. How many batches
of each product should be produced each week to maximize total profit?

Time needed Time available
Cookie Bread per week

Plant 1 3 0 6
Plant 2 0 2 10
Plant 3 1 2 10

Profit per batch 300 250

7.2.3 An aid organization is sending boxes of food and clothing to assist hurricane disaster
victims.

a. The army offers to transport the boxes, provided they fit in the available cargo space.
Each 20-ft3 box of food weighs 40 lbs, and each 30-ft3 box of clothing weighs 20 lbs.
The total weight cannot exceed 16,000 lbs, and the total volume must not exceed
18,000 ft3. Each box of food will feed 10 people, while each box of clothing will help
clothe 8 people. How many boxes of food and how many boxes of clothing should be
sent in order to maximize the total number of people assisted? How many people will
be assisted?

b. Suppose a trucking company offers to deliver 550 boxes of clothing and 165 boxes of
food free of charge. They claim they can make the delivery more quickly than the
army. Would you advise taking their offer? Briefly explain why or why not.

7.2.4 A hog farmer typically buys hog feed from a local farming cooperative which offers
two brands of hog feed. Brand X costs $25 a bag and contains 2 units of nutritional element
A, 2 units of element B, and 2 units of element C. Brand Y costs $20 a bag and contains 1
unit of nutritional element A, 9 units of element B, and 3 units of element C. The minimum
requirements for nutrients A, B, and C are 12 units, 36 units, and 24 units, respectively.
The farmer plans to buy several bags of each brand and mix them together.

a. Find the number of bags of each brand the farmer should purchase from the cooper-
ative to meet the requirements at a minimum cost.

b. Suppose a competitor feed dealer offers to sell the farmer 4 bags of each brand for a
total of $160. Do you recommend the farmer accept the offer? Briefly explain why or
why not.

7.2.5 An automobile repair company performs paint-less dent removal from hail damaged
cars and trucks. Each vehicle must be processed in both the body assembly shop and the
finishing shop. In the body shop it takes 0.5 man-hours to repair a car and 0.5 man-hours
to repair a truck. There are 25 body shop man-hours available per day. In the finishing shop
it takes 0.4 man-hours to finish a car and 0.6 man-hours to finish a truck. There are 24
finishing man-hours available per day. Each car contributes $200 to overall profit, and each
truck contributes $225 to overall profit.
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a. Find the number of cars and trucks the company can service a day to maximize overall
profit.

b. Suppose the repair company is offered a contract to repair 30 cars and 30 trucks a
day. Would you recommend the company accept the contract? What changes, if any,
would the company need to make? Briefly explain your answer.

7.2.6 The Jones Furniture company produces tables and chairs. Each table requires 4 hours
of carpentry labor, 3 hours of painting labor, and 100 board-ft. of wood. Each chair requires
4.5 hours of carpentry labor, 2 hours of painting labor, and 75 board-ft. of wood. Each
table returns a profit of $6, and each chair returns a profit of $4.75. Each month, there are
2400 hours of carpentry labor, 1500 hours of painting labor, and 10,000 board-ft of wood
available. Management requires at least 50 tables be produced each month.

a. Find the number of tables and chairs that should be produced each month to maximize
overall profit.

b. Which resource, carpentry labor, painting labor, or wood, is the most limiting? If
the company wanted to increase the amount of this resource, how much would you
recommend they increase it so the company more efficiently utilizes the available
resources?

7.2.7 The Nutty Goodness Company sells mixtures of peanuts, walnuts, and cashews. A
new customer wants 100 lb of a mixture that is 45% peanuts, 30% walnuts, and 25% cashews.
The company has run out of peanuts, so they are going to make the mixture by combining
five different mixtures containing different percentages of peanuts, walnuts, and cashews as
shown in the table below. Determine the amounts of each of the five different mixtures that
should be blended to form 100 lb of the new mixture at a minimum cost.

Mixture
1 2 3 4 5

Percentage of peanuts 45 20 55 50 55
Percentage of walnuts 23 20 42 20 35
Percentage of cashews 32 60 3 30 10

Cost ($/lb) 4.80 5.20 4.90 4.60 4.30

7.2.8 The Nostalgic Transportation Company manufactures collectible models of old cars.
Their Model T returns a profit of $3 and requires 12 minutes of assembly time and their
Model A returns a profit of $5 and requires 25 minutes of assembly time. The plant manager
estimates that due to maintenance and breakdowns, the machine used for assembly operates
only 33 hours per week. Based on sales predictions, management requires that for every five
Model T’s produced, at least two Model A’s must be produced.

a. How many of each model should be produced each week to maximize profit?

b. Suppose the plant manager believes that hiring an additional maintenance person
could increase the machine’s operational time to 39 hours per week. Find the new
optimal production schedule in this case.

c. Based on your solution to part b., how much would hiring a new maintenance person
increase weekly profit? Do you think it’s economically beneficial for the company to
hire this person? Briefly explain why or why not.
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7.2.9 The Wetzel Woodworking Company produces tables and chairs. Each table returns
a profit of $30 and requires 5.5 hours of labor while each chair returns a profit of $10
and requires 2.5 hours of labor. There are 40 hours of labor available per week. Customer
demand requires that at least three times as many chairs be produced as tables. Tables and
chairs produced in one week must be stored over the weekend and shipped out the following
Monday. Tables require three times as much storage space as chairs. The warehouse has
room to store the equivalent of at most six tables.

a. How many tables and chairs should be produced each week to maximize profit?

b. Suppose the company wants to increase storage capacity to eight tables. Find the
new optimal production schedule. Is there really any economical benefit to adding the
storage? Briefly explain why or why not.

7.2.10 The Cubicles Unlimited Company manufactures office desks and cabinets. Manage-
ment is trying to decide how many desks and cabinets to manufacture in a certain week to
fill an order that will be shipped out the following week. Here are the requirements:

• Each desk requires 45 minutes of assembly time and 30 minutes of painting time while
each cabinet requires 30 minutes of assembly time and 21 minutes of painting time.

• The assembly department has 40.25 hours and the painting department has 28.5 hours
of production time available during the week.

• At the beginning of the week there are 50 desks and 55 cabinets in stock.

• The order is for 75 desks and 95 cabinets.

• Company policy is to maximize the total inventory at the end of each week.

Find an optimal solution to this problem.

7.2.11 Linear programs can be written in matrix form. The standard maximum problem is
defined as:

Maximize cTx (7.2)

Subject to Ax ≤ b and x ≥ 0,

where c is the vector of coefficients in the objective function, x is the vector of decision
variables, A is the matrix of coefficients in the constraints, and b is the vector of constants
on the right-hand side of the constraints. For instance, the LP in Example 7.2.1 written in
this standard form is:

Maximize
[
3 4

] [ x1

x2

]
(7.3)

Subject to

[
3 2
1 2

] [
x1

x2

]
≤
[

200
100

]
and

[
x1

x2

]
≥
[

0
0

]
.

Every LP has an associated dual linear program. The dual of the standard maximum prob-
lem (7.2) is defined as

Minimize yT b

Subject to yTA ≥ cT and y ≥ 0,

where y is a vector of new decision variables. An LP and its dual are intimately connected.
In this exercise we’ll look at one of those connections. The study of the dual problem falls
into a branch of mathematics called duality theory .
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a. Show that the dual of the problem (7.3) is

Minimize
[
y1 y2

] [ 200
100

]

Subject to
[
y1 y2

] [3 2
1 2

]
≥ [

3 4
]
and

[
y1
y2

]
≥
[

0
0

]
.

b. Solve the dual problem in part a. and compare this solution to the original problem
found in Example 7.2.1. What similarities do you observe?

7.2.12 Find the dual of the following LP. Solve both the LP and its dual, and compare the
solutions.

Maximize P = x1 + x2

Subject to x1 + 2x2 ≤ 4
4x1 + 2x2 ≤ 12
−x1 + x2 ≤ 1

x1, x2 ≥ 0

7.3 The Transportation Problem

Operations Research (OR) is a branch of applied mathematics that deals with researching
the operations of organizations, such as businesses and industries, with the goal of help-
ing them operate more efficiently. It is also known as Management Science and is closely
related to the field of engineering called Industrial Engineering. Operations research began
in earnest during World War II as an attempt to help the military allocate and transport
resources more efficiently.

Operations research involves topics such as queuing theory, inventory theory, and sim-
ulations. Solving LP’s is also a big part of OR. In OR, LP’s are categorized according to
the form of the model and the different categories are named according to the prototypical
example of the form. In this and the next section we consider two very common types of
LP’s; the transportation problem and the assignment problem.

Example 7.3.1 (Delivering Bread)
The Better Bread Company has three bakeries located in the Midwest United States near
wheat growing areas and four distribution warehouses scattered across the U.S. Management
is studying ways to reduce shipping costs. Table 7.3 summarizes the weekly output of each
bakery and the weekly allocation of each warehouse (in units of truckloads), along with
the estimated shipping costs for each bakery-warehouse combination. Determine how many
truckloads of bread should be assigned to each bakery-warehouse combination to minimize
total cost.

TABLE 7.3

Warehouse
Bakery 1 2 3 4 Output

1 119 253 321 402 21
2 205 198 348 365 18
3 432 351 195 248 18

Allocation 15 10 12 20
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To form the model, let xij (i = 1, 2, 3; j = 1, 2, 3, 4) represent the number of truckloads
to be shipped from bakery i to warehouse j. This may be formulated as a linear program
as:

Minimize C = 119x11 + 253x12 + . . .+ 248x34

Subject to
x11 + x12 + x13 + x14 = 21

x21 + x22 + x23 + x24 = 18
x31 + x32 + x33 + x34 = 18

x11 + x21 + x31 = 15
x12 + x22 + x32 = 10

x13 + x23 + x33 = 12
x14 + x24 + x34 = 20

xij ≥ 0 for all i = 1, 2, 3 and j = 1, 2, 3, 4

The first constraint says that the total number of trucks coming out of bakery 1 must equal
its total output. The next two constraints have similar meanings for bakeries 2 and 3. The
fourth constraint says that the total number of trucks going to warehouse 1 must equal its
total allocation. The next three constraints have similar meanings for warehouses 2, 3, and
4.

Notice the special pattern of coefficients in the constraints. It is this pattern that sets the
transportation problem apart from others. Any problem that can be completely described by
a parameter table like that in 7.3 will have this pattern and is thus called a “transportation
problem” regardless of whether or not it has anything to do with transportation. Also notice
that the total output from the bakeries equals the total allocation of the warehouses. In more
general terminology we say the total supply from the sources equals the total demand from
the destinations. This is a necessary condition for there to be a solution to this problem.

To solve this problem in Excel, rename a blank worksheet “Bread” and format it as in
Figure 7.5. and format the Solver window as in Figure 7.7.

2
3
4
5
6
7

B C D E F G

Bakery 1 2 3 4 Output
1 119 253 321 402 21
2 205 198 348 365 18
3 432 351 195 248 18

Allocation 15 10 12 20

Warehouse

FIGURE 7.5

Next, format the worksheet as in Figure 7.6. The decision variables are held in the range
C12:F14.

10
11
12
13
14
15
16
17
18

B C D E F G

Bakery 1 2 3 4 Total
1 =SUM(C12:F12)
2 =SUM(C13:F13)
3 =SUM(C14:F14)

Total =SUM(C12:C14) =SUM(D12:D14) =SUM(E12:E14) =SUM(F12:F14)

Total Cost
=SUMPRODUCT(C4:F6,C12:F14)

Warehouse

FIGURE 7.6
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Format the Solver window as in Figure 7.7.

 

FIGURE 7.7

The solution is shown in Figure 7.8. It says that bakery 1 should ship 15 truckloads to
warehouse 1 and 3 to warehouse 3. Bakery 2 should ship 10 truckloads to warehouse 2 and
8 to warehouse 4. Bakery 3 should ship 6 truckloads to warehouse 3 and 12 to warehouse 4.

10
11
12
13
14
15

B C D E F G

Bakery 1 2 3 4 Total
1 15 0 6 0 21
2 0 10 0 8 18
3 0 0 6 12 18

Total 15 10 12 20

Warehouse

FIGURE 7.8

Notice that in the optimal solution in Example 7.3.1, all the decision variables have
integer values. This observation is generalized in the following theorem.

Theorem 7.3.1. In a transportation problem, if all the supplies and demands have integer
values, then all the decision variables in an optimal solution will have integer values.

Example 7.3.2 (Different Allocations)
Consider the same problem as in Example 7.3.1, but with slightly different warehouse allo-
cation amounts as given in Table 7.4.

Notice that the total output is 57 and the total allocation is 54. Therefore, we can-
not require all bakeries to produce all of their potential output since there isn’t enough
warehouse space to hold it all. We could model this problem as an LP using inequality
constraints as:
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TABLE 7.4

Warehouse
Bakery 1 2 3 4 Output

1 119 253 321 402 21
2 205 198 348 365 18
3 432 351 195 248 18

Allocation 13 10 12 19

Minimize C = 119x11 + 253x12 + . . .+ 248x34

Subject to
x11 + x12 + x13 + x14 ≤ 21

x21 + x22 + x23 + x24 ≤ 18
x31 + x32 + x33 + x34 ≤ 18

x11 + x21 + x31 = 13
x12 + x22 + x32 = 10

x13 + x23 + x33 = 12
x14 + x24 + x34 = 19

xij ≥ 0 for all i = 1, 2, 3 and j = 1, 2, 3, 4

This LP could be solved with Solver using the Simplex method. However, the formu-
lation above is not a transportation problem since there are some inequality constraints
instead of all equality constraints. This may not seem like a big deal. However, there is
a special version of the Simplex method, called the Transportation Simplex method,
which is much more efficient at solving transportation problems than the generic Simplex
method. For large problems with thousands of decision variables (as occur in real applica-
tion), the Transportation Simplex method could save a great deal of computation time over
the Simplex method. Therefore, if a problem can be modeled as a transportation problem,
it is preferable to do so.

To model this problem as a transportation problem, we will introduce a “dummy” ware-
house that will be allocated the excess 3 trucks of bread and given shipping costs of 0. The
parameter table including this dummy warehouse is shown in Table 7.5.

TABLE 7.5

Warehouse
Bakery 1 2 3 4 Dummy Output

1 119 253 321 402 0 21
2 205 198 348 365 0 18
3 432 351 195 248 0 18

Allocation 13 10 12 19 3

Notice that in this version the total allocation equals the total output, so this version is a
true transportation problem. Note that this problem has three additional decision variables.
To solve this problem, we can simply modify the worksheet Bread to include this dummy
warehouse (be sure to modify the formulas for the Totals and the Total Cost appropriately).
The solution is shown in Figure 7.9.
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10
11
12
13
14
15

B C D E F G H

Bakery 1 2 3 4 Dummy Total
1 13 0 5 0 3 21
2 0 10 0 8 0 18
3 0 0 7 11 0 18

Total 13 10 12 19 3

Warehouse

FIGURE 7.9

The solution says to ship 3 truckloads from bakery 1 to the dummy warehouse. This
means in practice that bakery 1 should produce only 18 truckloads, 13 of which go to
warehouse 1 and 5 of which go to warehouse 3.

Example 7.3.3 (A New Requirement)
Consider the same scenario as in Example 7.3.2, except management is now requiring that
bakery 1 produce exactly 21 truckloads. We could model this as before, except with the
added constraint that the number of truckloads going from bakery 1 to the dummy ware-
house is exactly 0, but then we wouldn’t have a transportation problem.

Instead, we will use the big-M method . We will model the problem exactly as in Example
7.3.2, except we will assign a large cost, M , (in this case M = 1000) to a shipment from
bakery 1 to the dummy warehouse. The parameter table is shown in Table 7.6.

TABLE 7.6

Warehouse
Bakery 1 2 3 4 Dummy Output

1 119 253 321 402 1,000 21
2 205 198 348 365 0 18
3 432 351 195 248 0 18

Allocation 13 10 12 19 3

Solving this requires us to change only this one cost value in the modified spreadsheet
Bread. The solution is shown in Figure 7.10. Notice that no truckloads are shipped from
bakery 1 to the dummy warehouse, as required. In this solution, bakery 2 should produce
only 15 truckloads.

10
11
12
13
14
15

B C D E F G H

Bakery 1 2 3 4 Dummy Total
1 13 0 8 0 0 21
2 0 10 0 5 3 18
3 0 0 4 14 0 18

Total 13 10 12 19 3

Warehouse

FIGURE 7.10
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Exercises

Directions: Formulate each problem below as a transportation problem by constructing
an appropriate parameters table as in the “Data” section of Figure 7.5 and solve it with
Solver. The parameter tables should meet the following requirements:

1. The sources are listed along the left-hand side.

2. The destinations are listed along the top.

3. The supply from each source is listed along the right-hand side.

4. The demand from each destination is listed along the bottom.

5. The total supply equals the total demand.

7.3.1 The manager of the produce department at a local supermarket buys his strawberries
from two local suppliers, Sunnyside Farms and Green Valley Farms. The manager needs 3
cases of strawberries today and an additional 7 cases tomorrow. Sunnyside Farms can sell a
maximum of 6 cases total at a price of $7.25 per case today and $6.35 per case tomorrow.
Green Valley Farms can sell a maximum of 4 cases total at a price of $5.75 per case today
and $5.25 per case tomorrow. How should the manager make his purchases to minimize the
total cost while still meeting his daily requirements? (Hint: Let the sources be Sunnyside
Farms and Green Valley Farms and the destinations be today and tomorrow. The costs
would then be Sunnyside’s price to sell today, Green Valley’s price to sell tomorrow, etc.)

7.3.2 Supply and demand in the Armed Forces is extremely important. Suppose there
are three warehouses that stock parts and fuel and five units which need supplies. The
table below shows the transportation time (in hours) between each warehouse and unit, the
demand (in tons) of each unit, and the supply (in tons) of each warehouse. Determine how
to ship parts and fuel to minimize total transportation time.

Unit
Warehouse 1 2 3 4 5 Supply

1 5.5 6.5 8 7.5 8 5500
2 4.5 7.5 9 4.5 6 4000
3 10 6 7 8 7.5 5000

Demand 2500 3000 2500 3000 3500

7.3.3 The Strikers Company manufactures bowling balls at its two plants in Orlando and
Kansas City and ships them to distributors in six different states. The monthly output,
demand, and unit shipping costs (in $/bowling ball) are shown in the table below.

Distributors
Plants Ark. Ala. W. Vir. Miss. Ind. Penn. Output

Orlando 0.5 0.35 0.6 0.45 0.8 0.75 3500
Kansas City 0.25 0.65 0.4 0.55 0.2 0.65 5000

Demand 1600 1800 1500 950 1250 1400

a. Determine how the bowling balls should be shipped from the plants to the distributors
to minimize the total shipping cost.
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b. Suppose that management wants to find ways to reduce the unit shipping cost from
Orlando to Indiana. How much does this cost need to be reduced before it has any
impact on the minimum total shipping cost? Briefly explain your answer.

7.3.4 The Davenport Furniture Company ships student desks to schools from their three
warehouses. They have received orders from four schools. The capacity of each warehouse,
the quantities ordered, and unit shipping costs (in $/desk) are shown in the table below.

School
Warehouse A B C D Capacity

Dubuque 22 17 30 18 420
Des Moines 15 35 20 25 610

Omaha 28 21 16 14 340

Order 520 250 400 380

a. Determine how the desks should be shipped from the warehouses to the schools to
minimize the total shipping cost. Will the company be able to fulfill all the orders?
Which school, if any, will not receive their full order?

b. To better meet demand, management is considering two options:

1. Expand capacity at the Dubuque warehouse to 600 and increase the unit shipping
costs from Dubuque to all the schools by $5.

2. Open a new warehouse in Peoria with a capacity of 300 and unit shipping costs
of $20, $32, $25, and $26 to schools A, B, C, and D, respectively.

Which of these two options would result in a lower total shipping cost?

7.3.5 The Rent-A-Jalopy company has six car rental locations in the tri-state area. At
the end of a certain day, each location has several cars available and each needs a certain
number for rental the next day. The number of cars available at each location, the number
needed, and the drive times between each location (in minutes) are shown in the table
below. Assuming the drive times are commutative, determine how cars should be moved
between locations to minimize the total drive time.

Location
Location 1 2 3 4 5 6 Available

1 0 12 17 18 10 20 37
2 0 10 19 16 15 20
3 0 12 8 9 14
4 0 12 15 26
5 0 10 40
6 0 28

Needed 30 25 20 40 30 20

7.3.6 The Great Openings Company, which manufactures doors and windows, is reassigning
the production of three of its products to five of its plants. The costs to manufacture one
unit of each product in each plant, the capacity of each plant, and the anticipated demand
for each product are shown in the table below.
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Product
Plant 1 2 3 Capacity

1 25 50 40 300
2 32 48 36 450
3 35 46 42 625
4 18 38 31 700
5 36 45 30 725

Demand 900 1100 600

a. Determine how to assign the products to the plants to minimize total manufacturing
cost.

b. Now suppose that management adds the requirements that plants 4 and 5 cannot
manufacture product 2 and that plant 1 must manufacture exactly 300 units. Find
the new optimal assignment.

7.3.7 The Better Bread Company also produces fruit cakes, most of which are sold during
the holiday season. In September and October, the company ramps up their fruit cake pro-
duction capacity, but then starts to cut back in November and December. The anticipated
monthly demand, maximum production capacity, and production costs are shown in the
table below (one unit is 1,000 fruit cakes and costs are in thousands of dollars). Fruit cakes
can be produced in one month, stored, and then sold in another month, but there is a 0.0015
monthly cost to warehouse each unit. How should the monthly production be scheduled to
minimize total cost while still meeting the anticipated demand? (Hint: Let the sources be
the months produced and the destinations be the months sold. The cost cij would then be
the total cost for a unit of fruit cakes that is produced in month i and sold in month j.
For instance, c11 = 1.18 and c14 = 1.1845. Is it possible to produce a unit of fruit cakes in
month 3 and sell it in month 1? What does this mean about c31?)

Anticipated Production Unit Production Unit Storage
Month Demand Capacity Cost Cost

Sept 5 35 1.18 0.0015
Oct 10 50 1.21 0.0015
Nov 40 40 1.19 0.0015
Dec 60 10 1.2

7.3.8 In Theorem 7.3.1 we claimed that if the supplies and demands of a transportation
problem are all integers, then the decision variables in an optimal solution will have integer
values. To illustrate this idea, consider the following parameters table for the Better Bread
Company where the supplies and demands are not integers. Find an optimal solution. Are
the values of decision variables in the optimal solution all integers?

Warehouse
Bakery 1 2 3 4 Output

1 119 253 321 402 21.5
2 205 198 348 365 19.2
3 432 351 195 248 20.8

Allocation 14.8 11.7 12.6 22.4

7.3.9 To further illustrate Theorem 7.3.1, consider the original parameters table for the
Better Bread Company in Table 7.3. Replace some of the shipping costs with non-integer
values of your choice and find an optimal solution. Are the values of decision variables in
the optimal solution all integers?
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7.3.10 In this exercise we will see that a transportation problem can have more than one
optimal solution. Consider a bakery-warehouse scenario similar to Example 7.3.1, but with
the unit costs, outputs, and allocations shown in the table below.

Warehouse
Bakery 1 2 3 Output

1 12 18 14 250
2 15 17 13 100

Allocation 150 80 120

a. Use Solver to find an optimal solution to this problem.

b. Consider the solution shown in the table below. Verify that this solution is feasible.
That is, verify the output and allocation constraints are met. Also, calculate the total
cost of this solution and compare it to the optimal solution from part a. Is this solution
optimal?

Warehouse
Bakery 1 2 3

1 150 0 100
2 0 80 20

7.3.11 In this section we solve transportation problems with the Simplex method using
Solver. There are also iterative methods for solving these problems by hand. We won’t
discuss the full details of these methods, but we will discuss the first step which is to
find an initial feasible solution. Consider Example 7.3.1. An initial feasible solution is an
assignment of truckloads from the bakeries to the warehouses that meets the output and
allocation requirements. The solution does not have to be optimal, just feasible. One method
for finding an initial solution is called the north-west corner method . This method says we
start in the upper left-hand corner of the parameters table (i.e. the north-west corner) and
assign units as follows:

1. Assign all the supply of each row before moving down to the next row.

2. Meet the allocation requirement of each column before moving to the right to the next
column.

In Example 7.3.1, this means we need to find an assignment of truckloads from the
bakeries to the warehouses that meet the allocation and output constraints. To apply the
north-west corner method, we first assign 15 truckloads from bakery 1 to warehouse 1. This
satisfies the allocation constraint for warehouse 1. Next we assign 6 truckloads from bakery
1 to warehouse 2. This satisfies the output constraint for bakery 1. We assign 0 truckloads
from bakery 1 to warehouses 3 and 4. We then move to bakery 2 and assign 0 truckloads
to warehouse 1, 4 to warehouse 2, 12 to warehouse 3, and 2 to warehouse 4. We continue
with bakery 3 in the same fashion. The resulting assignments are shown in the table below.
We see that this solution is indeed feasible, but not optimal since the total cost is $13,465
which is greater than the cost of the optimal solution found with Solver, $12,757.
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Warehouse
Bakery 1 2 3 4 Total

1 15 6 0 0 21
2 0 4 12 2 18
3 0 0 0 18 18

Total 15 10 12 20

As an application of the north-west corner method, consider a different bakery-warehouse
scenario whose unit costs, outputs, and allocations are shown in the table below.

Warehouse
Bakery 1 2 3 Output

1 2 6 1 30
2 2 4 1 60
3 6 9 5 20

Allocation 60 20 30

a. Use the north-west corner method to find an initial feasible solution to this problem.

b. Use Solver to find an optimal solution to this problem. Compare this solution to that
found in part a.

7.3.12 (This is not a transportation problem, so no parameters table is needed, but the
decision variables do have similar meanings as in a transportation problem.) The Nutty
Goodness Company is considering selling three new mixtures of peanuts, walnuts, and
cashews. They have 1,000 lb of peanuts, 800 lb of walnuts, and 700 lb of cashews available
for the first batch. Each mixture has a unique set of specifications as to the percentage of
each type of nut as shown in the table below.

Selling price
Mixture Specifications per pound

Walnut Lover’s At least 35% walnuts $1.85
At most 25% cashews
No restriction on peanuts

Cashew Lover’s At most 45% peanuts $1.99
At least 45% cashews
No restriction on walnuts

Premium At most 10% peanuts $2.75
Between 50% and 65% walnuts
At least 15% cashews

If peanuts cost $0.75 per lb, walnuts cost $1.05 per lb, and cashews cost $1.75 per lb,
determine how much of each mixture they should make (and the amount of each type of
nut in each mixture) to maximize total profit. (Hint: Let xij = amount of nut i in mixture
j. In your spreadsheet, set up different cells to calculate the total amount of each mixture,
the total amount of each nut in each mixture, and the percentage of each type of nut in
each mixture. Also calculate total cost and total revenue. Remember, profit = revenue –
cost.)
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7.4 The Assignment Problem and Binary Constraints

The Assignment Problem (AP) is a special type of linear programming problem where we
generically say that workers are being assigned to perform jobs. The simplest example is
when employees are being assigned different types of jobs to perform. However, the workers
may not always be people and the jobs may not always be literal jobs to perform. In Example
7.4.1 below, the workers are trucks and the jobs are packages that need to be delivered.

In an AP, the decisions to be made are which workers should perform which jobs in
order to minimize some cost function. A problem is called an AP if and only if it satisfies
the following assumptions (see Hillier, F. and G. Lieberman, Introduction to Operations
Research, Seventh Edition, McGraw Hill, Boston, 2001, p. 382 for more information):

1. The number of workers, n, equals the number of jobs.

2. Each worker is to be assigned exactly one job.

3. Each job is to be performed by exactly one worker.

4. There is a cost cij associated with assigning worker i to job j.

5. The objective is to determine how all n assignments should be made to minimize the
total cost.

The cost in the fourth assumption may be a literal dollar amount associated with assign-
ing worker i to job j, or it may be some other value associated with that assignment (i.e.
time), the total of which we want to minimize. The decision variables, xij for i, j = 1, 2,
. . . , n, are binary (they equal 0 or 1) with

xij =

{
1 if worker i performs job j
0 if not

Assignment problems can be solved extremely efficiently by a special form of the trans-
portation simplex method (which is in turn a special form of the simplex method).

Example 7.4.1 (On–Time Delivery Company)
A scheduler at the On–Time Delivery Company has three packages that need to be delivered
and four available trucks of different types. Based on the locations of the packages and the
locations of the trucks, the scheduler has determined a cost for each truck to deliver a
package as shown in Table 7.7 (note truck 2 cannot deliver package 2). Such a table is
called a cost matrix .

TABLE 7.7

Package
Truck 1 2 3

1 12 20 13
2 16 – 18
3 8 6 9
4 14 10 8

The goal is to determine how to assign trucks to packages to minimize the total delivery
costs. Note that this is technically not an AP since there are more workers than jobs, so
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TABLE 7.8

Package
Truck 1 2 3 Dummy Supply

1 12 20 13 0 1
2 16 100 18 0 1
3 8 6 9 0 1
4 14 10 8 0 1

Demand 1 1 1 1

we will add a dummy package. Each truck will supply one delivery and each package will
demand one delivery. Also, we will use the big-M method to model the fact that truck 2
cannot deliver package 2. The resulting parameters table is shown in Table 7.8.

Notice that this is an appropriate parameter table for a transportation problem. So an
AP is indeed a transportation problem. However, an AP has the additional feature that
the supplies and the demands are all 1. This special feature can be exploited to find an
algorithm that solves these problems extremely efficiently. Note that because the AP is a
transportation problem, the supplies and demands are all integers, and the special structure
of the problem, the optimal solution will be binary (i.e. we don’t have to add the constraints
that the decision variables are binary; we get this for free).

Solving this problem in the same way we did in Section 7.3 yields the solution shown
in Figure 7.11. This shows that Truck 1 should deliver package 1, Truck 3 should deliver
package 2, Truck 4 should deliver package 3, and Truck 2 should not deliver any package.
Note that the big-M method prevented truck 2 from delivering package 2, as desired. How-
ever, the big-M method does not always prevent such unfeasible assignments (see Exercise
7.4.14).

11
12
13
14
15
16
17
18

B C D E F G

Truck 1 2 3 Dummy Sum
1 1 0 0 0 1
2 0 0 0 1 1
3 0 1 0 0 1
4 0 0 1 0 1

Sum 1 1 1 1
Total Cost = 26

Package

FIGURE 7.11

The next example illustrates a use of binary decision variables in a problem that involves
assignments, but is not technically an assignment problem

Example 7.4.2 (Ace Manufacturing)
Ace Manufacturing Co. plans to start manufacturing four new products in three existing
plants that have excess capacity. Table 7.9 shows the daily cost of producing one unit of
each product in each plant (plant 2 cannot produce product 3), the available daily capacity
of each plant, and the expected daily demand for each product.



The Assignment Problem and Binary Constraints 271

TABLE 7.9

Product
Plant 1 2 3 4 Capacity

1 35 32 30 40 78
2 35 25 - 31 65
3 33 37 36 30 45

Demand 25 35 32 43

Management wants each product to be produced in exactly one plant (e.g. we can’t
produce 12 units of product 1 in plant 1 and 13 units in plant 3). How should they assign
products to plants to minimize the total production cost while still meeting demand?

Observe that plant 1 has enough capacity to produce any two products. Plant 2 could
produce both products 1 and 2, but not both 3 and 4. Plant 3 has enough capacity to
produce only one product. These restrictions make it complicated to model this problem as
an AP, so instead we will model it as a linear program with binary constraints.

The first step in modeling this problem is to enter the unit costs, capacities, and
demands. Rename a blank workbook Ace and format it as in Figure 7.12. Note that we use
the big-M method to model the fact that plant 2 cannot produce product 3.

1
2
3
4
5
6

B C D E F G

Plant 1 2 3 4 Capacity
1 35 32 30 40 78
2 35 25 1000 31 65
3 33 37 36 30 45

Demand 25 35 32 43

Product

FIGURE 7.12

Now we need to calculate the total cost of assigning each product to each plant. This
assignment cost is the demand times the unit cost. To make these calculations, add the
formulas in Figure 7.13.

8
9
10
11
12
13

B C D E F G

Plant 1 2 3 4 Capacity
1 =C3*C$6 =D3*D$6 =E3*E$6 =F3*F$6 =G3
2 =C4*C$6 =D4*D$6 =E4*E$6 =F4*F$6 =G4
3 =C5*C$6 =D5*D$6 =E5*E$6 =F5*F$6 =G5

Demand 1 1 1 1

Product

FIGURE 7.13

To model the constraints and objective function, add the formulas in Figure 7.14. The
binary decision variables are held in the range C17:F19. The formulas in column Total
calculate the total number of units produced in each plant. These totals must be less than
or equal to the capacities. The formulas in row Sum calculate the number of plants each
product is assigned to. Each of these sums must equal 1.

Set up the Solver parameters as in Figure 7.15. Note that we need the binary constraint
because this problem is not an AP. In Section 8.7 we will examine the basics of how Solver



272 Linear Optimization

15
16
17
18
19
20
21

B C D E F G

Plant 1 2 3 4 Total
1 =SUMPRODUCT(C17:F17,$C$6:$F$6)
2 =SUMPRODUCT(C18:F18,$C$6:$F$6)
3 =SUMPRODUCT(C19:F19,$C$6:$F$6)

Sum =SUM(C17:C19) =SUM(D17:D19) =SUM(E17:E19) =SUM(F17:F19)
Total Cost = =SUMPRODUCT(C10:F12,C17:F19)

Product

FIGURE 7.14

handles this binary constraint. (Before running Solver, click on Options and make sure
that Ignore Integer Constraints in the All Methods tab is not checked.)

 

FIGURE 7.15

The solution is shown in Figure 7.16. It indicates that plant 1 should produce product
3, plant 2 should produce products 1 and 2, and plant 3 should produce product 4.

15
16
17
18
19
20
21

B C D E F G

Plant 1 2 3 4 Total
1 0 0 1 0 32
2 1 1 0 0 60
3 0 0 0 1 43

Sum 1 1 1 1
Total Cost = 4000

Product

FIGURE 7.16

The last example illustrates a much different use of binary decision variables to model
yes-no decisions.

Example 7.4.3 (Home Improvement Decisions)
Nathan and Laura are trying to sell their house which has two bedrooms and two bathrooms.
To increase the house’s value, they want to remodel one or more rooms. They have estimated
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the costs of remodeling each room and their real estate agent has estimated the increase
in the house’s value if each room was remodeled as shown in Table 7.10 (where costs and
increases in values are given in thousands of dollars). They have only $10,000 to spend
remodeling, and they have decided that they can’t do both bathroom 2 and bedroom 2.
They will only do bathroom 2 if they also do bathroom 1. Also, they will only do bedroom 2
if they also do bedroom 1. Which rooms should they remodel to maximize the total increase
in their house’s value?

TABLE 7.10

Decision Remodeling Increase in
Room Variable Cost House Value

Bathroom 1 x1 6 9
Bedroom 1 x2 3 5
Bathroom 2 x3 5 6
Bedroom 2 x4 2 4

There are four decisions to make in this problem: Do they remodel Bathroom 1?, Do
they remodel Bedroom 1?, etc. So each one of the four decision variables will equal 1 if the
associated decision is yes and 0 if the decision is no.

Our objective is then to maximize

Z = 9x1 + 5x2 + 6x3 + 4x4

The fact that they have only $10,000 to spend means that

6x1 + 3x2 + 5x3 + 2x4 ≤ 10

Since they can’t do both bathroom 2 and bedroom 2, we can’t have x3 = x4 = 1. So in
terms of inequalities, we have

x3 + x4 ≤ 1

Since they will only do bathroom 2 if they also do bathroom 1, we can only have x1 = 1
and x3 = 1, or x1 = 1 and x3 = 0, or x1 = 0 and x3 = 0. In terms of inequalities, we have

x3 ≤ x1 ⇒ −x1 + x3 ≤ 0

Likewise, since they will only do bedroom 2 if they also do bedroom 1, we have

x4 ≤ x2 ⇒ −x2 + x4 ≤ 0

So, putting it all together we get the program

Maximize Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1

−x1 + x3 ≤ 0
−x2 + x4 ≤ 0

x1, x2, x3, x4 are binary

Such a program is called a binary integer program (BIP). Notice that this program does not
fit the form of a transportation problem, so we do need the additional binary constraints.
To solve this in Excel, rename a blank worksheet Improvement and format it as in Figure
7.17, and format the Solver window as in Figure 7.18.

The results are shown in Figure 7.19. They indicate that Nathan and Laura should
remodel bedroom 1 and bathroom 1 which will increase their house’s value by $14,000.
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FIGURE 7.17

 

FIGURE 7.18

1
2
3
4
5
6
7
8

A B C D E F G H I
Bath 1 Bed 1 Bath 2 Bed 2

Variable x1 x2 x3 x4
Values 1 1 0 0

Z = 9 5 6 4 = 14 RHS
Constraint 1 6 3 5 2 = 9 10
Constraint 2 1 1 = 0 1
Constraint 3 -1 1 = -1 0
Constraint 4 -1 1 = -1 0

FIGURE 7.19
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Exercises

Directions: Model each problem below using binary decision variables and solve it with
Solver.

7.4.1 The Keep-U-Clean janitorial service has four employees: Arlynn, Sharon, Jeff, and
Nick. One of the buildings they clean requires four jobs: vacuuming, mopping, cleaning
glass, and dusting. The time (in minutes) for each employee to perform each job is shown in
the table below. Determine how to assign employees to jobs to minimize the total amount
of time needed, assuming each employee does exactly one job.

Employee Vacuum Mop Glass Dust

Arlynn 13 4 7 6
Sharon 2 11 5 4
Jeff 6 7 2 8
Nick 2 4 5 9

7.4.2 The final round of a mathematics competition consists of four tests: arithmetic, alge-
bra, calculus, and geometry. Each team is supposed to assign exactly 1 member to take each
test. The team consisting of Brian, Ed, John, Larry, and Bruce has personal-best scores on
each test as shown in the table below. How should they assign themselves to the tests so
that no one takes more than one test and the sum of the corresponding scores is maximized?

Test Brian Ed Larry John Bruce

Arithmetic 99.1 96.3 97.6 98.9 98.5
Algebra 99.3 98.9 98.2 99.2 98.8
Calculus 94.6 98.3 97.4 97.2 98.2
Geometry 95.3 98.5 98.6 98.5 94.2

7.4.3 The Buggy Bath Car Wash Company has five employees: Jared, Dustin, Matthew,
Daniel, and Tim. One particular customer requires her car be washed, waxed, have the
interior detailed, and have the wheels polished. The estimated time (in minutes) required
for each employee to complete each task is shown in the table below where a - indicates the
employee refuses to do that task. Determine how to assign employees to tasks to minimize
the total time needed, assuming each employee does at most one task.

Employee Wash Wax Interior Wheels

Jared 23 19 31 19
Dustin 18 - 28 23
Matthew 27 21 29 29
Daniel 17 23 - 15
Tim 22 - 26 29

7.4.4 The coach of a high school swim team needs to form male and female medley relay
teams. The medley consists of four different strokes, back, breast, butterfly, and freestyle.
The members of the swim team, their genders, and their personal best times (in seconds)
for each stroke are shown in the table below. Each team member may be assigned at most
one stroke. Find the female team that minimizes the total relay swim times. Then do the
same for the males.
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Gender Back Breast Butterfly Freestyle

Lilly F 35.8 37.1 27.4 35.5
Kelly F 36.3 32.2 28 25.6
Jenny F 33.2 35.1 28 29.2
Angie F 29.1 34.7 30.9 29.4
Colby F 33.6 30.8 26.7 24.3
Elsie F 27.2 32.8 28.7 27.2
James M 25.3 29 25 23.1
Michael M 27.8 25.8 28.2 25.7
Edward M 28.8 32.5 26.8 26
Chris M 26.8 28.7 22.2 21.5

7.4.5 A farmer, Stan, is going to harvest wheat on three different fields. He can haul the
grain to two different elevators, the Farmers United elevator, which pays $4.50 per bushel
and can only accept 1,800 bushels of wheat; and the Sunflower elevator, which pay $4.30 per
bushel and can only accept 1,000 bushels. He predicts that fields 1, 2, and 3 will produce
1,000, 500, and 1,000 bushels, respectively. His grain trucks can haul 500 bushels each.
Assume that only full trucks will be used to haul the wheat to the elevators. The price to
haul one bushel from each field to each elevator is shown in the table below.

Field
Elevator 1 2 3

United 0.13 0.13 0.15
Sunflower 0.16 0.13 0.17

Stan needs to determine how much to haul from each field to each elevator to maximize
the total profit. (Hint: The profit for a bushel is the price paid at the elevator minus the
hauling cost. Consider having five jobs (or truckloads of wheat) and five workers. The cost
for each assignment is the profit for each truckload.)

7.4.6 A manufacturing company needs to assign the production of four new products (prod-
ucts 1–4) to four existing plants (plants A–D). Production costs and sales revenue differ
between plants. The costs and revenues (in thousands of dollars per product) are shown in
the table below. Find an assignment of products to plants that maximizes total profit.

Cost Revenue
Plant 1 2 3 4 1 2 3 4

A 49 65 40 48 59 69 50 57
B 53 55 38 72 56 70 44 81
C 48 56 42 53 59 73 47 75
D 61 61 54 71 68 63 62 87

7.4.7 Suppose Nathan and Laura are going to start their remodeling project. They have
decided to do the drywall, painting, trim work, and finish plumbing themselves. They want
to divide these four tasks between them so that each has exactly two tasks, but the total
time they take is kept to a minimum. Each person has estimated the amount of time he/she
will take for each task as shown in the table below.

Drywall Painting Trim Work Finish Plumbing

Nathan 10.0 8.5 9.5 3.0
Laura 9.5 6.0 9.0 4.0
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Laura refuses to do both the painting and the drywall. Nathan won’t do the finishing
plumbing unless Laura does the trim work. How should they divide the tasks among them-
selves? Formulate this problem using binary decision variables and solve it with Solver.
(Hint: Consider 8 decision variables, one for each person–task combination. You will need
two constraints to make sure that each person does exactly two tasks. Four are needed to
make sure that each task gets assigned. Two more are necessary for the additional require-
ments.)

7.4.8 The Janitor of the prestigious Lied Center finds himself at a dilemma. The president
is going to show up the next day to watch the hit musical Phantom of the Operations. With
a rampant case of bird flu causing all of the other janitors to call in sick, the janitor has
the whole Lied Center to clean by himself. This involves the stage, balcony, bathrooms,
lobby, light fixtures, and hallways. He only has 8 hours until the president arrives. As a last
attempt for help, he calls his mom to help him clean. She agrees, but she can only clean
for 6 hours, and she is a little slower in some rooms. Because of the layout of the rooms
there are some weird requirements. They can only clean the bathrooms if they also clean
the balcony. They cannot clean both the lobby and the halls. Finally, they will only clean
the light fixtures if they clean the bathrooms and the stage, and only one person can clean
a room. Each task gives them a nice boost in self esteem. The table below shows the time
needed for each person to clean each room (in hours) and the boost in self esteem. Where
should they clean to maximize the total boost in self esteem? Will every room get cleaned?
(problem written by Paul Hammes, 2019)

Janitor Mom
Room Time Boost Time Boost

Stage 2 2 3 3
Balcony 1 1 2 2
Bathrooms 3 3 1 1
Lobby 3 2 2 3
Lights 2 1 2 1
Hallway 3 3 4 2

7.4.9 A truck with a weight capacity of 16,000 lb and a volume capacity of 1,500 ft3 is at a
loading dock waiting to be loaded where six items are awaiting shipment. The dollar value,
weight, and volume per pound of each item are shown in the table below.

Item Value ($) Weight (lb) Volume/lb (ft3/lb)

1 15000 5000 0.125
2 14000 4500 0.065
3 10400 3000 0.144
4 14250 3500 0.45
5 13000 4000 0.05
6 9750 3500 0.02

a. Determine which item(s) should be loaded on the truck to maximize the total value
of the items loaded within the capacity of the truck.

b. Suppose there are two smaller trucks available, each with an 11,000 lb weight capacity
and a 950 ft3 volume capacity. Determine how items should be loaded onto these two
trucks to maximize the total value of the items loaded within the capacity of each
truck.

c. Consider the two trucks in part b., but add the requirement that there be the same
total weight in each truck.
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d. If it costs an additional $5,000 to operate two trucks rather than one, is there any
benefit to using two trucks in either part b. or part c. (i.e. is the increase in total value
of items loaded greater than the additional expense)? Briefly explain your answer.

7.4.10 As part of its accreditation process, St. John School needs to form 7 committees
to review different aspects of the school. Each committee consists of teachers, parents,
and education board members. The 12 members of the education board have indicated
preferences for their own membership on each committee in the form of rankings as shown
in the table below (a ranking of 1 means that committee is most preferred, a 7 means least
preferred). Determine how to best assign board members to committees so that each board
member is on exactly one committee and each committee contains exactly one or two board
members. (Suggestion: Consider each ranking a cost. Minimize the total cost.)

Board Member
Committee 1 2 3 4 5 6 7 8 9 10 11 12

1 3 6 5 6 1 5 2 1 1 2 2 1
2 5 4 3 2 2 3 3 7 7 5 7 4
3 6 5 2 5 6 6 5 2 5 7 3 3
4 2 1 1 4 5 1 4 3 6 6 5 7
5 1 2 7 7 3 7 7 4 3 1 1 5
6 4 7 6 3 4 2 1 5 2 3 6 6
7 7 3 4 1 7 4 6 6 4 4 4 2

7.4.11 The city of Colby has just consolidated all its public high schools into three large
schools, and the school board is trying to decide how to assign students from the six different
areas of the city to the schools in order to minimize busing costs. The number of students in
each area, the busing costs, and the capacities of the schools are shown in the table below.
(A cost of 0 indicates that students in that area can walk to school, so no busing is needed
while a – indicates that assignment is unfeasible.)

# of Busing Cost ($/student)
Area Students School 1 School 2 School 3

1 450 300 0 700
2 600 – 400 500
3 550 600 300 200
4 350 200 500 –
5 500 0 – 400
6 450 500 300 0

Capacity 900 1100 1000

Determine how to assign areas to schools to minimize the total busing cost for all students
while meeting the capacity constraints of the schools. (Note that this problem does not need
to be modeled as an assignment problem, but the decision variables should be binary.)

7.4.12 A professor needs to assign each student in a class of 14 a partner for the final
project. She asks each student to give a compatibility rating between 0 and 10 for each
of the other students in class. A higher rating indicates a higher level of compatibility.
Each student gives themselves a rating of 0 since they can’t be assigned to themselves. The
results are shown in the rows of the table below (data collected by Joshua Hendrickson,
2019). Note that this table is not symmetric because students’ feelings toward each other
are not necessarily commutative. The total compatibility rating of an assignment is the sum
of the ratings of the two students. For example, if student 1 were assigned to student 2, the
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total rating would be 8 + 7 = 15. Determine how to assign partners to maximize the sum
of the total compatibility ratings over all assignments.

Rating of Other Students

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 8 4 5 3 4 2 2 7 6 5 3 2 6
2 7 0 10 5 2 4 3 4 2 1 1 1 9 4
3 3 1 0 1 7 7 7 3 5 8 2 7 2 5
4 4 8 5 0 2 6 4 8 6 1 8 5 4 9
5 10 10 3 8 0 8 9 2 4 9 7 10 9 4
6 1 4 10 4 7 0 5 7 4 2 8 10 3 7
7 5 6 8 10 2 2 0 8 7 4 1 10 6 2
8 1 8 2 9 9 3 6 0 4 8 7 8 1 7
9 5 3 6 9 10 6 10 3 0 4 7 4 5 6

10 8 5 7 3 4 4 8 10 7 0 2 7 9 10
11 6 4 6 4 8 1 9 1 7 5 0 3 4 4
12 1 5 4 6 10 5 7 6 8 8 1 0 1 1
13 4 5 5 7 7 3 9 7 1 2 10 9 0 4
14 7 8 4 8 1 1 3 2 3 6 9 1 7 0

7.4.13 There are 12 prison cells arranged along the outside walls of a prison block as
illustrated in Figure 7.20. One of the cells contains exactly 1 prisoner, one contains exactly
2 prisoners, and so on. Figure out how to place the prisoners in the cells so that there are
exactly 25 prisoners along each wall. (Suggestion: Treat this like an assignment problem
where we assign the group of 1 prisoner to a cell, the group of 2 prisoners to a cell, and so
on. Consider the cost of each possible assignment to be $1. Add constraints to guarantee
that there are 25 prisoners along each wall.)

a b c d
l 0 0 e
k 0 0 f
j i h g

FIGURE 7.20

7.4.14 The cost matrix for an AP is shown below where a – indicates the assignment is
unfeasible. Try using the big-M method to solve this AP. Can you find an M big enough to
prevent all unfeasible assignments? What does this say about the existence of a solution to
this AP?

Job
Worker 1 2 3 4 5

A 3 – 8 – 8
B 4 7 15 18 8
C 8 12 – – 12
D 5 5 8 3 6
E 10 12 15 10 –

7.4.15 A prisoner of war camp consists of 20 prison cells arranged in 4 rows and 5 columns.
The daily cost of keeping a prisoner in each cell is shown in the table below. Only one prisoner
may be kept per cell.
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Column
Row 1 2 3 4 5

1 2 4 3 5 1
2 6 2 3 1 5
3 3 5 6 4 2
4 1 2 6 4 5

Suppose that 9 prisoners are taken during a battle, 8 of which are normal prisoners and
one is a really “bad guy.” The bad guy is so bad that it is not safe to keep a prisoner in any
cell adjacent to his. For instance, if the bad guy is in row 3, column 4, denoted (3, 4), then
no prisoner may be kept in (3, 3), (2, 4), (3, 5) or (4, 4). Cells that share a corner with his,
such as (2, 5) may hold a prisoner.

a. Suppose the bad guy is kept in cell (1, 1). Find an assignment of the other 8 prisoners
to the remaining cells that minimizes the total cost.

b. Repeat part a. for every other possible location of the bad guy.

c. Which of the possibilities from part b. minimizes the total cost including the bad guy?

7.4.16 As mentioned in the text, an AP is a special type of transportation problem. One
significance of this fact is that techniques used for solving transportation problems can also
be used to solve AP’s. For instance, we can use the north-west corner method as described
in Exercise 7.3.11 to find an initial feasible solution to an AP. The only difference is that
instead of assigning a certain number of units in each step, we simply make an assignment
(or don’t make an assignment). Apply the north-west corner method to find an initial
feasible solution to the AP in Example 7.4.1 and compare it to the optimal solution. Make
sure that you only make feasible assignments.

7.4.17 The following theorem about assignment problems is true:

If a number (positive or negative) is added to all the entries of any row or column
of the cost matrix of an assignment problem, then an optimal assignment for the
resulting cost matrix is also an optimal assignment for the original cost matrix.

Demonstrate this theorem to be true by selecting a number to add to a row or column of
the cost matrix in Example 7.4.1. Find an optimal solution for the resulting cost matrix
using Solver and compare it it to the original optimal solution.

7.4.18 The Hungarian method is an algorithm for solving assignment problems that is
based on the theorem in Exercise 7.4.17. Research this method and apply it to one or more
assignment problems from this section.

7.5 Solving Linear Programs

In Section 7.2 we looked at the following linear problem:

The manager of a produce department at a neighborhood supermarket is making
fruit baskets for the busy holiday season. He sells two sizes of baskets: small and
large. He has only 200 apples and 100 oranges remaining and is trying to decide how
many of each size of basket he should make. Each small basket returns a profit of
$3 and requires 3 apples and 1 orange while each large basket returns a profit of $4
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and requires 2 apples and 2 oranges. Assuming he will sell all that he makes, how
many of each size should he make to maximize his profit?

We modeled this problem with the linear program:

Maximize P = 3s + 4l
Subject to 3s + 2l ≤ 200

1s + 2l ≤ 100
s, l ≥ 0

(7.4)

where s = the number of small baskets to produce and l = the number of large baskets to
produce. Solver gave an optimal solution of 50 small and 25 large baskets, which gives a
maximum profit of $250. In this section we will look at a graphical and an algebraic way to
solve this program. In the next section we will examine how the Simplex method works.

Example 7.5.1 (Graphical Solution)
To examine a graphical solution to the model (7.4), open the worksheet “Graphical Solu-
tion” in the workbook Linear Programming, found on the website for the book, and
follow these steps:

1. Enter the names of the decision variables, the objective functions, and the first two
constraints as shown in Figure 7.21 (don’t worry about the non-negativity constraints).

Decision Variables
s & l

Profit = 3 s + 4 l
Constraint 1: 3 s + 2 l ≤ 200
Constraint 2: 1 s + 2 l ≤ 100

FIGURE 7.21

2. The resulting graph is shown in Figure 7.22 (s is on the horizontal axis and l is on
the vertical axis). The graph contains the lines 3s+ 2l = 200 and s+ 2l = 100, called
the constraint lines (note that the non-negativity constraints mean that the s- and
l-axis are also constraint lines). The area below the first line is the set of all points (i.e.
combinations of numbers of small and large baskets) that satisfy the first constraint.
Points below the second line satisfy the second constraint. Points below both lines
satisfy both constraints and constitute what is called the feasible region. These points
are all the feasible solutions.

3. Move the slider under Desired Profit to the right until the Desired Profit is 170.00.
Move the slider under Desired Schedule to the right until s = 22.0 and l = 26.0.
The resulting graph is shown in Figure 7.23. The thick black line labeled “Profit,”
called a level curve, is the set of all points which will give a profit of $170.00. Notice
that this line intersects the feasible region. This means that it is possible to produce a
combination of small and large baskets that gives a profit of $170.00. Specifically, the
point s = 22.0 and l = 26.0 is on this level curve and in the feasible region. This means
it is possible to produce 22 small baskets and 26 large baskets and profit $170.00.

4. Continue to move the slider under Desired Profit to the right to increase the desired
profit. Notice that for profits above $250.00, the level curve does not intersect the
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FIGURE 7.23

feasible region. This means that it is not possible to profit more than $250.00. This
is our maximum profit. Move the slider until the desired profit is exactly $250.00 and
note that the level curve intersects the feasible region at only one point. Using the
slider under Desired Schedule we see that the coordinates of this point and s = 50
and l = 25 as shown in Figure 7.24. This is our optimal solution, which is exactly the
same as that found by Solver.
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FIGURE 7.24

The feasible region in this, and all linear programs, forms what is called a convex set
which means that if any two points in the set are joined by a line segment, the segment lies
entirely within the set (i.e. it never “leaves” the set). A corner-point of the feasible region
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is a point of intersection of two or more constraint lines. Note that the optimal solution to
this problem occurs at a corner point. For this reason, the solution is often called a corner–
point solution. The feasible, but non-optimal, solution s = 22.0 and l = 26.0 is called an
interior–point solution.

These observations are generalized in Theorem 7.5.1.

Theorem 7.5.1. If the convex feasible region of a linear program is nonempty and bounded,
then the maximum and minimum values of the objective function will occur at corner-points
of the region. If the feasible region is unbounded, then the objective function may not attain
maximum or minimum values.

Theorem 7.5.1 is important because it tells us that to find the optimal solution to a linear
program, we only need to consider the corner-points of the feasible region. This observation
forms the basis of the algebraic solution and the Simplex method.

Example 7.5.2 (Algebraic Solution)
The fact that the optimal solution to a linear programming problem occurs at a corner-point
of the feasible region suggests that we simply need to find all the corner–points and pick
the best one. To illustrate this idea, again consider the linear program (7.4):

Maximize P = 3s + 4l
Subject to 3s + 2l ≤ 200

1s + 2l ≤ 100
s, l ≥ 0

To find the corner–points, we will first find all the intersection points of the constraint lines.
To do this, we will translate the first two inequality constraints into equality constraints by
introducing the “slack” variables y1 and y2:

Maximize P = 3s + 4l
Subject to 3s + 2l + y1 = 200

1s + 2l + y2 = 100
s, l, y1, y2 ≥ 0

(7.5)

The variable y1 is called a slack variable because it takes up the difference (i.e. the slack)
between the quantity 3s+ 2l and the number 200. Since 3s+ 2l must be less than or equal
to 200, y1 must be non–negative. A similar explanation applies to y2.

Now to calculate the points of intersection, consider the graph of the constraints shown
in Figure 7.22. For any point on the constraint 1 line,

3s+ 2l = 200

so y1 = 0. For any point on the constraint 2 line,

1s+ 2l = 100

so y2 = 0. Therefore, any point at the intersection of these two constraint lines will be
characterized by y1 = y2 = 0. So to find this point of intersection, we could set y1 = y2 = 0
in (7.5) and solve the resulting system of linear equations

3s + 2l = 200
1s + 2l = 100

for s and l yielding s = 50, l = 25. This is one corner point.
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TABLE 7.11

Point s l y1 y2 Feasible? Profit

1 0 0 200 100 Yes 0
2 0 100 0 −100 No –
3 0 50 100 0 Yes 200
4 200/3 0 0 100/3 Yes 200
5 100 0 −100 0 No –
6 50 25 0 0 Yes 250

The s axis is the constraint line for the constraint l ≥ 0. Obviously for any point on this
line, l = 0. Therefore, any point at the intersection of constraint 1 and the constraint l ≥ 0
is characterized by y1 = l = 0. So to find the point of intersection of these two constraints,
we could set y1 = l = 0 in (7.5) and solve the resulting system

3s = 200
1s + y2 = 100

for s and y2. This yields s = 200/3, y2 = 100/3. So another corner-point is s = 200/3, l = 0.
In general, to find the points of intersection of the constraint lines we need to set two

variables in (7.5) equal to 0 and solve for the remaining variables. The number of ways we
could choose which variables to set equal to 0 (i.e. the number of points of intersection) is
given by (

4

2

)
=

4!

2! (4− 2)!
= 6

All of these different combinations are shown in Table 7.11. Note that not all of these
are feasible because some don’t satisfy the non-negativity constraints in (7.5). We see that
we have four feasible corner-point solutions, and the optimal one is s = 50, l = 25 (i.e. 50
small and 25 large baskets) with a profit of $250. This is the exact same solution we got
graphically and with Solver.

This basic idea seems simple enough, but there is a major problem with computational
efficiency. Suppose we have a linear program with m decision variables and n inequality
constraints. First we convert the constraints into equalities by introducing n slack variables,
similar to above. This gives a total of m+ n variables. We find the points of intersection of
the constraint lines by setting m variables equal to 0. This gives a system of n equations
with n variables, which can be solved, in principle, by matrix techniques.

The number of ways we could choose these m variables to set equal to 0 (i.e. the number
of points of intersection) is then given by:(

m+ n

m

)
=

(m+ n)!

m! ((m+ n)−m)!
=

(m+ n)!

m!n!

For a problem with 25 decision variables and 50 inequality constraints (which is relatively
small for a real application), the number of points of intersection is(

75

25

)
=

75!

25! 50!
= 5.25× 1019

This is far too many points to check for any computer. So we want to find an algorithm
that does not require finding and checking all points of intersection. One such algorithm is
the Simplex method, which is discussed in the next section.
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Exercises

7.5.1 Suppose the produce manager starts making 50 small and 25 large baskets but then
discovers that two apples and five oranges are rotten. Is it still possible to make 50 small
and 25 large baskets total? Why or why not? How many should he make now to maximize
his profit?

7.5.2 Suppose the produce manager adds the constraint that he can’t make more than 40
small baskets (assume he still has 200 apples and 100 oranges).

a. Graphically estimate the new optimal solution.

b. Suppose he limits himself to 30 small baskets. What is the new optimal solution?

c. As the number of allowed small baskets decreases, what happens to the optimal solu-
tion graphically?

d. Suppose we add the generic constraint s ≤ s0 where 0 ≤ s0 ≤ 50. Find a formula for
the optimal solution (remember, the s and l must be integers).

7.5.3 Consider the linear program:

Minimize C = x + 2y
Subject to x + y ≥ 6

3x + y ≥ 9
x, y ≥ 0.

a. Graphically solve this program (note that the feasible region is above the constraint
lines).

b. Find a value of the coefficient of x in the objective function so that the optimal solution
is x = 1.5, y = 4.5 with C = 15.00.

7.5.4 Solve the linear program

Maximize P = 20x + 32y
Subject to 6x + y ≤ 6

3x + 2y ≤ 9
x, y ≥ 0

algebraically by enumerating all the possible corner-points, determining which are feasible,
and choosing the best one as done in Table 7.11. Verify your solution using Solver.

7.6 The Simplex Method

Consider the linear program (7.4) (rewritten with decision variables x1 and x2 and objective
function value z):

Maximize z = 3x1 + 4x2

Subject to 3x1 + 2x2 ≤ 200
x1 + 2x2 ≤ 100
x1, x2 ≥ 0
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We solved this program with Solver, graphically, and algebraically and got an optimal
solution of x1 = 50, x2 = 25 with a profit of 250.

In this section we illustrate some of the basic ideas behind the Simplex method by using
it to solve this problem. Note that the version of the Simplex method we discuss here applies
only to maximization linear programs with inequality constraints of the form ≤. To apply
this version to a problem of another type would require reformatting the problem into this
basic form.

Graphical Interpretation

Consider the graph of the feasible region of this problem in Figure 7.22. We know that
the optimal solution will lie at one of the corner points of this feasible region. Graphically
the Simplex method works by moving from one corner point to an adjacent corner point on
the border of the feasible region (the border is called a Simplex).

1. Start at a corner point (typically we start at (0, 0)).

2. Move either up or to the right. This corresponds to increasing the value of x1 or x2.

3. To determine which direction to move, we look at the objective function z = 3x1+4x2.
We want to maximize its value, so increasing x2 will increase its value faster than
increasing x1. So move up.

4. To determine how far up we can go we look at the constraints

3x1 + 2x2 ≤ 200
1x1 + 2x2 ≤ 100

Since the decision variables are nonnegative, these constraints tell us that to remain
feasible, at the very least we must have

2x2 ≤ 200 ⇒ x2 ≤ 100
and

2x2 ≤ 100 ⇒ x2 ≤ 50.

The inequality x2 ≤ 50 is more restrictive than x2 ≤ 100, so we increase x2 to 50.
Graphically, this moves us to the corner point (0, 50).

These four steps move us from the first corner point to the next one. The basic idea behind
the next move is the same, but performing the calculations requires us to rewrite the pro-
gram. This is done most easily with matrices.

Tableau Form

To rewrite the program using matrices, we convert it into “tableau” form by adding slack
variables, converting the constraints to equalities, and rewriting the objective function and
adding it to the constraints:

Maximize z
Subject to 3x1 + 2x2 + y1 = 200

x1 + 2x2 + y2 = 100
−3x1 − 4x2 + z = 0

x1, x2, y1, y2 ≥ 0
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Now we can use this form of the problem to implement the Simplex Method. Use the
worksheet “2 Variable Simplex Method” in the workbook Linear Programming to
perform these steps:

Step 1: Form an initial “Tableau” as in Figure 7.25 (RHS stands for Right Hand
Side). This tableau is really nothing more than a matrix of the coefficients in the
tableau form of the program.

Tableau 0

Basic x1 x2 y1 y2 z RHS Ratio

3 2 1 0 0 200
1 2 0 1 0 100
-3 -4 0 0 1 0

FIGURE 7.25

In the algebraic solution to this problem, we set two variables equal to 0 and solved for
the others. Here, we take the same approach. The variables we set equal to 0 and those we
solve for are given special names:

• Non–basic variables are those set equal to 0.

• Basic variables are those not necessarily equal to 0 (the ones we solve for).

Likewise, in the graphical interpretation of the Simplex method, we decided to increase x2

first because it had the largest coefficient in the objective function. This variable and its
corresponding column in the tableau are given special names:

• The pivot column is the column with the negative coefficient with the largest magni-
tude in the bottom row of the tableau.

• The entering basic variable is the variable corresponding to the pivot column.

In this case the pivot column is column 2 (corresponding to x2).

Step 2: Identify the basic variable for each row of the tableau by entering it in the
left-hand column of the tableau.

Identifying the basic and non-basic variables is relatively easy:

• In Tableau 0 (and only Tableau 0) the non–basic variables are the decision variables.
The basic variables are the slack variables and z. The basic variable of each row is the
basic variable with a coefficient of 1.

• When going from one tableau to the next, the basic variables remain the same with one
exception. One of the basic variables, called the leaving basic variable (which is formally
defined below) is replaced by the entering basic variable.

In the graphical interpretation of the simplex method, we decided how much we could
increase x2 by dividing the RHS of each constraint by the corresponding coefficient of x2.
We perform a similar step here.

Step 3: Compute the ratio of the RHS to the coefficient in the pivot column for the
top two rows of the tableau. This can be done by entering the formulas in Figure
7.26.
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Ratio

=I5/E5
=I6/E6

FIGURE 7.26

In the graphical interpretation of the simplex method, the smallest ratio that we just
computed told us how much we could increase x2. The row of the corresponding constraint
is given a special name:

• The pivot row is the row with the smallest positive ratio of RHS to coefficient in the
pivot column.

• The leaving basic variable is the variable corresponding to the pivot row.

• The pivot is the entry at the intersection of the pivot column and the pivot row.

In the next tableau, the leaving basic variable will be non–basic.

Step 4: Identify the Pivot Column, Pivot Row, and the Leaving Basic Variable by
entering them to the right of the tableau.

At this point, Tableau 0 should look like Figure 7.27.

Tableau 0

Basic x1 x2 y1 y2 z RHS Ratio

y1 3 2 1 0 0 200 100 Pivot Column = 2
y2 1 2 0 1 0 100 50 Pivot Row = 2
z -3 -4 0 0 1 0 Leaving Basic Variable = y2

FIGURE 7.27

Step 5: Do elementary row operations to the matrix of coefficients so the pivot is
1 and all other entries in the pivot column are 0. This is called “clearing the pivot
column.”

Step 5 can be done by entering the formulas from Figure 7.28 into Tableau 1.

11

13
14
15

D E F G H I
x1 x2 y1 y2 z RHS

=D5-2*D14 =E5-2*E14 =F5-2*F14 =G5-2*G14 =H5-2*H14 =I5-2*I14
=D6/2 =E6/2 =F6/2 =G6/2 =H6/2 =I6/2
=D7+4*D14 =E7+4*E14 =F7+4*F14 =G7+4*G14 =H7+4*H14 =I7+4*I14

FIGURE 7.28

Step 6: Repeat Steps 2 – 5 until there are no more negative entries in the bottom
row.
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Tableau 1

Basic x1 x2 y1 y2 z RHS Ratio

y1 2 0 1 -1 0 100 50 Pivot Column = 1
x2 0.5 1 0 0.5 0 50 100 Pivot Row = 1
z -1 0 0 2 1 200 Leaving Basic Variable = y1

FIGURE 7.29

Tableau 2

Basic x1 x2 y1 y2 z RHS Ratio
x1 1 0 0.5 -0.5 0 50
x2 0 1 -0.25 0.75 0 25
z 0 0 0.5 1.5 1 250

FIGURE 7.30

After repeating Steps 2 – 4, Tableau 1 should look like Figure 7.29. Note that in Tableau
0 the leaving basic variable is y2. This means that in Tableau 1, y2 is non-basic. The new
basic variable is x2, the variable corresponding to the pivot column.

Applying Step 5 to Tableau 1 results in Tableau 2 shown in Figure 7.30.
In Tableau 2 we see that there is no negative coefficient in the bottom row, so there is

no pivot column. Therefore we are done. The non–basic variables (the ones set equal to 0)
are y1 and y2, so the tableau gives the optimal solution shown in Figure 7.31. This is the
exact same solution found with other methods. The numbers 0.5 and 1.5 in the bottom row
of Tableau 2 have special meanings, as we will see in the next section.

x1 x2 y1 y2 z

50 25 0 0 250

FIGURE 7.31

Exercises

Directions: Solve each linear program below using the Simplex method in the worksheet 2
Variable Simplex Method or 3 Variable Simplex Method. Verify your solution with
Solver.

7.6.1
Maximize z = 14x1 + 16x2

Subject to x1 + x2 ≤ 100
20x1 + 30x2 ≤ 2400

x1, x2 ≥ 0
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7.6.2
Maximize z = 1.25x1 + 0.95x2

Subject to 5x1 + 2x2 ≤ 60
15x1 + 18x2 ≤ 360

x1, x2 ≥ 0

7.6.3
Maximize z = 4x1 + 3x2 + 6x3

Subject to 3x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 3x3 ≤ 40

x1, x2, x3 ≥ 0

7.6.4
Maximize z = x1 + 2x2 +4x3

Subject to 3x1 + x2 + 5x3 ≤ 10
x1 + 4x2 + x3 ≤ 8

2x1 + 2x3 ≤ 7
x1, x2, x3 ≥ 0

7.7 Sensitivity Analysis

Again, consider the fruit basket problem modeled by

Maximize P = 3x + 4y
Subject to 3x + 2y ≤ 200

x + 2y ≤ 100
x, x ≥ 0

where x = the number of small and y = the number of large baskets to produce. This has
an optimal solution of x = 50 and y = 25 with a maximum profit of $250.

In doing sensitivity analysis we will analyze two questions:

1. How much can a unit profit change (i.e. a coefficient in the objective function) and the
optimal solution still remain optimal?

2. How much will increasing the amount of a resource increase the maximum profit?

These two questions are important economically. If the profit for an item suddenly changes,
management will want to adjust the production schedule to ensure they are still maximiz-
ing profit. They need to know when this is appropriate. Also, management may want to
invest money in increasing some resource (e.g. hire more employees, modernize machinery,
etc.). They need to know if this will indeed increase profit, and if so, how much. Another
reason these questions are important is that the coefficients in the problem are often esti-
mates. Answering these questions can help us understand how important the accuracy of
the estimates are.

Changing Unit Profits

We will begin by graphically analyzing what happens to the optimal solution when a
coefficient in the objective function changes. Enter the program in the worksheetGraphical
Solution. Change the unit profit for a small basket (the coefficient of x in the objective
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function) to values above and below 3 and keep the profit for a large basket fixed at 4. For
each one, find the optimal solution.

Figure 7.32 shows three such examples (where the dashed lines are the constraint lines
and the solid lines are the level curves corresponding to the three different objective func-
tions). Note that when the unit profit is 2.75 or 4, the optimal solution remains at (50, 25)
(the maximum value of P is different in each case, though). When the unit profit is 9, the
optimal solution changes to (66.67, 0). In general we see that for small changes in the unit
profit, the solution remains the same. If the change is large enough, the solution changes.
We make the same observations if we change the unit profit for a large basket while keeping
the profit for a small basket fixed at 3.
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FIGURE 7.32

Graphically we observe that as long as the slope of the profit line is between the slopes
of the constraint lines, the optimal solution will remain the same. To quantify this, we
calculate the slopes of the constraint lines:

Constraint 1: 3x + 2y = 200 ⇒ y = − 3
2x + 100

Constraint 2: x + 2y = 100 ⇒ y = − 1
2x + 50

Therefore, as long as the slope of the profit line is between − 3
2 and − 1

2 , the optimal solution
will remain the same.

Now suppose the unit profit for small baskets is C. Then the profit equation is

P = Cx+ 4y ⇒ y = −C

4
x+

P

4

Thus we see that the slope of the profit line is determined by only the value of C. The value
of the profit P does not affect the slope, only the y-intercept. Therefore, if

−3

2
≤ −C

4
≤ −1

2
⇒ 2 ≤ C ≤ 6

then the optimal solution will remain at (50, 25). However, note that this is valid only if
the unit profit for large baskets remains fixed at 4.

Now let K represent the unit profit for large baskets. The profit equation is

P = 3x+Ky ⇒ y = − 3

K
x+

P

K

Again we see that the slope of the profit equation is determined by only the value of K.
Therefore, if

−3

2
≤ − 3

K
≤ −1

2
⇒ 2 ≤ K ≤ 6
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then the optimal solution will remain at (50, 25). Similar to before, this is valid only if the
unit profit for small baskets remains fixed at 3.

Thus the answer to the first question is this: The unit profit for a small basket can
decrease as much as $1 or increase as much as $3. The unit profit for a large basket can
change as much as $2. In either case the solution (50, 25) will remain optimal. This is valid
only if one unit profit changes. If they both change, then we must solve the problem again
(or do more analysis).

Increasing Resources

We have already found the answer to the second question. It is given to us in the last
row of the final tableau from the Simplex method shown in Figure 7.33.

Tableau 2

Basic x1 x2 y1 y2 z RHS Ratio
x1 1 0 0.5 -0.5 0 50
x2 0 1 -0.25 0.75 0 25
z 0 0 0.5 1.5 1 250

FIGURE 7.33

The numbers 0.5 and 1.5, the coefficients of the slack variables in the bottom row of the
final tableau, are called the shadow prices of the apple and orange resources, respectively.
These numbers tell us that increasing the number of apples by one unit will increase the
maximum profit by $0.5 and increasing the number of oranges by one unit will increase the
maximum profit by $1.50.

To understand why these shadow prices have these meanings, observe that the bottom
row of tableau 2 is related to tableau 0 by the formula

(Bottom row of tableau 2) = 0.5× (row 1 of tableau 0)

+ 1.5× (row 2 of tableau 0)

+ (row 3 of tableau 0)

Therefore, if the RHS of row 1 of tableau 0 is increased by 1 (i.e. the number of apples is
increased by 1), then the RHS of the bottom row of tableau 2 is increased by 0.5 (i.e. the
maximum profit is increased by 0.5). Likewise, if the RHS of row 2 of tableau 0 is increased
by 1, then the RHS of the bottom row of tableau 2 is increased by 1.5.

In general this means that if the number of apples is changed by n units (positive or
negative), then

Change in maximum profit = 0.5n (7.6)

Note that this conclusion holds only if we change only the number of apples.
However, this conclusion is valid only if the number of apples changes within limits. To

illustrate this, graph the feasible region of the program (with the original unit profits) in the
worksheet Graphical Solutions. Change the number of apples (the RHS of constraint 1)
to values above and below 200. Each time, find the optimal solution. Three such examples
are given in Figure 7.34 where the solid line is the constraint 2 line, the dashed lines are the
constraint 1 lines for three different numbers of apple, and the solid dots are the optimal
solutions for the three cases.

Notice that for 230 apples, the optimal solution still lies at the intersection of the con-
straint 1 and constraint 2 lines (it is different than the original solution, but it still occurs at
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this intersection). For 325 apples, the number of apples is not a constraint and the optimal
solution occurs at the x-intercept of the constraint 2 line. For 85 apples, the number of
oranges is not a constraint and the optimal solution occurs at the y-intercept of the con-
straint 1 line. Thus we see that if the number of apples changes enough, the nature of our
solution changes. This means that Equation (7.6) holds over only a limited domain.

Note graphically that for 325 apples the x- and y-intercepts of the constraint 1 line are
both greater than the corresponding intercepts of the constraint 2 line. For 85 apples, the
opposite is true. Based on this observation we can conclude that the optimal solution will
occur at the intersection of the constraint 1 and constraint 2 lines only if this relation among
the intercepts does not hold.

To calculate the domain over which Equation (7.6) holds, note that the constraint 2 line
is given by x + 2y = 100, which has x- and y-intercepts of 100 and 50, respectively. Now
suppose we have A apples available. Then the constraint 1 line is given by 3x + 2y = A
which has x- and y-intercepts of A

3 and A
2 , respectively.

The intercepts of the constraint lines are equal when:

x-intercepts: 100 = A
3 ⇒ A = 300

y-intercepts: 50 = A
2 ⇒ A = 100

Thus we conclude that Equation (7.6) holds when the number of apples is between 100 and
300 (or n is between −100 and +100). The economic interpretation of this is:

If each apple costs less than $0.50, the manager can increase the number of apples
by up to 100 to increase the maximum profit. On the other hand, if each apple can
be sold for more than $0.50, up to 100 apples should be sold. This will decrease the
profit from fruit baskets, but increase the total profit for the produce department.

Now let’s fix the number of apples at 200 and change the number of oranges. The constraint
1 line is given by 3x+ 2y = 200 which has x- and y-intercepts of 200

3 and 100, respectively.
Suppose we have B oranges available. Then the constraint 2 line is given by x + 2y = B
which has x- and y-intercepts of B and B

2 , respectively.
The intercepts of the constraint lines are equal when:

x-intercepts: 200
3 = B ⇒ B ≈ 66.7

y-intercepts: 100 = B
2 ⇒ B = 200
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This means that up to 100 oranges may be added and the maximum profit will increase by
$1.50 (the shadow price for oranges) for each one. Up to 33 oranges may be removed and it
will decrease by $1.50 for each one.

Solver will generate a sensitivity analysis report after it solves a model. To examine this
report for this program, return to the worksheet Fruit Baskets created in Section 7.2 (see
Figure 7.1). Set the appropriate Solver parameters (be sure to select Simplex LP for the
Solving Method) and press Solve. In the next window that appears, select Sensitivity
under Reports and press OK. You should get the new worksheet containing the results
shown in Figure 7.35.

6
7
8
9
10
11
12
13
14
15
16

A B C D E F G H
Adjustable Cells

Final Reduced Objective Allowable Allowable
Cell Name Value Cost Coefficient Increase Decrease

$B$2 Number Small 50 0 3 3 1
$C$2 Number Large 25 0 4 2 2

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$D$3 Apples Amt Used 200 0.5 200 100 100
$D$4 Oranges Amt Used 100 1.5 100 100 33.33333333

FIGURE 7.35

Cell F9 shows the unit profit for small baskets. Cells G9 and H9 tell us that this unit
profit can increase by as much as 3 or decrease by as much as 1 (i.e. vary between 2 and
6) and the optimal solution will remain the same. Row 10 gives similar results for large
baskets.

Cell E15 gives the shadow price for apples. Cell F15 shows the number of available
apples. Cells G15 and H15 tell us that the interpretation of the shadow price is valid if
the number of apples is increased by 100 or decreased by 100 (i.e. is between 100 and 300).
Row 16 gives similar results for the oranges.

These are the exact same conclusions we reached earlier.

Exercises

7.7.1 Suppose the manager can buy a box of 50 oranges or a box of 50 apples for making
fruit baskets for $20 each, but he can purchase only one. Which one should he purchase?
Why?

7.7.2 Suppose there are 350 apples and 100 oranges available for making fruit baskets.
Generate a sensitivity report and explain why the shadow price for apples is 0, the allowable
increase is ∞, and the allowable decrease is only 50.

7.7.3 A toy company manufactures cars and trucks. Each car uses 1 unit of plastic and 20
units of metal and yields a profit of $14. Each truck uses 1 unit of plastic and 30 units of
metal and yields a profit of $16. The company has 100 units of plastic and 2400 units of
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metal available. To determine the number of each toy to manufacture to maximize profit,
we need to solve the program

Maximize P = 14x1 + 16x2

Subject to x1 + x2 ≤ 100
20x1 + 30x2 ≤ 2400

x1, x2 ≥ 0

where x1 = the number of cars and x2 = the number of trucks to produce. This is the same
program we solved in Exercise 7.6.2.

a. Use the final tableau in your solution to Exercise 7.6.2 to find the shadow prices of
the cars and the trucks.

b. By hand, find the range over which the interpretation of the shadow price is valid for
each resource.

c. By hand, find ranges for the unit profits over which the solution remains optimal.

d. Verify your calculations with Solver.

For Further Reading

• For a classic reference on everything related to operations research, see Hillier, F. and G.
Lieberman, Introduction to Operations Research, Seventh Edition, McGraw Hill, 2001.

• For more information on the Simplex method, sensitivity analysis, nonlinear program-
ming, and other topics from this chapter, see Winston, Wayne L. and Munirpallam
Venkataramann, Introduction to Mathematical Programming, Operations Research: Vol-
ume One, Fourth Edition, Thomson Brooks/Cole, 2003.
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8

Nonlinear Optimization

Chapter Objectives

• Use Newton’s method to solve optimization problems

• Use the golden search method

• Introduce the one-dimensional gradient method

• Introduce the two-dimensional gradient method

• Use Lagrange multipliers

• Introduce branch and bound techniques

• Introduce the traveling salesman problem

8.1 Introduction

A nonlinear program is any program that does not fit the definition of a linear program.
A linear program has a very special structure that can be utilized to construct an efficient
solution method (i.e. the Simplex method). The drawback of this approach is that if a
problem does not fit this special structure, the solution method cannot be applied.

As we will see, nonlinear programs are inherently more difficult to solve than linear
programs. In fact, there is no efficient algorithm that guarantees an optimal solution to a
general nonlinear program, like the Simplex method guarantees an optimal solution to a
general linear program. However, certain types of nonlinear programs such as binary integer,
convex, separable, and quadratic, have special structures that can be utilized to find efficient
solution methods. In this chapter we present several numeric techniques for approximating
the optimal solution to nonlinear programs.

We begin with a classic Calculus I application of a nonlinear program.

Example 8.1.1 (Calculus I Problem)
Engineers need to connect a wind turbine to a collector step-up transformer via buried
cable. The turbine is located 2 km from a straight road and the transformer is located 6
km down the road, as illustrated in Figure 8.1. The soil between the turbine and the road
is rocky and burying a cable costs $2000/km. The soil along the road is easier to work with
and burying a cable only costs $1500/km. Find the path of the cable that minimizes the
total cost.

The shortest path is a straight line from the turbine to the transformer, but this path
is completely through the rocky soil so it would probably be expensive. Another option is
to go straight down to the road and then along the entire length of the road. This would
minimize the distance across rocky soil, but it would be the longest path. So this option

297
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would probably be expensive as well. A third option is to run the cable to some point x
along the road and then along the road, as illustrated in Figure 8.1. The question is, what’s
the value of x?

To answer this question, we need a function describing the total cost in terms of x.
Using the Pythagorean theorem, the distance c from the turbine to the point x on the
road is

√
22 + x2, so the cost of this portion of the cable is 2000

√
4 + x2. The distance of

the cable along the road is 6 − x, so this cost is 1500(6 − x). Therefore, the total cost is
C = 2000

√
4 + x2 + 1500(6− x).

We can write the program in the form

Minimize C(x) = 2000
√

4 + x2 + 1500(6− x)

Subject to 0 ≤ x ≤ 6.

To solve this program using Calculus I, we take the derivative of C with respect to x,

dC

dx
=

2000x√
4 + x2

− 1500,

set this derivative equal to 0, and solve,

2000x√
4 + x2

− 1500
SET
= 0 ⇒ x =

√
36

7
≈ 2.267.

Values of x where the derivative is equal to 0 are called critical points. A critical point is a
possible location of the optimal solution. There are two commonly used tests for determining
whether a critical point is the location of the minimum or maximum value of the function,
the candidates test and the second derivative test .

Candidates Test: This test says that all the possible locations of the minimum and max-
imum values of a continuous differentiable function on an interval are the critical points of
the function and the endpoints of the interval (these points are called the candidates). We
simply need to evaluate the function at each candidate, and then choose the best one.

For the function C(x) in this example, the candidates are the critical point x = 2.267
and the end points of the constraint interval, x = 0 and x = 6. Then we evaluate C(x) at
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these candidates:

C(0) = 2000
√

4 + 02 + 1500(6− 0) = 13000

C(2.267) = 2000
√

4 + 2.2672 + 1500(6− 2.267) = 11645.75

C(6) = 2000
√

4 + 62 + 1500(6− 6) = 12649.11.

The smallest of these three costs is $11,645.75, so we conclude that the optimal solution is
x = 2.267. Therefore, the engineers should run the cable to a point 2.267 km down the road
and then run the cable the remaining 6− 2.267 = 3.733 km along the road. The total cost
is $11,645.75.

Second Derivative Test: This test is a way of identifying whether a given critical point is
the location of a minimum or maximum by evaluating the second derivative of the function
at the critical point. If the second derivative is positive at the critical point, then the point
is a location of a minimum. If negative, then the point is a location of a maximum.

For the function C(x) in this example, the second derivative is

C ′′(x) =
8000

(4 + x2)
3/2

,

and the second derivative evaluated at the critical point is

C ′′(2.267) =
8000

(4 + 2.2672)
3/2

> 0.

Since the second derivative is positive, we conclude that the critical point x = 2.267 is the
location of a minimum cost, the same conclusion reached with the candidates test.

This example involved finding the derivative and setting it equal to 0 to find critical
points. Critical points are possible values of x at which the function has a local (or relative)
maximum or minimum. A local maximum occurs at x0 if

f (x0) ≥ f (x) for all x in some interval centered at x0.

A local minimum is defined similarly. On the other hand, a global maximum occurs at x0 if

f (x0) ≥ f (x) for all x in the domain of f.

A global minimum is defined similarly. Generically, the local minimum and maximum are
called local extrema and then global minimum and maximum are called global extema.

Graphically, local maximums occur at high points on the graph of a function. Global
maximums occur at the highest point on the graph. Minimums are identified similarly.

Example 8.1.2 (Identifying Local and Global Extrema)
As an example of the definitions of local and global extrema, see the graph of y = g (x)
shown in Figure 8.2 whose domain is 0 ≤ x ≤ 4. The function g(x) has a local maximum
near 0.6, a global maximum near 3.5, local minimums near 2 and at 4, and a global minimum
at 0.

When solving a nonlinear program, we typically want to find the global extrema. As
we’ll see in the next section, sometimes it’s hard to know if we’ve found a local or global
extrema.
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8.2 Newton’s Method

Example 8.1.1 required us to find the derivative of the objective function, set it equal to 0,
and then do some algebra to solve the equation. This algebra was arguably the most difficult
part of the problem. In this section we present an algorithm for numerically approximating
the solution to this equation called Newton’s method. Like most numeric approximation
techniques, it begins with a “guess,” or approximation, of the solution, and then improves
upon this approximation in several iterations.

Newton’s method is an iterative method for approximating a solution to an equation of
the form f(x) = 0 where f(x) is a differentiable function. Such a solution is called a root or
zero of the function. Graphically, this solution is an x-intercept of the function. The graph
of a generic function f(x) with root r is shown in Figure 8.3.

(xn, f (xn))

y = f (x)

y

x
r xn+1 xn

FIGURE 8.3

Figure 8.3 illustrates how Newton’s method works. Let xn be an approximation of the
root r. Draw a tangent line at the point (xn, f (xn)). Let xn+1 be the x-intercept of this
tangent line. Graphically, we see that xn+1 is a better approximation of r than xn. To find
xn+1, consider the points (xn+1, 0) and (xn, f (xn)). We can calculate the slope between
these two points in two ways:
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1. They are both on the tangent line at the point (xn, f (xn)), so the slope is at the point
f ′ (xn).

2. Using the definition of the slope between two points, the slope is

f (xn)− 0

xn − xn+1
=

f (xn)

xn − xn+1
.

Equating these two calculations of the slope and solving for xn+1 yields

f ′ (xn) =
f (xn)

xn − xn+1
⇒ xn+1 = xn − f (xn)

f ′ (xn)
.

This idea leads to the following simple algorithm.

Newton’s Method: To approximate a root r of a differentiable function f(x)

1. Let x0 be an initial approximation of r

2. Calculate

xn+1 = xn − f (xn)

f ′ (xn)
.

3. Repeat step 2 for 10 iterations (10 is arbitrary).

Performing 10 iterations is completely arbitrary. In more sophisticated versions of the
algorithm, step 2 is repeated until some “stopping criterion” is met (see Exercises 8.2.1 and
8.2.2).

Example 8.2.1 (Implementing Newton’s Method)
Consider Example 8.1.1 where we found the minimum value of the function C(x) =
2000

√
4 + x2 + 1500(6 − x) by taking the derivative and then setting it equal to 0. Let

f(x) denote the derivative of C(x). That is, let

f(x) = C ′(x) =
2000x√
4 + x2

− 1500,

and the derivative of f(x) is

f ′(x) = C ′′(x) =
8000

(4 + x2)
3/2

.

Instead of solving the equation f(x) = 0 algebraically, let’s use Newton’s method to approx-
imate its solution using x0 = 3 as an initial guess. Rename a blank worksheet “Newton”
and format it as in Figure 8.4. Copy row 3 down to row 12.

1
2
3

A B C D
n xn f(xn) f'(xn)

0 3 =2000*B2/SQRT(4+B2^2)-1500 =2000/SQRT(4+B2^2)-2000*B2^2/(4+B2^2)^(3/2)
=A2+1 =B2-C2/D2 =2000*B3/SQRT(4+B3^2)-1500 =2000/SQRT(4+B3^2)-2000*B3^2/(4+B3^2)^(3/2)

FIGURE 8.4
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The results are shown in Figure 8.5. The algorithm finds that there is a root at r ≈
2.267787, which agrees with the results of Example 8.1.1. Note that xn practically stops
changing after n = 4. Thus we could have stopped at n = 4.

1
12

A B C D
n xn f(xn) f'(xn)

10 2.267787 0 289.379

FIGURE 8.5

Now change the value of x0 to various numbers between 0 and 6. Observe that sometimes
the algorithm finds the root at r ≈ 2.267787 and sometimes it doesn’t. This illustrates that
the algorithm does not work perfectly and that the value of x0 can affect the results.

Example 8.2.2 (Maximizing Revenue)
Suppose the revenue generated by a particular machine after x years is given by the function

h(x) = 1− e−x + (1 + x)−1

for 0 ≤ x ≤ 5. Find the maximum revenue.
Often the first step in an optimization problem is to graph the objective function as

shown in Figure 8.6. We see that the revenue is maximized somewhere between x = 2 and
x = 3. This gives us an idea for a starting value in Newton’s method. It looks like x0 = 2.5
might be a good choice.
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FIGURE 8.6

To use Newton’s method to estimate the critical point, we first find h′(x) and rename
it f(x):

f(x) = h′(x) = e−x − (1 + x)−2.

Now we need to find the root of f(x). The derivative of f(x) is

f ′(x) = −e−x + 2(1 + x)−3.

To implement Newton’s method to find the roots of f(x), rename a blank worksheet
“Newton 2” and format it as in Figure 8.7. Copy row 3 down to row 12.

The results are shown in Figure 8.8. They indicate that there is a root of f(x) at
x ≈ 2.512862 and that

f ′(2.512862) = g′′(2.512862) = −0.0349.
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1
2
3

A B C D
n xn f(xn) f'(xn)

0 2.5 =EXP(-B2)-1/(1+B2)^2 =-EXP(-B2)+2/(1+B2)^3
=A2+1 =B2-C2/D2 =EXP(-B3)-1/(1+B3)^2 =-EXP(-B3)+2/(1+B3)^3

FIGURE 8.7

Since g′′(2.512862) < 0, the second derivative test tells us that the critical point 2.512862
is the location of a maximum, as the graph in Figure 8.6 suggested.

1
12

A B C D
n xn f(xn) f'(xn)

10 2.512862 0 -0.0349

FIGURE 8.8

Therefore, we conclude that the maximum revenue is

h(2.51862) = 1− e−2.51862 + (1 + 2.51862)−1 ≈ 1.203632.

In Exercise 8.2.6 we will examine how different values of x0 affect the results.

The last example illustrates a different, more academic, type of optimization problem
and that we must be very careful about selecting x0

Example 8.2.3 (Minimizing x)
Find the smallest positive value of x such that x = tanx.

This is a different type of optimization problem than Example 8.1.1. We’re not trying
to find the optimal value of an objective function. Instead we’re trying to find the smallest
positive solution to the equation x = tanx. This equation is not easy to solve algebraically,
so we’ll use Newton’s method to approximate the solutions and then choose the smallest
such solution.

First, we rewrite the equation,

x = tanx ⇒ x− tanx = 0.

If we let f(x) = x− tanx, the problem can be stated as “find the smallest positive solution
to f(x) = 0,” a problem for which we can use Newton’s method. A graph of f(x) over the
interval 0 ≤ x ≤ 8 is shown in Figure 8.9. Note that there are three “pieces” of the graph
and that the smallest positive x-intercept appears to be around 4.5.

The derivative of f(x) is
f ′(x) = 1− sec2 x.

To implement Newton’s method with an initial guess of x0 = 4.5, rename a blank worksheet
“Newton 3” and format it as in Figure 8.10.

The results give a root of x ≈ 4.493409. Now suppose we use x0 = 4. Simply changing
x0 to 4 in the worksheet yields the result xn → ∞. Why do we get such different results?
To help explain why, consider the tangent line at the point (4, f(4)) as illustrated in Figure
8.11. We see that the tangent line has an x-intercept of about 6.1, meaning x1 ≈ 6.1. This
drives the search to the third piece of the function, away from where we want.
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Exercises

8.2.1 In our simple Newton’s method algorithm, we arbitrarily performed 10 iterations.
In more sophisticated versions of the algorithm, step 2 is repeated until some “stopping
criterion” is met. One very simple stopping criterion is that the algorithm terminates when
xn stops changing significantly. Specifically, the algorithm terminates when |xn+1 − xn| < δ
where δ > 0 is some specified constant. Modify the worksheet Newton to incorporate this
stopping criterion and output the number of iterations performed along with the approxi-
mation of the root. Allow the user to input the value of δ.

8.2.2 Another stopping criterion is based on the following rule-of-thumb: If xn+1 and xn

agree in the first m digits, then the approximation xn+1 is probably accurate to m digits.
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Thus if we want an approximation with 9 decimal places of accuracy, for instance, we simply
stop once xn+1 and xn agree to 9 decimal places. As an application of this idea, consider
the problem of solving the equation

x2 − 2 = 0.

Elementary algebra shows the exact solution is
√
2. Use Newton’s method to estimate this

solution to 9 decimal places of accuracy using x0 = 1. This result is an estimate of
√
2 to 9

decimal places. How many iterations are necessary?

8.2.3 Squares are cut out of the corners of an 11 in. × 8.5 in. sheet of paper. The resulting
piece of paper is to be formed into an open-topped box. Find the dimensions of the squares
so that the resulting box has as large a volume as possible.

8.2.4 Try using Newton’s method to approximate the solution to x1/3 = 0. Try any value
of x0 different from 0. What do you notice? (Hint: When entering x2/3 into Excel, enter it

as
(
x2
)1/3

.)

8.2.5 A 12 m tall tree is cut to a height such that the cube root of the length of the cut
off part equals the height of the part left standing. Use Newton’s method to approximate
the height of the part left standing.

8.2.6 Consider Example 8.2.2

a. Graph the function f(x) = e−x − (1 + x)−2 over the interval 0 ≤ x ≤ 5.

b. Suppose we start Newton’s method with x0 = 0.4. Does this find the root of f(x) at
x ≈ 2.512? Use the graph of f(x) to explain why not. Specifically, use the tangent line
at the point (0.4, f(0.4)) to explain why x1 is much different than x0.

c. Now suppose we use x0 = 0.6. Does the search do a better job at locating the root at
x ≈ 2.512? Explain why or why not.

d. Now suppose we use x0 = 4.5. Explain what happens here.

8.2.7 The function g(x) = sin 3x−cosx has numerous local minimum and maximum values
over the interval 0 ≤ x ≤ 10. The goal of this problem is to estimate the global minimum
and maximum values over this interval.

a. Use Newton’s method to estimate a critical point of g(x) where x0 is a random number
between 0 and 10.

b. Use a data table to store the results of 100 trials of part a.

c. Calculate g(x) for each result of part b. Find the maximum and minimum values of
g(x).

8.2.8 Use Newton’s method to find at least two points on the graph of y = cosx where the
tangent line goes through the origin.

8.2.9 Consider the problem of finding the maximum value of the function

g(x) = −16x6 + 48x5 − 61x4 + 42x3 − 16x2 + 3.5x.

a. Use 100 iterations of Newton’s method with x0 = 0.9 to estimate the maximum value.

b. Now use x0 = 0.94. Explain why it takes so many more iterations to get close to the
same value as found in part a.
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8.2.10 A 1-mile (5280 ft) long railroad track was constructed without expansion joints.
Suppose the track heats up and the length increases by 1 ft causing the track to “bow up”
to form a semicircle as in Figure 8.12 where θ is half the angle of the resulting circular
sector and R is the radius of the circle. The goal of this problem, known as the railroad
track problem, is to find the height x of the bowed rail above the ground.

θ

R

θ

x
Straight track

Curved track

FIGURE 8.12

It can be shown that x satisfies the equation

tan−1

(
5280x

26402 − x2

)
·
(
26402 + x2

2x

)
− 5281

2
= 0. (8.1)

Solving this equation algebraically would be extremely difficult. Solving it with Newton’s
method would also be difficult because the derivative is complicated. One way to numerically
approximate a derivative f ′ (xn) is by using secant lines. Specifically, we choose a small
quantity d and then calculate

f ′ (xn) ≈ f (xn + d)− f (xn)

d
.

a. Implement this approach in Newton’s method to approximate the solution of equation
(8.1). Use d = 0.01, but make d a parameter the user can change. (Hint: Use the
formula ATAN for tan−1.)

b. Extra Credit: Derive equation (8.1).

8.3 The Golden Section Method

Newton’s method relies on the derivative of a function. But not every function is differen-
tiable. In this section we present a search method, called the golden section method, that
does not rely on the derivative. This method begins with an interval of possible values at
which the optimal solution occurs, and then narrows down the interval in each step. The
method terminates when the interval is of a narrow width that is specified by the user.

The golden section method applies only to functions that are unimodal over the initial
interval.
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Definition 8.3.1. A function f(x) is unimodal over an interval if there exists only one
number m in the interval such that exactly one of the following is true:

• f(x) is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m

• f(x) is monotonically decreasing for x ≤ m and monotonically increasing for x ≥ m

Informally, a function is unimodal over an interval if it has only one local extrema over
the interval. Graphically, a function is unimodal if it has only one high or low point on the
interval. Unimodality is nice because there’s only one local extrema to look for. When we
find it, we’ve found the global extrema.

Example 8.3.1 (Identifying Unimodality)
Consider the function f(x) graphed in Figure 8.13. Over the interval [0, 4] the function is not
unimodal because it has two low points and one high point. However, f(x) is unimodal over
[0, 1] since it has only one low point over this interval. Similarly, the function is unimodal
over [1, 3] and [3, 4].
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f(x) = x4 - 8x3 + 20x2 - 16.5x + 7

FIGURE 8.13

The golden section method relies on a number, called the golden ratio, that comes from
a famous problem in Greek mathematics: Suppose we divide a line segment of length one
into two pieces as illustrated in Figure 8.14 in such a way that the ratio of the longer piece
to the shorter piece equals the ratio of the whole segment to the longer piece. Find the value
of r.

0 1r
FIGURE 8.14

Algebraically, this problem is equivalent to solving the algebraic equation

r

1− r
=

1

r
. (8.2)

It can be shown that the solution is r =
√
5−1
2 ≈ 0.618 (see Exercise 8.3.1). The number

1
r ≈ 1.618 is called the golden ratio.

The next example helps motivate the golden section method.
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Example 8.3.2 (Finding a Maximum)
Find the maximum value of the function f(x) = 1− e−x + 1

1+x on the interval [0, 20]. The
graph of this function is shown in Figure 8.15. We see that the function is unimodal over
[0, 20].
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FIGURE 8.15

We begin the search by selecting two “test points” x1 and x2 in the interval [0, 20] in a
way motivated by the Golden Ratio problem:

x1 = 0 + (1− 0.618)(20− 0) = 7.64,

x2 = 0 + 0.618(20− 0) = 12.36.

Observe that x1 defines an interval [0, x1] whose length is (1− r) times the length of [0, 20]
while x2 defines an interval [0, x2] whose length is r times the length of [0, 20]. Next we
evaluate the function at these two test points:

f (x1) = 1− e−7.64 +
1

1 + 7.64
≈ 1.115,

f (x2) = 1− e−12.36 +
1

1 + 12.36
≈ 1.075.

These calculations show that f(x) is decreasing on the interval [x1, x2]. Since f(x) is uni-
modal, we can conclude that f(x) is also decreasing on the interval [x2, 20]. Therefore, we
can eliminate the interval [x2, 20] as a location of the maximum value. This narrows the
location of the maximum to the interval [0, x2]. Then we can iterate this process. Each
iteration yields a narrower interval for the location of the maximum. We can stop once the
width of the interval becomes less than some specified value, called the tolerance.

We generalize the above example in the following algorithm.

Golden Section Method: To find the maximum value of a unimodal function f(x) on
the interval [a, b] with tolerance t:

1. Set r = 0.618 and define the test points

x1 = a+ (1− r)(b− a),

x2 = a+ r(b− a).

2. Calculate f (x1) and f (x2).
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3. Compare f (x1) and f (x2):

a. If f (x1) ≤ f (x2), then the new interval is [x1, b] (i.e. a becomes x1).

b. If f (x1) > f (x2), then the new interval is [a, x2] (i.e. b becomes x2).

4. Calculate the width of the new interval. If this width is less than the tolerance t, then
go to step 5. Otherwise, go back to step 1.

5. Estimate the location of the maximum value as the midpoint of the final interval. Call
this number x∗. The approximate maximum value is f (x∗).

We can modify this algorithm to find the minimum value of a unimodal function by switching
the inequalities in step 3.

Example 8.3.3 (Implementing the Golden Section Method)
To find the maximum value of the function f(x) = 1 − e−x + 1

1+x on the interval [0, 20]
with a tolerance of t = 0.001, rename a blank worksheet “Golden Section” and format it
as in Figure 8.16. Copy row 10 down to row 59 to do up to 50 iterations.

1
2
3
4
5
6
7
8
9
10

A B C D E
Tolerance = 0.001 Num Iterations = =COUNTBLANK(I9:I59)

r = 0.618

=OFFSET(B9,D1,0) =OFFSET(C9,D1,0)

x* = =(C4+D4)/2 f(x*) = =1-EXP(-C6)+(1/(1+C6))

n a b x1 x2

0 0 20 =B9+(1-$B$2)*(C9-B9) =B9+$B$2*(C9-B9)
=1+A9 =IF(F9>=G9,B9,D9) =IF(F9>=G9,E9,C9) =B10+(1-$B$2)*(C10-B10) =B10+$B$2*(C10-B10)

Final Interval

7
8
9
10

F G H I
Interval

f(x1) f(x2) Width Stop?
=1-EXP(-D9)+(1/(1+D9)) =1-EXP(-E9)+(1/(1+E9)) =ABS(C9-B9) =IF(H9<$B$1,"Stop", "")
=1-EXP(-D10)+(1/(1+D10)) =1-EXP(-E10)+(1/(1+E10)) =ABS(C10-B10) =IF(I9="",IF(H10<$B$1,"Stop", ""),"NA")

FIGURE 8.16

The results show that the maximum value occurs somewhere in the interval
[2.5122, 2.5131], the midpoint of which is x∗ = 2.5127, and the maximum value of f(x)
is approximately 1.2036.

Exercises

8.3.1 Algebraically solve Equation 8.2 to show that r =
√
5−1
2 .

8.3.2 Theoretically, it can be shown that the number of iterations needed in the golden
section method is the smallest integer greater than or equal to k where

k =
ln
(

t
b−a

)
ln(0.618)
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and [a, b] is the initial interval. Demonstrate that this result is true by calculating k in
the worksheet Golden Section, trying some different values of t, and observing that the
number of iterations is indeed as claimed.

8.3.3 The reader might wonder if there is anything special about the number r = 0.618. To
explore this question, change the value of r in the worksheet Golden Section to various
values between 0.5 and 1. What happens to the number of iterations? Does 0.618 minimize
the number of iterations?

8.3.4 The Golden Section method algorithm presented in this section is designed to find
the maximum value of a unimodal function f(x). To find the minimum value of a unimodal
function f(x), we have two options:

1. switch the inequalities in step 3, or

2. find the maximum value of −f(x).

Use one of these options to resolve Example 8.1.1 with the Golden Section method and a
tolerance of t = 0.001. How do your results compare to those found in the example?

8.3.5 Use the Golden Section method to solve each of the following problems.

a. Maximize f(x) = −x2 − 2x on [−2, 1] with t = 0.6.

b. Maximize f(x) = −x2 − 3x on [−3, 1] with t = 0.6.

c. Minimize f(x) = x2 + 2x on [−3, 1] with t = 0.01.

d. Minimize f(x) = x3 − ex on [0, 2] with t = 0.001.

e. Maximize f(x) = −x+ ex on [−1, 3] with t = 0.1.

f. Maximize f(x) = − |2− x| − |5− 4x| − |8− 9x| on [0, 3] with t = 0.1.

g. Maximize f(x) = 91137− 492.75x+ 27550ln(x− 220) on [220, 500] with t = 0.01.

8.3.6 Consider the problem of fitting a model of the form W = kL3 to the data in the
table below.

L 12.5 12.625 12.625 14.125 14.5 14.5 17.27 17.75

W 17 16 17 23 26 27 43 49

The goal of fitting a model of this form is to find the value of k so that the model “best” fits
the data. In Section 2.4 we discussed several criteria for measuring how well a model fits a
set of data. One of the criteria stated that the best fitting model should minimize the sum of
the absolute values of the differences between the observed values and the predicted values.
In this particular problem, this criterion says that the best value of k should minimize the
function

f(k) =
∣∣17− k · 12.53∣∣+ ∣∣16− k · 12.6253∣∣+ · · ·+ ∣∣49− k · 17.753∣∣ .

Use the Golden Section method to find the best value of k with a tolerance of t = 0.0001.
Assume that k is in the interval [0, 1].
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8.3.7 In the Golden Section algorithm presented in this section, x∗, the location of the
maximum value of f(x), is selected as the midpoint of the final interval. Another strategy
for selecting x∗ is to evaluate f(x) at the right endpoint of the final interval, then at the right
endpoint, and then at the midpoint. Then we select x∗ as the one of these three points that
yields the maximum value of f(x). Modify the worksheet Golden Section to implement
this strategy. Make sure your worksheet displays the value of x∗. Try some different values
of the tolerance. Does this strategy yield different results than the original algorithm?

8.3.8 A variation on the golden section method is the Fibonacci search method , which relies
on the Fibonacci sequence: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. The steps in
the Fibonacci search method are the same as the golden section method except for step 1:

1. Set N be the smallest value of n such that

Fn >
b− a

t

and define the test points

x1 = a+

(
FN−2

FN

)
(b− a),

x2 = a+

(
FN−1

FN

)
(b− a).

Modify the worksheet Golden Section to implement the Fibonacci search method to find
the maximum value of the function f(x) = 1 − e−x + 1

1+x on the interval [0, 20] with a
tolerance of t = 0.001, as in Example 8.3.3. Compare the results from the Fibonacci and
the golden section methods. (Suggestions: Use a “lookup chart” and the VLOOKUP
function as in Section 6.9 to find N . If b−a

t < 1, then use N = 2.)

8.4 The One-Dimensional Gradient Method

Excel’s Solver search engine contains an algorithm for solving nonlinear programs called
GRG Nonlinear. In this section we discuss the basic ideas behind this algorithm for an
unconstrained nonlinear program with one decision variable. This algorithm is based on the
gradient method which relies on derivatives.

Example 8.4.1 (Using Solver)
Consider the following unconstrained nonlinear program with one decision variable:

Minimize f (x) = x4 − 8x3 + 20x2 − 16.5x+ 7

A graph of this function f(x) is shown in Figure 8.17. We see that f has a local minimum
near 0.6 and a global minimum near 3.4. In this problem, we are asking for the location of
the global minimum.

To use Solver to solve this problem, rename a blank worksheet “Solver”, and format it
as in Figure 8.18.

Set the Solver parameters to minimize cell B2 by changing cell A2. Do not add any con-
straints and do not make unconstrained variables non-negative. Select the solving method
GRG Nonlinear. The solution it gives is shown in Figure 8.19. Notice that it found the
local minimum. This is called getting stuck at a local minimum.
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1
2

A B
x f(x)

0 =A2^4-8*A2^3+20*A2^2-16.5*A2+7

FIGURE 8.18

1
2

A B
x f(x)

0.618138 2.699114

FIGURE 8.19

1
2

A B
x f(x)

3.444485 1.285246

FIGURE 8.20

Next set the value of x to 4 (i.e. enter 4 in cell A2) and resolve it. The results are shown
in Figure 8.20. This time Solver found the global minimum.

To understand why Solver does not always find the global minimum, we need to examine
how the gradient method works. The gradient method is an iterative approach for finding
a critical point of the function (i.e. a value of x for which f ′ (x) = 0). A simplified version
of the gradient method is given below.

One-dimensional Gradient Method: To minimize a differentiable function of one vari-
able, f(x)

1. Choose an initial value, x0.

2. Let xk+1 = xk − λf ′ (xk) where λ > 0 is some specified constant.

3. Repeat step 2 for 50 iterations (50 iterations is arbitrary).
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The basic idea behind the gradient method is that if the derivative f ′ (xk) is positive,
then the function is increasing, so we want to decrease xk. If f

′ (xk) is negative, then the
function is decreasing, so we want to increase xk.

The constant λ affects how much xk is changed in each step. In more sophisticated
versions, the algorithm terminates when |f ′ (xk)| is sufficiently close to 0, rather than arbi-
trarily after 50 iterations (see Exercise 8.4.1). Ideally, when the algorithm terminates, xk is
near a critical point. We could modify this algorithm to maximize a function by changing
the minus sign in step 2 to a plus sign.

Example 8.4.2 (Implementing the Gradient Method)
To implement the Gradient Method for the nonlinear program from Example 8.4.1, follow
these steps:

1. First we create a graph of f(x) over the interval 0 ≤ x ≤ 4. Rename a blank workbook
1-Dim and format it as in Figure 8.21. Copy row 3 down to row 42.

1
2
3

A B
x f(x)

0 =A2^4-8*A2^3+20*A2^2-16.5*A2+7
=A2+0.1 =A3^4-8*A3^3+20*A3^2-16.5*A3+7

FIGURE 8.21

2. Create a graph similar to Figure 8.22.
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FIGURE 8.22

3. Add the formulas in Figure 8.23 and copy row 5 down to row 54.

1
2
3
4
5

D E F G
λ = 0.115

k xk f(xk) f'(xk)
0 0 =E4^4-8*E4^3+20*E4^2-16.5*E4+7 =4*E4^3-24*E4^2+40*E4-16.5
=D4+1 =E4-G4*$E$1 =E5^4-8*E5^3+20*E5^2-16.5*E5+7 =4*E5^3-24*E5^2+40*E5-16.5

FIGURE 8.23

4. To visualize how this algorithm works, add a scroll bar, link it to cell J2 with a min
and max of 0 and 50. Add the formulas in Figure 8.24.
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5. Add the cells K2:L2 as a point on the graph, and format it so the graph resembles
Figure 8.25.
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FIGURE 8.25

Move the slider back and forth and notice how the point on the graph eventually settles
to one of the two local minima on the graph. Change the initial value of x and the value of
λ and note how they affect the search and the solution. Note that if λ is large (e.g. λ = 0.2),
the point jumps around and never settles at a local minimum. If λ is too small, the point
doesn’t move toward a local minimum very quickly. Also note that sometimes we get the
local minimum at x = 0.62 and other times we get the global minimum at x = 3.45.

Exercises

8.4.1 In our simple gradient method algorithm, we arbitrarily performed 50 iterations.
In more sophisticated versions of the algorithm, step 2 is repeated until some “stopping
criterion” is met. One very simple stopping criterion is that the algorithm terminates when
|f ′ (xk)| < δ where δ > 0 is some specified constant. Modify the worksheet 1-Dim to
incorporate this stopping criterion and output the number of iterations performed along
with the minimum value of the function found. Allow for up to 200 iterations, and allow
the user to input the value of δ.

8.4.2 Consider the problem of finding the maximum value of the following function:

f(x) = −x6/6 + 3.5x5 − 29x4 + 127x3 − 292x2 + 331x.

a. Graph this function over the interval 0 ≤ x ≤ 9.

b. Use 150 iterations of the gradient method to find the maximum value of this function.
Use λ = 0.001.
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c. Let x0 be randomly chosen between 0 and 9. How well does the gradient method do
at finding the global maximum of the function in 150 iterations?

d. Try using larger values of λ. How does this affect the performance of the algorithm?

8.4.3 As we saw in Example 8.4.2, the initial value of x, x0 can affect the solution given by
the gradient method. This suggests we try different values of x0, and then select the best
solution as the final solution.

a. Modify the worksheet 1-Dim to let x0 be a random number between 0 and 4.

b. Use a data table to store the results of the gradient method from 100 different values
of x0. Then display the best one.

c. How well does the data table do at finding the global minimum?

8.4.4 The gradient method requires knowledge of the derivative of the objective function.
In Example 8.4.2, we used derivative rules to find f ′(x) and then used this to calculate
f ′ (xk). This approach is not always completely practical because it requires the user to
first find f ′(x), which may be very difficult. One way to numerically approximate f ′ (xk) is
by using secant lines. Specifically, we choose a small quantity d and then calculate

f ′ (xk) ≈ f (xk + d)− f (xk)

d
.

a. In the worksheet 1-Dim, replace the formulas for f ′ (xk) with this approach for
approximating f ′ (xk). Initially use d = 0.01, but let the user specify the value of d.

b. Try random values of x0 between 0 and 4. Compare these results to the original.

c. Try different values of d. Does the value of d affect the results?

8.4.5 A chemical manufacturing company sells sulfuric acid at a price of $100 per unit.
The daily total production cost, in dollars, for x units is:

C(x) = 100000 + 50x+ 0.0025x2,

and the daily production is at most 7000 units.

a. How many units of sulfuric acid should the manufacturer produce to maximize daily
profit, assuming the company sells all they produce? Solve this problem using Solver.

b. Now suppose the company doubles daily production capacity but the selling price
and production cost remains the same. How many units of sulfuric acid should they
produce now to maximize profit? Was all the extra production capacity really needed?

8.4.6 The Keyrific Computer Company manufactures keyboards in batches. They are try-
ing to decide how many batches of keyboards to produce next year to minimize production
and storage costs. Let x = the number of batches of keyboards produced per year. Define
the parameters

• k = the annual storage cost of one keyboard,

• F = the fixed set up cost (includes insurance, machines, labor, etc.),

• v = the cost to produce one keyboard, and

• T = the total number of keyboards produced annually.
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Suppose the costs are given by the functions

• Total production cost: M(x) = x
(
F + vT

x

)
,

• Average storage cost: s(x) = kT
2x , and

• Total cost function: C(x) = x
(
F + vT

x

)
+ kT

2x .

Set up a spreadsheet that uses Solver to find the value of x that minimizes the total cost.
Allow the user to enter the values of the parameters.

8.4.7 The Keyrific computer company also produces the SP6 computer. It costs $200 to
produce each computer and there is a $5000 set up cost. The company is trying to decide
how much to spend on advertising. They figure if they spend $x on advertising, they will
sell approximately

√
x computers at $500 per computer. How much should they spend

on advertising to maximize profit? Set up a spreadsheet that uses Solver to answer this
question.

8.4.8 Each morning during rush hour, 10000 people travel from New Jersey to New York
City. Each person either drives or takes the subway. If a person takes the subway, the trip
lasts 40 minutes. If x is the number of people who drive, it takes 20 + 5(x/1000) minutes
per person to make the trip.

a. How many people should drive to minimize the average travel time per person? Set
up a spreadsheet that uses Solver to answer this question.

b. Suppose it costs $6 to take the subway, and the cost of traveling by car is $4 for gas.
If time is money, and on average people work for $30/hour ($0.50 per minute), how
many people should drive to minimize the average cost of commuting?

c. Now suppose the subway wants to expand its network and finance this by increasing its
fare to $12. How many people should drive to minimize the average cost of commuting?

8.4.9 Dr. E. N. Throat has been taking x-rays of the trachea contracting during coughing.
He has found that the trachea appears to contract by 33% (1/3) of its normal size. He
has asked the department of mathematics to confirm or deny his claim. You perform some
initial research and you find that under reasonable assumptions about the elasticity of the
tracheal wall and about how air near the wall is slowed by friction, that the average velocity
v of air moving through the trachea can be modeled by the equation

v = c (r0 − r) r2

where c is a positive constant, r0 is the resting radius of the trachea in centimeters, and r
is the radius of the trachea during coughing. Set up a spreadsheet that uses Solver to find
the value of r that maximizes v. Do your results support or deny Dr. Throat’s claim? Make
sure you consider different values of the parameters c and r0.

8.5 Two-Dimensional Gradient Method

The one-dimensional gradient method is an iterative method for approximating a local
minimum or maximum value of a function of one variable f(x). It is based on the idea that
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the derivative f ′(x) tells us whether a function is increasing or decreasing, thus giving us
a direction in which to search. When we get close to a local minimum or maximum, f ′(x)
gets close to 0.

In this section we apply a similar approach to a function of two variables, f (x, y). This
method involves the gradient vector.

Definition 8.5.1. Let f (x, y) be a differentiable function of two variables, x and y. The
gradient vector ∇f is defined as:

∇f =

[
∂f
∂x
∂f
∂y

]
.

It can be shown that the gradient vector ∇f at a point in the domain of f always points
in the direction of the maximum rate of increase of the function, and that at a point of
local minimum or maximum, (xc, yc) (called a critical point),

∇f (xc, yc) =

[
0
0

]
.

Example 8.5.1 (A Function of Two Variables)
To better understand what the gradient tells us about a function, consider the function

f (x, y) = x4 + y4 − 4xy + 2.

First we examine some values of f for x and y between −2 and 2. Rename a blank worksheet
“Gradient” and format it as in Figure 8.26. Copy row 4 down to row 11. Then copy column
C to column J.

1
2
3
4

A B C
x

y -2 =B2+0.5
2 =B$2^4+$A3^4-4*B$2*$A3+2 =C$2^4+$A3^4-4*C$2*$A3+2
=A3-0.5 =B$2^4+$A4^4-4*B$2*$A4+2 =C$2^4+$A4^4-4*C$2*$A4+2

FIGURE 8.26

The results are shown in Figure 8.27 (note that these results could be used to create a
3-D graph of the function in Excel called a surface or contour plot, but these graphs are
somewhat crude, so use them at your discretion). There are three observations to highlight:

• The values of f(x, y) range from 0 to 50.

• The global minimum value of 0 occurs twice, at x = y = 1 (the point (1, 1)) and at the
point (−1, −1).

• At the point (0, 0), the value of f is 2 and the values “around” (0, 0) are mostly larger
than 2. This indicates that the point (0, 0) is the location of a local, but not global,
minimum value of f .

The partial derivatives of this function are

∂f

∂x
= 4x3 − 4y, and

∂f

∂y
= 4y3 − 4x.
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1
2
3
4
5
6
7
8
9
10
11

A B C D E F G H I J
x

y -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
2 50.0 35.1 27.0 22.1 18.0 14.1 11.0 11.1 18.0

1.5 35.1 21.1 14.1 10.1 7.1 4.1 2.1 3.1 11.1
1 27.0 14.1 8.0 5.1 3.0 1.1 0.0 2.1 11.0

0.5 22.1 10.1 5.1 3.1 2.1 1.1 1.1 4.1 14.1
0 18.0 7.1 3.0 2.1 2.0 2.1 3.0 7.1 18.0

-0.5 14.1 4.1 1.1 1.1 2.1 3.1 5.1 10.1 22.1
-1 11.0 2.1 0.0 1.1 3.0 5.1 8.0 14.1 27.0

-1.5 11.1 3.1 2.1 4.1 7.1 10.1 14.1 21.1 35.1
-2 18.0 11.1 11.0 14.1 18.0 22.1 27.0 35.1 50.0

FIGURE 8.27

The gradient of f at (1, 1), for instance, is

∇f (1, 1) =

[
4(1)3 − 4(1)
4(1)3 − 4(1)

]
=

[
0
0

]
.

This confirms that (1, 1) is the location of a local minimum or maximum. Similar calcu-
lations show that ∇f (−1, −1) = ∇f (0, 0) = (0, 0), again confirming that (−1, −1) and
(0, 0) are the locations of local minimums or maximums.

Now consider the point (1, −1). The gradient at this point is

∇f (1, −1) =

[
4(1)3 − 4(−1)
4(−1)3 − 4(1)

]
=

[
8
−8

]
.

Informally, the positive x-coordinate of the gradient means that if we increase x “a little bit,”
the value of f should increase. Likewise, the negative y-coordinate means that decreasing y
a little bit should increase the value of f . The equal magnitudes of the x- and y-coordinates
mean that changing x and y the same small amount should increase the value of f the most.
This is exactly what we see by examining Figure 8.27.

The two-dimensional gradient method is an iterative approach for approximating a crit-
ical point of the function f (x, y). A simplified version of the two-dimensional gradient
method is given below.

Two-dimensional Gradient Method: To minimize a function of two variables, f (x, y)

1. Choose an initial point (x0, y0).

2. Let

{
xk+1 = xk − λ∂f

∂x (xk, yk)

yk+1 = yk − λ∂f
∂y (xk, yk)

where λ > 0 is some specified constant.

3. Repeat step 2 for 50 iterations (50 is arbitrary).

This algorithm could be changed to maximize a function by changing the minus signs
in step 2 to plus signs. In more sophisticated versions, the algorithm terminates when the
norm of the gradient, ‖∇f (xk, yk)‖, is sufficiently close to 0 (see Exercise 8.5.4).
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Example 8.5.2 (Implementing the Two-dimensional Gradient Method)
Consider the problem of minimizing the function in Example 8.5.1,

f (x, y) = x4 + y4 − 4xy + 2,

on the domain −2 ≤ x ≤ 2, −2 ≤ y ≤ 2. To implement the two-dimensional gradient
method with λ = 0.02 and the initial point (0, 0.5), rename a blank worksheet 2-Dim and
format it as in Figure 8.28. Copy row 5 down to row 54.

1
2
3
4
5

A B C D E F
λ = 0.02

k xk yk f(xk,yk) df/dx df/dy
0 0 0.5 =B4^4+C4^4-4*B4*C4+2 =4*B4^3-4*C4 =4*C4^3-4*B4
=A4+1 =B4-$C$1*E4 =C4-$C$1*F4 =B5^4+C5^4-4*B5*C5+2 =4*B5^3-4*C5 =4*C5^3-4*B5

FIGURE 8.28

The results are shown in Figure 8.29. The algorithm found the point (1, 1), approxi-
mately, where f(1, 1) = 0 and f(1, 1) = (0, 0). Thus the algorithm found a locaion of the
global minimum, as desired.

3
54

A B C D E F
k xk yk f(xk,yk) df/dx df/dy

50 0.997875 0.997875 3.6E-05 -0.01695 -0.01694

FIGURE 8.29

In the one-dimensional gradient method we saw that the initial value can affect the
solution. The same is true for the two-dimensional gradient method. Trying the different
initial points shown in Table 8.1, we see that the algorithm doesn’t always find the global
minimum at (−1, −1) or (1, 1). It sometimes gets stuck at the local minimum at (0, 0).

TABLE 8.1

Initial Point (−2, −2) (−0.1, 0.1) (0, 0) (0.1, 0)

Solution (−1, −1) (0, 0) (0, 0) (1, 1)

Example 8.5.3 (Using Solver)
Now let’s examine how Solver handles this same minimization problem. Rename a blank
worksheet “Solver 2” and format it as in Figure 8.30.

1
2
3

A B C

x y f(x,y)
0 0.5 =A3^4+B3^4-4*A3*B3+2

Solution

FIGURE 8.30
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Format Solver to minimize cell C3 by changing cells A3:B3. Add the constraints that
both x and y need to be between −2 and 2. Select the solving method GRG Nonlinear.
Notice that Solver found the solution (1, 1), which is indeed the location of the global
minimum. However, if we enter the different initial points in Table 8.1 in the range A3:B3
and rerun Solver, we find that Solver does not always find the global minimum. It can, and
does, get stuck at a local minimum. This illustrates that we must be very careful about
choosing the initial points. We might want to try several initial points (see Exercise 8.5.1.

The above discussion illustrates that the gradient method is a rather simple algorithm
for approximating critical points of a function. The drawback is that it cannot determine
whether the solution it finds is a local or global minimum or maximum without some
additional external knowledge of the function. Therefore, it, along with Solver, must be
used with caution when solving nonlinear programs. To avoid potential problems with the
gradient method, a problem should be modeled as linear rather than nonlinear whenever
possible (see Exercise 8.5.11).

Exercises

8.5.1 Consider the problem of finding the minimum value of the function

f(x, y) = 2x2 + 6xy + 6y2 − 3x+ 5y

on the domain −10 ≤ x ≤ 10, −10 ≤ y ≤ 10.

a. Modify the worksheet 2-Dim to solve this problem. Use λ = 0.1 and let x0 and y0 be
random numbers between −10 and 10.

b. Use a data table to store the results from 100 different initial points and display the
best solution.

c. Now try using λ = 0.2. What happens in this case?

d. Now try using λ = 0.0001. What happens in this case?

8.5.2 Consider the problem of finding the maximum value of the function

f(x, y) = 90x− 0.1x2 + 15y − 0.15y2 − 0.05xy − 2, 000.

a. Use 100 iterations of the two-dimensional gradient method with λ = 0.5 and the initial
point (0, 0) to approximate the solution to this problem.

b. Now try using λ = 0.1. What happens in this case?

8.5.3 The distance the gradient method moves the point (xk, yk) to (xk+1, yk+1) is affected
by two quantities: the length of the gradient, ‖∇f (xk, yk)‖, and the value of λ. As the
algorithm proceeds, ‖∇f (xk, yk)‖ gets smaller and smaller, so the point does not move as
far. As we have seen, if λ is too small, the algorithm doesn’t find the optimal solution in a
reasonable number of iterations.

One way to get around this problem is to increase the value of λ in each iteration. A
simple algorithm for maximizing a function that incorporates this idea is given below:

1. Choose initial values (x0, y0) and λ0.

2. Let

{
xk+1 = xk + λk

∂f
∂x (xk, yk)

yk+1 = yk + λk
∂f
∂y (xk, yk)
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3. Let λk+1 = δλk where δ > 1 is some specified constant.

4. Repeat steps 2 and 3 for 50 iterations (50 is arbitrary).

a. Implement this algorithm to maximize the function in Exercise 8.5.2 using λ0 = 0.1,
δ = 1.1, and the initial point (0, 0). How does the solution compare to that found in
Exercise 8.5.2?

b. Now try using 100 iterations. What happens in this case?

How many iterations are really necessary for the gradient to get reasonably close to (0, 0)?
What happens if we let the algorithm go for too many iterations?

8.5.4 In our simple gradient method algorithm, we arbitrarily performed 50 iterations.
In more sophisticated versions of the algorithm, step 2 is repeated until some “stopping
criterion” is met. One very simple stopping criterion is that the algorithm terminates when
‖∇f (xk, yk)‖ < δ where δ > 0 is some specified constant. Modify the worksheet 2-Dim
to incorporate this stopping criterion and output the number of iterations performed along
with the minimum value of the function found. Allow for up to 100 iterations, and allow
the user to input the value of δ.

8.5.5 The gradient method requires knowledge of the derivative of the objective function.
In Example 8.5.2, we used derivative rules to find ∇f (x, y) and then used this to calculate
∇f (xk, yk). This approach is not always completely practical because it requires the user
to first find ∇f (x, y), which may be very difficult. One way to numerically approximate
∇f (xk, yk) is by choosing a small quantity d and then approximating the partial derivatives
with

∂f

∂x
(xk, yk) ≈ f (xk + d, yk)− f (xk, yk)

d
, and

∂f

∂y
(xk, yk) ≈ f (xk, yk + d)− f (xk, yk)

d
.

a. In the worksheet 2-Dim, replace the formulas for f ′ (xk) with this approach for
approximating the partial derivatives. Initially use the starting point (0, 0.5) and
d = 0.01, but let the user specify the value of d.

b. Try the starting points in Table 8.1. Compare these results to the original.

c. Try different values of d. Does the value of d affect the results?

8.5.6 The least-square criterion for fitting a straight line f(x) = mx + b to a set of data
(x1, y1) , . . . , (xn, yn), as discussed in Section 2.4, states that m and b should minimize the
quantity

S =

n∑
i=1

(yi − f(xi))
2
=

n∑
i=1

(yi −mxi − b)
2
.

The table below shows the shoe length and height of ten students (measured in inches). Use
Solver to find the values of m and b that minimize S. Then plot the data and fit a linear
trendline. Compare the results.

Shoe Length (x) 9 10 10.5 11 11.5 11.75 12 12.5 12.75 13

Height (y) 62 64 64.5 69 70 73 72 75 74 77
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8.5.7 Suppose two populations a and b are modeled by the linear discrete dynamical system

an+1 = c1an + d1bn

bn+1 = c2an + d2bn

as discussed in Section 4.4 where an and bn are the populations, in thousands, at the end
of year n. The goal of this problem is to find appropriate values of the parameters c1, c2,
d1 and d2.

a. Suppose that a0 = 19.28, b0 = 33.44, and c1 = c2 = d1 = d2 = 1. Use the model to
predict the values of an and bn for n = 1, 2, 3, and 4.

b. The table below gives the observed values of an and bn for n = 1, 2, 3, and 4.

n 1 2 3 4

an 25.82 26.69 32.6 37.12
bn 21.47 35.11 35.57 43.96

Informally, the least-squares criterion says that the parameters c1, c2, d1 and d2 should
be chosen to minimize the quantity

S =
n∑

i=1

(Observed an − Predicted an)
2
+

n∑
i=1

(Observed bn − Predicted bn)
2
.

Use Solver to find the values of the parameters that minimize S.

8.5.8 Consider a triangle with vertices A = (0, 0), B = (3, 0), and C = (1, 3). Let P =
(x, y) be a point on the x − y plane and let AP , BP , and CP denote the distances from
points A, B, and C to P , respectively.

a. Use Solver to find the point P that minimizes the sum of the distances AP+BP+CP .
Such a point is called a Fermat point , a Torricelli point , or a Fermat-Torricelli point .

b. Now suppose vertex C changes to C = (−2, 3). Repeat part a. What do you notice
about this solution?

8.5.9 A small company is planning to install a central computer with cable links to five new
departments. According to the floor plan, the peripheral computers for the five departments
will be situated at the points in the table below. Use Solver to find the point at which they
should locate the central computer to minimize the total amount of cable needed. (Assume
cables can be run in straight lines from the central computer to the peripherals.)

Department
Point A B C D E

x 15 25 60 75 80
y 60 90 75 60 25

8.5.10 The town of Schoolville is laid out on a 10 × 10 grid and is broken up into four
subdivisions. The number of school-age students in each subdivision and the x- and y-
coordinates of the center of each subdivision are shown in the table below. The school
board plans to construct two new schools, A and B, with capacities of 500 and 800 students,
respectively. They need to make two decisions:
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1. the coordinates of where to build each school, and

2. how many students from each subdivision to send to each school.

The distance a student must travel to school is simply the Euclidean distance from the center
of the student’s subdivision to the school. Use Solver to find the solution that minimizes
the total distance traveled by all the students.

Subdivision Students x y

1 325 1 1
2 350 3 5
3 350 7 9
4 275 8 4

8.5.11 Consider Exercise 7.3.12.

a. Suppose we model the specifications in the following way:

Mixture Specifications

Walnut Lover’s 0.35 ≤ weight of walnuts in W.L.
total weight of W.L.

0.25 ≥ weight of cashews in W.L.
total weight of W.L.

Cashew Lover’s 0.45 ≥ weight of peanuts in C.L.
total weight of C.L.

0.45 ≤ weight of cashews in C.L.
total weight of C.L.

Premium 0.10 ≥ weight of peanuts in P.
total weight of P.

0.50 ≤ weight of walnuts in P.
total weight of P.

≤ 0.65

0.15 ≤ weight of cashews in P.
total weight of P.

This model is nonlinear because the quantities in the numerators and the quantities in
the denominators are functions of the decision variables. Therefore we have decision
variables divided by decision variables, making the model nonlinear. Implement this
nonlinear model in Excel (don’t forget about the constraints on the total number
of each type of nut available). Try to solve it with Solver using the GRG Nonlinear
solving method. Start with all the decision variables equaling 0. What happens?

b. Now try to solve this nonlinear model starting with all the decision variables
equaling 1.

c. We can turn the nonlinear model into a linear model by simply multiplying each
inequality by the denominator:



324 Nonlinear Optimization

Mixture Specifications

Walnut Lover’s 0.35(total weight of W.L.) ≤ weight of walnuts in W.L.
0.25(total weight of W.L.) ≥ weight of cashews in W.L.

Cashew Lover’s 0.45(total weight of C.L.) ≥ weight of peanuts in C.L.
0.45(total weight of C.L.) ≤ weight of cashews in C.L.

Premium 0.10(total weight of P.) ≥ weight of peanuts in P.
0.50(total weight of P.) ≤ weight of walnuts in P.
0.65(total weight of P.) ≥ weight of walnuts in P.
0.15(total weight of P.) ≤ weight of cashews in P.

This model is linear because we are not dividing any decision variables. Implement
this model in Excel and solve it with the Simplex method. Start with all the decision
variables equaling 0. Does this optimal solution equal that found in part b.?

8.6 Lagrange Multipliers

The optimization problems covered so far in this chapter have been relatively unconstrained,
meaning there have been no constraints other than bounds on the values of individual vari-
ables. In this section we introduce a technique for solving constrained nonlinear optimization
programs called the method of Lagrange multipliers which utilizes gradients. We limit our
discussion to programs involving two decision variables and one constraint, though these
ideas can be extended to any number of variables and constraints.

The first example is a geometric application of a nonlinear constrained optimization
problem.

Example 8.6.1 (Minimizing Distance)
Find the points on the graph of the hyperbola xy = 2 that are closest to the origin.

A graph of the curve xy = 2 is shown in Figure 8.31. Graphically, we are looking for the
points on this curve that are closest to the origin (indicated by the dots on the curve). The
fact that the points must be on this curve can be written as the the constraint xy − 2 = 0.

-5

-3

-1

1

3

5

-7 -5 -3 -1 1 3 5 7

xy = 2

f (x, y) = 1

f (x, y) = 9

FIGURE 8.31
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We want to minimize the distance to the origin. The distance from the origin to a
generic point (x, y) is

√
x2 + y2. To simplify the algebra, we will minimize the square of

the distance, x2 + y2. Thus we write our program as

Minimize f(x, y) = x2 + y2

Subject to xy − 2 = 0.

Figure 8.31 shows all the points such that f(x, y) = 1, called a level curve of f(x, y).
We see this curve does not intersect the curve xy = 2. Thus it is not possible for f(x, y)
to be a small as 1. Figure 8.31 also shows the level f(x, y) = 9. We see this curve does
intersect the curve xy = 2. Thus it is possible for f(x, y) to be as small as 9. However, it
appears that there are smaller possible values of f(x, y).

The following theorem, which we present without proof, is the key to solving a program
such as in this example.

Theorem 8.6.1. For the program

Minimize f(x, y)

Subject to g(x, y) = 0,

if the optimal solution lies at the point (a, b) where ∇g(a, b) �= 0, then

∇f(a, b) = λ∇g(a, b) (8.3)

for some constant λ called a Lagrange multiplier.

Theorem 8.6.1 gives a necessary condition for there to be an optimal solution to the
program at the point (a, b). This theorem suggests that a solution to Equation (8.3) is a
candidate for the location of an optimal solution. Like the gradient method, such a solution
is not guaranteed to be a globally optimal solution.

Example 8.6.2 (Using Lagrange Multipliers)
Let’s use Theorem 8.6.1 to solve Example 8.6.1. We have f(x, y) = x2 + y2 and g(x, y) =
xy − 2. The gradients are

∇f(x, y) =

[
2x
2y

]
and ∇g(x, y) =

[
x
y

]
.

The requirement ∇f(x, y) = λ∇g(x, y) leads to the systems of equations

2x = λy

2y = λx.

Multiplying the first equation by x and the second by y yields

2x2 = λxy

2y2 = λxy.

Thus we see that
2x2 = 2y2 ⇒ x2 = y2.
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Now, the constraint xy − 2 = 0 means that xy = 2 so that x and y must have the same
sign. This, combined with the fact that x2 = y2 means that x = y. Combining this with the
fact that xy = 2 yields

x2 = 2 ⇒ x = y = ±
√
2.

Thus the minimum distance occurs at the points
(−√

2, −√
2
)
and

(√
2,

√
2
)
. The equation

2x2 = λxy means that λ = 2.

As we see, the algebra required for Lagrange multipliers can get rather involved. Luckily,
Excel will do this automatically.

Example 8.6.3 (Using Excel)
To solve Example 8.6.1, rename a blank worksheet “Min Dist” and format it as in Figure
8.32.

1
2

A B C D
x y f(x, y) g(x, y)

1 1 =A2^2+B2^2 =A2*B2-2

FIGURE 8.32

In Solver, set the objective to minimize $C$2 by changing the variable cells
$A$2:$B$2, add the constraint $D$2=0, and select the solving method GRG Nonlin-
ear. After pressing Solve, select Sensitivity under Reports and press OK. The results
are shown in Figure 8.33.

Variable Cells
Final Reduced

Cell Name Value Gradient
$A$2 x 1.414213534 0
$B$2 y 1.414213534 0

Constraints
Final Lagrange

Cell Name Value Multiplier
$D$2 g(x, y) -7.96717E-08 2.000001686

FIGURE 8.33

Solver yields the same positive x and y solution we got algebraically (at least within
rounding) and the same value of the Lagrange multiplier λ. Solver also displays a “reduced
gradient,” which has no real meaning for our purposes.

Now change the initial values of x and y to −1 and resolve. Solver yields the negative
x and y solution we got algebraically. This illustrates that the initial values of the decision
variables can affect the results, as we’ve seen before.

The next example illustrates a practical application of the value of the Lagrange multi-
plier λ.
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Example 8.6.4 (Producing E-phones)
A company is planning the production of a new brand of E-phones that are supposed to
capture the market by storm. The two main input components of the new E-phone are the
circuit boards and the relay switches that make the phone faster, smarter, and have more
memory. The number of E-phones that can be produced is estimated to equal

E(a, b) = 200a1/2b1/4

where E(a, b) is the number of phones produced, a is the number of hours of labor (in
thousands) spent producing circuit boards, and b is the number of hours (in thousands)
spent producing relays. Such a function is known to economists as a Cobb-Douglas function.
Suppose that circuit board production costs $5/hour and relay production costs $10/hour
and that the company has $150 thousand to spend on labor. How many circuit boards and
relays should be produced to maximize the number of E-phones produced?

The constraint is the money available for labor. This is easily modeled as

5a+ 10b = 150 ⇒ 5a+ 10b− 150 = 0.

Thus our program is

Maximize E(a, b) = 200a1/2b1/4

Subject to g(a, b) = 5a+ 10b− 150 = 0.

We’ll let Excel do all the work. Rename a blank worksheet “E-phone” and format it as in
Figure 8.34.

1
2

A B C D
a b E(a, b) g(a, b)

1 1 =200*A2^0.5*B2^0.25 =5*A2+10*B2-150

FIGURE 8.34

Set up Solver the same as Example 8.6.3, except choose to maximize cell $E$2. The
sensitivity report is shown in Figure 8.35. These results show that we should spend 20
thousand hours producing circuit boards and 5 thousand hours producing relays and that
the Lagrange multiplier is λ = 6.687. The worksheet E-phones shows that this solution
results in the production of 1337.481 E-phones (in reality this number would be rounded
off to a whole number).

To understand what the Lagrange multiplier λ = 6.687 means in a practical sense, let’s
suppose we increase the amount of money available for labor by $1 thousand. This is easily
done by changing the 150 in cell $D$2 to 151. Resolving the program using the exact same
Solver parameters yields the solution shown in Figure 8.36.

Note that the maximum value of E(a, b) increased from 1337.481 to 1344.162, an increase
of 6.687.

This example illustrates the following interpretation of the Lagrange multiplier:

If the Lagrange multiplier for a constraint resource is λ and the amount of that
resource increases by a small amount Δ, then the maximum value of the objective
function will increase by approximately λΔ.

This interpretation is similar to the shadow price discussed in Section 7.7.
One final note: These examples dealt with constrained optimization problems with only

one constraint. The method of Lagrange multipliers can be applied to problems with more
than one constraint. See Exercises 8.6.2 and 8.6.3 for examples.
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Variable Cells
Final Reduced

Cell Name Value Gradient
$A$2 a 19.99999693 0
$B$2 b 5.000001535 0

Constraints
Final Lagrange

Cell Name Value Multiplier
$D$2 g(a, b) 9.9476E-13 6.687397907

FIGURE 8.35

1
2

A B C D
a b E(a, b) g(a, b)

20.13333 5.033333 1344.162 2.5E-10

FIGURE 8.36

Exercises

8.6.1 Suppose x, y, and z are positive. Find the minimum value of f(x, y, z) = x+ y + z
subject to the constraint xyz = 1.

8.6.2 Suppose we want to draw a right triangle with legs of length a and b and hypotenuse of
length c that has a perimeter of 10. Find the dimensions that maximize the area A = 0.5ab.
What type of triangle do we get? (Hint: Use the Pythagorean theorem for one of your
constraints.)

8.6.3 Suppose we want to draw a triangle (not necessarily a right triangle) with sides of
length a, b, and c that has a perimeter of 10. Let θ be the angle between sides a and b.
Find the dimensions, and the angle θ, that maximize the area A = 0.5ab sin θ. What type
of triangle do we get? (Hint: Use the law of cosines c2 = a2 + b2 − 2ab cos θ for one of your
constraints.)

8.6.4 Consider the problem of finding the points(s) on the surface z = xy+5 closest to the
origin subject to the constraint that x, y, and z are all between −5 and 5.

a. Model this program in Excel and try solving it with Solver.

b. Try several different initial values of x, y, and z. Do you always get the same solution?

c. Try using the Multistart option in Solver. What solution do you get?

8.6.5 A castle is surrounded by a 3-m wide moat and the moat is surrounded by a 2-m
tall outer wall as in Figure 8.37. Soldiers attacking the castle plan to lay a ladder on top of
the outer wall to reach the castle wall, as indicated in the figure. Find the minimum length
of ladder needed. (Hint: Let x and y be as indicated in the figure. Find the length of the
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Moat 3 m wide x

Ladder

Outer Wall 
2 m tall

Castle 
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FIGURE 8.37

ladder in terms of x and y. Use similar triangles to set up a relationship between x and y.
Use this relationship as a constraint.)

8.6.6 Let I1 be the line of intersection of the two planes 2x+y+2z = 15 and x+2y+3z = 30
and I2 be the line of intersection of the two planes x− y − 2z = 15 and 3x− 2y − 3z = 20.
Find the points on these two lines that are closest together. (Hint: Let (x1, y1, z1) be a
generic point on line I1 and (x2, y2, z2) be a generic point on line I2. Find the distance
between these two points in terms of the x’s, y’s, and z’s. We want to minimize this distance.
Use the equations for the planes to set up the constraints.)

8.6.7 The graph of the curve x2+6y2+3xy = 50 is an ellipse. Find the point of this ellipse
with the largest x-coordinate.

8.6.8 Consider a rectangular box with dimensions x, y, and z and fixed volume V . Find
the dimensions that minimize the surface area of the box. Try various values of V . What
type of box do you get?

8.6.9 Suppose the number of units produced E, in thousands, of a certain product is
described by the Cobb-Douglas function

E(a, b) = 1.2a0.3b0.6

where a is the amount of capital and b is the amount of labor used. Further suppose that
the total production cost is described by the function

T = 10000a+ 7000b.

a. If there is a budget of $55,060 to spend on production costs, find the maximum number
of units that can be produced. Also find the Lagrange multiplier.

b. Now suppose the budget increases by $10,000. Resolve the problem.

c. Is the result of part b. consistent with the practical interpretation of the Lagrange
multiplier? Briefly explain why or why not.

8.6.10 A company manufactures perfumes and can purchase up to 1925 oz of the main
chemical ingredient for $10 per oz. At a cost of $3 per oz the chemical can be manufactured
into an ounce of perfume #11, and at a cost of $5 per oz the chemical can be manufactured
into an ounce of the higher priced perfume #2. An advertising firm estimates that if x
ounces of perfume #1 are manufactured, it will sell for $(30− 0.01x) per ounce. If y ounces
of perfume #2 are produced, it can sell for $(50− 0.02y) per ounce.
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a. Find the values of x and y that maximize the company’s profit.

b. What is the value of the Lagrange multiplier for the constraint that the company can
purchase up to 1925 oz? Interpret the meaning of this value in the context of this
problem.

8.6.11 A company manufactures flat screen TVs and wants to introduce two new TVs.
Both TVs contain similar internal parts but one has a 55-inch screen and the other a 60-
inch screen. In addition to $40,000 in fixed costs it costs the company $450 to produce the
55-inch TV and $550 to produce the 60-inch screen. The manufacturer’s suggested retail
price is $590 for the 55-inch and $610 for the 60-inch. In a competitive market, sales help
to reduce prices. For each size of TV, each additional TV sold the price drops by $0.10.
Additionally the price of the 55-inch TV is reduced by $0.03 for every 60-inch TV sold and
the price of a 60-inch TV is reduced by $0.04 for every 55-inch TV sold. It takes 4 hours to
build a 55-inch TV and 7 hours to assemble a 60-inch. There are 3,000 hours available for
labor. Assuming the company sells all the TVs it produces, determine how many of each
type of TV the company should manufacture to maximize profits.

8.6.12 The value of a Lagrange multiplier for a resource constraint tells us approximately
how much the objective function will increase if the amount of the corresponding resource
is increased by a small amount. In a problem with two or more resource constraints, each
constraint has a Lagrange multiplier which tells us approximately how much the objective
function will increase if the corresponding resource is increased a small amount while the
other resource(s) are held constant. As an application of this idea, consider the following
problem: The manager of a produce department is trying to decide how many of various
types of fruit baskets to make to maximize profit. She has only 3 apples and 7 oranges left
and models the problem as

Maximize Profit = x2 + y2 + 3z

Subject to x+ y = 3 (apple constraint)

x+ 3y + 2z = 7 (orange constraint)

where x, y, and z are the number of each type of basket produced.

a. Solve this problem and find the value of the Lagrange multiplier for each constraint.

b. If the manager has some extra money to spend on apples or oranges (but not both),
should she purchase more apples or oranges? Briefly explain your reasoning.

8.6.13 Suppose a newspaper publisher must purchase three types of paper stock. They
must meet their demand while minimizing the total cost using an Economic Order Quantity
(EOQ) model. Let Qi be the number of rolls of type i purchased per week. The cost of
purchasing and storing type i per week is given by

C (Qi) =
aidi
Qi

+ hi
Qi

2

where

• ai is the order cost (in dollars),

• di is the order rate (in rolls/week),

• hi is the storage cost (in dollars/week/roll), and

• Qi/2 is the average amount on hand.
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The total cost per week is the sum of the three costs,

C (Q1, Q2, Q3) = C (Q1) + C (Q2) + C (Q3) .

The only constraint is the amount of available storage area. The amount of storage area
required for type i is

S (Qi) = siQi

where si is the number of ft2 required per roll. The total required storage area is the sum
of the three areas,

S (Q1, Q2, Q3) = S (Q1) + S (Q2) + S (Q3) .

The rolls cannot be stacked; they must be be laid side-by-side on the floor. The values of
the parameters are given in the table below

Parameter Type I Type II Type III

a 25 18 20
d 32 24 20
h 1 1.5 2
s 4 3 2

a. Find the optimal solution if there is 200 ft2 of storage space available. Make sure your
solution is given in whole numbers.

b. Now suppose the publisher wants to increase their storage capability. Will increasing
storage actually decrease total cost? If so, how much additional storage would you
recommend? Briefly explain your reasoning.

8.7 Branch and Bound

Branch and bound is a technique often used for solving integer programs , which are programs
where the decision variables are required to be integers. In this section we focus on a specific
type of integer program called a binary integer program (BIP) where the decision variables
are required to be either 0 or 1 (i.e. are binary).

To illustrate how branch and bound works, consider the following scenario from Example
7.4.3:

Nathan and Laura are trying to sell their house which has two bedrooms and two
bathrooms. To increase the house’s value, they want to remodel one or more rooms.
They have estimated the costs of remodeling each room and their real estate agent
has estimated the increase in the house’s value if each room was remodeled as shown
in Table 8.2 (where costs and increases in values are given in thousands of dollars).
They have only $10,000 to spend remodeling, and they have decided that they can’t
do both bathroom 2 and bedroom 2. They will only do bathroom 2 if they also do
bathroom 1. Also, they will only do bedroom 2 if they also do bedroom 1. Which
rooms should they remodel to maximize the total increase in their house’s value?
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TABLE 8.2

Decision Remodeling Increase in
Room Variable Cost House Value

Bathroom 1 x1 6 9
Bedroom 1 x2 3 5
Bathroom 2 x3 5 6
Bedroom 2 x4 2 4

We modeled this scenario with the BIP

Maximize Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1

−x1 + x3 ≤ 0
−x2 + x4 ≤ 0

x1, x2, x3, x4 are binary ,

(8.4)

and solved it using Solver with a binary constraint yielding the optimal solution x1 = x2 = 1,
x3 = x4 = 0 (denoted (1, 1, 0, 0)) with an objective function value of Z = 14. Observe that
the objective function and all the constraints, except the binary constraint, in Program (8.4)
are linear. For this reason, this program is called a linear binary integer program. Branch
and bound is one technique for handling the binary constraint.

In an integer program such as this, the number of possible solutions is finite and the
list of possible solutions is, in principle, easy to enumerate. In this example, there are four
decision variables and each one has two possible values, so there are a total of 24 = 16
possible binary solutions. A very crude method to solve this problem is to:

1. List all possible solutions.

2. Test each one for feasibility.

3. Evaluate the objective function at each feasible solution.

4. Choose the feasible solution that gives the largest value of the objective function.

This method certainly would work in principle. However, for large problems with many
thousands of decision variables (as occur in real applications) the number of possible solu-
tions can be extremely large making this method computationally unfeasible. Branch and
bound is a more intelligent, systematic way of testing different possibilities and determining
which ones do not need to be tested.

In branch and bound we set one or more variables equal to certain values, solve for the
remaining variables, and compare the solution to what has already been found. We can
organize our work in a solution tree as shown in Figure 8.38 which can be found in the
workbook Branch and Bound available on the website for this book.

To solve Program (8.4), follow these steps in the workbook Branch and Bound:

Step 1: Solve a relaxation

A relaxation is a version of the problem of interest in which one or more of the constraints
has been changed slightly (or “relaxed”), resulting in a simpler problem that can be solved
with existing techniques, like the Simplex method. Without the binary constraint, this
program is linear which can be solved with the Simplex method. So we relax the binary
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AFI
All

x1 0 x1 1

x2 0 x2 1 x2 0 x2 1

x3 0 x3 1 x3 0 x3 1 x3 0 x3 1 x3 0 x3 1

x4 0 x4 1 x4 0 x4 1 x4 0 x4 1 x4 0 x4 1 x4 0 x4 1 x4 0 x4 1 x4 0 x4 1 x4 0 x4 1

FIGURE 8.38

constraint by only requiring that the decision variables be between 0 and 1. This yields the
following relaxation:

Maximize Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to 6x1 + 3x2 + 5x3 + 2x4 ≤ 10
x3 + x4 ≤ 1

−x1 + x3 ≤ 0
−x2 + x4 ≤ 0
0 ≤ x1, x2, x3, x4 ≤ 1

This relaxation is programmed into the workbook Branch and Bound as shown in Figure
8.39. The appropriate constraints are already entered into Solver (the reader should verify
this). The upper and lower bounds in rows 24 and 26 are bounds for each variable as given
in the last constraint of the relaxation. In this case the bounds are all 0 and 1. In upcoming
steps, the bounds may be different for each variable.

23
24
25
26
27
28
29

H I J K L M N O P Q R S T U V W X Y Z
x1 x2 x3 x4

Upper Bound 1 1 1 1
9 5 6 4 = 0 Solution = 0 0 0 0
6 3 5 2 = 0 ≤ 10 Lower Bound 0 0 0 0
0 0 1 1 = 0 ≤ 1
-1 0 1 0 = 0 ≤ 0
0 -1 0 1 = 0 ≤ 0

Coefficients

Constraint 4

Constraint 1

Constraint 3
Constraint 2

Objective

FIGURE 8.39

Running Solver by simply opening the Solver window and pressing the Solve button
yields an optimal solution of (0.83, 1, 0, 1) with Z = 16.5. This solution is obviously not
feasible since it is not binary. If this solution were binary, then we would be done since
this solution would satisfy all the constraints in the original program, including the binary
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constraints. However, it does tell us that the best binary solution will have Z ≤ 16.5. This
gives us an upper-bound on the optimal value of the objective function.

Step 2: Branch and create sub-problems

Branching is the process of setting the values of one or more decision variables to either 0 or
1 which creates new relaxations, called sub-problems. The first step in branching is shown in
Figure 8.40. The number 16.5 entered under “All” reminds us that 16.5 is an upper-bound
on the best binary solution.

1
2
3
4
5
6
7

H I J K L M N O P Q R S T U V W X Y Z
All

16.5

x1 0 x1 1

FIGURE 8.40

Sub-problem 1: First we will branch to the left and set x1 = 0. We modify our relaxation
by adjusting the upper bound of x1 to 0 as in Figure 8.41.

23
24
25
26

T U V W X Y Z
x1 x2 x3 x4

Upper Bound 0 1 1 1
Solution = 0.8 1 0 1

Lower Bound 0 0 0 0

FIGURE 8.41

Running Solver yields the optimal solution (0, 1, 0, 1) with Z = 9. This means that for
all solutions with x1 = 0, the best is (0, 1, 0, 1) with Z = 9. This solution and its associated
value of Z are given special names:

• The incumbent is the best binary solution found so far.

• Z∗ is the value of the objective function at the incumbent solution.

Thus at this point, the incumbent solution is (0, 1, 0, 1) and Z∗ = 9. We record these as in
Figure 8.42.

24
25

C D E F G
Incumbent =

Z*=
(0,1,0,1)

9

FIGURE 8.42

Sub-problem 2: Next we branch to the right and set x1 = 1. We modify the relaxation
by adjusting the upper and lower bounds of x1 to 1 as in Figure 8.43.
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23
24
25
26

T U V W X Y Z
x1 x2 x3 x4

Upper Bound 1 1 1 1
Solution = 0 1 0 1

Lower Bound 1 0 0 0

FIGURE 8.43

Running Solver yields the optimal solution (1, 0.8, 0, 0.8) with Z = 16.2. This means
that for all solutions with x1 = 1, the best is (1, 0.8, 0, 0.8) with Z = 16.2 (i.e. Z = 16 is
an upper bound on all binary solutions with x1 = 1).

Step 3: Fathom sub-problems

In this step we determine which of the sub-problems in step 2 are worth further considera-
tion. Those that are not deemed worthy are fathomed.

• Sub-problem 1: Here we set x1 = 0 and got the solution, (0, 1, 0, 1), which is binary.
Therefore, there is no reason to examine any other possible solution with x1 = 0 since
we have found the best one. Thus we fathom it.

• Sub-problem 2: Here we set x1 = 1 and got a non-binary solution, but Z = 16.2 which
is greater than Z∗ = 9. This means that it may be possible to find a feasible binary
solution with x1 = 1 that is better than the incumbent solution. So this sub-problem is
worth further consideration and we branch on this sub-problem.

In general, there are three reasons why we fathom a sub-problem:

1. Its value of Z is less than or equal to Z∗.

2. It has no feasible solution.

3. Its solution is binary.

We record the results of each sub-problem as in Figure 8.44. In the first box under each
sub-problem we record the associated value of Z. Below that we record the results from
step 3. “F3” means we fathom the sub-problem because of reason 3. “B” means we branch
on the sub-problem.

1
2
3
4
5
6

H I J K L M N O P Q R S T U V W X Y Z
All

16.5

x1 0 x1 1
9 16.2

F3 B

FIGURE 8.44

Step 4: Branch on newest remaining sub-problem

From the sub-problem with x1 = 1, we branch to form two new sub-problems, one in which
x2 = 0 and one in which x2 = 1. This is illustrated in Figure 8.45.
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3
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5
6
7
8
9
10
11

T U V W X Y Z AA AB AC AD

x1 1
16.2

B

x2 0 x2 1

FIGURE 8.45

23
24
25
26

T U V W X Y Z
x1 x2 x3 x4

Upper Bound 1 0 1 1
Solution = 1 0.8 0 0.8

Lower Bound 1 0 0 0

FIGURE 8.46

• Sub-problem 3: We branch left and set x2 = 0 along with x1 = 1. We modify the
relaxation as in Figure 8.46. Solving this yields a solution of (1, 0, 0.8, 0) with Z = 13.8.

• Sub-problem 4: We branch right and set x2 = 1 along with x1 = 1. We modify the
relaxation appropriately, solve, and obtain a solution of (1, 1, 0, 0.5) with Z = 16.

Step 5: Repeat steps 3 – 4 until there are no remaining sub-problems

We apply step 3 to determine which of sub-problems 3 or 4 should be fathomed. Neither
sub-problem meets any of the three fathoming criteria. So we do not fathom either sub-
problem.

We decide to branch on sub-problem 4 since it has a larger value of Z. We record the
results as in Figure 8.47.

3
4
5
6
7
8
9
10
11

T U V W X Y Z AA AB AC AD

x1 1
16.2

B

x2 0 x2 1
13.8 16

B

FIGURE 8.47
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So we branch on x2 = 1. Setting x3 = 0 yields a non-binary solution with Z = 16.
Setting x3 = 1 is unfeasible, so we fathom it by criteria 2. Branching on x3 = 0 and setting
x4 = 0 yields the solution (1, 1, 0, 0) with Z = 14. This is better than the incumbent
solution with Z∗ = 9. So (1, 1, 0, 0) becomes our new incumbent solution and Z∗ = 14. We
also fathom it by criteria 3. Setting x4 = 1 is unfeasible so we fathom it by criteria 2. We
record our results as in Figure 8.48.

14
15
16
17
18
19
20
21

Y Z AA AB AC AD AE AF AG
x3 0 x3 1

16 -
B F2

x4 0 x4 1 x4 0 x4 1
14 -
F3 F2

FIGURE 8.48

We still have one remaining sub-problem to consider where x1 = 1 and x2 = 0, which
yielded Z = 13.8. This value of Z is less than our value of Z∗ = 14, so we fathom it by
criteria 1. We record this result as in Figure 8.49.

8
9
10
11

T U V

x2 0
13.8
F1

FIGURE 8.49

Thus there are no sub-problems left, so we are done. The optimal solution is (1, 1, 0, 0)
with Z∗ = 14. This means that Nathan and Laura should remodel bathroom 1 and bedroom
1. It will increase their house’s value by $14,000. This agrees with the solution Solver found
with the binary constraint.

This branch and bound technique can be extended to general integer problems where
each variable can take on several integer values. The basic idea is the same, except that on
each branch, we have more than two options.

Exercises

8.7.1 Use the branch and bound technique to solve the following BIP:

Maximize Z = 9x1 + 5x2 + 6x3 + 4x4

Subject to x1 + 7x2 − 4x3 + 3x4 ≤ 8
x1 + x3 + x4 ≤ 1

−x1 − x2 + x3 + x4 ≤ 0
2x1 − x2 + 2x3 − x4 ≤ 0

x1, x2, x3, x4 are binary
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8.7.2 Use the branch and bound technique to solve the following BIP:

Maximize Z = 15x1 + 3x2 − 2x3 + 4x4

Subject to 4x1 − 2x2 + 3x3 + x4 ≤ 8
2x1 + x3 − 3x4 ≤ 1
x1 + 3x2 + x3 + x4 ≤ 4
5x1 − x2 + 3x3 + x4 ≤ 10

x1, x2, x3, x4 are binary

8.7.3 Consider the parameter table below for a transportation problem involving shipping
truckloads of bread from bakeries to warehouses. Suppose that there is a price break in the
shipping costs if the number of truckloads between a bakery and warehouse is large enough.
If the number of truckloads is equal to or greater than the number in the “Breaks” chart,
then the shipping costs are as shown in the “Reduced Costs” chart.

Breaks Reduced Costs
Warehouse Warehouse Warehouse

Bakery 1 2 Output 1 2 1 2

1 764 375 50 20 25 375 350
2 390 416 95 70 30 350 375

Allocation 80 65

Design a branch and bound technique to solve this problem. Explain how your technique
works and show the results. (Suggestion: Use the workbook Branch and Bound. Each
time you branch, force one of the variables to be above or below the break point and use
the resulting cost in the objective function. Solve a relaxation to find a lower bound on the
total cost down that branch.)

8.8 The Traveling Salesman Problem

The traveling salesman problem (TSP) is relatively simple to state:

A traveling salesman needs to visit n cities. What route should he take to visit all
the cities, return to where he started, and minimize the total distance traveled?

At first glance a TSP may look like a transportation problem from Section 7.3, but it turns
out to be much more difficult to model and solve. There is currently no algorithm guaranteed
to find a globally optimal solution for any value of n. However, there are many heuristic
algorithms which can give “good” solutions, at least. In this section we use the evolutionary
algorithm in Solver to solve a relatively simple TSP.

Example 8.8.1 (A Traveling Salesman Problem)
Consider a salesman who needs to visit 10 cities whose coordinates on an x − y plane are
shown in Table 8.3.

Figure 8.50 shows a map of these cities. We assume there are roads between each pair of
distinct cities, the distances between cities are their Euclidean distances, and the distances
are commutative (i.e. the distance from city 1 to 2 is the same as from 2 to 1). The cities
along with the collection of roads is called a graph. The cities are called nodes and the roads
are called edges . Because of the fact that there are edges between each pair of nodes, the
graph is called complete.
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TABLE 8.3

City 1 2 3 4 5 6 7 8 9 10

x 22 28 22 34 10 16 4 34 23 1
y 15 34 21 3 8 18 13 29 1 34
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Map

FIGURE 8.50

A solution to this TSP is a sequence of cities so that the salesman visits every city
once and he ends where he began. Such a sequence is called a tour . One such tour is
1− 2− 3− 4− 5− 6− 7− 8− 9− 10 (where the salesman returns to city 1 after city 10).
Note that all the numbers in this sequence are different (this point will become important
when we use Solver). This tour is illustrated in Figure 8.51. Based on the illustration, this
route does not seem very logical, so it’s obviously not an optimal solution to the TSP.
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A Non-Op�mal Tour

FIGURE 8.51

One way to model Example 8.8.1 is as a binary integer program with the decision
variables

xij =

{
1, if the salesman travels from city i to city j

0, otherwise
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for 1 ≤ i, j ≤ 10. Let dij denote the distance from city i to city j, N denote the set
{1, . . . , 10}, S denote a proper subset of N containing at least two elements, and |S| denote
the number of elements in S. With this notation we can model the TSP as

Minimize

10∑
i=1

10∑
j=1

dijxij (8.5)

Subject to

10∑
i=1

xij = 1, ∀ j ∈ N

10∑
j=1

xij = 1, ∀ i ∈ N

10∑
i∈S

10∑
j∈S

xij ≤ |S| − 1, ∀S

xij are binary.

The objective function in this model is simply the total distance traveled. Each constraint
is really a set of 10 or more constraints. Here are the practical meanings of these sets of
constraints:

1. Each city is traveled to.

2. Each city is traveled from.

3. Sub-tours are prohibited. For instance, the sub-tour 1 − 2 − 3 (and returning to city
1) is not allowed to be part of the solution (see Exercise 8.8.10). These constraints are
called sub-tour eliminating constraints.

The first two sets of constraints are fairly straightforward. The third set is quite complicated.
It specifies one constraint for each proper subset ofN containing at least two elements. There
are 210 − 2− 10 = 1012 such subsets. This is far too many constraints to be practical.

Instead of using this binary integer formulation of the TSP, we’ll use the evolutionary
search algorithm in Solver which contains a very simple tool for modeling a TSP. The
evolutionary search algorithm is very complex and we will not go into the details here.
Informally, the algorithm is based on ideas from evolutionary biology. The algorithm begins
with a solution and then intelligently changes it a bit (or mutates it) to hopefully find a
better solution. This process repeats itself until no better solution is found.

Example 8.8.2 (Solving a TSP)
To solve the TSP described in Example 8.8.1 with the evolutionary algorithm in Solver,
follow these steps:

1. Rename a blank worksheet “TSP” and format it as in Figure 8.52. Add the rest of
the coordinates shown above in Table 8.3.

2
3

B C D
City x y

1 22 15

FIGURE 8.52
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2. Create the graph in Figure 8.50. To add the city numbers to the graph, right-click
on one of the cities and select Add Data Labels. Right-click a city again and select
Format Data Labels. Check the box next to Value From Cells and Select Range
B3:B12. Un-check the boxes next to Y Value and Show Leader Lines.

3. Next we need to calculate the distances between each pair of cities. Set up a table as
in Figure 8.53. Copy row 4 down to row 12.

1
2
3
4

F G H I J K L M N O P

1 2 3 4 5 6 7 8 9 10
1
2

Distances

FIGURE 8.53

4. Add the formula in Figure 8.54 to calculate the distances. Copy this formula to the
range G3:P12.

3
G

=SQRT((OFFSET($B$2,$F3,1)-OFFSET($B$2,G$2,1))^2+(OFFSET($B$2,$F3,2)-OFFSET($B$2,G$2,2))^2)

FIGURE 8.54

5. To find the total length of a tour, add the formulas in Figure 8.55 (note the difference
in the pattern in cell C25).

14
15
16
17
18
19
20
21
22
23
24
25
26

B C
Distance to

Tour Next City
1 =OFFSET($F$2,B16,B17)
2 =OFFSET($F$2,B17,B18)
3 =OFFSET($F$2,B18,B19)
4 =OFFSET($F$2,B19,B20)
5 =OFFSET($F$2,B20,B21)
6 =OFFSET($F$2,B21,B22)
7 =OFFSET($F$2,B22,B23)
8 =OFFSET($F$2,B23,B24)
9 =OFFSET($F$2,B24,B25)
10 =OFFSET($F$2,B25,B16)

Total = =SUM(C16:C25)

FIGURE 8.55

6. To visualize a tour, add the formulas in Figure 8.56. Add the range E16:F26 to the
chart in Figure 8.50 and format this new data series so the chart resembles Figure
8.51.

7. Lastly, format the Solver window as in Figure 8.57 and press Solve. It will take Solver
several seconds to return a solution.
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14
15
16
17
18
19
20
21
22
23
24
25
26

E F

x y
=OFFSET($C$2,B16,0) =OFFSET($D$2,B16,0)
=OFFSET($C$2,B17,0) =OFFSET($D$2,B17,0)
=OFFSET($C$2,B18,0) =OFFSET($D$2,B18,0)
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FIGURE 8.56

 

FIGURE 8.57

Solver finds the tour 8−3−6−1−4−9−5−7−10−2 with a total distance of 134.588,
which is illustrated in Figure 8.58. We do not claim that this is a globally optimal solution,
but it seems reasonable. Note that we did not specify where the salesman starts. The total
distance would be the same if he started in any city and followed this tour. For instance,
the tour 4− 9− 5− 7− 10− 2− 8− 3− 6− 1 has the same total distance.
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Exercises

8.8.1 One simple heuristic for solving a TSP is the nearest neighbor algorithm which says
that at each step of the tour, the salesman should visit the closest city that has not already
been visited. Apply this algorithm to find a solution to Example 8.8.1 starting at city 1.
Compare the resulting tour to the one found by Solver.

8.8.2 One fact about an optimal solution to a TSP is that the tour should not cross itself.
As an example of why this fact is true, consider the tour 1−3−6−5−7−10−2−9−8−4 from
Example 8.8.1. This tour is illustrated in Figure 8.59. Show that this tour is not optimal
by switching around just 3 cities to find a shorter tour.
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8.8.3 In the classical TSP, we require the salesman to end the tour where he started. Such
a tour is called a closed tour . In an open tour we do not require the salesman to end where
he started, simply that he visit each city. Modify the worksheet TSP to solve the open tour
version of Example 8.8.1 where the salesman starts at city 10 (it does not matter exactly
where he ends). (Hint: When modifying the Solver parameters, you may need to first press
Reset All and then enter all the desired parameters.)
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8.8.4 In Example 8.8.1, we assumed the graph was complete (i.e. there was a road between
each pair of distinct cities). Consider the non-complete graph shown in Figure 8.60 consisting
of 10 cities and 13 roads. The numbers next to each road are the times (in minutes) to travel
between the respective cities. Modify the worksheet TSP to find a tour that starts at city
10, visits all cities, and minimizes the total time needed (the salesman does not need to end
at city 10). (Suggestion: Use the big-M method to model the fact that there are not roads
between every pair of cities.)
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FIGURE 8.60

8.8.5 One approach to finding a globally optimal solution to a TSP, called the brute-force
algorithm, is to simply list all possible tours, calculate the total distance of each, and then
choose the one with the shortest total. In this exercise we’ll think about how many tours
really need to be considered when solving a TSP with 10 cities.

a. A tour is really a permutation of the set {1, . . . , 10}. Find the number of such per-
mutations.

b. Now consider the permutations 1− 2− 3− 4− 5− 6− 7− 8− 9− 10 and 2− 3− 4−
5− 6− 7− 8− 9− 10− 1. What is the difference between these tours? Will they have
the same length? How many tours are there with these characteristics?

c. Consider the permutations 1− 2− 3− 4− 5− 6− 7− 8− 9− 10 and 1− 10− 9− 8−
7− 6− 5− 4− 3− 2. What is the difference between these tours? Will they have the
same length?

d. Put parts a., b., and c. together to find the number of tours with (possibly) distinct
lengths that we need to consider in the brute-force algorithm.

e. Does the brute-force algorithm seem like a reasonable solution method? Briefly explain
your answer.

8.8.6 Consider a TSP with 5 cities. Follow these steps to use a version of the brute-force
algorithm as described in Exercise 8.8.5 to find a globally optimal solution:

a. Design a spreadsheet that allows the user to input the coordinates of the 5 cities.

b. Create a table that contains the 4! = 24 different tours that start at city 5.

c. Calculate the total distance of each tour.

d. Find the tour with the smallest total distance.
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8.8.7 Consider the following algorithm for solving Example 8.8.1 with a simulation:

1. Assume the tour always starts at city 10.

2. Use an approach similar to that for generating a shuffled deck of cards as described in
Section 6.4 to randomly choose the other 9 cities in the tour.

3. Use a table to store the results of 500 random tours.

4. Find the tour in the table with the shortest total distance.

Implement this algorithm. How well does it do compared to Solver?

8.8.8 The table below contains the approximate x−y coordinates of all 15 National League
MLB stadiums (data collected by Sam Otte, 2019). Find a tour of minimal distance that
visits all 15 stadiums.

Stadium Team City x y

1 Giants San Francisco, CA 2 21
2 Dodgers Los Angeles, CA 2.5 16
3 Padres San Diego, CA 3 15
4 Diamondbacks Phoenix, AZ 7 12
5 Rockies Denver, CO 12 18
6 Cardinals St. Louis, MO 20.5 18
7 Cubs Chicago, IL 22.5 22
8 Brewers Milwaukee, WI 22 25
9 Reds Cincinnati, OH 25 20
10 Pirates Pittsburgh, PA 27.5 22
11 Braves Atlanta, GA 25.5 12
12 Marlins Miami, FL 28.5 5
13 Mets New York, NY 30.5 24.5
14 Nationals Washington, DC 29.5 19
15 Phillies Philadelphia, PA 30 23

8.8.9 Find the driving distances between each school in your school’s athletic conference.
Then find a tour of minimal distance that visits each school.

8.8.10 Consider the binary integer program formulation of the TSP in Equations (8.5) and
the sub-tour 1 − 2 − 3. If this sub-tour were allowed, we would have x12 = x23 = x31 = 1
(with possibly other decision variables equaling 1 as well). Show that this would violate the
third constraint with S = {1, 2, 3}.

For Further Reading

Here are several good references for more information on nonlinear programming:

• Bazarra, M. and C. Shetty, H.D. Scherali. Nonlinear Programming: Theory and Appli-
cations. New York: Wiley. 1993.

• Fox, William. P. “Teaching Nonlinear Programming with Minitab.” COED Journal. Vol.
II No. 1, January-March 1992, pages 80-84. 1992.
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A

Spreadsheet Basics

Here we will explain some of the basic terminology and tools used to build the models
in this book. These explanations apply directly to Office Excel 2016, although most of
them apply to other versions of Excel. Other free spreadsheet programs such as OpenOf-
fice.org Calc (which is available for download as part of the OpenOffice.org suite at
http://www.openoffice.org/) and Google Sheets can be used to build almost all of the mod-
els in this book. Many of the commands used in these free programs are similar to those in
Excel, but some are significantly different.

A.1 Basic Terminology

When you first open Excel, you should get a window that looks similar to Figure A.1.
(Your window will probably not look exactly like that in Figure A.1 due to the placement
of toolbars and icons.)

 

Name Box Formula Bar

Worksheet Tabs 

Tabs Ribbon

FIGURE A.1

Each rectangle, called a cell, is a place where data, text, or formulas can be entered. A
collection of cells is called a worksheet. The name of the worksheet is given in the worksheet
tab near the bottom of the worksheet. The worksheet name can be changed by right–clicking
on the worksheet tab and selecting Rename. A collection of worksheets is called a workbook.
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Worksheets can be added or deleted from a workbook by right–clicking on the worksheet
tab and selecting either Insert... or delete. Worksheets can also be added by clicking on
the plus sign next to the worksheet tabs. A worksheet tab can be moved to the left or right
by left–clicking, holding, and dragging.

The name of each column is listed along the top of the worksheet while the number
of each row is listed along the left–hand side of the worksheet. The width or height of a
column or row can be changed by left–clicking and holding on the right or bottom and then
dragging to the desired width or height. A cell is named according to its column and row
position. The selected cell has a thicker border around it and its name is shown in the name
box. The selected cell can be changed using the arrow keys or by clicking on another cell.

A two–dimensional range of cells can be selected by left–clicking on the cell in the upper
left–hand corner of the range, holding, and dragging to the cell in the lower right–hand
corner of the range. This highlights these cells indicating they are all selected. Ranges are
referred to by the cells in the upper left–hand and lower right–hand corners in the form
(Upper Left):(Lower Right). The formula bar displays the contents of the selected cell.

A.2 Entering Text, Data, and Formulas

Text, data, and formulas are easily entered by selecting the desired cell, typing the desired
contents, and pressing Enter. To practice doing this, format a blank worksheet as in Figure
A.2. This worksheet contains two columns of data named “x” and “y” and a third column
named “z” which we will define later.

1
2
3

A B C
x y z

1 5
2 8

FIGURE A.2

Notice that when you press enter, the selected cell moves to the cell directly under the
previous one. By default text is left–justified. The text in row 1 can be changed to bold and
centered by selecting the range A1:A3, and then clicking on the bold font icon and then
the center icon located in the toolbar.

Now suppose we want to define the quantity z to be z + y. We can easily do this by
entering the formula in Figure A.3. Every formula begins with an equal sign. This formula
can be entered by typing it as in the figure and then pressing Enter, or you can type =,
click on cell A2, type +, click on cell B2, and then press Enter.

2
C

=A2+B2

FIGURE A.3

Once the formula is entered, select cell C2 and click in the formula bar. Notice how
different colored boxes are put around cells A2 and B2 and that the A2 and B2 in the
formula are changed to the corresponding colors. This feature simplifies the process of
debugging formulas.
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To calculate the second value of z, we could type the formula =A3+B3 in cell C3, but
there is an easier way. Select cell C2, left–click and hold on the dark square in the lower
right–hand corner of the cell. Then drag the box down one row and release. The results are
shown in Figure A.4. This is exactly what we want.
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3

C
z

=A2+B2
=A3+B3

FIGURE A.4

A.2.1 Understanding Cell References

To understand why the formula in cell C2 copied down to cell C3 in this way, we need
to understand what we mean when we reference cells in formulas. The formula in cell C2
should not be interpreted as “add cell A2 to cell B2.” Rather, it should be interpreted as
“add the cell two columns to the left and in the same row to the cell one column to the left
and in the same row.” In other words, these cell references are relative. When this formula
is copied down one row, the cell “two columns to the left and in the same row” is now A3
and the cell “one column to the left and in the same row” is now B3.

Now, change the formula in cell C2 to that shown in Figure A.5. The $’s can be entered
manually or you can delete the contents of C2, then type =, click on cell A2, press the F4
key, type +, click on cell B2, press the F4 key, and then press Enter.

2
C

=$A$2+$B$2

FIGURE A.5

Copy the formula in cell C2 down to C3. The results are shown in Figure A.6. Notice
that the formula did not change. This is because the $’s “fix” the row and column reference.
So the formula in C2 really does mean “add cell A2 to cell B2.” When we copy it down,
the meaning does not change.
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z

=$A$2+$B$2
=$A$2+$B$2

FIGURE A.6

Now, change the formula in cellC2 to that shown in Figure A.7. The $’s can be manually
entered or they can entered by selecting the cells and pressing F4 two or three times, similar
to above.

Copy the formula in cell C2 down one row and to the right one column. The results are
shown in Figure A.8.

We get these results because the $ in A$2 “fixes” the row at 2, but the column is still
relative. When we copy down, this row does not change, but when we copy to the right, the
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FIGURE A.7
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z

=A$2+$B2 =B$2+$B2
=A$2+$B3

FIGURE A.8

column changes to B. Likewise, the $ in $B2 fixes the column at B, but the row is still
relative. When we copy down, this row changes, but when we copy to the right, the column
does not change.

A.2.2 Formatting Cells

The formats of a cell or range can be easily changed by first selecting the cell or range and
then right–clicking within the cell or range. Selecting Format Cells... yields the window
shown in Figure A.9.

 
FIGURE A.9

Several of these tabs are useful for building the models in this book:

• Number – The number tab allows you to change the way numbers are displayed. For
instance, selecting Number under Category: allows you to, among other things, set
the number of displayed decimal places.
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• Font – The font tab allows you to change the font, font style, and size of text. It also
allows you to add effects such as superscript or subscript.

• Border – The border tab allows you to change the border around and between cells.

• Patterns – The patterns tab allows you to change the background color and pattern
of cells.

A.3 Creating Charts and Graphs

To illustrate the process of creating charts and graphs, format a blank worksheet as in
Figure A.10.
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x y

1 2
2 5
3 9
4 12
5 13

FIGURE A.10

To create a simple plot of y vs. x, follow these steps:

1. Select the range A1:B6 and click on the Insert tab. In the Charts section of the
ribbon, select a Scatter plot as shown in Figure A.11. The resulting chart is shown
in Figure A.12.

 
FIGURE A.11
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FIGURE A.12

2. Left-clicking anywhere on the chart causes a large plus sign to appear near the upper
right-hand corner of the chart. Clicking on this plus sign allows you to select and
deselect several chart elements. For instance, selecting Axis Titles and Chart Title
causes textboxes to appear on the chart where you can enter desired titles. Deselect-
ing Gridlines gets rid of the horizontal and vertical gridlines. After entering some
titles, your graph can resemble Figure A.13. It’s a good habit to always give charts a
meaningful title. Other aspects of the chart, such as color and line thickness, can be
modified by double-clicking anywhere on the chart.
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FIGURE A.13

3. The format of the x– and y–axes can be changed by double–clicking on an axis.

A.3.1 Adding Data to a Chart

Suppose we wanted to graph the data in Figure A.14 on the same x − y plane in Figure
A.13. Follow these steps:

1. Add the data in Figure A.14 to the worksheet.

2. Right-click anywhere on the chart and select Select Data...
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FIGURE A.14

3. Press the Add button. Format the resulting window as in Figure A.15. Press OK
twice.

 

FIGURE A.15

4. The resulting graph is shown in Figure A.16. You can change options of each series,
such as the color and shape of the marker, by double-clicking on one of the markers
and using the window that appears on the right-hand side of the screen.
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FIGURE A.16

5. When graphing multiple sets of data, we typically want a legend to identify each set.
We can easily add a legend by clicking anywhere on the chart, clicking on the plus sign
that appears near the upper right-hand corner of the chart, and selecting legend. The
result is shown in Figure A.17. The name of a series can be changed by left-clicking on
the chart, selecting Select Data..., selecting the desired series, clicking Edit, entering
the desired name under Series name, and clicking OK.
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FIGURE A.17

A.3.2 Graphing Functions

Excel does not have a built–in tool for graphing functions, but we can easily create an x−y
table and then plot the points. For example, to graph the function f (x) = x2 over the
interval [−2, 2], format a blank worksheet as in Figure A.18. Copy row 3 down to row 42.
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A B
x y

-2 =A2^2
=A2+0.1 =A3^2

FIGURE A.18

Select columns A and B by left–clicking and holding on the column A header and then
dragging to column B. Insert a chart of the type Scatter with Smooth Lines. Once the
chart is created, deselect the gridlines.

Now we’ll adjust the x and y axes. Double-click on the x-axis. Under Axis Options set
the Minimum and Maximum to −2 and +2. Do the same for the y-axis, setting the min
and max to 0 and 4. After changing the chart title, the result should look like Figure A.19.
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A.4 Scroll Bars

Scroll bars allow us to change the value of a cell with a graphical interface. This allows us
to dynamically change the values of parameters within a model and analyze the results. In
a blank worksheet, select View → Toolbars → Control Toolbox. A window similar to
that in Figure A.20 should appear.

 
Scroll Bar 

Design Mode 

FIGURE A.20

For our purposes, there are only two important buttons in this window: Design Mode
and Scroll Bar. When you press the scroll bar button, the cursor changes to a small cross.
Use this to draw a long, skinny rectangle. Right–click on the resulting scroll bar and select
Properties. A window similar to that in Figure A.21 should appear.

 
FIGURE A.21

There are three important properties we need to change. The LinkedCell is the cell
whose value we want to change. Set this to A1 by typing A1 in the box next to it. The
Min and Max are the minimum and maximum values of the cell. Set these to 0 and 1,000,
respectively. Close the properties window and click on the Design Mode button. The scroll
bar is now ready to use. Move the slider on the scroll bar back and forth and note that the
number in cell A1 changes between 0 and 1,000 in increments of 1. The scroll bar properties
can be changed by clicking on the Design Mode button and right–clicking on the scroll
bar.

In most instances, we may want the value of a cell to change in increments other than
1. This can be accomplished using a formula that references the linked cell. For instance,
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enter the formula shown in Figure A.22. Move the slider back and forth and note that the
number in cell A2 changes between 0 and 100 in increments of 0.1.

2
A

=A1/10

FIGURE A.22

(Note: There is a somewhat easier way to create scroll bars using the Forms toolbar.
However, these scroll bars do not work as well with graphs. With the method described
above, if the scroll bar changes a value on a graph, the graph changes in a continuous
manner as the slider is moved back and forth. If the Forms toolbar is used, the graph will
not change until you release the mouse button.)

A.5 Array Formulas

Excel can perform simple matrix operations such as addition, multiplication, and finding

inverses. For example, if A =

[
1 2
3 4

]
and B =

[
3 4
5 6

]
, to compute C = A+B, format

a blank worksheet as in Figure A.23. To center the text “A” between cells A1 and B1,
select the range A1:B1 and then press the Merge and Center icon in the toolbar. (If
this icon is not available, select Format → Cells... → Alignment, check the box next to
Merge cells, and press OK.)
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A B C

FIGURE A.23

Next, select the range G2:H3, type =A2:B3+D2:E3, and press the combination of
keys Ctrl-Shift-Enter (this combination tells Excel to compute an array formula). The
results are shown in Figure A.24. Notice that when you select any cell in the range G2:H3,
the formula is in curly brackets, {...}. This indicates that an array formula has been entered.
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FIGURE A.24
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Newtonian mechanics, 7
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theoretical model, 234
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random number generators, 219
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old Excel algorithm, 221
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regression, 45
regression equation, 58
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root of a function, 300
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