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Introduction

It is unfortunate that in our culture, mathematics, in general, is viewed un-
favorably by a majority of well-educated people. Oftentimes they are proud 
to admit that they were not good students of mathematics in their school 
days. Admitting this weakness is almost like a badge of honor, which is 
rarely attributed to any other school subject. Despite its negative reputation, 
mathematics has contributed immensely to humanity’s shared knowledge 
of how the world works, and to the technological progress, which provides 
our lives with previously unforeseen advantages. Galileo Galilei stated that 
the book of nature is written in the language of mathematics, and, indeed, 
our understanding of nature through physics and other natural sciences is 
largely dependent on mathematics.1 However, both the formal system of 
mathematics and all of the mathematical results that have been achieved 
to the present day are often seen as independent of the world around us. In 
principle, the mathematical knowledge we have was primarily developed 
without any interaction with nature at all. Unlike biology, for instance, 
mathematics is not an empirical science. Part of what makes mathematics a 
truly fascinating subject is that it is the universal language of nature, but—at 
the same time—it is a system of logical conclusions that can be continu-
ously developed in the absence of any observations of natural phenomena. 
These intriguing, contradictory qualities of mathematics may initially puz-
zle those who are leery about the subject, but by exploring the history of its 
development, we can gain remarkable insights into mathematics’ nature. 
With that in mind, we offer in Math Makers an overview of the history of 
mathematics, which we present through brief and exciting biographies of 
fifty of the most famous mathematicians, as well as clear investigations of 
some of their brilliant achievements. 
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As you consider the history of mathematics, you might ask questions 
such as:

Where did our current number system come from?
Whom do we credit for the beginnings of algebra and geometry?
Who was responsible for measuring the size of the earth—and how was it 

done with primitive tools?
Who invented the calculus?
What were the beginnings of calculators and computer programming?

In the biographies of these innovators, you will find the answers to not 
just these questions but also many more. Furthermore, the life stories of 
these men and women who invented and developed mathematics will both 
motivate you and inspire within you a greater appreciation for this most 
important subject.

Selecting which mathematicians to profile was no mean feat. We aimed 
for as broad a representation as possible, looking to feature specifically 
those who paved the path to our current technological age. This, of course, 
includes the all-too-often-neglected women who have contributed signifi-
cantly to this process. Although each of these figures had markedly different 
life experiences, you will find a common characteristic among them: they 
were often considered unable to blend into the social fabric of the culture 
of their times. The brilliance and unusualness of these fifty mathematicians 
are revealed not only by the fruits of their mathematical wonder and labor 
but also by the very lifestyles they led.

Some of their lives were rather sad, such as that of French mathematician 
Évariste Galois, the developer of what is today known as Galois theory. In 
1832, on the eve of a duel he believed himself sure to lose, the twenty-year-
old Galois wrote down everything he knew about abstract algebra. Sadly, 
the duel eventually cost him his life. What he wrote that night became the 
foundation of Galois theory, which, as you will later see, connects two other 
theories in such a way as to make them both more understandable and 
simpler. One wonders what other gems Galois could have offered, were he 
given the chance.

But Galois was not the only mathematician whose contributions might 
have been lost entirely. In eighteenth-century European society, women were 
not allowed to participate in advanced academic studies. One of the famous 
mathematicians profiled here, Sophie Germain, was a child prodigy. In order 
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to secure access to the world of academia, Germain  wrote under the name of 
a former (male) student. After recognizing her genius and inquiring further,  
famous mathematicians of the day—such as Joseph Louis Lagrange and Carl 
Friedrich Gauss—discovered that she was a woman. Fortunately—and to our 
shared benefit—they accepted her as an equal. Germain then went on to pro-
vide significant advances in both mathematical studies and physics.

Another unusual, and rather melancholy, biography is that of the Indi-
an mathematician Srinivasa Ramanujan. He grew up in very poor circum-
stances but was eventually accepted by famous British mathematicians. Yet 
he suffered poor health, which severely limited his life span. His biography 
was deemed worthy of a full-length feature film; 2014 saw the release of The 
Man Who Knew Infinity,2 which was based off of the biography penned by 
Robert Kanigel.3

Perhaps one of the most unconventional lives detailed here was that 
of the Hungarian-American mathematician Paul Erdős, who essentially 
lived out of a suitcase. Erdős had no residence and lived with about five 
hundred mathematicians and universities for weeks at a time, and he pub-
lished over 1,500 mathematical papers of high significance. Today, there 
still exists a pride among mathematicians who had the privilege of coau-
thoring a research article with him. The Erdős Number Project oversees 
the breakdown of who collaborated with this prolific mathematician and 
assigns Erdős numbers to them. Direct coauthors of his are designated as 
an “Erdős number 1”; coauthors of these mathematicians are then each 
considered an “Erdős number 2,” and so on.

In the pages that follow, we survey not only modern mathematicians 
who advanced our shared knowledge but also those pioneering ancients 
who provided the foundation upon which the rest stood. For instance, Ar-
chimedes of Syracuse is mostly remembered as an ingenious inventor of 
mechanical devices; but he is also considered the greatest mathematician of 
classical antiquity. His mathematical achievements go well beyond the work 
of other ancient Greek mathematicians. Amazingly, he anticipated modern 
calculus when he used minute measurements to prove geometrical theo-
rems. Such astounding accomplishments are pervasive in the biographies 
of these historical figures.

Beyond these awe-inspiring accomplishments, there are also many 
curiosities—some quite entertaining—that are part of the history of 
mathematics. For example, in 1637, in the margin of an algebra book, the 
famous French mathematician Pierre de Fermat wrote that no three positive 
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integers a, b, and c satisfy the equation an + bn = cn for any integer value 
of n greater than 2, but then also indicated that he did not have enough 
space in the margin to prove this conjecture. We know that when n = 2, 
this statement is true, as it is the well-known Pythagorean theorem. During 
the next 358 years, many famous mathematicians unsuccessfully attempted 
to prove Fermat’s statement to be true, although no one ever found a 
counterexample. Hundreds of years later, a proof was finally provided 
by Andrew Wiles, in 1995; however, Wiles achieved this using methods 
certainly unknown to Fermat.

Another famous English mathematician, Christian Goldbach, made 
a conjecture in 1742 that still has not been proven true for all cases, but 
no one has yet found a case for which it doesn’t hold true. His conjecture 
was written in a letter to the famous Swiss mathematician Leonhard Euler, 
and it is very simple—so much so that it could be easily understood by an 
elementary-school student. It states that every even integer greater than 2 
can be expressed as the sum of two prime numbers. The attempts to prove 
this conjecture have led to many discoveries in the theory of numbers; but, 
to this day, the conjecture remains unproven for all cases.

As we guide you through this journey of the history of mathematics 
via the lives of those responsible for it, we explore also the work and devel-
opments for which they are famous. In some cases, we had to make judg-
ments about what we would present as the highlights of a mathematician’s 
achievements. This was particularly difficult with the biography of Leon-
hard Euler, who is known as the most prolific mathematician in history. 
As much as possible, we selected those works and achievements that are 
comfortably intelligible for the average person. This is consistent with our 
goal to make mathematics accessible, entertaining, and enjoyable, while at 
the same time appreciating the men and women who have discovered and 
presented the power and beauty of mathematics. After you become famil-
iar with these remarkable individuals and their achievements, you will un-
doubtedly feel motivated to learn more about those who most particularly 
intrigued or inspired you. Their life stories encourage all of us to continue 
examining the world around us and how it is supported by this fascinating 
field of study. Furthermore, with a greater understanding of and respect for 
the most unique makers of our technological world, we also gain a deeper 
insight and ability to recognize the brilliance among outstanding people in 
our current society.



1

Chapter 1

Thales of Miletus:  
Greek (ca. 624–546 BCE)

As we look back to the mathematicians of ancient times, we find that there 
is not much information regarding the details of their lives. What we do 
have is often a collection of contemporary commentaries written about 
them and perhaps some of their actual writings. We shall begin with one 
of the earliest of the outstanding major mathematicians, Thales of Miletus, 

Figure 1.1. Thales of Miletus. (Illustration 
from Ernst Wallis et al., Illustrerad verldsh-
istoria utgifven, vol. 1, Thales [Stockholm: 
Central-Tryckeriets Förlag, 1875–1879].)
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who was born in 624 BCE in the ancient Greek city of Miletus (today Milet, 
Turkey). Although he had influence in the very early study of geometry, 
he is probably best known today for what we refer to as Thales’s theorem, 
which simply says that if a triangle is inscribed in a circle with one side 
being the diameter of the circle, then the triangle is a right triangle. In addi-
tion to establishing this theorem, Thales led a very productive life not only 
as a mathematician but also as a philosopher and an astronomer, a combi-
nation that was common in his day.

The Greek society in which Thales was reared was less advanced than 
the societies of the ancient Egyptians and Babylonians, both of which cul-
tures were leaders in mathematics and astronomy at the time. Despite this, 
it is believed that Thales was the Greeks’ first true scientist. In his youth, 
Thales spent his time as a merchant, supporting his family’s business.1 His 
travels brought him to Egypt, which is where he most likely became en-
chanted with science and mathematics. He gradually reduced his thinking 
about spiritual influences on life and replaced it with scientific explana-
tions. This change of interests significantly reduced his earnings but did 
not seem to stop him. Furthermore, Thales occasionally used scientific 
knowledge to his advantage in the business world. It is said that during a 
particular winter he realized that the coming season would have a bumper 
crop of olives, and, as a result, he secured all the olive presses in the re-
gion so that his potential competition was at a strong disadvantage. This is 
merely one example how, with a scientific understanding, he did earn quite 
a sum of money.

Let’s look at some of the achievements in mathematics that are attrib-
utable to Thales. As we mentioned earlier, today he is best known for his 
accomplishments in geometry, since it is believed that he was the first to use 
deductive logic in establishing some geometric truths. In other words, he 
formalized the study of geometry from the typical practical aspects to the 
more formal deductive logic. One might say that Thales opened the doors 
for the study of geometry in ancient Greece, which peaked about three hun-
dred years later. Thales died in the year 546 BCE, after having spent the last 
part of his life teaching at the Milesian school, which he founded.

Thales is largely remembered today for the theorem that bears his 
name. Although there are numerous ways to prove the theorem, we shall 
present one here that uses simple elementary geometry. In figure 1.2, we are 
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given a triangle ABC inscribed in circle O, with side AB the diameter of the 
circle. Thales proved that angle ACB must be a right angle.

Since triangle AOC is an isosceles triangle, the base angles, that is, those 
marked with α are equal. Similarly, triangle COB is also an isosceles triangle, 
so that the two angles marked with β are also equal. Since the sum of the 
angles of a triangle is equal to 180°, we have the following: α + (α + β) + β = 
180°. Then, 2α + 2β = 180°, or α + β = 90°, which is what we wanted to prove. 
Clearly, the converse is also true; namely, that the center of a circumcircle of a 
right triangle is on the hypotenuse of the right triangle.

Another theorem that is attributed to Thales is shown in figure 1.3, 
where parallel lines AB and CD are cut by two transversal lines PCA and 
PDB. Thales proved that the following proportions are true:

PC
PA

=
PD
PB

=
CD
AB

.

Figure 1.2.
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Figure 1.3.

These demonstrations give us a good insight into the new kind of think-
ing that Thales introduced to the world; in this sense, he was a trendsetter!
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Chapter 2

Pythagoras:  
Greek (575–500 BCE)

The one mathematician whom most people remember from their early 
school days is Pythagoras, whose name is attached to a theorem. As we 
embark on our exploration of the Pythagorean theorem, we are faced with 
some questions. Chief among them is, Why is the relationship that histori-
cally bears his name—the Pythagorean theorem—so important? There are 
many potential reasons: it is easy to remember; it can be easily visualized; 
it has fascinating applications in many fields of mathematics; and it is the 
basis for much of mathematics that has been studied over the past millen-
nia. Yet, it may be best to begin at its roots—with the mathematician whom 
we credit as being the first to prove this theorem—and examine the man 
himself, his life, and his society.

When we hear the name Pythagoras, the first thing that pops into our 
minds is the Pythagoreans theorem.1 When asked to recall mathematics 
instruction somewhat beyond arithmetic, it is common to remember that  
a2 + b2 = c2. Those with a sharper memory may recall that this could be stat-
ed geometrically: the sum of the areas of the squares drawn on the legs of 
a right triangle is equal to the area of the square drawn on the hypotenuse. 
We can see this clearly in figure 2.1, where the area of the shaded square is 
equal to the sum of the areas of the two unshaded squares.
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There is probably no accurate picture of Pythagoras available today; 
however, the first biography of him was written about eight hundred years 
after his death. It was authored by Iamblichus, one of many Pythagoras 
enthusiasts, who tried to glorify him. Furthermore, although throughout 
history Pythagoras had been mentioned many other times by well-known 
writers, such as Plato, Aristotle, Eudoxus, Herodotus, Empedocles, and oth-
ers, we still do not have very reliable information about him. Some of his 
contemporary followers actually believed that he was a demigod, a son of 
Apollo, a conviction they supported by noting that his mother was a very 
beautiful woman. Some reported that he even worked wonders.2

But just as he was called the greatest mathematician and philosopher 
of antiquity by some, he was not without critics who reviled him. The latter 
claimed that he was merely the founder and chief of a sect—the Pythagore-
ans; undermining the praise of him by authors, these critics argue that the 
many scientific results that came from this sect were written by its mem-
bers and dedicated to its leader, thus, they were not the work of Pythagoras 
himself. The critics considered him a collector of facts without any deeper 
understanding of the related concepts; therefore, they believed that he did 
not truly contribute to a deep understanding of mathematics. Similar criti-
cism also was aimed at such luminaries as Plato, Aristotle, and Euclid. This 

Figure 2.1.
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is seen throughout these historical recollections. We must remain mindful 
of these uncertainties when we consider the “facts” about Pythagoras’ life 
and work.

Pythagoras was born in roughly 570 BCE on the island of Samos (located 
on the west coast of Asia Minor). His initial and perhaps most influential 
teacher was Pherecydes, who was primarily a theologist; Pherecydes 
taught religion, mysticism, and mathematics to Pythagoras. As a young 
man, Pythagoras traveled to Phoenicia, Egypt, and Mesopotamia, where 
he advanced his knowledge of mathematics and pursued a variety of other 
interests, such as philosophy, religion, and mysticism. Some biographers 
believe that, in his late teens, Pythagoras traveled first to Miletus, a town 
in Asia Minor near Samos, where he continued his studies in mathematics 
under the tutelage of the famous philosopher and mathematician Thales 
of Miletus. It is very likely that he also attended lectures from another 
Miletic philosopher, Anaximander, who further inspired Pythagoras in 

Figure 2.2. Pythagoras depicted in  
The School of Athens (fresco, Rafael, 1509–1511).
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geometry. When he returned to Samos at the age of thirty-eight, Polycrates 
had come to power; this tyrant ruled Samos from 538 to 522 BCE. We are 
not sure whether that is what prompted Pythagoras to leave Samos, since 
soon thereafter, in about 530 BCE, he moved to Croton (today known as 
Crotone, in southern Italy).

In Croton, Pythagoras founded a community—or society—whose 
main interests were religion, mathematics, astronomy, and music (or acous-
tics). Members of this community became known as the Pythagoreans. The 
Pythagoreans’ goal was to explain the nature of the world, using numbers. 
Specifically, they held a strong conviction that all aspects of nature and the 
universe could be described and expressed by means of the natural num-
bers and the ratios of those numbers. This belief, however, suffered a set-
back when the society learned that the very emblem of their community—
the pentagram (a symmetric, five-cornered star)—contradicted their core 
numerical principles.

One consequence of their overriding belief in the connectedness be-
tween the natural world and natural numbers would have been that, in par-
ticular, every two lines would have a common measure, that is, they would 
be commensurable. Two magnitudes, a and b, are called commensurable if 
there exists a magnitude m and whole numbers α and β such that a = α·m 
and b = β·m. But in the pentagon that encloses the pentagram, the sides 
and the diagonals are not commensurable! In simpler terms, if we take the 
length of one of the sides and divide it by the length of the diagonal, we 
would not end up with a rational number, one that can be expressed as a 
fraction. It is said that Hippasus of Metapontum, a student of Pythagoras, 
discovered this fact and mentioned it to people outside of the community. 
His actions were regarded as a violation of the society’s pledge of secrecy, 
so Hippasus was subsequently banned from the community. Some say that 
he died in a shipwreck, which was then regarded as a punishment from the 
gods for his sacrilege. Another version of the verbal reports holds that he 
was killed by other members of the society. Clearly, this conviction held by 
the Pythagoreans was one they took very seriously.

Beyond geometry and the relationships of lines to each other, the Py-
thagoreans held up for consideration many other aspects of the universe 
and natural world. Acoustics was one of these. In an effort to discover its 
connection to natural numbers, they studied vibrating strings. They found 
that two strings sound harmonious if their lengths can be expressed as the 
ratio of two small natural numbers, such as 1:2, 2:3, 3:4, 3:5, and so on. 
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Finding evidence such as this in many of their analyses, the Pythagoreans 
came to believe firmly that the entire universe must be ordered by such 
simple relations of natural numbers—hence, the seemingly severe reaction 
of the banning of Hippasus when he not only disproved their core belief but 
also shared that information with others.

Another core tenet of the society’s philosophy was its belief that there 
is a strong connection between religion and mathematics. Pythagoreans be-
lieved that the sun, the moon, the planets, and the stars were of a divine na-
ture; therefore, these celestial bodies could move only along circular paths. 
Furthermore, the followers of Pythagoras believed that the movements of 
these bodies created sounds of different frequencies, as a result of their dif-
ferent velocities, which in turn depended on each particular body’s radius. 
These sounds were said to generate a harmonic scale, which they called the 
“harmony of the spheres.” Yet, they believed that humans cannot actually 
hear this sound, as it surrounds us constantly, beginning from birth. Even 
the great German scientist Johannes Kepler (1571–1630) was sometimes 
characterized as a late Pythagorean, since he believed that the diameters of 
the orbits of the planets could be explained by inscribed and circumscribed 
Platonic solids (see fig. 2.3). Platonic solids are those solids whose surfaces 
consist of regular polygons of the same type (e.g., all equilateral triangles); 
there exist only five Platonic solids.3 Kepler’s idea regarding planetary orbits 
and Platonic solids was published in his work Harmonices Mundi (“The 
Harmony of the World”) in 1619.

Part of what drew a large following to Pythagoras was that he was an 
eloquent speaker—in fact, four of his speeches, given to the public in Cro-
ton, are still remembered today.4 In time, the Pythagoreans gained political 
influence in that region, even over the non-Greek population. But—as is fre-
quent in politics—they faced resistance and animosity at times. For instance, 
later (in approximately 510 BCE), the Pythagoreans were involved in various 
political disputes, then were expelled from Croton. The society tried to move 
to other towns, such as Locri, Caulonia, and Tarent, but the locals did not 
allow them to settle. Finally, they found a new home in Metapontium. That 
is where Pythagoras eventually died of old age, in around 500 BCE.

Because there was no appropriately charismatic leader to succeed Py-
thagoras, the society split up into several small groups and tried to proceed 
with their tradition, while continuing to exert political influence in various 
towns in southern Italy. They were rather conservative and well connect-
ed to established influential families, which put them in conflict with their 
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common counterparts. As soon as their opponents gained the upper hand, 
bloody persecutions of the Pythagoreans began. Given this dire political 
situation, many Pythagoreans immigrated to Greece. This was—more or 
less—the end of the Pythagoreans in southern Italy. Very few individuals 
tried to continue the tradition and to advance the Pythagorean ideals. Two 
groups that persisted were the Acusmatics and the Mathematics, which in 
the ancient days meant “teacher” and later was used to indicate “that which 
was learned.” The former group believed in acusma (i.e., what they had 
heard Pythagoras say), and did not give any further explanation. Their only 
justification was “He said it.” This gave Pythagoras a level of importance, or 
popularity, in his day, which to some extent still persists. In contrast to the 
Acusmatics, the Mathematics tried to develop his ideas further and provide 
precise proofs for them.

One of the very few Pythagoreans who remained in Italy was Archy-
tas of Tarentum (ca. 428–350 BCE). He was not only a mathematician and 
philosopher but also a very successful engineer, statesman, and military 
leader. He befriended Plato in about 388 BCE, which gave rise to the be-
lief that Plato learned the Pythagorean philosophy from Archytas, and that 
that is why he discussed it in his works. Aristotle, who was first a student 
in Plato’s academy but soon became a teacher there, wrote rather critically 
about the Pythagoreans. While Plato may have adopted many ideas from 
the Pythagoreans, such as the divine nature of planets and stars, in other 
cases he disagreed with them. Plato mentioned Pythagoras only once in his 
books, but not as a mathematician, despite his being in close contact with 
all of the mathematicians of his time and holding them in high regard.5 It 
is probable that Plato did not consider Pythagoras a proper mathematician. 

Figure 2.3. Platonic solids. (Illustration from Johannes Kepler, Mysterium  
Cosmographicum [“The Cosmographic Mystery”] [Tübingen, 1597].)
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Similarly, Aristotle mentioned the Pythagoreans but said almost nothing 
about Pythagoras himself.6

In the fourth century BCE, the Greeks distinguished between “Pythag-
oreans” and “Pythagorists.” The latter were extremists of the Pythagorean 
philosophy and consequently often the target of sarcasm because of their 
unusual, ascetic lifestyle. Still, among the Pythagoreans there were some 
members who were able to command respect from outsiders.

After the fourth century BCE, the Pythagorean philosophy disappeared 
until the first century BCE, when Pythagoras came into vogue in Rome. 
This “Neo-Pythagoreanism” remained alive for subsequent centuries. In the 
second century, Nicomachus of Gerasa wrote a book about the Pythagore-
an number theory, whose Latin translation by Boethius (ca. 500 BCE) was 
widely distributed. Today, Pythagorean ideas permeate our thinking in a 
variety of fields, and the Pythagorean theorem can be applied and proved 
in a wide variety of ways.

For example, suppose we begin with a square with its sides partitioned 
into segments of lengths a and b, as shown in figure 2.4, where we have the 
square divided into rectangles, triangles, and two smaller squares. We then 
move the four right triangles into the position of a congruent square, as 
shown in figure 2.5. We know that the acute angles of a right triangle have a 
sum of 90°; therefore, the figure in the center of this square (fig. 2.5) is also a 
square with sides of length c. The two large squares in figures 2.4 and 2.5 are 
congruent—each has sides of length a + b, and the sum of the areas of the 
four congruent right triangles in each of the two figures are equal. Therefore, 
the two smaller (unshaded) squares in figure 2.4—which have a combined 
area of a2 + b2—must have the same area as the unshaded square in figure 2.5, 
that is, c2. Thus, we have a2 + b2 = c2, and the Pythagorean theorem is proved!

For someone adept at elementary algebra, figure 2.5 nicely leads to the 
Pythagorean theorem in yet a different way. The area of the entire figure can 
be expressed in two ways:

1.	 you can find the area of the large square by squaring the length of 
a side (a + b) to get a+b( )2 = a2 +2ab+b2 , or

2.	 you could represent the area of the large square as the sum of the 
areas of the four congruent right triangles,4 1

2
ab

⎛

⎝
⎜

⎞

⎠
⎟ , plus the smaller 

inside square, c2. This is: 

	
4 1
2
ab

⎛

⎝
⎜

⎞

⎠
⎟+ c2 = 2ab+ c2 .
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Figure 2.4.

Figure 2.5.

Because you have two representations of the large square, you can sim-
ply equate them. Therefore, a2 +2ab+b2 = 2ab+ c2 . Then, by subtracting 2ab 
from both sides of the equation, you end up with the simple equivalent of  
a2 + b2 = c2. This is the Pythagorean theorem as applied to the sides of any of 
the four congruent right triangles.

Today, there are more than 400 proofs of the Pythagorean theorem. 
In 1940, the American mathematician Elisha S. Loomis (1852–1940) pub-
lished a book containing a collection of 370 proofs of the Pythagorean the-
orem done by many of the most famous mathematicians in history.7 Loomis 
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also notes that none of the proofs uses trigonometry. Students of mathe-
matics know that all of trigonometry depends on the Pythagorean theorem; 
therefore, proving the theorem with trigonometry would be circular rea-
soning. Loomis’s book also includes proofs provided by students and pro-
fessors throughout the United States, as well as one presented by a United 
States president, James A. Garfield,which was published in 1876 in the New 
England Journal of Education under the title “Pons Asinorum.”8 Garfield’s 
proof is a very interesting example of in how many ways this most popular 
theorem can be proved; therefore, we present it here.

In 1876, while still a member of the House of Representatives, the 
soon-to-be twentieth president of the United States, James A. Garfield, pro-
duced the following proof. Garfield was previously a professor of classics 
and, to this day, he has the distinction of being the only sitting member of 
the House of Representatives to have been elected president of the United 
States. Let’s take a look at the proof he discovered.

In figure 2.6, ΔABC ≅ ΔEAD , and all three triangles in the diagram are 
right triangles.

Recall that the area of the trapezoid DCBE is half the product of the 
altitude (a + b) and the sum of the bases (a + b), which we can write as 
1
2
(a+b)2 . We can also obtain the area of the trapezoid DCBE by finding the 

sum of the areas of each of the three right triangles:
1
2
ab+ 1

2
ab+ 1

2
c2 = 2 1

2
ab

⎛

⎝
⎜

⎞

⎠
⎟+
1
2
c2 .

We can then equate the two expressions, since each represents the area 
of the entire trapezoid:

2 1
2
ab

⎛

⎝
⎜

⎞

⎠
⎟+
1
2
c2  = 1

2
(a+b)2 .

This can be simplified to 2ab+ c2 = (a+b)2 , which can be written as 
2ab+ c2 = a2 +2ab+b2  or, in more simplified form, c2 = a2 + b2. This is the 
Pythagorean theorem as applied to right triangle ABC.

An astute reader may notice that Garfield’s proof is somewhat similar 
to the one believed to be used by Pythagoras (see fig. 2.5). If we “complete” a 
square from the given trapezoid in figure 2.6, we get a configuration similar 
to that in figure 2.5. This “completed square” is shown in figure 2.7.

And so we now have a little bit of history about the man we claim is 
responsible for what many people consider to be perhaps the most famous 
theorem in mathematics. The Pythagorean theorem is the one most people 
remember when they think back to their school years in mathematics.
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Figure 2.6.

Figure 2.7.
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Chapter 3

Eudoxus of Cnidus:  
Greek (390-337 BCE)

For many years it was believed that both Isaac Newton (1642–1726) and 
Gottfried Wilhelm Leibniz (1646–1716) invented calculus. Newton’s work 
was called fluxions, and Leibniz’s notation is what is used today in the study 
of differential and integral calculus. However, research in modern times 
has shown that the actual “inventor” of what we today call calculus was, in 
fact, Eudoxus of Cnidus, who was born in Cnidus, Asia Minor, and around 
390 BCE. His work, which is today considered the forerunner of calculus 
was called Method of Exhaustion. Eudoxus is often seen as the greatest of 
the classical Greek mathematicians, with the possible exception of Archi-
medes. Unfortunately, all of his written work seems to have been lost over 
the years; however, his work is cited by many mathematicians who followed 
him, including Euclid.

Most of what we know about Eudoxus’s life comes from the third-cen-
tury historian Diogenes Laertius, who wrote a compilation of biograph-
ical snippets—along with some gossip—which included Eudoxus among 
the many other famous philosophers and mathematicians.1 From Laertius, 
we know that at age twenty-three, while in Athens, Greece, Eudoxus was 
to have attended lectures at Plato’s Academy. Soon thereafter, he left for 
Egypt, where he spent sixteen months studying with priests and making 
astronomical observations from an observatory. In order to support him-
self, he did some teaching and returned to Asia Minor; later, he returned to 
Athens, where he worked at the Platonic Academy as a teacher. Eventually, 
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he returned to Cnidus, where he became a legislator and continued doing 
research. He died in about 337 BCE.

In Book V of Euclid’s Elements, much of the discussion of proportion-
ality seems to be credited to Eudoxus; however, it is not known to what 
extent subsequent mathematicians’ work was included in the discussion. 
During this time, Greek mathematicians measured objects via proportion-
ality, that is, the ratio of two similar items was compared to others in the 
same way, thereby forming a proportion. This was unlike our modern-day 
methods of measuring quantities either numerically or through various 
equations. Eudoxus is credited with giving meaning to the equality of two 
ratios, or a proportion. Euclid’s Book 5, definition 5, of Elements, which is 
largely credited to Eudoxus, reads as follows:

Magnitudes are in the same ratio, that is, the first to the second and the 
third to the fourth when, if any equal multiples are taken of the first 
and the third, and any equal multiples of the second and fourth, the 
latter equal multiples exceed, or are equal to, or are less than the latter 
equal multiples, respectively, taken in corresponding order.

Figure 3.1. Eudoxus of Cnidus.
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This could be more easily explained symbolically in the following way: 
Consider the four quantities a, b, c, and d. Now consider the ratios a

b
 and 

c
d . Let us now consider them equal, so that 

a
b  = 

c
d . Now we consider two 

arbitrary numbers, say, p and q, and form multiples of the first and third 
numbers to get pa and pc. Similarly, we form multiples of the second and 
fourth numbers to get qb and qd. If pa > qb, then it must follow that pc > 
qd. On the other hand, if pa = qb, then it must follow that pc = qd. Further-
more, if pa < qb, then it must follow that pc < qd. Bear in mind that these 
definitions referred to comparing similar quantities, not necessarily similar 
units of measure. Most important, Eudoxus’s definition does not require a, 
b, c, and d to be rational numbers; his definition of equality of two ratios 
also works for irrational numbers.

Furthermore, Pythagoreans had discovered that there exist num-
bers that cannot be expressed as a ratio, 

p
q , where p and q are integers. 

Their method of comparing two lengths a and b was to find a length u 
so that a = p∙u and b = q∙u for whole numbers p and q. It had been thought 
that for any two lengths a and b there always exists some sufficiently small 
unit u that could fit evenly into one of these lengths as well as the other. 
However, the Pythagoreans were upset when they found out that such a 
common unit of measure does not always exist; not all lengths can be com-
pared or measured in this way. For example, the length of the hypotenuse 
of an isosceles right triangle with legs of length 1 is incommensurable 
with its legs, meaning that there exists no unit of measure u that would 
fit evenly into both the hypotenuse and the leg. By the Pythagorean theo-
rem, the length of the hypotenuse of this triangle is 2 . Saying that this 
number is incommensurable with 1 means that it is impossible to have 
2  = m ∙ u and 1 = n ∙ u with the same number u in both equations and 

with both m and n whole numbers; that is, 2  and 1 cannot be expressed 
as multiples of a common unit of measure. In other words, 2  cannot 
be written as a ratio of whole numbers, m

n
; therefore, it is not a rational 

number—it is irrational.
As mentioned above, Eudoxus’s method of comparing ratios allows us 

to compare or measure irrational numbers; in this sense, he was the first 
who made irrational numbers measurable. In fact, the German mathema-
tician Richard Dedekind (1831–1916) emphasized in his writings that he 
was inspired by the ideas of Eudoxus when he developed the notion known 
as a Dedekind cut, which is now a standard definition of the real numbers. 
The idea of a Dedekind cut is that an irrational number divides the rational 
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numbers into two classes, or sets, with all the numbers of one (greater) class 
being strictly greater than all the numbers of the other (lesser) class. For 
example, 2  divides into the lesser class all the negative numbers and the 
numbers the squares of which are less than 2; divided into the greater class, 
then, are the positive numbers the squares of which are greater than 2.

Beyond rendering irrational numbers measureable, as indicated earlier, 
Eudoxus is also credited with having developed the method of exhaustion. 
Exhaustion is a process for finding the area of the shape by inscribing with-
in it a series of polygons—with ever-increasing number of sides—whose 
areas eventually converge to the area of the original figure. When con-
structed directly, the difference in area between the nth polygon and the 
original shape being measured will become smaller as n becomes larger. As 
this difference becomes arbitrarily small, the area of the original shape is 
eventually “exhausted” by the lower-bound areas, successively established 
by the sequence members. Again, the method of exhaustion preceded in-
tegral calculus. It did not use limits, nor did it use infinitesimal quantity. It 
was merely a logical procedure based on the idea that a given quantity can 
be made smaller than another given quantity by continuously halving it a 
finite number of times. One example of this would be to show that the area 
of a circle is proportional to the square of its radius.

Although the true study of calculus originated through the writings of 
Isaac Newton and Gottfried Wilhelm Leibniz, we must credit Eudoxus for 
having established with the method of exhaustion a forerunner of today’s 
calculus. Understanding Eudoxus’s contributions to the mathematics we 
know and use today grants us a true appreciation not only for his individu-
al forethought and inventiveness but also for how all learning is cumulative. 
The vast and astounding achievements we take for granted today would be 
impossible or nonexistent without the work and brilliance of those who 
preceded us and provided a foundation upon which we and our more re-
cent forebears could build.
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Chapter 4

Euclid:  
Greek (ca. 300 BCE)

No collection of extraordinary mathematicians would be complete with-
out including Euclid, who was often known as Euclid of Alexandria (a city 
in Hellenistic Egypt). Although there is hardly any evidence about his life 
available, it is believed that he lived around 347 BCE.  Centuries later, Eu-
clid was popularized by the Greek philosopher Proclus Lycaeus (ca. 450 
CE).1 What little is known about his life is that he probably received his 
mathematical training in Athens, from Plato’s pupils, since most of the ge-
ometers seem to have gravitated there. Even Euclid’s time in Alexandria is 
not clearly defined, since the Greek mathematician Apollonius, who flour-
ished around 200 BCE, makes reference to Euclid in the introduction to his 
book Conics. Therefore, we deduce that Euclid must have lived prior to that 
time, and the reference provides further evidence of the importance of his 
book Elements. Beyond this book on geometry, Euclid was also the author 
of a book on optics, which he approached from a geometric standpoint.

Although Euclid is best known for the Elements, there is no original copy 
of this work. There is also a persistent belief that the Elements—which con-
sists of thirteen books—was merely a work that Euclid wrote as a collection 
of material that had been previously developed by many mathematicians. In 
any case, the Elements is one of the most important works in mathematics, 
and although it is largely a study of geometry, it also includes a fair amount of 
number theory. What makes the Elements so remarkable is to a lesser extent 
previously unknown mathematical results contained in this work, but much 
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more the organization of the material. Euclid begins with definitions and five 
postulates (axioms), followed by theorems and their proofs. All theorems are 
derived from the five axioms stated at the beginning. Throughout the book he 
kept a very high level of rigor, dramatically raising the standard for any math-
ematical work to be written in the future. The clarity with which the theorems 
are stated and proved is unprecedented. The Elements basically defined the 
style of modern mathematical literature (see fig. 4.2).

The traditional geometry course that today is offered in most American 
high schools is based on the work of Euclid. It is, therefore, called Euclidean 
geometry, which refers to geometry on a plane (as opposed to, for example, 
geometry on the surface of a sphere). Perhaps the most significant principle 
that commands the geometry throughout the rest of Elements is Euclid’s 
fifth postulate. It reads as follows:

If a line segment intersects two straight lines, forming two interior 
angles on the same side of that given line, such that sum of their 

Figure 4.1. Euclid.
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measures is less than two right angles, then the two lines, if extended 
indefinitely, will meet on that same side of the given line, where those 
two angles have a sum less than two right angles.

This was vastly simplified in 1846 by the Scottish mathematician John Play-
fair (1748–1819), who stated an equivalent postulate, known today as Play-
fair’s axiom. It reads as follows:

In a plane, given a line and a point not on it, at most, one line parallel 
to the given line can be drawn through the point.

It is this axiom that today guides the basics in Euclidean geometry.
The high-school study of geometry in the United States is rather unique 

in the world today, in that an entire school year is devoted to the logical 
development of geometry.  This essentially began with  the Scottish math-
ematician Robert Simson’s (1687–1768) classic geometry book titled The 

Figure 4.2. The 1704 edition of Euclid’s Elements.
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Elements of Euclid. This book, published in 1756, offered the first English 
version of this classic work by Euclid; furthermore, it was also the basis for 
the study of geometry in England. In figure 4.3, we show the seventh edition 
from 1787.

Through this we can appreciate the notion that Euclid’s influence tran-
scended the study of geometry. Yet the study of geometry took its own 
path through Simson’s English version, which was then adopted and mod-
ified by the French mathematician Adrien-Marie Legendre (1752–1833). 
In 1794, Legendre wrote a textbook titled Eléments de géométrie, which in 
turn became the model for the American  high-school geometry courses as 
we know them today. It came to prominence in a rather circuitous route: 
first from Euclid, then to Simson, then to Legendre. Then, Legendre’s book 
was translated from French by David Brewster in 1828 and titled Elements 
of Geometry and Trigonometry;  from there it was adapted in 1862 by the 
American mathematician Charles Davies (1798–1876) as a school course, 

Figure 4.3. The seventh edition of The Elements of Euclid,  
by Robert Simson, published in 1787.



	 Euclid: Greek (ca. 300 BCE) 	 23

although, in the early days this was also a college-level course. Simson was 
so popular as a geometer that there were even theorems named for him 
about which he knew nothing. For example, the famous geometry theorem 
carrying his name—the Simson line—was first developed by the Scottish 
mathematician William Wallace in 1799, well after Simson’s death. It states 
that from any point on the circumscribed circle of a triangle, the feet of the 
perpendiculars drawn to each of the three sides are collinear. This can be 
seen in figure 4.4.

The Elements had great influence beyond the realm of mathematics, 
reaching across the ages to influence American history as well. For example, 
in his 1860 autobiography, President Abraham Lincoln stated about himself 
(in the third person), “After he was twenty-three and had separated from 
his father, he studied English grammar—imperfectly, of course, but so as 
to speak and write as well as he now does. He studied and nearly mastered 
the six books of Euclid, since he was a member of Congress.”2 Although the 
first six books have to do largely with geometry, they provided for Lincoln 
an ability to improve his mental faculties, especially his powers of logic and 
language. He even referred to Euclid in the famous fourth debate he had in 
1858 with Senator Stephen A. Douglas (1813–1861) in Charleston, South 
Carolina. Referencing Euclid, he said:

Figure 4.4. Simson’s line.
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If you have ever studied geometry, you remember that by a course of 
reasoning, Euclid proves that all the angles of a triangle are equal to 
two right angles. Euclid has shown you how to work it out. Now, if you 
undertake to disprove that proposition, and to show that it is errone-
ous, would you prove it to be false by calling Euclid a liar?3

It was also known at the time that when Lincoln traveled by horseback, he 
always carried a copy of Euclid’s Elements in his saddlebags. Although Lin-
coln had no formal education, we can see that his devotion to learning was 
truly remarkable, and the influence of Euclid was of particular note.

Figure 4.5.  The first American geometry course book.
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Although we have very little information about Euclid’s biography, we 
can see the legacy that he initiated through his famous book Elements. To 
the present day, not only does it provide the basis for our high-school ge-
ometry studies, but it also has played a notable role in our logical thinking 
on the national level, as was exhibited by Abraham Lincoln’s application 
of Euclid’s reasoning. Through Euclid’s influence, we see how the reach of 
these early mathematicians has spread beyond mathematics itself to en-
compass science, logic, philosophy, education, and more.
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Chapter 5

Archimedes:  
Greek (ca. 287–ca. 212 BCE)

There is no Nobel Prize for mathematics, but there are two awards in math-
ematics with a comparably high prestige, at least within the community. 
One is the Abel Prize, established in 2002 by the Norwegian government; 
the other is the Fields Medal, which was first awarded in 1936. Unlike the 
Nobel Prizes and the Abel Prize, which are awarded annually, the Fields 
Medals are awarded only every four years—and there is an age limit for 
its recipients. They must be under forty years of age. Although it might be 
strange to impose an age limit on such a prestigious award, there is a rea-
son for doing so: the award is also intended to encourage future research. 
Officially known as the international medal for outstanding discoveries in 
mathematics, the colloquial name “Fields Medal” is in honor of the Canadi-
an mathematician John Charles Fields (1863–1932). He began developing 
the award in the late 1920s and even chose the design of the medals. Unfor-
tunately, he died from a stroke two years before the first medals were award-
ed. In his personal will, he left a $47,000 grant to establish a fund for the 
award. The Fields Medal is made of gold, and its front side shows the head 
of Archimedes1 (ca. 287–ca. 212 BCE) and the inscription “Transire suum 
pectus mundoque potiri” (see fig. 5.1). This is a quotation attributed to Ar-
chimedes; it can be translated as “Rise above oneself and grasp the world.”

Although this quote is emblazoned on the Fields Medal that bears his 
likeness, Archimedes is probably most famous for having proclaimed “Eu-
reka! Eureka!” This particular phrase translates to “I’ve found it! I’ve found 



	 Archimedes: Greek (ca. 287–ca. 212 BCE) 	 27

it!” This is what he exclaimed after having stepped into a bath and suddenly 
noticing that the amount by which the water level rose was a measure of the 
volume of the part of his body he had submerged (i.e., displacement). The 
background story adjoining this anecdote is that the local tyrant, Hiero II 
of Syracuse (ca. 308–215 BCE) contracted Archimedes to find a method by 
which the purity of a golden crown could be assessed without destroying 
it. Hiero’s request stemmed from his suspicion that his goldsmiths had re-
placed with silver some of the gold he had given them for the creation of 
the crown. Archimedes was able to solve the problem because gold weighs 
more than silver. Therefore, a crown mixed with silver would have to be 
bulkier than a purely golden crown of the same weight. Consequently, the 
adulterated crown would also displace more water. Although this story is 
compelling, the oldest source for it is a book on architecture by the Ro-
man writer Vitruvius,2 which appeared approximately two hundred years 
after the alleged episode; it is very likely that the story has been substan-
tially modified and embellished, even though there may be some truth in 
it. Further undermining this tale’s veracity, Galileo Galilei (1564–1642) 
pointed out that Archimedes could have achieved a much more accurate 
measurement by using a different method that relied on his own law of 
buoyancy, which is now known as Archimedes’s principle. Archimedes is 

Figure 5.1. The Fields Medal. (Image from Stefan Zachow of the  
International Mathematical Union, retouched by King of Hearts.)



28	 M AT H  M A K E R S

also remembered as an ingenious inventor of mechanical devices, such as 
Archimedes’s screw for lifting water (see fig. 5.2) and various “super weap-
ons” of the ancient world.

Perhaps less well known is the fact that Archimedes is generally con-
sidered the greatest mathematician of classical antiquity, which is why his 
profile decorates the Fields Medal. His mathematical achievements go well 
beyond the work of other ancient Greek mathematicians; in particular, he 
applied and perfected Eudoxus’ method of exhaustion to prove geometrical 
theorems. He developed the proofs that anticipated those of modern calcu-
lus. Unfortunately, almost nothing is known about Archimedes’s life, except 
for a few anecdotes and some biographical information he mentioned in 
his writings.

Archimedes was born in the city of Syracuse on the island of Sicily in 
roughly 287 BCE. His father was an astronomer named Phidias, of whom 
nothing else is known. It is believed that Archimedes studied in the intel-
lectual center of the ancient world: Alexandria, Egypt. Supporting this be-
lief is the fact that two of Archimedes’s works have introductions addressed 
to Eratosthenes (ca. 276–ca. 195 BCE), who was in charge of the legendary 
Great Library of Alexandria, a place where the greatest scholars of the ancient 
world would meet. Eratosthenes is famous for calculating the circumference 
of the earth by measuring the sun’s angle of elevation at noon both in Alex-
andria and in a city a known north–south distance away from Alexandria. 

Figure 5.2. Archimedes’s screw. (Image from Chambers’s Encyclopedia  
(Philadelphia: J. B. Lippincott, 1875.)
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Considering the extremely primitive measuring tools Eratosthenes had at his 
disposal, he obtained a remarkably accurate result (see chap. 6).

The Greek mathematician Conon of Samos (280–220 BCE) was anoth-
er contemporary of Archimedes, and he, too, was mentioned in Archime-
des’s writings. Unfortunately, only fragments of transcriptions of Archimedes 
writings have survived, and at least seven of his treatises are completely lost. 
(Other authors referred to them, which is why we know that they must have 
existed.) However, the few copies of his treatises that survived through the 
Middle Ages were highly influential for scientists and mathematicians of the 
Renaissance, notably for Galileo Galilei (1564–1642), Johannes Kepler (1571–
1630), René Descartes (1596–1650), and Pierre de Fermat (1607–1665).

While Archimedes often uses heuristic arguments—which employed 
logical problem-solving methods—to find the solution to a mathematical 
problem, he then also provides a rigorous proof for his result. In his trea-
tise “The Method of Mechanical Theorems,” he emphasizes that heuristic 
reasoning, although often very useful to obtain an “educated guess” for the 

Figure 5.3.  Engraving from the book Les vrais pourtraits et vies  
des hommes illustres grecz, latins et payens (1586).
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solution, cannot replace a mathematical proof. In antiquity, Archimedes 
was famous for his inventions, but his mathematical writings were not so 
well known. Consequently, it was more than seven centuries until his works 
were first compiled into a comprehensive text now known as the Archime-
des codex. The codex was compiled around 530 CE by Isidore of Miletus, 
an architect of the Hagia Sophia patriarchal church in the Byzantine Greek 
capital city of Constantinople (now Istanbul). The discovery of Archime-
des’s treatise “The Method of Mechanical Theorems” is a real-life Indiana 
Jones story, one well worth a short digression: A copy of the Archimedes co-
dex was made around 950 CE by an anonymous scribe, but in the thirteenth 
century, the parchment leaves of this copy were reused for a Christian re-
ligious text. Parchment was very expensive and not readily available, so it 
was often “recycled” by scraping off the previous writing and then washing 
the pages. Mathematical texts that could only be understood by a handful 
of scholars were quite literally considered not worth the “paper” on which 
they were written. The original text on the pages of a manuscript that un-
derwent this recycling procedure are called a palimpsest, derived from an 
ancient Greek compound word meaning “scraped clean to be used again.” 
The cleaned leaves of the Archimedes codex were folded in half, so that 
each sheet became two pages of the liturgical book (see fig. 5.4).

Figure 5.4. The Archimedes Palimpsest (Archimedes’s text  
is the fainter one running from left to right).
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Fortunately, the erasure was incomplete. In 1846, while studying ancient 
biblical texts in a Greek Orthodox library in Constantinople, the German 
biblical scholar Constantin von Tischendorf (1815–1874) discovered a faint 
mathematical text covered up by the religious writing in an old prayer book. 
He excised a sample page and took it with him, but he could not determine 
the value or meaning of the mathematical text obscured by the prayers. Af-
ter Tischendorf ’s death, the University of Cambridge bought a collection of 
manuscript pages from his estate, including the palimpsest. At Cambridge, 
the unidentified sheet received a number and was filed, which could have 
been the end of the story. However, in 1899, a Greek scholar produced a cat-
alog of the books in the Constantinople library, and he also discovered the 
faint mathematical text in the prayer book. He transcribed several lines of 
it, which were called to the attention of the world’s leading expert on Archi-
medes, who realized that the text was indeed from a treatise of Archimedes. 
When he visited the library in 1906, he was permitted to take photographs of 
the palimpsest, from which he then produced transcriptions. The palimpsest 
included works by Archimedes that were thought to have been lost. This sen-
sational discovery made headlines in the newspapers throughout the world. 
However, during the Greco-Turkish War (1919–1922), the palimpsest was 
stolen, and later it was sold to a businessperson who stored it in a cellar, 
where it remained for decades and was damaged by water and mold. In 
1971, a single-sheet of the palimpsest, kept at Cambridge, was identified as 
belonging to the Archimedes palimpsest from the Constantinople library. In 
1998, the book reappeared in the public eye at a Christie’s auction, where it 
was sold to an anonymous buyer for $2 million. The severely damaged book 
was then taken to the Walters Art Museum in Baltimore for conservation, 
which was an extremely challenging task that took several years to complete.3 
Highly sophisticated imaging techniques were used to create a digital copy 
of the palimpsest before it was returned to its new owner.4 The palimpsest 
contains the only existing copy of Archimedes’s treatise “The Method of Me-
chanical Theorems,” which was an extremely important discovery, since it 
provided new insights into how Archimedes obtained his results.

In this work, Archimedes shows how the area or volume of a figure can 
be determined by dissecting it into an infinite number of infinitely small 
parts (infinitesimals), thereby anticipating the modern concept of the inte-
gral. However, since he did not view the use of infinitesimals to be rigorous 
mathematics, Archimedes also provided proofs based on already-estab-
lished methods. The proofs he gave in his treatise relied on the method of 
exhaustion and the reductio ad absurdum (“reduction to absurdity”), two 
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techniques he brought to perfection. The reductio ad absurdum is a mode 
of reasoning in which one attempts to disprove a statement by showing that 
it inevitably leads to an “absurd” conclusion, for instance, a mathematical 
contradiction such as 1 = 0. This type of argument can be traced back to 
classical Greek philosophy, notably to Aristotle, and it was also applied by 
Euclid to prove mathematical theorems. While the reductio ad absurdum is 
not limited to mathematical reasoning and is used in philosophy, the meth-
od of exhaustion is of a purely mathematical nature. It modern terms, it 
consists of finding the area (or volume) of a shape by inscribing inside it 
a sequence of polygons (or polyhedra) with increased numbers of sides, 
whose areas (or volumes) converge to that of the given shape. To reveal 
these two methods in more detail, we shall sketch Archimedes’s proof of a 
result he published in his treatise “Measurement of a Circle.” Only a frag-
ment of this work has survived; it consists of three propositions, the first of 
which states that the area of any circle is equal to the area of a right trian-
gle in which one of the legs of the right angle is equal to the radius of the 
circle, and the other leg is equal to its circumference (see fig. 5.5). That is, 
Area = 1

2
r 2πr( ) = πr 2 .

An essential element of Archimedes’s proof of the formula for the area 
of a circle is the approximation of the circle by regular polygons inscribed in 
the circle. For example, figure 5.6 shows a square and an octagon inscribed 
in a circle.

Figure 5.5.

Figure 5.6.
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The octagon can be obtained from the square by erecting isosceles tri-
angles on the sides of the square, with the square’s vertices touching the 
circle. Repeating this procedure with the octagon would produce a 16-gon. 
With each doubling of the number of sides, the area of the inscribed poly-
gon increases, but it will always be less than the area of the circumscribed 
circle. However, we can approximate the area of the circle by the area of an 
inscribed n-gon with arbitrary precision, if we only take n large enough. 
Similarly, we could use circumscribed n-gons whose sides are tangent to 
the circle. An n-gon can be decomposed into n isosceles triangles (see, 
e.g., fig. 5.6); its area is, therefore, Arean = n ⋅

base ⋅ height
2

=
1
2
cnhn , where cn is the 

perimeter of the n-gon and hn is its apothem (the length of the segment 
from the center of the n-gon to the midpoint of one of its sides). Denoting 
the area of the circle and the right triangle shown in figure 5.5 by AreaCircle 
and AreaTriangle, respectively, we want to show that AreaCircle = AreaTriangle. To 
this end, Archimedes used a double reductio ad absurdum: First, we assume 
that AreaCircle > AreaTriangle. If we take n sufficiently large, then the area of the 
inscribed n-gon will lie between the area of the circle and the area of the 
triangle, that is, AreaCircle > Arean > AreaTriangle (recall that we can make the 
approximation of the circle by a polygon as close as we wish, but Arean will 
always be smaller than AreaCircle). Since the legs of the right triangle have 
length r (radius of the circle) and c (circumference of the circle), we have 
AreaTriangle = 12 rc . On the other hand, the perimeter of the inscribed n-gon 
must be smaller than the circumference of the circle, and its apothem must 
be smaller than the radius of the circle, implying that Arean = 1

2
cnhn <  1

2
rc 

 
= 

AreaTriangle, which is a contradiction to Arean > AreaTriangle. Consequently, the 
assumption that AreaCircle > AreaTriangle must have been wrong. If we now as-
sume that AreaCircle < AreaTriangle, we may construct an n-gon circumscribed 
about the circle, such that AreaCircle < Arean < AreaTriangle. Since we have cn > 
c and rn > r for any n-gon circumscribed about the circle, we obtain Arean 
= 1

2
cnhn >  1

2
rc = AreaTriangle, in contradiction to Arean < AreaTriangle. This implies 

that the assumption AreaCircle < AreaTriangle must have been wrong as well. We 
thus have shown that neither AreaCircle > AreaTriangle nor AreaCircle < AreaTriangle 
can be true, from which we can conclude that AreaCircle = AreaTriangle.

Using the technique of inscribing and circumscribing regular polygons 
in and about a circle, Archimedes was also able to determine the value of 
π with remarkable accuracy. The number π is defined as the ratio between 
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the circumference and the diameter of a circle. For an inscribed or circum-
scribed n-gon, the ratio 
perimeter

2 ⋅apothem
=
cn

2hn
 

will approach π as n gets larger and larger. Archimedes developed a numerical 
procedure to calculate the perimeter and apothem of inscribed and circum-
scribed n-gons and carried out the calculation for n = 12, 24, 48, and 96, thereby 
obtaining a lower and an upper limit for the value of π:
 310

71
< π <  31

7
=

22
7
=  3.142 . . . 

(where π = 3.14159265 . . .). The approximation of π by the fraction 
22
7  be-

came very popular in antiquity and was commonly used in calculations un-
til the Middle Ages. Today, this approximation is also quite popular among 
students in younger grades.

In “On the Sphere and Cylinder,” Archimedes shows that the surface 
area of a sphere is four times that of a great circle (a circle on the surface 
of a sphere with its center at the center of the sphere). In other words, Area 
= 4πr2, where r is the radius of the sphere. The volume contained in the 
sphere is two-thirds the volume of a circumscribed cylinder; or symboli-
cally, VolumeSphere = 4πr

3

3
, VolumeCylinder = 2πr3). Archimedes was very proud 

of this result and consequently left instructions for his tomb to be marked 
with a sphere inscribed in a cylinder. In fact, the Roman philosopher Cicero 
(106–43 BCE) visited Archimedes’s tomb when he was in Sicily in 75 BCE, 
137 years after Archimedes’ death. After some searching, he found the tomb 
“enclosed all around and covered with brambles and thickets,” and he wrote:

I noticed a small column arising a little above the bushes, on which 
there was a figure of a sphere and a cylinder. . . .

Unfortunately, the location of Archimedes’s tomb is not known. In an-
other nod to this brilliant mathematician, the reverse of the Fields Medal 
displays a sphere inscribed in a cylinder (see fig. 5.7).

Archimedes’s proof of the relationship between the volume of a sphere 
and a circumscribed cylinder is a masterpiece of mathematics. However, 
rather than provide a detailed version of his proof, we provide a less rigor-
ous version, which will be more intuitively comprehensible. We will need 
the formula for the volume of a cone; therefore, we will first provide a heu-
ristic argument for how to compute the volume of a cone. Consider a regu-
lar square pyramid whose height is half the length of a side of its base. We 
can combine six of such pyramids to form a cube, as shown in figure 5.8.
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Hence, the volume of one pyramid must be one sixth of the vol-
ume of the cube. If a is the length of a side of the cube, we obtain 
VolumePyramid =

1
6
VolumeCube =

1
6
a3 = 1

3
a2 a
2
⎛

⎝
⎜
⎞

⎠
⎟ =
1
3
Bh , where B is the area of the base of the 

pyramid and h is the length of its height. We will now argue that the for-
mula volume =  1

3
base area( )(height)  is also valid for arbitrary pyramids as well 

as for cones. Toward this end, we employ a theorem known as Cavalieri’s 
principle. It is named after the Italian mathematician Bonaventura Cavalieri 
(1598–1647), but it is actually just a modern implementation of Archimedes’s 
method of exhaustion. If we consider two regions in space included between 

Figure 5.7. The Fields Medal (reverse). (Image from Stefan Zachow of  
the International Mathematical Union, retouched by King of Hearts.)

Figure 5.8.
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two parallel planes, then Cavalieri’s principle states that if every plane parallel 
to these two planes intersects both regions in cross sections of equal area, 
then the two regions have equal volumes. Cavalieri’s principle is very intuitive 
and can be nicely illustrated with a stack of coins, as shown in figure 5.9. The 
volume of the stack does not change if we misalign the coins.

In fact, we may also melt a coin and make a triangular coin out of it, 
or any other shape; as long as the areas of the cross sections of a region stay 
the same, its volume is preserved. This implies that if we have two pyramids 
with the same base area, B and the same height, H, they must have the 
same volume—no matter whether they are oblique or irregular. The same 
is true for a cone (a cone can be thought of as the limit of a pyramid whose 
base is a regular n-gon, when n approaches infinity). For a cone as well as 
for any pyramid, the base area and the height are the only quantities rele-
vant for calculating the volume, which is always equal to 1

3
base area( )(height) . 

We may now consider, as Archimedes did, a sphere inscribed in a cylinder. 
Archimedes noticed that the volume of the cylinder minus the volume of 
the sphere is exactly equal to the volume of a double cone, which is shown 
symbolically in figure 5.10.

Figure 5.9.

Figure 5.10.
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To see that this is true, we just have to convince ourselves that at any 
height, the sum of the areas of the cross sections of the sphere and the dou-
ble-cone equals the area of the cross section of the cylinder. In figure 5.11, 
we show the vertical projection of a sphere of radius r inscribed in a cylin-
der, together with the double cone. The cross section of the sphere at height 
h is a circle with radius AD = r 2 − h2 . The cross section of the double cone 
at height h is a circle of radius BD = h. Since the area of a circle of radius R is 
equal to πR2, the sum of the cross-sectional areas of sphere and double cone 
at height h is π(r2 – h2) + πh2 = πr2, which is exactly the cross-sectional area 
of the cylinder. Thus, by Cavalieri’s principle, the volume of the cylinder is 
exactly equal to the sum of the volumes of the sphere and the double cone. 
Since the volume of the double cone is 2 ⋅1

3
base area( ) ⋅ height( ) =  2 ⋅1

3
πr 2 ⋅ r = 2

3
πr3  

and the volume of the cylinder is (base area) · (height) = πr2 ·2r = 2πr3, 
the volume of the sphere must therefore, be 2πr3 − 2

3
πr3 = 4

3
πr3 , which is two-

thirds of the volume of the cylinder, as Archimedes has shown.
In his lifetime, Archimedes was much more famous for his mechanical 

inventions than for his outstanding and far-reaching work in mathematics, 
yet he was convinced that pure mathematics was the only worthy pursuit. 
His fascination with geometry in particular is beautifully described by the 
Roman writer Plutarch (46–120 CE):

Oftentimes, Archimedes’ servants got him against his will to the baths, 

Figure 5.11.
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to wash and anoint him, and yet being there, he would ever be draw-
ing out the geometrical figures, even in the very embers of the chim-
ney. And while they were anointing of him with oils and sweet savors, 
with his fingers he drew lines upon his naked body, so far was he taken 
from himself, and brought into ecstasy or trance, with the delight he 
had in the study of geometry.5

Archimedes was killed in 212 BCE during the capture of Syracuse by 
Roman forces under General Marcus Claudius Marcellus in the Second Pu-
nic War. Plutarch recounts three slightly different versions of his killing; the 
most popular one is that Archimedes was contemplating a mathematical 
diagram when the city was captured. A Roman soldier commanded him to 
come and meet General Marcellus, but Archimedes declined, saying that he 
had to finish working on the problem. The famous last words attributed to 
Archimedes are, “Do not disturb my circles,” a reference to the circles in the 
mathematical drawing that he was supposedly studying.
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Chapter 6

Eratosthenes:  
Greek (276–194 BCE)

When we look back to the brilliant mathematicians of ancient Greece, our 
knowledge of their individual lives is, understandably, rather limited. In 
the case of Eratosthenes, who was largely known for his mathematical and 
geographical achievements, we again do not have record of many details of 
his life. Despite this dearth of personal information, we do know that his 
amazing geographical skills enabled the people of his day to understand 
and garner an appreciation of the size of the earth. Later we will consider 
his brilliant method of measurement; but, in the meantime, let us consider 
his biography—or, at least, what little we know about it.

Eratosthenes was born in 276 BCE in Cyrene, which is now a part of 
Libya.1 He was a son of Aglaos and, in his youth, studied in a local school 
where basic academic subjects were taught. Later, in Athens, he continued 
his studies, which centered on philosophy. There he also wrote poetry, in-
cluding Hermes, a religiously oriented poem concentrating on the life his-
tory of the gods. He also wrote about historical topics, and those writings 
were quite well received at the time. As a result, in 245 BCE and aged only 
thirty, he was offered a position as librarian of the Great Library of Alexan-
dria. Upon accepting the role, he moved to Alexandria, where he remained 
for the rest of his life. Within five years, he was appointed chief librarian, 
one of the responsibilities of which was tutoring the children of royalty. 
During his tenure as chief librarian, he enlarged the holdings of the library 
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considerably. He was motivated by the notion that he would want his li-
brary to be considered the best in the Greek world. As we can see from his 
writings, he believed that all humans were good—a theme that contradicted 
Aristotle, who believed that essentially only the Greeks were good. 

In 195 BCE, Eratosthenes contracted ophthalmia, an inflammation of 
the eye, which resulted in blindness. Afterward, he became very depressed 
and tried to commit suicide by starving himself. Death actually came a year 
later, in 194 BCE, when he had reached the rather-old age of eighty-two.

Two contributions have preserved Eratosthenes’s name and have al-
lowed him to remain famous today. As we hinted at earlier, Eratosthenes 
developed a very clever technique for measuring the circumference of the 
earth. Today, such a task is not terribly difficult; thousands of years ago, 
though, this was no mean feat. His measuring of the earth was one of the 
earliest forms of geometry—in fact, the word geometry is derived from the 
Greek for “earth measurement.”  In about 230 BCE, he measured the earth’s 
circumference, and it was remarkably accurate—less than 2 percent in error.

How did he manage such an accomplishment? To make this measure-
ment, Eratosthenes relied on the relationship of alternate-interior angles 
of parallel lines, as well as his resources as the chief librarian of Alexan-
dria. Through the library, Eratosthenes had access to records of calendar 
events. Upon examining these records, he discovered that in a town called 
Syene (now called Aswan) on the Nile River, the sun was directly overhead 

Figure 6.1. Eratosthenes. It is a copper engraving from the 18th century.  
See https://www.alamy.com/stock-photo-eratosthenes-of-cyrene-circa 

-276-194-bc-greek-scholar-chief-librarian-23533697.html.
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at noon on a certain day of the year. As a result of the sun’s position, the 
bottom of a deep well in Syene was entirely lit, and a vertical pole (being 
parallel to the rays hitting it) cast no shadow.

At the same time, however, a vertical pole in the city of Alexandria did 
cast a shadow. When that day arrived again, Eratosthenes measured the 
angle formed by such a pole and the ray of light from the sun that went past 
the top of the pole to the far end of the shadow ( 1 in fig. 6.2). He found 
that angle to be about 7°12’, or 1

50
 of 360°.

Assuming the rays of the sun to be parallel, he knew that the angle 
at the center of the earth must be congruent to 1, and, hence, must also 
measure approximately 

1
50  of 360°. Since Syene and Alexandria were nearly 

on the same meridian, Syene must be located on the particular radius of the 
circle that was parallel to the rays of the sun. Eratosthenes thus deduced that 
the distance between Syene and Alexandria was 1

50
 of the circumference of 

the earth. The distance from Syene to Alexandria was believed to be about 
5,000 Greek stadia. (A stadium was a unit of measurement equal to the 
length of an Olympic or Egyptian stadium.) Therefore, Eratosthenes con-
cluded that the circumference of the earth was about 250,000 Greek stadia, 
or about 24,660 miles. This is very close to modern calculations, which have 
determined the circumference of the earth to be 24,901 miles. So how’s that 
for some real geometry!

Eratosthenes also made a contribution to our understanding of num-
bers. More specifically, he developed a method that we can use to generate 
prime numbers—that is, numbers that have exactly two divisors: the num-
ber 1 and the number itself. This method uses what we call today the sieve 
of Eratosthenes, which begins with a table of consecutive numbers (going 
on as far as you wish) and requires scratching out certain multiples of num-
bers until all that remain are the prime numbers within the numerical range 
of the table. Let’s consider beginning with the numbers from 1 to 100, as 
shown in figure 6.3. The procedure that Eratosthenes suggested is to begin 
with the number 2 and scratch out every multiple of 2 throughout the table. 
Then, go to the next number that is still not scratched out—the number 3—
and once again scratch out all the multiples of that number. Continuing this 
procedure, we come to the next remaining number, which is 5, and, once 
again, we scratch out all multiples of 5 in the table. The next number we 
consider is the number 7, and again we scratch out all of the multiples of 7 
that remain on the chart (i.e., the number 49). Using his procedure, we are 
left with only prime numbers. Therefore, in figure 6.3, we see all the prime 
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numbers up to 100 are those that have not been eliminated. Note: Even 
though the number 1 was originally on our table, it is by definition not a 
prime number. This is because a prime number has exactly two factors (or 
divisors): itself and the number 1. Because the number one has only one 
factor or divisor (the number 1 itself), the number 1 is not a prime number.

Here we have two contributions that Eratosthenes has made to our 
understanding of mathematics, one in geometry, and the other in number 
theory. Considering the era in which these discoveries were made, and the 
fact that they still hold up today, we can say they were quite astonishing.

Figure 6.3. The sieve of Eratosthenes. In this figure, the numbers 2, 3, 5, and 7  
were the only numbers required to eliminate all nonprime numbers  
between 2 and 100 (that is why they appear in a smaller white box).
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Chapter 7

Claudius Ptolemy:  
Greco-Roman (100–170)

Egypt became a Roman province in 30 BCE, and in the year 100 CE, Clau-
dius Ptolemy was born in Alexandria, Egypt. Ptolemy would soon become 
famous as a mathematician, an astronomer, and a geographer. He is known 
today for his famous work the Almagest, which is an ancient treatise on 
astronomy that consists of thirteen books. Although, again, we are lacking 
details about this brilliant mathematician from ancient times, we can de-
duce some information about his life. Because the Almagest was written in 
Greek, we believe that he descended from a Greek family living in Egypt. 
We know today that he made all of his astronomical observations from Al-
exandria between the years 127 and 141 CE.

Ptolemy’s theory of planetary motion held that the universe was geo-
centric, that is, the earth was the center of the universe. This thinking re-
mained intact until the Renaissance, when Nicolaus Copernicus (1473–
1543) a Polish astronomer, put forth a heliocentric theory, placing the sun 
at the center of the universe and indicating that the earth was one of the 
planets orbiting it. Yet it was the German mathematician and astronomer 
Johannes Kepler (1571–1630) who, with his three famous laws of elliptical 
planetary motion, defined the path of these planetary rotations about the 
sun (see chap. 13).

To do his mathematical calculations of planetary motion, Ptolemy 
created a table of chords, which was an early form of trigonometric func-
tions, largely equivalent to the sine function. It is perhaps because of his 
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discoveries related to these chords that we best know of Ptolemy’s work. He 
needed to be able to approximate the lengths of chords in circles in terms 
of the radius of the circle and the angle cut off by the chord. Therefore, to 
derive his chord tables, he created a theorem. His chord function was, as 
mentioned above, related to the sine function: 

chordθ =120sin θ
2
⎛

⎝
⎜
⎞

⎠
⎟ = 60 2sin

πθ
360

radians
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ . 

But this is not all he was able to do while examining chords: He 
further came to an approximation of π = 3 17

120
= 3.1416 , by using a regular 

polygon of 360 sides inscribed in a circle and working with the chords1; and 
he used chord 60° = 3 ≈ 1.732 .

He is also well known for having established geometric theorems, in-
cluding a rather-unusual relationship among regular shapes inscribed in 
a circle. For example, in chapter 10 of book 1 of the Almagest, Ptolemy 

Figure 7.1. An early Baroque rendition of Claudius Ptolemy  
(etching by Theodor de Bry). http://penelope.uchicago.edu/Thayer/E/ 

Roman/Texts/Ptolemy/Tetrabiblos/home.html.
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produced geometric theorems that he used to compute the chords dis-
cussed above. He claimed that a regular pentagon, hexagon, and decagon—
all inscribed in the same circle—would have an unexpected relationship. 
When the regular pentagon, hexagon, and decagon are inscribed in the cir-
cle, the area of the square on one side of the pentagon is equal to the sum 
of the areas of the squares on one side of the hexagon and on one side of 
the decagon.

Furthermore, we well know Ptolemy because of the theorem that he 
developed and that bears his name: Ptolemy’s theorem. It states that in a 
cyclic quadrilateral (i.e., one that is inscribed in a circle), the product of the 
diagonals is equal to the sum of the products of the opposite sides. The con-
verse of this theorem is also true: if a quadrilateral is such that the product 
of the diagonals is equal to the sum of the products of the opposite sides, 
then the quadrilateral can be inscribed in a circle (meaning that each of the 
four vertices lies on the same circle).

We will explore this in figure 7.2. There we have a quadrilateral ABCD 
inscribed in the circle O, such that AC · BD = AB · CD + AD · BC.

Ptolemy’s theorem can only be established with rigid figures, that is, 
figures whose given information can only describe one figure.  For example, 
a quadrilateral whose side lengths are given can take on various shapes, but 
if this quadrilateral is inscribed in a circle then it is rigid, since it can only 

Figure 7.2.
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take on one shape. We notice that all triangles are rigid figures; once they 
are properly defined, they are in a fixed position. In contrast, a quadrilat-
eral is not necessarily in a fixed position, since its shape is not necessarily 
determined by the lengths of its sides. However, a cyclic quadrilateral is a 
rigid figure, which means that it allows us to establish Ptolemy’s theorem. 
(If the quadrilateral is not cyclic, then the following relationship—some-
times known as the Ptolemy inequality—is as follows: AC · BD < AB · CD 
+ AD · BC.)

If we apply Ptolemy’s theorem to a rectangle, which is always a cyclic 
quadrilateral because it can be easily inscribed in a circle, the result is the 
Pythagorean theorem (a2 + b2 = c2). In other words, if we apply Ptolomy’s 
theorem to rectangle ABCD shown in figure 7.3.  we obtain dd = ll + ww, or 
d2 = l2 + w2, which is the Pythagorean theorem as applied to triangle ABC.

Another curiosity regarding Ptolemy’s theorem can be found by ap-
plying it to a regular pentagon inscribed in the circle. Consider the regular 
pentagon ABCDE shown in figure 7.4. Let’s apply Ptolemy’s theorem to the 
quadrilateral ABCD, noting that all of the sides (s) of the pentagon are the 
same length and the diagonals (d) have the same length. Applying Ptolemy’s 
theorem to quadrilateral ABCD, we find: dd = sd + ss, or d2 = sd + s2. We 
now divide through by s2 to get d

2

s2
=
d
s
+1 . 

Figure 7.3.



48	 M AT H  M A K E R S

If we let ds = g , then we have g2 – g –1 = 0. Therefore, g = 1+ 5
2

≈ 1.618034 , 
which is the golden ratio. Interested readers may want to discover the true 
wonders of the golden ratio, so we recommend The Glorious Golden Ratio, 
by A. S. Posamentier and I. Lehmann.

For its time, another great work by Ptolemy was his eight-book work 
on geography, which was severely limited in its accuracy because there was 
little knowledge about the world beyond the Roman Empire and specu-
lation was rampant. In the fifteenth century, a depiction of Ptolemy’s un-
derstanding of the world map was created, based on his description of the 
world map and his work in the Almagest. That map is presented here in 
figure 7.5.

Unfortunately, as mentioned above, we know very little about the de-
tails of Ptolemy’s life, which we believe ended in the year 170 CE in Alexan-
dria, Egypt. Given the disparity between his brilliant geometrical theorems 
and his remarkable errors and inaccuracy in astronomy and geography, he 
was undoubtedly an intriguing figure. Here we acknowledge both aspects of 
his achievements and yet honor him for his famous theorem in geometry, 
which proves useful to this day.

Figure 7.4.
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Figure 7.5. Ptolemy’s world map, as depicted in the fifteenth century,  
based on Ptolemy’s works and descriptions. (Francesco di Antonio del Chierico, 

1433–1484, an artist of the early renaissance period, in Florence.)
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Chapter 8

Diophantus of Alexandria:  
Hellenistic Greek (ca. 201–285)

In the study of elementary algebra when one saw an equation that looked 
like this: x + y = 7, the usual reaction was there needs to be a second equa-
tion with either x and/or y. Otherwise, the feeling was that a solution could 
not be found. However, there are, in fact, several solutions to this equation. 
If we limit our solutions to integral values, one possible solution would be 
x = 2 and y = 5, since 2 + 5 = 7. This type of thinking was first introduced 
by the Hellenistic Greek mathematician Diophantus, who lived in Alex-
andria, Egypt, during the middle of the third century of the Common Era 
and is purported to have lived about eighty-four years. Unfortunately, as 
with other luminaries from ancient times, very little is known about his life; 
what has made him well known today is that he is often referred to as the 
“father of algebra.” Although some fragments of his work have been found, 
his fame today is for a series of books titled Arithmetica, which presented 
algebra for the first time as we know it today, and was a forerunner to the 
study of number theory.

In Arithmetica, Diophantus begins by introducing some concepts of 
numbers and explains a new notation using a symbol for a variable, some-
thing that probably did not catch on for another thousand years, and that 
today we see as ordinary algebra. He introduced positive and negative num-
bers, and he was the first to consider fractions as actual numbers. He be-
gins in his first book of Arithmetica with some simple problems and then 
progresses into those that have multiple solutions—albeit in integer form. 
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He later continues to include problems that involve raising numbers to a 
higher power.

For example, a Diophantine equation—one that may have many solu-
tions, yet all integral—could be the following: 1

x
+
1
y
=
1
n

. There are three 
integer solutions to this equation when n = 4:

1
8
+
1
8
=
1
4

,

1
6
+
1
12

=
1
4

, and

1
5
+
1
20

=
1
4

.

The fame of Diophantus’s work has certainly been far-reaching. In 
1621, the French mathematician Claude Gaspard Bachet de Méziriac 
(1581–1638) wrote Les éléments arithmétiques, which was a translation 
from Greek to Latin of Diophantus’s Arithmetica (see fig. 8.2).

Figure 8.1. Diophantus of Alexandria.  
https://commons.wikimedia.org/wiki/Category: Diophantus
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A copy of this Bachet translation was owned by the French mathema-
tician Pierre de Fermat (1607–1665). In the margin of a page in the 1621 
edition of the book, Fermat wrote that he had a proof that the equation xn 
+ yn = zn, where n ≥ 3, has no integer solutions—but he claimed not to have 
enough space in the margin to do the proof. Interestingly enough, this 
statement was included in a 1670 edition of Diophantus’s Arithmetica, 
as shown in the next-to-last paragraph in figure 8.3, under the heading 
OBSERVATIO DOMINI PETRI DE FERMAT. This became known as Fermat’s 
last theorem, and it perplexed mathematicians for 358 years, until the British 
mathematician Andrew Wiles produced a proof in 1995 (see chap. 15).

Diophantine equations do play a role in our everyday computations. 
Suppose we wish to determine in how many ways you can purchase six-cent 
stamps and eight-cent stamps for five dollars. Most people will promptly re-
alize that there are two variables that can be represented as x and y. Letting 
x represent the number of eight-cent stamps and y represent the number of 
six-cent stamps, the equation 8x + 6y = 500 should follow. Then, by dividing 

Figure 8.2. Title page of the 1621 
edition of Diophantus’s Arithmetica, 

translated into Latin by Claude 
Gaspard Bachet de Méziriac.
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both sides of the equation by 2, this would be converted to 4x + 3y = 250. 
At this juncture, we realize that, although this equation appears to have an 
infinite number of solutions, it may or may not have an infinite number of 
integral solutions. Moreover, from the context of the original problem, it 
may or may not have an infinite number of positive integral solutions (since 
a number of stamps must be a positive integer number).

The first consideration is whether integral solutions, in fact, exist. Here 
we employ a useful theorem, that states that, if the greatest common factor 
of a and b is also a factor of k, where a, b, and k are integers, then there exist 
an infinite number of integral solutions (both positive and negative) for x 
and y in the equation ax + by = k. There we have a Diophantine equation, as 
we are looking for integer solutions.

Since the greatest common factor of 3 and 4 is 1, which is a factor of 
250, there exist an infinite number of integral solutions for the equation 4x 

Figure 8.3. A page from the 
1670 edition of Diophantus’s 
Arithmetica, which includes 

Fermat’s commentary,  
particularly his last theorem.
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+ 3y = 250. Reverting back to the original problem, we wish to know how 
many (if any) positive integral solutions exist. One possible method de-
veloped by Swiss mathematician Leonhard Euler (1707–1783) is often 
referred to as Euler’s method. Following this method, we begin by solv-
ing for the variable with the coefficient of least absolute value, which, in 
this case, is y. Therefore, we get y = 250−4x3 , which we then write in separate 
integral parts as y = 83+ 1

3
− x − x

3
= 83− x+1− x

3
. We now introduce another vari-

able, t, and let t = 1− x
3

, which allows us to get x = 1 – 3t. Since there is no frac-
tional coefficient in this equation, the process does not have to be repeated. 
Now, substituting x into the original equation, we get y = 250−4 1−3t( )

3
= 82+4t . 

For various integral values of t, corresponding values of x and y will be gen-
erated. From our original problem, we realize that the values of x and y need 
to be positive integers. Therefore, x = 1 – 3t > 0, or t < 1

3
, and y = 82 + 4t > 

0, which leads to t > −20
1
2 . Combining these gives us −20 1

2
< t < 1

3
, which tells us 

that there are 21 possible combinations of six-cent stamps and eight-cent 
stamps that can be purchased for five dollars.

This is a simple example of how a Diophantine equation can be solved 
using Euler’s method; of course, for this equation, we only considered in-
tegral solutions, and, more specifically, only positive integral solutions (be-
cause of the nature of problem involving the number of stamps purchased). 
There are many methods to solve Diophantine equations, some of which 
can take many steps to reach a solution. However, we are indebted to Dio-
phantus of Alexandria for generating these equations and thereby forming 
the foundation of algebra.

One of the recreational problems in the form of number games in the 
late fifth century is sometimes considered to be Diophantus’s epitaph:

“Here lies Diophantus,” the wonder behold.
Through art algebraic, the stone tells how old:
“God gave him his boyhood one-sixth of his life;
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ’ere marriage begun.
In five years there came a bouncing new son;
Alas, the dear child of master and sage,
After attaining half the measure of his father’s life, chill fate took him.
After consoling his fate by the science of numbers for four years, he 

ended his life.”1
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The puzzle implies that Diophantus lived to be about eighty-four years 
old, which is the only evidence we have of his actual age.

Despite the limited tools that Diophantus had at his disposal, he did 
solve many mathematical problems and with his work Arithmetica inspired 
mathematicians such as the Arabic mathematician al-Karaji (c.980–1030) 
and also set the stage for the French mathematician Pierre de Fermat (1601–
1665), who might be considered the founder of modern number theory.
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Chapter 9

Brahmagupta:  
Indian (598–668)

It is well known that our current system of numbers stems originally from 
India; yet it reached Western Europe via the Arabs, with whom Fibonacci 
worked in the early part of the thirteenth century (see chap. 10). Hence, we 
call our number system the Hindu-Arabic numerals. The mathematician 
perhaps most responsible for spreading this Indian-numeral system is the 
mathematician Brahmagupta, who was born in India in the year 598 CE 
in the town of Bhillamala (today, Bhinmal), which was the capital of Gur-
jaradesa, the second-largest kingdom of Western India. Brahmagupta was 
largely interested in astronomy, but also showed a great deal of creativity 
in mathematics, and it is for this reason that here we will highlight some of 
his findings. However, before we move on to his mathematical accomplish-
ments, we should mention some of his astronomical discoveries, which in-
clude establishing that the earth is closer to the moon than it is to the sun, 
and calculating the earth’s circumference to be about 22,500 miles. (The 
actual circumference of the earth is 24,901 miles.) He also found that the 
length of a year was 365 days, 6 hours, 12 minutes, and 19 seconds, which 
is close to the actual year length that we know today: 365 days, 5 hours, 48 
minutes, and 45 seconds.

In the year 628 CE, Brahmagupta wrote a book called Brāhmas-
phuṭasiddhānta (Brahma’s Correct System of Astronomy), which was based 
on previous works but also contained many of his new ideas, some of which 
we will present later. One striking feature of his book is that it was the first 
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to mention zero as a number rather than as a placeholder. Later in Brāh-
masphuṭasiddhānta, he describes arithmetic operations on negative num-
bers. He even delved into the question of zero divided by zero, which he 
defined as equal to zero; as we know today, though, that division remains 
as undefined.

Brāhmasphuṭasiddhānta contains twenty-four chapters; chapter 18, on 
calculations, presents a method of finding both the square and the square 
root of numbers, as well as the cube and the cube root of numbers. He also 
introduced fractions in the way we write them today, and he provided the 
arithmetic for adding and multiplying fractions; for example, 

a
c
+
b
d
⋅
a
c
=
a(d +b)
cd

.

He also presented a formula for finding the solution to a linear equation, 
then leads up to the solution of a quadratic equation. Thus, he provided us 

Figure 9.1. Brahmagupta. Nineteenth-century illustration of a Hindu astronomer. 
Original caption: “Dybuck, an astronomer, calculating an Eclipse.” The illustration, 
as well as the term dybuck, is derived from an etching with the title “Daybouk ou 

astronome hindou” by Frans Balthazar Solvyns (between 1791 and 1803), published 
in his Les Hindous (1808). See https://gl.wikipedia.org/wiki/Brahmagupta#/ 

media/File:Hindu_astronomer,_19th-century_illustration.jpg.
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with a variation of the formula that we are accustomed to using for solving 
the quadratic equation ax2 + bx + c = 0, namely, x = −b± b2 −4ac

2a
.

Brahmagupta also provided formulas for finding the sum of the squares 
of the first n natural numbers, n(n+1)(2n+1)

6
, and the cubes of the first n nat-

ural numbers, n(n+1)
2

⎛

⎝
⎜

⎞

⎠
⎟

2

. He also developed a way of generating Pythagorean 
triples by letting a = mx, b = m + d, and c = m(1 + x) – d, where d = mx

x+2 ;  
with this we can then show by means of  a simple algebraic application,  
a2 + b2 = c2.

Perhaps the relationship that Brahmagupta is best known for is the for-
mula he developed for finding the area of a cyclic quadrilateral, or a quad-
rilateral for which all four vertices lie on the same circle. Referring to the 
quadrilateral ABCD in figure 9.2, where the lengths of the sides are marked 
as a, b, c, and d, Brahmagupta showed that the area of the cyclic quadrilat-
eral ABCD can be found by the formula (s− a)(s−b)(s− c)(s− d) , where s is the 
semiperimeter, that is,

 
s = a+b+ c+ d

2
.

This is an interesting extension of the famous formula that the Roman 
mathematician Hero of Alexandria (10–70 CE) developed for finding the 
area of a triangle, given only the lengths of the sides, a, b, and c: Area = 
s(s− a)(s−b)(s− c) , where, once again, s is the semiperimeter. In effect, Brah-

magupta considered Hero’s formula as treating the triangle as if it were a 
quadrilateral with the side d = 0.

An interesting extension of Brahmagupta’s formula to the gen-
eral quadrilateral is that the area of any (convex) quadrilateral = 
s− a( ) s−b( ) s− c( ) s− d( ) − abcd ⋅cos2 α+γ

2( ) , where, once again, a, b, c, and d are the 

Figure 9.2.
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lengths of the sides, s = a+b+ c+ d
2

, and α and γ are the measures of a pair of 
opposite angles of the quadrilateral.

This formula shows that of all quadrilaterals that can be formed from 
four given side lengths, the one with the maximum area is the cyclic quad-
rilateral. The maximum area is achieved when abcd ⋅cos2 α +γ

2
⎛

⎝
⎜

⎞

⎠
⎟ = 0 , which occurs 

when α + γ = 180°—a fact that holds true only for cyclic quadrilaterals.
Brahmagupta also found that for a cyclic quadrilateral of consecutive 

sides of lengths a, b, c, and d, where m and n are the lengths of the diagonals, 
the following relationship holds true:

m2 = (ab+ cd)(ac+bd)
ad +bc

n2 = (ac+bd)(ad +bc)
ab+ cd .

Another interesting relationship regarding cyclic quadrilaterals and at-
tributed to Brahmagupta is that in a cyclic quadrilateral with perpendicular 
diagonals, the line through the point of intersection of the diagonals and 
perpendicular to a side of the quadrilateral bisects the opposite side.

The proof of this is rather simple and gives a further insight into cy-
clic quadrilaterals. Consider figure 9.3, where diagonals AC and BD of 
cyclic quadrilateral ABCD are perpendicular at G, and GE  AED. We 

Figure 9.3.
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just need to prove that GE bisects BC at P. In right triangle AEG, 5 is 
complementary to 1, and 2 is complementary to 1. Therefore, 5 = 2. 
However, 2 = 4. Thus, 5 = 4. Since 5 and 6 are equal in measure 
to half the measure of arc DC, they are congruent. Therefore, 4 = 6, and 
BP = GP. Similarly, 7 = 3 and 7 = 8, so that GP = PC. Thus CP = PB.

Using his mathematical talents, Brahmagupta was also a major player 
in the development of astronomy, as evidenced by an astronomical treatise 
he published in 667, which is entitled Khaṇḍakhādyaka. Thus, Brahmagup-
ta is known in the world of astronomy as well as mathematics. He died 
shortly thereafter, in the year 668, in the town of Ujjain, India. His legacy 
today is primarily extending Hero’s formula for the area of a triangle to that 
of a cyclic quadrilateral.
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Chapter 10

Leonardo Pisano Bigollo, 
“Fibonacci”: Italian (1170–1250)

With the dawn of the thirteenth century, both the field of mathematics and 
the European world began to acquire their modern image. This was large-
ly due to the Italian mathematician Leonardo Pisano Bigollo, best known 
as Fibonacci. Fibonacci forever changed Western methods of calculation, 
which facilitated the exchange of currency and trade. Furthermore, he pre-
sented mathematicians with challenges that remain unsolved to this day; 
they are published in countless books and provide material for a journal 
published quarterly since 1963 by the Fibonacci Association.

Leonardo Pisano Bigollo, or Leonardo of Pisa, is today known as Fi-
bonacci. The name Fibonacci possibly derived from the Latin filius Bonac-
ci, meaning a son of Bonacci, but, more likely, it might have been derived 
from de filiis Bonacci, referring to the family of Bonacci. He was born to 
the wealthy Italian merchant Guglielmo Bonacci and his wife in the port 
city of Pisa, Italy, around 1170 shortly after the start of construction of the 
famous bell tower known today as the Leaning Tower of Pisa. These were 
turbulent times in Europe. The Crusades were in full swing, and the Holy 
Roman Empire was in conflict with the papacy. The cities of Pisa, Genoa, 
Venice, and Amalfi, although frequently at war with each other, were mar-
itime republics with specified trade routes to the Mediterranean countries 
and beyond. Pisa had played a powerful role in commerce since Roman 
times, and, even earlier, it served as a port of call for Greek traders. Early 
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on, Pisa had established outposts for its commerce among its colonies and 
along trading routes.

In 1192, Guglielmo Bonacci became a public clerk in the customs 
house for the Republic of Pisa, which was stationed in the Pisan colony 
of Bugia (today Bejaia, Algeria) on the Barbary Coast of Africa. Shortly 
after his arrival, he brought his son, Leonardo, to join him so that the boy 
could learn the skill of calculating and become a merchant. The ability to 
perform calculations was significant, since each republic had its own units 
of money and traders had to calculate monies due them. This entailed de-
termining currency equivalents on a daily basis. It was in Bugia that Fibo-
nacci first became acquainted with the “nine Indian figures,” as he called 
the Hindu numerals, and “the sign 0 which the Arabs call zephyr.” He de-
clares his fascination for the methods of calculation using these numerals 
in the only source we have about his life story, the prologue to his most 
famous book, Liber Abaci (The Book of Calculation), which he wrote in 
1202 and revised in 1228 (see fig. 10.2). This was the first time Hindu-Ar-
abic numerals appeared in Europe. During his time away from Pisa, he 
received instruction from a Muslim teacher who introduced him to a book 
on algebra titled al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wal-muqābala (The 
Compendious Book on Calculation by Completion and Balancing) by the 

Figure 10.1. Fibonacci.



	 Leonardo Pisano Bigollo, “Fibonacci”: Italian (1170–1250)	 63

Persian mathematician Mụh ̣ammad ibn Mūsā al-Khwārizmī (ca. 780–ca. 
850), which greatly influenced him. By the way, the name “algebra” comes 
from the title of this book.

During his lifetime, Fibonacci traveled extensively to Egypt, Syria, 
Greece, Sicily, and Provence, where he not only conducted business but 
also met with mathematicians to learn their ways of doing mathematics.. 
When he returned to Pisa around the turn of the century, Fibonacci began 
to write about calculation methods with the Indian numerals for com-
mercial applications in his book Liber Abaci. The volume consists largely 
of algebraic problems of “real world” situations that require more-abstract 
mathematics. Fibonacci wanted to spread these newfound techniques to 
his compatriots.

Figure 10.2. A page 
of Fibonacci’s Liber 

Abaci (from the Bib-
lioteca Nazionale di 

Firenze), showing the 
Fibonacci numbers in 

the right margin.
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Bear in mind that during these times, the printing press had not yet 
been invented, so books had to be handwritten by scribes; if a copy was 
to be made, that, too, had to be handwritten. Fibonacci had written other 
works, such as Practica Geometriae (1220), a book on the practice of ge-
ometry. It covers geometry and trigonometry with a rigor comparable to 
that of Euclid with ideas presented in proof form as well as in numerical 
form, using these “new,” very convenient, numerals. Here, Fibonacci uses 
algebraic methods to solve geometric problems, as well as the reverse. In 
1225, he wrote Flos (on flowers or blossoms) and Liber quadratorum (The 
Book of Squares), the latter of which truly distinguished Fibonacci as a tal-
ented mathematician, and ranking him very high among number theorists. 
Fibonacci likely wrote additional works; however, there is no trace of them 
today. His book on commercial arithmetic, Di minor guisa, is lost, as is his 
Commentary on Book X of Euclid’s Elements, which contained a numerical 
treatment of irrational numbers, as compared to Euclid’s geometrical treat-
ment of them.

The confluence of politics and scholarship brought Fibonacci into con-
tact with the Holy Roman Emperor Frederick II (1194–1250) in the third 
decade of the century. Frederick had spent the years up to 1227 consolidat-
ing his power in Italy; he had been crowned king of Sicily in 1198, then king 
of Germany in 1212, and then, by the pope in St. Peter’s Cathedral in Rome,  
Holy Roman Emperor in 1220. In its maritime conflicts with Genoa and 
its land-based conflicts with Lucca and Florence, Frederick supported Pisa, 
which then had a population of about ten thousand. As a strong patron of 
science and the arts, Frederick became aware of Fibonacci’s work through 
the scholars at his court who had corresponded with Fibonacci since his re-
turn to Pisa around 1200. These scholars included Michael Scotus, who was 
the court astrologer, and the person to whom Fibonacci dedicated his book 
Liber Abaci; Theodorus Physicus, the court philosopher; and Dominicus 
Hispanus, who, when Frederick’s court met in Pisa around 1225, suggested 
to Frederick that he meet Fibonacci. The meeting took place as expected 
within the year.

Johannes of Palermo, another member of Frederick II’s court, presented 
a number of problems as challenges to the great mathematician Fibonacci. 
He solved three of these problems, the solutions for which he provided in 
Flos, which he sent to Frederick II. One of the problems he was able to 
solve, which was taken from the Persian mathematician Omar Khayyam’s 
(1048–1131) book on algebra, was to solve the equation: x3 + 2x2 + 10x = 20. 
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Fibonacci knew that this was not solvable with the numerical system then in 
place—the Roman numerals. He provided an approximate answer, pointing 
out that the answer was neither an integer, nor a fraction, nor the square root 
of a fraction. Without any explanation, he gave his approximate solution in 
the form of a sexagesimal number (i.e., a number from a base-60 numerical 
system): 1.22.7.42.33.4.40, which is equal to 1+ 22

60
+
7
602

+
42
603

+
33
604

+
4
605

+
40
606

. 
However, with today’s computer-algebra system, we can identify the proper 
solution—which is by no means trivial! It is 
x = – 2 3930

9
−
352
27

3 + 2 3930
9

+
352
27

3 – 2
3

≈ 1.3688081075, 

which compares to Fibonacci’s value of 1.3924… .
Another of the problems with which he was challenged and was able 

to solve is one we can explore here, since it doesn’t require anything more 
than some knowledge of basic algebra. Remember that although these 
methods may seem elementary to us, they were hardly known at the time 
of Fibonacci, and so this was considered a real challenge. The problem was 
to find the perfect square that remains a perfect square when increased or 
decreased by 5.

Fibonacci found the number 
41
12  as his solution to the problem. To 

check this, we must both add 5 to and subtract 5 from the number, then see 
if the result is still a perfect square:

41
12
⎛

⎝
⎜

⎞

⎠
⎟

2

+5= 1681
144

+
720
144

=
2401
144

=
49
12
⎛

⎝
⎜

⎞

⎠
⎟

2

41
12
⎛

⎝
⎜

⎞

⎠
⎟

2

−5= 1681
144

−
720
144

=
961
144

=
31
12
⎛

⎝
⎜

⎞

⎠
⎟

2

Since both results from the addition and subtraction are perfect squares, 
we have shown that 4112  meets the criteria set out in the problem. Luckily, the 
problem asked for 5 to be added and subtracted from the perfect square; 
had he been asked to add or subtract 1, 2, 3, or 4 instead of 5, the problem 
could not have been solved.

The third problem, whose solution Fibonacci also presented in Flos, 
was to solve the following: Three men are to share an amount of money 
in the following parts: 1

2
, 1
3

, and 1
6

. Each person takes some money from 
this total amount until there is nothing left. The first man then returns 1

2
 

of what he took; the second, 13  of what he took; and the third, 16  of what 
he took. When the total of what was returned is divided equally among 
the three, each has his correct share, namely, 1

2
, 1
3

, and 1
6

. What was the 
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original amount of money, and how much did each person get from that 
original sum?

Although none of Fibonacci’s competitors could solve any of these 
three problems, to the final question he determined that 47 was the small-
est amount possible for the original sum of money, but he claimed that the 
problem was indeterminate.

In 1240, Fibonacci was honored with a lifetime salary by the Republic 
of Pisa for his service to the people, whom he advised on matters of ac-
counting, often pro bono. We do not know exactly when Fibonacci died, 
but it is believed that he died in Pisa at some point between 1240 and 1250.

Although Fibonacci was considered one of the greatest mathematicians 
of his time, his fame today is largely based on the book, Liber Abaci. To ap-
preciate his work, let us consider his most well-known text as an example. 
This extensive volume is full of very interesting problems. Liber Abaci was 
based on the knowledge of arithmetic and algebra that Fibonacci had accu-
mulated during his travels; furthermore, it was widely copied and imitated, 
and, as we noted above, it introduced to Europe both the Hindu-Arabic 
place-valued decimal system and Arabic numerals. The book was increas-
ingly widely used for the better part of the next two centuries—a bestseller! 
Fibonacci begins his famous book Liber Abaci with the following:

The nine Indian figures are:

9 8 7 6 5 4 3 2 1.

With these nine figures, and with the sign 0, which the Arabs call 
zephyr, any number whatsoever is written, as demonstrated below. 
A number is a sum of units, and through the addition of them the 
number increases by steps without end. First one composes those 
numbers, which are from one to ten. Second, from the tens are made 
those numbers, which are from ten up to one hundred. Third, from 
the hundreds are made those numbers, which are from one hundred 
up to one thousand. . . . and thus, by an unending sequence of steps, 
any number whatsoever is constructed by joining the preceding num-
bers. The first place in the writing of the numbers is at the right. The 
second follows the first to the left.

Fibonacci used the term “Indian figures” to refer to the Hindu numer-
als. Despite their relative facility, these numerals were not widely accepted 
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by merchants, who were suspicious of any who knew how to use them. 
These merchants were simply afraid of being cheated. We can safely say that 
it took the same three hundred years for these numerals to catch on as it did 
for the leaning tower of Pisa to be completed.

Interestingly, Liber Abaci also contains simultaneous linear equations. 
Many of the problems that Fibonacci considers, however, were similar 
to those appearing in Arab sources. This does not detract from the val-
ue of the book, since it is the collection of the solutions to these problems 
that establishes Liber Abaci as a major contribution to our development 
of mathematics. As a matter of fact, a number of mathematical terms that 
are common today were first introduced in Fibonacci’s most famous text. 
Within it, he referred to “factus ex multiplicatione”; this is our first record of 
these words, from which we now speak of the “factors of a multiplication.” 
Incidentally, two other words whose introduction into the current mathe-
matics vocabulary seems to stem from this famous book are “numerator” 
and “denominator.”

The second section of Liber Abaci includes a large collection of prob-
lems aimed at merchants. They relate to the price of goods, how to convert 
between the various currencies in use in Mediterranean countries, calculate 
profit on transactions, and problems that had probably originated in China.

Fibonacci was aware of a merchant’s desire to circumvent the church’s 
ban on charging interest on loans. Therefore, he devised a way to hide the 
interest in a higher initial sum than the actual loan, and then base the cal-
culations on compound interest.

The third section of the book contains many problems such as:

A hound whose speed increases arithmetically chases a hare whose 
speed also increases arithmetically, how far do they travel before the 
hound catches the hare?.

A spider climbs so many feet up a wall each day and slips back 
a fixed number each night, how many days does it take him to climb 
the wall?.

Calculate the amount of money two people have after a certain 
amount changes hands and the proportional increase and decrease 
are given.

There are also problems involving perfect numbers (those numbers for 
which the sum of their proper factors is equal to the number itself), there 
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are also problems where Fibonacci employs to the Chinese remainder the-
orem, which states that if one knows the remainders of the division of a 
number by various integers than one could also determine the remainder 
of a division by the product of these integers, assuming that the devices are 
relatively prime. Once again, this well preceded a formal study of number 
theory.  He also introduces problems involving the sums of arithmetic and 
geometric series. Fibonacci treats numbers such as 15  in the fourth sec-
tion, both with rational approximations and with geometric constructions. 
This treatment of an irrational number was not really studied until centu-
ries later, so we might say that Fibonacci was well ahead of his time!

Some of the classical problems, which are considered recreational 
mathematics today, first appeared in the Western world in Liber Abaci. This 
book is of particular interest to us because it was the first publication in 
Western culture to use the Hindu numerals to replace the clumsy Roman 

Figure 10.3. The rabbit problem, as it was stated  
(with the left-marginal note included).
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numerals; because Fibonacci was the first to use a horizontal fraction bar; 
and because it casually includes a recreational mathematics problem that 
has made Fibonacci famous for posterity. This is the problem of the regen-
eration of rabbits (see fig. 10.3).

To see how this problem’s situation would look on a monthly basis, 
consider the chart in figure 10.4. If we assume that a pair of baby (B) rabbits 
matures in one month to become offspring-producing adults (A), then we 
can set up the following chart:

This problem generated the sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

Today, this sequence is known as the Fibonacci numbers. At first glance, 
there is nothing spectacular about these numbers beyond the relationship 
that would allow us to generate additional numbers of the sequence quite 
easily. We notice that every number in the sequence (after the first two) 
is the sum of the two preceding numbers. The Fibonacci sequence can be 
written in a way so that its recursive definition becomes clear: each number 
is the sum of the two preceding ones:

1
	 1
		  1 + 1 = 2
			   1 + 2 = 3
				    2 + 3 = 5
					     3 + 5 = 8
						      5 + 8 = 13
							       8 + 13 = 21
								        13 + 21 = 34
									         21 + 34 = 55
										          34 + 55 = 89
											           55 + 89 = 144
											           89 + 144 = 233
												            144 + 233 = 377
													             233 + 377 = 610
														              377 + 610 = 987
															               610 + 987 = 159

Figure 10.4.



70	 M AT H  M A K E R S

The Fibonacci sequence is the oldest known (recursive) recurrent se-
quence. Although there is no direct evidence that Fibonacci knew of this re-
lationship, we can safely assume that a man of his talents and insight would 
have recognized it. It took another four hundred years before this relation-
ship appeared in print beyond his book.

These numbers were not identified as anything special during the time 
Fibonacci wrote Liber Abaci. As a matter of fact, the famous German math-
ematician and astronomer, Johannes Kepler (1571–1630), mentioned these 
numbers in a 1611 publication1 when he said that the ratios “as 5 is to 8, so 
is 8 to 13, so is 13 to 21 almost.” Centuries passed and the numbers still went 
unnoticed. In the 1830s, C. F. Schimper and A. Braun noticed the numbers 
appeared as the number of spirals of bracts on a pinecone. In the mid-1800s 
the Fibonacci numbers began to capture the fascination of mathematicians. 
They took on their current name (“Fibonacci numbers”) from François-
Édouard-Anatole Lucas (1842–1891), the French mathematician usually 
referred to as “Edouard Lucas,” who later devised his own sequence by fol-
lowing the pattern set by Fibonacci. Lucas numbers form a sequence of 
numbers much like the Fibonacci numbers, and also closely related to the 

Figure 10.5. François-Édouard- 
Anatole Lucas.
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Fibonacci numbers. Instead of starting with 1, 1, 2, 3, 5, 8, 13, 21, . . . , Lucas 
began his sequence with 1, 3, 4, 7, 11, 18, 29, . . . .

At about this time the French mathematician, Jacques-Philippe-Marie 
Binet (1786–1856), developed a formula for finding any Fibonacci number 
given its position in the sequence. That is, with Binet’s formula we can find 
the 118th Fibonacci number without having to list the previous 117 num-
bers. The formula is: 

Fn =
1
5
1+ 5
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n

−
1− 5
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

n⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, 

where Fn is the nth Fibonacci number. The Fibonacci numbers are probably 
the most famous and ubiquitous sequence of numbers in all of mathemat-
ics, since they appear in just about every aspect of our experiences.

Still one may ask, what is so special about these numbers? Let us just 
begin to scratch the surface by simply inspecting this famous Fibonacci 
number sequence and some of the remarkable properties it has.

As we did above, we will use the symbol F7 to represent the 7th Fibonac-
ci number, and Fn to represent the nth Fibonacci number. Consider the first 
30 Fibonacci numbers shown in figure 10.6.

With the seemingly endless applications of these lovely Fibonacci num-
bers, there must be a simple way to get the sum of a specified number of 
them. A simple formula would be helpful, as opposed to actually adding 
all the Fibonacci numbers to a certain point. To derive such a formula for 
the sum of the first n Fibonacci numbers, we will use a technique that will 
help us generate a formula. From the definition of the Fibonacci numbers, 
we can write that symbolically as Fn+2 = Fn+1+ Fn  ,, where n > 1. This can be 
rewritten as Fn = Fn+2 − Fn+1 . By substituting increasing values for n we get 
the following:

F1 = F3 − F2
F2 = F4 − F3
F3 = F5 − F4
F4 = F6 − F5

!

Fn−1 = Fn+1 − Fn
Fn = Fn+2 − Fn+1

By adding these equations, you will notice that there will be many 
terms on the right side of the equations that will disappear (because their 
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F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
F7 = 13
F8 = 21
F9 = 34
F10 = 55
F11 = 89
F12 = 144
F13 = 233
F14 = 377
F15 = 610
F16 = 987
F17 = 1597
F18 = 2584
F19 = 4181
F20 = 6765
F21 = 10946
F22 = 17711
F23 = 28657
F24 = 46368
F25 = 75025
F26 = 121393
F27 = 196418
F28 = 317811
F29 = 514229
F30 = 832040

Figure 10.6.
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sum is zero—since you will be adding and subtracting the same number). 
What will remain on the right side will be Fn+2 − F2 = Fn+2 −1..

On the left side we have the sum of the first n Fibonacci numbers: 
F1+ F2 + F3 + F4 +!+ Fn , which is what we are looking for. Therefore, we get 
the following: F1+ F2 + F3 + F4 +!+ Fn = Fn+2 −1, which says that the sum of 
the first n Fibonacci numbers is equal to the Fibonacci number two fur-
ther along the sequence minus 1. This can also be written symbolically as
Fi

i=1

n

∑ = Fn+2 −1.
Just for entertainment, and to entice you a bit to perhaps enjoy the Fi-

bonacci numbers in greater detail consider the following illustrations.
The sum of any ten consecutive Fibonacci numbers is divisible by 11. 

We could convince ourselves that this may be true by considering some 
randomly chosen examples. Take, for example, the sum of the following 
ten consecutive Fibonacci numbers: 13 + 21 + 34 + 55 + 89 + 144 + 233 + 
377 + 610 + 987 = 2,563, which is divisible by 11, since 11 ∙ 233 = 2,563. We 
could repeat this for any other sum of 10 consecutive Fibonacci numbers, 
such as the sum of the ten consecutive Fibonacci numbers from F21 to F30, 
which is 2,160,598 = 11 ∙ 196,418. One way to go about convincing yourself 
of the truth in this “conjecture” is to keep on taking the sum of groups of ten 
consecutive Fibonacci numbers and checking to see if the sum is a multiple 
of 11. You could also try to prove the statement, mathematically. Listing the 
remainders of the first few Fibonacci numbers upon dividing by 11, we have

1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, . . .

We see that the remainders repeat in cycles of length 10. Since it is the 
remainder upon dividing a number by 11 that determines its divisibility by 
11, all we have to do is check that in adding any 10 consecutive numbers in 
the sequence 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, . . . we get 
a sum divisible by 11. We can check this as follows. Since the cycle of this 
sequence is of length exactly 10, adding any 10 consecutive numbers in this 
sequence will always come out to adding the 10 numbers—1, 1, 2, 3, 5, 8, 2, 
10, 1, 0—in a cycle.

Imagine these 10 numbers arranged in a clockwise order around a cir-
cle (fig. 10.7), with the sequence above obtained by traveling around the 
circle over and over. Then you can see that any numbers missed at the be-
ginning of a cycle—if the sum is started somewhere in the interior of the 
cycle—are regained from the next cycle; for example, the sum 5 + 8 + 2 + 10 
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+ 1 + 0 + 1 + 1 + 2 + 3. This is because no matter where you start counting 
on the circle, counting 10 numbers clockwise around the circle will amount 
to counting all 10 numbers, because that’s exactly how many numbers there 
are. These 10 numbers have sum 33, which is indeed divisible by 11. (Also 
see: The Fabulous Fibonacci Numbers, A. S. Posamentier and I. Lehmann, 
Prometheus Books, 2007).

Aside from the fact that Fibonacci is largely responsible for the use 
of our decimal number system and the numerical symbols we use, hav-
ing introduced them to the Western world in 1202, he is primarily remem-
bered today for the ubiquitous numbers that bear his name—the Fibonacci 
numbers.

Figure 10.7.
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Chapter 11

Gerolamo Cardano:  
Italian (1501–1576)

“You know what the fellow said—in Italy, for thirty years under the Borgias, 
they had warfare, terror, murder, and bloodshed, but they produced Mi-
chelangelo, Leonardo da Vinci, and the Renaissance. In Switzerland, they 
had brotherly love, they had five hundred years of democracy and peace—
and what did that produce? The cuckoo clock.” These lines were spoken by 
Orson Welles, playing Harry Lime, the villain in the 1949 British film noir 
The Third Man, directed by Carol Reed (1906–1976). The English novelist 
Graham Greene (1904–1991) wrote the screenplay, but he credited these 
lines to Orson Welles, who probably added them when some extra dialogue 
was needed while the film was being shot.1 Although not historically accu-
rate and dramatically exaggerated, the drawn comparison contains a grain 
of truth that cannot be denied. Without the patronage of tyrants who had 
plenty of money at their disposal, the Italian Renaissance would not have 
brought about so many masterpieces of architecture, sculpture, and paint-
ing. Democratic structures, on the other hand, seem to be less generous 
when it comes to financing arts and culture. The House of Borgia was an 
Italo-Spanish noble family, which became very powerful in the fifteenth 
and sixteenth centuries. The Borgias were involved in many ecclesiastical 
and political affairs and wholly without scruple in the choice of means to 
increase their power and influence. Like other wealthy dynasties such as the 
Medici, they dominated local governments and, over several generations, 
extended their political influence over wider parts of Italy and Europe. In 
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the second half of the fifteenth century, they even gained control over the 
papacy, and the Borgia produced two popes: Alfonso de Borgia, who ruled 
as Pope Callixtus III during 1455–1458, and Rodrigo Lanzol Borgia, as 
Pope Alexander VI, during 1492–1503. Alexander VI was one of the most 
memorable of the corrupt and secular popes of the Renaissance; the Bor-
gias were suspected of many crimes during his reign—including murder. 
In the course of his pontificate, Alexander appointed forty-seven cardinals 
to further his political policies. He had several illegitimate children, and in 
1493 he made his teenaged son Cesare a cardinal. The name Borgia became 
a byword for libertinism and nepotism. Incidentally, in the same year, 1493, 
Pope Alexander followed a request by Queen Isabella and King Ferdinand 
of Spain and issued a papal bull granting Spain the exclusive right to claim 
the New World lands discovered by Christopher Columbus. However, in 
spite of their cold-blooded greed for power, the Borgias as well as the Medici 

Figure 11.1. Gerolamo Cardano.  Copper engraving from the  
seventeenth century, artist unknown. https://commons.wikimedia.org/ 

wiki/File:Jer%C3%B4me_Cardan.jpg
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were also great patrons of the arts who contributed significantly to the Re-
naissance. In particular, they brought the spirit of Renaissance art and phi-
losophy into the Vatican. Alexander had the University of Rome rebuilt and 
hired the greatest professors to teach there. He restored and embellished 
the Vatican palaces and persuaded Michelangelo to draw plans for the re-
building of St. Peter’s Basilica. In 1502, his son Cesare, by now commander 
of the papal armies, hired Leonardo da Vinci as his chief military engineer 
and architect. The Italian Renaissance began during the fourteenth century, 
and it was the earliest manifestation of the general European Renaissance, a 
period of great cultural change and achievement that marked the transition 
between medieval and modern Europe. While the most famous figures of 
the Italian Renaissance are artists such as Leonardo da Vinci, Michelange-
lo, or Raphael, great advances also occurred in mathematics, contributing 
substantially to the transition from natural philosophy to modern science 
and the scientific revolution in which Galileo Galilei (1564–1642) would 
play a central role.

Perhaps the most influential mathematician of the Italian Renaissance 
was Gerolamo Cardano, and his biography fits quite perfectly to Orson 
Welles’s description of Italy during the reign of the Borgias.2 Cardano was 
born in Pavia, Lombardy, Italy, on September 24, 1501, as the illegitimate 
child of Fazio Cardano, a mathematically gifted jurist and a close personal 
friend of Leonardo da Vinci. Shortly before his birth, his mother, Chiara 
Micheria, had to move from Milan to Pavia to escape the Plague; her three 
other children died from the disease. In addition to his law practice, Fazio 
Cardano lectured on geometry at the University of Pavia and at the Piatti 
Foundation in Milan. Chiara lived apart from Fazio for many years, but, 
later in life, they married. Gerolamo was often sick and unhappy as a child. 
He received his education from his overbearing father and became his as-
sistant. Fazio Cardano wanted his son to study law, but Gerolamo was more 
attracted to science and philosophy. His father’s lessons on geometry had 
awakened his interest in the subject. After an argument with his father, he 
entered the University of Pavia in 1520 to study medicine. In 1524, the uni-
versity had to close because of the Italian Wars (1521–1526), and Cardano 
moved to the University of Padua to complete his studies. He graduated 
with a doctorate in medicine in 1525. Cardano was a brilliant student but 
his eccentric and confrontational style did not earn him many friends. His 
father had died shortly after Gerolamo’s move to Pavia, and the small be-
quest was soon eaten up. To improve his finances, Cardano had turned to 
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gambling. His understanding of probability gave him an advantage over his 
opponents and, for some time, he indeed managed to make a living from 
playing card games, dice, and chess. After earning his doctorate, he repeat-
edly applied to join the College of Physicians in Milan, where his mother 
still lived. In spite of his excellent professional skills, he was not admitted, 
because of his reputation as a difficult person with strong opinions. The dis-
covery of Cardano’s illegitimate birth gave the college an official reason to 
reject his application. Without a membership in the College of Physicians, 
he could not practice as a physician in Milan, so he went to a small village 
near Padua and set up a small medical practice there. In 1531, Cardano 
married Lucia Bandarini, the daughter of a neighbor. Cardano’s practice 
did not earn him enough money to support a family, and another attempt 
to get approved by the College of Physicians failed. To improve his finances, 
he started gambling again. But this time he lost more often than he won, 
and, after a series of losses, he even had to pawn his wife’s jewelry to pay the 
bills. With no future perspectives in the countryside, Cardano and his wife 
moved to Milan, hoping to improve their situation.

After some struggling in the beginning, Cardano was fortunate to get 
his father’s former position as a lecturer in mathematics at the Piatti Foun-
dation. The job was not too demanding and so he had enough free time to 
treat a few patients in private. His successful treatments steadily increased 
his reputation as a medical doctor, and even members of the College of 
Physicians began to consult him for advice. Moreover, he gained wealth 
and influence through his appreciative upper-class patients. He was able to 
quit his teaching position, but he did not give up mathematics. In 1539, he 
finally received his admission from the College of Physicians, with the help 
of some influential supporters. However, in the same year, he published his 
first two mathematical books and he got in contact with Tartaglia, a self-
taught mathematician who had achieved fame by winning a public compe-
tition on solving cubic equations at the University of Bologna.

Tartaglia was born as Niccolò Fontana in Brescia, Italy, in 1499.3 His fa-
ther was a dispatch rider who traveled to neighboring towns to deliver mail. 
Tragically, he was murdered by robbers, leaving his wife, the six-year-old 
Niccolò, and his two siblings in poverty. The poor family suffered further, 
when French troops invaded Brescia during the War of the League of Cam-
brai against Venice. When the French finally broke through, they massa-
cred the inhabitants of the city. Niccolò and his family sought sanctuary in 
the local cathedral, but the French entered, and a soldier sliced Niccolò’s jaw 
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and palate with a saber and left him for dead. Niccolò was lucky to survive, 
but his speech was permanently impaired due to the injury, and so he got 
the nickname “Tartaglia” (“stammerer”).

As an adult, he grew a beard to cover his scars. He worked as an en-
gineer and bookkeeper in the Republic of Venice, and he was also a very 
ambitious, self-taught mathematician. At that time, Italian scholars had 
to prove their academic competence in public competition against other 
scholars, setting each other mathematical challenges. In 1535, Tartaglia won 
a famous public competition by demonstrating that he was able to solve a 
special type of cubic equations (equations with terms including x3 as the 
highest power), something that had been considered impossible. He had 
discovered a method to solve equations of the form x3 + bx + c = 0 as well 
as x3 + ax2 + c = 0, but not the general case of a cubic equation x3 + ax2 + bx 
+ c = 0. Tartaglia’s findings caught the attention of Cardano and, after hav-
ing failed to find the solution by himself, he persistently tried to persuade 
Tartaglia to reveal his method. Tartaglia finally agreed to tell Cardano his 

Figure 11.2. Niccolò Fontana Tartaglia.  Wikimedia Commons: https://commons.
wikimedia.org/wiki/File:Niccol%C3%B2_Tartaglia.jpg. Year of creation: 1572;  

Copper engraving (?); Rijksmuseum; Artist unknown.



80	 M AT H  M A K E R S

solution, but Cardano had to promise that he would keep it secret. Tartaglia 
divulged his formula in the form of a poem, to make it more difficult to 
read for other mathematicians, in case the paper fell into the wrong hands:

When the cube and things together
Are equal to some discrete number,
Find two other numbers differing in this one.
Then you will keep this as a habit
That their product should always be equal
Exactly to the cube of a third of the things.
The remainder then as a general rule
Of their cube roots subtracted
Will be equal to your principal thing
In the second of these acts,
When the cube remains alone,
You will observe these other agreements:
You will at once divide the number into two parts
So that the one times the other produces clearly
The cube of the third of the things exactly.
Then of these two parts, as a habitual rule,
You will take the cube roots added together,
And this sum will be your thought.
The third of these calculations of ours
Is solved with the second if you take good care,
As in their nature they are almost matched.
These things I found, and not with sluggish steps,
In the year one thousand five hundred, four and thirty.
With foundations strong and sturdy
In the city girdled by the sea.4

This poem refers to one particular case of a cubic equation, x3 + bx + c 
= 0 (in general, a cubic equation may also contain a term with x2). With 
knowledge of Tartaglia’s solution, Cardano soon succeeded in solving the 
general case of a cubic equation, x3 + ax2 + bx + c = 0, and only a short time 
later, Cardano’s student and secretary, Ludovico Ferrari (1522–1565), de-
vised a similar method to solve quartic equations (fourth-degree equations 
with terms of highest degree x4). Of course, Cardano was eager to publish 
these results in his next book, with credit to Tartaglia for the decisive steps, 
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but he had sworn that he would not reveal Tartaglia’s method. However, in 
1543, Cardano traveled to Bologna, where he was shown the notebooks 
of the deceased mathematician Scipione del Ferro (1465–1526). Cardano 
discovered that del Ferro had solved cubic equations long before Tarta-
glia (yet for less general cases) and thus felt no longer bound to keep the 
solution secret. In 1545, Cardano published his book Artis Magnæ, Sive de 
Regulis Algebraicis Liber Unus (Book Number One about the Great Art, or 
The Rules of Algebra; see fig. 11.3), or Ars Magna, as it is more commonly 
known, which is considered one of the greatest scientific treatises of the 
early Renaissance.

The book included the methods to solve cubic equations, and Cardano 
explained the history of their discovery as follows: “In our own days Scipio-
ne del Ferro of Bologna has solved the case of the cube and first power equal 
to a constant, a very elegant and admirable accomplishment. . . . In emula-
tion of him, my friend Niccolò Tartaglia of Brescia, not wanting to be out-
done, solved the same case when he got into a contest with his [Scipione’s] 
pupil, Antonio Maria Fior, and, moved by many entreaties, gave it to me.”5 
The solution to the general quartic equation was also contained in the book, 
with credit to Cardano’s student, Ludovico Ferrari. In spite of the proper 
credits, Tartaglia felt betrayed by Cardano, who had broken his word by 
publishing Tartaglia’s solution. In the following year, Tartaglia published 
a book in which he laid out his side of the story and personally attacked 
Cardano. The dispute lasted for many years, and it culminated in a public 
contest between Tartaglia and Ferrari in Milan. Tartaglia soon realized that 
Ferrari understood cubic and quartic equations better than he did, then left 
Milan before the contest was over. Thus, Ferrari won by default and Tarta-
glia’s reputation diminished dramatically. As a result of the lost contest, he 
became effectively unemployable as a mathematician and had to resume 
his previous job in Venice, where he died in poverty. However, finding the 
solution to cubic equations was not Tartaglia’s only contribution to mathe-
matics. He is also remembered for the first translation of Euclid’s Elements 
into a modern language (Italian), and he was the first to apply mathematics 
to the study of ballistic curves (paths of cannonballs).

Cardano’s Ars Magna established him as one of the leading mathemati-
cians of his time, and the solution methods for cubic and quartic equations 
are clearly the most important results in this work. Today, most mathema-
ticians would acknowledge del Ferro, Tartaglia, and Cardano for the solu-
tion of cubic equations, since they all made decisive contributions. Let us 
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Figure 11.3. The title page of the Ars Magna (The Great Art),  
first published in 1545.
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now reveal their method to obtain a solution, using modern mathematical 
symbols: We may consider a general cubic equation, x3 + ax2 + bx + c = 0, 
noting that any cubic equation can be written in this form (we divide an 
equation by any nonzero number to obtain an equivalent equation). Substi-
tuting x = y − a

3
, we write the equation as
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p = a
2

3
−b  and q = 4

a
3
⎛

⎝
⎜
⎞

⎠
⎟

3

+
b ⋅ a
3

− c

Then we let y = z + w. Expanding the left side of the equation,  
(z + w)3 = p (z + w) + q, we obtain z3 + w3 + 3zw (z + w) = p (z + w) + q. 
Obviously, this equation is satisfied if z3 + w3 = q and 3zw = p.  We use the 
second of these equations to write w= p
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 and substitute this into the first 

equation, thereby arriving at
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Since z3 + w3 = q, one root represents z3, and the other one, w3. Recalling 
that y = z + w, we finally get
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which is indeed a solution of the cubic equation y3 = py + q. This however, 
implies that we have also solved the original equation x3 + ax2 + bx + c = 0, 
as x can easily be inferred from y via the transformation x = y − a

3
.

Cardano’s wife, Lucia, died in 1546; they had three children, Giovanni, 
Chiara, and Aldo Battista. Cardano became a professor of medicine at the 
University of Padua and one of the most sought-after physicians in aristo-
cratic circles. He later wrote that he even turned down offers from the kings 
of Denmark and France, and the queen of Scotland. Contrary to his great 
professional success, his private life was overshadowed by tragedies. Carda-
no’s eldest son, Giovanni Battista, was executed for poisoning his wife; and 
his youngest son, Aldo Battista, became a gambler with friends of dubious 
character. Around 1563, Cardano wrote another important mathematical 
treatise, Liber de Ludo Aleae (Book on Games of Chance), which was not 
published until 1663. It contains the first systematic treatment of probabili-
ty, based on the game of throwing dice as an example, as well as a section on 
effective cheating methods. He also made significant contributions to our 
knowledge of hypocycloids (curves traced out by a point on circles that roll 
inside another circle), which was published in De proportionibus in 1570. 
Cardano was an extremely prolific writer and one of the last polymaths of 
the Renaissance. He wrote more than 230 books in diverse fields, of which 
138 were published; apart from mathematics and medicine, he was also in-
terested in physics, biology, chemistry, astronomy, and even astrology. In 
fact, he was put in jail on the charge of heresy for casting the horoscope of 
Jesus Christ. After he was released, he went to Rome, and the pope not only 
forgave him but even granted him a pension. Cardano spent the last years 
of his life in Rome, where he died on September 21, 1576. He is reported 
to have correctly predicted the exact date of his own death, but it has been 
claimed that he achieved this by committing suicide.
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Chapter 12

John Napier:  
Scottish (1550–1617)

The use of the decimal point in mathematics and the application of loga-
rithms to do calculations are largely due to the influence of Scottish math-
ematician John Napier, who was born on February 1, 1550, at Merchiston 
Castle in Edinburgh, Scotland. Napier was part of a noble family, so he was 
privately tutored until the age of thirteen, after which he entered St. Salva-
tor’s College at St Andrews. It is not known how long he stayed there, but 
it is believed that he traveled through Europe for several years, until 1571, 
when he returned to Scotland. In 1572, Napier married sixteen-year-old 
Elizabeth Stirling, also a product of nobility. He fathered two children in 
this marriage; but, unfortunately, his wife, Elizabeth, died in 1579. Shortly 
thereafter, Napier married Agnes Chisholm, with whom he had ten more 
children.

Later, in 1608, when his father died, Napier moved with his family into 
Merchiston Castle in Edinburgh, where he resided for the rest of his life. In 
1614, Napier published a book, Mirifici Logarithmorum Canonis Descriptio 
(A Description of the Wonderful Table of Logarithms); it contained 147 pag-
es, of which 90 were consumed with tables of numbers related to natural 
logarithms. This effort had begun around 1594, when he computed millions 
of entries, which took an incredibly long time. We can see from figure 12.2 
what the first page of these listings looked like, which allows us to appreci-
ate the intensive labor this must have required. Napier was asked to show 
the benefit of the logarithms system. He responded by showing that finding 



86	 M AT H  M A K E R S

the geometric mean can be done far more efficiently using logarithms than 
simply doing the straight-out arithmetic—particularly when the numbers 
are very large. Napier also realized that by using logarithms, calculations 
that typically required multiplication or division, could now be reduced to 
addition or subtraction of exponents—or, in this case, logarithms.

In addition, his book also treated the topic of spherical trigonometry. 
However, his invention of logarithms first became popular when Henry 
Briggs visited him in 1615, and helped him revise the logarithm tables. Es-
sentially, Napier’s work with mathematical computation had a great deal 
of influence on the scientists of his time, including the famous Danish as-
tronomer Tycho Brahe (1546–1601). Sadly, just as the book was gaining 
popularity, Napier died, in Edinburgh on April 4, 1617.

Let us consider some of the advantages that Napier’s work had pro-
vided during the seventeenth century and beyond. This was a time when 

Figure 12.1. John Napier. (Engraving by Samuel Freeman, 1835,  
based on a 1616 painting in the University of Edinburgh and published  

in Robert Chambers, ed., A Biographical Dictionary of Eminent Scotsmen, vol. 4 
[Glasgow: Blackie & Son, 1835], facing page 88.)
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mathematicians were very concerned about calculation, and how it could 
be simplified or mechanized. Toward that end, Napier developed a mechan-
ical system, known as Napier’s Rods, which we might consider a very early 
version of a calculator.1 This system for performing multiplication, using 
only addition through the use of specially constructed strips, is shown in 
figure 12.3. The rods can be made out of cardboard, wood, or—what John 
Napier used when he invented this system of multiplication—bone, which 
provides us with another name for this method: Napier’s Bones. Before 
reading what follows, you may want to spend a little time examining this 
figure to try to understand the logic of the construction.

Figure 12.2. The first page of Napier’s tables.  
(Image from Landmarks of Science Series, NewsBank-Readex.)
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There are ten vertical rods, each of which shows a specific column from 
the multiplication table written in a peculiar manner. Notice how the rod 
marked at the top with the digit 5 continues downward, with each of the 
multiples of 5 (10, 15, 20, etc.) written such that the tens digit is above the 
diagonal line and the ones digit is below the line. The same principle can be 
observed in the other rods: the fifth entry on the number 7 rod is 35, which 
is the same as the product 5 ∙ 7 = 35. (Notice also that we put a 0 above the 
slash in entries where the product is less than 10.)

These rods can be rearranged freely, permitting us to construct the 
numbers we want to multiply and then to perform the computation using 
only addition. How is this possible? Let’s look at an example to learn about 
the method Napier devised.

We will choose two numbers at random, in this case, 284 and 572, and 
then select the rods whose top digits will allow us to construct one of the 
numbers. It doesn’t matter which of these two numbers we choose to rep-
resent first. Thus, in this example we will construct 572, selecting the rods 
numbered 2, 5, and 7, and then putting them in the correct order to match 
our number: 5, 7, 2 (see fig. 12.4).

Figure 12.3.
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We have written the digits 1 through 9 along the left-hand side, in a 
single column. In Napier’s original construction, these numbers were writ-
ten or engraved along the side of a shallow box inside of which the rods fit 
snugly. If you choose to re-create this example on your own, writing the 
numbers on a sheet of paper will work just fine, as long as you make sure to 
line up the tops of your rods appropriately as you place them.

As you may have already guessed, the next step is to identify the rows 
that we will need to construct our second number. With physical rods, it 
would not be possible to extract these rows, but for our illustration we will 
rearrange them, as indicated by the arrows, to form the number 284 (again 
maintaining proper alignment; see fig. 12.5).

In order to illustrate the next step, we will de-emphasize the boundaries 
between the rods, while highlighting the diagonal lines (see fig. 12.6). At 
the end of each diagonal, we have created a space where our sum can be 
written, as indicated by the dashed arrows. It looks like our product will be 
a six-digit number, since there are six diagonals in our final computation.

We find the sum of each diagonal, moving from the bottom-most di-
agonal to the upper-most diagonal; whenever that sum is greater than 9, we 
write the digit to be carried in a slightly smaller font inside the box, as well 
as at the head of the next diagonal, again, moving from the bottom-most 

Figure 12.4.
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Figure 12.5.

Figure 12.6.
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to the top-most diagonal. Looking at the second diagonal, you can see the 
sum: 8 + 0 + 6 = 14, which means the tens digit of our final product will be 
4, while the 1 is carried to the head of the third diagonal and added to the 
other numbers there, as shown in figure 12.7.

Proceeding along each diagonal, we see the sums are 8, 14, 14, 12, 6, 
and 1. Reading these in order from the top down and from left to right, 
without the carried digits, we get 1 6 2 4 4 8, which indicates that our final 
product is 162,448. You can check this with your calculator to verify that it 
is, indeed, correct!

How does this method work? Normally, the multiplication of two 
numbers is performed by successive digit multiplications and positional 
arithmetic. When you do multiplication according to the method typically 
taught in elementary school, you place one number above the other with 
a line underneath and multiply pairs of digits. As you do so, you write the 
ones digit of each product below the line, carrying the tens digits when 

Figure 12.7.
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necessary, and taking the sum of the partial products at the end of the pro-
cess. To illustrate how Napier’s Rods work, we will break down this process 
step-by-step. Recall, our problem is 572 ∙ 284.

The first step is to multiply 572 by 4.
The products of these multiplications are 4 ∙ 2 = 8, 4 ∙ 7 = 28, and  

4 ∙ 5 = 20. Carrying the 2 from the second multiplication and adding these 
together, we get a partial total of 2288 (see the left side of fig. 12.8). Notice 
that 2288 is the same result we would obtain from adding the diagonals of 
row 4 of figure 12.4 (see the right side of fig. 12.8).

Repeating this process for the second digit, 8, we get 8 ∙ 572 = 4,576, 
which again is the same result we get from adding the terms in the diago-
nals of the eighth row of figure 12.4. According to the algorithm we know 
from elementary school, we insert a 0 in the ones column, leaving us with 
45,760 in the new, final row (see fig. 12.9).

Next, we multiply 2 ∙ 572 and insert two 0s, giving us 114,400, the first 
four digits of which we recognize from the second row of Napier’s Rods (see 
fig. 12.10).

Figure 12.8.

Figure 12.9.
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Finally, we add these three numbers (2,288 + 45,760 + 114,400). Again 
we find a result of 162,448, which is indeed the correct product, as shown 
in figure 12.11.

To complete our illustration of this method, we will do one final alter-
ation: Instead of adding the digit products as we go, we will instead write 
the products as we did when constructing Napier’s Rods, using a leading 0 
for any number less than 10. Each product will be written with the appro-
priate offset, but in the same order we used when performing the previous 
operations.

Alongside this, we will draw the relevant portion of our Napier’s Rods, 
this time rotated one-quarter turn, as we have in figure 12.12.

Do you notice anything interesting? That’s right—each digit we pro-
duced using the traditional method of multiplication is also present in the 

Figure 12.10

Figure 12.11
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Napier’s Rods representation, in the proper column! Also, if you look close-
ly at the dark-outlined rows, you will notice that there is an exact corre-
spondence between these rows and the respective digit products. So, for 
instance, the final three rows on the left (moving upward from the bottom) 
are 10, 14, and 04, and these same numbers are in the top column in the 
figure on the right.

As we have observed, the method of Napier’s Rods is mechanically 
identical to our elementary-school algorithm, but it can make keeping track 
of the positions of each digit much easier. As an added advantage, it helps us 

Figure 12.12
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to avoid multiplication errors—after all, most of us can do addition much 
more accurately than we can do multiplication!

Although by today’s standards this method of calculation is rather 
primitive, one must bear in mind that for the times, when this was devel-
oped in the seventeenth century, it was seen as a great step forward. So 
much so, in fact, that Napier is probably better known for Napier’s Rods, or 
Napier’s Bones, than he is for his introduction of logarithms as an efficient 
method of calculation going forward centuries.
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Chapter 13

Johannes Kepler:  
German (1571–1630)

Two of the most significant aspects in the field of astronomy as it relates to 
our solar system are that the sun is the center of the solar system and that 
the planets revolve around the sun on an elliptical path. The former of these 
two brilliant discoveries was made by the Polish mathematician Nicolaus 
Copernicus; the second, by Johannes Kepler. Kepler was born in the city of 
Weil der Stadt (about twenty miles west of today’s city of Stuttgart, Germa-
ny) on December 27, 1571, to a family that seemed to be faltering financial-
ly, even though his grandfather was the mayor of their town. Kepler’s father 
left the family and died soon thereafter—all when Kepler was five years 
old. As a child, he impressed his neighbors with his amazing mathematical 
memory and facility. His early exposure to astronomical events such as the 
Great Comet of 1577 and a lunar eclipse in 1580 had an indelible effect on 
him for the rest of his life by generating an interest in the field.

From a case of smallpox as a child, Kepler’s vision was impaired, and 
his hands’ dexterity was limited throughout the rest of his life, which was 
in part a hindrance in his observational work in astronomy. Despite these 
physical limitations, he still rose to the top of the field through his phe-
nomenal achievements. In 1589, he began his studies at the University of 
Tübingen. His initial studies focused on philosophy and theology, but his 
mathematical talents shifted his interests toward that field of study. He 
was fascinated by Copernicus’s theory that the sun was the center of our 
universe—something not universally accepted in his day. In 1594, after 
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completing his university studies at age twenty-three, he accepted a po-
sition as a teacher of mathematics and astronomy at Grazer evangelische 
Landschaftsschule im Paradeishof,  the Protestant School in Graz, Austria. 
While in Graz, in 1596, Kepler published a major work, Mysterium Cos-
mographicum (Cosmographic Mystery), which further supported Coperni-
cus’s belief of a heliocentric universe.

It must be said that, in part, Kepler’s interest in having the sun at the 
center of the universe was motivated by his firm theological convictions re-
garding God. This publication was his attempt to define the sizes of spheres 
and the orbits in which they travel around the sun. Kepler used a rather 
strange model to depict the planetary motion about the sun.

Referring to the model shown in figure 13.2, according to Kepler, the 
outside sphere would represent the path of Saturn, then a sphere inscribed 
in a cube, which is inscribed in the first sphere, would represent the path of 
Jupiter. Then he inscribed a regular tetrahedron inside this smaller sphere, 
which would contain another sphere representing the path of Mars. Inside 
that sphere, a regular dodecahedron would be inscribed, and following 

Figure 13.1. Johannes Kepler.  
(Portrait painted in 1610 by an unknown artist.)
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this scheme, would separate Mars from Earth. Then a regular icosahedron 
would separate Earth from Venus, and, finally, a regular octahedron in-
scribed in the last sphere would separate Venus from Mercury. As confus-
ing as this would seem to the modern eye, it gave Kepler some new fame. 
After his book was published in Tübingen, a copy was sent to Prague to the 
Danish astronomer Tycho Brahe, who was one of the foremost astronomers 
of his day, and who was in search for a mathematician to support his re-
search. In 1600, Kepler met Brahe in the town of Benátky nad Jizerou, about 
twenty-two miles from Prague, where Brahe’s observatory was being built. 
There, he spent time analyzing the data found, and, as time went on, he was 
given more access to the findings that were originally kept under guard. At 
first, it was a rocky relationship, but eventually they came to agree on salary 
and living arrangements.

Kepler took this position and then eventually succeeded Brahe when, 
shortly thereafter, Brahe died in 1601. The next eleven years were Kepler’s 
most productive. Brahe assumed that the planets were traveling in circular 

Figure 13.2. (Johannes Kepler, Mysterium Cosmographicum, 1596.)
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orbits. Working with Brahe’s conclusions, Kepler found that Mars was trav-
eling in an elliptical orbit with the sun at one focus. To come up with this 
finding, known as Kepler’s first law of planetary motion, he worked with 
numerous astronomical observations. These observations were then ex-
tended to the other planetary motions. Kepler’s second law of planetary 
motion was to state that the line segment joining a planet to the sun in its el-
liptical path swept out equal areas in equal time periods. He published this 
in 1609 in a book titled Astronomia Nova (New Astronomy). The process 
to establish these two laws required many observations and calculations, 
which are still available to us today. In 1990, an American science histori-
an, William H. Donahue, translated this book into English and found that 
Kepler had made some errors in his calculations; or, as we might say today, 
he fudged the data a bit in order to draw the conclusions for which he then 
later became very famous. Donahue says that this should not detract from 
Kepler’s findings.1 More than likely, this fudging compensated for the prim-
itive tools Kepler was forced to use in the seventeenth century. This was 
reported in the New York Times on January 23, 1990.

Building upon Galileo’s telescope, Kepler, who was already fascinated 
with optics, presented a new design for a telescope, using two convex lenses, 
where the final image is inverted. This was originally referred to as a Ke-
plerian telescope and today is referred to as an astronomical telescope. He 
published the results of his work, in 1611, in Dioptrice.

Now, looking back to Kepler’s personal life, we find that in 1597, Kepler 
married Barbara Müller, a widow from a wealthy background. Shortly after 
their marriage, they had two children, both of whom died at birth; the cou-
ple later had additional children. Then, in 1611, Kepler’s seven-year-old son 
died, which upset him tremendously, and, making matters worse, shortly 
thereafter, his wife died. This was the time when, in Prague, tolerance for 
Protestants was not very good. At first, Kepler was given special dispensa-
tion to practice Lutheranism on his own, but eventually he decided rather 
than to convert to Catholicism, he would leave Prague with his remaining 
children and settle in the town of Linz, Austria. Now with children to care 
for and no wife, he was in search of someone to fill that role. During the 
next two years he considered eleven different matches. Then, in 1613, he 
married his second wife, the twenty-four-year-old Susanna Reuttinger, who 
took over the household, splendidly cared for his three children, and bore 
him another six children, of which only three survived.
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At his wedding to Susanna, Kepler noticed that the volume of the wine 
barrels was measured by a rod that was slipped into the barrel diagonally 
(see fig. 13.3). This measurement amazed Kepler and he began to consider 
it more scientifically.

The volume of the barrel was then calculated as V = 0.6 a3, where a is 
the length of the rod inside the barrel. The same method was applied to 
barrels of different shapes, and Kepler recognized that the formula cannot 
give correct results in all cases, since the precise mathematical relation be-
tween the exact volume of the barrel and the length of a must depend on 
its proportions. This problem fascinated him, and he undertook a study 
of volumes, which could be seen as solids created through the revolution 
of a plane surface. First, let us consider the simplest case of a cylindrical 
barrel, for which d1 = d2 = d3. The volume of a cylinder with diameter d 
and height h is V = π

d 2

4
h . By the Pythagorean theorem, we have a2 =  h

2
⎛

⎝
⎜
⎞

⎠
⎟

2

+  d 2 .  
A typical relation between h and d for the wine barrels Kepler studied 
would be h = 2d. Using this in the equation for a2, we obtain a = 2  d , or 
d = a

2  and, moreover, h =  2 a
2
= 2  a . Expressing d and h in terms of a in the 

equation for the volume, we get V =
2 ⋅ π
8

a3  and 2 ⋅ π
8

=  0.55536 . . . , explaining 
the approximation formula V ≈ 0.6a3. Kepler found a much more accurate 
formula by approximating the curvature of the barrel by a parabola. This 
formula is now generally known as Simpson’s rule2 (however, in Germany 
and Austria, it is also called Kepler’s rule):

V =
h ⋅ π
24

⋅ d1( )2
+  4 d2( )2

+ d3( )2( )
To derive this formula, one has to calculate the area of a parabol-

ic segment, a problem solved by Archimedes using methods essentially 

Figure 13.3.
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equivalent to the concept of integration in modern calculus. We will not 
provide a proof of Kepler’s rule (or Simpson’s rule), but present the result by 
considering a special approximation without using parabolas, from which 
Kepler’s formula for the volume of a wine barrel can also be obtained. To 
this end, we divide the barrel into three rotational volumes of equal height: 
a frustum3 of a cone at the bottom, a cylindrical part in the middle, and 
another frustum at the top (see fig. 13.4).

The volume of the cylinder is equal to the area of the base times the 
height, that is, d2( )2 π

4
⋅
h
3
=
h ⋅ π
12

d2( )2 . To get an approximate value for the volume 
of a frustum, we replace it by a cylinder, whose base area is equal to the 
mean cross-sectional area of the frustum. Note that this will give not the 
exact volume of a frustum but a fairly good approximation if the area at the 
bottom does not differ too much from the area at the top (i.e., if the frustum 
is close to a cylinder). The mean cross-sectional area of the first frustum is 

1
2
⋅
π
4
⋅ d1( )2 + π4 ⋅ d2( )2

⎛

⎝
⎜

⎞

⎠
⎟ =

 
π
8
d1( )2 + d2( )2( )

and the mean cross-sectional area of the second frustum is, therefore,
π
8
d2( )2 + d3( )2( )
Multiplying these expressions by 

h
3  and adding the volume of the cy-

lindrical middle part, we get a good approximation of the total volume of 
the wine barrel, if its shape does not deviate too much from a cylinder:

Figure 13.4.
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+ d3( )2( )
which is in exact agreement with the rule Kepler proposed. Kepler pub-
lished his findings on generating volumes in 1615, in a work that was later 
refined by the Italian mathematician Bonaventura Cavalieri (1598–1674). 
Today we know this procedure as Cavalieri’s principle. In 1619, while in 
Linz, Kepler published his second work on cosmology, titled Harmonices 
mundi Book V (Harmony of the World, Book V).

Of particular importance in this publication is what we today call Ke-
pler’s third law of planetary motion, which states that, for any two planets, 
the ratio of the squares of their periods (i.e., one complete revolution) is 
equal to the ratio of the cubes of the mean radii of their orbits. In 1621, 

Figure 13.5. Harmonices mundi,  
Book V, 1619.
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Kepler published a second version of his ideas in Mysterium Cosmograph-
icum—although in much shorter form and correcting much of what he 
consequently found to be inaccurate in the original work. Kepler remained 
very active in computational matters, not the least of which was motivated 
by the writings of Scottish mathematician John Napier, on logarithms. He 
published his computations in Rudolphine Tables in 1627, which included 
eight-place logarithms.

His book on a variety of tables is often considered one of his greatest 
works, but, as we can see in figure 13.6, it was not published until 1627. 
This is because there were legal disagreements with Tycho Brahe’s heirs as 
to ownership of the work. In 1625, the religious tension in Europe between 
Catholics and Protestants led to the Counter-Reformation, placing most 
of Kepler’s library under seal. By 1626, the city of Linz was besieged, and 
Kepler was forced to move to the city of Ulm, Germany, where the Ru-
dolphine Tables was ultimately printed. The battles subsided in 1628, and 
Kepler became an official advisor to the Bohemian general Albrecht von 
Wallenstein (1583–1634); in this capacity, he provided astronomical cal-
culations for various astrologers. He did quite a bit of traveling in his last 
years, between Prague, Linz, and Ulm. He fell ill in the city of Regensburg, 
Germany, and died on November 15, 1630. He was buried there, but, in 
later years, the cemetery was decimated; therefore, there is no gravesite for 
Kepler, but there are monuments to him in both Prague and Linz.

Let us now review the three laws of planetary motion that have be-
stowed upon Kepler the most fame.

Kepler’s First Law: Planets move about the sun in an elliptical orbit, 
with the sun at one focus of the ellipse (see fig. 13.7).

Kepler’s Second Law: The speed of a planet traveling along an elliptical 
orbit, with the sun at one focus, is such that the line joining the sun and 
the planet sweeps out equal areas during equal time periods. (See fig. 13.8, 
where the two shaded regions have equal areas.)

Kepler’s Third Law: The square of the orbital period of a planet is pro-
portional to the cube of the semi-major axis of its orbit, as shown in figure 
13.9.

It must be said that these three laws that Kepler discovered are truly 
amazing, especially given the limitations of the astronomical tools that were 
available during his time. As mentioned earlier, we can consider him ex-
traordinarily clever to have seen these relationships despite the inaccuracy 
of his measurements.
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Figure 13.6. Rudolphine 
Tables, 1627.

Figure 13.7. (Image by Brian Ventrudo, The One Minute Astronomer  
[Mintaka, 2008], ebook.)
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Figure 13.8. (Image by Brian Ventrudo, The One Minute Astronomer  
[Mintaka, 2008], ebook.)

Figure 13.9.
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Chapter 14

René Descartes:  
French (1596–1650)

The 2017 Nobel Prize in Physiology or Medicine was awarded to Jeffrey C. 
Hall, Michael Rosbash, and Michael W. Young, “for their discoveries of 
molecular mechanisms controlling the circadian rhythm.”1 The circadian 
rhythm is a general term for biological processes oscillating with a period of 
approximately twenty-four hours, meaning that these processes are adapted 
to the rotational period of the earth. Life on Earth has developed biological 
clocks, which are responsible for regulating metabolism, hormone levels, 
sleep, and other aspects of our physiology. Our inner clock is independent 
of sunlight and would maintain our periods of sleepiness and wakefulness 
in a cycle of about twenty-four hours, even if we were living in complete 
darkness or underground, without any natural light sources. A mismatch 
between our inner clock and our environment or lifestyle has adverse ef-
fects on our well-being and productivity. For example, when we travel 
across several time zones, we may experience jet lag, a temporal phenome-
non caused by a large shift between the time kept by our internal biological 
clock and the external time dictated by the environment. However, not all 
people living in the same time zone have synchronized inner clocks; there 
is some individual variation, depending on lifestyle, work schedule, and 
biological factors. For instance, our circadian rhythm gets shifted during 
adolescence, letting us go to bed late. This explains why most teenagers are 
“night owls.” Yet, for biological reasons, teenagers also need more hours 
of sleep than adults do. If the school day starts early, it therefore becomes 
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difficult for teenagers to get enough sleep. Besides, getting up out of bed is 
quite a challenge when your inner clock commands you to sleep for another 
two or three hours.

When the French philosopher and mathematician René Descartes 
(1596–1650) was about ten years old, he was sent as a boarding student 
to the Jesuit College at La Flèche, established in 1604 by King Henri IV of 
France. There, he was granted an unusual privilege, which would probably 
be a dream come true for any teenager regularly struggling with early-
morning wake-up calls. While the other boys at boarding school had to 
get up at five o’clock in the morning, René was officially allowed to stay 
in bed until eleven o’clock because of his weak physical condition and his 
frequent health problems. Young René enjoyed sleeping late, but even after 
he woke up, he often remained in bed for several hours. Alone and without 
any distraction, he would meditate on the knowledge and subjects he was 
taught at La Flèche, including classical studies, traditional Aristotelian 
philosophy, science, and mathematics. He later described his education at 
La Flèche as follows:

Figure 14.1. René Descartes. 
 (Portrait by Franz Hals, oil on canvas, ca. 1649–1700.)
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I had been assured I could acquire a clear and certain knowledge of all 
that is useful in life. I had an extreme desire to learn. But as soon as I 
had completed the course of study, at the end of which one is usually 
received into the rank of the learned, I entirely changed my opinion. 
For, I found myself embarrassed by so many doubts and errors, that I 
thought I had gained nothing else from trying to instruct myself, than 
to have more and more discovered my ignorance.2

There was only one subject in school that was free of doubt, a quality 
Descartes found very appealing:

I took pleasure, above all, in mathematics, because of the certainty 
and the absoluteness of its reasons; but I had not yet found out its true 
use; and, thinking that it served only for the mechanical arts, I was 
astonished that, its foundations being so firm and solid, nothing had 
ever been built on them that was more exalted.3

Throughout his life, Descartes kept the habit of spending a considerable 
amount of daytime in bed, pondering fundamental philosophical and sci-
entific questions. Isolated from the world around him, he was able to focus 
his mind and reach a state of deep contemplation, disputing with himself 
about what we know and what we can know. Today, he is most famous for 
the Latin phrase “cogito ergo sum.” Translated into English, this is, “I think, 
therefore I am.” It means that we cannot doubt of our existence while we 
doubt; that is, the very act of thinking serves as a proof of the reality of one’s 
own mind. Descartes admired the strict deductive reasoning used in math-
ematics and the absolute certainty of mathematical results. He thought that 
all science and philosophy should be based on mathematics. This is meant 
in the sense that we cannot accept anything as certain unless it can be de-
duced by a complete and rigorous chain of evidence from already-secured 
knowledge or observations of nature and scientific experiments. In one of 
his most important publications, the Discours de la méthode pour bien con-
duire sa raison et chercher la vérité dans les sciences (Discourse on the Method 
of Rightly Conducting One’s Reason and of Seeking Truth in the Sciences), 
Descartes writes:

The long chains of simple and easy reasoning by means of which geom-
eters are accustomed to reach the conclusions of their most difficult 
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demonstrations led me to imagine that all things, to the knowledge of 
which man is competent, are mutually connected in the same way, and 
that there is nothing so far removed from us as to be beyond our reach, 
or so hidden that we cannot discover it, provided only, we abstain from 
accepting the false for the true, and always preserve in our thoughts the 
order necessary for the deduction of one truth from another.4

However, in order to deduce truths from other truths, one first needs 
a starting point or a premise on which to base further reasoning. This basis 
must be provided by statements that are taken to be true or are accepted 
without controversy or question. Statements of this type are called postu-
lates or axioms; they cannot be deduced from more-elementary statements. 
The foundations of modern mathematics are based on minimal lists of axi-
oms. For instance, many facts in arithmetic can be derived from more-basic 
facts; however, as one traces these basic facts back to even more basic facts 
and continues with this process, one will eventually end up at statements 
that cannot be reduced any further. It turns out that number theory (the 
study of integers) can be built upon the so-called Peano axioms, named af-
ter Giuseppe Peano (1858–1932) (see chap. 39). These axioms consist of five 
statements formulated in the language of mathematical logic and defining 
the set of natural numbers in terms of properties that are independent of 
their concrete representation. The Peano axioms can be viewed as the first 
principles of number theory. Descartes’s famous “cogito ergo sum” plays a 
similar role for modern Western philosophy. In his Principia Philosophiae 
(Principles of Philosophy), he characterizes first principles as follows:

First, they must be so clear and so evident that the human mind 
cannot doubt of their truth when it attentively considers them; and 
second, the knowledge of other things must depend upon these Prin-
ciples in such a way that they may be known without the other things, 
but not vice versa.5

However, Descartes not only tried to put philosophy on a mathemat-
ical foundation but also made important contributions to mathematics it-
self, making him one of the most influential mathematicians of his time. 
We will reveal some of his achievements in mathematics and some of the 
mathematical notations and concepts attributed to him, while giving a brief 
overview of his life.
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René Descartes was born at his grandmother’s home in the commune 
La Haye en Touraine, France (renamed La Haye-Descartes in 1802 and re-
named again to Descartes in 1967), on March 31, 1596. His father, Joachim, 
had studied law and was a counselor at the court of justice. When René was 
only one year old, his mother, Jeanne, died in childbirth; René was sent 
back to this maternal grandmother, who would care for him. His father 
remarried in 1600, and René continued living with his grandmother, to-
gether with two older siblings. After his education at La Flèche, he entered 
the University of Poitiers, where he studied law, following the paths of his 
father and his maternal uncle, René Brochard, who was a deputy and judge 
at the Estates-General in Poitiers. Descartes received his degree and legal 
license in 1616. Nothing was known about the content of his thesis until 
1981, when a curator for the Sainte-Croix Museum (Poitiers) made an un-
expected discovery while reframing a seventeenth-century engraving that 
had been hanging in a museum restaurant. He found, stuffed in the back 
of the engraving, a public broadsheet that had been printed in 1616 and 
announced the oral thesis defense of René Descartes (see fig. 14.2).

The broadsheet contains an affectionate dedication to his uncle René 
Brochard and a list of forty statements summarizing his thesis. However, 
Descartes did not pursue a career as a lawyer or a judge any further. Al-
though the theory of law has some similarities to mathematics, since de-
ductive reasoning is used to draw conclusions from legal text, there is also 
a profound difference: mathematical statements are universal; legal text is 
invented by humans and has nothing to do with nature. Descartes decided 
to stop devoting his time and energy to the study of books from which he 
would not learn anything about nature. In his Discourse on the Method, he 
recalls:

I entirely abandoned the study of letters, resolving to seek no knowl-
edge other than that which could be found in myself or else in the 
great book of the world.6

In 1618, Descartes entered a military school in Breda, Netherlands, 
where he studied mathematics and physics, to become a military engineer. 
After serving in the armies of Maurice of Nassau and Maximilian of Bavar-
ia, he spent a lot of time between 1620 and 1628 traveling through north-
ern and southern Europe and developing his ideas for a philosophy based 
on the concept of mathematical proofs. In Paris, he was in regular contact 
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with the French priest and mathematician Marin Mersenne (1588–1648), 
who had also studied at La Flèche and who encouraged him to publish his 
thoughts on philosophy and science. Although Paris was one of the intel-
lectual centers of the world at that time, Descartes left Paris in 1628 and 
returned to the Netherlands, seeking a secluded place without distraction, 
to work on his ideas for a new philosophy. In 1633, he completed his first 
major treatise on physics, The World (French: Traité du monde et de la lu-
mière), based on the heliocentric model of the sun and the planets devel-
oped by Polish mathematician Nicolaus Copernicus. But when Descartes 
learned that Galileo Galilei was condemned by the Catholic Church for 

Figure 14.2. Broadsheet advertising Descartes’s oral thesis defense in 1616.
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defending Copernicanism in his Dialogue, he shied away from publishing 
his treatise. However, fragments of this work appeared together with his 
famous Discourse on the Method in 1637, in three essays: “Les Météores” 
(“The Meteors”), “La Dioptrique” (“Dioptrics”), and “La Géométrie” (“Ge-
ometry”). The Discourse on the Method consists of six parts and is one of the 
most influential works of modern philosophy; it is also the first important 
modern philosophical work that was not written in Latin. Descartes wrote 
it in French to make his work accessible to everyone, not only to scholars. 
He describes a universal method of deductive reasoning, applicable to all 
sciences. In the second part, Descartes presents the four basic rules of his 
method, revealing his inspiration from mathematical proofs:

1.	 Accept nothing as true that is not self-evident.
2.	 Divide problems into their simplest parts.
3.	 Solve problems by proceeding from simple to complex.
4.	 Recheck the reasoning.

Of the three essays supplementing the Discourse on the Method, “La 
Géométrie” is by far the most important. With this work, Descartes revolu-
tionized mathematics by bringing together Euclidean geometry and algebra 
to what is now known as analytic geometry. Before Descartes, geometry 
and algebra had essentially been separate fields, whereby geometry was 
considered to be fundamental. Descartes discovered that with the help of a 
coordinate system defined by two directed perpendicular lines, geometric 
shapes can be described by algebraic equations. As the simplest examples, 
figure 14.3 shows two straight lines and a circle centered at the origin, to-
gether with their corresponding equations relating the x-coordinate and 
the y-coordinate.

Coordinate systems with perpendicular axes are called Cartesian coor-
dinates in honor of Descartes (Cartesius is the Latin version of “Descartes”). 
By representing geometric objects such as straight lines, circles, and other 
curves by algebraic equations, suddenly, problems in geometry could be 
solved by algebraic methods, and vice versa. In particular, geometric rela-
tions between geometric objects, such as tangency, intersection points, and 
so on, could be described by corresponding algebraic equations. Today, this 
is also referred to as analytic geometry. For example, using his method of 
coordinates, Descartes discovered the following algebraic solution to a spe-
cial case of Apollonius’s problem of finding a circle touching three mutually 
tangent circles, as shown in figure 14.4.



	 René Descartes: French (1596–1650) 	 113

Figure 14.3. Curves can be represented by algebraic equations.

Figure 14.4. Three circles tangent to each other externally.
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If the three given circles have radii r1, r2, and r3, then the radius of the 
fourth circle is determined by the equation

1
r4
=
1
r1
+
1
r2
+
1
r3
±2 1

r1r2
+
1
r2r3

+
1
r3r1

where the ± sign reflects the fact that there are two solutions to the 
problem—shown as the two dashed circles in figure 14.5. This statement is 
known as Descartes’s theorem.

The introduction of Cartesian coordinates was a milestone in the histo-
ry of mathematics and also a fundamental ingredient in the development of 
calculus by Isaac Newton and Gottfried Wilhelm Leibniz.

The convention of using the letters x, y, and z to represent variables and 
letters a, b, c, . . . for known quantities is also attributed to Descartes, as is 
the use of superscripts for powers or exponents, such as x2.

After his seminal Discourse on the Method, Descartes continued to 
produce important works concerning both mathematics and philosophy, 
the most comprehensive of which is the Principia Philosophiae, published 
in Amsterdam in 1644. By 1649, Descartes had become one of the most 
famous philosophers and scientists in Europe, in spite of not holding any 

Figure 14.5. The dashed circles are tangent to all three solid circles.
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academic position. Yet he had always preferred to be left alone and to work 
isolated from the world, without distractions. He kept his residence in the 
Netherlands a secret and held contact with the scientific community only 
through exchanging letters with Marin Mersenne, who was one of the very 
few persons who knew Descartes’s address.

In 1649, Queen Christina of Sweden invited Descartes to her court in 
Stockholm, to organize a scientific academy and to teach her. Some persua-
sion was necessary until Descartes finally accepted and moved to Sweden 
in the middle of the winter. He had kept the habit of lying in bed until elev-
en o’clock throughout his lifetime, but the twenty-two-year-old Christina 
of Sweden insisted upon receiving philosophy lessons at five o’clock in the 
morning. The fifty-three-year-old Descartes now had to break the rhythm 
he was accustomed to and fight against his inner clock, which weakened 
him and made him more susceptible to infections. Walking to the queen’s 
palace every morning in the cold Swedish winter did the rest, and he soon 
caught a cold from which he developed pneumonia. Only ten days after 
falling ill, René Descartes died on February 11, 1650, in Stockholm.
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Chapter 15

Pierre de Fermat:  
French (1607–1665)

Today, research in mathematics is fragmented into a vast number of 
branches and sub-branches, all having their own defined community of 
mathematicians. In pure mathematics alone, there are more than one hun-
dred journals of excellent reputation; they are devoted to particular fields 
and publish only high-quality articles containing important new findings. 
Mathematicians meet at international conferences to present their work, 
plan collaborations, and exchange ideas. Unless a conference is exclusively 
devoted to a very special topic, most of the presentations will be compre-
hensible only to a small minority of the audience. This is simply a conse-
quence of the high degree of specialization to which mathematicians must 
adhere in order to get a chance to make new and relevant contributions to 
their field of research. In fact, even for the most outstanding mathemati-
cians, it has become virtually impossible to be an expert in several different 
branches at the same time. Needless to say, it is totally inconceivable that 
someone who is not a professional mathematician would be able to obtain 
significant new insights anywhere near the forefront of current research. In 
the seventeenth century, mathematics had not yet branched into so many 
almost-disjointed subjects, and, at least in principle, it was still possible for 
“spare-time mathematicians” to gain enough knowledge and competence 
to not only correspond with and earn the respect of renowned mathema-
ticians in academic positions but also even pursue their own ideas with 
success—and, in some cases, eventually contribute pioneering work. This is 
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certainly true for the French mathematician Pierre de Fermat (1607–1665), 
who is still famous for his work in mathematics, even though he actually 
was a lawyer who could occupy himself with mathematics only alongside 
his professional obligations at the Parliament1 of Toulouse in France.

Fermat was born in the fall of 1607, in Beaumont-de-Lomagne, France, 
where his father, Dominique Fermat, a wealthy leather merchant, served 
three one-year terms as one of the four consuls governing the town. Pierre’s 
mother, Claire de Long, was a noblewoman. She died in childbed in 1615. 
There is little evidence regarding Pierre’s school education, and we don’t 
know whether he had a mentor in mathematics at school or what moti-
vated his interest in mathematics. What is known is that he studied at the 
University of Orléans, where he received a bachelor’s degree in civil law in 
1626. He then moved to Bordeaux to work as lawyer. In Bordeaux, Fer-
mat got in contact with the lineographer and mathematician Jean de Bea-
ugrand, and he also formed a lifelong friendship with Etienne d’Espagnet, 

Figure 15.1. A seventeenth-century portrait of Pierre de Fermat.
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who had inherited a huge and very well-equipped library from his father, 
the Renaissance polymath Jean d’Espagnet. The mathematics section of the 
library contained works by Euclid, Apollonius of Perga, and François Viètes 
(1540–1603), also known as Franciscus Vieta, who was, in fact, a friend of 
Jean d’Espagnet. Fermat eagerly read these books, thoroughly studying the 
presented material and adding his own notes in the margins (see fig. 15.2).

Having gained extensive knowledge in mathematics, Fermat began 
his own mathematical investigations, concerned with tangents to algebraic 
curves and finding minima and maxima of functions. In parallel, he recon-
structed Apollonius’s lost work De Locis Planis, described in some detail 
by Pappus of Alexandria. It contained propositions relating to loci that are 
either straight lines or circles. Fermat inherited a fortune when his father 
died in 1628. He bought the office of a deceased councilor at the parliament 

Figure 15.2. Handwritten notes of Pierre Fermat in a  
Latin transcription of Apollonius’s Conics.
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in Toulouse and became his successor there. With his inauguration as a 
government official in 1631, he was entitled to change his name from Pierre 
Fermat to Pierre de Fermat, a right he himself, however, never made use 
of. In the same year, he married Louise de Long, his fourth-degree cousin. 
They had eight children, five of whom survived into adulthood. In 1636, 
Fermat’s friend Pierre de Carcavi went to Paris and met Marin Mersenne, 
whom he told about Fermat’s mathematical research. Mersenne then wrote 
to Fermat, and they began a correspondence that lasted until Mersenne’s 
death in 1648. Fermat stayed in Toulouse for the rest of his life, visiting only 
nearby towns from time to time. He never traveled any further than to Bor-
deaux,2 so his communication with other mathematicians was restricted to 
writing letters. With Mersenne as a mediator, Fermat corresponded with 
Galileo Galilei, Blaise Pascal, John Wallis, Christiaan Huygens, and René 
Descartes. Through his correspondence, Fermat quickly became known as 
a leading mathematician, although he rarely published his results, because 
he did not want to spend too much time on polishing the proofs for publi-
cation. Yet the letters that have survived, in conjunction with posthumously 
published writings and notes, clearly show that he made pioneering works 
in several fields of mathematics. Independent of Descartes, Fermat devel-
oped analytic geometry. There was a famous controversy between Fermat 
and Descartes regarding the soundness of their mathematical methods, 
with Descartes finally giving in and writing the following to Fermat:

. . . seeing the last method that you use for finding tangents to curved 
lines, I can reply to it in no other way than to say that it is very good 
and that, if you had explained it in this manner at the outset, I would 
have not contradicted it at all.3

Fermat’s method of finding the tangent to a curve was based on cal-
culating the differential of the function describing the curve, essentially in 
the same way that differential quotients are computed in an elementary cal-
culus course today. However, Fermat was lacking the concept of a limit to 
justify his calculations. A mathematically consistent formulation of mod-
ern calculus was established thirty years later by Newton and Leibniz. In-
terestingly, Newton wrote that the ideas that led to his invention of calculus 
were inspired by “Fermat’s way of drawing tangents.”4 Moreover, Fermat is 
recognized as a key figure in the historical development of the fundamental 
principle of least action in physics. The principle of least action is a gener-
alization of Fermat’s principle of least time, named Fermat’s principle in his 
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honor. It states that light travels between two given points along the path of 
shortest time. Fermat was able to deduce Snell’s law of refraction from his 
principle of least time.

Surprisingly, Fermat was not really interested in physics, but, when 
reading Descartes’s treatise on optics, “La Dioptrique,” he discovered that 
Descartes’s heuristic derivation of the law of refraction was based on circu-
lar reasoning. Descartes became angry about Fermat’s critique of his work, 
and this was the beginning of their disputes. Fermat’s mathematical cor-
respondence was interrupted between 1644 and 1653; perhaps his duties 
at the parliament did not allow him to continue with his mathematical re-
search during this period of time. However, in 1654, Fermat received a letter 
from Blaise Pascal, who wanted to discuss his calculations of probabilities. 
Their resulting correspondence laid the foundation of probability theory 
(see chap. 16). Yet, Fermat’s main mathematical interest, if not obsession, 
was number theory. Unfortunately, none of the mathematicians he was in 
contact with shared his enthusiasm for this topic, as it was not considered 
very important at that time. He tried to persuade Pascal, as well as Huygens, 
to join him in his research in number theory, but he wasn’t successful. Fer-
mat, indeed, made some important contributions to number theory, but he 
was not interested in publishing his work. Concerning his discussions with 
Pascal on the calculation of probabilities, Fermat wrote to Carcavi:

I am delighted to have had opinions conforming to those of M Pascal, 
for I have infinite esteem for his genius. . . . The two of you may under-
take that publication, of which I consent to your being the masters, 
you may clarify or supplement whatever seems too concise and relieve 
me of a burden that my duties prevent me from taking on.5

Fermat enjoyed posing problems to the leading mathematicians of his 
time. However, he rarely provided complete proofs for his theorems; often, 
he only sketched the method, and it was left to others to fill in the gaps. 
Number theory was not very fashionable at this time, and more than one 
hundred years went by until Leonhard Euler took up Fermat’s studies and 
gave full proofs to some of the results or conjectures that Fermat had for-
mulated without providing rigorous proofs. In 1659, Fermat wrote a letter 
to Carcavi, intended for Huygens, in which he gave a brief summary of his 
accomplishments in number theory and also revealed some of his methods, 
in particular the method of infinite descent.6 In the last paragraph, he wrote,
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And Perhaps posterity will thank me for having shown it that the 
ancients did not know everything, and this account will pass into the 
mind of those who come after me as a “passing of the torch” to the 
next generation.7

In 1653, Fermat was struck down by the plague and survived, but 
this episode probably had some long-term effects on his health. In a 1660 
letter to Pascal, who lived in Clermont-Ferrand, about 236 miles from 
Toulouse, Fermat suggested they meet halfway between the two towns, 
since “my health is not any better than yours.”8 In 1664, he felt that his 
life would soon come to an end and wrote his last will and testament. He 
kept working as a judge at the parliament as long as he could, and he died 
in Castres, France, at the age of fifty-seven, on January 12, 1665—just one 
week after his last official act.

The most famous theorem of Fermat, for which he is remembered today, 
has a fascinating history and is in many ways characteristic of both his style as 
a mathematician and his work’s significance for later developments in math-
ematics. It is known as Fermat’s last theorem, and it can be stated as follows:

The equation xn + yn = zn has no positive integer solutions for x, y, and 
z when n > 2.

For n = 2, we would obtain the Pythagorean theorem, x2 + y2 = z2, and 
this equation has, in fact, infinitely many integer solutions, which are called 
Pythagorean triples. For instance, the numbers 3, 4, and 5 form a Pythag-
orean triple, since 32 + 42 = 52. After having found one Pythagorean triple, 
one can easily generate infinitely many others by multiplying each of the 
three numbers by the same positive integer (e.g., multiplication by 2 yields 
the numbers 6, 8, 10, which also form a Pythagorean triple). Fermat’s last 
theorem was first discovered by his son, Samuel, in the margin in his father’s 
copy of an edition of Diophantus’s Arithmetica, together with the note:

I have a truly marvelous demonstration of this proposition which this 
margin is too narrow to contain.9

Fermat’s proof was never found; however, Samuel republished Dio-
phantus’s Arithmetica, along with his father’s marginal notes, in 1670 (see 
fig. 15.3) This popularized Fermat’s last theorem, which became a famous 
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Figure 15.3. Diophantus’s Arithmetica, including a note from  
Pierre de Fermat, outlining his last theorem, under the heading  

OBSERVATIO DOMINI PETRI DE FERMAT.
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open problem of mathematics, attracting the attention of many great 
mathematicians.

In spite of countless attempts to prove it or to find a counter-example, 
the theorem remained a conjecture until 1994, when the British mathe-
matician Andrew Wiles (1953–) finally succeeded, after working secretly 
on the problem for six years. The proof comprises more than one hundred 
pages and was published as the entire issue of May 1995 of the Annals of 
Mathematics, 358 years after Fermat’s conjecture. The proof relies on very 
special techniques from modern mathematical theories developed in the 
twentieth century, and it is incomprehensible for mathematicians who are 
not working in closely related fields. For solving this famous problem, Wiles 
was awarded a multitude of prizes, including one of the most prestigious 
award for mathematicians, the Abel Prize. It is now believed that Fermat’s 
proclaimed “proof ” was highly questionable, although it cannot be com-
pletely ruled out that, indeed, he did have a truly remarkable proof. In any 
case, the unsuccessful attempts to prove his theorem—extending over a 
period of more than three hundred years—led to an astounding number 
of more important mathematical discoveries and theories, with fruitful ap-
plications in branches of mathematics seemingly not at all related to num-
ber theory. Although no leading mathematician really shared his interest in 
number theory during his lifetime, Pierre de Fermat has managed to engage 
generations of mathematicians in his preferred field of research for more 
than three centuries after his death; this alone is quite unique in the field of 
mathematics.
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Chapter 16

Blaise Pascal:  
French (1623–1662)

One of the greatest mathematicians of all time was Blaise Pascal, who was 
born in Clermont, Auvergne, France, on June 19, 1623. His father, Étienne 
Pascal, was a politician and a man of culture and intellectual distinction. 
Blaise Pascal’s mother died when he was four years old; thus, he was reared 
by his father, along with his two sisters. Encouraged by his father, his early 
years found him deeply engaged in religious thinking. This often distracted 
him from other intellectual endeavors. When Pascal was seven years old, 
Étienne moved to Paris with his three children. This was about the time 
when he was heavily involved in teaching his children at home. Pascal was 
not physically well conditioned, yet this was compensated for with an ex-
ceptionally brilliant mind. Étienne was impressed at how quickly his young 
son would pick up new ideas of what was then considered the classical 
education. He kept mathematics at a distance from him, so as not to put 
too much strain on the young child. Frankly, this built up Pascal’s curiosity 
about mathematics even more. Once the father realized his son’s incredi-
ble mathematics talents, he gave him a copy of Euclid’s Elements, perhaps 
one of the first compilations of geometry and other aspects of mathematics 
in a logical development. One of Pascal’s sisters claimed that her younger 
brother had discovered Euclid’s first thirty-two propositions in the same or-
der that Euclid did, without referring to the book. It was the thirty-second 
proposition, that the sum of the angles of a triangle is equal to the sum of 
two right angles, that further demonstrated Pascal’s unique talent.



	 Blaise Pascal: French (1623–1662) 	 125

By the age of fourteen, Pascal was admitted to the weekly meetings 
of a group that eventually developed into the French Academy of Science. 
About the time when he was sixteen years old, and having been motivated 
by the work of the French mathematician Girard Desargues (1591–1661), 
he got involved in geometry and proved some of the most beautiful theo-
rems in the field, one of which today bears his name (Pascal’s theorem) and 
is very easy to demonstrate. All you need is a circle and a ruler. We demon-
strate this theorem in figure 16.2, where we randomly select six points on 
a circle, then join these points consecutively, forming a hexagon inscribed 
in the circle. We then extend the three pairs of opposite sides (AB and ED; 
BC and FE; and CD and AF) so that they would intersect. (Of course, when 
you select your six points, avoid placing them such that you would have any 
pair of opposite sides parallel.) When we mark these points of intersection, 
L, N, and M, we find that these points will always lie on a straight line. 
Amazingly, this holds true for any six points on a circle (avoiding parallels, 
as mentioned above), and, curiously enough, it can also be extended to any 
six points on an ellipse. At first, other famous mathematicians of the times, 
such as René Descartes, refused to believe that such a discovery could be 
made by a sixteen-year-old boy. But, in time, it was properly accepted.

Figure 16.1. Blaise Pascal. (Lithograph after E. Edelinck after F. Quesnel Jr.)
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Pascal had to pay a price for his brilliance. From the age of seventeen 
until the end of his life at age thirty-nine, he lived in physical pain, with 
sleepless nights and unpleasant days. Yet, he kept on working. At age nine-
teen, Pascal invented the first calculator machine (see fig. 16.3), in order to 
assist his father’s computational work as a tax collector for the city of Rouen. 
This calculator was able to do addition and subtraction and was referred to 
as Pascal’s calculator or Pascaline. There are currently four versions of this 
machine exhibited in the Musée des Arts et Métiers in Paris. At the time of 
its development, the machine was considered a luxury item and this moti-
vated Pascal to continue to improve its functioning over the next 10 years.

The society in which he lived was tormented by religious upheaval, 
which to some extent affected Pascal as well, since his dear sister Jacqueline, 
who had supported him, entered a monastery in Pert-Royal. At age twen-
ty-three, he suffered a temporary paralysis, but his intellectuality continued 
unabated. He continued to lead a rather turbulent life tortured by his fam-
ily’s involvement in various religious followings. In 1654, at age thirty-one, 
Pascal engaged in probably the most important contribution he had made 
to mathematics. That is, he embarked on a mathematical correspondence 
with Pierre de Fermat, which eventually became the basis for the theory of 
probability. During the year 1654, Pascal and Fermat challenged each other 
with mathematical problems that began to generate the development of the 
future field of probability, as we know it today. One of the early problems 
that was posed involved a game in which two players would gain points, 

Figure 16.2.
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with a specified number of points to win the game. The question was as 
follows: If the game is stopped before the end, how should the money be 
divided between the two players, considering the number of points each 
player has at the time of stop of the game? Here is a translation of one of 
these correspondences, from Fermat to Pascal in 1654:

Monsieur. If I undertake to make a point with a single die in eight 
throws, and if we agree after the money is put at stake, that I shall 
not cast the first throw, it is necessary by my theory that I take 
1
6

 of the total sum to be impartial because of the aforesaid first 
throw. And if we agree after that I shall not play the second throw, 
I should, for my share, take the sixth of the remainder, that is, 536  
of the total. If, after that, we agree that I shall not play the third 
throw, I should, to recoup myself, take 1

6
 of the remainder, which 

is 25216  of the total. And if, subsequently, we agree again that I 
shall not cast the fourth throw, I should take 1

6
 of the remainder, 

or 125
1296

 of the total, and I agree with you that that is the value 
of the fourth throw, supposing that one has already made the 
preceding plays. But you proposed in the last example in your 
letter (I quote your very terms) that if I undertake to find the six 
in eight throws, and, if I have thrown three times without getting 
it, and if my opponent proposes that I should not play the fourth 
time, and if he wishes me to be justly treated, it is proper that I 

Figure 16.3. Pascal’s calculator. (Wikimedia Creative Commons,  
photo by Rama, licensed under CC BY-SA 3.0 FR.)
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have 1251296  of the entire sum of our wagers. This, however, is not 
true by my theory. For in this case, the three first throws, having 
gained nothing for the player who holds the die, the total sum 
thus remaining at stake, he who holds the die and who agrees to 
not play his fourth throw should take 1

6
 as his reward. And if he 

has played four throws without finding the desired point, and, 
if they agree that he shall not play the fifth time, he will, never-
theless, have 1

6
 of the total for his share. Since the whole sum 

stays in play it not only follows from the theory, but it is indeed 
common sense that each throw should be of equal value. I urge 
you therefore (to write me) that I may know whether we agree in 
the theory, as I believe (we do), or whether we differ only in its 
application. I am, most heartily, etc.

Fermat

This written exchange led to the beginning of questioning the likeli-
hood of certain occurrences involving cards, point flips, and the like. This is 
the very basic aspect of the field of probability.

Then there was Antoine Gombaud, the Chevalier de Méré (1607–
1684), who was a French gambler whose claim to fame was correspondence 
with Pascal seeking help to understand why he was continuously losing at 
a game of dice. This motivated Pascal to correspond further with Pierre de 
Fermat, which generated a new field of mathematics and led to what we 
know today as probability theory.

Let’s take a look at what this exchange of ideas entailed. De Méré 
was involved with two games of dice. The first game involves making a 
bet with even odds on getting at least one six on four successive rolls of 
the die. He knew that the likelihood of getting a six on one roll was 1

6
. 

He then figured that on four rolls of the die, the probability would be 
4
6
=
2
3 . This, of course, was incorrect. This didn’t stop him from betting, 

and yet he seemed rather successful.
He extended his thinking by betting with even odds on getting at least 

a double six on 24 rolls of a pair of dice. Figuring, correctly, the chance of 
getting a double six on one roll of the pair of dice is 136 , once again he mis-
takenly assumed that getting the double six on 24 rolls of the pair of dice 
would be 24

36
=
2
3

.



	 Blaise Pascal: French (1623–1662) 	 129

Since he began to lose a lot of money, he decided to seek help from his 
brilliant friend, Pascal. This further strengthened the correspondence be-
tween Pascal and Fermat, which ultimately led to a solution to the problem.

Let’s take a look at the two games and see why the first game was prof-
itable and the second game was not. Clearly, we know that when we roll the 
die there are six possible ways that it can land, which allows us to conclude 
that the probability of getting a six is 16 , and the probability of not getting 
a six is 56 . Therefore, considering de Méré’s first game, we calculate that the 
probability of getting no six in four rolls of the die is
5
6
⋅
5
6
⋅
5
6
⋅
5
6

 =  5
6
⎛

⎝
⎜
⎞

⎠
⎟

4

=  0.4822531…

It follows that the probability of getting at least one six on these four 
rolls is 1 – 0.4822531 . . . = 0.5177469 . . . . We can interpret this for 100 
games with approximately 52 successful rolls. Were he to play 1,000 games, 
he would win an average of 518 games. Winning more than half the games 
gave him an edge.

Now considering the second game, we recall that there were 36 possible 
outcomes when tossing two dice, of which only one was a double six. This 
gives us a probability of getting the double six as 136 ; the probability of not 
getting a double six is 1− 136 =

35
36 . Therefore, the probability of not getting a 

double six on 24 rolls of the pair of dice is 35
36
⎛

⎝
⎜

⎞

⎠
⎟

24

= 0.5085961 . . .. As before, we can 
conclude that the probability of getting at least one double six on the 24 rolls 
of the pair of dice is 1 – 0.5085961 . . .  = 0.4914039 . . . . This indicates that de 
Méré would win only approximately 49 out of 100 games, which gives his 
opponent an edge, winning 51 out of 100 games. Problems of this sort were 
solved in the exchange between Pascal and Fermat, which led to what we 
know today as probability theory.

Throughout this time, Pascal made considerable use of the triangular 
arrangement of numbers that also bears his name today. In figure 16.4, we 
see this arrangement, where, beginning at the top, we have a 1, followed by 
a second row of two 1s; then, each succeeding row begins and ends with a 1, 
with each other number between the 1s being the sum of the two numbers 
diagonally above it on either side. This pattern then continues downward. 
Today, this arrangement of numbers is known as the Pascal triangle. Many 
number arrangements can be found on the Pascal triangle. For example, 
the sum of the numbers in each row is a power of 2, as shown in the right 
margin of figure 16.4.
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When we look at figure 16.5, we also notice that, considered as num-
bers, we have a representation of powers of 11. This triangular arrangement 
of numbers is very helpful, to this day, when working with probability.

There are probably countless patterns that can be found on the Pascal 
triangle; however, one that surprises us most is the appearance of the Fibo-
nacci numbers, which can be seen in figure 16.6.

It could be said that Pascal’s name in today’s recollection of the history 
of mathematics is being a co-inventor of the theory of probability, which 
seems to become increasingly more important in our everyday lives, from 
weather prediction to work in finance. On August 19, 1662, tortured with 
physical maladies and unpleasant mental conditions, Pascal’s life came to 
an end in Paris, when he suffered convulsions and died at age thirty-nine.
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Figure 16.6.



134

Chapter 17

Isaac Newton:  
English (1642–1727)

As we embark on the life of perhaps the most important mathematician 
and physicist in history, we begin with an overview of his very modest 
lifestyle. Isaac Newton was born December 25, 1642, in a small town of 
Woolsthorpe-by-Colsterworth, in the County of Lincolnshire, England. 
Unfortunately, his father died three months before Isaac was born. As a 
tiny, premature baby, Newton was not expected to live, yet he did so for 
eighty-four years! When Newton was two years old, his mother remarried 
and decided to live with her new husband, the wealthy minister Barnabas 
Smith, whom the young Newton did not like. Newton was then left in 
the care of his maternal grandmother, Margery Ayscough. He seemed to 
be sour at his mother for marrying Smith. She then had three additional 
children in this second marriage.

Newton attended the King’s School in Grantham, England, from the 
ages of twelve to seventeen; in addition to learning Latin and Greek, he had 
his first exposure to mathematics there. He returned to his original home 
in 1653 to live with his mother, who by then was widowed for a second 
time. There, in Woolsthorpe-by-Colsterworth, his mother urged him to do 
farming, which certainly did not suit Newton. Soon thereafter, the head 
of the King’s School urged his mother to return him to school to finish his 
education, which she did, allowing Newton to begin to exhibit his brilliance 
and to become the school’s top student. It should be said, though, that these 
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early years caused him some psychological difficulties that accompanied 
him the rest of his life.

His excellence in school as well as the recommendation of his uncle, 
who was an alumnus of Trinity College at Cambridge, enabled him to be 
admitted to the college in 1661. Soon thereafter, he eventually earned a 
full scholarship. During his undergraduate studies, he began to immerse 
himself in Aristotle’s work and philosophy. However, he also discovered the 
writings of French mathematician René Descartes, which guided Newton 
in a new direction and seemed to define the rest of his life. More specifically, 
Descartes’s “La Géométrie” allowed him to focus on seeking algebraic solu-
tions to geometric problems, which he felt was a much more conclusive way 
to solve problems. The works of Galileo and Kepler further strengthened 
his thinking in the direction of a heliocentric system of the universe. He 
made notes, titled Quaestiones quaedam philosophicae, in which he listed 
his thoughts on mechanical philosophy, guided by the best thinking of the 
times and his own imagination. In 1665, Newton expanded the binomial 
theorem (see fig. 17.4) by including fractional powers, which led him on the 
path to his development of what we today know as infinitesimal calculus.

In August 1665, Newton received his bachelor’s degree and left the uni-
versity, as it was closed for two years due to the Great Plague that dominat-
ed England. During the next two years, he stayed home, concentrating on 
private studies and further developing his theories of calculus, optics, and 
the law of gravitation.

Newton was elected as a fellow of Trinity College at Cambridge Uni-
versity in 1667, where he refused to become an ordained priest, which was 
previously a requirement for fellows at Cambridge. Initially, this precondi-
tion was not strictly enforced; but, by 1675, it became a requirement. Only 
through special permission from Charles II was Newton able to avoid be-
coming an ordained priest. In 1669, one year after receiving his master’s 
degree, Newton succeeded Isaac Barrow, becoming the second Lucasian 
professor. During this time, Newton summarized his work by writing De 
analysi per aequationes numero terminorum infinitas (On Analysis by In-
finite Series), which was shared with a limited audience and enabled his 
name to become better known. Soon thereafter, he wrote a revised form, 
Tractatus de methodis serierum et fluxionum (Treatise on the Methods of 
Series and Fluxions). In this work, he introduced the word fluxions, which 
is an indication of the birth of calculus. (More about this later.) In 1672, 
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with his reputation for brilliance expanding, he was elected as fellow of the 
Royal Society.

It is also well known that about the same time as Newton’s work on 
calculus became popular, the German mathematician Gottfried Wilhelm 
Leibniz (1646–1716) developed differential and infinitesimal calculus using 
completely different symbols. Leibniz’s symbols are largely still in use today, 
as opposed to Newton’s symbols, which are no longer used. It should be 
noted that Newton and Leibniz were in bitter disagreement regarding who 
should be credited with the development of calculus; this disagreement 
grew to the point where, beginning in 1699, members of the Royal Society 
started to accuse Leibniz of plagiarism. There is evidence to show that New-
ton generated this ill feeling, which continued until Leibniz’s death in 1716.

Newton was probably best known for his discoveries in the field of 
physics, where he made great advances in the field of optics; in particu-
lar, he discovered the spectrum of light by splitting white light through 
a prism. He was also well known for his significant improvements in the 

Figure 17.1. Isaac Newton. (Portrait by Sir Godfrey Kneller, 1689.)
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development of a telescope. Yet he is probably best known for his three 
laws of motion, which were presented in his famous book Philosophiæ Nat-
uralis Principia Mathematica (Mathematical Principles of Natural Philoso-
phy), commonly known as the Principia, which was first published in 1687 
(see fig. 17.2).

The first law of motion states that every object will remain at rest, or in 
uniform motion along a straight line, unless affected by an external force. 
The second law, sometimes referred to as the law of force and acceleration, 
states that a force on an object to accelerate is equal to the product of mass 
and acceleration, or, to put it another way, the acceleration of an object is 
directly proportional to the force and inversely proportional to the mass of 
the object. The third law states that for every action there is a reaction, that 
is, an action in the opposite direction.

Figure 17.2. Newton’s personal copy of Principia Mathematica,  
with his own comments included, in 1686.
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There aren’t many examples of Newton’s mathematical discoveries 
that can be presented to the general readership, but we will offer just a few 
of them here. Together with the English mathematician Joseph Raphson 
(1648–1715), Newton developed what is today referred to as the New-
ton-Raphson method of square-root extraction. In 1690, Raphson pub-
lished Analysis Aequationum Universalis, which included a method that 
is a simpler version of what Newton published in his Method of Fluxions. 
Newton wrote this latter work in 1671, but it was not published in English 
until 1736 (see fig. 17.3). Raphson was a strong supporter of Newton’s work, 
especially when it came to crediting him, not Leibniz, with discovering 
calculus.

Let us now investigate how the Newton-Raphson method allows us to 
extract the square root of a number in a rather simple way, one that truly 
makes sense when compared to other more automatic algorithms that are 

Figure 17.3. Newton’s Method of Fluxions.
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not as easily intuitively justifiable. Perhaps it easier to view this method 
through an example.

Consider finding 40 . We know that this number is somewhere be-
tween 36 = 6  and 49 = 7 . We will guess that the value is about 6.3. If this 
number were correct, and 40  were equal to 6.3, then 40

6.3
 would have to be 

equal to 6.3. But it is not the case, since 406.3 ≈ 6.35 .
Therefore, we know that the number we seek as the square root of 40 

must be somewhere between 6.3 and 6.35. We will take the average of these 
two numbers: 6.3+6.35

2
≈ 6.325 .

We now continue the process with 
40
6.325

≈ 6.3241  and then we try to see if 
this value is actually the square root of 40. If it is the correct value, then by 
dividing 40 by 6.3241, the quotient would also have to be 6.3241. However, 
40

6.3241
≈ 6.32501.

Once again, taking the average gets us another decimal place closer to 
the actual value of 40 . Thus, 6.3241+6.32501

2
≈ 6.324555 .

We can continue this process to get as accurate a value for the square 
root of 40 as we wish. Notice that with each step in the process we move 
one decimal place closer to the value of 40 . When we compare this to the 
calculator-generated value for 40 , we get 6.324555320336759 . . . , which 
allows us to see how nicely the Newton-Raphson method brings us to a fine 
approximation for the square root of 40.

We also credit Isaac Newton with the further development of the bi-
nomial theorem, which is presented to most folks during their high-school 
mathematics instruction. You may recognize the pattern by inspecting the 
first several applications shown in figure 17.4. Furthermore, if you focus 
on the coefficients of each of the terms in the binomial expansion, you will 
notice the Pascal triangle emerging.

In general form, the binomial theorem can be expressed in the follow-
ing fashion:

a+b( )n = an + n
1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a

n−1b+ n
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a

n−2b2 + n
3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟a

n−3b3 +…+bn

where n
r

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = nCr =

n!
r! n− r( )!

However, Newton’s contribution was highlighted by the fact that he was 
able to conclude that the binomial theorem was also true for fractional or 
irrational powers, where n could also be a fraction or even a value of the 
form of k . Here, what was a finite sum now becomes an infinite series. 
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Newton did so much in mathematics and physics that our short chapter 
could hardly touch on even a small fraction of his works. He was the first to 
employ coordinate geometry to solve Diophantine equations (which we en-
countered in chap. 8). Newton said that he preferred the geometrical meth-
ods to algebraic ones, as he felt that they were clearer and more rigorous. 
Further pursuits of these extensions take us to a more advanced level, which 
is beyond the scope of this book.

It is curious that Newton’s psychological difficulties kept much of his 
work on pure mathematics shared with only his colleagues and other select 
correspondents, until 1704, when he published his book Opticks. At that 
time, he published works on the quadrature of curves and also on the clas-
sification of cubic curves. This was actually the first time that Newton pub-
lished his ideas on the method of fluxions, the precursor of today’s calculus. 
Although he hinted at it in his Principia, it was actually Leibniz’s paper in 
1684 that would put calculus in the public forum. As we mentioned earli-
er, there were many bilateral accusations of plagiarism, even though it is 
clear that both mathematicians came upon their discoveries independently. 
It should also be said that this experience once again demonstrated New-
ton’s psychological imbalance. Newton’s further mathematical publications 
evolve from his Cambridge lectures, which he delivered from 1673 to 1683, 
and which were first published as late as 1707.

By the 1690s, Newton began to delve into religious thinking, and 
he wrote about his interpretations of the Bible both literally and sym-
bolically. There has been much controversy about Newton’s belief of the 
doctrine of the Trinity in the New Testament, but there was no con-
clusive evidence to close the case. Despite these doubts, he was a de-
vout Protestant and opposed any Catholic infiltration. In his various 

Figure 17.4. Binomial theorem.
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scientific writings later in life, Newton expressed a strong sense of God’s 
providential role in nature.

In the years 1689–1690 and 1701–1702, Newton represented Cam-
bridge University in the English Parliament. He was delighted to assume the 
post of warden of the Royal Mint in 1696; in this position, he was in charge 
of a major re-coining process in England. Three years later, he became the 
master of the Mint, a position that he held for the last thirty years of his 
life. Although these Mint positions might have been considered somewhat 
sinecures, Newton took them so seriously that he retired from Cambridge 
University and moved to London in 1701 so that he could properly police 
the English currency against counterfeiters. He found that about 20 percent 

Figure 17.5. Sir Isaac Newton. (Stipple engraving of Isaac Newton,  
by John Vanderbank, at the National Library of Wales,  

based on a 1725 portrait in the collection of the Royal Society.)
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of the coins produced during the great recoinage in 1696 were counterfeit. 
It should be noted that, at that time, counterfeiting was considered high 
treason and punishable by death. Newton proved quite adept at catching 
and prosecuting counterfeiters. This was the beginning of the end of his 
scientific career. During this time, he also had some psychological break-
downs, under the influence of which, through written correspondence, he 
alienated colleagues and broke off relationships with such luminaries as 
John Locke. Postmortem investigations indicate that mercury poisoning 
might explain Newton’s eccentricities in later life. In time, he recovered his 
senses and continued his Mint activities, which brought him a rather hand-
some salary and made him a relatively rich man.

In April 1705, Newton was knighted by Queen Anne during a visit to 
Trinity College at Cambridge. It is still speculated today that Newton re-
ceived a knighthood as a political gesture rather than as an acknowledg-
ment of his scientific brilliance or his service as master of the Mint.

In the waning years of his life, Newton lived in Cranbury Park near 
Winchester, England, with his niece, Catherine Barton Conduitt, and her 
husband, John Conduitt. By this time, he was considered one of the most 
famous scientists of his day and was quite wealthy and generous to charities. 
A lifelong bachelor, Newton died in London on March 20, 1727; he was 
buried in Westminster Abbey.
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Chapter 18

Gottfried Wilhelm (von) Leibniz: 
German (1646–1716)

On February 15, 1946, the front page of the New York Times featured the 
announcement of “an amazing machine which applies electronic speeds for 
the first time to mathematical tasks hitherto too difficult and cumbersome 
for solution,” which was one of the earliest electronic general-purpose com-
puters. The ENIAC (Electronic Numerical Integrator and Computer) was 
built during wartime at the University of Pennsylvania, and it is now con-
sidered a milestone in the history of computers. It was of monstrous size, as 
it weighed more than 25 tons and occupied an area of more than 150 square 
meters (see fig. 18.1).

Among other basic electronic components, such as relays, resistors, or 
capacitors, it contained 20,000 vacuum tubes,1 connected through miles 
of wiring and approximately 5,000,000 hand-soldered joints.2 The “moth-
er of all electronic computers” consumed 150,000 watts of electricity; in 
comparison, a modern desktop computer needs only about 200 watts. The 
immense power requirement led to the rumor that whenever ENIAC was 
switched on, lights in Philadelphia dimmed.

ENIAC was just a large collection of electronic adding machines and 
other arithmetic units; it lacked stored programs or an operating system 
that are found in modern computers. Digits were stored using ten-posi-
tion ring counters, for the ten digits of our decimal system, and each dig-
it required thirty-six vacuum tubes. Programming the machine to solve a 
particular problem was done by manipulating its switches and cables, and 
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it could take several weeks to find a problem’s solution. Furthermore, vac-
uum tubes had a limited lifetime, and if a program didn’t work properly, 
programmers would have to crawl inside the massive structure to find bad 
tubes or detect bad joints. The first programmers of ENIAC were all female: 
Kay McNulty, Betty Jennings, Betty Snyder, Marlyn Meltzer, Fran Bilas, 
and Ruth Lichterman. Their work was not widely recognized, for over fifty 
years. In fact, historians had at first mistaken them for models posing in 
front of the machine.

The enormous size and power consumption of ENIAC and similar ma-
chines developed at about the same time were mainly caused by the vacuum 
tubes, which were used as switches and amplifiers; thus, they represented 
essential elements of any electronic device. Similar to today’s incandescent 
light bulbs, vacuum tubes were bulky, produced a lot of heat, and frequently 
failed. The solution to this issue came in 1947, when William Shockley, John 
Bardeen, and Walter Brattain of Bell Laboratories discovered the transistor 
effect in semiconductors, allowing them to build an electric switch made 
of solid materials—a transistor—obviating the need for a vacuum tube. 
They were awarded the Nobel Prize in Physics in 1956 for their invention 

Figure 18.1. Betty Jennings (left) and Fran Bilas (right), operating ENIAC’s main 
control panel. (US Army photo, ARL Technical Library, 1945–1947.)
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of the transistor, which is still considered one of the greatest breakthroughs 
in technology history. Transistors were much smaller and faster, and they 
were more reliable and more powerful than vacuum tubes. Through the 
late 1950s and 1960s, the so-called first-generation computers, made with 
bulky vacuum tubes, were replaced by second-generation computers using 
transistors instead. The invention of the transistor laid the foundation for 
the digital revolution that began in the second half of the twentieth century 
and continues to the present day.

Transistors are the basic building blocks of microprocessors. The cen-
tral processing unit (CPU) of your computer contains billons of transistors, 
all packed into an area of about a square inch. A transistor is essentially an 
electronic switch, which can be in either an “on” or an “off ” state. These two 
possible states or positions define what is called Boolean algebra: an algebra 
in which the values of the variables are the truth-values: “true” and “false,” 
usually denoted 1 and 0. Indeed, the language of computers consists of only 
two symbols: zeros and ones. The basic unit of information is a binary digit 
or “bit” (which can be either 0 or 1). A sequence of 8 bits is called a byte; a 
kilobyte consists of 1,000 bytes; a megabyte of 1,000 kilobytes, and so on. 
Interpreting a sequence of bits as a place-value notation with consecutive 
powers of 2, we obtain a binary number: For example, the binary number 
10001001 represents the decimal number 27 + 23 + 20 = 137; likewise, the 
binary number 11111111 represents the decimal number 27 + 26 + 25 + 24 
+ 23 + 22 + 21 + 20 = 255. Thus, with one byte of information, we can en-
code 256 different characters (since we can represent all numbers from 0 
to 255). Modern computer architectures typically use “words” of 32 or 64 
bits, built from 4 or 8 bytes. It is quite remarkable that binary numbers have 
already been thoroughly studied by the German philosopher and mathe-
matician Gottfried Wilhelm Leibniz, long before 1800, when Alessandro 
Volta invented the first battery and built electrical circuits. Leibniz invented 
binary arithmetic, which is in fact used by virtually all modern computers. 
However, he not only laid the theoretical foundations for electronic com-
puters but also anticipated them by describing machines that were, at least 
in principle, capable of solving complex mathematical problems. Moreover, 
he is credited, along with Isaac Newton, with the development of differen-
tial and integral calculus. And it should be said that today we use Leibniz’s 
symbolism in calculus rather than Newton’s symbolism, as was mentioned 
in the previous chapter. While giving a short overview of his life, we will 
illuminate a few of his contributions to mathematics.
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Gottfried Wilhelm Leibniz was born on the July 1, 1646, to Fried-
rich Leibniz, a professor of moral philosophy at Leipzig, and Catharina 
Schmuck, Friedrich’s third wife. Friedrich Leibniz died when Gottfried 
was six years old. At the age of seven, Leibniz entered the Nicolai School in 
Leipzig and from that time on, he was also given free access to his father’s 
personal library, which he would later inherit. His father’s library seems to 
have been more influential on his education than the curriculum he was 
taught at school. Strongly motivated by wanting to read his father’s books, 
Leibniz taught himself Latin by comparing Latin and German descriptions 
in illustrated books. So as to decipher the meaning of the Latin words, he 
compared the descriptions of the same pictures in two different books. 
By the age of twelve, he was proficient in the Latin language, mastering 
it far beyond school level. Through his father’s library, he had access to 
advanced texts of philosophy and theology. His skill at Latin enabled him 

Figure 18.2.



	 Gottfried Wilhelm (von) Leibniz: German (1646–1716)	 147

to read these books. In 1661, at the age of fourteen, he enrolled in his 
father’s former university and completed his bachelor’s degree in philos-
ophy in December 1662. He then spent the summer term of 1663 in Jena, 
Germany, where Erhard Weigel was professor of mathematics. Weigel was 
also a philosopher who believed that numbers were the fundamental con-
cept of the universe. Back in Leipzig, Leibniz applied the mathematical 
ideas he had learned from Weigel to his studies in philosophy and law. In 
particular, he assigned values of 0, 1, and 1

2
 to conditions of law that were 

impossible, necessary (absolute), or conditional, respectively. Leibniz was 
awarded his bachelor’s degree in law in 1665, the year after his mother 
had died. He then started to work on his habilitation thesis in philosophy, 
which was then included as part of his first book, Dissertatio de arte com-
binatoria (On the Combinatorial Art). In 1666, the University of Leipzig 
rejected Leibniz’s doctoral application, probably because of his relative 
youth, as compared to the other candidates, and the limited number of 
available tutorials. Yet Leibniz did not want to wait another year, so he 
went to the University of Altdorf, where he received a doctorate in law 

Figure 18.3. Gottfried Wilhelm Leibniz.
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in 1667 for his dissertation De casibus perplexis (On Perplexing Cases). 
He was immediately offered an academic appointment at the University of 
Altdorf but declined it for a position as a secretary to an alchemical society 
in Nuremberg, Germany. He then met Baron Johann Christian von Boyne-
burg, who hired him as his assistant, librarian, lawyer, and advisor. While 
working on various projects for Von Boyneburg, Leibniz published politi-
cal essays and continued his law career, promoted by the baron, who used 
his personal contacts to enhance Leibniz’s career. In 1672, Leibniz went 
to Paris on a diplomatic mission related to his role as an advisor to Ger-
man authorities. In Paris, he met the Dutch physicist and mathematician 
Christiaan Huygens (1629–1695), who introduced Leibniz to the works 
of the great mathematicians of the time and mentored Leibniz in his self-
study of the newest developments in mathematics. In a letter to his friend 
the Swiss mathematician Johann Bernoulli (1667–1748) in 1703, Leibniz 
wrote, “When I arrived in Paris in the year 1672, I was self-taught with re-
gard to geometry, and indeed had little knowledge of the subject, for which 
I had not the patience to read through the long series of proofs.”3 Leibniz 
first demonstrated mathematical talent when Huygens sent him a problem 
for which he himself had already found the solution. The problem was to 
find the sum of the infinite series of reciprocal triangular numbers, which 
are the numbers representing objects that can be arranged in an equilateral 
triangle, as is shown in figure 18.4.

Let us first look at a finite series of, say, six numbers, and consider their 
sum, a1 + a2 + a3 + a4 + a5 + a6. Leibniz noticed that if we take any given fi-
nite series of numbers and form the series of differences of successive terms, 
such as: 
d1 = a2 – a1, d2 = a3 – a2, d3 = a4 – a3, d4 = a5 – a4, d5 = a6 – a5,

then the sum of these differences is simply the difference between the last 
and first terms of the original series: 

d1 + d2 + d3 + d4 + d5 = a6 – a1.

Thus, if we can express a given series b1, b2, b3, . . . as a series of differences 
of successive terms of another series, a1, a2, a3, . . ., then we can compute the 
sum of the original series, b1 + b2 + . . . + bn, by simply subtracting the first 
from the last term of the other series: b1 + b2 + . . . + bn = an + 1 – a1. To com-
pute the sum of the reciprocals of the triangular numbers, Leibniz wrote 
this sum as a sum of differences, which turns out to be twice the sum of 
differences of the reciprocals of the natural numbers:
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1
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Leibniz described this procedure as follows: “If one wants to add, for 
example, the first five fractions (reciprocals of triangular numbers) from  
1
1

 to 1
15

 inclusive, one takes the number of fractions, that is, 5, added to  
1 to get 6, and creates the fraction 5

6
, which when doubled is 10

6
, or 5

3
, 

which gives us the sum: 
1
1
+
1
3
+
1
6
+
1
10
+
1
15

which is, the same as if one had added these fractions together.”4 If we de-
note the triangular numbers by T1, T2, T3, . . ., we have thus obtained a sim-
ple formula for the sum of their reciprocals: 

1
T1

+
1
T2

+
1
T3

+  . . . + 1
Tn
=  2 ⋅ 1− 1

n+  1
⎛

⎝
⎜

⎞

⎠
⎟

This procedure can be extended to the infinite series of triangular numbers 
by letting n go to infinity in the expression 

2 ⋅ 1− 1
n+  1

⎛

⎝
⎜

⎞

⎠
⎟

Figure 18.4.
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This term will approach 2 as n gets larger and larger, and, thus, the sum of 
the infinite series 

1
T1

+
1
T2

+
1
T3

+ . . .

is equal to 2. By applying his method to other infinite series, Leibniz was 
able to calculate their limits as well. He also anticipated the modern math-
ematical definition of the sum of an infinite series as a limit, when he wrote 
in an unpublished paper of April 1676: “Whenever it is said that a certain 
infinite series of numbers has a sum, I am of the opinion that all that is be-
ing said is that any finite series with the same rule has a sum, and that the 
error always diminishes as the series increases, so that it becomes as small 
as we would like.”5

Leibniz was soon acquainted with the mathematical achievements of 
his generation and began to pursue his own ideas, which would lead to sig-
nificant contributions in mathematics. He spent the next four years in Paris, 
interrupted only by a trip to London, where he visited the Royal Society and 
presented a not-yet-complete calculating machine that he had designed and 
that would be the first one capable of executing all four basic operations 
(adding, subtracting, multiplying, and dividing). The members of the Royal 
Society were very impressed and quickly elected him as an external fellow. 
During his stay in Paris, he developed his variant of infinitesimal calculus 
using differentials, as well as most of his other substantial works in mathe-
matics. In a manuscript dated November 21, 1675, he used his notation for 
the integral of a function, ∫ f x( )dx , for the first time. In a letter to Newton, 
he employed his method of differentials, which Newton recognized as be-
ing equivalent to his own method of fluxions. Newton had described some 
of his results in an earlier letter to Leibniz (yet without describing his meth-
ods) and believed that Leibniz had stolen his ideas. In fact, Newton em-
ployed his equivalent formulation of calculus using fluxions as early as 1666 
but did not publish it until 1693. Newton rightfully claimed that not a single 
previously unsolved problem was solved by Leibniz’s approach to calculus. 
While this is true, as we mentioned earlier, Leibniz must still be credited 
for developing a modern mathematical notation that is now standard in 
calculus, whereas Newton’s impractical notation was eventually abandoned. 
During his time in Paris, Leibniz absorbed all contemporary mathematics 
and reformulated it in an improved system of notation, thereby simplifying 
calculations and making the tools of calculus much more easily accessible 
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for other mathematicians and physicists. Although he did not obtain any 
new mathematical results with his variant of calculus, his superior sys-
tem of notation proved to be highly influential for further developments 
in mathematics. Leibniz would have liked to have remained in Paris and 
tried to become an honorary member of the French Academy of Sciences, 
but no invitation came. His patron, von Boyneburg, had died; without a 
professional perspective in Paris, in October 1676, he therefore accepted 
a position as a librarian and court councilor at the House of Hanover. The 
House of Hanover is a German royal dynasty, formally named the House of 
Brunswick-Lüneburg, Hanover line. It provided monarchs to Great Britain 
and Ireland and ruled the United Kingdom of Great Britain throughout 
the nineteenth century. Around 1679, Leibniz developed binary arithme-
tic, which was published in his 1703 article “Explication de l’arithmétique 
binaire” (Explanation of Binary Arithmetic). In the introduction, he writes:

The ordinary reckoning of arithmetic is done according to the pro-
gression of tens. Ten characters are used, which are 0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, which signify zero, one, and the successive numbers up to nine, 
inclusively. And then, when reaching ten, one starts again, writing ten 
as “10,” ten times ten, or one hundred, as “100,” ten times one hun-
dred, or one thousand, as “1000,” ten times one thousand by “10000,” 
and so on. But instead of the progression of tens, I have for many years 
used the simplest progression of all, which proceeds by twos, having 
found that it is useful for the perfection of the science of numbers. 
Thus, I use no other characters in it except 0 and 1, and when reaching 
two, I start again. This is why two is here expressed by “10,” and two 
times two, or four, by “100,” two times four, or eight, by “1000,” two 
times eight, or sixteen, by “10000,” and so on.6

As we have done earlier, to convert a binary number into a decimal 
number, we just have to add the represented powers of 2. For example, the 
binary number 101011 represents (read from right to left) 1·20 + 1·21 + 0·22 
+ 1·23 + 0·24 + 1·25 =43 . To convert a decimal number into its binary repre-
sentation, we divide by 2, and write down the remainder R (which must be 
0 or 1), and repeat this procedure until we reach 0:

43 ÷ 2 = 21 R: 1
21 ÷ 2 = 10 R: 1
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10 ÷ 2 = 5 R: 0
5 ÷ 2 = 2 R: 1
2 ÷ 2 = 1 R: 0
1 ÷ 2 = 0 R: 1

The sequence of remainders, reading from bottom to top, gives us the bina-
ry representation of 43 as 101011. Why does this work?

Dividing the expression 1·20 + 1·21 + 0·22 + 1·23 + 0·24 + 1·25 =43   by 2 
reduces by 1 the exponents of all powers of 2, yielding 1·20 + 0·21 + 1·22 +  
0·23 + 1·24 with a remainder of 1. Again, dividing by 2, we arrive at 0·20 + 
1·21 + 0·22 + 1·23 with a remainder of 1; and, continuing this process, we 
obtain all digits of the binary representation of 43, the last one being the 
one with the highest place value, and, therefore, the final remainder after 
successive divisions by 2.

After providing conversion tables for the numbers from 0 to 32, Leib-
niz explains addition, subtraction, multiplication, and division for binary 
numbers. These operations are actually much like the normal decimal oper-
ations with which we are familiar, except that they carry a value of 2 instead 
of a value of 10. For example, adding the decimal numbers 5 and 8 gives a 
last digit of 3, and we carry 1 to the next digit to obtain 13. In the same fash-
ion, adding the binary numbers 1 and 1, we get 0 as the last digit and carry 1 
to the next digit, giving the binary number 102 (here we place the subscript 
2 to distinguish binary numbers from decimal numbers). To add the binary 
numbers 1102 and 1112, we start from the last digit: Adding 0 and 1, we get 
1 (with no carry). Thus, the last digit of the answer will be 1. We then move 
one digit to the left: Adding 1 and 1 gives us 0 and a carry of 1. The next dig-
it of the answer will be 0, and we have to a carry a 1. Moving on to the next 
digit, we add 1 and 1 and the carry from the last digit, which gives us 1 and a 
carry of 1. Hence, we get the answer 11012. Figure 18.5 shows additional ex-
amples from Leibniz’s original work “Explication de l’arithmétique binaire” 
(he wrote in French because the article was published by the French Acad-
emy of Sciences). You may want to try binary subtraction, multiplication, 
and division as well.

Is his article, Leibniz then argues that binary arithmetic is actually sim-
pler than decimal arithmetic, since one doesn’t have to memorize any ad-
dition or multiplication tables; it suffices to know how to add and multiply 
zeros and ones. As he goes on, he writes:
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However, I am not in any way recommending this way of counting as 
an effort to introduce it in place of the ordinary practice of counting 
by ten. For, aside from the fact that we are accustomed to this, we have 
no need to learn what we have already learned by heart. The prac-
tice of counting by ten is shorter and the numbers not as long. And 
if we were accustomed to proceed by twelves or sixteens, there would 
be even more of an advantage. But calculating by twos, that is, by 0 
and 1, as compensation for its length, is the most fundamental way of 
calculating for science, and provides for new discoveries, which are 
then found to be useful, even for the practice of numbers and espe-
cially for geometry. The reason for this is that, as numbers are reduced 
to the simplest form, such as 0 and 1, a wonderful order is apparent 
throughout.7

In fact, Leibniz already imagined a machine in which binary numbers 
were represented by marbles, governed by a rudimentary sort of punched 

Figure 18.5. “Explication de l’arithmétique binaire.”  
(Academie royale des sciences, 1703.)
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cards, thereby anticipating the principle of modern electronic digital 
computers.

Leibniz spent the rest of his life in Hanover, except for some extensive 
travels through Europe. Besides his duties at the court, he kept writing about 
mathematics, logic, physics, and philosophy, and he held correspondence 
with many of the great scholars of his time. He wrote in several languages, 
primarily in Latin, French, and German. Moreover, Leibniz was perhaps 
the first major European intellectual with a close interest in Chinese civi-
lization, and he noted with fascination that the hexagrams in the I Ching, 
an ancient Chinese divination text, correspond to the binary numbers from 
000000 to 111111. Figure 18.6 shows a diagram of the I Ching hexagrams, 
with Arabic numerals added by Leibniz.

Apart from his contributions to mathematics, he is also remembered 
as a major figure in philosophy and logic, and as the inventor of the step 

Figure 18.6. Diagram of hexagrams sent by Joachim Bouvet (1656–1730), a French 
Jesuit who traveled extensively in China, to Leibniz, 1701. (Franklin Perkins, Leibniz 

and China: A Commerce of Light (Cambridge: Cambridge University Press, 2004.)
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calculator and a digital mechanical calculator that he developed in 1694 
(see fig. 18.7). Together with René Descartes and Baruch Spinoza, Leibniz 
was one of the three great rationalists of the seventeenth century, forerun-
ners of the Age of Enlightenment. He was one of the last polymaths and 
left an incredible number of writings and letters on diverse subjects, some 
200,000 pages of written and printed paper have survived. That his broad 
interests and richness of ideas might sometimes have been a burden is re-
vealed in a letter he wrote to a friend, indicating his slight desperation about 
the limited amount of time available for his intellectual pursuits:

I cannot tell you how extraordinarily distracted and spread out I am. 
I am trying to find various things in the archives; I look at old papers 
and hunt up unpublished documents. From these I hope to shed some 
light on the history of the [House of] Brunswick. I receive and answer 
a huge number of letters. At the same time, I have so many mathe-
matical results, philosophical thoughts, and other literary innovations 

Figure 18.7. 
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that should not be allowed to vanish, and that I often do not know 
where to begin.8

The last years of Leibniz’s life were embittered by a long controversy 
with Newton, and others, over whether Leibniz had discovered calculus in-
dependently of Newton, or whether he had merely invented another nota-
tion for ideas that were fundamentally Newton’s. He received little appreci-
ation for his mathematical works during his lifetime and died lonely (as he 
never married) in Hanover in 1716. Although Leibniz was a life member of 
the Royal Society and the Berlin Academy of Sciences, neither organization 
saw fit to honor his death. In 1985, the German government created the 
Leibniz Prize, one of the world’s largest prizes for scientific achievement.
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Chapter 19

Giovanni Ceva:  
Italian (1647–1734)

It is not uncommon that a person of outstanding genius is remembered 
largely as a result of one work. This trend is particularly noticeable in the 
fields of music and literature. It is also the case in mathematics. Here we 
have a mathematician whose primary area of interest was geometry, but 
who also dabbled to some extent in economics and physics. This was the 
Italian mathematician Giovanni Ceva who was born in Milan, Italy, on 
September 1, 1647, into what would be considered in his day a wealthy 
family. Although we know very little about his early years, Ceva later made 
comments about his youth being sad, with many kinds of misfortune. He 
received his education at the Jesuit College in Milan, at the Palazzo di Brera, 
where he showed an early talent for mathematics and science.

After completing his college studies, he followed his father’s footsteps, 
engaging in business and political activities largely in Milan, Genoa, and 
Mantua, yet his interest in science and mathematics continued. He even-
tually entered the University of Pisa in 1670 to study mathematics. During 
his time at the university, he struggled with the problem of squaring the 
circle, that is, of constructing a square with the same area as a given circle 
using only a straight edge and a pair of compasses. Rather discouraged, he 
gave up this effort; interestingly,  in 1882, the problem of squaring the cir-
cle was proved to be impossible, as a result of the Lindemann-Weierstrass 
theorem, which proved that π is a transcendental number. In 1678, Ceva 
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published his book De lineis rectis se invicem secantibus statica constructio, 
while continuing to work with his father. This work took him to Mantua 
and Montferrat in a position such that he was responsible for the economy 
of these two states. This responsibility did not deter him from further pur-
suing mathematical interests and publishing other works. His most effec-
tive employment was rewarded by the Duke of Mantua, who granted Ceva 
citizenship there. While pursuing his mathematical studies alongside his 
work, he corresponded with many of the leading mathematicians of his day.

He married Cecilia Vecchi on January 15, 1685. They had seven chil-
dren, and the five that survived birth were also given citizenship by the 
Duke of Mantua. In 1686, he was appointed professor of mathematics at the 
University of Mantua. He continued at this university position for the rest 
of his life, including the time, in 1707, when the region was under Austrian 
protection.

Ceva is remembered today for a theorem about triangles that he pub-
lished in his 1678 book, De lineis rectis se invicem secantibus statica con-
structio. Ceva’s theorem states that the product of the alternate segments 

Figure 19.1. Giovanni Ceva.
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along the sides of the triangle, determined by the intersections of concur-
rent line segments (called cevians) emanating from the triangle’s vertices 
and ending at the opposite side, are equal.

Ceva’s theorem is an equivalence, or biconditional, which means that 
the converse is also true. To justify it requires two proofs—the original 
statement and its converse. Ceva’s theorem states the following, referring to 
triangle ABC shown in figure 19.2: The three lines containing the vertices 
of triangle ABC and intersecting the opposite sides in points L, M, and N, 
respectively, are concurrent if and only if AM · BN · CL = MC · NA · BL = 1, 
or, stated another way, AMMC ⋅

BN
NA

⋅
CL
BL

=1.
There are many proofs available to justify this theorem, yet we shall 

use just one of these methods to prove this wonderful theorem.1 It is per-
haps easier to follow the proof by looking at the left-side diagram in figure 
19.2, and then verifying the validity of each of the statements in the right-
side diagram. In any case, the statements made in the proof hold for both 
diagrams.

In figure 19.2 we have on the left, triangle ABC, with a line (SR) con-
taining A and parallel to BC; SR intersects CP extended at S and BP extend-
ed at R.

The parallel lines enable us to establish the following pairs of similar 
triangles:

ΔAMR ~ ΔCMB;  therefore, AM
MC

=
AR
CB

. 	 (I)

ΔBNC ~ ΔANS;  therefore, BN
NA

=
CB
SA

. 	 (II)

Figure 19.2.
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ΔCLP ~ ΔSAP;  therefore, CL
SA

=
LP
AP

. 	 (III)

ΔBLP~ΔRAP;  therefore, BL
RA

=
LP
AP

. 	 (IV)

From (III) and (IV) we get:	 CL
SA

=
BL
RA

This can be rewritten as	 CL
BL

=
SA
RA

	 (V)

Now by multiplying (I), (II), and (V) we obtain our desired result:

AM
MC

⋅
BN
NA

⋅
CL
BL

=
AR
CB

⋅
CB
SA

⋅
SA
RA

=1

This can also be written as AM ∙ BN ∙ CL = MC ∙ NA ∙ BL.
The converse of this theorem is of particular value as well. That is, if the 

products of the alternate segments along the sides of the triangle are equal, 
then the cevians determining these points must be concurrent.

We shall now prove that if the lines containing the vertices of triangle 
ABC intersect the opposite sides in points L, M, and N, respectively, so that 
AM
MC

⋅
BN
NA

⋅
CL
BL

=1 , then these lines AL, BM, and CN, are concurrent.
Suppose BM and AL intersect at P. Draw PC and call its intersection 

with AB point N’. Now that AL, BM, and CN’ are concurrent, we can use 
the part of Ceva’s theorem proved earlier to state the following: 

AM
MC

⋅
B ʹN
ʹN A
⋅
CL
BL

=1

But our hypothesis stated that 

AM
MC

⋅
BN
NA

⋅
CL
BL

=1

Therefore, 
B ʹN
ʹN A
=
BN
NA , so that N and N′ must coincide, which thereby 

proves the concurrency.
For convenience, we can restate this relationship as follows: If  

AM ∙ BN ∙ CL = MC ∙ NA ∙ BL, then the three lines are concurrent.
There is an interesting variation to Ceva’s theorem, which was discov-

ered by the French mathematician Lazare Carnot (1753–1823).2 Here the 
concurrency of the three cevians is specified by the partitioned angles at 
the triangle’s vertices. In figure 19.3, we have cevians AL, MB, and CN that 
partition the angles as follows:
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angle A is partitioned into α1 and α2,

angle B is partitioned into β1 and β2 , and

angle C is partitioned into γ1 and γ2.

They will meet at a common point P if and only if 3 
sinα1
sinα2

⋅
sinβ1
sinβ2

⋅
sinγ1
sinγ2

  = 1. The proof entails using the law of sines several times and is left to the 
ambitious reader.

Ceva further enriched our knowledge of geometry by discovering a 
theorem that was developed in 100 CE by the Greek mathematician Mene-
laus of Alexandria (70–140 CE),4 who established that the equal products 
of alternate segments on the sides of a triangle determine collinear points as 
you can see from the following statement of Menelaus’s theorem:

If three points, X, Y, and Z, are located on the sides (or their exten-
sions, as shown in fig. 19.4b) of triangle ABC such that AZ · BX · CY = 
AY · BZ · CX, then the three points X, Y, and Z are collinear. (See figs. 
19.4a and 19.4.b.)

The proof of Menelaus’s theorem is rather straightforward and once 
again uses elementary geometry relationships. Once again, this is a bicon-
ditional relationship and can be stated symbolically as follows:

Figure 19.3.
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Figures 19.4a and 19.4b.
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AZ · BX · CY = AY · BZ · CX if and only if X, Y, and Z are collinear.

We shall first prove that if X, Y, and Z are collinear, then AZ · BX · CY 
= AY · BZ · CX.

Draw a line containing C, parallel to AB, and intersecting XYZ or YXZ 
at D, as shown in figure 19.5. We are thus beginning with the given collinear 
points X, Y, and Z.

For CDX ~ BXZ, therefore, CD
BZ

=
CX
BX

, or CD = BZ ⋅CX
BX

 

CD
BZ  =

CX
BX , or CD = BZ ⋅CX

BX
	 (I)

For CDY ~ APZ, therefore, CD
AZ

 = CP
AY

, or CD = AZ ⋅CP
AY

 

CD
AZ

 = CP
AY

, or CD = AZ ⋅CP
AY

	 (II)

From equations (I) and (II): BZ ⋅CX
BX

= AZ ⋅CP
AY

BZ ⋅CX
BX  

= AZ ⋅CP
AY

,

from which we easily get AZ · BX · CY = AY · BZ · CX.
Now we shall prove that if the points X, Y, and Z are so situated that the 

equation AZ · BX · CY = AY · BZ · CX is true (or another way of expressing 
this is that AYCY ⋅

BZ '
AZ '

⋅
CX
BX  = 1), then the three points X, Y, and Z are collinear.

We will let the intersection point of AB and XY be the point Z’. Then 
we have to prove Z’ = Z.

Because of part 1 (above) we have AY
CY

⋅
BZ
AZ

⋅
CX
BX

 = 1, also BZ '
AZ '

=
BZ
AZ

.

Therefore, we have Z’ = Z, and the points X, Y, and Z must be collinear.
The sad thing about Ceva’s fame today is that during his time, his 1678 

book was not popular; it was only published in one edition. Many of his 
findings were then later discovered by other mathematicians, who were not 
aware of Ceva’s work, and so they were unable to attribute their findings to 
him. It was not until the nineteenth century that the French mathematician 
Michel Chasles (1793–1880) recognized that Ceva’s work predated those of 
subsequent mathematicians. Therefore, we refer to this theorem now cor-
rectly as Ceva’s theorem. Beyond his work in geometry, Ceva also worked 
with applications of mechanics, but clearly his fame today is limited to his 
work in geometry. Ceva died in Mantua, Italy, on May 13, 1734.
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Figure 19.5.
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Chapter 20

Robert Simson:  
Scottish (1687–1768)

The United States education system is one of the few in the world where 
students study one year of geometry while still in high school. Naturally, 
the curriculum for this course is ultimately based on the famous work by 
Euclid, Elements. Yet the path the high-school geometry curriculum took is 
rather interesting. We could begin with the Scottish mathematician Robert 
Simson, who set out to prepare a perfect text, in English, of Euclid’s first six 
books together with the eleventh and twelfth books, and first published it 
as a complete book in Glasgow, Scotland, in 1756. We show the title page of  
the 1787 edition in figure 20.1.

In 1794, the French mathematician Adrien-Marie Legendre (1752–
1833) published a geometry book titled Éléments de géométrie, which 
remained popular for about one hundred years. This book made its way 
across the Atlantic Ocean through the work of the American mathemati-
cian Charles Davies, whose adaptation, Elements of Geometry was first pub-
lished in 1828. This title then became the model for teaching geometry in 
the United States (see fig. 20.2). Naturally, there have been many modifica-
tions over the years until we get to today’s American high-school geometry 
course.1

That this path began with Robert Simson is only one aspect of this im-
portant mathematician’s biography. The eldest son of John Simson, he was 
born on October 14, 1687, in West Kilbride, Ayrshire, Scotland.
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His brilliance in classics and botany enabled him to enter the Univer-
sity of Glasgow at the age of fourteen, in 1702. At the urging of his father, 
Simson was being guided to prepare for a life in the church; however, he 
found the religious thinking unsatisfying, because of its speculation and lack 
of precision. A book on Asian philology was his next attraction, but there, 
even though statements could be shown to be either true or false, he was not 
totally satisfied. It was not until he delved into mathematics that he found a 
subject of particular interest. In particular, it was geometry that was his great 
awakening, specifically when he read Euclid’s Elements. Unfortunately, the 
challenges in the field of mathematics in Glasgow were not sufficient, so he 
decided to go to London upon completion of his studies at the University 
of Glasgow in 1710, despite having been offered the chair of mathematics at 
the University of Glasgow. In London, he met the leading mathematicians 

Figure 20.1.
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of his time, and a year later he returned to Glasgow to assume the position 
that he had been originally offered. There, he once again pursued his favorite 
aspect of mathematics: geometry. After writing about Euclid’s work in Lat-
in, he eventually published what was probably the first English version of 
this monumental work by Euclid. As we mentioned earlier, Simson’s book, 
which had more than seventy editions throughout the world, still remains as 
the primary model for studying Euclid’s Elements through today’s American 
high-school geometry course. Throughout his career, Simson was aware of 
developments in algebra and infinitesimal calculus, but he usually preferred 
to present his mathematical ideas in terms of geometry.

Robert Simson never married and lived a very simple lifestyle, giving 
up a more elegant home for a small, modest apartment, and he ate most 
of his meals at a small pub near the university. In 1746, he was given an 

Figure 20.2.
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honorary doctorate of medicine by St Andrews University in Scotland. He 
carried this degree with pride, as you can see in the title page shown in 
figure 20.1.

In 1753, Simson provided another aspect to our growing history of 
mathematics when he indicated that the ratio between adjacent Fibonacci 
numbers approaches the golden ratio as a limit, namely, 
1+ 5
2

=1.618...  .
However, his fame today beyond the historic achievement with his 

geometry book is a geometric theorem that bears his name, yet one that 
should not be attributed to him, since it was discovered by the Scottish 
mathematician William Wallace (1768–1843), who published it in 1799, in 
Thomas Leybourn’s The Mathematical Repository. It is believed that because 
of Simson’s popularity, geometric ideas that were not attributed to René 
Descartes and were written in the Euclidean style were automatically at-
tributed to Robert Simson.

Let’s take a look at this famous Simson’s theorem. In figure 20.4, we no-
tice that triangle ABC is inscribed in a circle, and point P is any point on the 

Figure 20.3. Eighteenth-century portrait of Robert Simson.
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circle. From point P, three perpendiculars are drawn to the three sides of the 
triangle (thin, solid lines). The feet of the perpendiculars are noted as the 
points X, Y, and Z. According to Simson’s theorem (or should we have said 
“Wallace’s theorem”?), these three points, X, Y, and Z, will always be collinear.

Justifying why this amazing relationship actually holds true is a fine 
exercise in understanding the power of geometric relationships. We begin 
by referring to figure 20.4, where we notice that angle PYA is supplementary 
to angle PZA (since both are right angles). We recall that when the oppo-
site angles of a quadrilateral are supplementary, the quadrilateral is cyclic 
(i.e., inscribable in a circle). Therefore, quadrilateral PZAY is cyclic. We now 
draw PA, PB, and PC (dashed lines). Considering the circumscribed circle 
about quadrilateral PZAY (not shown), we have two angles PYZ = PAZ 
= PAB, intercepting the same arc, namely, the arc PZ of the circle, which 
makes these two angles ( PAZ = PAB) equal.

In a similar way, we notice the two right angles, PYC and PXC, 
are supplementary, and this establishes that we have a cyclic quadrilateral 
PXCY. Therefore, as before PYX = PCB, since they are both measured 
by the arc PX.

Figure 20.4.
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Now from the cyclic quadrilateral PACB we have PAZ (or PAB) =  
PCB . From the three angle equalities that we have just established, we can 

tie them together and obtain PYX = PCB = PAZ = PYZ, or, simply 
written, we have PYX = PYZ, which then implies the points X, Y, and 
Z are collinear. Thus, we have proved Simson’s theorem. It should be noted 
that the converse of this is also true.

Besides collinearity, the lengths of the perpendiculars also form a rela-
tionship that merits noting. In figure 20.5, point P is on the circumcircle of 
triangle ABC, where perpendiculars PX, PY, and PZ are drawn to sides AC, 
AB, and BC, respectively. The interesting relationship that evolves is that 
PA·PZ =PB·PX. In order to justify this surprising relationship, we will iden-
tify two cyclic quadrilaterals, namely, quadrilateral PYZB and quadrilateral 
PXAY. The quadrilateral PYZB is cyclic because PYB and PZB, which are 
right angles, are both subtended by the side PB, and we should know that 
when a side of a quadrilateral subtends equal angles at two opposite verti-
ces, then the quadrilateral is cyclic. Therefore, PBY = PZY. We can make 
a similar argument for the quadrilateral PXAY to be cyclic, since PXA =  

PYA = 90°. Once again, we can conclude that PXY = PAY. Since we 

Figure 20.5.
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have the points X, Y, and Z along the Simson line, we can establish that 
PAB ~ PXZ. It then follows that PAPX =

PB
PZ , which then gives us PA · PZ = 

PB · PX. This is what we set out to show in the first place.
In figure 20.6, we will show another interesting feature about the Sim-

son line—applying it to triangle ABC. This curious relationship shows that 
if the altitude AD of triangle ABC meets the circumscribed circle at point 
P, then the Simson line (XDZ) of point P with respect to triangle ABC is 
parallel to the tangent, AG, to the circle at point A.

In order to show that this relationship is true, we begin by considering 
that the line segments PX and PZ are perpendicular, respectively, to sides 
AC and AB of triangle ABC. As shown in figure 20.6, we now draw the seg-
ment PB. Focusing on quadrilateral PDBZ, we notice that PDB = PZB 
= 90°, thereby allowing us to establish it as a cyclic quadrilateral. This then 
enables us to establish that DZB = DPB, since they both have a measure 
one-half of arc DB.

When we consider the circumcircle of triangle ABC, we notice two 
angles of equal measure, because each has a measure one half of arc AB; 
that is, 

Figure 20.6.
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∠GAB = 1
2

arcAB( ) =∠APB (or DPB)

or simply put, GAB = DPB. This, then, allows us to establish that DZB 
= GAB, which are alternate-interior angles of the two parallel lines, AG 
and XDZ, formed by the transversal ABZ. Therefore, the Simson line is par-
allel to the tangent at point A. Even though it is believed today that Simson 
was not responsible for developing this theorem and its various relation-
ships, since both it and the line bear his name, it is presented here to give a 
complete picture of why Robert Simson is still known very well today.

Robert Simson died in 1768, and he is buried in Blackfriars burial 
ground, where, sometime later, a fifty-foot monument was erected in his 
honor at the West Kilbride cemetery. It bears the following inscription: 
“The Restorer of Grecian Geometry, and by his Works the Great Promoter 
of its Study in the Schools.”2 This certainly summarizes his contributions 
for the future!
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Chapter 21

Christian Goldbach:  
German (1690–1764)

In almost every field of endeavor, there are brilliant people who have re-
mained famous to this day, largely because of one sterling success in their 
career. For example, the French composer Georges Bizet (1838–1875) is 
famous today for his opera Carmen. The American author J. D. Salinger 
(1919–2010) is largely remembered for his novel The Catcher in the Rye. 
Then there is the composer Engelbert Humperdinck (1854–1921), whose 
opera Hänsel und Gretel keeps his name current today. And so it is with 
Christian Goldbach, who is largely quoted today for the conjecture that 
bears his name and continued to challenge mathematicians for centuries.

Christian Goldbach (see fig. 21.1) was born on March 18, 1690, in the 
city of Königsberg, which was part of Brandenburg-Prussia (today it is Ka-
liningrad, Russia).1 His father was a pastor in the Protestant church there, 
and Christian studied at the Royal Albertus University in the same city. He 
studied law and medicine as well as delving a bit into some mathematics. 
From 1710 until 1724, he traveled throughout Europe, visiting the German 
states, Holland, Italy, England, and France. During his visits, he sought to 
meet the leading scientists. For example, in 1711, he met the German math-
ematician and philosopher Gottfried Wilhelm Leibniz with whom he car-
ried on a correspondence—written in Latin—for the next two years.

In 1712, he met a few mathematicians in London, including Nicolaus 
(I) Bernoulli and Abraham de Moivre, and he was also referred to Jacob 
Bernoulli. These encounters began to motivate him toward the field of 
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mathematics. His increased interest in mathematics was brought about by 
meeting Nicolaus (II) Bernoulli in Venice in 1721, who then connected him 
with his younger brother Daniel Bernoulli, with whom a correspondence 
continued for another seven years. It should be noted that Goldbach was 
multilingual; consequently, his diary was written in German and in Latin, 
and his letters were written in German, Latin, French, and Italian. He also 
had command of the Russian language for legal documents.

In 1724, when Goldbach returned to Königsberg, he met with Georg 
Bernhard Bilfinger and Jakob Hermann. These two mathematicians had a 
great influence on Goldbach’s pursuit of mathematics. His reputation in the 
field rose rapidly, and in 1725, Goldbach was offered a position as profes-
sor of mathematics and history at the St. Petersburg Academy of Sciences. 
This resulted from a reputation he built over years—reading articles by the 
famous mathematicians and then producing his own, which, in retrospect, 
were not terribly profound.

Goldbach held the position of recording secretary from the opening of 
the Academy of Sciences in December 1725 until January 1728. During this 
time, he was able to navigate the political circumstances in St. Petersburg, 
which was Russia’s capital at that time.

In 1727, the famous and prolific Swiss mathematician Leonhard Euler 
arrived in St. Petersburg, where he met Goldbach, who shortly thereafter, 
in 1729, moved to Moscow but continued a correspondence with Euler that 
lasted another thirty-five years. Goldbach’s role as a tutor to the royal family 
brought him back to St. Petersburg in 1732, where he once again became 
active in the Academy of Sciences. He actually was one of two people—the 
other being J. D. Schuhmacher—who were responsible for the adminis-
tration of the Academy, and, consequently, he became increasingly more 
involved in the Russian government. His language competence—Latin, 
French, German, as well as Russian—allowed him to continuously increase 
his importance in the Russian government. In 1740, he resigned from the 
academy and was appointed to an important position in the Ministry of 
Foreign Affairs. In 1760, he was asked to establish a program of education 
for the royal family, which remained in effect for the next hundred years.

So, from where did Goldbach’s legacy in mathematics evolve? As we 
mentioned earlier, Goldbach carried on a regular correspondence with Eul-
er. In 1742, he proposed a conjecture to Euler that every integer greater than 
2 can be expressed as a sum of three prime numbers. For example, 3 = 1 + 1 



	 Christian Goldbach: German (1690–1764) 	 175

+ 1; 4 = 1 + 1 + 2; 5 = 1 + 1 + 3; 31 = 23 + 7 + 1, and so on. It should be noted 
that Goldbach considered the number 1 to be a prime number, while today 
it is no longer considered a prime number. Euler responded to Goldbach 
with an equivalent form of this conjecture that all even integers greater than 
2 can be expressed as the sum of two prime numbers. For example, 6 = 3 + 
3; 8 = 3 + 5; 10 = 5 + 5; 31 = 29 + 2, and so on. Euler further stated that he 
was quite certain that this conjecture is true, but he was not able to prove it. 
Nor has anyone else for the past few centuries!

It is this conjecture that makes Goldbach famous still today, since no 
one has ever proved that it is a correct conjecture; but, on the other hand, no 
one has ever proved that it is not a correct conjecture, either. As a matter of 
fact, in 2012, the Portuguese professor Tomás Oliviera e Silva has shown the 
conjecture to be true for all integers less than 4,000,000,000,000,000,000, 
or, written succinctly, 4 ∙ 1018.2 Today we write Goldbach’s conjecture as fol-
lows: Every integer greater than 5 can be written as a sum of three primes—
not including the number 1 as a prime.

Figure 21.1. Christian Goldbach.



176	 M AT H  M A K E R S

It would appear that Goldbach considered mathematics somewhat rec-
reational, and he motivated his correspondence partner, Euler, to test these 
conjectures to the first 2,500 numbers, and finding no fault.

It should be noted that a weak version of this conjecture, namely, that 
all odd numbers greater than 7 are the sum of three odd primes, seems to 
have been proven by Harald Andres Helfgott, in 2013.3

Goldbach’s life ended on November 20, 1764, in Moscow, when he was 
seventy-four years old. His legacy, as we said earlier, resides with his famous 
conjecture, which to this day has never been proved true for all numbers, 
thus, it remains a conjecture and not a theorem.

Figure 21.2.
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Chapter 22

The Bernoullis:  
Swiss (1700–1782)

It is perhaps unique in the history of mathematics that so many members 
of one family have enjoyed distinguished careers in mathematics. This is 
precisely the case with the Bernoulli family. Here we will focus on Jacob 
Bernoulli, his younger brother Johann Bernoulli, and Johann’s son Daniel 
Bernoulli.

We begin with the eldest of the three family mathematicians whom we 
will highlight here: Jacob Bernoulli, who was born on December 27, 1654, 
in Basel, Switzerland, to Nicolaus (aka Niklaus, 1623–1708) and Margare-
tha Schönauer.1 As was not unusual for the time, parents wanted their chil-
dren either to prepare to take over a family business or to enter the ministry. 
In Jacob’s case, it was the latter. Following the guidance of his parents, he 
studied philosophy and theology at the University of Basel, earning a mas-
ter’s degree in philosophy in 1671 and a second degree in theology, in 1676. 
Despite these official studies, Jacob secretly, and against his parents’ wishes, 
studied mathematics and astronomy privately. Although he may have eased 
the family’s dislike for the study of mathematics, he was not alone in this 
sort of familial pressure; the other mathematicians seemed to have faced 
similar pressures. Between the ages twenty-two and twenty-eight, Jacob 
traveled throughout Europe, visiting the leading scientists and mathema-
ticians of his time.

Returning to the University of Basel in 1683, he began teaching me-
chanics as it relates to liquids and solids. Having a degree in theology 
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qualified him for an appointment in the church, which he promptly turned 
down so that he could pursue his true areas of interest: mathematics and 
science. In 1684, he married Judith Stupanus, with whom he had two chil-
dren. He continued to correspond with mathematicians and was particu-
larly fascinated with the works of René Descartes and Gottfried Wilhelm 
Leibniz. Jacob Bernoulli provided the developing subject of mathematics 
with one of its more significant cornerstones: the natural logarithm, 

e = lim
n→∞

1+ 1
n

⎛

⎝
⎜

⎞

⎠
⎟

n

, 

which evolved from his study of compound interest. He found that if a 
man invests $1.00 and pays 100 percent interest per year, at the end of the 
year, the value is $2.00. If the interest is computed and added twice in the 
year, then the $1 is multiplied by 1.5 twice, yielding $1.00 ∙ 1.5² = $2.25. By 

Figure 22.1. Jacob Bernoulli. (Painting by Jacob Bernoulli’s  
brother Nicolaus Bernoulli [1662–1716], 1687.)
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compounding quarterly, the investment yields $1.00 ∙ 1.254 = $2.4414 . . ., 
and by compounding monthly, the investment yields $1.00 ∙ (1.0833 . . .)12 
= $2.613035 . . . . By compounding weekly, he found it to be $2.692597 . . 
.; compounding daily yields $2.714567 . . . . With ever more frequent com-
pounding, the amount will reach $2.718281828459. . . . as a limit. This is 
the natural logarithm, and it is designated by the letter e, a symbol that was 
popularized by Leonhard Euler.

In 1687, he finally settled down and accepted the position of professor 
of mathematics at the University of Basel. This also gave him further oppor-
tunity to continue to investigate discoveries by the English mathematicians 
Isaac Barrow (1630–1677) and John Wallis (1616–1703), and which moti-
vated him to further study infinitesimal geometry.

Having now secured the position at the University of Basel, he had also 
begun to tutor his younger brother Johann in mathematics. The brothers 
became interested in Leibniz’s 1684 paper on differential calculus, which 
was published in his Acta Eruditorum, and might be considered as the first 
appearance of calculus as we know it. However, at about the same time, 
Isaac Newton also developed the concept of calculus, which he called flux-
ions. It is well known that a controversy evolved regarding who was the first 
to come up with this seemingly new field of mathematics. Of course, the 
Bernoulli brothers supported Leibniz. Today we use Leibniz’s subject title 
of “differential calculus” as well as his symbols. In a paper he published in 
1690, Jacob Bernoulli was the first to use the term “integral calculus” when 
analyzing a curve. In 1691, Jacob wrote about the catenary curve, which is 
a curve formed by a chain that is supported on both ends at equal heights; 
today it is often seen in the construction of bridges. The catenary curve can 
be shown on the xy-plane as a chain dropping at x = 0 to its lowest height,  
y = a; it is given by the equation y = a

2
⎛

⎝
⎜
⎞

⎠
⎟e

x
a + e

−x
a . 

It can also be expressed in terms of a hyperbolic cosine function via the 
equation y = acosh xa

⎛

⎝
⎜
⎞

⎠
⎟ . By 1695, he further enhanced the design of bridges by 

applying calculus to his analyses.
As the two Bernoulli brothers further grappled with applications of 

calculus, which was an area that was not clearly understood by many math-
ematicians at the time, a rivalry between them evolved. They began to crit-
icize each other in print, and at the same time challenge each other with 
mathematical problems, which has moved the understanding of mathemat-
ics further along. By 1697, their relationship completely dissolved and they 
separated and were no longer in communication.
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Jacob Bernoulli died in Basel, Switzerland, on August 16, 1705. It is 
unfortunate that he did not live to see the publication in 1713 of Ars Con-
jectandi (The Art of Conjecturing), which was a summary of most of his 
finest discoveries (see fig. 22.2). It included, among other topics, the theo-
ry of permutations and combinations, and the famous Bernoulli numbers, 
which were used to compute easily the sums of powers of any consecutive 
integers. Discussing them, he was reported to have said, “with the help of 
this table, it took me less than half of a quarter of an hour to find that the 
10 powers of the first 100 numbers being added together will yield the sum  
91,409,924,241,424,243,424,241,924,242,500.”2 The values of the first ten 
Bernoulli numbers, Bn, are given in figure 22.3, where, if n is a multiple of 
4 and not equal to zero, then Bn < 0, and all others are positive—with the 
possible exception of n = 1, which is ± 1

2
. Bernoulli numbers grew out of 

Figure 22.2. Ars Conjectandi, published 1713. (Milan, Mansutti Foundation.)
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a long term interest in the sums of integral powers, which has fascinated 
mathematicians since antiquity. Curiously enough, these numbers were the 
subject of the first complex computer program.

The Bernoulli numbers can be defined as Bk in the formula for the se-
ries sum:  
Bk
k!k=0

p

∑ ⋅
p!

p+1− k( )!
⋅ np+1−k =

B0
0!
⋅
np+1

p+1
+
B1
1!
np +

B2
2!
pnp−1+

B3
3!
p p−1( )np−2 +!+
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Only the ambitious reader will want to pursue this further.
Ars Conjectandi also further introduced the subject of probability and 

Bernoulli’s now-famous law of large numbers, which are used today when 
sampling statistical populations. The law of large numbers states that the 
frequencies of events with the same likelihood of occurrence even out over 
time when there are many trials or events. As the number of events increas-
es, the actual ratio of outcomes will converge on the theoretical, or expect-
ed, ratio of outcomes.

Figure 22.3. Bernoulli numbers for n = 0 through n = 10.
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Bernoulli’s work was notable for three reasons. First, he performed his 
research with only a superficial understanding of those who had come be-
fore him—he was able to read a copy of Christiaan Huygens’ Reasoning 
in Games of Chance—but it’s clear from his work that he had not read the 
letters of Pascal and Fermat, Pascal’s Treatise, and several other texts that 
would have informed his research. Second, he progressed much further 
in the study of probability than those who came before him, despite not 
having access to their writings. Third, and finally, he undertook to explain 
not only games of chance, where the outcomes are assumed to be fair and 
the sole output of cards, dice, or coins; he also sought to explain human 
problems such as decision making. Jacob Bernoulli’s works were published 
posthumously in a two-volume set titled Opera Jacobi Bernoulli, in 1744 
(see fig. 22.4).

We now turn to Johann Bernoulli (see fig. 22.5), one of Jacob Bernoul-
li’s younger brothers, who was born in Basel, Switzerland, on August 6, 
1667, twelve years after Jacob’s birth, and was the tenth child of Nicolaus 
and Margaretha Bernoulli. His father, Nicolaus Bernoulli, was a pharmacist 

Figure 22.4. Volume 1 of Opera Jacobi Bernoulli.
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and wanted his son Johann eventually to take over his business and there-
fore guided Johann’s university studies in that direction.

Not interested in studying business, Johann elected to study medicine, 
in an attempt to somewhat satisfy his parents. But this subject also did not 
interest him. His older brother Jacob enticed him to consider mathematics, 
which ended up being the right fit for him. The brothers engaged them-
selves initially in the new subject of calculus (see fig. 22.6), which, as men-
tioned earlier, was developed by Leibniz.

Despite his overriding interest in mathematics, he did complete his 
studies in medicine at the University of Basel, where he received his doc-
torate in 1694. Much to his father’s disappointment, he subsequently im-
mersed himself in mathematics, publishing two books on differential and 
integral calculus. Soon thereafter, in 1694, he married Dorothea Falkner, 
with whom he had three boys, one of whom was Daniel, whose career we 
shall consider later. This was also a time when he began his position as pro-
fessor of mathematics at the University of Groningen in the Netherlands. 
Johann seems to have been rather happy at Groningen, as evidenced by a 

Figure 22.5. Johann Bernoulli.  
(Oil on canvas by Johann Rudolf Huber, 1740.)
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note he wrote on July 25, 1696, in which he stated “Patria est, ubi bene est” 
(“Where there is bread, there is my homeland”) (see fig. 22.7).

Throughout his life, he has had some very famous students, such as 
Leonhard Euler and the French mathematician Guillaume-François-An-
toine, marquis de l’Hôpital (1661–1704), who is still known today for the 
mathematical procedure known as l’Hôpital’s rule, which is used in dif-
ferential calculus. Curiously, l’Hôpital offered to pay Johann, if he would 
provide him with some mathematical discoveries. Interestingly, Johann 
Bernoulli later signed a contract with l’Hôpital, which allowed l’Hôpital to 
use Johann’s work without proper attribution, and thus he published Anal-
yse des infiniment petits pour l’intelligence des lignes courbes in 1696, which 
mainly consisted of the work of Johann Bernoulli, including what we know 
today as l’Hôpital’s rule (see fig. 22.8).

The study of calculus became ever more popular and was further pop-
ularized when Johann posed the brachistochrone problem, which engaged 
a variety of mathematicians at the time. The problem involved taking a wire 
attached at two points at different heights, and placing a bead on the wire. 
Then letting the bead slide along the wire (assuming no friction), from the 
higher-height endpoint. The challenge was to determine what the shape of 
the curve should be in order for the bead to land at the lowest point in the 

Figure 22.6. Jacob and Johann Bernoulli. (Engraving ca. 1870–1874.)
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least amount of time. Using calculus, it was determined by him that the 
curve is an inverted cycloid. The cycloid curve can also be generated by 
the path that a point on a circle travels while the circle is rolling along a 
straight-line path, as shown in figure 22.9.

In 1705, Johann’s family urged him to return to Basel. During the jour-
ney back, he learned of Jacob’s death from tuberculosis. Initially, Johann 
had returned to Basel so as to assume the professorial chair for Greek at the 
University of Basel. After the death of his brother, though, he was able to 
get the now-vacant position of professor of mathematics at the university of 
Basel, which previously had been held by his brother. It must be said that, 
despite the loss of Jacob, Johann was delighted to change his plans when the 
mathematics position became available.

In 1713, Johann got actively involved in supporting Leibniz in the 
discussions about who should be credited with discovering calculus. He 
showed that Leibniz’s work was able to solve problems that Newton’s flux-
ions could not accomplish. As a further effort to support Leibniz’s position 
regarding the development of calculus, he published a text on integral cal-
culus in 1742 and soon thereafter a text on differential calculus.

Apparently, Johann Bernoulli had a rather-jealous personality, which 
caused his previously mentioned competition and subsequent fallout with 

Figure 22.7. Johann Bernoulli’s note.
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his brother. A similar problem disrupted his relationship with his son Daniel 
Bernoulli, who was also a very gifted mathematician. In 1734, Daniel wrote 
an important work, Hydrodynamica, which he published in 1738. This was 
about the same time that his father, Johann Bernoulli, published his work 
Hydraulica. Once again, a dispute evolved about the ownership of the mate-
rial. It is believed that Johann plagiarized from his son Daniel’s work.3 This 
further destroyed their relationship. Johann Bernoulli died on January 1, 
1748, in Basel, Switzerland, while still at odds with his son Daniel.

Johann Bernoulli’s son Daniel was born on February 8, 1700, in Gron-
ingen, Netherlands. Despite his father’s urging that Daniel study business, 
Daniel insisted on studying mathematics. He later delved into some busi-
ness study but ended up studying medicine at his father’s suggestion, with 
the understanding that his father would teach him mathematics at home. 

Figure 22.8. Analyse des infin-
iment petits pour l’intelligence 

des lignes courbes, 1696.
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Figure 22.9. Cycloid curve formed by the path of a point  
on a circle that is rolling along a straight-line path..

Figure 22.10. Daniel Bernoulli. (Portrait on  
albumen paper copy mounted on cardboard, ca. 1750.)
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Eventually, in 1721, Daniel earned his doctorate in anatomy and botany. As 
already mentioned, his father was a rather jealous person. This manifested 
itself once again in a scientific contest at the University of Paris, when Dan-
iel was tied with his father for first place. As a result, Johann banned Daniel 
from his house. Johann carried this grudge for the rest of his life.

Daniel Bernoulli befriended the famous mathematician Leonhard Eu-
ler, who at the time lived in St. Petersburg; Daniel Bernoulli traveled there 
in 1724 to assume the position of professor of mathematics. He did not 
seem to enjoy the position, a situation made even worse by a brief illness he 
suffered in 1733. So he returned to the University of Basel, where he held 
professorial positions in medicine, metaphysics, and natural philosophy.

Daniel Bernoulli was a brilliant mathematician and scientist whose 
talents clearly rivaled those of his father. Eventually, though, the rivalry 
became counterproductive, since he won many prizes, some of which his 
father felt should have been awarded to the father and resultingly evicted 
Daniel from his home. We could ask ourselves, what might be the most im-
portant discovery that Daniel Bernoulli provided future science? In what is 
known today as the Bernoulli effect, Daniel proved that when a fluid flows 
through a region in which its speed increases, its pressure will fall. He cor-
rectly described the effect mathematically. The Bernoulli effect has many 
real-life applications, and it explains why aircraft wings provide lift to the 
plane. Essentially, what this explains is that the wing is shaped so that air 
flows faster over the upper part of the wing than over the lower. This results 
in an air pressure difference that produces lift. After a rather full life of bril-
liance, Daniel died on March 17, 1782, in Basel, Switzerland 

Thus, we have a good overview of what is probably the most famous 
mathematics family, the Bernoullis. They interacted with the leading math-
ematicians over a century to provide many significant breakthroughs in the 
development of mathematics.  They have contributed not only to mathe-
matics but also to science, philosophy, business, and a general knowledge 
to help us better understand our environment.
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Chapter 23

Leonhard Euler:  
Swiss (1707–1783)

One often wonders from where our many mathematical symbols stem. The 
answer is quite simple. Perhaps one of the most prolific mathematicians of 
all time, the Swiss mathematician Leonhard Euler, introduced a significant 
number of the symbols that we frequently use in mathematics today. Al-
though the Greek letter π was first used by the Welsh mathematician Wil-
liam Jones (1675–1749), it was Euler who through his many publications 
popularized the symbol to represent the ratio of a circle’s circumference to 
its diameter. He also used the Greek letter Σ to represent a summation, and 
the letter i to represent the imaginary number −1 . He was the first to use 
the letter e to represent the natural logarithm, which is approximately equal 
to 2.71828 . . ., and that allowed him to set up the famous Euler identity  
eiπ + 1 = 0, which uses all of these symbols. Euler also introduced the con-
cept of the function and was the first to write it as f(x). We can thank Euler 
for the modern notation of the trigonometric functions. Even the way we 
today label geometric figures such as a triangle—whose vertices are marked 
with the letters A, B, and C, and whose notation for the sides opposite these 
vertices use the lowercase letters a, b, and c—stems from Euler’s writings. 
Euler provided us with our mathematical language, but it resulted from the 
many volumes that he wrote during his seventy-six-year life span. We must 
also acknowledge the multitude of innovations that Euler introduced in 
mathematics. But first, let’s get a brief view into his life’s history.
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Leonhard Euler was born on April 15, 1707, in Basel, Switzerland. His 
father was a pastor and his mother was the daughter of a pastor, and he was 
one of four children. When Leonhard was a small child, his family moved 
to the town of Riehen, Switzerland, where he lived until age thirteen, at 
which time he moved back to Basel to live with his maternal grandmother. 
There, in 1720, the thirteen-year-old Leonhard enrolled as a student at the 
University of Basel; in 1723, at age seventeen, he received a master’s de-
gree in philosophy, comparing the ideas of Newton and Descartes. It was 
during that time that his father’s friend, the famous Swiss mathematician 
Johann Bernoulli, gave him private lessons in mathematics and discov-
ered his unique talents in this field. As a result, Bernoulli convinced Leon-
hard’s father that his son should pursue a study of mathematics rather than 
fulfilling his father’s wish of also becoming a pastor. Euler completed his 
dissertation on the propagation of sound in 1726 but was unsuccessful in 

Figure 23.1. Leonhard Euler. (Portrait by Jakob Emanuel Handmann,  
pastel on paper, 1753.)
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obtaining a faculty position at the University of Basel. In 1727, Euler ac-
cepted a position in St. Petersburg in the mathematics department at the 
Imperial Russian Academy of Sciences. This academy was eager to recruit 
scholars from other European countries and was chiefly interested in re-
search rather than in teaching students. During this time, Euler mastered 
the Russian language and also took on an additional job as a medic in the 
Russian Navy. In 1731, he was promoted to professor of physics; two years 
later, he headed the mathematics department as well, after the position was 
vacated by Daniel Bernoulli, Johann Bernoulli’s son.

In 1734, Euler married Katharina Gsell, with whom he had thirteen 
children. Only five of those children survived childhood, and only three 
survived him. In 1738, apparently through a protracted fever and overwork, 
Euler lost sight in his right eye. This did not distract him from continuing 
his work as energetically as he had previously. In 1741, the instability in 
Russia motivated Euler to take on a faculty position at the Berlin Academy. 
He stayed there for the next twenty-five years and wrote over 380 articles. 
During his Berlin years, he also wrote two very famous books: Introductio 
in analysin infinitorum, on the topic of functions, was published in 1748; 
and Institutiones calculi differentialis, on differential calculus, was published 
in 1755. Later, in 1770, he completed a book titled Institutionum calculi 
integralis. These last two books provide many formulas for differentiation 
and integration, which compose much of our modern-day calculus course.

In 1766, Euler accepted an invitation from Catherine II to return to 
Russia, where soon after his arrival in St. Petersburg, a cataract formed in 
his remaining good eye, which left him totally blind for the rest of his life. 
Amazingly, this did not reduce his productivity, largely because of his un-
common memory and unusual ability to do mental calculations. He actu-
ally claimed that losing sight enabled him to have fewer distractions in his 
work. With his scribes, he was able to produce even more work than he 
had previously. Although he was not considered a teacher of mathematics, 
he did have a great influence on mathematics education in Russia. Euler 
touched so many areas of mathematics that it would take volumes to sum-
marize all of his work. However, we will cite two results of his genius that 
still remain relatively popular today, even beyond mathematical circles.

First, there is a famous problem in mathematics that stems from an 
age-old conundrum that intrigued folks in Europe for many years. We be-
gin with a little bit of historical background so that you will become fasci-
nated by the problem that faced generations of Europeans.1
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In the eighteenth century and earlier, when walking was the dominant 
form of local transportation, people would often count particular kinds of 
objects they passed. One such was bridges. Through the eighteenth century, 
the small Prussian city of Königsberg (today called Kaliningrad, Russia), lo-
cated where the Pregel River forms two branches around an island portion 
of the city, provided a recreational dilemma: Could a person walk over each 
of the seven bridges exactly once in a continuous walk through the city? 
The residents of the city had this as a recreational challenge, particularly on 
Sunday afternoons. Since there were no successful attempts, the challenge 
continued for many years.

This problem provides a wonderful window into the field today known 
as networks, which is also referred to as graph theory, an extended field of 
geometry. This problem gives us a nice introduction into the subject. Let us 
begin by presenting the problem. In figure 23.2 we can see the map of the 
city with the seven bridges.

In figure 23.3, we indicate the island with A, the left bank of the river 
with B, the right bank with C, and the area between the two arms of the 
upper course with D. The seven bridges are called Holz, Schmiede, Ho-
nig, Hohe, Köttel, Grüne, and Krämer (see fig. 23.3). If we start at Holz 
and walk to Schmiede and then through Honig, through Hohe, through 

Figure 23.2. Königsberg.
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Köttel, through Grüne we will never cross Krämer. On the other hand, if we 
start at Krämer and walk to Honig, through Hohe, through Köttel, through 
Schmiede, and then through Holz, we will never travel through Grüne.

In 1735, Euler proved mathematically that this walk could not be per-
formed. The famous Königsberg Bridges Problem, as it has become known, 
is a lovely application of a topological problem with networks. It is very nice 
to observe how mathematics—used properly—can put a practical problem 
to rest.

Before we embark on the problem, we ought to become familiar with 
some basic concepts involved. Toward that end, try to trace with a pencil 
each of the configurations shown in figure 23.4 without missing any part 
and without going over any part twice. Make sure to keep count of the num-
ber of arcs or line segments, which have an endpoint at each of the points 
A, B, C, D, and E.

Configurations, or networks, such as the five figures shown in figure 
23.4, are made up of line segments and/or continuous arcs. The number of 
arcs or line segments that have an endpoint at a particular vertex is called 
the degree of the vertex.

You should notice two direct outcomes after trying to trace the net-
works as described above: The networks can be traced (or traversed) if they 
have (1) all even degree vertices or (2) exactly two odd-degree vertices. The 
following two statements summarize this finding:

1.	 There is an even number of odd-degree vertices in a connected 
network.

Figure 23.3. Königsberg Bridges Problem.
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2.	 A connected network can be traversed only if it has at most two 
odd-degree vertices.

Let’s examine each of the five networks:

Network figure 23.4a has five vertices. Vertices B, C, E are of even de-
gree, and vertices A and D are of odd degree. Since figure 23.4a has 
exactly two odd-degree vertices as well as three even-degree vertices, it 
is traversable. If we start at A then go down to D, across to E, back up to 
A, across to B, and down to D, we have chosen a desired route.

Network figure 23.4b has five vertices. Vertex C is the only even-de-
gree vertex. Vertices A, B, E, and D are all of odd degree. Consequent-
ly, since the network has more than two odd-degree vertices, it is not 
traversable.

Network figure 23.4c is traversable because it has two even-degree ver-
tices and exactly two odd-degree vertices.

Network figure 23.4d has five even-degree vertices and, therefore, can 
be traversed.

Network figure 23.4e has four odd-degree vertices and cannot be 
traversed.

The Königsberg Bridge Problem is the same problem as the one posed 
in figure 23.4e. Let’s take a look at both figure 23.4e and figure 23.3 and note 
the similarity. There are seven bridges in figure 23.3, and there are seven 
lines in figure 23.4e. In figure 23.4e, each vertex is of odd degree. In figure 
23.3, if we start at D, we have three choices: we could go to Hohe, Honig, 
or Holz. If we start at D in figure 23.4e, we have three line paths to choose 
from. In both figures, if we are at C, we have either three bridges or three 
lines we could go on. A similar situation exists for locations A and B in fig-
ure 23.3 and vertices A and B in figure 23.4e. We can see that this network 
cannot be traversed.

By reducing the bridges and islands to a network problem, we can eas-
ily solve it. This is a clever tactic to solve problems in mathematics. You 
might want to try to find a group of local bridges in your region to create 
a similar challenge, and then see if the walk is traversable. This problem 
and its network application is an excellent introduction into the field of 
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topology. Getting actively involved with the various experiments we de-
scribed above would ensure a genuine understanding of an aspect of math-
ematics to which most are not otherwise exposed.

Among the enormous number of contributions that Euler made to the 
field of mathematics, there is one that can appeal very nicely to the novice. 
Euler established that for any convex polyhedron, the relationship between 
the number of vertices (V), edges (E), and faces (F) satisfies the following 
equation: V + F = E + 2, which is rightfully known as the Euler formula. It 
might be fun to verify this formula with any convex polyhedron you may 
have available. You might begin with the five regular polyhedra shown in 
figure 23.5 by counting the number of vertices, faces and edges and see that 
in each case Euler’s formula holds true.

It should be mentioned that Euler was the most prolific mathematician 
and scientist, yes, but he was also heavily involved in areas beyond pure 
mathematics, such as cartography, physics, and astronomy, just to name a 
few. We still remember Euler today as having contributed to mathematics 
more volumes of work than any other mathematician in history has. A large 
number of mathematical objects and topics are named in honor of Leon-
hard Euler. In fact, he made so many pioneering contributions to several 
branches of mathematics that some theorems were deliberately attributed 
to the first mathematician to have discovered them after Euler, in order to 
avoid naming everything after Euler.

On September 18, 1783, during a discussion with his two assistants on 
the topic of planetary motion, and more specifically about the recently dis-
covered planet Uranus, Euler collapsed from a brain hemorrhage and died a 
few hours later. To further exemplify Euler’s productivity, the St. Petersburg 
Academy continued to publish Euler’s findings for another 50 years beyond 
his death.

Figure 23.5.
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Chapter 24

Maria Gaetana Agnesi:  
Italian (1718–1799)

Looking at the history of mathematics, we can see readily that it is overload-
ed with male mathematicians. This prompts us to wonder, who was the first 
female mathematician in the Western world to receive an international rep-
utation? Most people would consider Maria Gaetana Agnesi to fit that role. 
She was born on May 16, 1718, in Milan, which was then a part of the Aus-
tro-Hungarian Empire, and is now a city in Italy. She grew up in a wealthy 
household as the oldest child of a prosperous silk merchant, who fathered 
twenty-one children. The first signs of her prodigy status appeared at age 
five, when she spoke Italian and French. By age nine, she further demon-
strated her talent by mastering several modern languages, as well as Latin, 
Greek, and Hebrew. Within the next few years, she mastered mathematics.

Recognizing her talents, her father would invite friends and have her 
perform by displaying her vast intelligence. Interestingly, in 1738, when she 
was twenty years old, a series of essays were published, Propositiones philo-
sophicae (Propositions of Philosophy), which were based on her presenta-
tions at these forums. In 1748, she published Instituzioni analitiche ad uso 
della gioventù italiana (Analytical Institutions for the Use of Italian Youth), 
which encompassed two large volumes, wherein she presented her treat-
ment of algebra and both integral and differential calculus (see fig. 24.2). 
This work was well received by mathematicians all over Europe. A commit-
tee of the renowned Académie des Sciences in Paris reported on Instituzioni 
analitiche ad uso della gioventù italiana:
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It took much skill and sagacity to reduce, as the author has done, to 
almost uniform methods these discoveries scattered among the works 
of modern mathematicians and often presented by methods very dif-
ferent from each other. Order, clarity and precision reign in all parts 
of this work. . . . We regard it as the most complete and best made 
treatise.1

One form of her fame came from a cubic curve known in Italian as ver-
siera, which, over the years, has become confused with the word for “witch,” 
namely, versicra. Ultimately, this resulted in its English name, the Witch of 
Agnesi.

The bell-shaped curve, which we refer to as the Witch of Agnesi, can 
be constructed as follows: Start with a circle of diameter a, centered at the 
point (0, a

2
) on the y-axis, as shown in figure 24.3. Then select a point A 

Figure 24.1. Maria Gaetana Agnesi. (Engraving by G. A. Sasso  
after G. B. Bosio, Library of Congress.)
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on the line y = a, and draw the line segment AO, with its intersection with 
circle O at point B. Let point P be the point where the vertical line through 
A intersects the horizontal line through B. The curve , called “Witch of Ag-
nesi,” is then traced by point P as A moves along the line y = a.

The curve has the equation yx2 = a2(a – y), or y = a3

x2 + a2
.

Figure 24.4 shows the curve in its original rendering.
This entire work so impressed Pope Benedict XIV that, in 1750, he ap-

pointed Agnesi to the position of professor of mathematics at the University 
of Bologna. Soon thereafter, she increasingly gravitated to religious studies 
and never actually visited Bologna again. After her father died in 1752, Ma-
ria Gaetana Agnesi completely dedicated herself to religious studies and 
charitable work. She died on January 9, 1799, in one of the charity poor-
houses that she directed.

Figure 24.2.
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Figure 24.3.

Figure 24.4. “Witch of Agnesi.” (Maria Gaetana Agnesi, Instituzioni  
analitiche ad uso della gioventù italiana, 1748.)
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Chapter 25

Pierre Simon Laplace:  
French (1749–1827)

In the early 1980s, the American neuroscientist Benjamin Libet (1916–
2007) conducted a now-famous series of experiments questioning the exis-
tence of “free will.”1 In these experiments, participants were placed in front 
of a rapidly moving clock and instructed to carry out some small motor 
activity (such as flexing a finger or clenching a fist) whenever they felt like 
it, and note the position of the hand of the clock at the instant they were 
aware of the intention to act. The experiment showed that the decision to 
act occurs approximately 200 milliseconds prior to the movement. In addi-
tion, the researchers monitored the subjects’ brain activity during the whole 
experiment, using an electroencephalogram (EEG). Surprisingly, the EEG 
signal indicated brain activity related to the resulting movement more than 
500 milliseconds in advance of the action, and, thus, more than 300 milli-
seconds before the subjects reported their first awareness of their desire to 
act. These findings seemed to suggest that whenever we make an apparently 
conscious decision to do something, we are actually just executing what our 
brain has already decided. Does this mean that free will is just an illusion? 
Is everything we do and everything we experience controlled by a subcon-
scious program running in our brain, creating our consciousness and just 
making us believe that we are free to choose our actions? These questions 
are still not answered, and they are the subject of ongoing scientific de-
bates. We have not yet understood how consciousness works, that is, how 
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physiological processes such as ions flowing across nerve membranes cause 
us to have experiences. As long as this has not been clarified (and it is an 
extremely complex problem to solve), we cannot expect a definite answer 
to the question of existence or non-existence of conscious free will. It was 
already recognized by ancient Greek philosophers that free will is in con-
flict with the philosophical idea that all events are determined by previous-
ly existing causes, a philosophical theory known as determinism. If every 
event has a unique cause, then complete knowledge of the present state of 
the universe would, at least in principle, enable us to predict its future. But 
if the future is already determined by the present, then there is no room for 
free will. Although the concept of determinism goes back to philosophers 
in ancient Greece, the notion is nowadays strongly associated with New-
tonian mechanics, which is the mathematical description of the motion of 
bodies under the influence of forces, based on Newton’s famous laws of 
motion. Newton’s three laws of motion were first published in 1687 in his 
opus magnum Philosophiæ Naturalis Principia Mathematica (Mathematical 
Principles of Natural Philosophy), commonly known as the Principia. They 
are fundamental laws of physics, describing the motion of colliding billiard 
balls just as well as the motion of planets in the solar system. Newtonian 
mechanics is deterministic in the sense that, if one knows the positions and 
velocities of all matter particles at some instant in time, one can, at least 
theoretically, calculate their future positions and velocities. Newton’s equa-
tions of motion provided the precise mathematical relationship between 
cause and effect, thereby establishing a solid scientific basis for the philo-
sophical idea of determinism. The French mathematician Pierre Simon de 
Laplace (1749–1827) was among the first who recognized the philosophical 
implications of a mechanistic view of the universe. The following excerpt 
from his “Philosophical Essay on Probabilities,” published in 1814, is the 
first known articulation of scientific or causal determinism:

We may regard the present state of the universe as the effect of its past 
and the cause of its future. An intellect which at a certain moment 
would know all forces that set nature in motion, and all positions of 
all items of which nature is composed, if this intellect were also vast 
enough to submit these data to analysis, it would embrace in a sin-
gle formula the movements of the greatest bodies of the universe and 
those of the tiniest atom; for such an intellect nothing would be uncer-
tain and the future just like the past would be present before its eyes.2
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This hypothetical intellect became later famously known as “Laplace’s 
demon,” although Laplace did not use the word “demon.” But Pierre Simon 
de Laplace is not only remembered as a pioneer of scientific determinism, 
he also made fundamental contributions to probability theory, statistics, 
and to the theory of differential equations. Most important, he introduced 
differential calculus into physics and astronomy, thereby substantially ex-
tending the work of Newton and other predecessors. His most important 
treatise, Traité de mécanique céleste (Treatise of Celestial Mechanics), was a 
seminal contribution to mathematical physics; it became a standard text in 
astronomy and remained state-of-the-art for more than one hundred years. 
We will examine a few of his scientific achievements in more detail as we 
provide a short of summary of his life.

Pierre Simon Laplace was born on March 23, 1749, in Beaumont-en-
Auge, Normandy, France.3 His father, Pierre Laplace, was a cider merchant, 
and his mother, Marie-Anne Sochon, came from a relatively prosperous 

Figure 25.1. Pierre Simon Laplace. (Painting by Jean-Baptiste  
Paulin Guérin, oil on canvas, 1838.)
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farming family. There is no evidence of higher academic education in his 
family. Pierre Simon attended the Benedictine priory school in Beaumont-
en-Auge between the ages seven and sixteen. His father wanted him to be-
come a priest, and so he sent him to the University of Caen to study the-
ology. However, Laplace soon discovered that he was much more attracted 
to mathematics than to theology. This shift of interests was partly provoked 
by two inspiring mathematics teachers at Caen, Christophe Gadbled and 
Pierre Le Canu. Fortunately, they realized Laplace’s talent for mathematics 
and began to mentor him. While still a student at Caen, Laplace wrote his 
first mathematical paper and sent it to the renowned Italian mathemati-
cian Joseph-Louis Lagrange (1736–1813), who would later publish it in his 
journal, Miscellanea Taurinensia. Laplace was now determined to become 
a professional mathematician, and Le Canu wrote a letter of introduction 
for him to Jean-Baptiste le Rond d’Alembert (1717–1783), one of the lead-
ing mathematicians in Paris. Without taking his degree, Laplace traveled 
to Paris to introduce himself to d’Alembert. Descendants of d’Alembert re-
ported that he was initially very reserved when he received Laplace in Par-
is.4 To get rid of him, he handed him a thick book of advanced mathematics, 
and told him to come back after he had read it. Not expecting to see Laplace 
again in the near future, d’Alembert was perplexed when Laplace knocked 
on his door only a few days later. He didn’t believe that Laplace had read 
the whole book, let alone that he had understood it. Visibly annoyed, he 
started to ask him mathematical questions, and soon had to acknowledge 
that Laplace had indeed understood everything contained in the book. His 
initially reluctant attitude disintegrated, and the more problems d’Alembert 
posed to Laplace, the more impressed he became with Laplace’s mathemat-
ical brilliance. He welcomed Laplace as his student and found a position for 
him as a mathematics professor at the École Militaire, a military academy 
in Paris. Financially secure and with not too many teaching obligations, 
Laplace delved into research and soon produced substantial mathematical 
results. After having published several high-quality papers, he applied for 
a position at the Academy of Sciences in Paris, the most distinguished sci-
entific institution in France at that time. However, still in his early twenties, 
he was passed over in favor of older, but less prolific, mathematicians. La-
place, who was never modest about his achievements, became very angry 
about the decision he felt was unjust. Yet he didn’t have to wait too long. In 
1773, after two unsuccessful attempts, he became an adjunct member of the 
Academy of Sciences (and was promoted to a senior position in 1785). With 
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an uninterrupted flow of important contributions to mathematics during 
the 1770s, Laplace’s reputation as a mathematician steadily increased. In 
those years, he focused his interests and developed both his style as a math-
ematician and his philosophical viewpoints. His main fields of research 
gradually took shape, namely, the application of differential calculus to the 
motion of astronomical objects and the theory of probability. Understand-
ing and calculating the motion of the planets in the solar system had been a 
big mathematical challenge throughout the history of science. 

In his 1687 publication Philosophiae Naturalis Principia Mathematica, 
Newton showed that Johannes Kepler’s laws for planetary motion follow 
from Newton’s own three fundamental laws of mechanics, combined with 
his law of universal gravitation. The latter stated that two massive bodies 
attract each other with a force directly proportional to the product of their 
masses and inversely proportional to the square of the distance between 
their centers. Kepler had found his laws for the motion of planets empiri-
cally, by carefully studying observational data, but Newton “proved Kepler’s 
laws” in deriving them from his fundamental laws of mechanics. This was 
a great success for Newton’s theory; however, to derive Kepler’s laws from 
his equations of motion, Newton had to consider a single planet orbiting 
around the sun; in astronomy, this is called the “two-body problem.” But as 
soon as three or more bodies are involved, the equations describing their 
motion become much more complicated. In fact, the “three-body problem” 
is already so complicated that it can only be solved in an approximate sense. 
The planets in our solar system do not exactly behave according to Kepler’s 
laws; the gravitational pull they exert on each other makes their orbits de-
viate slightly from perfect Kepler orbits. Even the smallest planet has a tiny 
effect on the motion of all other planets, and, over long periods of time, 
these tiny disturbances may accumulate to large deviations. Describing the 
whole solar system in the framework of Newtonian mechanics leads to an 
extremely complicated system of equations, since the gravitational force 
acting on a planet depends not only on its distance from the sun but also 
on the current positions of all other planets. Newton had recognized the 
mathematical difficulties in his attempts, and he doubted that this complex 
system of equations could be solved at all. His conclusion was that period-
ic divine intervention was necessary for the solar system to remain stable; 
otherwise, the small disturbances of a planet’s orbit caused by the presence 
of other planets could add up over time and finally kick the planet out of the 
solar system. Observational data gathered in the early eighteenth century 
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indicated that Jupiter’s orbit was slowly shrinking, while Saturn’s orbit was 
expanding. Explaining this apparent instability was a big open problem of 
astronomy; even Leonhard Euler and Joseph-Louis Lagrange had unsuc-
cessfully tried to solve it. Laplace carried out a more refined mathematical 
analysis of the problem, incorporating effects that Euler and Lagrange had 
omitted, and his calculations turned out to be in perfect agreement with 
the observational data. His analysis revealed that the special ratio between 
the orbital periods of Jupiter and Saturn is responsible for the anomalies 
in their motions. (Two periods of Saturn’s orbit around the sun are almost 
exactly equal to one period of Jupiter’s orbit.) Having solved this longstand-
ing problem, Laplace aimed at a theoretical description of the whole solar 
system. His scientific goal was to: “bring theory to coincide so closely with 
observation that empirical equations should no longer find a place in astro-
nomical tables.”5

In his major work, Celestial Mechanics, published in five volumes be-
tween 1799 and 1825, Laplace brought the methods of calculus into classical 
mechanics, which previously had mainly been studied geometrically. The 
powerful machinery of calculus enabled Laplace to tackle problems New-
ton and other predecessors had considered too complicated for a mathe-
matical analysis. Laplace developed a complete mathematical framework 
for calculating the motions of the planets and their satellites, including the 
tidal motion and the effects of tidal forces on the shape of planets. In par-
ticular, he was able to show stability of the solar system6 without having to 
postulate any divine intervention, as Newton did. There is a famous anec-
dote regarding a conversation between Laplace and Napoleon Bonaparte: 
When Laplace presented his work to Napoleon, he was congratulated but 
asked why he had nowhere mentioned God in his book. Laplace’s blunt and 
now-famous answer was: “I had no need of that hypothesis.”7

Because Laplace was rather opportunistic with his political opinions, 
he escaped imprisonment during the French Revolution and was even ap-
pointed as minister of the interior by Napoleon, as a placeholder for Na-
poleon’s brother. That is probably the main reason why Laplace’s political 
career lasted only six weeks; however, Napoleon later wrote in his memoirs:

Laplace did not consider any question from the right angle: he sought 
subtleties everywhere, conceived only problems, and finally carried 
the spirit of “infinitesimals” into the administration.8
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In 1812, Laplace published his Théorie analytique des probabilités (An-
alytic Theory of Probability). The mathematical theory of probability has its 
origin in a correspondence between Blaise Pascal (1623–1662) and Pierre 
de Fermat (1607–1665). However, it was Laplace who developed a com-
plete mathematical theory around the exemplary problems discussed by his 
predecessors. His views on the subject are best expressed in the following 
quote:

The theory of probabilities is at bottom nothing but common sense 
reduced to calculus; it enables us to appreciate with exactness that 
which accurate minds feel with a sort of instinct for which of times 
they are unable to account.9

Laplace’s book on probability theory was one of the most influential 
books in mathematics. He laid the foundation of the subject and formulat-
ed its basic principles, in addition to establishing a theoretical framework. 
He considered not only many practical applications, such as mortality, life 
expectancy, the length of marriages, but also triangulation methods in sur-
veying, and other problems of geodesy, the science of measuring and un-
derstanding Earth’s geometric shape and its gravitational field. Among the 
many results he proved, we shall just mention one of the mathematical con-
cepts that bear his name today: Laplace’s rule of succession. This rule can be 
seen as follows: Assume you are conducting an experiment that can result 
in only a success or a failure, and you repeat it independently n times.  If 
you get k successes, what would be your estimate for the probability that the 
outcome of the next trial will be a success? A reasonable, and quite natural, 
answer would be P = k

n
, but Laplace showed that in some situations, the ratio 

k +  1
n+  2  gives a better estimate. For a large n, the difference between the two 
ratios is negligible, but if n is small, Laplace’s formula is more useful, as the 
following example illustrates:

If you toss a coin three times and it always comes up heads (which 
we here will consider success), then the formula P = kn =

3
3
=  1 would suggest 

that the probability for the coin to show heads after the next toss is 100 
percent, which is, of course, nonsense. Similarly, if the coin always came up 
tails in the first three trials, the formula P = k

n
=

0
3
=  0  would suggest that the 

probability for the coin to come up heads in the next toss is zero. Laplace’s 
formula avoids these wrong conclusions by leaving room for the possibility 
that the fourth toss might produce a different result.
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In his later years, Laplace tried to extend his mathematical methods to 
other areas of physics. He developed a theory of light and a theory of heat 
(both of which proved to be wrong), and he continued to publish papers 
well into his seventies. Laplace died in Paris in 1827, but his name is still 
very present in mathematics and physics thanks to the mathematical ob-
jects and notions carrying his name. In particular, we have the well-known 
Laplace’s equation, and the Laplace transform. (The Laplace equation is a 
differential equation that is important in several branches of physics; for 
example, the gravitational field of the Earth must satisfy Laplace’s equation 
everywhere outside the Earth. In higher mathematics, a simple definition 
for the Laplace transform would be that it takes a function of a real variable 
and transforms it into a function of a complex variable.) Last but not least, 
there is Laplace’s demon, who is still wandering around in philosophical 
discussions stimulated by new findings in neuroscience.
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Chapter 26

Lorenzo Mascheroni:  
Italian (1750–1800)

Unfortunately, it is not all too uncommon in the history of mathematics 
that a mathematical discovery is named inappropriately for a mathemati-
cian who did not initially discover a unique relationship. This is the case 
for the Italian mathematician Lorenzo Mascheroni, who is known today 
for having been the first to prove that all geometric constructions that are 
possible using a straight edge and a pair of compasses can be done with the 
compasses alone. This was presented in his book Geometria del compasso in 
1797 (see fig. 26.1).

Before we discuss this theorem in greater detail, we should acknowledge 
the fact that unbeknownst to Mascheroni, this relationship was previously 
proved by the Danish mathematician Georg Mohr (1640–1697) in 1672, 
in a very obscure book titled Euclides danicus, which was rediscovered in 
1928. Georg Mohr was born in Copenhagen in 1640, and in 1662 he trav-
eled to the Netherlands to study mathematics under Christiaan Huygens. 
The following year, he published a second book, titled Compendium Euclid-
is Curiosi. During his time away from Copenhagen, he spent time reading 
the work of some of the famous mathematicians of his day in France, En-
gland, and Germany. Unfortunately, his claim to fame has been limited to 
Denmark, which has named its mathematics competition after him.
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The brilliant discovery that all geometric constructions that are pos-
sible to create with a straight edge and a pair of compasses can be creat-
ed with the compasses alone is actually named after Mascheroni. He came 
upon a proof of this theorem that is different from Georg Mohr’s proof; and, 
since we refer to this technique as Mascheroni constructions, we will focus 
on Mascheroni’s life here.

Lorenzo Mascheroni was born in Bergamo, Lombardi, Italy, in 1750, 
to a wealthy family that motivated him to become a priest, and he was or-
dained in 1767. Soon thereafter, he taught rhetoric, and, later on, in 1778, 
he taught mathematics and physics at the seminary in Bergamo. This led 
him to become a professor of mathematics at the University of Pavia, where 
in 1789 he became the rector of the university, a position he held for the 
next four years.

Figure 26.1.
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Mascheroni so admired Napoleon Bonaparte that he dedicated his 
book Geometria del compasso to him in 1797. He also received quite a few 
tributes for his work, largely in geometry, by being elected to the Academy 
of Padua, the Italian Society of Science, and the Academy of Mantua. In 
1795, the metric system was introduced in Europe, and Mascheroni was ap-
pointed to travel to Paris and study the new system so that he could report 
back to the government in Milan. He published a report in 1798, but he was 
confined to Paris as a result of the unrest stemming from Napoleon’s wars 
affects throughout Europe. From the weather there Mascheroni caught a 
normal cold, which then brought on further complications leading to a fatal 
viral infection, resulting in Mascheroni’s death on July 14, 1800.

Let us now take a careful look at what a fantastic discovery Lorenzo 
Mascheroni made regarding those constructions that still bear his name: 
Mascheroni constructions, despite the fact that Mohr seems to have first 

Figure 26.2. Lorenzo Mascheroni, ca. 1790.
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made this discovery—albeit with other techniques, and, as was already 
mentioned, without Mascheroni’s knowledge. We will look at Mascheroni’s 
work in some detail because the results are truly counterintuitive.

Before we actually demonstrate that the compasses can replace the un-
marked straightedge to construct a straight line, we will begin by showing a 
few constructions that normally would involve the unmarked straightedge 
but here will be done with compasses alone.

In order to make our discussions more concise, we will use a shorthand 
method for referring to a circle, or the arc of a circle, in the following way: 
A circle whose center is point P and has a radius length AB will be referred 
to with (P, AB).1 Also, we know that any two points determine a line, so we 
will refer to a line using any two of its points; for example, the line contain-
ing the points A and B will be referred to as simply AB.

We will begin with a critical construction that would be necessary to 
demonstrate how Mascheroni constructions can manifest themselves. Here 
we will attempt to find a point E on the line AB so that AE = 2(AB).

Follow along as we use figure 26.3, where we begin by considering the 
line segment AB. We then draw arc (B, AB). We let arc (A, AB) intersect 
arc (B, AB) at point C. Then let arc (C, AB) intersect arc (B, AB) at point 
D. Further, we let arc (D, AB) intersect arc (B, AB) at point E. We can now 

Figure 26.3.
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notice that AB = BE, or that AE = 2(AB), which we set out to construct. 
Some may ask, how do we know that point E, in fact, lies on line AB? If we 
look at triangles ABC, CBD, and DBE (fig. 26.4), we should realize that they 
are equilateral triangles. Therefore, the angles ABC, CBD, and DBE are each 
60°, which then form a straight line, ABE.

Using the technique above, we can construct a line segment whose 
measure is n times the measure of any given line segment, where n = 1, 2, 
3, 4, . . . . We can show this in figure 26.5 by continuing the doubling of line 
segment AB. This will allow us to create line segments that are three times, 
four times, five times, and so on, as long as segment AB.

As shown in figure 26.5, we will have segments multiple times as long 
as segment AB. We do this as follows. We draw (E, AB) to intersect (D, AB) 
at point F; then we draw (F, AB) to intersect (E, AB) at point G; then (G, AB) 
to intersect (F, AB) at point H; then (H, AB) to intersect (G, AB) at point 
I; then (I, AB) to intersect (H, AB) at point J; and then (J, AB) to interest 
(I, AB) at point K. This process can then continue indefinitely. Notice also 
how we were able to place many points on the line AB, which is one of our 
considerations for creating the line AB with countless many points.

Now that we have shown that we can construct a line segment that is a 
multiple length of any given line segment along that line by adding count-
less many points, let us now try to find segments that are a fraction of a 
given segment, or say, 1

n
th the measure of a given line segment.

Figure 26.4.
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We will begin by drawing a line segment AG, which will be three times 
the length of AB using the method above (see fig. 26.6).

To make matters a little clearer, we will just copy the line segment ABG, 
where AB = 1

3
AG  as shown in figure 26.6, and begin our construction that 

would be one-third the length of AB. We begin by drawing the circle (A, AB). 
Next, we draw arc (G, GA) to intersect the circle (A, AB) at points C and D, as 
shown in figure 26.7. The intersection-point P of arcs (C, CA) and (D, DA) is 
a trisection point of the segment AB, or in other words, AP = 1

3
AB . To find the 

other trisection point of AB, we merely use the process mentioned above for 
duplicating a line segment, in this case duplicating AP.

To better explain why this procedure works, we refer to figure 26.8, 
where we are adding some lines merely to explain the justification for this 
construction. We must first show that the point P actually lies on line ABG. 
The points A, P, and G lie on the perpendicular bisector of line segment 
CD, and, therefore, they are collinear. The two isosceles triangles CGA and 
PAC are similar, since they share a common base angle, namely, angle CAP. 

Therefore, APAC =
AC
AG . However, since AC = AB,  we have AP

AB
=
AB
AG . Since we 

know that AB
AG

=
1
3

, we have  AP
AB

=
1
3

,  or AP = 1
3
AB .

There is an alternate method for doing this construction, that is, for 
locating the point P:  We use the first Mascheroni construction to find the 
point E diametrically opposite point D. Or to put it another way, DAE is 
the diameter of circle (A, AB). Since in figure 26.8, the quadrilateral ECPA 
is a parallelogram, EC = AP. Therefore, we can find the point P by locating 
the intersection of arc (A, EC) and arc (C, CA). We show this in figure 26.9.

In order to justify Lorenzo Mascheroni’s statement that all construc-
tions possible with the usual geometric construction tools—the unmarked 
straightedge and a pair of compasses—can be done by using only compass-
es, as we have shown in the earlier constructions, we need not necessarily 
show that every imaginable construction can be done this way. Rather, we 
need to show only that the five following constructions are possible with 
compasses alone; with these five at our disposal, we are able to do all the 
geometric constructions that are typically created with the usual tools: a 
straightedge and compasses. The following five fundamental constructions 
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are those upon which all other constructions are dependent. That is, any 
construction using both straightedge and compasses is merely a finite num-
ber of successions of these constructions:

1.	 Draw a line through two given points.
2.	 Draw a circle with a given center and a given radius.
3.	 Locate the points of intersection of two given circles.
4.	 Locate the points of intersection of a straight line (given by two 

points) and a given circle.
5.	 Locate the point of intersection of two straight lines (each of which 

is given by two points).

Although we cannot actually draw a line through the two given points, 
we can place as many points as we wish on the line and—perhaps working 
for an infinitely long time—all the points between these two points will 
eventually appear on that line. That would essentially satisfy the first condi-
tion listed above. The second and third constructions listed above, clearly, 
need no further discussion, since they are done by compasses alone. To 
locate the point of intersection of a straight line given by two points, say, A 
and B, and a given circle, (O, r), we will need to consider two cases: one for 
which the center of the circle is not on the given line, and one for which the 
center of the circle does lie on the given line.

First, we consider the case for which the center of the circle does not 
lie on the given line. Here we have circle (O, r) and the straight line AB, as 
shown in figure 26.10 (a dashed line is there merely to help us see the line 
AB, which was determined by only two points, A and B).

We need to find point Q, which is the point of intersection of the arcs 
(B, BO) and (A, AO). We then draw the circle (Q, r). The points of intersec-
tion of the circles (Q, r) and (O, r) are the required points of intersection of 
line AB and the circle (O, r).

This can be justified in the following way. Point Q was chosen so as to 
make AB the perpendicular bisector OQ. By drawing circle (Q, r) congru-
ent to an intersecting circle (O, r), the common chord PR is also the perpen-
dicular bisector of OQ.

The second case to consider is when the center of the given circle lies 
on the given line. Here, we will consider the circle (O, r) and the straight-
line AB, which is shown in figure 26.11.
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Figure 26.10

Figure 26.11



In figure 26.11, we draw circle (A, x), where radius length x is large 
enough to intersect circle (O, r) in two points, S and T. The midpoints of 
the major and minor arcs of ST, are P and R. This becomes a bit more com-
plicated and will be shown in the following manner.

In the interest of completing the above argument, we will now focus 
our attention on bisecting a given arc ST. To begin our construction (see fig. 
26.12) we will let OS = OT = r, where O is the center of the circle of which 
ST is an arc. We will let the distance between S and T be equal to d, and then 
draw the circle (O, d). We then draw the circles (S, SO) and (T, TO), which 
will intersect the circle (O, d) at points M and N, respectively. Next, we draw 
arcs (M, MT) and (N, NS); each will meet at point K. By drawing arcs (M, 
OK) and (N, OK), we find that their points of intersection, C and D, are the 
desired midpoints of the arcs ST.

In order to demonstrate why this construction does what is purported 
to have been done, namely to find the midpoints of arc ST, we will draw 
some auxiliary lines to help explain the construction as shown in figure 
26.13.

Let’s first look at quadrilaterals SONT and TOMS. These quadrilaterals 
are parallelograms since both pairs of opposite sides are congruent. This 
allows us to conclude that the points M, O, and N are collinear. Since CN 
= CM, and KN = KM, we then can conclude that KC and MN are perpen-
dicular at O. We can also conclude that CO ⊥ ST. Therefore, CO bisects the 
segment ST, and consequently the arc ST. Our remaining task is merely to 
show that the point C lies on circle (O, r), or to show that CO = r.

In order to do this, we will rely on a useful theorem in geometry that 
states that the sum of the squares of the measures of the sides of a paral-
lelogram equals the sum of the squares of the measures of the diagonals.2 
Applying this to parallelogram SONT, we get the following: (SN)2 + (TO)2 = 
2(SO)2 + 2(ST)2 or (SN)2 + r2 = 2r2 + 2d2 or, which gives us

(SN)2 = r2 + 2d2	 (I)

By applying the Pythagorean theorem to right ∆KON, we obtain the 
following:

(KN)2 = (NO)2 + (KO)2. However, since KN = SN, we have:
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(SN)2 = (NO)2 + (KO)2 = d2 + (KO)2	 (II)

Combining equations (I) and (II), we have: r2 + 2d2 = d2 + (KO)2, or r2 + d2 
= (KO)2.

We are now approaching the conclusion by considering right triangle 
CON where once again applying the Pythagorean theorem we get: (CO)2 
+ (NO)2 = (CN)2 or (CO)2 = (CN)2 – (NO)2. We know that (M, OK) and 
(N, OK) intersect at point C, and that CN is the radius of these two circles. 
Therefore, CN = OK. With appropriate replacements in the above equation, 
we get: (CO)2 = (KO)2 – d2 = r2 + d2 – d2 = r2. Therefore, we have shown that 
CO = r, which is what we set out to demonstrate.

Figure 26.12
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Figure 26.13

To complete our justification of the Mascheroni constructions, we need 
to demonstrate that the fifth construction on our original list (above) can be 
done with compasses alone. In other words, we now want to show that we 
can find the point of intersection of two straight lines, AB and CD with only 
a pair of compasses (see fig. 26.14). Although there are quite a few arcs to 
be drawn to do this construction, just follow along step-by-step—perhaps 
making your own drawing as you go—and the result will be rewarding.

To begin the construction, we will let arcs (C, CB) and (D, DB) meet at 
point E. Then we will let the arcs (A, AE) and (B, BE) meet at point F. Next, 
we will draw the arcs (E, EB) and (F, FB) which will meet at point G. Con-
tinuing with the construction we will have arcs (B, BE) and (G, GB) meet 
at point H. Finally, we will have arcs (E, EB) and (H, HB) meet at point I. 
The point we seek, namely, the intersection of the two straight lines AB and 
CD, is the point M, which is the point of intersection of the arcs (H, HB) 
and (I, IG).

Now comes the task of justifying that this construction does what it 
purports to do. Once again you will need some auxiliary lines as you will 
see in figure 26.15. Keep in mind that we must show that point M is on both 
line AB and line CD.

You will notice in figure 26.15 that EI = EB = BH = HI, since they are 
radii of equal circles. Similarly, IM = IG. We can then conclude that the arcs 



	 Lorenzo Mascheroni: Italian (1750–1800) 	 225

IM and IG are congruent. The inscribed angle IBM has one half the measure 
of its intercepted arc IM; similarly, 

∠IBG =
1
2

 arc IG .
 

Therefore, we can conclude that IBM = IBG. This also allows us to estab-
lish that the point M is on line BG. Furthermore, we know that lines AB and 
BG are each perpendicular bisectors of EF. Again, this allows us to establish 
that point M must lie on AB. We now need to show that M also lies on line 
CD. We can easily show that triangle BGH and triangle BHM are similar. 
Consequently, it follows that 

BG
BH

=
BH
BM

,

but since BH = BE, we get the following proportion: 

BG
BE

=
BE
BM

.

We can then establish a similarity between triangles GEB and EMB, 
since they both share a common angle MBE and the sides including 
this angle are in proportion. Since we can show that triangle GEB is 
isosceles, we also then know that triangle EMB must also be isosceles. 
Therefore EM = MB. Line CM is thus the perpendicular bisector of line 
segment EB. We may, therefore, conclude that point M must lie on line 
CD. Thus, we have demonstrated that the point M is at the intersection 
of the lines AB and CD.

Although this previous discussion was rather complicated, it used 
nothing more than elementary geometry, and, as a result, showed that 
the five possible constructions that can be created with an unmarked 
straightedge and a pair of compasses can also be made with just a pair of 
compasses alone. As we mentioned earlier, these Mascheroni construc-
tions can also be attributed to the Danish mathematician Mohr—repre-
senting a misattribution. This does, on occasion, occur in mathematics, 
especially when, as is typical in the Western world, we look at the his-
tory of mathematics through European eyes. Another example of this is 
the famous Pythagorean theorem. We attribute this finding to the Greek 
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philosopher Pythagoras, who flourished a few centuries after other cit-
ings of this famous relationship, such as  the Sulva Sutra, which was 
written by the Indian mathematician Baudhayana in about 800 BCE, 
where there is a reference made to this geometric relationship—yet we 
still call it the Pythagorean theorem. Let’s bear in mind, though, that just 
as Pythagoras likely did not know about Baudhayana’s earlier discovery, 
Mascheroni wrote Geometria del compasso without any knowledge of 
the previous work by Mohr; therefore, we still give them credit for this 
marvelous finding.
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Figure 26.14
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Figure 26.15
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Chapter 27

Joseph-Louis Lagrange:  
French/Italian (1736–1813)

It is not very well known that the famous French/Italian mathematician 
Joseph-Louis Lagrange was already fifty-one years old when he moved to 
France. Born as Giuseppe Luigi Lagrangia in Turin, Italy, he spent the first 
three decades of his life in Italy and the next twenty years in Germany, as 
Leonhard Euler’s successor at the Berlin Academy of Sciences. However, 
in 1787, he accepted an offer of Louis XVI to move to Paris and become 
a member of the French Academy of Sciences. He remained in Paris for 
the rest of his life and is mostly remembered as Joseph-Louis Lagrange, 
although in Italy he is known as Giuseppe Luigi Lagrange, changing his 
Italian first and middle names to the French version to match with his 
French last name (see fig. 27.1).

Yet his important role in the introduction of the metric system during 
the French Revolution, together with the fact that his magnum opus, Mé-
canique analytique, was first published in Paris (although written in Berlin), 
may also contribute to his being perceived and remembered as French—ex-
cept in Italy, of course. Although it would be perfectly right to call him an 
Italian mathematician, his family has a branch in France as well. Lagrange’s 
paternal great-grandfather was a French army officer who had moved to 
Turin, which at that time was the capital of the Duchy of Savoy, to work for 
the Duke of Savoy. He married an Italian and the family stayed in Turin.

In 1720, Turin became the capital of the kingdom of Sardinia, and on 
January 25, 1736, Lagrange was born as the first of eleven children of 
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Giuseppe Francesco Lodovico Lagrangia and his wife, Teresa. Only two of 
their children survived to adulthood. Lagrange’s father was treasurer of the 
Office of Public Works and Fortifications in Turin.1 Although his position 
would have been paid well enough to allow his family some degree of 
wealth, he unfortunately lost most of his money and most of his property 
with financial speculation. He wanted his eldest son to become a lawyer, 
and Lagrange accepted this wish without any hesitation. He studied at the 
University of Turin, where classical Latin would become his favorite sub-
ject. Initially he didn’t show any interest in mathematics and found the sub-
ject rather boring. However, his mind suddenly changed when he acciden-
tally came across a paper on the use of algebra in optics, written by the 
English astronomer and mathematician Edmond Halley (1656–1742). Hal-
ley is famous for computing the periodicity of a comet he had observed in 
1682. The comet was named after him upon its predicted return in 1758. 
With his interest in mathematics aroused by Halley’s memoir, Lagrange 
wanted to learn more and began to read mathematical texts on his own, 
including works by Maria Gaetana Agnesi and Leonhard Euler. His 

Figure 27.1. Memorial tablet in Turin.
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enthusiasm grew, and he threw himself into mathematics. After only one 
year of intense studying, he was an essentially self-taught but accomplished 
mathematician. In 1754, Lagrange published his first mathematical work, 
an analogy between the binomial theorem and the successive derivatives of 
the product of functions. This work, written in the form of a letter to the 
mathematician Giulio Fagnano (1682–1766), was not a masterpiece and 
showed that Lagrange was working alone, without the advice of a mathe-
matical supervisor. Shortly after the publication of his paper, Lagrange dis-
covered that the results were already contained in a published correspon-
dence between Johann Bernoulli and Gottfried Wilhelm Leibniz. Lagrange 
was shocked by this discovery and feared that he would be accused of pla-
giarism. However, the bumpy start of his career as a mathematician actually 
increased his motivation, as he then wanted to prove as soon as possible 
that he was able to achieve his own significant results in mathematics. He 
began working on the tautochrone curve, “the curve for which the time 
taken by an object sliding without friction in uniform gravity to its lowest 
point is independent of its starting point.”2 The tautochrone problem had 
been solved by Christiaan Huygens 1659. Using geometry, he identified the 
curve to be an inverted cycloid, the curve traced by a point on the rim of a 
circular wheel as the wheel rolls along a straight line without slipping. La-
grange was able to provide a purely analytic solution to the tautochrone 
problem, which made his name known in the mathematical community. 
Moreover, he found a general method to find curves minimizing or maxi-
mizing certain quantities depending on the whole curve. For example, for 
each curve connecting a point A with a lower point B, one can calculate the 
time it would take an object sliding down from A to B along this curve in 
uniform gravity. Considering this time as a function of the curve, Lagrange’s 
analytic method allows one to derive a set of equations that must be satis-
fied by the “shortest time” curve between A and B. Beyond the fact that 
Lagrange was able to solve the tautochrone problem without any geometri-
cal arguments, his method also provided a much more general framework 
to formulate and investigate similar problems. He sent his results to Euler, 
who was very impressed. Euler had been working on similar problems, us-
ing related ideas, but Lagrange’s approach considerably simplified and gen-
eralized Euler’s earlier analysis. This general framework is now called calcu-
lus of variations, and the equations defining the maximizing or minimizing 
curve are called the Euler-Lagrange equations. In 1755, Lagrange, who was 
still a teenager, was appointed professor of mathematics at the Royal 
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Artillery School in Turin. Euler, who recognized Lagrange’s mathematical 
talent and originality, convinced the president of the Berlin Academy of 
Science to create a position for Lagrange in Berlin, to lure him away from 
Turin. However, Lagrange wanted to stay in Turin, even though the posi-
tion in Berlin would have been much more prestigious. He politely refused 
the offer but was happy to be elected to a corresponding member of the 
Berlin Academy in 1756. Two years later, Lagrange was one of the founders 
of a scientific society in Turin, which would become the Royal Academy of 
Sciences of Turin. In the following years, he published most of his writings 
in the transactions of the Turin Academy, known as the Miscellanea Tau-
rinensia. His works were influenced by and extended those of Isaac New-
ton, Daniel Bernoulli, and Euler. He applied his new mathematical methods 
to many problems in physics, such as the propagation of sound, fluid me-
chanics, and the calculation of the orbits of Jupiter and Saturn. In his Turin 
papers, Lagrange made seminal contributions to the theory of vibrating 
strings and introduced what is now known as the Lagrangian function of a 
physical system; the Lagrangian function, often referred to as “the Lagrang-
ian,” is a central object in theoretical physics. In 1764, Lagrange was award-
ed the prize of the French Academy of Sciences for his work on the libration 
of the moon, which is a perceived oscillating motion of the face the moon 
presents to the Earth. On year later, another attempt, by Jean le Rond 
d’Alembert, to persuade Lagrange to leave Turin for a better position in 
Berlin failed. Lagrange’s response to the offer indicates that he did not want 
go to Berlin, because there he would always be the second-best mathemati-
cian after Euler, a role to which he did not aspire. However, in 1766, an ex-
orbitant offer by Catherine the Great persuaded Euler to return to St. Pe-
tersburg, Russia, where he had already held a position from 1727 to 1741. 
With Euler out of Europe, Frederick II himself, king of Prussia, wrote to 
Lagrange that he wanted to have “the greatest mathematician in Europe” at 
his court. Finally, Lagrange accepted the invitation and succeeded Euler as 
director of Mathematics at the Berlin Academy of Science. Frederick II had 
some disagreements with Euler that may have facilitated Euler’s decision to 
go to St. Petersburg. After Lagrange’s appointment as the new director of 
Mathematics, he disrespectfully wrote to the French mathematician Jean le 
Rond d’Alembert that he had “replaced a one-eyed geometer by a two-eyed 
one.” In 1767, Lagrange married his cousin Vittoria Conti. He stayed in 
Berlin for twenty years, and Frederick II was indeed very pleased with his 
court mathematician. Lagrange produced a continuous flow of excellent 



	 Joseph-Louis Lagrange: French/Italian (1736–1813) 	 233

papers covering the stability of the solar system, mechanics, dynamics, fluid 
mechanics, and probability. In a long series of papers extending over more 
than a decade, he basically created the theory of partial differential equa-
tions. The prize from the Paris Academy of Sciences was awarded to La-
grange on an almost-regular basis: He won the prize in 1766, for work on 
the libration of the moon; he shared the 1772 prize with Euler, for their 
work on the three-body problem;3 he won the prize in 1774, again for his 
work on the motion of the moon; and he won the 1780 prize, this time for 
his work on the planets’ perturbations of the orbits of comets.4 While appli-
cations in classical mechanics and astronomy still played a major role in his 
research at the Berlin Academy, he also worked on number theory, proving 
in 1770 that every positive integer is the sum of four squares. The years in 
Berlin were the most productive in Lagrange’s life: He was exempt from 
teaching and could devote all of his time to mathematics. It took some time 
until Italy realized Lagrange’s mathematical genius and acknowledged that 
his leaving Turin for Berlin was a tremendous loss for his hometown. Upon 
Lagrange’s visit in Paris in 1763, d’Alembert wrote “. . . in him Turin possess-
es a treasure whose worth it perhaps does not know.” Occasionally, efforts 
were made to get Lagrange back to Italy, but Lagrange turned down gener-
ous offers; he sought neither wealth nor power, and wanted only to have 
peace to do mathematics, without any other obligations. Around 1780, La-
grange started to write his magnum opus, the previously mentioned Mé-
canique analytique: a single, comprehensive treatise containing his and his 
contemporaries’ contributions to mechanics. Newton’s presentation of me-
chanics in his famous Philosophiæ Naturalis Principia Mathematica (com-
monly known as the Principia) was based on geometrical methods, and 
Lagrange’s intent was to transfer Newtonian mechanics and the art of solv-
ing problems in mechanics from a predominantly geometrical reasoning to 
a purely analytic and algebraic approach. His method was based on a set of 
general equations from which all the equations necessary for the solution of 
a particular problem can be derived. He wrote:

No diagrams will be found in this work. The methods that I explain 
require neither geometrical, nor mechanical, constructions or rea-
soning, but only algebraic operations in accordance with regular and 
uniform procedure. Those who love Analysis will see with pleasure 
that Mechanics has become a branch of it, and will be grateful to me 
for having thus extended its domain.
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Lagrange not only summarized all of the work done in the field of me-
chanics since the time of Newton but also dramatically simplified the ap-
plication of Newton’s theory via the use of differential equations, essentially 
condensing Newtonian mechanics into a single formula and eliminating 
any necessity for geometrical reasoning. However, Lagrange’s monumental 
work Mécanique analytique was not published until 1788. At that time, he 
had already left Germany. In 1783, after years of illness, his wife, Vittoria, 
died; Lagrange became very depressed. Three years later, he also lost his 
patron, Frederick II. As a result of these losses, Berlin had become a less 
welcoming place for him, and he lacked any reason to stay. Many states in 
Europe saw their chance to hire him; the best offer came from France and 
included a clause that exempted Lagrange from any teaching obligations. 
In 1787, at age fifty-one, Lagrange left Berlin and was appointed to a paid 
position at the French Academy of Sciences in Paris, where his Mécanique 
analytique was published in two volumes, in 1788 and 1789. However, nei-
ther the new environment nor the publication of his great work could cheer 
up Lagrange; he was still very melancholic, and the printed copy of his Mé-
canique lay on his desk, unopened, for more than two years.

Figure 27.2. Joseph-Louis Lagrange.
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When Lagrange came to Paris, the French Revolution was just about to 
start. In 1790, Lagrange was made a member of the committee of the Acade-
my of Sciences, to standardize weights and measures. The existing system of 
measures had become impractical for trade and needed to be replaced. As 
the revolution developed, politics changed rapidly and the situation of any-
one considered part of the establishment became potentially dangerous. In 
dealing with these circumstances, Lagrange gradually overcame his depres-
sion. Although he had already prepared his escape from France, it turned 
out that he would never face real danger. All foreigners born in enemy 
countries, including members of the Academy of Sciences, were subject to 
arrest once the Reign of Terror began in 1793. Fortunately, the famed chem-
ist Antoine Lavoisier (1743–1794) intervened on behalf of Lagrange, and he 
was granted an exception. In the political turmoil, no one could feel safe, as 
one could be declared an enemy of the regime overnight. The weights and 
measures commission was allowed to continue, but soon several prominent 
figures—such as Lavoisier himself, mathematician Pierre-Simon Laplace, 
and physicist Charles-Augustin de Coulomb (1736–1806)—were thrown 
off the commission, while Lagrange became its chairperson.5 In a trial that 
lasted less than a day, a revolutionary tribunal condemned to death Lavois-
ier and twenty-seven others. On the death of Lavoisier, who was guillotined 
on the afternoon of the day of his trial, Lagrange said:

It took only a moment to cause this head to fall and a hundred years 
will not suffice to produce its like.

After Lavoisier’s death, it was largely due to Lagrange’s influence that 
the final choice of the unit system of meter and kilogram was settled and 
the decimal subdivision was finally accepted by the commission. Lagrange 
spent his last years as professor at the École Polytechnique. In 1808, Napo-
leon Bonaparte named Lagrange to the Legion of Honor and Count of the 
Empire. In April 1813, Lagrange died; that same year, he was buried in the 
Panthéon in Paris. He is also “one of the seventy-two prominent French 
scientists who were commemorated on plaques at the first stage of the Eiffel 
Tower when it first opened” in 1889.6 Because many concepts and meth-
ods in both mathematics and physics bear his name, Lagrange is still well 
known. Among these are the Lagrangian function, Lagrangian mechanics, 
and the Euler-Lagrange equations, just to name a few.
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Chapter 28

Sophie Germain:  
French (1776–1831)

Perhaps the most significant mathematical achievement of the twentieth 
century was announced in June 23, 1993, by Andrew Wiles, at a lecture in 
Cambridge; there, Wiles claimed to have proven Fermat’s Last Theorem, the 
350-year-old claim (or conjecture) by the famous French mathematician 
Pierre de Fermat (see chap. 15). This made front-page news in the New York 
Times the next day, under the heading, “At Last, Shout of ‘Eureka!’ in Age-
Old Math Mystery.”1 However, soon thereafter a slight error was detected 
in the proof. Over the next year, Wiles set out to correct this loophole, an-
nouncing its correction on September 19, 1994. It must be noted, though, 
that the technique and subject matter that Wiles used to prove Fermat’s Last 
Theorem was known neither during Fermat’s time nor during the ensuing 
centuries following his profound statement.

For centuries, mathematicians have grappled with this theorem. In 
the early nineteenth century, Sophie Germain produced what is believed 
to be one of the most significant contributions to dealing with Fermat’s 
Last Theorem. Before we delve into Germain’s significant contribution 
toward the solution of this perplexing problem, we need to understand 
the complex lifestyle she had to endure in order to pursue her love of 
mathematics.

Marie-Sophie Germain was born into a rather wealthy family on 
April 1, 1776, in Paris, France.2 Her father was a successful silk merchant 
and politician who was able to support Sophie financially throughout her 
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entire adult life. Because one of her sisters and her mother shared the name 
Marie as the first part of their first names, she dropped it and became known 
as Sophie Germain. Germain was forced to stay home as a result of the un-
rest and street riots after the fall of the Bastille in 1789. Although we cannot 
be sure, it is commonly understood that she first encountered mathematics 
while reading some books in her father’s library, particularly those on the 
history of the subject. From there, Germain taught herself both Latin and 
Greek so that she could read the works of Isaac Newton and Leonhard Eu-
ler. In this effort, she faced opposition from her family members, who held 
that the study of mathematics was inappropriate for women. Despite that 
familial opposition, she secretly continued pursuing her genuine interest 
in mathematics. Eventually, her mother became sympathetic and chose to 
support Germain’s enthusiasm for mathematics.

Figure 28.1. Sophie Germain, 1790.  
(Illustration from Histoire du socialisme, ca. 1880.)
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In 1794, the École Polytechnique was established, but it would not ad-
mit women; however, lecture notes were available to anyone who requested 
them. Sophie, then aged eighteen years, acquired these notes and read them 
intensively. She then sent her observations of them (under a pseudonym, 
M. LeBlanc) to the famous Italian mathematician Joseph-Louis Lagrange, 
who was then a member of the faculty. Lagrange was very impressed with 
her submissions and  requested a meeting with her; at that point, she re-
vealed that she was a woman. This did not disturb Lagrange, and he contin-
ued to mentor her at her home.

Germain’s interest specifically in number theory began in 1798, when 
she read the French mathematician Adrien-Marie Legendre Essai sur la 
théorie des nombres. Germain began corresponding with Legendre provid-
ing some brilliant ideas, which, ultimately, led him to include some of her 
work in his subsequent publication, Théorie des Nombres, with a citation to 
her for the ingenious aspect of her contribution.

Her interest in number theory was further motivated when she read the 
German mathematician Carl Friedrich Gauss’s monumental work Disquisi-
tiones Arithmeticae; once again using her earlier pseudonym of M. LeBlanc, 
she wrote to Gauss on November 21, 1804. In this correspondence, she pre-
sented some ideas on solving Fermat’s Last Theorem. Gauss responded to 
her but did not comment on her work.

At this point, it would be helpful to recall the definition of Fermat’s 
Last Theorem, which Fermat wrote in the margin of one of his arithmetic 
books in 1637. Writing that the margin space was insufficiently large for 
him to produce the proof of this statement, Fermat claimed that for inte-
gers n > 2, the equation an + bn = cn  cannot be solved with positive integers 
a, b, and c. 

Sophie Germain made a few discoveries in the process of trying to 
prove Fermat’s Last Theorem. Among them was that if a5 + b5 = c5, then at 
least one of the variables, a, b, or c, must be divisible by 5. Furthermore, she 
took a special case by letting n be any odd prime number in an + bn + cn. She 
then claimed that if there exists another prime number P = 2kn + 1, where 
k is any positive integer not divisible by 3 such that an + bn – cn = 0(mod P), 
then P divides abc, and n is not an nth power residue (mod P). Finally, she 
concluded that Fermat’s Last Theorem holds true for all values of n that do 
not divide a, b, or c. This is known as Sophie Germain’s theorem, which was 
a major step—especially at the time of its development—toward proving 
Fermat’s Last Theorem. She went ahead to show that her idea held for all 
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odd primes n < 100. Later investigations into her work showed that it actu-
ally could be taken further, for every exponent n < 197. Germain continued 
to pursue a proof of this theorem in unpublished works, further motivating 
famous mathematicians such as Legendre and Lagrange.

Germain’s name stays prominent in number theory not only for her 
theorem but also because there are some numbers named after her. One 
example is the Sophie Germain prime numbers; a prime number p is con-
sidered a Sophie Germain prime only if 2p + 1 is also a prime number. For 
example, the number 3 is a Sophie Germain prime, since 3 is a prime num-
ber and 2 · 3 + 1 = 7, which is also a prime. On the other hand, the number 
7 is not a Sophie Germain prime; this is because 2 · 7 + 1 = 15, which is not a 
prime. Her name is also found in algebra, where we have a Sophie Germain 
identity. This holds that for any values of x and y, 

x4 +4y4 = x+ y( )2 + y2( ) x − y( )2 + y2( ) = x2 +2xy+2y2( ) x2 −2xy+2y2( )
Germain continued to correspond with the most famous mathemati-

cians of her time, one of whom, as we mentioned earlier, was Carl Frie-
drich Gauss. Gauss was one year younger than Germain, and because he 
had been corresponding with her under her pseudonym, he had assumed 
she was a man. During the Napoleonic wars, when Germain heard that the 
French were occupying Gauss’s hometown of Braunschweig, Germany, she 
wrote to a French army general who was a family friend, to ensure Gauss’s 
safety.3 When Gauss found out that his protection was sought by Sophie 
Germain, he was astonished to learn that all the while he was correspond-
ing with M. LeBlanc, he had actually been in contact with a woman. Gauss 
then went forward to praise Germain’s genius heartily. Interestingly, Gauss 
and Germain never met in person.

Although Germain was most interested in mathematics and number 
theory, her concentration was not limited to only this field of study. She 
also wrote an award-winning paper on elasticity.4 Germain published her 
prize-winning essay, “Récherches sur la théorie des surfaces élastiques,” at 
her own expense in 1821 (see fig. 28.2). She did this mainly because she 
wanted to present her work in opposition to that of the French mathemati-
cian Siméon-Denis Poisson. Beyond mathematics, number theory, and elas-
ticity, Sophie Germain also studied philosophy, psychology, and sociology. 
Much of her work was published posthumously, including her “Mémoire 
sur la courbure des surfaces,” a piece she wrote on elasticity, using the mean 
curvature in her research.
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In 1829, Germain began to suffer from breast cancer; despite the pain, 
she continued to pursue her work feverishly, publishing papers until her 
death, on June 27, 1831.5 Germain died in the house where she lived her 
entire life—the house that today bears her name—at 13 rue de Savoie. She 
was further honored posthumously, by Gauss when he indicated that the 
University of Göttingen should have bestowed an honorary degree upon 
her. However, this was six years after her death. Essentially, Germain’s life 
story is that of a woman of means who did not allow her gender to stop her 
from pursuing mathematics and scientific research, despite the opposition 
from her family and culture on account of her sex.

Figure 28.2.
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Although she was not widely recognized for her brilliance during her 
own lifetime, Sophie Germain has had many honors bestowed upon her 
since her death in 1831. A street in Paris, Rue Sophie Germain, carries her 
name (see fig. 28.3), and a statue of her stands in the courtyard of the Paris 
school that also bears her name: École Sophie Germain. As was mentioned 
above, the house at 13 rue de Savoie is named for her, and it has been des-
ignated as a historical landmark. Furthermore, the Sophie Germain Hotel 
is located at 12 Rue Sophie Germain. On account of not only these physical 
landmarks and locations but also the Prix Sophie Germain, a mathematics 
prize that is offered annually by the Paris Academy of Sciences, this female 
polymath remains in the public eye today.

Figure 28.3.
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Chapter 29

Carl Friedrich Gauss:  
German (1777–1855)

It is not easy to summarize the seventy-eight-year-long life of one of the 
greatest mathematicians of all time, but we hope to provide an overview of 
this great man. Carl Friedrich Gauss was born on April 30, 1777, in Braun-
schweig, Germany, in a poor, working-class family (see fig. 29.1). There are 
many stories of how it was determined early on that Gauss was a child prod-
igy. It has been said that at the age of three, he was able to find a mistake in 
his father’s household calculations.

Perhaps the most famous story of Gauss’s prodigious youth is that when 
he was eight years old, his elementary-school teacher, in an effort to keep 
the class busy while he did some clerical work, asked the class to add the 
numbers from 1 to 100. No sooner had he given the assignment than young 
Gauss put his slate down, indicating that he had arrived at this requested 
sum. The teacher ignored him so as to let the rest of the class complete the 
assignment. After a half hour, when the teacher sought the results from his 
students, Gauss was the only one who had the correct answer. His clever 
method for finding the sum so quickly was to add the numbers—but not 
as the rest of class did (1 + 2 + 3 + 4 + 5 + . . . + 98 + 99 + 100). Rather, he 
added the first and the last numbers (1 + 100 = 101), then he added the 
second and the next-to-last (2 + 99 = 101), and then he continued along the 
same pattern (3 + 98 = 101, etc.) until all numbers in the list were coupled. 
He realized that there were fifty pairs of such additions, and so all he needed 
to do to get the sum was to multiply 50 by the repeated sum of 101, that is,  
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50 ∙ 101 = 5,050. This is a story that all good math teachers should be shar-
ing with their students at the appropriate time, that is, when introducing 
the formula for the sum of an arithmetic sequence.

In 1791, when Gauss was fourteen years old, Carl Wilhelm Ferdinand, 
the duke of Braunschweig, discovered Gauss’s brilliance and offered to fi-
nance his study at what is known today as the Braunschweig University of 
Technology. Upon graduation there, Gauss was admitted to the University 
of Göttingen, still financially supported by the duke. He studied at Göttin-
gen from 1795 until 1798, whereupon he left without a degree. However, 
during this period of time, he wrote and published his monumental work, 
largely on the theory of numbers, Disquisitiones Arithmeticae. Although it 
was completed in 1798, due to publishing difficulties in Leipzig, it was not 
published until 1801.

Figure 29.1. Carl Friedrich Gauss.  
(Oil on canvas, by Christian Albrecht Jensen, 1840.)
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Disquisitiones Arithmeticae is often considered his greatest masterpiece. 
Even though arithmetic was Gauss’s favorite subject, he also delved into as-
tronomy, geodesy, and electromagnetism—among other fields as well. The 
book has seven sections; the first three deal with the theory of “congruenc-
es,” or as we tend to call it today modular arithmetic. The fourth section 
deals with the theory of quadratic residues, for which he had an ingenious 
approach that amazed and impressed many people in his time. The study 
of quadratic equations continued until the seventh section, which most 
people consider the highlight of the book. In this section, he discussed the 
equation xn = 1, where n is a given integer. In his discussion, he combined 
arithmetic, algebra, and geometry. This equation is the basis for the alge-
braic approach to the problem of constructing a regular polygon of n sides. 
This is one of Gauss’s proudest discoveries, namely that a regular polygon 
of seventeen sides can be constructed using only an unmarked straightedge 
and a pair of compasses. This was one of the major advances in geome-
try since the time of famous Greek mathematicians. Gauss often said that 
he would like to see this seventeen-sided polygon on his gravestone, but 
the stonemason balked at the suggestion, saying that drawing such a figure 
would look like a circle with seventeen points on it.

Today we know that a regular polygon of n sides is constructible with 
an unmarked straightedge and a pair of compasses if n is equal to any of 
the following: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 
60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 
257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 
960, 1020, 1024, 1028, 1088, 1280, 1285, 1360, 1536, 1542, 1632, 1920, 2040, 
2048, . . .

We know this because a regular n-gon is constructible with these tools 
if and only if n = 2kp1p2 . . . pt, where k and t are non-negative integers, and the 
pi’s (when t > 0) are distinct Fermat primes, which are prime numbers that 
can be expressed as 22 1

n

+ . The five known Fermat primes are F0 = 3, F1 = 
5, F2 = 17, F3 = 257, and F4 = 65537.

After returning to the University of Göttingen, Gauss finally received 
his first degree in 1799. The duke further requested that Gauss submit a 
doctoral dissertation to Helmstedt University, whereupon he then received 
his doctorate. In the years following, he delved in astronomy to help es-
tablish an observatory at Göttingen. On October 9, 1805, Gauss married 
Johanna Osthoff, with whom he had a son and a daughter. His wife died on 
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October 11, 1809, and their second child died shortly thereafter. The fol-
lowing year, Gauss married Minna Waldeck, with whom he had three more 
children. During this marriage he grew very close to his children. Sadly, his 
second wife died in 1831.

Returning to Gauss’ academic career, in 1807 he left Brunswick and 
arrived in Göttingen to assume the position of director of the observatory. 
The following year there began a series of misfortunes for Gauss. His father 
died in that year, and this coupled with the death of his wife two years later, 
caused him to become quite depressed. His production continued despite 
these unfortunate events. In 1809, he published a two-volume treatise on 
the motion of celestial bodies. The first of the two volumes covered differen-
tial equations, conic sections, and elliptical orbits; the second concentrated 
on estimating a planet’s orbits.1

In 1818, he accepted the task of developing a geodesic survey of the 
state of Hanover so that it could then be linked with the Danish grid. Here, 
once again, his incredible ability to do calculations mentally was a great 
help. Many of his discoveries seem to have resulted from his ability to do 
mental calculations far beyond those that an average person can conceive.

One of his discoveries published in Disquisitiones Arithmeticae is an 
example of this. What is now referred to as Gauss’s Eureka theorem (be-
cause he wrote in his diary, “ΕΥΡΗΚΑ! num = Δ + Δ + Δ”)2 is that every 
positive integer can be expressed as the sum of triangular numbers. Trian-
gular numbers are 0, 1, 3, 6, 10, 15, . . ., and they can be expressed as 
n n+1( )
2

. For example, 18 = 15 + 3, and 28 = 15 + 10 + 3.
Another of Gauss’s discoveries was that he proved what is today re-

ferred to as the fundamental theorem of algebra. In simple terms, it states 
that every algebraic equation in one variable has a root, or an answer. These 
roots can either be real or complex, and so Gauss used the notation of a + 
bi, where i = −1 . Furthermore, Gauss was the first to give a comprehensive 
explanation of complex numbers and their labeling as points on the plane 
with Cartesian coordinates.

For these reasons among many others, Gauss was considered one of the 
most brilliant mathematicians of his time. In 1816, the Paris Academy of-
fered a prize for anyone who could prove Fermat’s Last Theorem in the pe-
riod 1816–1818. Gauss was urged to compete, but he wrote to a friend that 
“Fermat’s Last Theorem as an isolated proposition has very little interest for 
me, because I could easily lay down a multitude of such propositions, one 
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could neither prove nor dispose of.”3 As you might recall, Fermat’s Last The-
orem states that no three positive integers a, b, and c can satisfy the equa-
tion n n na b c+ =  for any value of n greater than 2. It took 358 years until 
the British mathematician Andrew Wiles published the proof in 1995.)

It was well known that Gauss did not enjoy teaching; however, on oc-
casion, he did announce a lecture or teach private lessons. For instance, see 
the announcement from 1831 in figure 29.2, where he stated, “at 10 o’clock 
I will explain the use of probability calculus in applied mathematics, espe-
cially astronomy, advanced geodesy and crystallometry. I will teach practi-
cal astronomy in most private sessions. The first lecture will be on October 
28th.” Latin was a favorite language for him to use for mathematics and 
other scientific communication, as evidenced by this announcement.

Gauss endured some additional depressing times between 1817 and 
1832, when his mother, who was always very dear to him, became ill and 
lived with him until she died in 1839.4

Figure 29.2. An 1831 announcement written by Gauss regarding a lecture and 
private sessions he would be holding in October of that year.
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In 1832, Gauss formed a partnership with a leading physicist of his 
time, Wilhelm Weber (1804–1891). They constructed the first electromag-
netic telegraph in 1833. The first connection was between Gauss’s magnetic 
observatory and the Institute for Physics in Göttingen, Germany. At the 
prompting of Prussian scientist Alexander von Humboldt, Gauss and We-
ber determined measurements of Earth’s magnetic field in many regions of 
the world. At Gauss’s magnetic observatory, they began to modify Hum-
boldt’s procedures, which did not please him. Yet Gauss’s changes were far 
more effective and accurate. Throughout his life, Gauss was also involved 
with scientists in the life sciences, such as the famous German physician 
and anthropologist Johann Friedrich Blumenbach (1752–1840). Their con-
nection is evidenced by a memo Gauss wrote to Blumenbach, shown in fig-
ure 29.3. In that memo, written in his hand on October 7, 1821 Gauss states, 
“Beigehende interessante Abhandlung verehrtester Herr College ist mir von 
ihrem Verfasser aus München mit dem Ersuchen übersandt worden, solche 
der Königl. Societät als Zeichen seiner Verehrung zu überreichen.” This can 
be translated as, “The enclosed interesting treatise, honored Colleague, has 
been sent to me by its author from Munich with the request that the Royal 
Society accept it as a token of his reverence.”

In 1837, for political reasons, Weber had to leave Göttingen, after 
which Gauss’s work gradually became less voluminous, yet he was always 
eager to support other scientists in their work. Carl Friedrich Gauss died on 
November 23, 1855, in Göttingen, and he is buried in the Albani Cemetery 
there.

Perhaps his most famous quote, and one that is often mentioned today 
is that “Mathematics is the queen of sciences, and arithmetic the queen of 
mathematics.”
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Figure 29.3. A memo from Gauss to  
Johann Friedrich Blumenbach, dated October 7, 1821.



	 Carl Friedrich Gauss: German (1777–1855) 	 249

Figure 29.4. Gauss on this deathbed, 1855. (Painting by Philipp Petri, 1855.)
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Chapter 30

Charles Babbage:  
English (1791–1871)

In today’s modern world, the calculator and the computer are often taken 
for granted. However, we should look back to determine from where the 
concept of a calculator—or computer, as it was originally known—ema-
nated. The honor of having first developed a machine that does calculation 
belongs to the English mathematician Charles Babbage, who was born in 
London on December 26, 1791.

He was the son of Benjamin Babbage, a London banker. Charles Bab-
bage was educated mostly at home, since he was frequently ill. Even in these 
early days, he developed a love for mathematics. In 1810, he was accepted 
to study mathematics at Trinity College of Cambridge University, where in 
a short time he found himself more advanced than his instructors in math-
ematics. This prompted him to join a group of students also disappointed 
with the level of instruction. This group, called the Analytical Society, was 
devoted to exploring more-advanced issues in mathematics. During this 
time, he and his colleagues were disturbed by the inaccuracy of the num-
bers of logarithm tables. He felt better about calculating such values himself, 
which was his initial motivation to develop a machine that could do that 
task accurately. In 1817, he received his master’s degree from Cambridge 
University. Soon thereafter, he worked there as a lecturer of mathematics.

By 1816, he was elected a fellow of the Royal Society, and which eventu-
ally led him to participate in the founding of the Royal Astronomical Soci-
ety in 1820. This was about the time when his interest began to take him in 
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the direction of developing a calculating machine. This initial interest had 
been lurking in his mind for some time. In 1821, Babbage developed the 
Difference Engine No.1 (see fig. 30.2). In 1822 he announced his findings 
to the Royal Astronomical Society in England at a lecture he had given to a 
select group. Although Babbage conceived of having his machine print out 
the results, initially an assistant had to serve as a scribe to copy the num-
bers that were generated.  The following year he received the gold medal 
from the Astronomical Society as a reward for his developing this amazing 
machine. The work on  further improvement of the machine was gener-
ously funded by the government. Babbage did not get along well with the 
funders, since many of their questions seem to have been, by his measure, 
ridiculous. Eventually, funding was withdrawn because it took so long to 
reach a workable model. However, it must be said that during this time in 
1827 Babbage had a most unfortunate year. His father died, his wife died 
and two of his children died. He was advised to take time off and spent 

Figure 30.1. Obituary portrait of Charles Babbage, published in the Illustrated 
London News, November 4, 1871. (Portrait derived from a photograph of Babbage 

taken at the Fourth International Statistical Congress, London, July 1860.)
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the better part of a year traveling on the continent of Europe. He returned 
to his work in 1828.  Despite the lack of financial support, his model was 
completed in 1832, and it was able to assist in compiling mathematical ta-
bles. Yet he was displeased with the limitations of this machine, and so he 
began to develop one that could do a wider variety of calculations. Babbage 
played a significant role in the establishment of the British Association for 
the Advancement of Science, as popularized through a rather controversial 
paper he wrote in 1830. As influential as Babbage was, work was stopped 
on the difference machine in 1834 because the government was displeased 
with the progress shown to date.  

During his constructive years Babbage remained at Cambridge Univer-
sity, where he held the Lucasian Chair of Mathematics from 1828 to 1839 
but never presented a single lecture. Babbage was a very active member 
of the intellectual society and supported research in many scientific areas, 
such as cryptography which was then used by the British and American 
governments. During his efforts to continue to improve the development 
of these calculating machines, in 1843, a Swedish inventor named George 
Scheutz (1785–1873) was able to construct the Difference Machine based 
on Babbage’s design. In 1837, Babbage described a successor to the second 
version of the Difference Engine, and called it the Analytical Engine (fig. 
30.3). This was a general-purpose computer whose design regarding mem-
ory was the forerunner of the electronic computers that followed, years 
later. The conceived memory was to hold 1,000 numbers composed of 40 
decimal digits each. The machine was intended to perform the four arith-
metic operations and square-root extraction. The programming language 
used was analogous to the modern-day assembly languages. Punch cards 
were used, one for arithmetic operations, one for numerical constants, and 
one for transferring numbers from storage to the arithmetic unit. Unfortu-
nately, the machine was never successfully completed to the level Babbage 
desired, and it ran only a few tasks, with some obvious errors.

It is sad to note that Babbage died a frustrated man, since his visions 
were never fully realized, which he blamed on the government’s failure to 
provide the proper financial support. After Babbage’s death on October 18, 
1871, his work was continued by his son Henry Prevost Babbage. In fact, 
even he had to do much of his own funding to continue his father’s work. 
In 1910, Henry Babbage constructed his version of the Analytical Engine, 
which was not programmable and had no storage (see fig. 30.4).

Babbage’s legacy includes many diverse contributions, such as having 
compiled reliable actuarial tables and having assisted in establishing the 
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modern British postal system. He also invented a speedometer, occulting 
lights for lighthouses which are lights that stay on longer than the period of 
darkness, and a locomotive cow catcher, which is the metal device used by 
trains to clear the tracks of obstacles that would interfere with rail traffic. 
So in Charles Babbage we have the initiator of our computer world, who 
struggled to make a machine whose invention was motivated by what he 
saw as something desperately needed to correct earlier-accepted erroneous 
information.

Figure 30.2. Difference Engine No. 1. (Woodcut after  
a drawing by Benjamin Herschel Babbage, 1853.)
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Figure 30.3. Analytical Engine. (Courtesy of Doron Swade.)
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Figure 30.4. Henry Babbage’s Analytical Engine Mill, built in 1910,  
on exhibit at the London Science Museum. (Wikimedia Creative Commons,  

author: Marcin Wichary, licensed under CC BY-SA 2.0.)



256

Chapter 31

Niels Henrik Abel:  
Norwegian (1802–1829)

Norway is one of the wealthiest countries in the world. It has extensive nat-
ural resources and, on a per-capita basis, Norway is the world’s largest pro-
ducer of oil and natural gas outside the Middle East. In contrast to most other 
countries in the world, Norway has no foreign debt; the state revenues gener-
ated from the petroleum industry even allowed the government to establish a 
sovereign wealth fund, which, by 2017, has accumulated a value of $185,000 
for each citizen.1 Public healthcare and public education are virtually free, 
which are probably two reasons why Norway ranked first in the 2017 World 
Happiness Report of the United Nations.2 While Norway is obviously a very 
good place to live in this day and age, and it attracts immigrants from all over 
the world, the situation was very different at the beginning of the nineteenth 
century. Frequent famines, induced by climatic extremes during the Little Ice 
Age, had led to great loss of life. For more than four hundred years, Norway 
had been trapped in an unequal union with Denmark and was essentially 
controlled by the Danish authorities in Copenhagen.

During these difficult times, Niels Henrik Abel was born in a small vil-
lage on the West Norwegian coast on August 5, 1802. Niels was the second 
of seven children of Anne Marie Simonsen and Sören Georg Abel, a pastor. 
Political conflicts between Denmark and Britain, which had already pre-
cipitated the First Battle of Copenhagen in 1801, made the situation for the 
Norwegian population even worse in 1807, when Denmark entered into an 
alliance with Napoleon and the British fleet reacted by imposing a blockade 
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on supply lines between Denmark and Norway. For several years, Norway 
was able to neither export nor import goods to and from the continent, 
which led to a severe economic crisis that culminated in mass starvation in 
1812. Since Abel’s parents could not afford to send their children to school, 
he was educated at home by his father, who had a degree in philology and 
theology. Records suggest that the difficulties of a childhood in a poor 
household were exacerbated by alcohol abuse of both parents.3 However, 
fortunately, the general economic situation became slightly better when the 
Napoleonic Wars came to an end and Denmark lost its power over Norway. 
Norway took a chance and declared independence in 1814. At the age of 
thirteen, Abel entered the Cathedral School in Christiana (now Oslo). He 
soon wrote home that he “felt right in his element,”4 yet he achieved only 
moderately satisfactory marks in his first year at school. In the nineteenth 
century, school corporal punishment was an accepted method of behavior 
management, and student injuries caused by physical punishment were not 

Figure 31.1. The only contemporary portrait of Niels Henrik Abel,  
painted by Johan Gørbitz in 1826.
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uncommon. Abel’s mathematics teacher was dismissed in 1817 because he 
had beaten a student so hard that the student died eight days afterward.5 
Fortunately, the new mathematics teacher, Bernt Holmboë (1795–1850), 
who was only seven years older than Abel, recognized his student’s great 
talent for and fascination with mathematics and began to mentor him. He 
encouraged him to study university-level books outside the school curric-
ulum, and together they read the works of Leonhard Euler, Isaac Newton, 
Jean le Rond d’Alembert, Joseph-Louis Lagrange, and Pierre Simon Laplace. 
When Abel’s father lost his job in 1818, he started drinking excessively, and 
he died two years later. His death dramatically increased the family’s finan-
cial problems and put an additional burden on Abel, who was now respon-
sible for his mother and his siblings, since his elder brother slipped into 
depression and could not support the family. Without the help of Holmboë, 
it would not have been possible for Abel to continue his education. Holm-
boë raised funds for Abel that allowed him to finish school and then enter 
the University of Christiania in the fall of 1821. In a report, Holmboë wrote 
about his gifted student:

With the most incredible genius he unites ardor for and interest in 
mathematics such that he quite probably, if he lives, shall become one 
of the great mathematicians.6

The University of Christiania was founded in 1813, and initially it did 
not offer any studies in the natural sciences; its focus lay in the profes-
sion-oriented studies: theology, medicine, and law.7 Already, as a freshman, 
Abel was one of the best mathematicians in the country. During his last year 
in school, he had begun pursuing his own mathematical ideas; in particular, 
he was interested in solving quintic equations, a major unresolved mathe-
matics problem at that time. Quintic equations are equations of the form 
ax5 + bx4 + cx3 + dx2 + ex + f = 0, that is, polynomial equations in which 5 
is the highest power of x occurring in the equation. Here, the coefficients 
a, b, c, d, e, and f represent real numbers, and x is the unknown quantity. 
You may recall that the roots of a quadratic equation ax2 + bx + c = 0 can be 

obtained by the formula  x1,2 =
−b± b2 −4ac

2a
. 

For cubic and quartic equations there exist similar, albeit much more 
complicated, formulas. The first explicit formula for the solution of a general 
quadratic equation is attributed to the Indian mathematician Brahmagupta 
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(598–ca. 668 CE). The formulas for cubic and quartic equations were de-
veloped by the Italian mathematicians Scipione del Ferro (1465–1526) and 
Lodovico de Ferrari (1522–1565) and were first published in a book by 
another Italian mathematician, Gerolamo Cardano (1501–1576). How-
ever, the problem of solving quintic equations of the most general form 
had occupied mathematicians for hundreds of years, and none of them 
had been successful. In 1821, Abel believed that he had solved the prob-
lem in full generality; he sent a paper to Ferdinand Degen (1766–1825) in 
Copenhagen, the leading mathematician of the northern countries at that 
time. Upon Degen’s request to provide a numerical example of his method, 
Abel discovered a mistake. However, Degen noticed the brilliancy in Abel’s 
mathematical reasoning and advised him to make use of his abilities in oth-
er areas of mathematics as well.

After one year at the university, Abel’s grades were not very outstand-
ing, except for mathematics, where he excelled. Since there were no ad-
vanced study programs other than theology, medicine, and law, Abel had 
to study mathematics entirely on his own by borrowing mathematics books 
from the library. He read all of the mathematical texts he could find. There 
were only two mathematics professors at the university, and they soon real-
ized that Abel would have to go abroad for any further study. In 1823, they 
financed a trip to Copenhagen so that he could visit the mathematicians 
there. However, it turned out that he already knew everything they had 
shown him. At a ball in Copenhagen, Abel met Christine Kemp (1804–
1862) who became his fiancée one year later and subsequently followed him 
to Norway, where she found a job as a governess. Meanwhile, Abel had 
published several papers on topics in advanced calculus in a new scientific 
journal founded by one of his professors. He took up his work on quintic 
equations again, using a different approach, and eventually he solved the 
centuries-old problem, yet in a very surprising way. He proved that there 
exists no algebraic solution of a general polynomial equation of degree 5 or 
higher; that is, he determined that it is impossible to express the solutions 
in terms of the coefficients of the equation—as was done with other high-
er-degree equations. Solutions do exist, but they can be calculated only by 
approximation methods; it is, in general, not possible to “solve for x,” if the 
equation is of fifth or a higher degree. This important result is now known 
as the Abel-Ruffini theorem, since Paolo Ruffini (1765–1824) had pub-
lished an incomplete proof in 1799. In order to do his proof, Abel developed 
(independent of Évariste Galois [see chap. 32]) the branch of mathematics 
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known today as group theory. There is also a type of group named for Abel; 
the abelian group is one that aligns with the commutative property; in other 
words, the order of operations is irrelevant for the abelian group.

Abel applied for funding to travel to the centers of mathematics in 
France and Germany, but he received only a small stipend to learn the lan-
guages, with a promise that he would then receive a travel grant two years 
later. To have an impressive piece to his name in anticipation of his visit 
with the great mathematicians in Europe, he published at his own expense 
his work on equations of fifth-degree. He wrote the text in French to reach 
a larger audience, while at the same time shortening the proof as much as 
he could, to save printing costs. He sent the work to several mathemati-
cians on the Continent, including Carl Friedrich Gauss (1777–1855), but 
the extremely condensed style of his writing made the proof very hard to 
read, and so his work did not receive the attention he had hoped for. Having 
gained a good knowledge of French and German, Abel felt well prepared 
for his trip to Europe, and he wrote a personal letter to the king of Norway 
to obtain the travel grant earlier. With a scholarship from the Norwegian 
government, he was able to start his journey to the Continent in the fall of 
1825. Although the plan was to go to Göttingen to visit Gauss and then to 
visit the French Academy of Sciences in Paris (the world’s center of mathe-
matics at that time), Abel first went to Berlin. There, he met August Leopold 
Crelle (1780–1855), an engineer and mathematician with good contacts to 
the government and who had long been planning to found a German math-
ematics journal to challenge the dominance of the well-established French 
journals. Crelle encouraged Abel to write an expanded and more accessible 
version of his results on quintic equations, a masterpiece of mathematics he 
eagerly wanted to publish in his journal. The first issue of Crelle’s Journal für 
die reine und angewandte Mathematik (Journal of Pure and Applied Math-
ematics) appeared in February 1826 and contained seven papers by Abel, 
who was also a principal contributor to the following issues. The high qual-
ity and importance of Abel’s papers were essential to establish the journal’s 
reputation. Today, Crelle’s journal is still one of the most renowned journals 
of mathematics. Abel abandoned his plans to visit Gauss, when he was in-
formed that Gauss didn’t approve of his work. (Yet Gauss had actually never 
read Abel’s work on the quintic equation, as it was discovered unopened 
after Gauss’s death.)

When Abel came to Paris, he completed a large manuscript, which he 
considered to be his most impressive work so far, containing a whole new 
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theorem on the addition of algebraic differentials with fundamentally new 
insights. He submitted it to the French Academy of Sciences for publica-
tion, and hoped that this publication in one of the most important journals 
of mathematics would make a strong-enough impression on the authorities 
in Norway to create a position for him at the university in Oslo. Augus-
tin-Louis Cauchy (1789–1858) and Adrien-Marie Legendre (1752–1833) 
were appointed as referees. Abel spent the winter in Paris, awaiting an an-
swer, but Cauchy had set the manuscript aside and forgotten about it. With 
almost no money left, eating only one meal per day, Abel’s health deteriorat-
ed. He developed a fever and a cough but kept on working at an enormous 
pace, writing further papers for Crelle’s journal. Although he frequented 
science circles in Paris and made the acquaintance of the leading mathema-
ticians there, they had little interest in his work, and he never really had the 
opportunity to discuss his mathematical ideas with them. Many years later, 
the mathematician Joseph Liouville (1809–1882), who was a student when 
Abel visited Paris, said that meeting Abel without getting to know him was 
one of the greatest mistakes of his life. In spite of having published a num-
ber of papers in Crelle’s journal, Abel’s trip to Europe was a disappointment 
for him, and he became homesick.

Upon his return to Norway in 1827, he was rather depressed and poor. 
Without publishing in Paris, and having been unable to make contact with 
Gauss, he found that his grant was not renewed. He had to take a private 
loan to clear the debts of his family. He placed advertisements in newspa-
pers as a private tutor, seeking to earn some money. Meanwhile, he contin-
ued to send papers to his friend Crelle at an incredible rate—most of them 
pioneering works in different fields of mathematics. Crelle tirelessly tried 
to use his influence to create a permanent position for Abel at the Univer-
sity of Berlin. In the spring of 1828, as Abel’s financial situation improved, 
he obtained a temporary position as a lecturer at the university in Oslo, 
substituting for a professor who went on a scientific expedition to Siberia. 
Although his publications in Crelle’s journal became increasingly more fa-
vorably recognized by the mathematicians in the French Academy, there 
was still no hope for a permanent position in Norway. His health condition 
had not really improved since he had left Paris, and it worsened in the fall 
of 1828. He wanted to spend Christmas with his fiancée, who worked as a 
governess in Froland, a district more than 250 kilometers from Oslo. Abel 
had to travel by sled in the bitter, cold Norway winter, which would have 
been an extremely exhausting trip even for a strong and healthy person. 
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When he arrived, he was seriously ill. At Christmas, he felt a little better 
and could enjoy the celebration, but soon he was bedridden again, becom-
ing weaker and weaker. Fearing that his greatest work, the paper submit-
ted to the French Academy, had been lost forever, Abel invested all of his 
remaining physical energy to write down the proof of the main theorem 
on the addition of algebraic differentials again. After a violent hemorrhage, 
Abel was diagnosed with tuberculosis, from which he had probably been 
suffering since his earlier stay in Paris. He died on April 6, 1829, at the age 
of twenty-six. Two days later, not aware of Abel’s death, Crelle sent a joyful 
letter to Abel to tell him that a permanent position as a full professor was 
awaiting him at the University of Berlin. He wrote:

As far as your future is concerned, you can now be completely at ease. 
You belong among us and are secure. . . . You will be coming to a good 
country, to a better climate, closer to science and to sincere friends 
who appreciate you and are fond of you.8

One year later, Abel was posthumously awarded the Grand Prix of the 
French Academy of Sciences for his outstanding achievements in mathe-
matics. After intensive searching, Cauchy finally found Abel’s monumental 
“Paris memoir,” which was then first published in 1841; it still stands as a 
milestone in the development of mathematics. In his short and tragic life, 
Niels Henrik Abel made deep and influential mathematical discoveries. 
Several mathematical theorems, equations, and objects bear his name; even 
a crater on the moon was named after Abel. When the Norwegian mathe-
matician Sophus Lie (1842–1899) learned that Alfred Nobel’s plans for an-
nual prizes would not include a prize in mathematics, he proposed creating 
an Abel Prize for outstanding achievements in mathematics, to be awarded 
annually, beginning in 1902. However, with Lie’s death in 1899, the motor 
behind these plans was gone and, also for financial reasons, the government 
decided to erect an Abel monument instead of funding an Abel Prize. In the 
late 1960s, oil exploration in the North Sea started and Norway’s Oil Age 
began, turning it into one of the wealthiest countries in the world by the 
end of the millennium. With money in abundance from the oil industry 
and with the 200th anniversary of Abel’s birth approaching, the Norwegian 
government finally established the Abel Prize in 2001. The Abel Prize was 
awarded with prize money amounting to 6 million Norwegian kroner (ap-
proximately $750,000). Together with the Fields Medal, the Abel Prize is 
viewed as the highest honor a mathematician can receive.
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Chapter 32

Évariste Galois:  
French (1811–1832)

You might expect the life story of Évariste Galois to be a short one, since he 
lived only to age twenty. Yet during these two decades years, he experienced 
a number of turbulent events. Before we consider his biography, we should 
note that his main contribution to mathematics is an entire field of study 
that bears his name—something not particularly common in the field of 
mathematics. Galois theory is a part of abstract algebra and draws a con-
nection between two major theories: group theory and field theory. To the 
nonmathematician, this explanation might seem meaningless. However, we 
will try to show some of the new insights that result from this theory. For 
example, Galois’s work allows us to determine solutions to higher-degree 
equations using only the four arithmetic operations and extractions of rad-
icals (such as square roots, cube roots, etc.). His work also allows us to de-
termine which regular polygons are constructible using only a straightedge 
and compasses, as well as why it is not possible to trisect a general angle 
using only a straightedge and compasses. These are just a few of the rather 
simple topics that might well have been presented in your secondary-school 
curriculum and that owe their solution to Galois’s work.

Let us now consider how this mathematical genius navigated his twenty 
years. He was born on October 25, 1811, in Bourg-le-Reine, France, where 
in 1814 his father, Nicolas-Gabriel Galois, became mayor of the town. Un-
commonly for the times, his mother, Adélaïde-Marie Demante, was a high-
ly educated lawyer and provided her son home schooling until age twelve, 
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even though at age ten, Évariste had been offered admission to the College 
of Reims. In 1823, he entered the Lycée Louis-le-Grand. There he won first 
prize in Latin, but much preferred studying mathematics, which he did in-
tensively at age fourteen. He showed his talent by reading rapidly through 
Adrien-Marie Legendre’s Éléments de Géométrie, a book that, in a certain 
sense, served as the model for the American high-school geometry course. 
At age fifteen, he started to take the theory of equations very seriously. Cu-
riously, his teachers were not impressed with him, or, as some might say, 
they felt intimidated by him.

In 1828, he applied to the prestigious École Polytechnique but did not 
perform well enough on the oral exams to be accepted. Shortly thereafter, 
he applied for admission to the École Normale, an inferior institution, and 
was accepted; the examiners seemed to be impressed by him. In 1829, he 

Figure 32.1. Évariste Galois. (Drawing on gray paper, ca. 1826.)
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published his first paper on the topic of continued fractions. These are frac-
tions of the form 

a+ b

c+ d

e+ f
g +! ;

and they can be used to express such numbers as 

2 =1+ 1

2+ 1

2+ 1

2+ 1
2+! .

Some of the papers he submitted shortly thereafter were not accepted, 
for a variety of reasons, some of which were political and not necessari-
ly mathematical. Paris was rather turbulent in January 1831. Galois quit 
school to join a militia, where split his time engaged in politics and in math-
ematics. Occasionally, members of the militia group were arrested, but he 
had no long stay in jail. In April 1831, Galois and the other officers of the 
militia were acquitted of all charges; and later, in May, they were honored 
with a banquet. At this banquet, Galois proposed a toast to the king—actu-
ally threatening his life; consequently, Galois was arrested again the follow-
ing day. In June of that same year, he was acquitted once again. His radical 
behavior continued right after Bastille Day (July 14, 1831), when he headed 
a protest while wearing the uniform of the disbanded militia and heavily 
armed with a pistol, a rifle, and a dagger. Once again, he was arrested. In 
October, he was sentenced to six months in prison; then he was released on 
April 29, 1832.

We might say that Galois’s time in prison was not completely wast-
ed, since he continued to develop mathematical concepts there.1 Another 
one of his papers was rejected while he was in jail, and he reacted violently 
and indicated that he would no longer publish through the academy, and 
only with his friend Auguste Chevalier. His rejection letter indicated that 
he needed to be more precise and less incomprehensible. He did take this 
advice and began to collect his mathematical manuscripts to bring them 
into a better intelligible fashion.

Now aged twenty, he was thrown into a pistol duel. There are numerous 
speculations as to how he was drawn into a duel against a person, who was 
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Figure 32.2. The final page of Galois’s mathematical work, written on the eve of his 
death, has as its next to the last line, “déchiffrer tout ce gâchis” (“to decipher all this 
mess”). (Letter from Évariste Galois to his friend Auguste Chevalier, May 29, 1832.)
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seen as a skilled marksman. There is great controversy as to what led to his 
fatal duel on May 30, 1832. Was it over competition for a woman’s love? Was 
the opponent in the duel the woman’s uncle or fiancé? Or was this duel sim-
ply staged by the police to eliminate a political enemy? In any case, Galois 
stayed up all night  before the scheduled duel, writing letters to friends and 
attaching a manuscript of his works in a somewhat more intelligible form. 
It is believed that he suspected he would not be victorious in the upcoming 
duel. It is often believed that the material he left behind on that fateful night 
is today the basis of what we refer to as Galois theory.

The duel took place early in the morning of May 30, 1832.2 He was 
shot in the abdomen and died the next morning in the hospital to which he 
had been taken by a passing farmer. His radical behavior did not end even 
at this sad time, as he refused the support of a priest and told his younger 
brother, Alfred: “Ne pleure pas, Alfred! J’ai besoin de tout mon courage pour 
mourir à vingt ans!” (“Don’t cry, Alfred! I need all my courage to die at 
twenty!”). On June 2, Évariste Galois was buried in a common grave at the 
Montparnasse Cemetery.
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Chapter 33

James Joseph Sylvester:  
English (1814–1897)

The British mathematician James Joseph Sylvester was born in London on 
September 3, 1814, and is known for having made significant contributions 
to combinatorics, matrix theory, number theory, and other branches of 
mathematics—while living in both the United States and England.1 Curi-
ously, the mathematician known as James Joseph Sylvester was not born 
by that name; because his father’s name was Abraham Joseph, he was born 
as James Joseph. At the time that James’s older brother came to the United 
States, it was required that all immigrants have a middle name as well as a 
surname. The older brother adopted Sylvester as his new surname, and the 
younger brother, James Joseph, did the same. At the early age of fourteen, 
he studied at the University of London with the famous English mathemati-
cian Augustus De Morgan (1806–1871). His family withdrew him from the 
university after he had a skirmish with another student. He then entered the 
Liverpool Royal Institution. His more serious study of mathematics contin-
ued in 1831 at St. John’s College, Cambridge University. After several years 
of illness, he finally sat for the famous Cambridge mathematics examina-
tion, the Mathematical Tripos; he scored very high, coming in second in 
the competition. He was qualified to receive his university degree but did 
not receive it. Because doing so would conflict with his Jewish faith, he had 
refused to accept the Thirty-Nine Articles of the Church of England, which 
resulted in him being denied his degree. Furthermore, this also prevented 
him from obtaining the Smith’s Prize or a subsequent fellowship.
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Nevertheless, he became a professor of natural philosophy at the Uni-
versity College London in 1838, and the following year became a fellow of 
the Royal Society of London. In 1841, he was finally awarded a bachelor 
of arts degree and a master of arts degree from Trinity College in Dublin, 
Ireland. Shortly thereafter, he moved to the United States and became pro-
fessor of mathematics at the University of Virginia. After four months, once 
again, a violent encounter with two students caused him to leave. Subse-
quently, he moved to New York City, where he was denied an appointment 
as professor of mathematics at Columbia University because of his Jewish 
religion. As a result, in November 1843 he left New York City for England.

Once back in England, he took on a leadership position at the Equity 
and Law Life Assurance Society, where he used his mathematical talents 
to develop actuarial models. However, this position required a law degree, 
so, subsequently, he studied for the bar examination. At this time, he met 
Arthur Cayley (1821–1895), another mathematician who was also study-
ing law. He collaborated with Cayley for many years, where together they 

Figure 33.1. James Joseph Sylvester,  
sometime after his 1884 arrival in Oxford.
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made significant contributions to matrix theory and invariant theory. It was 
not until 1855 that Sylvester was once again appointed professor of mathe-
matics, this time at the Royal Military Academy in Woolwich, in southeast 
London. He stayed there until 1869, when he was forced to retire at age 
fifty-five. He had to battle to receive a full pension, which he eventually 
achieved. It was not until 1872 that Cambridge University finally award-
ed Sylvester’s long overdue bachelor’s and master’s degrees, overcoming his 
initial blockage on account of being Jewish.

In 1876, he returned to the United States at the invitation of the new 
Johns Hopkins University in Baltimore, Maryland, where he became one 
of its first professors of mathematics. While there, in 1878, he founded the 
American Journal of Mathematics, which at that point was only the second 
such professional publication available in the United States. He returned 
to England in 1883 to accept the Savilian Professor of Geometry position 
at Oxford University. Here, too, he was not very popular with students; 
Sylvester tended to lecture primarily on his own research and was not too 
concerned about spreading other mathematical knowledge to his students. 
In time, his capacities weakened, including memory loss and poor eye-
sight; in 1892, although he retained his position at Oxford, he returned to 
London and spent his last years at the Athenaeum club, until his death on 
March 15, 1897.

James Joseph Sylvester is remembered for a number of mathematical 
developments, as well as the terms he introduced to our mathematics lan-
guage, such as matrix, discriminant, and graph in the field of combinator-
ics. In fact, “he once laid claim to the appellation ‘Mathematical Adam,’ 
asserting that he believed he had ‘given more names (passed into general 
circulation) to the creatures of the mathematical reason than all the other 
mathematicians of the age combined.’”2 He also came up with an interesting 
way of developing the value of π:

π =  2 + 2

1 + 1 ⋅ 2

1 + 2 ⋅  3

1 + 3 ⋅  4

1 + 4 ⋅  5

1 + 5 ⋅  6
1 +! .

Sylvester had a deep knowledge of classical literature, and he peppered 
his mathematical papers with Latin and Greek quotations. If we were to 
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categorize Sylvester, we would probably say that he was largely an algebra-
ist. He did some outstanding work in number theory, where, for example, 
he showed the number of possible ways a number can be expressed as a 
sum of positive integers. He worked with Diophantine equations, which 
are algebraic equations that require integer solutions. He also liked related 
problems, such as “I have a large number of stamps to the value of only 5d 
and 17d. What is the largest denomination, which I cannot make up with 
the combination of these two different values?” (The correct answer is 63d.)

Not only did he enjoy presenting puzzles to a general audience as well 
as to mathematicians, but he also took pride in being able to compose poet-
ry. Moreover, he had a great interest in music and even took singing lessons 
from Charles Gounod (1818–1893). Sylvester wrote: “May not music be 
described as the mathematics of the sense, mathematics as music of the 
reason? The musician feels mathematics, the mathematician thinks music: 
music the dream, mathematics the working life.”3 Sylvester leaves a rather 
broad legacy.
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Chapter 34

Ada Lovelace:  
English (1815–1852)

In this technological age, when the computer pretty much guides us 
through our daily lives, the profession of computer programmer has 
become popular as a result. A curious person might ask: Who was the 
first computer programmer? Consensus has it that English mathematician 
Augusta Ada King Noel, Countess of Lovelace—more commonly known as 
Ada Lovelace—holds that honor.

It all began when Lovelace was seventeen and scientist Mary Somer-
ville introduced her to the mathematician Charles Babbage. Babbage 
showed her his just-developed invention, the Difference Machine, which 
is considered the world’s first mechanical calculator (see chap. 30). Bab-
bage also conceived of the Analytical Engine, which had been intended to 
do much more than mere subtractions; unfortunately, it was never actually 
built. Babbage, who was twenty-four years her senior, was enchanted with 
Lovelace’s interest in mathematics and science. They began a twenty-year 
correspondence. Lovelace remained enthusiastic for mathematics through-
out her life. For example, at age twenty-five, she contacted the well-known 
British mathematician and first professor of mathematics at the University 
of London, Augustus De Morgan, and asked him to tutor her in mathemat-
ics. At one point, De Morgan wrote to Lovelace’s mother, indicating that 
Ada Lovelace had an extraordinary talent in mathematics, which would 
have made her quite famous, if she were a man.



	 Ada Lovelace: English (1815–1852) 	 273

In 1843, Lovelace produced what we consider today the first foray into 
computer programming. The story begins in 1841, when Babbage was invited 
to give a lecture at the University of Turin to describe his Analytical Engine. 
Luigi Menabrea, a mathematician who would eventually become prime min-
ister of Italy, took notes on the lecture and transcribed them in French. In 
1843, Babbage’s friend Charles Wheatstone asked Lovelace to translate the 
French notes into English as she was fluent in French. She not only translated 
the work but also added her own notes about the lecture. One such addi-
tion was her description of an algorithm for the Analytical Engine that could 
compute the Bernoulli numbers (a sequence of rational numbers that occur 
frequently in number theory—see chap. 22). In so doing, she became  the 
first person to write an algorithm for a machine to produce more than just a 
simple calculation. Lovelace earned the honor of first computer programmer 
in the history of mathematics with her achievement. In figure 34.2, we show 
a diagram contained in Lovelace’s notes—which, by the way, were far more 
voluminous than the mere translation requested of her.

Figure 34.1. Ada Lovelace, portrait ca. 1840.
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Now that we are familiar with her mathematical achievements, let’s ex-
amine the life of Augusta Ada King Noel, Countess of Lovelace. She was 
born on December 10, 1815, in London, England, to her parents, Lady By-
ron (Anne Isabella Noel Byron, 11th Baroness Wentworth and Baroness 
Byron, nicknamed Annabella) and the famous British poet Lord Byron 
(George Gordon Byron, 6th Baron Byron). Unfortunately, a month after 
Ada’s birth, Lord Byron separated from his wife; several months later, he left 
England forever. In the third canto of Childe Harold’s Pilgrimage: Harold the 
Wanderer, Lord Byron mentioned his daughter: “Is thy face like thy moth-
er’s my Fair child! ADA! sole daughter of my house and heart?”1 Byron died 
in 1824 in Missolonghi, Greece.

Lovelace had an unusual early life. Her mother was truly angry at the 
departure of her husband, so Ada grew up never having seen even a picture 
of her father. That did not happen until she was twenty years old. Lovelace 
was largely reared by her maternal grandmother, Judith Milbanke, and she 
suffered a number of childhood illnesses. For example, in 1829, she spent 
nearly a year in bed, suffering from a paralysis that evolved from a bout 
with the measles. Lovelace was interested in not only mathematics but also  
all things mechanical and scientific. For example, she was fascinated by the 
notion of flying, which prompted her to write a book titled Flyology, even 
though she was still just an adolescent. Her work in Flyology illustrated her 
understanding of what would be required for humans to fly like birds, con-
sidering, for instance, the size of wings that humans might need to use in 
order to fly. Motivated by her interest in science, Lovelace sought out many 
of the top scientists in England. Notable among these was Michael Faraday, 
who made major advances in electromagnetism.

In 1834, Lovelace began to attend regular court events, where she 
charmed people with her intelligence and her dancing talent. On July 8, 
1835, she married William, 8th Baron King; as Lady King, Lovelace entered 
into a rather wealthy environment. Over the next four years, she gave birth 
to three children, Byron, Anne Isabela, and Ralph Gordon. Since she was 
a descendent of Baron Lovelace, in 1838, her husband became the Earl of 
Lovelace, and she became the Countess of Lovelace. Her mother continued 
to stay involved with the family; she hired tutors to support the three chil-
dren and ensured that her daughter remained morally correct.

Perhaps it was Ada Lovelace’s interest in mathematics, which spurred 
her later love of gambling. In the late 1840s, betting on horses resulted in 
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her loss of over £3,000. In 1851, she tried to develop a mathematical model 
to guide her to successful bets, but this was a total financial disaster. De-
spite these struggles, Lovelace is lauded to this day for her insight into the 
potential of Babbage’s Analytical Engine to bring further developments in 
mathematics beyond merely doing arithmetic calculations. In her notes to 
the translation of Babbage’s lecture, she included the following:

Again, it [the Analytical Engine] might act upon other things besides 
number, were objects found whose mutual fundamental relations 

Figure 34.3. Portrait of 
Ada Lovelace.  

(Painting by Margaret 
Sarah Carpenter, oil on 

canvas, 1836).
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could be expressed by those of the abstract science of operations, and 
which should be also susceptible of adaptations to the action of the 
operating notation and mechanism of the engine. . . . Supposing, for 
instance, that the fundamental relations of pitched sounds in the sci-
ence of harmony and of musical composition were susceptible of such 
expression and adaptations, the engine might compose elaborate and 
scientific pieces of music of any degree of complexity or extent.

The distinctive characteristic of the Analytical Engine, and that 
which has rendered it possible to endow mechanism with such exten-
sive faculties as bid fair to make this engine the executive right-hand 
of abstract algebra, is the introduction into it of the principle which 
Jacquard devised for regulating, by means of punched cards, the most 
complicated patterns in the fabrication of brocaded stuffs. It is in this 
that the distinction between the two engines lies. Nothing of the sort 
exists in the Difference Engine. We may say most aptly that the Ana-
lytical Engine weaves algebraic patterns just as the Jacquard-loom 
weaves flowers and leaves.2

These lines from her notes offer a good indication of how her vision 
reached far into the future.

On November 27, 1852, at the age of thirty-six, Lady Ada Lovelace died 
from uterine cancer. During her fatal illness, she was comforted and cared 
for by her mother, Annabella. One of the many famous people whom Love-
lace met during her life was the famous author Charles Dickens. In August 
1852, Dickens visited his bedridden friend and, at her request, read her a 
well-known scene from his 1848 novel, Dombey and Son, in which a six-
year-old boy dies. As she wished, Lady Ada Lovelace was buried next to her 
father, Lord Byron, inside the church of St. Mary Magdalene in Hucknall, 
England.

Through the twentieth century, Lovelace has been remembered through 
books (The Difference Engine, by William Gibson and Bruce Sterling), plays 
(Childe Byron, by Romulus Linney), and films (Conceiving Ada, directed by 
Lynn Hershman Leeson). However, it should be noted that Lovelace’s fame 
was brought into the fore in 1953, when her notes were republished in the 
book Faster Than Thought: A Symposium on Digital Computing Machines, 
by B. V. Bowden. Today, in the United Kingdom, the second Tuesday of 
October is designated as Lady Ada Lovelace Day. As recently as 1980, the 
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United States Department of Defense honored Lady Lovelace by naming a 
newly developed computer language with her first name, “Ada.” Her legacy 
lives on as the first computer programmer, not necessarily the first woman 
computer programmer, but in actual fact, the first person to be a computer 
program. Moreover, she really was a visionary in that she realized the sig-
nificance of Babbage’s Analytical Machine, foreseeing the versatile applica-
bility of programmable computers.
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Chapter 35

George Boole:  
English (1815–1864)

The English mathematician and logician George Boole developed a logical 
theory that serves today as a basis for electronic devices, and of course, the 
modern digital computer. In mathematical circles, Boolean algebra, which 
we will introduce later, has made his name popular to this day.

George Boole was born on November 2, 1815, in the town of Lincoln, 
Lincolnshire, England. Although his father was a shoemaker, he provid-
ed regular lessons for his son, which included making optical instruments. 
Besides a few years in elementary school, Boole was largely self-taught in 
mathematics. To help support the family, Boole had taught in local ele-
mentary schools at the age of sixteen, and at twenty he opened his own 
school. During his leisure time he read classical mathematical books by 
such famous mathematicians as Isaac Newton, Pierre-Simon Laplace, and 
Joseph-Louis Lagrange. He was taught Latin by some local folks, but he was 
self-taught with modern languages. He continued to be popular locally in 
matters of education and other social issues. However, throughout this time 
he continued to study mathematics and began to publish papers, especially 
in algebra, using symbolic methods.

In 1849, he was appointed professor of mathematics at Queens College, 
Cork, Ireland, where he met his wife, Mary Everest, who, in her own right, 
became a mathematician of note. This marriage produced five daughters. 
In 1854, Boole wrote a treatise on Aristotle’s system of logic entitled An In-
vestigation of the Laws of Thought, on Which Are Founded the Mathematical 
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Theories of Logic and Probabilities. This was the basis of what later became 
known as Boolean algebra, which was based on simply two quantities: true 
or false, or 1 or 0. No other symbols are used in Boolean algebra aside from 
1 and 0.

Let’s take a quick look at some of the basics of Boolean algebra. First, 
there is the addition using only the two symbols available, 1 and 0:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

This is analogous to the “or” function in logic, where the 1 can replace 
“true” and the 0 can replace “false.” That is, if either of the two elements 
being added is a 1, then the sum is 1.

Figure 35.1. George Boole.
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So if we have a longer addition, the same holds true. Such as: 1 +0 +  
1 + 1 +1 + 0 = 1. This can also be seen with switching circuits, as shown in 
figure 35.2.

In Boolean algebra we also have multiplication, which follows the 
“and” rules for logical reasoning. That is, something is true when both are 
true. This can be shown as follows symbolically:

Figure 35.2.
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0 × 0 = 0
0 × 1 = 0
1 × 0 = 0
1 × 1 = 1

We see here that in order for us to get a 1 or a true statement, both 
must be true; that is, a true and a true yields a true. Once again, we can see 
that with switching circuits to get the light to go on, both switches must be 
closed (see fig. 35.3).

In Boolean algebra, if a statement, or a variable, is not 1, then it is 0, 
so we can say that 0 is a complement of 1. We could go on and develop the 
entire Boolean algebra, but the size of this book would not be large enough 
to accommodate the subject. We leave this to the ambitious reader to pur-
sue further. However, this system allowed logical arguments to obtain more 
structure.

Figure 35.3.
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George Boole continued to become more involved in social matters 
as well as university instruction. At the end of November 1864 on his 
way to the university from home, a mere distance of 3 miles, Boole got 
caught in a severe rainstorm and continued to lecture in his wet clothing. 
Shortly thereafter, he came down with pneumonia, which worsened, and 
on December 8, 1864, he died at Ballintemple, Cork, Ireland. Today, George 
Boole is largely remembered through his development of Boolean algebra 
and a crater on the moon named after him.
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Chapter 36

Bernhard Riemann:  
German (1826–1866)

In many European countries, a doctoral thesis is alone not sufficient to ob-
tain a professorship at a university. In addition, one has to write a habili-
tation thesis that must be reviewed by and successfully defended before an 
academic committee. The process of a habilitation is often seen as a sec-
ond doctoral dissertation. The habilitation is a postdoctoral qualification 
required to independently teach a subject in Europe at the university level. 
It must be accomplished without guidance of a supervisor, and it defines a 
higher level of scholarship than a doctoral dissertation. In mathematics, as 
well as in the natural sciences, the typical habilitation period is four to ten 
years. During this time, numerous research articles in high-quality scien-
tific journals must be published. The thesis can then be either cumulative 
(that is, basically a collection of selected publications) or a monograph. If 
the thesis has been accepted, the applicant has to give a public lecture af-
ter which the habilitation is awarded. There is no concept of a habilitation 
in the United States, and there is an ongoing political discussion in Ger-
many and other countries to abolish the system of the habilitation; it is a 
time-consuming obstacle in an academic career, contributing to the brain 
drain of promising young researchers to the United Kingdom and the Unit-
ed States, where their chances of getting a professorship at a reasonable age 
are often better.

In 1853, Bernhard Riemann was in the final stages of his habilitation 
at the University of Göttingen. He had been working for nearly three years 
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on it, achieving several important new results and solving open problems 
related to the representation of functions by trigonometric series (these 
are infinite sums of sine and cosine functions with different wavelengths 
and amplitudes). He had also introduced a mathematically rigorous con-
cept for the integral of discontinuous functions, a notion that would later 
be called the Riemann integral. Having already earned some reputation as 
a mathematician, the only missing step necessary to complete his habil-
itation was to give a public lecture before the habilitation committee. By 
the rules of the university, Riemann had to submit titles of three different 
lectures belonging to different areas of mathematics, from which the facul-
ty of philosophy was to choose one. Riemann had already worked out the 
details of two of the three topics, but not for the third one, titled “Über die 
Hypothesen, die der Geometrie zu Grunde liegen” (On the hypotheses that 
lie on the foundations of geometry). Although, or perhaps because, it was 
the topic least related to Riemann’s prior work and interests, it was chosen 
by the faculty, more precisely by Carl Friedrich Gauss, professor at Göttin-
gen and also Riemann’s doctoral thesis supervisor. Riemann’s habilitation 
lecture, on which he worked for several months, became a famous classic 

Figure 36.1. Bernhard Riemann.
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of mathematics, changing the whole subject of geometry. By introducing 
completely new and brilliant viewpoints on geometrical ideas, he was able 
to generalize geometrical concepts and even the notion of space itself in a 
way that would evoke a whole new branch of mathematics. Before we expose 
some of Riemann’s groundbreaking ideas and its consequences, we want to 
give a brief overview of his life.

Georg Friedrich Bernhard Riemann was born on September 17, 1826, 
in Breselenz, a village in the Kingdom of Hanover (now Germany). His 
father was a poor Lutheran pastor; his mother died before her children had 
reached adulthood. Until the age of fourteen, Bernhard was educated at 
home by his father, assisted by a teacher from a local school. He was a shy 
and anxious child. In 1840, Bernhard went to the city of Hanover to live 
with his grandmother and attend the Lyceum (middle school), where he 
immediately entered the third-year class. Two years later, his grandmother 
died, and Bernhard moved to Lüneburg to continue his education at the 
Johanneum Gymnasium (high school). While he was not very good in lan-
guages, history, or geography, he showed exceptional skills and interest in 
mathematics. His teachers soon recognized his incredible talent, and the 
school principal allowed him to study mathematics books from his own 
library, among them Legendre’s 900-page book on the theory of numbers, 
which Bernhard read in six days. In 1846, Riemann enrolled at the Uni-
versity of Göttingen to study theology and become a pastor like his father. 
However, his strong interest in mathematics naturally made him attend 
some mathematics lectures as well. It became clear to him that what he 
really wanted to study was mathematics. He asked his father for permission 
and began to take courses in mathematics as a regular student. Among his 
teachers in the elementary courses were well-known mathematicians Mori-
tz Stern (1807–1894) and Johann Benedict Listing (1808–1882). Gauss, the 
most famous mathematician at Göttingen, was mainly teaching astrono-
my at that time. After one year in Göttingen, Riemann moved to Berlin 
to study advanced topics under Peter Gustav Dirichlet (1805–1859), Got-
thold Eisenstein (1823–1852), Carl Jacobi (1804–1851), and Jakob Steiner 
(1796–1863). Of his teachers in Berlin, Dirichlet probably had the greatest 
influence on Riemann. Dirichlet always tried to condense the essence of a 
mathematical theory into an intuitively comprehensible idea and then use 
this idea as a guiding principle to find new mathematical results. Riemann 
embraced Dirichlet’s style of doing mathematics and he was full of ideas 
when he returned to Göttingen in 1849. He began to write his doctoral 
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dissertation under the supervision of Gauss and got a temporary position as 
the assistant to the physicist Wilhelm Weber (1804–1891), from whom he 
learned a lot about theoretical physics. His doctoral thesis was completed 
in 1851 and in his report on the thesis, Gauss describes Riemann as having 
“a gloriously fertile originality.” With Gauss as a mentor, Riemann started 
to work on his habilitation.

When Riemann finally delivered his habilitation lecture “On the hy-
potheses which underlie geometry,” only Gauss, one of the leading geom-
eters at the time, was able to fully recognize the significance of Riemann’s 
work and was deeply impressed by it. The lecture contained hardly any 
formulas; it was not a purely mathematical presentation but rather a phil-
osophical treatise about the meaning of geometrical concepts, thereby 
identifying certain implicit hypotheses on the nature of space on which our 
understanding of geometry is based. The ingenuity of Riemann’s thoughts 
was to give up these hypotheses and replace geometrical notions relying on 
them by more general concepts that can be formulated without any pre-as-
sumptions on the underlying space. What are these hypotheses that Rie-
mann abandoned?

Well, you may recall that the geometry taught in high school is called 
Euclidean geometry; it is based on five postulates attributed to the Alexan-
drian Greek mathematician Euclid. The fifth of his postulates essentially 
says that two parallel lines never cross, even if we extend them infinitely. 
This, however, is just an assumption that cannot be proved or verified by ex-
periment. To illustrate that the parallel postulate is by no means trivial, let’s 
consider the surface of the Earth, which, for simplicity, we may think of as a 
perfect sphere. We know that if we draw two lines on a sphere, starting out 
parallel or “in the same direction,” they will inevitably meet at some point. 
Think of two longitudinal circles that define perfectly parallel tracks close 
to the equator, but they converge at the poles. Now you may object that lines 
on a sphere are not actually straight, so the parallel postulate doesn’t apply 
here. We know that the Earth is not flat and looking at our planet from 
some distance, it’s obvious that the lines of fixed longitude are not straight 
lines in space. But imagine for a moment that we were human beings living 
not on the surface of our planet, but “in the surface,” meaning that we were 
two-dimensional beings living in a two-dimensional world as in the famous 
satirical novella Flatland: A Romance of Many Dimensions by the English 
schoolmaster Edwin A. Abbott, first published in 1884. How would a “flat-
lander,” confined to the two dimensions of a sphere, without the possibility 
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to move in a third dimension, define a line to be straight? Well, a straight 
line is the shortest connection between any two given points. But the short-
est connections between points on a sphere are indeed arcs of great circles 
(circles on the surface of the sphere and with their center at the center of 
the sphere)—they are the shortest lines connecting two points on a sphere. 
This is also the reason that airplanes flying from the West Coast of the Unit-
ed States to Europe will fly over Greenland; they follow a great circle path. 
Figure 36.2 shows the arc of the great circle connecting San Francisco and 
Athens, Greece. The two cities have almost the same latitude, but flying 
eastward along a circle of latitude would amount to a much longer distance 
than flying northward to Greenland and then southward to Athens. If you 
have a globe handy, this is easy to see. Only on a flat map, where propor-
tions are distorted, the “straight” route along a circle of latitude appears to 
be shorter.

For “flatlanders” living on the surface a sphere, a great circular arc 
would appear “as straight as straight can be,” since their world is made up of 
only two dimensions, and they cannot see that their two-dimensional space 
is actually curved. What an observer in the surrounding three-dimensional 
space would call a great circle would appear to be a straight line for them. 
Moreover, if their habitat would only cover a very small patch of the sphere 
(think of human-sized creatures on the surface of the Earth), they would 
never find out that these perfectly straight lines would eventually meet, if 
only extended long enough. If we let a ball roll freely on the surface of the 
Earth, it would also trace out a great circle, but locally its path will look like 
a straight line. Two balls starting out side by side and rolling freely with 
equal velocity would eventually collide, since they would follow great circle 
routes. However, because we are so much smaller than the Earth, we are 
not able to detect the curvature of the Earth from the observation of balls 
rolling on its surface. There are other effects from which the spherical shape 
of the Earth can be deduced. But how could flatlanders find out whether 
they are living on a flat plane or on a curved surface like a sphere? Apart 
from measuring whether the distance between two straight lines remains 
constant as the lines are extended, they could also measure the sum of the 
angles in a triangle. You know that the sum of the angles of a triangle on a 
plane is always 180 degrees. But this is not true for triangles on a sphere! 
The sum of the angles of a triangle on the sphere is always greater than 180 
degrees; actually, the sum of the angles of a spherical triangle is between 
180 degrees and 540 degrees. For example, the triangle ABC shown in figure 
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36.3 has two right angles at the vertices A and B, already yielding 180 de-
grees together, plus the angle at vertex C.

To see that the angle sum can get arbitrarily close to 540 degrees, keep 
points A and C fixed and move point B eastward along the equator, around 
the sphere until it almost touches point A. Then we still have right angles at 
A and B, but the angle at vertex C will get arbitrarily close to 360 degrees, 
and hence the sum of all three angles can be arbitrarily close to 540 degrees. 
Thus, we have convinced ourselves that on the surface of a sphere, it is not 
true that the sum of the angles of a triangle is 180 degrees, nor is it true that 
parallel lines never intersect. Both statements are rather obvious, if we look 
at the sphere as a two-dimensional surface in three-dimensional space; they 
can also be turned around—that is, if we find that the sum of the angles of a 
triangle is not 180 degrees, then the surface on which this triangle is drawn 
must be curved. This implies that creatures living in a two-dimensional 
space can, at least in principle, find out whether their space is curved. Rie-
mann’s ingenuity was to realize that it is not only possible to determine the 

Figure 36.3.
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curvature of a two-dimensional space without knowing about an ambient 
three-dimensional space (for instance by measuring the angles of a trian-
gle), but an ambient higher-dimensional space doesn’t even have to exist for 
a space to be curved. He invented the notion of n-dimensional manifolds to 
describe spaces in which the Euclidean parallel postulate is not necessarily 
true, and in which the sum of the angles of a triangle is larger or smaller 
than 180 degrees. Moreover, he introduced mathematical tools and objects 
that allow us to study properties of general manifolds, for instance curva-
ture. For example, the geometric properties of the surface of a sphere can 
be described entirely in terms of a two-dimensional Riemannian manifold 
without referring to an ambient three-dimensional space. But what makes 
us so sure that the three-dimensional space we live in is not curved? Could 
it be that two parallel lines would eventually meet, perhaps after a distance 
of thousands of light years? Riemann already contemplated such possibil-
ities in his habilitation lecture, viewing our three-dimensional world as a 
three-dimensional manifold that might be curved. Unfortunately, the bril-
liancy and the consequences of Riemann’s work, forming the basis of what 
is now called Riemannian geometry, was not understood by his contempo-
raries; his ideas were too far ahead of his time.

After his habilitation, Riemann began to lecture at the university. At 
that time, the main part of a lecturer’s income was tuition fees from the 
students. Riemann’s income was particularly low, since he was teaching ad-
vanced courses that only a handful of students would attend. Yet he was 
still happy with his job and teaching helped him to slowly overcome his 
shyness, as some touching letters to his father reveal. In spite of his low bud-
get, he supported two of his sisters, who were sent to him after his brother 
died. Riemann’s mentor, Gauss, died in 1855, but Riemann, still in his late 
twenties, unfortunately did not get Gauss’ chair at Göttingen University. 
Dirichlet, twenty years older than Riemann, became the successor to Gauss 
and attempts to create a permanent position for Riemann failed. However, 
in 1857, the university at least granted him a regular salary. Riemann was 
an exceptionally versatile mathematician, interested in various branches 
of mathematics as well as physics. His works were always guided by intui-
tive ideas that he also tried to convey and employ in his publications, often 
allowing him to avoid tedious computations that would not provide any 
deeper insight. This is also one of the reasons that mathematicians still find 
his publications very inspiring to read. They are by no means outdated or 
old-fashioned! In 1859, Dirichlet died and Riemann was finally appointed 
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to the chair of mathematics at Göttingen University and also elected to the 
Berlin Academy of Sciences. Financially secure, he married Elise Koch in 
1862. In the autumn of that year, Riemann got a severe cold that developed 
into tuberculosis. He had had problems with his health throughout his life, 
and his mother as well as four of his six siblings had died young. Hoping to 
improve his health in a warmer climate, Riemann went to Sicily and stayed 
there during the winter. He returned to Göttingen University, but his phys-
ical condition soon got worse again and he moved back to Italy, and this 
time he stayed for over one year. Following another period at Göttingen 
University, Riemann died on this third journey to Italy in Selesca on Lago 
Maggiore on July 20, 1866.

In 1905, Albert Einstein published his special theory of relativity, 
in which space and time are no longer independent, but combined into 
a four-dimensional space-time, or, as Hermann Minkowski (1864–1909) 
wrote:

Space by itself, and time by itself, are doomed to fade away into mere 
shadows, and only a kind of union of the two will preserve an inde-
pendent reality.

After this revolutionary milestone of physics, Einstein began to search 
for a way to incorporate gravity into his theory. During his attempts he 
came across Riemann’s theory of manifolds to describe curved spaces, 
which would turn out to be the key to a relativistic theory of gravity. How-
ever, Einstein was not a mathematician, so he needed help. The mathemati-
cian Marcel Grossmann (1878–1936), a friend and former colleague, men-
tored Einstein in Riemannian geometry and collaborated with him. After 
ten years of “blood, sweat, and tears,” Einstein presented his general theory 
of relativity, which many consider to be the most beautiful physical theory 
ever invented. In it, gravity is described as the curvature of four-dimension-
al space-time, which is represented by a so-called semi-Riemannian man-
ifold. Einstein’s field equations specify how matter and radiation influence 
the geometry of this four-dimensional manifold by relating the Riemann 
curvature tensor to the distribution of matter and radiation. Riemann’s the-
ory of curved spaces was the key ingredient in Einstein’s theory of general 
relativity, and it is remarkable that in his habilitation lecture, Riemann was 
already “on the right track” when he pondered the possibility that the phys-
ical space we live in could actually be a curved space.
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Chapter 37

Georg Cantor:  
German (1845–1918)

William Shakespeare is without a doubt one of the greatest writers and 
dramatists in history. Many consider him to be the greatest, at least in the 
English language. His plays are still very popular throughout the world, 
although they were written about 400 years ago. They are timeless master-
pieces and they will never become out of date, since they can easily be rein-
terpreted in diverse cultural and political contexts in modern productions. 
While there exist immense amounts of literature on Shakespeare’s works, 
little is known about his life. In fact, the biographical records are so sparse 
that in the middle of the nineteenth century, doubts regarding the author-
ship of the works attributed to him began to be expressed. Proposed al-
ternative candidates include the philosopher and statesman Francis Bacon 
(1561–1626), the poet and playwright Christopher Marlowe (1564–1593), 
and Edward de Vere, 17th Earl of Oxford (1550–1604). Today, only a very 
small minority of academics still pursue theories on alternative author-
ships, which are, however, generally considered as fringe beliefs, against the 
scholarly consensus that William Shakespeare is indeed the author of the 
works published under his name. Yet during the last decades of the nine-
teenth century, discussing theories supporting or refuting the existence of a 
hidden author of the Shakespearean works was very fashionable in various 
academic circles, not only among the experts in the field.

In 1896, and the following year, the well-known German mathemati-
cian Georg Cantor (1845–1918) published two pamphlets making a case for 
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the theory that Francis Bacon was Shakespeare, which remained the most 
popular of the alternative-authorship theories until the early twentieth cen-
tury. Cantor had begun an intense study of Elizabethan literature in order 
to distract him from mathematics after he had suffered a severe personal 
crisis. His crisis was triggered by the strong criticism and rejection of his 
mathematical work by some of the most distinguished mathematicians of 
his time. The French mathematician Henri Poincaré (1854–1912) referred 
to Cantor’s ideas as a “grave disease” infecting the discipline of mathematics, 
and the German mathematician Leopold Kronecker (1823–1891) attacked 
Cantor even personally, calling him a “scientific charlatan” and a “corrupter 
of youth.” What was so controversial about Cantor’s work? 

Georg Cantor was born in St. Petersburg, Russia, on March 3, 1845, 
and moved with his family to Germany at age 11; throughout his school 
years he showed outstanding skills in mathematics and in 1860 he grad-
uated from high school with distinction. He then studied mathematics at 
the Swiss Federal Polytechnic and at the University of Berlin, receiving his 

Figure 37.1. Georg Cantor.
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doctorate degree in 1867. Cantor, often referred to as the originator of set 
theory, had invented new notions of mathematical infinities, based on a 
brilliant idea for comparing sets containing infinitely many elements. An 
example of a set containing infinitely many elements is the set of the natu-
ral numbers N = 1, 2, 3, ...{ } , but there also exist other infinite sets of numbers. 
So, let’s see what happens when we try to compare two infinite sets. Let us 
consider the set of all integers Z = ...,−3,−2,−1, 0, 1, 2, 3, ...{ }  and compare its size 
with the set N = 1, 2, 3, ...{ }. We may conclude that Z  is substantially larger than N = 1, 2, 3, ...{ }, es-
sentially twice as large, to be more specific. This seems to be a perfectly rea-
sonable and modest assumption that nobody would question. But since we 
know that N = 1, 2, 3, ...{ } is infinite, our assumption of Z  being larger than N = 1, 2, 3, ...{ } implies 
that Z  should be even “of greater infinity,” in some sense. But what should 
that mean? Moreover, between any two integers we can find numerous frac-
tions. Hence the set of all fractions (or rational numbers), 
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, should be “of 
much greater infinity” than Z , but how much more? And what about all the 
real numbers? Is there any way to “measure” infinities? Cantor was the first 
to discover that such questions can indeed be addressed and answered in a 
mathematically rigorous way. He found a very simple, but brilliant, meth-
od to compare the sizes of different sets, even if they are infinite. He also 
established the basic mathematical notion of a set and developed the field 
of set theory, which is now one of the foundations of modern mathematics. 
To explain Cantor’s brilliant idea for comparing sets, suppose we are given 
two sets, A and B, both of which contain only a finite number of elements 
(see fig. 37.2).

Then one (and only one) of the following three statements must be true:

1.	 Set A has more elements than set B.
2.	 Set A has fewer elements than set B.
3.	 Both sets A and B contain the same number of elements.

Is there any way to find out which of these statements is true without 
actually counting the elements of A and B? Yes, there is! We just have to 
pair each member of A with a corresponding member of B, for instance, by 
drawing a line from one to the other (see fig. 37.3).

If we manage to do this for all elements of A and B and no elements are 
omitted from either set, then for each member of A there must be exactly 
one “partner” element in B, and thus both sets must contain the same num-
ber of elements. In mathematics, this is called a one-to-one correspondence 
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between the elements of the two sets. Although this method of comparing 
sets is, in fact, very old, since it is actually nothing other than “counting 
with fingers,” Cantor was the first to recognize that this strategy can also be 
applied to infinite sets.

Cantor’s notion of a one-to-one correspondence enables us to com-
pare two infinite sets, since we don’t have to actually count the number 
of elements in each of the sets separately, and then compare the numbers. 
We just need to find out whether we can establish a one-to-one correspon-
dence between the elements of the two sets. Above we tried to convince 
you that there are many more rational numbers (or fractions) than integers 
and more integers than natural numbers. Astonishingly, this is wrong. It is 

Figure 37.2.

Figure 37.3.
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possible to establish a one-to-one correspondence between N  and Z , for 
example by numbering the members of Z  as follows: Let the first integer in 
our sequence be the number 0, the second integer the number 1, the third 
integer -1, the fourth 2, the fifth -2, the sixth 3, and so on. This numbering 
scheme obviously puts N  and Z  into a one-to-one correspondence, show-
ing that both sets are actually “of equal size,” which is counterintuitive and 
upsetting, even for many mathematicians at the time Cantor published his 
ideas. Cantor even showed that also the rational numbers can be put into 
a one-to-one correspondence with the natural numbers. Another way of 
saying this is that we can give all the rational numbers a waiting number in 
an infinite line. We won’t give a detailed proof here, but the essential idea in 
Cantor’s proof is not too difficult to grasp. Considering only positive frac-
tions for the moment, we can order them in a table by placing the fraction 
p
q

 in the cell at the intersection of row p and column q (see fig. 37.4).

Figure 37.4.
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For instance, the fraction 
73
111  will be in the table at the intersection of 

the 73rd row and the 111th column. Now we want to put all positive frac-
tions in a waiting line. Of course, this waiting line will never end, since 
the table never ends either; but that doesn’t matter. We only have to make 
sure that every fraction will be included. To achieve this, Cantor proposed 
a clever “diagonal” counting scheme: We start at 1

1
= 1  and draw an arrow 

to the right, getting to 1
2

. From here we move on diagonally downward to 
2
1
= 2 , then straight downward to 3

1
= 3 , then diagonally upward, arriving at 

1
3

 (we skipped 2
2
= 1  because it has already been counted). Now the whole 

procedure is repeated—that is, “one to the right and diagonally downward 
until we reach the first column, then straight down and diagonally upward.” 
Whenever we encounter a fraction that is equivalent to one that has already 
gotten a number, we skip it (these are the bypassed fractions in fig. 37.4). 
To see why a diagonal counting scheme is essential, the following illus-
tration might be helpful: Suppose you have a robotic lawnmower and the 
infinite table of fractions in figure 37.4 defines the area to be mowed. How 
should the lawnmower move in order to reach every piece of this infinite 
lawn? Since the infinite lawn has only one corner, it must start there and 
work its way in diagonal serpentines away from that corner—following 
the infinite waiting line drawn in figure 37.4. By using Cantor’s clever 
diagonal scheme, we manage to put all fractions in a waiting line without 
omitting any one of them. We have, therefore, established a one-to-one 
correspondence between all positive fractions and the natural numbers: 
The first fraction is 1

1
, the second fraction is 12 , the third one is 2

1
= 2 , the 

fourth one is 3
1
= 3 , and so on (see fig, 37.4). Every fraction gets a number 

given by its position in the waiting line. So far we have omitted the negative 
fractions, but we can now simply slip each negative fraction after the corre-
sponding positive one in the line, and place the zero at the very first posi-
tion. Because we can pair each rational number with a natural number, and 
no numbers are omitted from either set, there must be just as many natural 
numbers as there are rational numbers. A set whose members can be put in 
a waiting line without missing any one of its elements is called a countable 
set. So Cantor proved that 
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numbers to put them in a waiting line, there will always be some numbers 
left over. To be precise, for any proposed list or counting procedure of all 
real numbers, we can always construct a number that cannot be included in 
this list. Real numbers can have infinite and nonrepeating sequences after 
the decimal point. It is this property that makes them “uncountable.” An 
uncountable set is a set that contains too many elements to be countable 
and is, therefore, “larger” than the set of natural numbers, N = 1, 2, 3, ...{ }.

Suppose somebody claims to have found a procedure to enumerate 
all positive real numbers smaller than 1 (this is only a subset of all real 
numbers). All such numbers will start with a zero and a decimal point, fol-
lowed by an infinite sequence of digits, if we append an infinite sequence 
of zeros whenever we encounter a number with a finite fractional part. You 
may ask him to tell you which number is first in his list, which number is 
second, and so on. Assume hypothetically that you write down each num-
ber, one after the other, thereby producing an infinite list of numbers with 
infinite fractional parts. We show that we can always write down a number 
between 0 and 1 that is not a member of his list, implying that his counting 
scheme does not include all real numbers. Our “magic number” must of 
course start with a zero and a decimal point. We obtain the first digit after 
the decimal point by looking up the first digit after the decimal point of 
the first number in his list and then write down the next-largest digit (for 
example, if we encounter 0, we write down 1, if we encounter 1, we write 
down 2, etc.) or, if the digit is 9, then we write down a 0. This will be the 
first digit after the decimal point of our “magic” number. As the next digit, 
we take the second digit after the decimal point of the second number in 
the list, change it according to our replacement scheme, and so on. By con-
struction, our magic number differs from all numbers in the list, because it 
was constructed in a manner that its digit at position n does not coincide 
with the corresponding digit of the nth number in the list. It must be dif-
ferent from the first number in the list, because its first digit after the deci-
mal point is different. It must also be different from the second number in 
the list, because its second digit after the decimal point is different. It must 
be different from the third number in the list, because its third digit after 
the decimal point is different, and so on. Therefore, this number cannot 
occur in the enumeration! This proof is now known as Cantor’s diagonal 
argument, and the construction of a “diagonal sequence” from an infinite 
set of sequences became an important technique that is frequently used in 
mathematical proofs.
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Cantor showed that it is impossible to enumerate the real numbers; 
they cannot be put into a one-to-one correspondence with the natural 
numbers. Hence, they are more “numerous” than the natural numbers, and 
thus, represent a “greater” infinity. He called such sets uncountable sets. 
Cantor also showed that among uncountable sets, there exist infinities of 
different “sizes” and he developed an arithmetic of infinities. To measure 
the size of infinite sets, he extended the natural numbers by numbers called 
“cardinals” and denoted them by the Hebrew letter  (aleph) with a natu-
ral number as a subscript. For instance, 0 (aleph-null) is the “cardinality” 
of the set of natural numbers—it is the “smallest” infinity in mathematics. 
At the time Cantor published these results, they shocked the mathematics 
community. They conflicted with common beliefs and were considered to 
be revolutionary. Cantor was well aware of the opposition his ideas were 
encountering. In his 1883 paper he wrote:

I realize that in this undertaking I place myself in a certain opposi-
tion to views widely held concerning the mathematical infinite and to 
opinions frequently defended on the nature of numbers.

Many renowned mathematicians tried to prove Cantor wrong and did 
not accept his work. The criticism of his work threw him into a deep depres-
sion, and he even gave up mathematics for some time. He wrote:

I don’t know when I shall return to the continuation of my scientific 
work. At the moment I can do absolutely nothing with it, and limit 
myself to the most necessary duty of my lectures; how much happier I 
would be to be scientifically active, if only I had the necessary mental 
freshness.

At that time, Cantor took up his studies on Elizabethan literature to 
draw his own conclusions about the question of the authorship of the plays 
attributed to Shakespeare. Although his pamphlets on the subject did not 
stand the test of time, occupying himself with problems not at all related to 
mathematics probably helped him to recover from his depression. How-
ever, he never fully gained his passion for mathematics again. Instead he 
continued his research on a hidden author of the works of Shakespeare and 
published on his Bacon-Shakespeare theory until the end of his life. It took 
decades until the importance and ingenuity of his mathematical ideas were 
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fully recognized. Cantor was ahead of his time. He had shown that the set 
of rational numbers, 

24 
 

So far we have omitted the negative fractions, but we can now simply slip each negative fraction 

after the corresponding positive one in the line, and place the zero at the very first position. 

Because we can pair each rational number with a natural number, and no numbers are omitted 

from either set, there must be just as many natural numbers as there are rational numbers. A set 

whose members can be put in a waiting line without missing any one of its elements is called a 

countable set. So Cantor proved that ℚ is countable, a very surprising result! 

Encouraged by this result, we might ask whether it is also possible to put the real 

numbers (that is, the rational and the irrational numbers) into a one-to-one correspondence with 

the natural numbers. Cantor showed that this is impossible, since no matter how cleverly we try 

to arrange the real numbers to put them in a waiting line, there will always be some numbers left 

over. To be precise, for any proposed list or counting procedure of all real numbers, we can 

always construct a number that cannot be included in this list. Real numbers can have infinite 

and nonrepeating sequences after the decimal point. It is this property that makes them 

“uncountable.” An uncountable set is a set that contains too many elements to be countable and 

is, therefore, “larger” than the set of natural numbers, ℕ. 

Suppose somebody claims to have found a procedure to enumerate all positive real 

numbers smaller than 1 (this is only a subset of all real numbers). All such numbers will start 

with a zero and a decimal point, followed by an infinite sequence of digits, if we append an 

infinite sequence of zeros whenever we encounter a number with a finite fractional part. You 

may ask him to tell you which number is first in his list, which number is second, and so on. 

Assume hypothetically that you write down each number, one after the other, thereby producing 

an infinite list of numbers with infinite fractional parts. We show that we can always write down 

a number between 0 and 1 that is not a member of his list, implying that his counting scheme 

, is not larger than the set of natural numbers, N = 1, 2, 3, ...{ }, 
which is a totally counterintuitive fact. Although this statement seems to 
contradict common sense, its proof is actually rather simple and not very 
difficult to follow. The same is true for the proof of the set of real numbers, 
R , being essentially larger than N = 1, 2, 3, ...{ }, showing that there exist mathematical 
infinites of different sizes. That these very surprising and unexpected results 
can be found among the most innocent structures such as the natural, ratio-
nal, and real numbers is one facet of the beauty of mathematics.

As one of the most distinguished foreign scholars, Cantor was invited 
in 1911 to attend the 500th anniversary of the founding of the University 
of St Andrews in Scotland. He was largely motivated to go so that he could 
meet Bertrand Russell, who had recently published his book Principia 
Mathematica, where he frequently cited Cantor’s work. Unfortunately, that 
meeting never came to pass. In 1912, he was awarded an honorary doctor-
ate from the University of St Andrews, but due to illness he was unable to 
accept the degree in person. Cantor retired in 1913, living in poverty and in 
ill health. In 1917 he was living in a sanatorium in Halle, Germany, much 
against his will and continuously asking to be released. Cantor’s last years 
were plagued with illness and he died at the sanatorium of a heart attack on 
January 6, 1918.
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Chapter 38

Sofia Kovalevskaya:  
Russian (1850–1891)

In every year since 1982, more women than men have earned bachelor’s 
degrees in the United States. In every year since 2009, women have also 
earned a majority of doctoral degrees. But women did not always have 
equal opportunities when it came to higher education. The preference to 
males over females in education has been a marked feature since ancient 
societies. It wasn’t until the mid to late nineteenth century that women’s 
access to universities became widespread in the United States, largely as a 
result of the pressure produced by movements for women’s rights. While 
men are now earning a minority of college degrees at all college levels, there 
is still male privilege to be found in academia; women are more likely to be 
found in lower-ranking academic positions. In 2015, women represented 
approximately half of assistant professors and associate professors in the 
United States but accounted for only a third of the full professors’ ranks. In 
mathematics, the gap is even bigger: In 2015, women held only 15 percent 
of tenure-track positions in mathematics. Sofia Kovalevskaya (1850–1891) 
was a pioneer for women in mathematics, at a time when mathematics 
was an almost exclusively male-dominated field around the world, and it 
was widely believed that women had a natural disability for this subject. 
Furthermore, it was believed that if a woman undertook rigorous “brain 
work” such as mathematics, energy could be diverted from her reproductive 
system, threatening fertility and general well-being. Kovalevskaya was the 
first woman to obtain a doctorate (in the modern sense) in mathematics 
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and also the first woman appointed to a full professorship in modern 
Europe. Her name is still well-known among mathematicians for the 
Cauchy-Kovalevskaya theorem, a central result in the theory of differential 
equations.

Sofia Vasilyevna Kovalevskaya was born in Moscow on January 15, 
1850, the second of three children. Both of her parents were well-educated 
members of the minor Russian nobility. Her father, Lieutenant General Vasi-
ly Vasilyevich Korvin-Krukovsky, served in the Imperial Russian Army as 
head of the Moscow Artillery. Her mother, Yelizaveta Fedorovna Schubert, 
descended from a family of German immigrants with a strong academic 
background. As it was common in her family’s class at that time, Sofia was 
nursed by nannies and saw her parents only at dinner. During childhood, 
she did not have much contact with her siblings either, mainly because of 
the age difference: Her sister, Anna, was six years older than she, and her 
brother, Fjodor, was five years younger. Sofia was educated by governesses 
and private tutors, including native speakers of English, French, and Ger-
man. When Sofia was eight years old, her father retired from the army and 

Figure 38.1. Sofia Kovalevskaya.
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the family moved to Palibino, her father’s family estate in the Vitebsk prov-
ince. In the restoration of the estate, there was not enough wallpaper for 
Sofia’s nursery and so the walls were papered with pages found in the attic. 
These were in fact notes of the Ukrainian mathematician Ostrogradski’s 
(1801–1862) lectures on differential and integral analysis, left over from her 
father’s student days. Sofia was curious about the mathematical notions and 
formulas on the wall in her room and they came to life when she overheard 
her uncle, an autodidact who read a lot of mathematics books, mention 
some of the terms she had seen on the wall. Sofia later wrote the following 
in her autobiography:

“The meaning of these concepts I naturally could not yet grasp, but 
they acted on my imagination, instilling in me a reverence for mathematics 
as an exalted and mysterious science, which opens up to its initiates a new 
world of wonders, inaccessible to ordinary mortals.”

Her uncle fed her interest in mathematics and took the time to discuss 
the mathematical topics he was reading about with her. While Sofia was im-
mediately fascinated with the concepts and ideas used in calculus, she was at 
first at little bored by her lessons in elementary geometry and algebra, which 
were provided by a private tutor. However, her attraction to mathematics in 
general began to grow as they moved on to more advanced material. In fact, 
it grew so strongly that her father decided to stop her mathematics lessons, 
but she continued to study mathematics on her own. At the age of fifteen, 
she read a physics book written by her neighbor Professor Tyrtov. When 
he visited the family, he realized that she had correctly interpreted some of 
the trigonometric formulas in the chapter on optics, without having been 
tutored in trigonometry. She had developed completely on her own some 
explanations of concepts such as the trigonometric sine function. Recog-
nizing her mathematical talent, Tyrtov took quite some effort in trying to 
convince her father to let her study more advanced mathematics. He finally 
succeeded, and Sofia received private tutoring in calculus in St. Petersburg, 
where her family stayed most of the winter of 1866–1867. There she also 
met the Russian novelist Fyodor Dostoevsky (1821–1881), whom she ad-
mired. At that time, women in Russia, as well as in many other countries, 
were not allowed to attend lectures at the university, not even as guests. To 
continue her studies, Sofia would have to go abroad. However, traveling 
was also not an easy task, because women had no passports and needed 
the written permission of their father or husband to cross the border. Sofia 
entered into a marriage of convenience with Vladimir Kovalevsky, a young 
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paleontology student, book publisher, and political radical, who was the 
first to translate and publish into Russian the works of Charles Darwin. The 
couple remained in St. Petersburg for only a few months and then went to 
Heidelberg, after a short stay in Vienna. Women could not matriculate at 
the University of Heidelberg, but Kovalevskaya persuaded the authorities 
to let her study there. In 1869, she was admitted as the university’s first 
female student, although not with an official status, and with the condition 
that she would have to obtain the permission from each of her lecturers 
separately. She studied mathematics with Leo Koenigsberger (1837–1921) 
and, at his suggestion, moved to Berlin to continue her studies with Karl 
Weierstrass (1815–1897), one of the most famous mathematicians at that 
time. In spite of letters of recommendation from her professors in Heidel-
berg, Weierstrass wanted to assess her mathematical abilities personally. He 
gave her a difficult problem to solve, and when she presented her solution 
one week later, he was so impressed that he would not only accept her as his 
student, but also try to support her work. However, his advocacy was not 
enough for the university administration to allow her to attend his lectures. 
Over the next three years, therefore, Weierstrass taught her the content of 
his lectures privately, which actually turned the university’s denial to her 
advantage; Kovalevskaya later wrote, “These studies had the deepest possi-
ble influence on my entire career in mathematics. They determined finally 
and irrevocably the direction I was to follow in my later scientific work: all 
my work has been done precisely in the spirit of Weierstrass.”

By 1874, Kovalevskaya had completed three papers—on partial 
differential equations, on the dynamics of Saturn’s rings, and on elliptic 
integrals—each of which was considered worthy of a doctorate by 
Weierstrass; with his support, she was granted her doctorate, summa cum 
laude, from Göttingen University. Kovalevskaya thereby became the first 
woman to have been awarded a doctorate at a European university. The 
first of the three papers was published in Crelle’s Journal (one of the leading 
mathematics journals) in 1875. It contains what is now commonly known 
as the Cauchy–Kovalevskaya theorem, which proves the existence of local 
solutions of analytic partial differential equations under suitably defined 
initial conditions. The French mathematician Augustin-Louis Cauchy 
(1789–1857) had proved a special case in 1842, but the full result is due 
to Sofia Kovalevskaya. Because the meaning of this theorem cannot be 
accurately explained without assuming familiarity with advanced calculus, 
we will instead try to convey at least a vague idea of what it says by discussing 
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an example. To understand the significance of this theorem, it is important 
to know that partial differential equations can be used to describe a wide 
variety of physical phenomena, such as sound, heat, electromagnetic waves, 
the motion of fluids, elasticity, and even quantum mechanics, as well as 
the curvature of space-time, including gravitational waves. Each of these 
phenomena is governed by a fundamental law of physics that can be 
represented mathematically by a partial differential equation. For example, 
if you pluck a guitar string, the string will vibrate and produce sound. The 
motion of the string is governed by a partial differential equation whose 
unknown is the elongation of the string from its equilibrium position, as 
a function of position and time. Depending on where you pluck the string 
and how much force you apply, the sound produced will have different pitch 
and volume. Imagine a snapshot of the deformed string just before you let 
it go—it will have the shape of a V as shown in figure 38.2 on the left. The 
exact shape, determined by the position of the vertex along the string and 
its distance from the equilibrium position, represents our initial condition 
of the partial differential equation for the vibrating string. If you now let the 
string go, it will start to oscillate, thereby taking on a sinusoidal shape as 
shown in figure 38.2 on the right.

This oscillatory motion is described by the solution of the partial differ-
ential equation. The Cauchy-Kovalevskaya theorem states that for suitable 
initial conditions, partial differential equations do have a solution and the 
solution is unique. In our example, this means that if we are able to solve the 
equation for the vibrating string for a given initial condition at time t = 0, 
we can predict exactly how the string will move—that is, how a snapshot of 
the string at any later time t > 0 will appear. But the Cauchy-Kovalevskaya 
theorem does not only apply to the vibrating string equation; it applies to 
a wide class of partial differential equations, in particular to many of those 
used in physics, and is therefore a very fundamental result. It does not tell 

Figure 38.2.
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us, though, how to obtain the solution, but tells us under which conditions 
a unique solution exists. This is important, because if we know that there is 
a unique solution, we can use it in an abstract sense to investigate its prop-
erties. In fact, for many partial differential equations it is not possible to cal-
culate the solution explicitly, but one can find out a lot about its properties 
by assuming that it exists and then drawing conclusions from the equation 
it satisfies (for example, that the vibration of the string will decrease with 
time). This procedure of drawing conclusions about an object that we can-
not calculate is justified by the Cauchy-Kovalevskaya theorem.

After her doctorate, Kovalevskaya went back to Russia, where she want-
ed to teach mathematics. However, women were not admitted to the re-
quired teacher certification examination, so the best job she was offered was 
teaching arithmetic in girls’ elementary schools. With a bit of frustration, 
she completely turned away from mathematics, and she and her husband 
tried to become a conventional married couple. In 1878, their daughter, 
Sofia (called “Fufa”), was born. After almost two years that were devoted to 
raising her daughter, Kovalevskaya decided to resume her work in mathe-
matics. Her husband, Vladimir, never got an academic position because of 
his radical beliefs, and their attempts to support themselves with real estate 
development failed, leading them to severe financial problems. Since Sofia 
still couldn’t find an appropriate teaching position, she would now focus 
her energy on research. She started her endeavor by translating her six-
year-old doctoral dissertation (which was written in German) into Russian 
and in 1880 presented the results at a scientific conference in Russia. In the 
same year, she moved with her husband and daughter to Moscow, where 
she visited seminars of the Moscow Mathematical Society. Her fascination 
for mathematics continued to grow ever stronger, whereupon, in 1881, she 
left her husband and went with her daughter to Berlin to continue with her 
research. She immersed herself in mathematical work and sent her daugh-
ter with a governess back to Russia, to her good friend Julija Lermontowa. 
In the meantime, Vladimir got involved with an oil company, which ruined 
him financially. He had always suffered severe mood swings, and in 1883, 
he committed suicide.

At that time, it was almost impossible for women to obtain a research 
position at a university. However, thanks to the Swedish mathematician 
Gösta Mittag-Leffler (1846–1927), who had known Kovalevskaya as a fel-
low student of Weierstrass, Kovalevskaya obtained a position as privat-do-
cent at Stockholm University. In 1884, she was appointed to a five-year 
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position as assistant professor and became an editor of Acta Mathematica, a 
mathematics journal established in 1882 by Gösta Mittag-Leffler, and now 
one of the most prestigious mathematics journals. In 1888, she won the Prix 
Bordin of the French Academy of Science for a work that contained the 
discovery of what is now known as the “Kovalevskaya top”: The differential 
equation describing the motion of a spinning top cannot be solved explic-
itly for a general top, but there are three special cases for which an explicit 
solution can be calculated; the first of these three exceptions was discovered 
by Leonhard Euler, the second by Joseph-Louis Lagrange, and the third by 
Kovalevskaya.

She received further honors for her academic achievements in the fol-
lowing years and in 1889, she became full professor at Stockholm Univer-
sity. Kovalevskaya was the first woman in modern Europe to hold such a 
position. In the same year, she fell in love with Maxim Kovalevsky, who 
was distantly related to her deceased husband. However, she refused to 
marry him, because she knew that she would not be able to settle down 
and live with him. Indeed, mathematics was her first love, and it would 
also be her last. After the couple returned from a vacation in Nice, Kova-
levskaya caught pneumonia and in 1891, at age forty-one, died of influenza 
at the peak of her mathematical powers and reputation. Kovalevskaya is 
not only remembered for her significant contributions to mathematics; she 
was also a talented writer. Her non-mathematical publications include a 
memoir, A Russian Childhood (1890) and a partly autobiographical novel, 
Nihilist Girl (1890).
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Chapter 39

Giuseppe Peano:  
Italian (1858–1932)

If you have ever wondered where the symbols used in set theory came from, 
such as a symbol for union ( ) and for intersection (



), then you need 
look no further than the famous Italian mathematician Giuseppe Peano, 
who was a prolific writer, and by many considered one of the founders of 
mathematical logic and set theory. His work involving the understanding 
of the characteristics of our natural numbers (1, 2, 3, 4, . . .) has remained 
with us through his Peano axioms, which we will consider after we take a 
quick look at his life story.

Giuseppe Peano was born on a farm in Spinetta, Piedmont, Italy, on 
August 27, 1858, where his parents, Bartolomeo Peano and Rosa Cavallo, 
worked the farm and which provided a three-mile walk for Giuseppe to his 
school. His uncle noticed that young Giuseppe was a very talented child 
and took him to Turin to begin his secondary schooling in 1870. By 1876, 
he enrolled at the University of Turin and graduated at the top of his class 
in 1880. He stayed at the university after graduation and eventually got to 
a position where he was the faculty member assigned to teaching calculus, 
apparently a significant honor at that time. His first written work was a 
textbook on calculus, which he published in 1848, which was then followed 
by a book on mathematical logic that has made him famous to this day; it 
was in this book that he introduced the modern symbols we use in studying 
sets, such as symbols for intersection and union, as mentioned above.

In 1887, Peano married Carola Crosio, during a time when he was also 
teaching at the Royal Military Academy, where he was later promoted to 
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Figure 39.1. Giuseppe Peano.

Figure 39.2. Giuseppe Peano and his wife Carola Crosio in 1887.
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professor first-class. That was the time, in 1889, when he published his fa-
mous Peano axioms, which allow us to prove many relationships involving 
the natural numbers. As we mentioned earlier, Peano was a very prolif-
ic writer. The journal Rivista di Mathematica, which he founded, had its 
first publication in 1891. That same year he started a “Formulario Project,” 
which was a compilation of all the known theorems and formulas used in 
mathematics; however, in this book he introduced his own notation. This 
led to some complications in the printing process, since he wanted all for-
mulas to be printed on one line. As a result, he purchased his own printing 
press to ensure that this requirement was held firm.

In Paris, at the Second International Congress of Mathematicians in 
1900, he met the famous British mathematician and logician Bertrand Rus-
sell (1872–1970), who was so impressed with his Formulario Project and 
the innovative logical symbols used therein that he left the conference ear-
lier than planned just so he could read the book sooner. Russell then used 
Peano’s logic notation in his later writings.

In 1901, when Peano was at the peak of his career, presenting at confer-
ences and teaching calculus, differential equations, and vector analysis, he 
was also overly involved with his Formulario Project, so much so that his 
teaching began to weaken, and he was dismissed from the Royal Military 
Academy. However, he did retain his position at the University of Turin.

It is not uncommon for brilliant people to do things that are sometimes 
extraordinary or unusual. In 1903, Peano began to write in a form of Latin 
that he called Latino sine Flexione, which was later referred to as Interlingua 
and was based on a synthesis of Latin, German, English, and French 
vocabularies—however, with a very simplified type of grammar, removing 
all irregular forms. He did give speeches in this form of Latin and it was 
seen as a new language, one that served an international purpose.

Continuous work on the Formulario Project led to his publishing the 
fifth edition titled Formulario Mathematico in 1908. By this time the collec-
tion contained 4,200 theorems and formulas, along with justifications and 
proofs.

By 1910, Peano began to concentrate his efforts on writing mathemat-
ics texts for the secondary schools as well as a dictionary of mathematics. 
He also dabbled with international language issues. He continued to pub-
lish and to teach, eventually moving from infinitesimal calculus to comple-
mentary mathematics, which he felt better suited his style of mathematical 
thinking. He continued to teach at the University of Turin until he died of a 
heart attack in Turin on April 20, 1932.
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The popular legacy that Peano has left for us are the Peano axioms, 
which are as follows:

1.	 There exists a natural number 1.
2.	 Every natural number has a unique successor, which is also a nat-

ural number.
3.	 The number 1 is not a successor of any natural number.
4.	 If two successors are equal, the numbers of which they are the suc-

cessors are also equal.
5.	 If a set S of natural numbers contains 1, and if the successor of ev-

ery number in S is also in S, then S is the set of all natural numbers.

It is the fifth axiom that renders us a form of proof called mathematical 
induction. This can then be restated thus: if a theorem is true for n = 1, and 
if the truth of the theorem for n = k implies the truth of the theorem for n = 
k + 1, then the theorem is true for all positive integral values of n.

Let’s apply this now to prove that the sum of all odd integers is equal to 
a square number. We would write this symbolically as 

Sn = 2a−1= n2
a=1

n

∑ , or more simply written as: 

Sn =1+3+5+!+ (2n−1) = n2 .

Using Peano’s fifth axiom, we must show that the relationship 

Sn = 2a−1= n2
a=1

n

∑
 
is true for n = 1. That is, S1 =1

2 =1 .

This time we will assume that the theorem is true for some value of n, 
such as k:

Sk =1+3+5+7+!+ (2k −1) = k 2 . We must now prove that if this theo-
rem is true for n = k, it must also be true for the next consecutive value of 
n, which is n = k + 1. To do that we need to add the next odd integer (2k 
+ 1) to both sides of the above equation: 
Sk + (2k +1) =1+3+5+7+!+ (2k −1)+ (2k +1) = k 2 + (2k +1) . 
We then get Sk+1 = k

2 +2k +1= (k +1)2 .
Thus, we have proved that since the theorem was true for n = 1, and 

then we assumed it was true for n = k, and then showed it was true for the 
successor—namely, n = k + 1, we can conclude that it is true for all natural 
numbers. This is the very important legacy developed by Giuseppe Peano.
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Chapter 40

David Hilbert:  
German (1862–1943)

Until 1899, through most of the development of mathematics, it was felt 
that the work of Euclid was conclusive to our understanding of geometry. 
However, in 1899 the German mathematician David Hilbert published a 
book titled Foundations of Geometry, where he proposed a set of axioms 
that were to substitute for Euclid’s traditional axioms. Among these axioms 
was the concept of betweenness, something with which Euclid did not con-
cern himself. You might ask, how might this affect our study of geometry? 
To better understand how this concept firms up our study of geometry, we 
will begin by considering an example that could be easily shown in high 
school geometry and demonstrates—rather dramatically—what happens 
when we don’t consider the concept of betweenness, as Euclid didn’t.

Mistakes in geometry—also sometimes called fallacies—tend to come 
from faulty diagrams that result from a lack of definition. Yet, as we know, 
in ancient times some geometers discussed their geometric findings or re-
lationships in the absence of a diagram. For example, in Euclid’s work, the 
concept of “betweenness” was not considered. When not considering this 
concept, we can prove that any triangle is isosceles—that is, that a triangle 
that has three sides of different lengths actually does have two sides that are 
equal. This sounds a bit strange, but we can demonstrate this “proof,” which 
yearns for the concept of betweenness.

We shall go through this short journey to expose this ridiculous result. 
So let’s begin by drawing any scalene triangle (i.e., a triangle with no two 
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sides of equal length) and then “prove” it is actually isosceles (i.e., a triangle 
with two sides of equal length). Consider the scalene triangle ABC, where 
we then draw the bisector of angle C and the perpendicular bisector of AB. 
From their point of intersection, G, draw perpendiculars to AC and CB, 
meeting them at points D and F, respectively. Depending on the shape of 
the scalene triangle drawn, we could now have four possibilities meeting 
the above description for the various scalene triangles: One possible config-
uration is shown in figure 40.1, where CG and GE meet inside the triangle 
at point G. 

Another configuration is shown in figure 40.2, where CG and GE meet 
on side AB. (Points E and G coincide.)

A third configuration is shown in figure 40.3, where CG and GE meet 
outside the triangle (in G), but the perpendiculars GD and GF intersect the 
segments AC and CB (at points D and F, respectively).

Our fourth configuration is shown in figure 40.4, where CG and GE 
meet outside the triangle, but the perpendiculars GD and GF intersect the 
extensions of the sides AC and CB outside the triangle (in points D and F 
respectively).

The “proof ” of the mistake or fallacy can be done with any of the 
above figures. Follow along and see if the mistake shows itself without 

Figure 40.1.
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Figure 40.2.

Figure 40.3.
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reading further. We begin with a scalene triangle ABC. We will now 
“prove” that AC = BC (or that triangle ABC is isosceles).

As we have an angle bisector, we have ACG  BCG. We also have 
two right angles, such that CDG  CFG. This enables us to conclude that 

CDG  CFG (SAA). Therefore, DG = FG, and CD = CF, since a point on 
the perpendicular bisector (EG) of a line segment is equidistant from the 
endpoints of the line segment AG = BG. Also ADG and BFG are right 
angles. We then have DAG  FBG (because they have a respective hy-
potenuse and leg congruent). Therefore DA = FB . It then follows that AC 
= BC (by addition in figs. 40.1, 40.2, and 40.3; by subtraction in fig. 40.4).

At this point you may feel quite disturbed. You might challenge the 
correctness of the figures. Well, by rigorous construction you will find a 
subtle error in the figures. We will now divulge the mistake and see how it 
leads us to a better and more precise way of referring to geometric concepts, 
something Hilbert’s axioms attempted to do.

First, we can show that the point G must be outside the triangle. Then, 
when perpendiculars meet the sides of the triangle, one will meet a side 

Figure 40.4.
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between the vertices, while the other will not. We can “blame” this mistake 
on Euclid’s neglect of the concept of betweenness.

Begin by considering the circumcircle of triangle ABC (fig. 40.5). The 
bisector of angle ACB must contain the midpoint, M, of arc AB (because 
angles ACM and BCM are congruent inscribed angles). The perpendicular 
bisector of AB must bisect arc AB, and therefore, pass through M. Thus, the 
bisector of angle ACB and the perpendicular bisector of AB intersect on the 
circumscribed circle, which is outside the triangle at M (or G). This elimi-
nates the possibilities we used in figures 40.1 and 40.2.

Now consider the inscribed quadrilateral ACBG. Since the opposite 
angles of an inscribed (or cyclic) quadrilateral are supplementary, CAG +  

CBG = 180°. If angles CAG and CBG were right angles, then CG would be 
a diameter and triangle ABC would be isosceles. Therefore, since triangle 
ABC is scalene, angles CAG and CBG are not right angles. In this case one 
must be acute and the other obtuse. Suppose angle CBG is acute and angle 
CAG is obtuse. Then in triangle CBG the altitude on CB must be inside the 
triangle, while in obtuse triangle CAG, the altitude on AC must be outside 

Figure 40.5.
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the triangle. The fact that one and only one of the perpendiculars intersects 
a side of the triangle between the vertices destroys the fallacious “proof.” 
This demonstration hinges on the definition of betweenness, a concept not 
available to Euclid, but made clear through Hilbert’s axioms.

David Hilbert was born on January 23, 1862, in Königsberg, Prussia, 
which today is Kaliningrad, Russia, but then a German city. His father, Otto 
Hilbert, was a city judge and his mother, Maria Hilbert, pursued philosophy 
and astronomy. With this rearing, David Hilbert, as a child, already showed 
a special gift for mathematics and an interest in languages. In 1872, he en-
tered the Friedrichs Kolleg Gymnasium, and seven years later graduated 
from the Wilhelm Gymnasium. The following year, in 1880, he enrolled in 
the University of Königsberg to study mathematics. There he befriended a 
colleague mathematician, Hermann Minkowski (1864–1909), who in 1882 
returned from Berlin to Königsberg, where he had been previously study-
ing. Minkowski became Hilbert’s dearest lifelong friend. In 1884, Hilbert 
and Minkowski collaborated with a newly arrived professor from Göttin-
gen, Adolf Hurwitz (1859–1919). This three-way friendship and collabo-
ration had a lasting effect on their professional careers. Upon receiving his 
doctorate in 1885, Hilbert began to prepare for the state examination to 
qualify for a teaching position at a gymnasium. Of course, he passed the 
examination. During this time, he also attended courses on plane geometry 

Figure 40.6. David Hilbert in 1910 and 1940.
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and spherical geometry. Hurwitz suggested that he spend the winter of that 
year at the University of Leipzig, specifically to attend the lectures of the 
well-known German mathematician Felix Klein (1849–1925). Klein then 
suggested that he visit Paris, to establish contact with several famous math-
ematicians, which he did successfully, even though it was somewhat strenu-
ous for his French colleagues to speak German, since Hilbert was unable to 
speak French. Soon thereafter, he returned to the University of Königsberg 
to be a member of the faculty from 1886 until 1895, being appointed to the 
full professorship in 1893.

On October 12, 1892, Hilbert married his second cousin, Käthe Je-
rosch. They had one son, Franz, who was born on August 11, 1893. Hilbert’s 
professional career moved along with the strong support of Felix Klein, who 
arranged for Hilbert to be appointed to the chair of mathematics at the Uni-
versity of Göttingen, which was a center for many famous mathematicians 
such as Carl Friedrich Gauss (see chap. 29), Bernhard Riemann (see chap. 
36), and Emmy Noether (see chap. 42), to name just a few. Hilbert spent the 
rest of his professional life at the University of Göttingen, where he super-
vised 69 doctoral students, many of whom became famous mathematicians 
in their own right. Hilbert also showed an intense interest in mathemati-
cal physics, which built a strong physics component at the university, and 
which ultimately showed its significance in having generated three Nobel 
laureates in physics: Max von Laue (1914), James Franck (1925), and Wer-
ner Heisenberg (1932).

In 1899, Hilbert published a book titled Foundations of Geometry, 
where he proposed a set of axioms that were intended to replace those that 
Euclid made famous in his Elements. Over the next several years, the book 
was translated into several languages. This set a new trend of a modern ax-
iomatic method. One newly introduced concept was that of betweenness, 
as we mentioned earlier.

In the Appendix (see page 401), we provide a summary of Hilbert’s Ax-
ioms, but note that line segments, angles, and triangles may each be defined 
in terms of points and straight lines, using the relations of betweenness and 
containment. All points, straight lines, and planes in the following axioms 
are distinct, unless otherwise stated. Hilbert’s axioms essentially unified 
plane geometry and solid geometry into a single system.

In 1900, at the Second International Congress of Mathematicians in Par-
is,1 Hilbert proposed his famous 23 unsolved problems, which were con-
sidered the most challenging problems ever produced by a mathematician. 
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Hilbert surveyed many fields of mathematics as he developed this list of 
23 research problems that he thought would be a significant challenge to 
mathematicians going into the 20th century. By the way, one of his stat-
ed problems was Goldbach’s Conjecture (see chap. 21). Unfortunately, the 
problems proposed are beyond the scope of this book.2 However, suffice it 
to say, many of the problems were solved during the twentieth century.

Hilbert was also very concerned with logical reasoning, which certain-
ly set the course of formalistic foundations of mathematics for the twentieth 
century and beyond. His work around 1910 with integral equations eventu-
ally led to research in functional analysis, which has had significant appli-
cations in physics. About this time, he also proved a conjecture in number 
theory—namely, that all positive integers can be expressed as the sum of a 
certain number of nth powers. For example, 11 = 32 + 12 +12, where n =2, or 
as another example, 65 = 43 + 13, where n =3.

Throughout the early part of the twentieth century, Hilbert remained 
a major contributor in the field of mathematics, as evidenced that from 
1902 until 1939, he was the editor of Mathematische Annalen, one of the 
world’s leading mathematical journals. In 1925, at age 63, Hilbert contract-
ed the vitamin deficiency disease pernicious anemia, which left him rather 
exhausted and he never produced as much after that time as he did in his 
previous years.

Another detrimental aspect of this brilliant mathematician’s career oc-
curred in 1933, when the Nazis removed many significant Jewish faculty 
members from the University of Göttingen. During the following year, Hil-
bert had occasion to meet the German minister of education, Bernhard 
Rust, who asked Hilbert if the Mathematical Institute had suffered much as 
a result of the removal of the Jewish faculty members. Hilbert replied, “Suf-
fered? It doesn’t exist any longer, does it!”3 Initially, Hilbert spoke out ve-
hemently against the Nazi repression of his Jewish mathematician friends. 
However, in time, when he saw that his disgust was futile, he remained si-
lent and withdrawn. Although he was raised as a Calvinist, he later left the 
church and became an agnostic. Hilbert died on February 14, 1943, in rel-
ative obscurity; most of his colleagues at the University of Göttingen were 
gone.

There are many aspects of mathematics for which Hilbert is remem-
bered today. One such is known as a Hilbert space, which is a generaliza-
tion of a Euclidean space. This extends the methods of vector algebra and 
calculus to spaces with any finite or infinite number of dimensions. Hilbert 
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spaces provided the basis for important contributions to physics over the 
following decades and may still offer one of the best mathematical formu-
lations of quantum mechanics. We show an example of a Hilbert algorithm 
for space-filling curves in figure 40.7.4

The mid-1930s was also the time when Hilbert and the Swiss mathema-
tician Paul Bernays (1888–1977) coauthored the two-volume work Foun-
dations of Mathematics, which presented fundamental mathematical ideas 
and introduced a collection of axiomatic systems, which formalized natural 
numbers and their subsets, and which offered an alternative to axiomatic 
set theory.

Hilbert’s legacy lives on today because of the many innovations he made 
in a variety of fields of mathematics. This is evidenced by the many mathe-
matical concepts that still carry his name, such as Hilbert Number, Hilbert 
Matrix, Einstein–Hilbert Equations, Hilbert’s Axioms, Hilbert System, Hil-
bert Polynomial, Hilbert Function, Hilbert Curves, and many others.

Figure 40.7.
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Chapter 41

G. H. Hardy:  
English (1877–1947)

In today’s technical world, mathematics is seen as the key to advancement, 
which means that mathematics is being received and appreciated for its use-
fulness not only in the sciences and in computer science, but also in finance 
and other logic-based fields. As a result, the curricula in many schools to-
day, which should show mathematics through its power and beauty, focuses 
largely on the former and not so much on the latter. England’s most famous 
mathematician of the twentieth century, G. H. Hardy spent his life champi-
oning the notion that mathematics should be appreciated for its beauty, and 
not necessarily for its usefulness, although some of his research has applied 
mathematics to solve problems in fields such as genetics. As a matter of fact, 
in 1940, he wrote an essay on the aesthetics of mathematics, which is still 
available today as a book titled A Mathematician’s Apology, where he tries 
to give the layman insights into the mind of a mathematician. The overar-
ching theme is that mathematics should be appreciated for its own beauty, 
rather than for its usefulness to solve problems in other fields. Thus, he 
enthusiastically pursued studying pure mathematics as opposed to applied 
mathematics, where the latter was an abhorrence to him, especially when it 
was applied to military strategies and maneuvers.

Godfrey Harold Hardy was born on February 7, 1877, in Cranleigh, 
Surrey, England, to parents who were both educators and with a special tal-
ent in mathematics. Unfortunately, because of a lack of funding, they were 
not able to afford a university education. Perhaps somewhat motivated by 
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his parents, Hardy showed early signs of mathematical talent when at the age 
of two he was able to write the sequence of numbers from 1 to 1,000,000. He 
went to school in his hometown up to age 12, and in 1889 won a scholarship 
to Winchester College, Winchester, England. This college was considered 
at the time to offer the best training in mathematics in England; however, 
Hardy found nothing enjoyable there beyond the academic training. Hardy 
was relatively frail and shy as compared to his colleagues and found beat-
ing them in mathematics gave him some posture. In 1896, Hardy entered 
Trinity College, Cambridge University on a scholarship. At the start he was 
assigned to Robert Rumsey Webb (1850–1936) as his coach, who seemed 
more interested in showing him how to pass examinations than to make the 
subject of mathematics interesting and exciting. As he was contemplating 
a change of subject interest to history, he had the good fortune of having a 
new coach, A. E. H. Love, who guided him to read material that once again 
rekindled his interest in mathematics. In later years, Hardy claims that Ca-
mille Jordan’s (1838–1922) book, Cours d’analyse, had a lasting effect on 
him and defined for him what mathematics really meant.

Figure 41.1. G. H. Hardy.
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In 1898, Hardy graduated as the fourth-highest level mathematics stu-
dent from Cambridge University’s graduating class, which disappointed 
him greatly, because he thought he should be at the top of the graduating 
class. Yet in 1900, he was elected a fellow of Trinity College, and then the fol-
lowing year was awarded Smith’s Prize for Excellence in Mathematics. Over 
the next decade, he wrote many professional papers on the convergence of 
series and integrals and other allied topics. However, his most distinctive 
work during this period was in 1908 where he published A Course of Pure 
Mathematics, which was the first rigorous English exposition of number, 
functions, limits, etc. This book was aimed at the undergraduate population 
and was a major transformation of the curriculum to that point. Hardy was 
very modest about his work and in retrospect in later years, he was not too 
enchanted with his mathematics production during that time.

In 1911, Hardy began to collaborate with John E. Littlewood (1885–
1977), which was to be a relationship that lasted 35 years. They worked on 
mathematical analysis and analytical number theory. They were involved 
in grappling with Waring’s problem, which states that a natural number n 
has an associated positive integer k, such that every natural number is the 

Figure 41.2. Hardy and Littlewood in 1924.
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sum of the at most k natural numbers to the power of n. For example, every 
natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth pow-
ers. The problem was posed by the British mathematician Edward Waring 
(1736–1798) in 1770 and was proved to be true by David Hilbert in 1909. It 
served as the basis for further investigations by Hardy and Littlewood, who 
further made a number of conjectures. 

One of their conjectures dealt with twin prime numbers, which are 
prime-number pairs that are consecutive odd prime numbers, for example, 
5 and 7 are twin primes, as are 41 and 43. They took this a step further to 
investigate sequences of primes with a common difference between them. 
Another of their conjectures concerns the number of primes in intervals. 
The conjecture states that π (x+ y) ≤ π (x)+π ( y) , where π (x) represents the 
number of prime numbers less than or equal to the real number x. For ex-
ample, π (2) = 1, since there is only one prime number less than or equal 
to 2—namely, 2 itself. Thus, the conjecture implies that π y+2( ) ≤1+π y( ) ,  
or π y+2( ) − π y( ) ≤1, meaning that the number of primes greater than y 
and less than or equal to y + 2 is at most 1. This is correct because at most 
one of two consecutive numbers can be prime. However, the conjecture 
even states that π x+ y( ) − π x( ) ≤ π y( ) , which means that the number of 
primes greater than π (x) and less than or equal to π x+ y( )  is not larger 
than the number of primes between 1 and y. In other words, the number of 
primes among n consecutive numbers gets smaller as the starting number 
gets larger. Over the next several decades this collaboration between Hardy 
and Littlewood was considered one of the major accomplishments in the 
field of mathematics. Today there are seven volumes published by Oxford 
University Press consisting of Hardy’s collected papers,1 many of which are 
collaborations with Littlewood and Ramanujan, as well as with other fa-
mous mathematicians.

By 1913, life began to change for Hardy. He received a letter from the 
Indian mathematics enthusiast Srinivasa Ramanujan asking to obtain sup-
port with his studies. Previously, Ramanujan’s efforts to obtain support were 
ignored by two other eminent mathematicians, but somehow Hardy recog-
nized the genius from the received correspondence and invited Ramanujan 
to visit him at Cambridge, England. This led to an important collaboration 
that resulted in five very significant mathematical papers. (See chap. 43 
for more about this collaboration.) One example of Hardy’s collaboration 
with Ramanujan is known as the Hardy-Ramanujan asymptotic formula, 
which has broad applications in physics. This work was based on integer 



326	 M AT H  M A K E R S

partitions, which are ways of writing positive integers as a sum of other 
integers. That is, two sums that differ only by which numbers are added to 
arrive at the sums are considered the two partitions of the same sum. For 
example, the number 4 can be partitioned in five distinctive ways: 4, 3 +1, 2 
+ 2, 2 + 1 + 1, 1 + 1 + 1 + 1. 

This was roughly the time when his research partner Littlewood left 
Cambridge to join the Royal artillery in World War I. Hardy would have fol-
lowed him, but he was rejected from military service on medical grounds. 
However, by 1919, relatively unhappy at Cambridge University, he took the 
position of Savilian Professor of Geometry at Oxford University. This began 
a productive stretch of time; he was once again collaborating with Little-
wood, who remained at Cambridge University.

Although Hardy prided himself on concentrating on pure mathematics, 
he also got involved in solving problems a bit outside of the mathematical 
realm. One such was an issue raised by the German obstetrician Wilhelm 
Weinberg in 1908, which Hardy perfected to form the Hardy-Weinberg 
principle, and which states that allele and genotype frequencies in a popu-
lation will remain constant from generation to generation in the absence of 
other evolutionary influences.

Figure 41.3. Ramanujan (center) and Hardy (right).
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Although Hardy never married, he did have some relationships, yet he 
was a rather shy person who tried not to be the center of attention, even 
when he was being honored. Despite his shyness he had developed friend-
ships with well-known mathematicians and philosophers of his day, such as 
Bertrand Russell, John Maynard Keynes, G. E. Moore, George Polya, and 
others. He was a member of several societies in his later years, such as the 
Cambridge Apostles and the Bloomsbury Group.

He felt that his most productive years were his young years. In his fa-
mous paper A Mathematician’s Apology, he cited other famous mathemati-
cians whose most productive years were before age 40, such as Galois, who 
died at age 20; Abel, who died at 27; Ramanujan, who died at age 33; and 
Riemann, who died at 40. Yet he did mention exceptions such as Gauss, 
who published a work on differential geometry at age 50, but he claims to 
have done the work at age 40. (Perhaps that could account for the rule that 
in order to qualify for the most prestigious prize in mathematics, the Fields 
Medal, one cannot be older than age 40.) We should take note that the con-
queror of Fermat’s Last Theorem, the British mathematician Andrew Wiles, 
performed this feat at age 42.

At the end of World War II in 1945, Hardy’s health began to weaken as 
did his creativity, and as a result he became rather depressed. Even walking 
became a chore for him, and he was forced to use other forms of transpor-
tation such as taxis. In mid-1947 he tried to commit suicide by taking an 
overdose of barbiturates. This did not take his life but made him rather ill 
and bedridden. He told his friends that he simply wanted to die, but he did 
not choose to attempt suicide again since he was not good at it. His sister 
looked after him in his last days and he died on December 1, 1947, in Cam-
bridge, England.

A few weeks before he died, Hardy received the Copley Medal of the 
Royal Society “for his distinguished part in the development of mathemat-
ical analysis in England during the last 30 years.” It should be noted that he 
was seen in England as a leading figure in mathematics, as evidenced by the 
fact that he was president of the London Mathematical Society from 1926 
to 1928 and again from 1939 to 1941. And in 1929 the society awarded him 
the De Morgan Medal, which was a great honor.

Throughout his life, Hardy was an atheist and loved the sport of cricket. 
In fact, the two loves of his life were mathematics and cricket. We mentioned 
his shyness, which also manifested itself in his not allowing his photograph 
to be taken, so there are believed to be only five photographs ever taken of 
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him. He also despised having a mirror in his midst, and it is said that when-
ever he entered a hotel room with a mirror, he immediately covered it with 
a towel. He was very devoted to his students and expected perfection from 
them, yet he felt that one of his greatest contributions to mathematics was 
discovering Ramanujan.

Perhaps in closing the biography of Godfrey Harold Hardy it would 
be appropriate to consider a quotation from his essay A Mathematician’s 
Apology:

I emphasised the permanence of mathematical achievement—What 
we do may be small, but it has a certain character of permanence; 
and to have produced anything of the slightest permanent interest, 
whether it be a copy of verses or a geometrical theorem, is to have 
done something utterly beyond the powers of the vast majority of 
men. And—In these days of conflict between ancient and modern 
studies, there must surely be something to be said for a study which 
did not begin with Pythagoras, and will not end with Einstein, but is 
the oldest and the youngest of all.

Figure 41.4. Hardy leading his cricket team onto the field.
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Chapter 42

Emmy Noether:  
German (1882–1935)

You have probably seen an ice skater spinning on the tip of one skate, and 
suddenly start spinning dramatically faster as she pulls her limbs closer to 
her body. This faster rotation results from a redistribution of mass. You can 
make yourself suddenly spin faster while sitting in a rotating desk chair. Sit 
in the chair and hold your arms and legs straight out, and have a friend give 
you a gentle spin. While you are spinning slowly, quickly pull the masses in 
toward your body and notice that you rotate much faster. If you stick out 
your arms and legs, you will slow down again. The spinning desk chair is a 
demonstration of the “conservation of angular momentum,” which is one of 
the fundamental conservation laws in physics. It is similar to the conserva-
tion of linear momentum, which is more familiar to most people. Newton’s 
first law states that every object will remain at rest or in uniform motion in 
a straight line unless it is acted upon by a force. Today, we call this obser-
vation the law of conservation of momentum. The linear momentum, p, of 
an object with mass m and velocity v is the product mv. It is a conserved 
quantity, meaning that its value and direction remain constant as long as no 
force is applied. Similarly, a rotating object tends to remain rotating with a 
constant angular momentum unless it is acted upon by an outside twisting 
force. If an object with mass m rotates with an angular velocity w, then its 
angular momentum, L, is the product mwr2, where r is the radius of the cir-
cle that the object traces out. In a closed physical system, the total angular 
momentum is conserved, meaning that its value and the axis of rotation 
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remain constant. If you are sitting in a spinning desk chair with your arms 
and legs stretched out, these parts of your body will trace out circles of 
certain radii as the chair rotates. If you now pull your arms and legs closer 
to your body, the radii of these circles get smaller. But since the total angu-
lar momentum of the spinning chair is conserved—meaning that the value 
of the product mwr2 remains constant—a smaller radius implies that the 
angular velocity increases. For example, if the radius is halved, w will qua-
druple. Thus, the increase in angular velocity as you pull your arms and legs 
to your body is a consequence of the conservation of angular momentum. 
Note, however, that we have not taken friction into account here. Friction 
acts like a force counteracting the rotation; it will gradually make the chair 
spin more slowly until it eventually stops. Linear and angular momentum 
are not the only quantities in physics satisfying conservation laws; other 
examples include energy and mass. Conservation laws have always been 
very important in physics, yet they often appeared somewhat miraculously 

Figure 42.1. Emmy Noether.
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as not-at-all-obvious consequences of the governing equations of a physical 
theory. However, in the early twentieth century the German mathematician 
Emmy Noether made a discovery that provided both deeper insight into 
conservation laws and a practical calculation tool to find all conservation 
laws within a given physical theory. Noether proved that if a physical sys-
tem has a symmetry property, then there is always an associated conserva-
tion law. For example, a system is symmetric under rotations if it behaves 
the same, regardless of how it is oriented in space. Noether’s theorem then 
tells us that the angular momentum of the system is conserved. Noether’s 
theorem was a milestone in theoretical physics; her work continues to be 
relevant to the development of theoretical physics and mathematics. Al-
bert Einstein described her as the most important woman in the history of 
mathematics. Let us now find out who this spectacular woman was.

Amalie Emmy Noether was born on March 23, 1882, in the town of Er-
langen, Germany. Her first name was “Amalie,” after her mother Ida Ama-
lia Kaufman, but already at a very young age she started using her middle 
name, “Emmy.” Both her parents came from wealthy Jewish merchant fam-
ilies. Emmy was the first of their four children and the only girl. Her father, 
Max Noether, was a renowned mathematician and a professor at the Uni-
versity of Erlangen. Yet Emmy did not show any particular interest in math-
ematics in elementary school. Furthermore, she was nearsighted and had a 
slight lisp, and so did not stand out in any way. At high school she studied 
German, English, French, and arithmetic. She was also taught to cook and 
clean and took piano lessons. High schools were not coeducational at that 
time, and the curriculum of girls’ schools was tailored to their future role as 
housewives. Emmy loved to dance, but otherwise she was not very enthu-
siastic about activities that were considered typical for girls. Mathematics 
was not intensively taught at her school. She finished high school in 1897, 
and after further study of English and French she took the Bavarian State 
teacher certification examinations; in 1900, she became a certificated teach-
er of English and French in Bavarian girls’ schools. Although she was now 
qualified to teach languages at girls’ schools, she decided not to pursue this 
path any further, but instead to aim at a higher education. Against many ob-
stacles, Noether continued her studies at the University of Erlangen, where 
she was one of only two female students. Women were not officially al-
lowed to study at universities, and therefore she had to get permission from 
each professor whose lecture she wanted to attend. Her focus had mean-
while shifted to mathematics, although she was still interested in studying 
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languages as well. In 1903, she passed the entrance examination that would 
have allowed a male student to enter any university. She went to the Uni-
versity of Göttingen, which was the leading place for mathematical research 
in Germany at that time. While in Göttingen, she attended lectures by Karl 
Schwarzschild, Otto Blumenthal, David Hilbert, Felix Klein, and Hermann 
Minkowski. Again, she was only allowed to audit lectures as a guest, with-
out being officially enrolled. After one semester at Göttingen, in 1904, she 
returned to Erlangen, when the university finally allowed women to enroll. 
She declared her intention to study mathematics and was then among the 
first women in Germany to officially study at a university. She completed 
her dissertation under the supervision of Paul Gordan in 1907. The natu-
ral next step would have been the habilitation, a postdoctoral qualification 
that was required for a professorship. Of course, this track was not possible 
for Emmy Noether; restrictions on women’s access to universities at these 
higher levels were still in effect. For the next seven years she taught at the 
University of Erlangen’s Mathematical Institute without pay, assisting her 
father and substituting for him when he did not have time to hold a sched-
uled lecture. She also continued her research and published papers extend-
ing the work of her thesis. The quality of her work made her name known 
to other mathematicians, and in 1909, Noether became a member of the 
German Mathematical Society and was invited to give a lecture at its annual 
meeting. Naturally, she would stand out at such extremely male-dominated 
events. During a mathematical conference in Vienna in 1913, she visited 
the Austrian mathematician Franz Mertens (1840–1927), whose grandson 
later remembered her visit, describing her as follows:

Although a woman, [she] seemed to me like a Catholic chaplain from 
a rural parish—dressed in a black, almost ankle-length and rather 
nondescript, coat, a man’s hat on her short hair . . . and with a shoul-
der bag carried crosswise like those of the railway conductors of the 
imperial period, she was rather an odd figure.

In 1915, Noether was invited to Göttingen by David Hilbert and Felix 
Klein, who needed her help in understanding certain aspects of general 
relativity, a geometrical theory of gravitation developed by Albert Einstein 
(1879–1955). They encouraged her to apply for a habilitation at the Uni-
versity of Göttingen. However, she received strong protests from numerous 
other faculty members. Reportedly, one of the professors asked, “What will 
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our soldiers think when they return to the university and find that they are 
required to learn at the feet of a woman?”—to which Hilbert gave a now-fa-
mous reply: “We are a university, not a bath house!” Yet Hilbert’s efforts 
turned out to have been in vain, when the responsible authorities rejected 
a petition of the faculty to grant her the habilitation to become a privat-do-
cent. Without an official position, she could not receive any payment from 
the university and her lectures were advertised under Hilbert’s name, with 
Noether as his “assistant.” Without her family’s financial support, she would 
not have been able to continue her research at the University of Göttingen. 
Soon after her arrival at Göttingen, she proved the theorem now known as 
Noether’s theorem, which was, however, not published until 1918. Upon 
receiving her work, Einstein wrote to Hilbert,

Yesterday I received from Miss Noether a very interesting paper on 
invariants [conserved quantities]. I’m impressed that such things 
can be understood in such a general way. The old guard at Göttingen 
should take some lessons from Miss Noether! She seems to know her 
stuff.

In 1918, after the end of World War I and the collapse of the German 
empire, Germany became a republic and women’s rights were significantly 
improved, including the admission of women to the habilitation process. In 
1919, Emmy Noether became the first woman to be granted a habilitation, 
allowing her to obtain the rank of privat-docent—however, still without a 
salary. It was not until 1922 that she became what translates to an “associate 
professor without tenure,” and began to receive a modest salary. Until then 
she had to live off a small inheritance, adopting a frugal lifestyle that she 
would maintain for the rest of her life. In 1924, a young Dutch mathema-
tician, B. L. van der Waerden (1903–1996), began working with Noether, 
who provided fundamental ideas of abstract conceptualization. In 1931, he 
published Moderne Algebra, an influential two-volume treatise on abstract 
algebra. The second volume is based heavily on Noether’s work. Although 
Noether did not seek recognition, van der Waerden included the following 
as a note in the seventh edition: “based, in part, on lectures by E. Artin and 
E. Noether.” Noether remained a leading member of the University of Göt-
tingen mathematics department until 1933, during which time she had vis-
iting professorships in Moscow and Frankfurt-am-Main, Germany. How-
ever, despite her major contributions in the field of mathematics, she was 
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never promoted to full professor at the University of Göttingen. In 1933, 
Hitler became the German Reichskanzler and the Nazi administration im-
mediately began to remove Jews and politically suspect government em-
ployees from their jobs, including university professors. Moreover, anti-Se-
mitic attitudes, from both students and colleagues, made the universities 
hostile environments for Jewish professors. Noether was dismissed by the 
Prussian Ministry for Sciences, together with several of her colleagues at 
the University of Göttingen, including Richard Courant, who later founded 
an institute for graduate studies in applied mathematics in New York City, 
now known as the famous Courant Institute of Mathematical Sciences at 
New York University. When the Nazi Party came to power, a large number 
of German professors lost their employment, among them several future 
Nobel laureates. Their colleagues in the United States and in other coun-
tries sought to provide job opportunities for them, mainly to the United 
States and Great Britain, leading to a historic emigration of brain power 
from continental Europe. In fact, the rise of fascism in Europe in the 1930s 
put an end to Europe’s cultural and intellectual supremacy. The exiles from 
Germany and, later, Austria, Italy, and France, enabled the United States to 
gain supremacy in many sciences and mathematics. Noether was contacted 
by representatives of two educational institutions: Bryn Mawr College in 
Pennsylvania, and Somerville College at University of Oxford, England. She 
accepted a one-year visiting professorship at Bryn Mawr College, where she 
was made very welcome by Anna Johnson Pell Wheeler, who was head of 
mathematics and who had studied at the University of Göttingen in 1905. 
In 1934, Noether was invited to give weekly lectures at the Institute for Ad-
vanced Study in Princeton. However, she remarked about Princeton that 
she was not welcome at “the men’s university.” In April 1935, doctors dis-
covered a tumor in Noether’s pelvis. She was operated on two days later. Al-
though the operation seemed to have been successful at first, she collapsed 
a few days later and died on April 14, 1935, in Bryn Mawr, Pennsylvania. 
Noether never married and had no children.

Emmy Noether is consistently ranked as one of the greatest mathema-
ticians of the twentieth century. At an exhibition at the 1964 World’s Fair in 
New York City, an exhibition devoted to Modern Mathematicians, Noether 
was the only woman represented among the notable mathematicians of the 
modern world. In a letter to the editor of the New York Times, published a 
few weeks after her death, Albert Einstein wrote:
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In the judgment of the most competent living mathematicians, Fräu-
lein Noether was the most significant creative mathematical genius 
thus far produced since the higher education of women began. In the 
realm of algebra, in which the most gifted mathematicians have been 
busy for centuries, she discovered methods which have proved of 
enormous importance in the development of the present-day younger 
generation of mathematicians.

Although Noether’s theorem had a huge impact on the development of 
theoretical physics, among mathematicians she is perhaps best remembered 
for her contributions to abstract algebra. In his introduction to Noether’s 
collected papers, Nathan Jacobson wrote that “The development of abstract 
algebra, which is one of the most distinctive innovations of 20th-century 
mathematics, is largely due to her—in published papers, in lectures, and in 
personal influence on her contemporaries.”
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Chapter 43

Srinivasa Ramanujan:  
Indian (1887–1920)

Although many books have been written about famous mathematicians, 
not many are so lauded as to have a full-length film produced about their 
lives. The title of the film The Man Who Knew Infinity1 is the same title as the 
book by Robert Kanigel2 on which this film is based. It highlights the short 
life of the genius mathematician Srinivasa Ramanujan, who could claim no 
formal higher education and yet showed a brilliance that allowed him to 
be accepted by the leading British mathematicians of his day; one such was  
G. H. Hardy. A cute anecdote that can illustrate the brilliance of this math-
ematician occurred shortly before he died and was lying ill in a hospital in 
London. His now close friend Hardy went to visit him in the hospital and 
recalled a story that describes his brilliance in simple terms3: “I remember 
once going to see him when he was ill at Putney. I had ridden in taxi cab 
number 1729 and remarked that the number seemed to me rather a dull 
one, and that I hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it is a 
very interesting number; it is the smallest number expressible as the sum of 
two cubes in two different ways.’” Through his unique brilliance he was able 
to immediately notice that 1729 = 13 + 123 = 93 + 103. Quite astonishing!

Srinivasa Ramanujan was born on December 22, 1887, in what is today 
Tamil Nadu, India, at the home of his maternal grandparents. He grew up in 
the town of Kumbakonam, India, in a house that today is a museum to me-
morialize his achievements. He ended up being an only child, since his three 
siblings died within a year of their birth. Although at age two he did contract 
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smallpox, he survived, unlike many others at that time who had the same 
disease. During his youth he lived with both maternal and paternal grandpar-
ents, who against his will sent him to school. The school board dismissed him 
and he went back to live with his parents and formed a close relationship with 
his mother. Once again in primary school, he performed well in English and 
other subjects, but excelled in arithmetic. From there he entered secondary 
school in Kumbakonam. There, he had his first opportunity to be exposed to 
mathematics beyond arithmetic. At age eleven he was already at college-level 
mathematics and by age thirteen he mastered advanced trigonometry, during 
which time he was already developing sophisticated mathematical theorems. 
Within the next year, he was already receiving awards for his mathematical 
achievements and showed a specific interest in geometry and infinite series. 
When Ramanujan was fifteen, he was shown how to solve a cubic equation, 
and he devised his own technique for solving quadratic equations. In 1903, 
when Ramanujan was sixteen years old, he got a copy of A Synopsis of Ele-
mentary Results in Pure and Applied Mathematics from the library, which is a 

Figure 43.1. Srinivasa Ramanujan.
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collection of 5,000 mathematical theorems by G. S. Carr. It is believed that 
this book inaugurated his genius for mathematics.4

Ramanujan’s brilliance began to manifest itself when he further in-
vestigated the Bernoulli numbers; when he tried to explain it to his 
peers, he found that it was far beyond their ability to comprehend what 
he was saying. The Bernoulli numbers is a sequence of rational numbers 
often used in number theory. The first twenty Bernoulli numbers are 
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(See chap. 22.)
In 1904, he entered the Government Arts College in Kumbakonam, 

where he excelled in mathematics, but found absolutely no interest in any 
of the other subjects. As a result, by 1905 he dropped out of school and 
left home, eventually enrolling at Pachaiyappa’s College in Madras, India. 
He was no more successful there than previously, failing all exams except 
mathematics, where he continued to excel. He eventually left this college 
without a degree so that he could pursue further research in mathematics. 
He lived in extreme poverty with the threat of starvation regularly hanging 
over him. It was not until 1910 that the founder of the Indian Mathematical 
Society, Professor Ramaswami, recognized his talents and brought him as a 
researcher to Madras University.

Life moves on; on July 14, 1909, Ramanujan married a girl (Jana-
kiammal), who was selected by his mother and who was only ten years 
old at the time. This was an Indian custom and not unusual. His new 
wife stayed at home until she reached puberty and was then allowed to 
live with her husband. Now with family responsibilities, Ramanujan was 
in search of a job—in particular, a clerical position. In the meantime, he 
sustained himself by tutoring students at Presidency College. During this 
time, Ramanujan fell seriously ill a few times and each time was saved by 
physicians offering their services pro bono. During his last sickness, he 
thought he would not survive and gave his notebooks to colleagues for 
safekeeping, but when he recovered he retrieved his books and continued 
his research. In 1912, along with his mother and wife he moved to George 
Town, Madras. Finally, in May 1913 he was able to get a research position 
at Madras University and moved to Triplicane with his family. Through a 
variety of recommendations, and despite concerns of the authenticity of 
his work, Ramanujan did his research with the financial support of the 
head of the Indian Mathematical Society, Ramachandra Rao, who also 
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helped him publish his work in the Journal of the Indian Mathematical 
Society.

As a simple example to demonstrate the genius that Ramanujan pos-
sessed, consider the formula he developed to get the value of π:

1
π
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Another such effort resulted in the following relationship:
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He also did some playful things, such as creating this very unusual 
magic square:

First of all, as with all magic squares, all the rows, columns, and diag-
onals have the same sum. In this case the sum is 139. However, with this 
unusual magic square there are also additional sums that total to 139, such 
as the following:

•	 the sum of the four center squares,
•	 the sum of the two center squares in the top row and the two center 

squares in the bottom row,
•	 the sum of the two center squares in the left-hand column and the 

two center squares in the right-hand column.
•	 the sum of the four corner 2 by 2 squares, and
•	 the sum of the four corner cells.
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By now you must realize the genius of this man to create this fabulous 
magic square. It should also be noted that Ramanujan developed a series of 
other such magic squares; the topic surely fascinated him.

We might also look at some of his other elementary discoveries, such 
as his nest of radicals:

which eventually will look like 

3= 1+2 1+3 1+4 1+5 1+6 1+7 1+8 1+9 1+!

Most of Ramanujan’s discoveries are clearly far beyond the scope of this 
book, so we present merely a few to demonstrate the brilliance of the man.

Mathematicians in India became fascinated with Ramanujan’s talent 
and began to connect him with mathematicians in England. Some of the 
English mathematicians did not even reply to his letters because he claimed 
to have no formal education. However, in 1913, enthralled by the book Or-
ders of Infinity, and looking to expand his horizons, Ramanujan wrote a 
letter to the book’s author, the famous English mathematician G. H. Hardy 
(1877–1947), who was a professor at the University of Cambridge. Once 
again, he indicated his lack of formal education, but included a collection of 
some of his findings to see what Hardy would think about them. Hardy was 
amazed at the ingenuity of what he found in this letter. Relationships were 
proposed, which he had never seen before, such as 

e
−
2π
5

1+ e−2π

1+ e
−4π

1+!

=
5+ 5
2

−φ , where ϕ represents the golden radio.
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This ultimately prompted Hardy to facilitate Ramanujan’s first trip to Lon-
don in 1914. As the collaboration with Hardy and colleagues began—and 
they were truly fascinated by his lack of formal education—they were gen-
uinely amazed at his discoveries.

This was about the time when World War I emerged, and food rationing 
was a problem for Ramanujan, who then began having further health prob-
lems. Despite his physical frailty, Ramanujan was invited to enroll as a stu-
dent at Cambridge University, and by 1916 was awarded a degree, which 
was then called a bachelor’s degree, but today is valued as a PhD. Sadly, 
his illness became worse in 1917, and through most of the year he spent 
his time in nursing homes. The following year, he was elected as a fellow 
of the Cambridge Philosophical Society, and shortly thereafter he received 
the greatest honor of his life, being elected a fellow of the Royal Society of 
London, which was formally confirmed in May 1918. This was followed 
by further acceptance of his brilliance by being elected a fellow of Trinity 
College of Cambridge University.

The following year Ramanujan returned to India with a reputation that, 
as it was stated at the time, was greater than any Indian had previously en-
joyed. However, his health did not improve much and eventually began to 
decline even further. He died in India on April 26, 1920, at the age of 32.

Fortunately, much of his writings have been saved and ultimately pub-
lished. This began shortly after his death when his brother Tirunsrayanan 
began to collect his handwritten notes for further publication. It should be 
noted that much of Ramanujan’s work was not accompanied by proof, yet it 
was always shown to be correct. It is speculated that since paper was expen-
sive, he did the proof on a slate and then copied the result on paper. It was 
not uncommon that slates were used in India at that time.

Posthumously, Ramanujan has received countless accolades. In India, 
December 22, his birthday, is often celebrated as “National Mathematics 
Day.” 

In 1962 the government of India issued a postage stamp with Ramanu-
jan’s picture (fig. 43.2). A second stamp (fig. 43.3) was issued in 2011 with 
a different design, once again commemorating Ramanujan’s genius. To fur-
ther honor his remarkable achievements, the Indian government declared 
that Srinivasa Ramanujan’s birthday, December 22, would be considered 
National Mathematics Day in perpetuity.
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Figure 43.2.

Figure 43.3.
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Chapter 44

John von Neumann:  
Hungarian-American (1903–1957)

Before the advent of modern electronic calculators and computers, all 
mathematical calculations had to be carried out by humans using paper and 
pencil. Slide rules or some more sophisticated mechanical devices repre-
sented the only technological assistance. It’s quite hard to imagine what the 
world would look like today were this still the case. Did you know that the 
word “computer” originally referred to a person who carried out calcula-
tions or computations? In fact, the word continued with the same meaning 
until the middle of the twentieth century. Its meaning gradually changed as 
technological advances led to more and more efficient machines, eventually 
causing the extinction of “human computers.” Times have changed, and 
nowadays, prodigies in mental calculation are more likely to be seen on a 
television show than in a research center. However, in the nineteenth and early 
twentieth century, research agencies such as the National Advisory Commit-
tee for Aeronautics (NACA, founded in 1915 and then in 1958 becoming the 
newly founded National Aeronautics and Space Administration—NASA) still 
relied on human computers and, naturally, they scouted the highest-perfor-
mance individuals in this profession. In particular, mental calculators were 
in great demand. Although there is no comparable job profile today, there 
are still people around who practice mental calculation very intensively. 
Every two years, the world’s best mental calculators are invited to compete 
for the Mental Calculation World Cup, which was first held in 2004 in Ger-
many. It is a common misbelief that mathematicians are particularly good 
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in mental calculation. As a matter of fact, many mathematicians even like to 
emphasize that they have problems with mental arithmetic. Although such 
statements often come with a pinch of coquetry, there is some truth behind 
it. A mathematician does not have to be good at mental arithmetic. People 
with limited mathematical education or interest often think that mathemat-
ics is “all about computing numbers,” which is not at all the case. Being an 
excellent mathematician but lousy in mental arithmetic is actually no con-
tradiction. Of course, some outstanding mathematicians are, or were, also 
exceptional mental calculators aside. The American mathematician John 
von Neumann, one of the greatest mathematicians of the twentieth century, 
was a child prodigy in language, memorization, and mathematics. At the age 
of six, he could divide one eight-digit number by another in his head. Men-
tal calculation was such a natural amusement to him that when he caught 
his mother staring aimlessly, he asked her: “What are you calculating?” He 
also possessed an amazing memory. A brief glance at a page of the tele-
phone directory sufficed for him to memorize all its names and numbers. 
He made major contributions to a number of fields and published more 

Figure 44.1. John von Neumann.
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than 150 papers in his life. During World War II, von Neumann worked on 
the Manhattan Project, where he developed the mathematical models that 
were behind the explosive lenses and worked out key steps in the nuclear 
physics involved in the hydrogen bomb. By the way, the Manhattan Project 
is also the most famous modern example for the employment of “human 
computers” on a massive scale, and it should be mentioned that most of 
them were women. 

John von Neumann was born János Neumann on December 28, 1903, 
in Budapest, which was then part of the Austro-Hungarian Empire. He 
was the eldest of three brothers. His father, Miksa (Max) Neumann, was 
a successful banker and held a doctorate in law. John’s mother came from 
a wealthy Jewish family. However, the family did not observe strict reli-
gious practices. In 1913, Emperor Franz Joseph elevated Max Neumann to 
nobility for his contribution to the then successful economy. His son later 
used the German form von Neumann where the “von” indicated the nobil-
ity title. Until the age of ten, John and his brothers were taught by various 
governesses, since at that time formal education did not begin earlier in 
Hungary. John was an exceptional case of a child prodigy. At the age of six, 
he was able to converse with his father in classical Greek and he showed an 
amazing memory. The Neumann family sometimes entertained guests with 
demonstrations of John’s memory by letting a guest select a random page 
of the phone book. After reading over it a few times, young John had mem-
orized the names, addresses, and numbers; he could answer any question 
put to him. Later he was able to recite whole books such as Goethe’s Faust. 
By the age of eight, he was familiar with differential and integral calculus. 
However, he was particularly interested in history, and by reading a large 
number of books, he acquired an incredible historical knowledge before 
entering school. In 1911 von Neumann entered the Lutheran Gymnasium, 
which was one of the best schools in Budapest. At that time, Hungary had 
an excellent education system, which produced several outstanding mathe-
maticians and physicists. Among the brilliant and creative minds who were 
educated in Budapest from their childhoods to their teens are Leó Szilárd 
(1898–1964), Eugene Wigner (1902–1995), Edward Teller (1908–2003), 
Paul Erdős (1913–1996), and Peter Lax (1926– ), to name just a few. The 
concentration of great mathematicians who were educated in Budapest in 
the early twentieth century was so strong that Peter Lax once said, “You 
don’t have to be Hungarian to be a mathematician, but it helps.” Apart from 
the excellent school system, several other factors may have contributed to 
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the emergence of this phenomenon, most notably the Eötvös Mathematics 
Competition (now renamed as Kürschák Competition), mathematical con-
tests that, since 1894, have been open to Hungarian high school students 
in their senior year. This is the oldest modern mathematics competition in 
the world; the problems to solve focused on creativity and not on memo-
rized knowledge. The ten best scorers were exempt from the very compet-
itive entrance examinations at the university. Von Neumann’s exceptional 
giftedness was immediately recognized by his mathematics teacher, who 
organized private tutoring for him to promote his mathematical talent. At 
the age of 15, he was sent to the renowned mathematician Gábor Szegő 
(1895–1985) to study advanced calculus. Szegő was deeply impressed by 
von Neumann’s genius, and subsequently visited the von Neumann house 
twice a week to tutor the child prodigy. When von Neumann completed his 
school education, he was already collaborating with professional mathema-
ticians. In spite of his very promising perspectives for a career as a math-
ematician in academia, his father did not want him to study mathematics. 
Academic positions for mathematicians in Hungary were not well paid 
and Max Neumann wanted his son to follow a more financially rewarding 
path in business or industry. The compromise on which they agreed was 
that he would study chemistry to become a chemical engineer in industry. 
Since von Neumann didn’t know very much about chemistry, he first took 
two-year non-degree courses in chemistry at the University of Berlin, after 
which he sat for and passed the entrance exam to the prestigious ETH Zu-
rich. However, at the same time, von Neumann also entered Pázmány Péter 
University in Budapest as a PhD candidate in mathematics. Although he 
couldn’t attend any courses in Budapest, he achieved outstanding results in 
the examinations. He graduated as a chemical engineer from ETH Zurich 
in 1926 and simultaneously finished his PhD thesis in mathematics, seem-
ingly without appreciable effort. He was then granted a fellowship from the 
Rockefeller Foundation to study mathematics under David Hilbert in Göt-
tingen. He completed his habilitation in 1927 and became the youngest pri-
vat-docent in the history of the University of Berlin in 1928. Von Neumann 
published highly original mathematical papers at an incredible rate, quickly 
making him famous in the mathematical community and turning him into 
a star at academic conferences. By the end of 1929 he had already published 
thirty-two major papers. After a brief stay in Hamburg in the same year, he 
accepted an offer from Princeton University in New Jersey. Before moving 
to the United States, he married Marietta Kövesi in Budapest. After a few 
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years of teaching at Princeton University, he became a mathematics profes-
sor at the newly founded Institute for Advanced Study at Princeton. Von 
Neumann anglicized his first name to John, keeping the German-aristo-
cratic surname of von Neumann. During his first years in the United States, 
von Neumann continued to return to Europe during the summers and even 
kept academic posts in Germany, which he resigned when the Nazis came 
to power. In 1935, Marietta gave birth to a daughter, Marina. Two years 
later the couple divorced and in 1938, von Neumann married Klara Dan, 
whom he had met in Budapest during one of his European visits. At Prince-
ton, von Neumann’s lifestyle was all but typical for a top mathematician. He 
enjoyed eating and drinking in company, and almost once a week, John and 
Klara gave a party at their home, thereby creating a kind of salon. Von Neu-
mann loved jokes, especially Yiddish and “off-color” humor. His memory 
helped him to always have a joke ready, if a conversation got stuck.

While most mathematicians need a quiet environment for working 
and studying, von Neumann preferred noisy and chaotic environments. At 
Princeton he received complaints for regularly playing extremely loud Ger-
man march music on his gramophone, disturbing colleagues in neighbor-
ing offices, including Albert Einstein. He often worked in the couple’s living 
room with the television playing loudly and even read books while driving 
his car. In combination with the fact that he was a rather reckless driver 
anyway, this led to frequent traffic tickets and car accidents. Reportedly, an 
intersection in Princeton was nicknamed “Von Neumann Corner” because 
of the many car accidents he had there.1 Despite his unconventional person-
ality, he was generally regarded as the leading mathematician of his time. 
His genius and brilliant intuition for new mathematical theories enabled 
him to contribute seminal and path-breaking work in completely different 
branches of mathematics, as well as in theoretical physics and computer 
science. Von Neumann applied new mathematical methods to quantum 
theory and was the first to establish a rigorous mathematical framework 
for quantum mechanics, known as the Dirac–von Neumann axioms. He 
founded the field of game theory as a mathematical discipline. Game the-
ory is the study of mathematical models of strategic interaction between 
rational decision makers, and is now used in economics, political science, 
philosophy, and computer science. Von Neumann’s inspiration for game 
theory was poker, a game he played occasionally. He realized that a math-
ematical model for poker that only uses probability theory is insufficient 
for a thorough analysis of the game, since players’ strategies are completely 
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ignored. In particular, he wanted to formalize the idea of “bluffing,” a strat-
egy that is meant to mislead other players and hide information from them. 
The beginning of his mathematical investigation of games can be marked 
with his 1928 article, “Theory of Parlor Games,” which can also be regard-
ed as the initiation of modern game theory. In this article, he proved the 
so-called minimax theorem. The minimax theorem states that in zero-sum 
games in which players know at each time all moves that have taken place 
so far, there exists a pair of strategies for both players that allows each to 
minimize his maximum losses, hence the name minimax. (In a zero-sum 
game, each participant’s gain or loss of utility is exactly balanced by the loss-
es or gains of the utility of the other participants.) Von Neumann continued 
his work in game theory, improving and extending his results to include 
more general games with more than two players. He soon noticed that the 
mathematical framework he was developing could become an important 
tool in economics. Consequently, he collaborated with the Austrian econo-
mist Oskar Morgenstern (1902–1977), a professor at Princeton University, 
with whom he published the paper Theory of Games and Economic Behavior 
in 1944. This groundbreaking text is one hundred pages long and estab-
lished the interdisciplinary research field of game theory. When it became 
a book, it attracted also public interest. It is a classic foundational work that 
still belongs to the standard literature in mathematical economics. More-
over, it may also serve as valuable reading for anyone planning a career 
as a professional poker player.2 In the late 1930s, von Neumann began to 
study the mathematical modeling of explosions and soon became the lead-
ing authority in this field. This led to frequent military consultancies, and 
in 1943, von Neumann was invited to work on the Manhattan Project. He 
made principal contributions to the implosion design of the atomic bomb, 
enabling for a more efficient weapon.

Von Neumann was also a pioneer in the development of modern com-
puting. After examining the army’s ENIAC (Electronic Numerical Integra-
tor and Computer) during the war, von Neumann used his mathematical 
abilities to improve the computer’s logic design. He proposed a new design 
that embodied the “stored-program” concept that is now called the Von 
Neumann architecture. He was a consultant in the construction of the ar-
my’s EDVAC (Electronic Discrete Variable Automatic Computer), one of 
the earliest binary stored-program computers. In fact, he wrote in ink one of 
the first programs for EDVAC, a sorting algorithm, covering twenty-three 
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pages. His wife, Klara, became one of the first computer programmers. Von 
Neumann was one the most influential mathematicians who ever lived. Ed-
ward Teller wrote that “Nobody knows all science, not even von Neumann 
did. But as for mathematics, he contributed to every part of it except num-
ber theory and topology. That is, I think, something unique.” Other mathe-
maticians were stunned by von Neumann’s mental calculation abilities and 
his incredible speed. The Hungarian-American mathematician Paul Hal-
mos (1916–2006) recounts a story told by physicist Nicholas Metropolis 
(1915–1999), concerning the speed of von Neumann’s calculations, when 
somebody asked von Neumann to solve the famous fly puzzle:

Two bicyclists start 20 miles apart and head toward each other, each 
going at a steady rate of 10 mph. At the same time a fly that trav-
els at a steady 15 mph starts from the front wheel of the southbound 
bicycle and flies to the front wheel of the northbound one, then turns 
around and flies to the front wheel of the southbound one again, and 
continues in this manner till he is crushed between the two front 
wheels. Question: what total distance did the fly cover? The slow way 
to find the answer is to calculate what distance the fly covers on the 
first, southbound, leg of the trip, then on the second, northbound, leg, 
then on the third, etc., etc., and, finally, to sum the infinite series so 
obtained.

The quick way is to observe that the bicycles meet exactly one hour 
after their start, so that the fly had just an hour for his travels; the answer 
must therefore be 15 miles.

When the question was put to von Neumann, he solved it in an instant, 
and thereby disappointed the questioner: “Oh, you must have heard the 
trick before!” “What trick?” asked von Neumann; “All I did was sum the 
geometric series.” That meant doing it the long way—instantly!

After the war, von Neumann served on the General Advisory Commit-
tee of the US Atomic Energy Commission, and later as one of its commis-
sioners. He was a consultant to a number of organizations, including the US 
Air Force, the US Army’s Ballistic Research Laboratory, the Armed Forces 
Special Weapons Project, and the Lawrence Livermore National Laborato-
ry. In 1955, von Neumann was diagnosed with cancer. He died at age 53 on 
February 8, 1957, at the Walter Reed Army Medical Center in Washington, 
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DC, under military security lest he reveal military secrets while heavily 
medicated. His mathematical legacy is perhaps best described in Peter Lax’s 
foreword to von Neumann’s Selected Letters, edited by Miklós Rédei: “To 
gain a measure of von Neumann’s achievements, consider that had he lived 
a normal span of years, he would certainly have been a recipient of a Nobel 
Prize in economics. And if there were Nobel Prizes in computer science 
and mathematics, he would have been honored by these, too. So the writer 
of these letters should be thought of as a triple Nobel laureate or, possibly, a 
31/2-fold winner, for his work in physics, in particular, quantum mechanics.”
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Chapter 45

Kurt Gödel:  
Austrian-American (1906–1978)

In the late nineteenth century, Georg Cantor developed set theory, which 
became a fundamental theory in mathematics. It offered a common foun-
dation to all fields of mathematics, and mathematicians attempted to for-
malize Cantor’s set theory by finding a minimal of axioms, from which 
all further mathematical statements within the theory can be derived. Al-
though this endeavor seemed very promising at the beginning, the axiom-
atization of set theory ran into serious problems when it was discovered 
that it suffered from logical paradoxes and inconsistencies. This led to a 
severe foundational crisis of mathematics. In response to this crisis, math-
ematician David Hilbert initiated a program to find a complete and finite 
set of axioms that would provide a stable basis for all existing mathemat-
ical systems, from arithmetic and geometry to advanced calculus and all 
other fields as well. More complicated systems would be proved in terms 
of simpler systems and these by even simpler systems, and ultimately the 
consistency of all mathematics would be reduced to basic arithmetic. More 
precisely, Hilbert’s program to establish secure foundations for all mathe-
matics comprised the following goals:1

•	 A formulation of all mathematics: all mathematical statements 
should be written in a precise formal language and manipulated 
according to well-defined rules.
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•	 Completeness: a proof that all true mathematical statements can 
be proved in the formalism.

•	 Consistency: a proof that no contradiction can be obtained in the 
formalism of mathematics.

•	 Conservation: a proof that any result about “real objects” obtained 
using reasoning about “ideal objects” (such as uncountable sets, 
for instance the set of real numbers) can be proved without using 
ideal objects.

•	 Decidability: there should be an algorithm for deciding the truth or 
falsity of any mathematical statement.

Many well-known logicians and mathematicians spent years on such 
a program, including Alfred North Whitehead (1861–1947) and Bertrand 
Russell (1872–1970), who published their monumental work as Principia 
Mathematica in three volumes in 1910, 1912, and 1913. However, in 1931, 
young Austrian mathematician Kurt Gödel proved that the goals that Hil-
bert had formulated were impossible to achieve. He published two famous 
theorems, known as Gödel’s incompleteness theorems, which ended all at-
tempts to find an all-encompassing set of axioms for mathematics or other 
formal systems. Roughly speaking, he showed that it is impossible to find a 
set of axioms sufficient for all mathematics, since for any set of axioms pro-
posed to encapsulate mathematics, either the system must be inconsistent, 
or there must be some truths of mathematics, which could not be deduced 
from them. In fact, it is impossible to come up with an axiomatic mathemat-
ical theory that captures even all of the truths about the natural numbers. 
Gödel’s results had a deep impact on the foundations of mathematics, as 
well as on logic and philosophy. Their significance is perhaps best described 
by John von Neumann, who said that “Kurt Gödel’s achievement in modern 
logic is singular and monumental—indeed it is more than a monument, it is 
a landmark which will remain visible far in space and time. . . . The subject 
of logic has certainly completely changed its nature and possibilities with 
Gödel’s achievement.”

Kurt Gödel was born on April 28, 1906, in Brno (German: Brünn), 
which is now the second largest city in the Czech Republic, but then was 
part of the Austro-Hungarian Empire. Before World War I, the majority of 
the population of Brno was German speaking. Gödel’s family was rather 
wealthy; his father, Rudolf Gödel, was the managing director of a textile 
factory in Brno. He was Catholic and his wife, Marianne, was Protestant. 
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Kurt and his elder brother, Rudolf, were raised Protestant in a country with 
a Catholic majority. Kurt went through several episodes of poor health 
as a child. When he was six years old, he suffered from rheumatic fever. 
Although he recovered well, he became convinced that his heart was per-
manently damaged as a result of the illness. He arrived at this conclusion 
when he began to read medical books at the age of 8, initiating a lifelong 
hypochondria. When the Austro-Hungarian Empire broke up at the end of 
World War I, Czechoslovakia declared its independence and Gödel’s fam-
ily automatically became Czechoslovak citizens, suddenly belonging to a 
German-speaking minority in the Republic of Czechoslovakia. However, 
Gödel could barely speak Czech and felt alien in this newly founded state. It 
was common that many of the German-speaking residents still considered 
themselves Austrian. By the time Gödel completed his school education 
in Brno, he had mastered university mathematics. Besides mathematics, 
languages were his favorite subjects. His brother later recalled that during 
his whole high school career, Kurt had made not a single grammatical er-
ror in Latin; needless to say, his schoolwork had always received the top 
marks. In 1923, Gödel took Austrian citizenship and moved to Vienna. He 

Figure 45.1. Kurt Gödel in 1925.
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entered the University of Vienna as a student of theoretical physics. Among 
his teachers were physicist and philosopher Moritz Schlick (1882–1936) 
and mathematicians Hans Hahn (1879–1934), Karl Menger (1902–1985), 
and Philipp Furtwängler (1869–1940). Furtwängler was paralyzed from the 
neck down and lectured from a wheelchair with an assistant who wrote 
on the board. He was a brilliant mathematician and his lectures had a big 
influence on Gödel, making him change his major subject to mathematics. 
A seminar on Bertrand Russell’s book Introduction to Mathematical Phi-
losophy, conducted by Moritz Schlick, awakened his interest in mathemat-
ical logic. Already as a student, Gödel participated in the Vienna Circle 
(German: Wiener Kreis), which was a group of philosophers and scientists 
drawn from the natural and social sciences, logic and mathematics, who 
met regularly from 1924 to 1936 at the University of Vienna, chaired by 
Schlick. Through the Vienna Circle Gödel learned about David Hilbert’s 
program and the foundational crisis of mathematics. He attended a lecture 
by Hilbert in Bologna on completeness and consistency of mathematical 
systems and chose this topic for his doctoral work. In 1929, at the age of 
twenty-three, he completed his doctoral dissertation under the supervision 
of Hans Hahn. He was awarded his doctorate in 1930 and the Vienna Acad-
emy of Science published his thesis. In 1931 Gödel published his famous 
article Über formal unentscheidbare Sätze der “Principia Mathematica” und 
verwandter Systeme (“On Formally Undecidable Propositions of ‘Principia 
Mathematica’ and Related Systems”), containing his incompleteness theo-
rems. Today, almost all relevant mathematics journals accept only articles 
written in English. However, before World War II there also existed quite 
a few top journals in other languages, notably in German. Gödel’s article 
originally appeared in German in the journal Monatshefte für Mathematik, 
which was founded in 1890 in Austria. The journal still exists and is pub-
lished by Springer in cooperation with the Austrian Mathematical Society; 
although it has kept its German name, all articles are now in English. In his 
1931 article, Gödel proved that for any computable axiomatic system that 
is powerful enough to describe the arithmetic of the natural numbers, the 
following is true:

1.	 If a (logical or axiomatic formal) system is consistent, it cannot be 
complete.

2.	 The consistency of axioms cannot be proved within their own 
system.
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Gödel proved that it is impossible to use the axiomatic method to con-
struct a mathematical theory that entails all of the truths of mathematics. 
The incompleteness theorem was an extremely important negative result 
and had a huge impact in the field of mathematical logic. To prove this the-
orem, Gödel invented a new method, now known as Gödel numbering. He 
assigned to each symbol and well-formed formula of the theory a unique 
natural number (now called Gödel number). Moreover, he showed that 
classical paradoxes of self-reference, such as “This statement is false,” can 
be recast as self-referential formal sentences of arithmetic. Gödel’s incom-
pleteness theorem ended a half-century of attempts to find a set of axioms 
sufficient for all mathematics. Showing that it is impossible to construct 
axiomatic systems that could be used to prove all mathematical truths, he 
destroyed a whole branch of research. Gödel’s result quickly made him fa-
mous and invitations to International Mathematical Congresses followed. 
In 1933, he made his first trip to the United States, where he met Albert 
Einstein and delivered an address to the annual meeting of the American 
Mathematical Society. In the same year, Hitler came to power in Germany 
and over the following years, the Nazis’ influence grew in Austria as well. 
With the rise of the Nazis in Austria, many of the Vienna Circle’s mem-
bers left for the United States and the United Kingdom. During these years, 
Gödel traveled a lot and gave lectures at the newly founded Institute for 
Advanced Study in Princeton. However, he kept his base in Austria. When 
Moritz Schlick was murdered by one of his former students in 1933, Gödel 
suffered a severe nervous breakdown and spent several months in a sana-
torium. In addition to his hypochondria, he developed a fear of being poi-
soned, and showed other symptoms of paranoia. In 1938, Austria became 
a part of Nazi Germany. Gödel, who had been privat-docent at the Univer-
sity of Vienna, had to renew his application under the new order, but the 
University of Vienna turned it down. His former association with Jewish 
members of the Vienna Circle might have played a role in the decision. In 
autumn of that year, Gödel married Adele Porkert. They had been in a re-
lationship for several years, but Gödel’s parents had objected to a marriage. 
She was six years older than Gödel and had been married before. Moreover, 
she was not highly educated and was Catholic, while Gödel was Protestant. 
When World War II started in September 1939, Gödel feared that he might 
be conscripted into the German army. The couple left Vienna for Prince-
ton, where Gödel accepted a position at the Institute for Advanced Study. 
They had to take the Trans-Siberian Railway to the Pacific and sail from 
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Japan to San Francisco. At Princeton, Gödel developed a close friendship 
with Albert Einstein, and they often took long walks around the Institute 
together (see fig. 45.2). In 1947, Einstein and the Austrian economist Oskar 
Morgenstern, also at Princeton, accompanied Gödel to his US citizenship 
exam. In his preparation for the exam, Gödel believed he had found an in-
consistency in the US Constitution and Einstein was worried that his friend 
would explain his discovery to the judge and thereby spoil his application. 
Fortunately, the judge knew Einstein, and everything went well. In 1949, 
Gödel discovered an exact solution of the Einstein field equations, which is 
also known as the Gödel universe. It is a solution describing a rotating uni-
verse and among other unusual properties it would allow time travel into 
the past. However, the solution is somewhat artificial in that the so-called 
cosmological constant, a parameter of the theory, which is now associated 
with dark energy, has to be fine-tuned to a very specific value. Astronomical 
observations at that time could neither exclude nor confirm that we live 
in a rotating universe. As observational data continually improved, Gödel 
would also continue to ask astronomers, until his death, “Is the universe 

Figure 45.2. Kurt Gödel and Albert Einstein in Princeton.
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rotating yet?” and be told “No, it isn’t.” For his work in relativity, Gödel was 
awarded (with physicist Julian Schwinger) the first Albert Einstein Award 
in 1951. Gödel remained in Princeton for the rest of his life. A permanent 
member of the Institute for Advanced Study at Princeton since 1946, he 
became a full professor in 1953. During his first years in the United States, 
he continued to publish fundamental mathematical papers. However, in his 
later years, he devoted more and more time to studying philosophy. He ad-
mired the works of Leibniz and began writing about philosophical issues. 
As Gödel aged, his paranoia got worse. His fear of being poisoned became 
obsessive, and he would eat only food that his wife, Adele, prepared for him. 
But in 1977 she suffered a stroke and was hospitalized for several months. 
During this time, she had to watch her husband continuously losing weight 
because he refused to eat. When she left the hospital, Gödel weighed only 
66 pounds, whereupon she immediately brought him to the hospital. Fur-
ther treatment was too late, and he died a few weeks later, on January 14, 
1978. He essentially starved to death. His death certificate reported that he 
died of “malnutrition and inanition caused by personality disturbance.” His 
wife, Adele, died in 1981. Gödel’s incompleteness theorems and some of 
his other mathematical works are ranked among the greatest mathematical 
achievements of the twentieth century. He was one of the most significant 
logicians in history. His name is also known from a popular 1979 book, 
Gödel, Escher, Bach by Douglas Hofstadter. The book won the Pulitzer Prize 
for general nonfiction and the National Book Award for Science. It explores 
relationships between the works of Gödel, along with those of artist M. C. 
Escher and composer Johann Sebastian Bach.
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Chapter 46

Alan Turing:  
English (1912–1954)

It was widely believed that the work of a brilliant mathematician shortened 
World War II by two years and perhaps saved as many as 14 million lives. 
The immediate question would be how can a mathematician do something 
that is typically left for soldiers to accomplish? The answer is that through 
his unique genius, the English mathematician Alan Turing developed a ma-
chine that was able to break the Nazi enigma code during World War II, and 
thereby discover their strategic plans in advance.

In September 1938, Turing began working at the Government Code 
and Cypher School (GC&CS), which was an organization that specialized 
in breaking war codes. During World War II the GC&CS was located at 
Bletchley Park, Milton Keynes, England—which today is a museum large-
ly celebrating Turing’s work. Turing’s main responsibility at the time was 
cryptanalysis of the Enigma, which was a ciphering system developed by 
the Western Allies in World War II to decipher Morse-coded radio com-
munications of the Axis powers that had been enciphered through Enigma 
machines (see fig. 46.1). Essentially, through his innovative work, we say 
that Alan Turing was the founder of computer science as we know it today.
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Figure 46.1. Enigma Machine.

Figure 46.2.

In figure 46.2 we show instructions as to how the machine functioned.
Initially, the Allies used a Polish system to decipher the Axis war codes, 

but in time it proved to be ineffectual; the Germans were able to supersede 
its findings. Turing came up with an improvement that made the enigma 
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machine effective. Essentially, he was able to break intercepted codes that 
enabled the Allies to defeat the Germans in key battles such as the Battle of 
the Atlantic. His discoveries for deciphering codes were considered an act 
of sheer brilliance.

Alan Mathison Turing was born in Paddington, London, England, on 
June 23, 1912, to a well-placed British family. Since his parents were civil 
servants working in India, Turing spent many of his early years in British 
foster homes, where there was little encouragement academically. At age 6 
he was enrolled in St. Michael’s day school, then at age 10 the Hazel Hurst 
Preparatory School. His mother was very concerned about his education 
and wanted him to enter a private school, which he did successfully by en-
tering the prestigious all-boys Sherborne School—which was founded in 
1550. There he showed a greater interest in mathematics and science than 
in the classics, which caused the headmaster there to caution his parents 
about his potentially failing this primary subject of the school. He managed 
to grapple with all the subjects, but particularly showed an incredible talent 
for solving mathematics problems before age 16, and not yet having been 
exposed to elementary calculus.

Figure 46.3. Alan Mathison Turing.
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Turing began his undergraduate studies in 1931 at King’s College of 
Cambridge University, where for the first time he felt he had a real home. 
It is also the time where his homosexuality became an integral part of his 
existence. Rather than spend much of his time in literary circles, he spent a 
great deal of time in physical activities such as rowing and running. Later as 
a working mathematician, he would often run to work as many as 10 miles 
each way and often beating his colleagues who would have taken public 
transportation at the same time. Further to his running skill it should be 
noted that in 1948 he ran a marathon in 2 hours 46 minutes 3 seconds, a 
time that was only 11 minutes slower than the Olympic champion that year!

In 1934, he graduated from King’s College with honors, whereupon 
he was elected a fellow of King’s College. He began publishing rather im-
pressive mathematical papers, one of which reworked the Austrian math-
ematician Kurt Gödel’s universal arithmetic-based language with simple 
hypothetical devices that became known as the Turing machine. This was 
an abstract machine that manipulated symbols on a strip of tape according 
to a table of rules. Given any computer algorithm, a Turing machine could 
be constructed that would be capable of simulating that algorithm’s logic. 
In his 1948 essay, “Intelligent Machinery,” Turing wrote that his machine 
consisted of

an unlimited memory capacity obtained in the form of an infinite tape 
marked out into squares, on each of which a symbol could be printed. 
At any moment there is one symbol in the machine; it is called the 
scanned symbol. The machine can alter the scanned symbol, and its 
behaviour is in part determined by that symbol, but the symbols on 
the tape elsewhere do not affect the behaviour of the machine. How-
ever, the tape can be moved back and forth through the machine, this 
being one of the elementary operations of the machine. Any symbol 
on the tape may therefore eventually have an innings (or lifespan).1

As mentioned earlier, this was the beginning of today’s computer. The 
famous Hungarian-American mathematician John von Neumann (see 
chap. 44) further supported that idea by saying that the central concept of 
the modern computer was due to Turing’s work.2

Turing then began his doctoral studies in 1936 at Cambridge Uni-
versity and eventually obtained his PhD degree in 1938 from Princeton 
University, whereupon John von Neumann encouraged him to stay on as 
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a postdoctoral assistant. However, Turing decided to return to England in-
stead. Upon his return in September 1938, and after attending lectures at 
Cambridge University, he began working part time at the GC&CS. How-
ever, the day after Britain declared war on Germany on September 3, 1949, 
Turing began to work full time at the GC&CS, where his work eventual-
ly brought him lasting fame. There, Turing helped develop an electrome-
chanical machine that could break the enigma code more effectively than 
the previously used Polish machine, Bomba Kryptologiczna, which in its 
new form was referred to as Bombe (see fig. 46.4). Yet the most important 
aspect was Turing’s ingenious mechanization of subtle logical deductions. 
They were able to routinely read Luftwaffe signals, but not the German na-
val communications. Once again it was Turing who was eventually able to 
break these previously unbreakable codes before the end of 1941.

By 1942, Turing was considered the genius of Bletchley Park, and also 
had a rather wanting physical appearance, coupled by halting speech and 

Figure 46.4. A complete and working replica of  
a Bombe at the National Codes Centre at Bletchley Park.
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somewhat strange behavior. One of his colleagues was Joan Clarke, who 
seemed to have caught his eye and to whom he proposed marriage. This was 
enthusiastically accepted; however, shortly thereafter Turing withdrew his 
offer and exposed to her his homosexuality. This would not have stopped 
her from marrying him, but he could no longer go forward in that regard.

In November 1942 he came to the United States to further work on the 
U-boat Enigma crisis, which had still perplexed the Allies; they couldn’t 
decipher the signals. By March 1943 the U-boat enigma decryption was 
effectively resolved and remained so for the rest of the war. Once again, his 
brilliance became a key factor supporting the Allied troops in the war.

In the later years of the war, Turing had worked with electronic enci-
phering speech in the telephone system. Although this eventually produced 
successful results, they were mostly too late to be useful during the war. 
After the war, Turing lived in London, where he worked on the automatic 
computing engine, which was a significant forerunner to today’s comput-
ers. Secrecy still permeated the field and a lot of his contributions to the de-
velopment of computers was not publicized until after his death. Beginning 
in 1948, Turing held the position of reader in the mathematics department 
at Victoria University in Manchester, England, where he also worked at the 
computing machine laboratory and helped develop software for the earli-
est stored-program computer called the Manchester Mark 1. There, he also 
dabbled with the notion of artificial intelligence, which was one of the earli-
est attempts to see how a computer could correspond with a human being. 
In a rather indirect way, these early results by Turing are used today on the 
internet when we wish to find out if the user is a human or a computer. This 
test is called CAPTCHA.

In 1948 Turing turned his attention to work with colleagues to develop 
a program for a computer that would allow it to play chess against a human 
being. Eventually this became successful, but the moves by the computer 
took as much as a half-hour; it did in fact beat some competitors, but not 
all.

By 1951 Turing took up an interest in biology, albeit from a mathemat-
ical point of view. He was fascinated by how biological organisms develop 
their shape. For example, he wanted to understand how phyllotaxis seemed 
to be dominated by the Fibonacci numbers.3 In more general terms he stud-
ied morphogenesis. His work in this field is still relevant today as a defin-
ing portion of mathematical biology. Turing’s work in biology has helped 
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understand the growth of organisms that determine placement of feathers 
and hair follicles, as well as location of various parts of the human body.

In January 1952, Turing developed an intimate relationship with a Brit-
ish man, who was 20 years his junior. Soon thereafter, it was discovered that 
Turing had a sexual relationship with this man, which at the time in the 
United Kingdom was a criminal offense. At the trial, Turing’s attorney did 
not dispute the offense, and entered a guilty plea. To avoid imprisonment, 
he accepted an alternative, which was to undergo hormonal treatment to 
reduce his libido. The treatment caused him to be impotent and produced 
unpleasant bodily changes. His conviction also removed his security clear-
ance for his cryptographic work.

On June 8, 1954, he was found dead in his home, which later was de-
termined to be a result of cyanide poisoning and deemed a suicide. It was 
55 years later, in 2009, as a result of extensive petitions, that Britain’s Prime 
Minister Gordon Brown acknowledged the inappropriateness of condemn-
ing Turing’s homosexuality as criminal and offered an apology. This, how-
ever, did not satisfy many of those who felt that Turing’s treatment was un-
justified and counterproductive to our scientific advancement. As a result 
of many years of petitions and attempts in Parliament, on December 24, 
2013, Queen Elizabeth II signed a pardon for Turing’s conviction for gross 
indecency, as it was then called.

Figure 46.5.
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Today Alan Turing is heralded as the father of computers and the ini-
tiator of investigations in a number of areas of science and mathematics. 
Although he was appointed to the Order of the British Empire in 1946, 
and then elected as a Fellow of the Royal Society in 1951, his name appears 
in countless mathematical and scientific concepts and university buildings 
and halls throughout the world. This is further evidenced by the fact that 
he was chosen from a list of 227,299 nominees—including Charles Babbage 
and Ada Lovelace—to be pictured on the highest-denomination banknote 
in England, the fifty-pound banknote, as shown in figure 46.5. For those 
interested in this unusually brilliant person, Alan Turing’s life is chronicled 
in the 2014 movie The Imitation Game.
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Chapter 47

Paul Erdős:  
Hungarian (1913–1996)

It is not uncommon that people who have a true genius mentality are 
often socially unusual. There is probably no better example of this than 
the Hungarian mathematician Paul Erdős, who had no stable residence, 
traveled endlessly visiting one mathematician after another while carrying 
all his belongings in one suitcase. It was clear that all he cared about was 
mathematics—making conjectures and proving them as theorems. He 
connected with most of the world-famous mathematicians of his lifetime. 
However, curiously enough, he published profusely and very often with 
other mathematicians as coauthors. One of the many legacies that he left 
behind is what is known today as the Erdős number, which is assigned to 
mathematicians as follows: If a mathematician coauthored an article with 
him, he or she had an Erdős number 1. If a mathematician coauthored an 
article with another mathematician who already had an Erdős number 
of 1, then he or she was assigned an Erdős number 2. If a mathematician 
coauthored an article with a mathematician who already had an Erdős 
number 2, then he or she would be assigned an Erdős number 3, and so 
it would continue. Of course, Paul Erdős himself had Erdős number 0. In 
other words, there is great prestige in mathematical circles of having any 
Erdős number at all. As a matter of fact, Albert Einstein had an Erdős 
number 2. Incidentally, the American Mathematical Society provides a free 
online tool to compute the Erdős number of an author.1 Nowhere else in the 
mathematics world does this kind of jubilation take place.
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Paul Erdős spent almost all of his waking hours doing mathematics 
either by himself or in conversation with others. Oftentimes, he spent eigh-
teen hours a day engrossed with mathematics. It is believed that he col-
laborated with more than 500 mathematicians and wrote more than 1,500 
mathematical papers during his lifetime. This is likely one of the largest 
productions of mathematics contributions in history.2

Paul Erdős was born in Budapest, Hungary on March 26, 1913, to par-
ents who both were high school mathematics teachers. He was particularly 
treasured by his parents, since his two sisters died of scarlet fever in their 
youth on the day of his birth. His childhood began in a rather strange fash-
ion, since his father was a prisoner of war in Siberia till 1920, and so to 
support the family his mother needed to leave him alone at home, where 
he entertained himself by looking at mathematics books that were lying 
around the house. And at a very early age he showed an incredible facility 
for doing mathematical calculations in his head, such as multiplying two 
three-digit numbers in his head at age three. When his father returned from 
Siberia, he recognized his son’s talents and began to move them along so 

Figure 47.1. Paul Erdős.
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that he started to embrace such topics as number theory, infinite series, 
combinatorics, and set theory.

By the age of seventeen, Erdős entered the Pázmány Péter Catholic 
University of Budapest, where he had already began publishing articles, 
such as a proof of Chebyshev’s theorem, which states that for any integer n 
> 3, there always exists at least one prime number p, where n< p< 2n – 2, 
were stated another way, if n > 1, then there is always at least one prime 
number p that is between n and 2n.

By age twenty-one, he completed his undergraduate work and received 
his doctorate in mathematics. With the rise of anti-Semitism in Hungary in 
1934, Erdős decided to leave the country and begin a four-year postdoctoral 
fellowship at the University of Manchester in England. In 1938, he accepted 
a one-year appointment at the Institute for Advanced Study at Princeton. 
One of his great achievements there was to participate in the development 
of the field of probabilistic number theory. After his stay at Princeton he be-
gan to travel around the United States, visiting Purdue University, Stanford 
University, Notre Dame University, and Johns Hopkins University, while 
turning down full-time positions at any one of these, so that he could work 
with a multitude of mathematicians of his choice and when he wanted to. 
This was the beginning of his nomadic travels that took him to more than 
25 countries throughout the world. He had no family to concern himself 
with, and stayed with mathematicians as long as the challenges remained of 
interest to him. Often time, he would show up unannounced with suitcase 
in hand, prepared to stay as long as he or the host wished. He often worked 
more than eighteen hours a day and it is believed he was oftentimes stimu-
lated by various medications to keep him alert.

In 1949, along with the Norwegian-American mathematician Atle Sel-
berg (1917–2007), who had just begun his career as a professor of mathe-
matics at the Institute for Advanced Study, Princeton, Erdős reached a point 
of jubilation when they proved the prime number theorem, which is a for-
mula that gives the approximate value of the number of prime numbers less 
than or equal to any given positive real number x, which is usually notated 
as π(x).3 In other words, π(2) = 1—that is, there is only one prime less than 
or equal to 2—namely, the number 2 itself. As another example, π(10) = 
4, which represents the following prime numbers less than or equal to 10, 
namely, 2, 3, 5, and 7. In general terms, the prime number theorem states 
that for larger values of x, 

π x( ) ≈ x
ln x

.4
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In figure 47.2, we show the number of primes less than or equal to n, 
for selected values.

For this work and other discoveries in prime number theory, Erdős 
was awarded the Cole Prize, which was presented to him by the Hungarian-
American mathematician John von Neumann (see chap. 44) in 1951. 
Through the next several decades, Erdős seemed to concentrate his work on 
combinatorics, number theory, set theory, and geometry, just to name a few 
to demonstrate the broad spectrum of interest that dominated his life. When 
it came to graph theory, he helped organize the first international conference 
in 1959. As a further example of his unusual value system, living on very little 
money and using his relationship with the multitude of mathematicians that he 
visited to subsist, in 1984 he was awarded the prestigious (and lucrative) Wolf 
prize worth $50,000, of which he kept only $720 and gave the remainder to 
establish a scholarship program in Israel in memory of his parents.

Despite his odd lifestyle, Erdős was revered around the world. He received 
more than fifteen honorary degrees and has been elected as a member of the 
scientific academies of eight countries, including the US National Academy of 
Sciences and the British Royal Society. In his own way, he also gave back to so-
ciety by offering payments to mathematicians who solved previously unsolved 
problems with an amount depending upon the difficulty of the problem con-
sidered—ranging from $25 to several thousand dollars for very difficult prob-
lems. One problem that had truly challenged Erdős and still awaits a solution is 
referred to often as the Collatz conjecture, which was first discovered in 1932 by 
the German mathematician Lothar Collatz (1910–1990), who then published it 
in 1937. This is one problem for which Erdős offered $500 for a proof.

To appreciate this conjecture, we begin by following two rules as using 
an arbitrarily selected number.

Figure 47.2.
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If the number is odd, then multiply by 3 and add 1.
If the number is even, then divide by 2.
Regardless of the number selected, after continued repetition of the 

process, it is conjectured that we will always end up with the number 1.
Let’s try it for the arbitrarily selected number 7:
7 is odd, therefore, multiply by 3 and add 1 to get: 7· 3 + 1 = 22
22 is even, so we simply divide by 2 to get 11
11 is odd, so we multiply by 3 and add 1 to get 34.
34 is even, so we divide by 2 to get 17.
17 is odd, so we multiply by 3 and add 1 to get 52.
52 is even, so we divide by 2 to get 26.
26 is even, so we divide by 2 to get 13.
13 is odd, so we multiply by 3 and add 1 to get 40.
40 is even, so we divide by 2 to get 20.
20 is even, therefore, divide by 2 to get 10.
10 is even, therefore, divide by 2 to get 5.
5 is odd, so we multiply by 3 and add 1 to get 16.
16 is even, so we divide by 2 to get 8.
8 is even, so we divide by 2 to get 4.
4 is even, so we divide by 2 to get 2.
2 is also even, so we again divide by 2 to get 1.
If we were to continue, we would find ourselves in a loop (that is, 1 is 

odd, so we multiply by 3 and add 1 to get 4, . . . ). After 16 steps, we end up 
with a 1, that, if we continue the process, would lead us back to 4, and then 
on to the 1 again. We end up in a loop! Therefore, we get the sequence:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 , 4, 2, 1 , . . .
The following schematic (fig. 47.3) will show the path we have just 

taken:

Figure 47.3. For arbitrary number n = 7.
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It is also interesting to see a graph (fig. 47.4) of the steps of this process.
Regardless of which number we begin with (here we started with 7), we 

will eventually get to 1.
This is truly remarkable! Try it for some other numbers to convince 

yourself that it really does work. Had we started with 9 as our arbitrarily 
selected number, it would have required 19 steps to reach 1. Starting with 
41 will require 109 steps to reach 1.

Paul Erdős lived a full and apparently satisfied life completely en-
grossed with mathematics. He died at the age of eighty-three on Septem-
ber 20, 1996, of a heart attack while attending a mathematics conference in 
Warsaw, Poland. He was buried in a grave next to that of his parents in Bu-
dapest, and for his epitaph he offered, “I’ve finally stopped getting dumber.”

Figure 47.4.
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Chapter 48

Herbert A. Hauptman:  
American (1917–2011)

The mathematician Herbert Aaron Hauptman enjoys the distinction of be-
ing the first mathematician to win the Nobel Prize—albeit the prize was 
for chemistry, since there is no Nobel Prize category set aside for mathe-
matics. There are many stories as to why Alfred Nobel chose not to include 
mathematics among the categories of his prize. Yet the most common one 
is that there was a jealousy involving a woman and a competing mathema-
tician. There are many variations and other rumors regarding reasons that 
there was no such prize in mathematics. However, after Hauptman had won 
the prize in 1985, other mathematicians have since been awarded a Nobel 
Prize, such as John Forbes Nash Jr. (1994) and Robert J. Aumann (2005). 

Dr. Hauptman won the Nobel Prize for his work thirty years earlier 
where he solved the phase problem of X-ray crystallography. Actually, he 
had used mathematical methods to solve a forty-year-old problem that 
chemists were unable to solve. When he produced his results in 1955, he 
was severely criticized because it was felt that this problem was not solvable. 
The technique that evolved from his research has had an enormous effect 
on our pharmaceutical industry. The process that results from his work, 
which he called “shake and bake,” allows the pharmaceutical researchers 
to determine the crystal structure of the bad germs so that they can then 
construct the appropriate medicine to combat them. As Dr. Hauptman has 
often said, if one were to use the fly and mosquito killer of the 1950s, known 
as Flit, the insects today would simply laugh and crawl away, since, over 
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time, they have developed an immunity against this spray. The same, he 
said, occurs in the bacteria or virus world, where they build an immunity 
against combative pharmaceuticals. The system he helped develop allows 
the pharmaceutical industry to continue to develop new and effective drugs 
through an analysis of the crystal structure of the bacteria or other harmful 
cells, and therefore, develop appropriate combatants.

It is interesting to view the story as to how Dr. Hauptman reached this 
exclusive position in his career. He was born in the Bronx, New York, on 
February 14, 1917. He attended the local public schools, where he excelled 
in mathematics and won entry into the most prestigious high school in the 
country at the time, Townsend Harris High School, which admitted boys 
through a very challenging entrance examination. This was a three-year 
high school with an automatic admission to the City College of New York, 
at the time a highly sought-after tuition-free college, which to date has had 
ten of its former students winning the Nobel Prize—more than any other 
public institution in the United States.

Prior to his graduation from City College, he was awarded the very 
prestigious Belden Prize in Mathematics in 1936 and graduated with a BS in 

Figure 48.1. Herbert Aaron Hauptman.
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mathematics in 1937. Because the United States was then in a severe depres-
sion, jobs were very difficult to come by. However, as a mathematics major, 
there were always jobs available in New York City as a teacher of mathemat-
ics. At the time, there were several exams one had to pass to qualify for the 
position of high school teacher. One of these exams was a speech test. For-
tunately, or unfortunately, Hauptman failed the speech test, since he was told 
that he had a Bronx dialect, which at that time was unacceptable. Thereupon, 
he entered Columbia University, earning a master of arts degree in mathe-
matics in 1939. With the war now in full swing, Hauptman enlisted in the 
navy, where he served as a weather forecaster in the South Pacific.

After the war, he decided to seek an advanced degree and pursue a 
career in basic scientific research, whereas teaching was no longer an op-
tion. There he entered into a partnership with Jerome Karle, a chemist who 
graduated from City College the same year as Hauptman, although, inter-
estingly enough, they did not know each other during their student years. 
While he worked at the Naval Research Laboratory in Washington, DC, he 
simultaneously enrolled in the PhD program at the University of Maryland. 
And so began a multiyear collaboration of the mathematician Dr. Haupt-
man and a physical chemist, Dr. Karle. Their 1953 monograph, “Solution of 
the Phase Problem I—The Centrosymmetric Crystal,” which relied heavi-
ly on Dr. Hauptman’s mathematical talents, contains the main ideas of his 
research, the most important of which was the introduction of the joint 
probability distributions of several structure factors as the essential tool for 
phase determination. In this monograph, they also introduced the concepts 
of the structure invariants and semi-invariants, special linear combinations 
of the phases, and used them to devise recipes for origin specification in 
all the centrosymmetric space groups. The notion of the structure invari-
ants and semi-invariants proved to be of particular importance because 
they also served to link the observed diffraction intensities with the needed 
phases of the structure factors.

With a clear picture of the structure of hormones and other biological 
molecules, researchers better understood the chemistry of the body and of 
drugs used to treat various illnesses. For example, once they understood 
the structure of enkephalins, pain-control substances found naturally in 
the body, they were able to make progress in developing new pain-killing 
drugs.

It must be said that the mathematical talent that Dr. Hauptman pro-
vided to the chemistry field enabled him to produce results that had the 



	 Herbert A. Hauptman: American (1917–2011) 	 375

additional benefit of greatly speeding up the analysis of molecular struc-
tures. In the 1960s, it could take two years to work out the structure of a 
simple antibiotic molecule that had only fifteen atoms. Through his discov-
eries, it became possible to determine the structure of a fifty-atom molecule 
in two days.

Dr. Hauptman, a mathematician, was not inducted into the National 
Academy of Sciences–chemistry section, at the time when Dr. Karle was in-
ducted, largely because he was not a chemist. Since there had never been an 
American selected for the Nobel Prize in a science who was not previously 
a member of the National Academy of Sciences, there was little chance that 
he would ever get the Nobel Prize. They were wrong! As soon as he was 
announced as a Nobel laureate (for chemistry), he was quickly invited and 
encouraged to join the National Academy of Sciences–chemistry section! 
Thus, Dr. Hauptman was the first Nobel Prize winner in a science who was 
not previously a member of the National Academy of Sciences.

One of Dr. Hauptman’s hobbies was to determine how to optimally pack 
with various-sized marbles the contents of polyhedra. He even published his 
findings; this became a studied branch of geometry (see fig. 48.2).

Figure 48.2.
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By 1970, he joined the crystallography group of the Medical Founda-
tion of Buffalo, which is today known as the Hauptman-Woodward Med-
ical Research Institute, where he served as president until he died in Buf-
falo, New York, on October 23, 2011. There he continued his innovative 
research to further improve the field of crystallography and enhance the 
pharmaceutical industry’s ability to create new and effective medications in 
a very efficient fashion. So here we have another example where brilliance 
in mathematics allows the sciences to flourish.

It must be said that Hauptman was a truly wonderful person, who had 
very few idiosyncrasies that one typically finds among genius personalities. 
It was well known that he never liked to comb his hair at a time when that 
was still fashionable, so his wife would do that every day for him as you 
can see in a photograph (fig. 48.3) with one of the authors (Posamentier) 
taken in 2008. It didn’t disturb him that his watch was always twelve min-
utes too slow; he could easily calculate the correct time. In a book that he 
coauthored with Posamentier, he was so proud to have developed a factorial 
function r! for rational, nonintegral values of r.1 Although research showed 
that this might have been anticipated by Gauss, he was delighted that he was 
in such good company. Suffice it to say, he was a truly wonderful person—
universally loved by all!

Figure 48.3.
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Chapter 49

Benoit Mandelbrot:  
Polish-American (1924–2010)

There are times when a mathematician is largely known for one mathe-
matical discovery. This is the case with the mathematician Benoit Mandel-
brot, who was born in Warsaw, Poland, on November 20, 1924, although 
through his peripatetic life he has held both French and American citizen-
ships. He was always fascinated with geometry. Even as a boy it is said that 
he saw chess games rather geometrical than logical. Later in life through 
his innovative publication The Fractal Geometry of Nature,1 he asks, “Why 
is geometry often described as cold and dry? One reason lies in its inabil-
ity to describe the shape of a cloud, a mountain, a coastline or a tree.” His 
primary claim to fame within the realm of mathematics is his development 
of fractals, a field in geometry comprised of objects in similar patterns with 
increasingly smaller scales. We will inspect fractals in greater detail after we 
consider the lifestyle of Mandelbrot, which brought him to these curious 
discoveries.

Benoit Mandelbrot spent the first eleven years of his life in Poland in a 
family that was rather academic, his mother being a dentist. However, it was 
two of his uncles who introduced and motivated him toward mathematics. 
In 1936, with the rise of Nazism, his family emigrated to France where his 
uncle, who was a professor of mathematics, took responsibility for Mandel-
brot’s education. Studying in Paris at the start of World War II was rather 
difficult and gave him an opportunity to think about mathematics inde-
pendently, which allowed him to gravitate further toward geometry. In an 
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attempt to avoid the Nazis, who occupied much of France at the time, he 
left Paris with his family and continued his studies in Tulle, France. In 1944 
he returned to Paris to continue his studies at the Lycée du Parc on Lyon, 
and from 1945 to 1947 he attended the École Polytechnique. From there 
he went on to the California Institute of Technology, where, in 1949, he re-
ceived a master’s degree in aeronautics. He then went back to France to the 
University of Paris, where he earned a doctorate in mathematics in 1952. 
Soon thereafter, he left Paris to return once again to the United States, this 
time to the Institute of Advanced Study at Princeton, where he was men-
tored by John von Neumann. Once again on the move, in 1955 he went to 
France to work at the Centre National de la Recherche Scientific, where he 
met and married Aliette Kagan, and soon the couple moved to Switzerland 
and then again back to France. Finally, the couple, still mobile, moved back 
to the United States where he took the position of a research fellow at the 
IBM Thomas J. Watson Research Center in Yorktown Heights, New York, 
because Mandelbrot felt uncomfortable with the French style of mathemat-
ics study, whereas the IBM environment allowed him greater freedom in 
exploring mathematics from his geometrical viewpoint. He remained at 
IBM for the next thirty-five years.

Figure 49.1. Benoit Mandelbrot.
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In 1980, with the aid of the computer, Mandelbrot showed that pic-
tures of mathematical objects created in 1918 by the French mathematician 
Gaston Julia (1893–1978) were quite beautiful, not monstrous as some may 
have felt. And more importantly, he showed that, rather than pathological, 
the ragged outlines and the repeating patterns of those figures were often 
found in nature. (See fig. 49.2 for some examples.) Mandelbrot used the 
Latin word fractus, meaning broken or fractured, to coin a word to denote 
the new mathematical objects: fractals.

In figure 49.2 the images to the left are pictures of real-life scenes. 
Those pictures to the right are related fractal models. The characteristic fea-
ture of fractals is self-similarity: Geometric patterns seen in the big picture 

Figure 49.2.
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of a fractal are repeated in their parts in smaller and smaller scales. Making 
fractals involves the repeated application of a geometric rule, or transfor-
mation, of an original figure or set of points, which we will refer to as the 
seed of the fractal.

Once we determine what the generative procedure and the seed of a 
fractal will consist of, we can begin constructing the fractal by repeatedly 
applying the generative procedure—first to the seed, then once again to the 
resulting output, and so on. There lies another definitive aspect of fractal 
construction: It is made up of consecutive phases called iterations. An iter-
ation is the act of applying one algorithm or procedure one time through in 
a repetitive process.

When constructing a fractal, the iterations of the generative procedure 
are done recursively—that is, the input of each iteration is the output of the 
previous one—with the exception of the first iteration, which is applied to a 
seed. In some cases, this means that each subsequent iteration will be more 
cumbersome than the previous one. In those cases, programmable technol-
ogy is definitely immensely helpful.

A fractal ideally entails the iteration of a procedure an infinite number 
of times, although in practice we can iterate a procedure only a finite num-
ber of times. We can use computers to help us perform as many iterations 
as we want, which would give us different stages in the construction of a 
fractal. Or we can use mathematics to deduce what would be the result 
of performing that infinite process. Let us consider the generative process 
described above, and the appropriate terminology through a classical ex-
ample, the Koch Snowflake (fig. 49.3).2

For the construction of this fractal, the seed will be an equilateral 
triangle. Because the generation of the fractal happens by successive 
iterations, we will call the result of each iteration a stage in the fractal 
construction. The generative procedure will consist of erasing the middle 
third of every line segment (the initiator) in a stage and replacing it with 
two line segments of the same length (one-third of the length of the original 
segment) at an angle of 60°; this will form cusps (which look like partial 
equilateral triangles—the generator), where before there were segments. 
We can see this procedure illustrated in figure 49.3.

Each iteration will consist of applying the fractal construction proce-
dure to each line segment in a stage of the fractal, which will create the next 
stage. Figure 49.4 shows the first two iterations in the construction of the 
Koch Snowflake.
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We can sketch stage 3 of the Koch Snowflake on a separate piece of 
paper, or use a computer drawing program. Remember this iteration will 
require applying the generative procedure to every segment in stage 2. It 
involves quite a bit more work than the previous iteration. While the first 
iteration consisted of applying the generative procedure to three line seg-
ments, in the second iteration that number increased to twelve. In the third 
iteration we will need to work on forty-eight line segments. That increase 
in complexity is displayed in figure 49.5. With each iteration, each line seg-
ment at a stage will be replaced by four line segments, forming a cusp, in the 
next stage. So, if we know how many segments there are at a stage, we can 
find out the number of segments at the next stage by multiplying that num-
ber by four. This relation can be written algebraically and recursively as: Sn 

Figure 49.3. Generative procedure for the Koch Snowflake.

Figure 49.4. Construction of Koch Snowflake.
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= 4  Sn–1 (which just happens to equal 3  4n), where Sn is the number of 
segments at stage n, and Sn-1 is the number of segments at the previous stage.

The replacement of each segment by a visual spike, and the accelerating 
increase in the number of segments in this fractal, is what gives it the main 
features of a fractal: the jagged appearance and the property of self-simi-
larity. If we zoom in on any spike, we will find smaller and smaller copies 
of it. Magnifying fractals reveals in them small-scale details similar to the 
large-scale characteristics.

Another popular fractal is the Sierpiński Gasket (fig. 49.6).3 Its seed is 
also an equilateral triangle. Each iteration consists of splitting a triangle into 
four smaller equilateral triangles by using the midpoints of the three sides 
of the original triangle as the new vertices, then deleting the middle triangle 

Figure 49.5.

Figure 49.6. Construction of the Sierpiński Gasket.
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from further action (a quarter of the area is deleted). The construction of 
the fractal continues by iterating this procedure over and over: From every 
new triangle formed, a triangle is removed from its interior. This results in 
not only a rough, fragmented surface, but also in self-similarity—the two 
main features of fractals.

The Fibonacci sequence has made its way into one of the most well-
known fractals: the Mandelbrot set (fig. 49.7). But first, let’s see what the 
Mandelbrot set is. Its image is so popular it could earn the title of the “em-
blem of fractal geometry.” Its strange beauty mesmerizes laypeople and ex-
perts alike. But what does that image represent? As with the other fractals 
we have examined, some elements are involved in its construction: a seed, 
a rule or transformation, and an infinite number of iterations. But unlike 
our previous examples—which were mainly geometrical—the Mandelbrot 
set is a set of numbers. The image we see in figure 49.7 is just a plot, in the 
complex plane,4 of the numbers that belong to the set.

How do we know whether a number is or is not in the Mandelbrot set? 
We must test each number to find out. This infinitely large task can only be 

Figure 49.7. The Mandelbrot set.
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done with the aid of a computer, and only a finite number of times, although 
a very large number of times. In fact, it was only under the right conditions, 
in which Benoit Mandelbrot’s vision and intellect was combined with the 
environment of IBM’s Watson Research Center, that a revival of work on 
this set that had been initiated by Julia in the 1920s was made possible.

So the construction of the image of the Mandelbrot set requires one 
more element besides the seed, the rule, and the iterations that the fractals, 
previously discussed, also had: It involves a test of numbers. Let us say the 
number we are testing is c.

The seed for this fractal is the number zero; not a triangle or a seg-
ment, but a number, because this fractal is numerical in nature. The rule 
or transformation is: “square the input and add c,” which can be expressed 
algebraically as x2 + c.

Suppose we want to test the number c = 1. Our transformation be-
comes: x2 + 1.

Let us see the result of a few iterations, starting with the seed 0 as the 
input, and then using the output of each iteration as the input for the next:

02 +1=1
12 +1= 2
22 +1= 5
      !
52 +1= 26
      !
262 +1= 677
       !
6772 +1= 458,330

We can see that with more iterations, the greater the result will be. The 
terms of the sequence of numbers will increase without bound. We say that 
“it goes to infinity.”

Let us test for another number, c = 0. With this value for c, our rule 
becomes: x2 + 0.

Starting with the same seed 0, a few iterations will show that the se-
quence will be fixed at zero:

First iteration: 02 + 0 = 0 
Second iteration: 02 + 0 = 0.
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As a third example, let us take c = -2, for which the rule becomes: x2 – 2. 
We start with the same seed -2 and again obtain a fixed sequence after the 
first iteration:

First iteration:	 (-2)2 	+ (-2) 	= 4 – 2 = 2
Second iteration:	 22 	 + (-2) 	= 4 – 2 = 2

For each value of c, the “test” (repeatedly iterating the rule) will tell us 
whether the result will go to infinity, or if it will not. Values of c that will 
result in an escape to infinity are not in the set; all the others are in the set. 
The image of the Mandelbrot set is actually a record of the fate of each num-
ber, c, under this test.5 The key to understanding the image is to unveil the 
code used. The most frequently used code for plotting the results of these 
tests is to use the color black to represent those points in the plane that are 
in the Mandelbrot set, and to color the others according to their “escape 
speed”—that is, using different colors to represent the number of iterations 
that value takes to reach a certain distance from the origin. Another tradi-
tional way of plotting the Mandelbrot set is just to use black for points that 
are in the set and white for those that are not.

Figure 49.8. The main cardioid and bulbs in the Mandelbrot set.
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We will now look at the image of the Mandelbrot set with a categorical 
eye. At the core of the image, we can see a heart-shaped figure, the main 
cardioid.6 We can also note many round decorations, or bulbs (fig. 49.8). We 
call any bulb that is directly attached to the main cardioid a primary bulb. 
The primary bulbs have in turn many smaller decorations attached to them. 
Among them, we can identify what appear to be antennas (fig. 49.9).

We will call the longest of these antennas the main antenna. Finally, the 
main antennas show several “spokes” (fig. 49.10). Note that the number of 
spokes in a main antenna varies from decoration to decoration. We will call 
this number the period of that bulb or decoration. To determine the period 
of that bulb, just count the number of spokes on an antenna. We must re-
member to count the spoke emanating from the primary decoration to the 
main junction point. Figure 49.11 displays various primary bulbs and their 
periods.

How can the Fibonacci sequence be seen in the Mandelbrot set? We 
will consider the period of the main cardioid to be 1. Then, by counting the 
spokes in the main antenna of the largest primary bulbs, we will determine 
their period. The result of this counting—that is, the period of the main 

Figure 49.9. Detail of decorations in the Mandelbrot set.
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cardioid and of some of the largest primary bulbs, are registered in figure 
49.12.

It is surprising to see from an inspection of figure 49.12 that the largest 
bulb between the bulb of period 1 and the bulb of period 2 is a bulb with 
period 3. The largest bulb between the period-2 bulb and a period-3 bulb 
is a period-5 bulb. And the largest bulb between a period-5 bulb and a pe-
riod-3 bulb is a period-8 bulb. Interestingly, the Fibonacci numbers seem 
to appear. There are no obvious explanations as to why they appear. The 
Fibonacci numbers are not related directly to the way in which the periods 
of primary bulbs are calculated. The Fibonacci sequence inexplicably makes 
a mysterious and remarkable appearance—just another striking feature of 
fractals.

As well as being an IBM Fellow at the Watson Research Center, Man-
delbrot held numerous other academic positions such as Professor of the 
Practice of Mathematics at Harvard University, Professor of Engineering 

Figure 49.10. Main antennas and their “spokes.”

Figure 49.11. Determining the period of bulbs by counting  
the “spokes” in their main antenna.
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at Yale, Professor of Mathematics at the École Polytechnique, Professor of 
Economics at Harvard, and Professor of Physiology at the Einstein College 
of Medicine in New York. Mandelbrot’s excursions into so many different 
branches of science were intentional. It was, however, the fact that fractals 
were so widely found that in many cases, they provided the route into other 
areas. Mandelbrot also received a multitude of academic honors and prizes, 
most of which he received in between the years of 1985 and 2003, such as 
in 1985 he received the Barnard Medal for Meritorious Service to Science, 
in 1986 the Franklin Medal, in 1987 the Alexander von Humboldt Prize, in 
1988 the Steinmetz Medal, in 1989 the Légion d’Honneur and the Nevada 
Medal, in 1993, the Wolf Prize for Physics, and in 2003 the Japan Prize for 
Science and Technology, as well as others.

On October 14, 2010, Mandelbrot died of pancreatic cancer in Cam-
bridge, Massachusetts. He was lauded universally not only for his devel-
opment of fractals, but for his universal intelligence. His obituary in The 
Economist highlights his fame as “celebrity beyond the academy.”7

Figure 49.12. The Fibonacci numbers in the Mandelbrot set.
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Chapter 50

Maryam Mirzakhani:  
Iranian (1977–2017)

It has always been a puzzle to determine exactly why there is no Nobel 
Prize for mathematics. Speculations abound as to why Alfred Nobel chose 
not to designate mathematics as one of his prize categories, but nothing 
conclusive has emerged. This is not to say that mathematicians cannot win 
the Nobel Prize. A case in point is Herbert A. Hauptman. He was the first 
mathematician to win the Nobel Prize, albeit for chemistry, as he solved 
a 40-year-old chemistry problem using his mathematical talent (see chap. 
48). There is, however, a prize solely for mathematicians under age 40. That 
is the Fields Medal, which is issued every four years to either two, three, or 
four mathematicians who have exhibited extraordinary genius. It is award-
ed by the International Mathematics Union. The first woman to win this 
prestigious award was the Iranian mathematician Maryam Mirzakhani, in 
2014. Officially she won the award for her outstanding contributions to the 
dynamics and geometry of Riemann surfaces and their moduli spaces.

Sadly, life was cut short at age forty due to a severe case of cancer, while 
she was a professor of mathematics at Stanford University in California. 
Dr. Mirzakhani’s life began on May 12, 1977, in the Iranian city of Tehran. 
Perhaps her initial motivation for the subject came from her father, who 
was an electrical engineer. Her talents were recognized early as she attend-
ed a school for gifted youngsters, the Tehran Farzanegan School. In 1994 
at age seventeen she won a gold medal at the International Mathematical 
Olympiad, becoming the first Iranian female student to win such an honor. 
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This was followed by the next year’s International Mathematical Olympiad, 
where she achieved a perfect score, winning two medals and once again car-
rying the distinction of being the first Iranian student holding this honor.

From there she went on to Sharif University of Technology to earn her 
baccalaureate degree in 1999. She then attended Harvard University, earn-
ing her PhD in 2004. Once again, her superb talents enabled her to become 
a research fellow at the Clay Mathematics Institute, as well as holding a pro-
fessorship at Princeton University. Her family and colleagues often mused 
about her style of problem-solving mathematics, which involved little dia-
grams or portals surrounded by mathematical formulas. In short, she had a 
very peculiar style of gently approaching problems in great depth.

In 2008, Mirzakhani married a Czech mathematician, Jan Vondrak, 
who was a professor at Stanford University, and then joined him on the 
faculty as a professor in 2009. As indicated earlier, she died prematurely 
in California on July 14, 2017, at the age of forty. However, she received a 
multitude of accolades from her home country, Iran, led by then-president 
Hassan Rouhani. In 2017, she was elected posthumously to the American 
Academy of Arts and Sciences.

What she left behind that will solidify her fame in the future are vari-
ous contributions to the theory of moduli spaces of Riemannian surfaces. 

Figure 50.1. Maryam Mirzakhani.
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Even a very basic introduction to this branch of mathematics would go far 
beyond the scope of this book. That is why we will try, instead, to convey at 
least a very rough idea of the mathematical questions Mirzakhani studied 
and the methods she used by illustrating the most relevant notions with a 
few simple examples, without giving precise definitions and omitting tech-
nical details. A Riemannian surface can be imagined as a (two-dimension-
al) surface in space as those shown in figure 50.2: On the left we show a 
plane—that is, a “flat” surface with zero curvature; then we have a curved 
surface, where the curvature may vary across the surface; on the bottom we 
have a sphere, which is a closed surface with constant curvature (the curva-
ture is the same at each point on the surface).

However, not every surface is a Riemannian surface. A surface is called 
Riemannian if it possesses some additional properties, one of which is called 
orientability: A surface is called orientable if a two-dimensional figure that 
is drawn on the surface cannot be moved around the surface and back to 
where it started so that it looks like its own mirror image. Two examples of 
non-orientable surfaces are shown in figure 50.3: the Moebius strip (on the 

Figure 50.2.
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left) and the Klein bottle (below it). On the other hand, a torus (which is the 
mathematical notion for the shape of a donut) is orientable. 

The realm of Riemann surfaces can be divided into three classes: hy-
perbolic, parabolic, and elliptic Riemann surfaces. These notions corre-
spond to negative curvature, zero curvature (flat), and positive curvature. 
A sphere is an example of a surface with constant positive curvature, a plane 
has constant curvature zero, and an example of a hyperbolic surface is a 
“saddle,” shown if figure 50.4. 

Hyperbolic surfaces represent the biggest and most diverse group among 
Riemannian surfaces. Moreover, while elliptic and parabolic surfaces can 
be further divided into subcategories, no such classification is possible for 
hyperbolic surfaces. Maryam Mirzakhani’s early work was concerned with 
hyperbolic surfaces, more precisely with closed geodesics on hyperbolic 
surfaces. A geodesic is a generalization of the notion of a “straight line” to 
curved surfaces. The term “geodesic” stems from geodesy, the science of 

Figure 50.3.
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measuring the size and shape of the Earth. Originally, a geodesic meant 
the shortest route between two points on the Earth’s surface, but the 
abstract mathematical definition of a geodesic as a curve of shortest length 
also applies to any Riemannian surface, and even to higher-dimensional 
“surfaces” (also called hyper-surfaces). If we assume the surface of the Earth 
to be a perfect sphere, then the geodesics are exactly the great circles—that 
is, circles whose center is at the center of the sphere. Obviously, a sphere has 
infinitely many closed geodesics (a curve is closed if it has no endpoints). 
The shape of the Earth is indeed pretty close to that of a sphere, as you 
can verify by looking at the image shown in figure 50.5, taken by a NASA 
camera onboard the Deep Space Climate Observatory satellite, one million 
miles away from the Earth.

Isaac Newton had already discovered that the effect of the rotation of 
the Earth results in a slight deviation from a spherical shape. The Earth is 
flattened at the poles and bulges at the equator, resembling a slightly ob-
late spheroid (an ellipsoid of revolution). An oblate (flattened) spheroid is 
obtained if an ellipse is rotated about its minor axis. However, the Earth’s 
deviation from a spherical shape is only about one-third of a percent; dis-
tances from points on the surface of the Earth to its center range from 6,353 

Figure 50.4.
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km (3,948 miles) to 6,384 km (3,965 miles), with a mean radius of 6,371 
km (3959 miles). For many practical purposes, such as navigation on the 
sea, the deviation from a perfect spherical shape can be safely ignored, at 
least in most circumstances. However, from a mathematical point of view, 
this “symmetry-breaking” changes the picture completely: for any given 
point on a sphere, we can find infinitely many closed geodesics running 
through this point—namely, all the great circles that can be drawn through 
this point. Yet, the only simple closed geodesics on an oblate spheroid are 
the meridians (great circles running through the North and South Poles) 
and the equator (see fig. 50.6a). 

In particular, if we take any point on a spheroid that lies not on the 
equator and is not one of the poles, then there is only one simple closed 
geodesic running through this point. (Simple means that the geodesic clos-
es on itself without an intervening self-intersection.) If we further reduce 
the symmetry by considering a triaxial ellipsoid (a surface that may be ob-
tained from a spheroid by stretching or compressing it in a direction per-
pendicular to its axis of rotation; see fig. 50.6b), then we will only find three 
simple closed geodesic—namely, the equators defined by the three axes of 
symmetry of the ellipsoid (see fig. 50.7). 

Figure 50.5.
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Figure 50.6a.

Figure 50.6b.
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As a matter of fact, three is the minimum number of simple closed 
geodesics any Riemann surface must have that is obtained by deforming a 
sphere. This result is known as the “theorem of three geodesics.” It was con-
jectured by the French mathematician Henri Poincaré in 1905, and finally 
proved by the German mathematician Hans Werner Ballmann in 1978. We 
mentioned earlier that Maryam Mirzakhani was especially interested in hy-
perbolic Riemann surfaces, which constitute the largest and most complex 
class of Riemann surfaces. It has been known for more than fifty years that 
on a hyperbolic surface, the number of closed geodesics, whose length is 
less than some bound L, grows exponentially with L; more precisely, it is as-
ymptotic to e

L

L
 for large L. This result has a striking similarity to the “prime 

number theorem” for positive integers, estimating the number of primes 
less than a given size (the number of primes less than eL is asymptotic to e

L

L
 

for large L). Therefore, it is also known as the “prime number theorem for 
geodesics.” Mirzakhani was able to show that the number of simple closed 
geodesics of length at most L does not grow exponentially with L, but is 
asymptotic to c·L 6g−6( ) , where c is some constant and g is the genus of the 
surface. Loosely speaking, the genus of a Riemann surface is the number of 

Figure 50.7. Image by Peter Mercator [CC BY-SA 3.0 (https://creativecommons.org/
licenses/by-sa/3.0)]. https://commons.wikimedia.org/wiki/ 

File:Ellipsoid_tri-axial_abc.svg
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holes it has. A sphere has genus 0, a torus or donut has genus 1, and in figure 
50.8 we also show a genus-2 surface and a genus-3 surface.

To prove her result on the number of closed and simple geodesics on 
a hyperbolic surface, Mirzakhani used the concept of the moduli space of 
all Riemann surfaces with genus g. Two Riemann surfaces are said to be 
topologically equivalent if they can be deformed into each other by contin-
uous deformations. For example, a coffee mug and a torus are both genus-1 
surfaces and can be deformed into each other in a continuous fashion (see 
fig. 50.9)—that is, without any cutting.

This topological equivalence gave rise to a joke among mathemati-
cians, describing a topologist as someone who cannot tell the difference 
between a coffee mug and a donut. A given topological surface can take 
on a huge variety of geometric shapes via continuous deformations. For 
a topological surface of genus g, these deformations depend on (6g) – (6) 
parameters or “moduli.” These moduli define by themselves a mathemati-
cal space of dimension (6g) – (6) with certain geometric properties, called 
the moduli space of Riemann surfaces of genus g. In her work, Mirzakhani 
established a link between calculations on abstract moduli space and the 
counting problem for simple closed geodesics on a single surface, allowing 
her to translate mathematical results from one world to the other. Not only 

Figure 50.8.

Figure 50.9.
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could she answer questions regarding geodesics on hyperbolic surfaces by 
rephrasing them in moduli space, but the connection she had discovered 
also provided new insights into moduli space. In her highly original proofs, 
Mirzakhani brought together several mathematical disciplines and built 
bridges that made powerful mathematical tools of one discipline available 
to the other. This has led to significant advances in each of them and will 
also have a considerable influence on their future development.
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Epilogue

We hope you have enjoyed our journey through the history of mathe-
matics via the lives of those whom we believe are the most significant 
mathematicians who have developed the subject to the present day. Se-
lecting fifty outstanding mathematicians from the Western world is a 
difficult task, and one that is open to alternative assessments. There are 
clearly many other outstanding mathematicians who could just as easily 
have been included in our collection; however, we tried to choose those 
who helped define mathematics as we know it today. On both ends of 
the spectrum, it is a difficult task to summarize the unusual lives of these 
mathematicians. For the early days, our resources were very limited. In 
some cases, there are no written documents available from the highlight-
ed person and so we had to rely on the commentary of other mathema-
ticians who knew of their work. One such example is Thales of Miletus, 
where most of the information available is a collection of commentaries 
written by others who flourished during his time and shortly thereafter. 
On the other end of the spectrum, the difficulty is to describe very ad-
vanced mathematics to the general readership, which we have tried to do 
in the clearest possible way.

It is also noteworthy that those of unusually high intelligence, which 
we often referred to as genius, have a lifestyle that is not typical of the av-
erage citizen. We also notice that these brilliant mathematicians struggled 
throughout their lives to achieve their groundbreaking ideas and concepts. 
Oftentimes, they met with resistance and had to grapple with societal issues 
to publicize their ideas. These included, but were not limited to, poverty, 
gender, religious beliefs, and other societal peculiarities. Yet these aspects 
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of their lives add further interest as we try to understand how they reached 
these heights.

We hope that having shed light on these unusually brilliant people will 
allow the reader an even greater appreciation for mathematics and motivate 
a desire to pursue further the work of these fifty mathematicians and others 
that we couldn’t fit into this book.
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Appendix

Hilbert’s Axioms

I. Incidence
1.	 For every two points A and B there exists a line a, which contains 

both points. We write AB = a, or BA = a. Instead of “contains,” 
we may also employ other forms of expression; for example, we 
may say “A lies upon a,” “A is a point of a,” “a goes through A and 
through B,” “a joins A to B,” etc. If A lies upon a, and at the same 
time a lies on another line b, we also make use of the expression 
“The lines a and b have the point A in common.”

2.	 For every two points there exists no more than one line that con-
tains them both; consequently, if AB = a, and AC = a, where B ≠ 
C, then also BC = a.

3.	 There exist at least two points on a line. There exist at least three 
points that do not lie on the same line.

4.	 For every three points A, B, C not situated on the same line there 
exists a plane α that contains all of them. For every plane, there 
exists a point that lies on it. We write plane ABC = α. We may also 
use the expressions “A, B, C, lie in α,” “A, B, C are points of α,” etc.

5.	 For every three points A, B, C that do not lie in the same line, 
there exists no more than one plane that contains them all.

6.	 If two points A, B of a line a lie in a plane α, then every point of 
a lies in α. In this case, we say, “The line a lies in the plane α,” etc.

7.	 If two planes α, β have a point A in common, then they have at 
least a second point B also in common.

8.	 There exist at least four points not lying in a plane.
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II. Order
1.	 If a point B lies between points A and C, B is also between C and 

A, and there exists a line containing the distinct points A, B, C.
2.	 If A and C are two points, then there exists at least one point, B, 

on the line AC, such that C lies between A and B.
3.	 Of any three points situated on a line, there is no more than one 

that lies between the other two.
4.	 Pasch’s Axiom: Let A, B, C be three points not lying in the same 

line, and let a be a line lying in the plane ABC and not pass-
ing through any of the points A, B, C. Then, if the line a passes 
through a point of the segment AB, it will also pass through either 
a point of the segment BC or a point of the segment AC.

III. Congruence
1.	 If A, B are two points on a line a, and if A′ is a point upon the same 

or another line a′, then, upon a given side of A′ on the straight line 
a′, we can always find a point B′ so that the segment AB is con-
gruent to the segment A′B′. Every segment is congruent to itself.

2.	 If a segment AB is congruent to the segment A′B′ and also to the 
segment A″B″, then the segment A′B′ is congruent to the segment 
A″B″; that is, if AB  A′B′ and AB  A″B″, then A′B′  A″B″.

3.	 Let AB and BC be two segments of a line a, which have no points 
in common, aside from the point B, and, furthermore, let A′B′ 
and B′C′ be two segments of the same or of another line a′ having, 
with, likewise, no point in common other than B′. Then, if AB  
A′B′ and BC  B′C′, we have AC  A′C′.

4.	 Let an angle (h, k) be given in the plane α and let a line a′ be 
given in a plane α′. Suppose also that, in the plane α′, a definite 
side of the straight line a′ be assigned. Denote by h′ a ray of the 
straight line a′ emanating from a point O′ of this line. Then in the 
plane α′ there is one, and only one ray k′ such that the angle (h, 
k), or (k, h), is congruent to the angle (h′, k′), and at the same 
time all interior points of the angle (h′, k′) lie upon the given 
side of a′.

5.	 If the angle (h, k) is congruent to the angle (h′, k′) and to the 
angle (h″, k″), then the angle (h′, k′) is congruent to the angle 

(h″, k″).
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6.	 If, in the two triangles ABC and A′B′C′, the following congruenc-
es are true: AB  A′B′, AC  A′C′, BAC  B′A′C′, then the con-
gruence ABC  A′B′C′ and ACB  A′C′B′ also holds true.

IV. Parallels
1.	 Euclid’s Axiom: Let a be any line and a point A not on the line. 

Then there is at most one line in the plane, determined by a and 
A, that passes through A and does not intersect a.

V. Continuity
1.	 Archimedes’s Axiom: If AB and CD are any segments then there 

exists a number n such that n segments CD constructed contigu-
ously from A, along the ray from A through B, will pass beyond 
the point B.

2.	 Axiom of line completeness: An extension of a set of points on a 
line with its order and congruence relations that would preserve 
the relations existing among the original elements as well as the 
fundamental properties of line order and congruence that follows 
from Axioms I–III and from V–1 is impossible.

Hilbert’s 21st Axiom: Any four points A, B, C, D of a line can 
always be labeled so that B shall lie between A and C and also be-
tween A and D, and, furthermore, that C shall lie between A and D 
and also between B and D. (In 1902 the American mathematician 
Eliakim Hastings Moore [1862–1932] proved that this 21st axiom 
was redundant.)
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Chapter 47

  1. To compute the Erdős number of an author, visit https://mathscinet.ams 
.org/mathscinet/freeTools.html and go to the collaboration distance calculator. The 
tool will automatically find a path in the MathSciNet database between any two 
people you wish (there is a special button for selecting Paul Erdős as one end of the 
path).

  2. According to “Facts about Erdős Numbers and the Collaboration Graph,” 
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1998).
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Chapter 49
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Freeman, 1983), 1.

  2. The Koch Snowflake was named in 1904 after the Swedish mathematician 
Helge von Koch (1870–1924).
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  4. The complex plane is the two-dimensional representation of complex num-
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