EIGRENE
with Math

Using Fun Projects and Games

Ron Dal

APress’

Learn Java with Math

Using Fun Projects and Games

Ron Dai

Apress’

Learn Java with Math: Using Fun Projects and Games

Ron Dai
Seattle, WA, USA

ISBN-13 (pbk): 978-1-4842-5208-6 ISBN-13 (electronic): 978-1-4842-5209-3
https://doi.org/10.1007/978-1-4842-5209-3

Copyright © 2019 by Ron Dai

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint,
paperback, or audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484252086. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5209-3

To Angela, Henry, and Hanson,
who always brighten my world

Table of Contents

About the AULNOF ... —————— Xiii
About the Technical REVIEWETcccouiimmmmmmmmmmmesmssssssssssssmseessssssssnsnns Xv
Acknowledgments......ccccuseemminssssnnnmmssssnnnmssssssssmsssssnsssssssssnsesssssnnssnss Xvii
- T Xix
Part I: Java BasSiC......ccccceummmmmrrnssssssssssssnnnnsnnnnnnnnsssssssssssssnnnnnnnnnnnnns 1
Chapter 1: Introduction..........cccevvnnemmnnnssennmmnssssnmmmsssssessss———————" 3
o 0] 0] T o T 7
Chapter 2: Number BasiCSccuuurusssmmmsssnsmsssnsssssnsesssssssssssssssnnsssssnssssnns 9
What Is @ Numeral SYyStem?..........cccoveirerrnrerreserese e sennes 9
Why Do People Use Decimal Numbers, While Computers Use
Binary NUMDEIS?ccvicerireriresrsese s ss s s 10
How to Convert a Number Between Different Numeral Systems.........ccocvceviennene 11
What Is Bit, Byte, KB, MB, GB, TB, and PB?............cccocunmmnenererenneseseressssssesenens 17
What IS BitWiSE?.......cccvreririirne st se s 17
o 0] 0] T 0 LS 18
Chapter 3: Java BaSiCSccussurrsssnmrsssnsmssansssssnsssssnsesssnsesssnsssssnnssssnnssssas 19
What Features Does Java Have?..........cccvnnvnvnnnsnsnscsness s e 19
ODbJECt-0rientedcccoeeeerererec e s 19
ClasS-BaSEU..........ccccvreriririrsine e e e e 20
JAVa BYIBCOMER ... 20

TABLE OF CONTENTS

Chapter 4: Start Playing with Java..........ccceimmnmmmnmnssnnnnmnssssssnssssssnnns 23
What Is the Difference Between the JRE and the JDK?...........cccooeverernenencnenens 24
What Are a Workspace, Source, and Package?c.ccooeeveervernererersenseeseessenens 25
What Are Edit, Compile, and EXECULE?ccvcevererierierreererersee e seressee s saennens 25
Creating Your First Program..........ccucvnennnsnnsnssnsss s sessessssssessssesenns 26
Exploring Class and Main()........cuevrerernsemsersesinssssessesessssessessessssessessessessssessessens 29

Why Is It “public static void main(String[] args)”?......ccecvvrivrnrenieriernsensenens 30
ProDIBMS ... —— 31

Chapter 5: Variablesccccuseemminssssnnnnmssssnnmmssssssssssssssssesssssssssssssnnnnes 33

Defining a Variable Name..........ccccvvininnininin e sesnens 34
e 111 34
Different Types of Variables in Java...........ccccovvvvrinnsninennnsnsensess s senennns 35

Assigning a Value to aVariable ... 37
LAD WOTK.....eeeeeeceee e s 37

Chapter 6: First Algorithm.........ccccoonrmmmmmmmnnnnmnssssssn s 39
Swapping Values Between Variables ..o s 40
Other APProaChEScovcvcrere e e sne 41

Chapter 7: Input and Qutputccccsrvimnismnnmmmmn s ————— 43
Importing java.util.SCANNET ..o e 43
L= 0T T 0 L 44
Producing OUEPUL......cccveceric e 44

LAD WOTK.....eeeeeeeere e s 45
EXAMPIC....eeeee s 45
6 111] S 46
LAD WOTK.....oeeeecceree e s 46
PrODIBMS ... e s 47

TABLE OF CONTENTS

Chapter 8: Loop Structure — for LOOPccccrvvsssemmnrsssssnsnmsssssnnssssssnnnnes 49
EXAMPIE ..ot e e e 49
LD WOTK ... e 50
The for Loop FOrmMUIA...........cccrrrrrcrr s 50
Finding the “for Loop” Formula for an Arithmetic Sequence...........ccceeevviniennens 51
Math: Counting StrategiCally.........cccocvvinrrininnnrrn s 51
LAD WOTK ...t s e 53
6 1] < S 53
(121N S 54
PrODIBMS ... s 54

Chapter 9: Loop Structure — while LOOPccovnnsmmmmmmmmmmmsssssssssssssnnnnnas 57
EXAMPIE ..o e s 58
EXAMPIE ..o e s 58
The do-While LOOP ...cocerveereririrrie e ss e s se s s n 60
LAD WOTK ...eveeeeeece s se e ssssssssnsnees 60
L (0] 0] [T 61

Chapter 10: Logical Control Structuresccussmsssmsssssssssssssssassnsnss 63
Conditional OPEratorscoevvvrirennsnnre e s 64

LAD WOTK.....eeeeeeeee e 66
LOGICal OPEIatOrS.....cccvecerreerrresrsese s e 67
Math: Logical OPeratorscocuverereserrnsesssesesssessssessssesssssessssessssessssssessnnes 67
Math: Analyzing Logical Problems..........ccccoevnvnininnnininnn e 69
I 00 SR 69
PrODIBMS ...t 70

vii

TABLE OF CONTENTS

Chapter 11: Errors and TiPS.....ccocuuseemmmmssssnnsssssssssssssssssssssssssssssssssnnnnes 73
Programming TiPS......ccucicieninnsirie s s sss s snens 75
Handling EXCEPLIONSccccvieriiinirierenn s sse s e ssesnens 76
PrODIBMS. ... 77

Chapter 12: Java Basics SUMMary.........ccconmmmmsnnmmmmsssssnnmsssssssnsssssnnnns 79
GENEIAI RUIES.....coueiieieircr ettt s 79

How to Define a Variable Name..........ccccocvvvnininnnnsnsc s 79
How to Qutput in CONSOIEccvcereririircrer e 79
How to Listen to Input in CoNnSole.........ccocvvvrvriennnnsninrs s 80
How to Repeat an Operation..........ccccccvvrrninininnnn s 80
How to Control a Conditional Operation............cccccvvevninininnnnsnnenesensenennns 80
BasiC COdiNg STIUCLUIEccoveerreiereerinese e 81
CUFTY BrACES....cueirrrererreerissesessesessesesessesssss e ssssesassesssse s ssssessssssessasssessessssasessssssnns 82
LAD WOIK ... s 82

Chapter 13: Java Basics Projects........ccuusemmmmssssnnsssssssnnssssssssnssssssnnnnss 85

Chapter 14: Java Basics SoIUtionsccccevevsnnssssssssssnnnnssssssssssssssnnns 89

Part ll: Java Intermediate........ccccussnmmnmmmmsssnnnnnmnssssssnsnnnsssssnnnnns 91

Chapter 15: Wright Brothers’ Coin Flip Game........ccccccurrnsssnnnnsssssnnnns 93

Chapter 16: Pythagorean Triplesccccuussemsrssssssssssssssnsnssssssnnssssssnnnnss 97
Math: Pythagorean TripIES.........cccvirininnsninie e snens 97
PrODIBMS ... ———————— 101
Math: Pythagorean Primes..........coecvvenmrenernsensesese s 101

Chapter 17: Strong Typed Programmingccusseessmsssssssssssssassnsssssnns 103
TYPE CASHING....ccueeereeererererreerrese s ne s se s 103
Math: SIope 0f @ LINEccvceveniirir s 105
Math: CollINEANTYcovererrererrerirrere e s s sr e e 107

viii

TABLE OF CONTENTS

Chapter 18: Conditional Statements...........ccccrsremmninsssnnnnnssssnnnnnsnnn 109
Math: Hypothesis and CONCIUSIONcccecerrvevrierere s 109
Math: QUAArANTS.........cccvcrirrerr e —————— 114
ProDIBMS. ... ————— 116

Chapter 19: Switch Statement.............ccccccccnninnnenneen——— 119
PrODIBM.....oeer e 125

Chapter 20: Tracing Moving Objects.......cccussesmsssnsssssnsssssnsssssnnssssnnssss 127
Math: Bouncing Ball..........ccocevvvrvniereninrrene s sese s sessessessessssessessees 127

Chapter 21: Countingcccsurssssnensmssssnnnssssssssnsssssssnssssssssnnssssssnnnnssssnnns 131
ProDIBMS.....co e s 146

Chapter 22: Factorization........cccccussemmmnssssssnnnssssssnsssssssnssssssssssssssssnns 147
Math: Finding FaCLOrSccovvrvrire e 147
Math: Halving the Problem..........cccrenninininnsnsne s 149
Math: Using the Square ROtccovveemrenrnsennesese e 150

Chapter 23: Exploratory Experimentation of Picccconnnssnnnnnnnnnnnas 155
Math: Calculating a Populationccccuvernsennennnsc s 155
EXAMPIE ..o e 156

Math: Pi from Probability TREOIYccveererrrrierernserrere s sere e sessesessens 156
PrODIBM.....oe e ———————— 161

Chapter 24: Classes in Object-Oriented Programming.........cccurussnnes 163
LAD WOTK ...t s s 166
LAD WOTK ... s 166
LAD WOTK ...t s s e 167
PrODIBMS ... s 167

ix

TABLE OF CONTENTS

Chapter 25: Interface — Total Abstraction...........cccenssennnrssssnnnnnsssnnns 171
Chapter 26: Inheritance — Code REUSEccurrrsssmnnsrsssssnnsssssssnnnsssssnns 177
o 0] 0] T o T 179
Chapter 27: Encapsulation and Polymorphism...........cccevnsssnnnnnsssnnns 181
ENCapSUlAtion ... 181
POIYMOIPRISM ... s 183

o (0] 0] < 111 183
Chapter 28: Array — a Simple and Efficient Data Structure 185
LAD WOKK ...t e 187
ProDIBMS ... s 187
Chapter 29: Common Pitfalls.......c..ccceunrmssnnnnmsssssnnsmsssssnssssssssssssssssnns 189
I 0 I G 189
Chapter 30: Design Considerationscccuermsssmsesssmssssssssssssnsssssnsnas 193
o T T O T 193
PractiCal Case 2ccvevververreereriersenssesessessssssessessesssessessessssssssassaessssssessessenses 195
Practical Case 3ccvcevverierienrmrinsessse e sesssssse e ssesssessessessesssesaesaessssssssnesannnnes 197
APPIOACH A ... e 197
APProaCh B.........oo s 198
Practical Case 4cucvmermninennsessessss s s ssens 198
Chapter 31: 10U Computationcccceemmmmmmmmmmsssssssssssssssssssssssssssssnnns 203
Chapter 32: Projectsucceeemmmmmmmmmmmmsssssssssnmsssssssssssssssssssssssssssssssssnnnss 211
o 0]+ S 211

£ 1o T O 211

STBP 2 e nae s 212
PPOJECE B...veveeoeeeeeeseeeseneseeseesssesssessseesseesssesasesssesssesssesssesssesssessseesasesnssasesssesens 213

TABLE OF CONTENTS

o0 €] 1= R 213
PrOjECE D .. e 214
PrOJECE E.....eeeeer e e e e 214
o] (0] T2 ST 214
o0 (0] T2 TSRS 215
Chapter 33: Java Intermediate Solutionsccccememnnnnnsssssssssnnsnnnnns 217
For 16. Pythagorean TrPIESccccvrerererrerieresinsessese e sessesessesessessessessssessessees 217
For 17. Strong Typed Programmingccueeveveerersersersesessessessessssessessessssessessenes 217
For 18. Conditional Statements............cccccereerrnenescsenenneseseseres s 218
For 19. Switch Statement ..o 219
FOr 21. COUNTING....coeerieerereeree e 220
For 23. Exploratory Experimentation of Picccccvivivvninininnsncnnnncenienens 221
For 24. Classes in Object-Oriented Programming..........ccccveeriernsenserenensensenenns 221
For 26. Inheritance — Code REUSE...........cccovrrnenssenerinsssssese s 221
For 27. Encapsulation and Polymorphism...........ccccvvvveririrnnneniensenseesesenens 222
For 28. Array — a Simple and Efficient Data Structure..........ccoceevvrinicncennen 223
For 29. Common PItFallS.........cocoereeerereereser s 223

T .7 ¥

About the Author

Ron Dai is a software engineer and

data scientist at Microsoft. He is also

a mathematics and computer science
instructor at NWCS (Northwest Chinese
School, http://www.nwchinese.org) located
in Bellevue, Washington. He enjoys teaching
computer science using math. He has written
a book titled Cool Math - Scenarios and
Strategies, which is available on amazon.com.

xiii

http://www.nwchinese.org

About the Technical Reviewer

Jeff Friesen is a freelance teacher and software
developer with an emphasis on Java. In addition
to authoring Java I/0, NIO and NIO.2 (Apress,
2015), Java Threads and the Concurrency Utilities
(Apress, 2015), and the first edition of this
book, Jeff has written numerous articles on Java
and other technologies (such as Android) for
JavaWorld (JavaWorld.com), informIT (InformIT.
com), Java.net, SitePoint (SitePoint.com), and

other web sites. Jeff can be contacted via his web
site at JavaJeff.ca or via his LinkedIn (LinkedIn.
com) profile (www.1inkedin.com/in/javajeft).

http://www.linkedin.com/in/javajeff

Acknowledgments

I am grateful for my wife, Angela, who has always been supportive of my
technical research and teaching work in so many ways. I am also thankful
to my two lovely and intelligent sons, Henry and Hanson, who have
provided me firsthand feedback and inspired me when I created the idea
of this book. I can never forget about what I have learned from Mr. Bangfu
Mo and Mr. Jim Pierson, who have provided me with guidance on how to
elaborate the creative ideas in a book. I also want to take this opportunity
to send my sincere gratitude for their invaluable advice that they have
given me in the past. My special thanks go to everyone on the Apress
editorial team, who are all world-class professionals.

(Designed by Hanson Dai)

xvii

Preface

Congratulations on finding out about this book. I am writing this book to
help beginners learn Java programming effectively and with plenty of fun.
The book is designed to simplify the complexity and guide the learner to
explore and discover things under the hood. I hope the instructions inside
this book are intuitive enough for beginners to follow through with hands-
on practice.

Having a good foundation of math skills is undoubtedly super powerful
when learning programming. In the meantime, it is a good opportunity
to practice mathematical problem solving when you study programming.
With this motivation, I have included some math practice problems
applicable to programming-related concepts.

The more practice you do, the more effectively you will be able to
produce results. It requires intensive and extensive problem solving
exercises for anyone to master coding skills. In this book, I have included
quite a few interesting coding problems for practice. I hope you will have an
enjoyable learning experience. Source Code for this book is accessible via the
Download Source Code button located at waw.apress.com/9781484252086.

Xix

http://www.apress.com/9781484252086

PART |

Java Basic

CHAPTER 1

Introduction

There are many good Java programming books on the market, but it is
not easy to find one fit for a beginner who is new to Java and has minimal
programming knowledge.

This book will help beginners learn how to effectively program in Java.
My intent is to simplify the more complex aspects of Java and to guide the
learner in exploring things “under the hood.” I hope the instructions inside
this book are intuitive enough for readers to follow through with hands-on
practice.

People who have experience with programming understand that
mathematical knowledge plays a crucial role in programming design.
So having a good foundation of math skills is undoubtedly super helpful
when learning programming. This book provides a good opportunity to
practice mathematical problem solving in a programming context. With
this motivation in mind, I have included some math practice problems
applicable to programming-related concepts.

Learning with deliberate practice enhances your understanding of new
concepts on a deeper level. Actively participating in hands-on projects
is a critical part of the learning process. And more practice will lead to
producing results more quickly. I hope this will be an enjoyable learning
experience for you.

© Ron Dai 2019 3
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_1

CHAPTER 1 INTRODUCTION

Programming work involves designing and writing code using a certain
computer language. Correctly executed code will perform repetitive tasks
and accomplish expected goals. Nowadays, as high-technology products
are being integrated into our daily lives, computer programming skills are
becoming indispensable almost everywhere. Many daily computation
jobs have already been replaced by programmed devices-you don’t need
to look further than the self-checkout line at your local supermarket or
the ever-increasing number of products purchased online. Reoccurring
events are increasingly controlled by automated systems, such as building
security system, thermostats mounted on the walls inside your house, and
a plethora of other examples.

Another example is gaming software, which has such a rich user
interface that many of us—from teenagers to adults—are already addicted
to it. All these products and services are essentially built by computer
programming.

As the beauty of artificial intelligence emerges, we can already see
and feel the power of applications of computer technology more than
ever before. If you have watched Hollywood movies like Arrival or
Passengers (both released in 2016), I am sure you were fascinated by the
amazingly intelligent robots depicted in the movies. If you are curious
how a computer can precisely recognize an object with an activity in
any picture, I suggest you listen to an exciting TED Talk named “How We
Teach Computers to Understand Pictures” All of these amazing things are
empowered by software, which is written in programming language(s).

To become a good programmer, you need to understand logical control
and basic counting methods. It will require more sophisticated math
knowledge if you want to develop a system to control objects’ activities.

There are quite a lot of famous but unsolved problems in math history.
As computer technology improves, we can leverage computers’ talents to
solve some of these problems.

CHAPTER 1 INTRODUCTION

For example, the Collatz conjecture states that if you randomly pick a
positive integer N, and if it is even, divide it by 2; if it is odd, multiply it by
3 and add 1. And if you repeat this procedure long enough, eventually the
end result of N will always be 1.

Mathematicians and data researchers have tried millions of numbers.
No exception has been found, but no one has found a way to prove all
integers following this rule.

Using simple Java programming, we can prove the Collatz conjecture
for any positive integer up to N. In the following short program, I will test
the conjecture with every integer and find out its sequence length, which is
the number of operations for it to reach the result “1.”

public class Provelt {
public static void main(String[] args) {
// representation of a million
final long N = 1000 * 1000;
for(long i = 1; i <= N; i++) {
System.out.println("i=" + i + " - " +
GetCollatzSequenceCount(i));

}
System.out.println("DONE!");

}

private static long GetCollatzSequenceCount(long n) {
if (n <= 0) return 0;
long count = 0;
while(true) {
if (n == 1) return count;
if (n%2==0) {
n/=2;

CHAPTER 1 INTRODUCTION

} else {
n=n*3+1;
}

count++;

Guess what? To test up to 1,000,000 integers, it completes executions
and reports results back within several seconds on a normal work
laptop. Don’t worry about understanding or running this code now; just
appreciate that this short program can churn through 1,000,000 iterations
in only a few seconds.

The last part of the output is:

1=999991 - 165
i=999992 - 113
i=999993 - 165
1=999994 - 113
1=999995 - 258
1=999996 - 113
i=999997 - 113
i=999998 - 258
i=999999 - 258
1=1000000 - 152
DONE !

One last thing to mention about notation in this book:
Math: describes a specific math concept.

Problems: provides a list of follow-up exercises. You
can find hints for some problems.

CHAPTER 1 INTRODUCTION

Hint: suggests ideas for references to solve the
problem.

Finally, students are encouraged to try Lab Work,
after learning Answer and Example.

Problems

1.

List an example that you have observed about
something satisfying both (a) and (b) described as
below.

(a) There is no programming feature associated with it now.

(b) It will function much more efficiently if there is a program
built in it.

How do we exchange different types of water

between the two cups?

You are not allowed to mix the water.

I am thinking about an integer between 1 and 100.
You may ask me questions in order to identify the
integer, but you are not allowed to ask questions like
“what is this integer?”

What is your strategy to ask the minimum number
of questions in order to figure out the number?

CHAPTER 1

4.

INTRODUCTION

There are 27 ping pong balls. All of them look
identical and weigh the same, except that

one of them is lighter. Using a balance scale, how
do you quickly find the one that is not the same as
the others?

How do you use the following four numbers with
basic operators (“+”, “-”, “x”, and “/”) to create a
math formula which equals 24? You may use each

number only once, but you can use parentheses.

>

PP
PP

=l 2

i 9 | i &
@
a

gt 2

i

<&

CHAPTER 2

Number Basics

What Is a Numeral System?

Many different numeral systems exist because there are specific uses
where a certain numeral system is more convenient to use and offers

advantages over others. For example:
e Weight: 1 pound = 16 ounces
e Length: 1yard = 3 feet, 1 foot = 12 inches

o Babylonian numeral: Base 60

71 7 11 «7 21 K7 31 ¢y 41 &y 5!
7 2 {fy 12 Hfy 22 P 32 Q-n 42 (Q(ry 52
iy 2 1z 7 23 €T 33 <§np 43 T 53
Ta @i «Fo €P3 KW P s
Ws Wi 2 €W KFas «Fss
We Wi1e UFax €F e EPWaw &R se
¥ W1 T2 €F 3y T &Fs
Fe W (W T KT «Fss
Bo F10 «F2 €F <o «F-s
{10 H« 20 4 30 ‘Q’ 40 ﬁ'{(50

(from Wikipedia)

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_2

CHAPTER2 NUMBER BASICS

e In Ancient China: Ying/Yang - “binary,” Ba Gua - 8
trigrams

(from Wikipedia)

e Decimal counting
e Tensymbols:0-9
e Binary counting
e Two symbols: 0 and 1

¢ Time measurement

One day = 24 hours

One hour = 60 minutes = 3600 seconds

Why Do People Use Decimal Numbers, While
Computers Use Binary Numbers?

A simple answer is that human beings have ten fingers and ten toes, but a
computer has only two states.

Joking aside, a computer is built with many connections and
components (parts) that are used to transfer and store data, as well as to
communicate with other components. Most of the storing, transferring,

10

CHAPTER2 NUMBER BASICS

and communicating events happen with digital electronics. Digital
electronics use the binary system (ON or OFF). A signal with a series of
ON/OFF pulses is equal to a binary number.

How to Convert a Number Between
Different Numeral Systems

[Math] Conversion between Decimal and Binary:
(1) Convert a decimal number to a binary number
[Example]

Convert 350 in base 10 number, to a binary number
(base 2)

[Answer]
In base 10, we can write 350 with this equation:
350=3%10*+5 10"+ 0 % 10°

Notice each coefficient (i.e., 3, 5, and 0) is less than
10, and there is no coefficient for 10% or above.

11

CHAPTER2 NUMBER BASICS

Now we want to change it to something like this:

350=ax28+b*x2"+cx2°+d*x2°+ex2*+ %23+
gx22+h*x 2 +i%2°

Notice there is no 2° or above, because we
know 350 < 512=2°

350 - 1 %256 (i.e., 20) =94 <128 =2">a=1,b=0;
94 -1 %64 (ie,25=30<32=2">c=1,d=0;
30-1%16(i.e,2)=14>e=1;
14-1%8(i.e,2)=6>f=1;
6-1x4(i.e,2)=2>g=1;
2-1%2(i.e,2)=0>h=1,i=0;

Therefore, 350 =128+ 0% 2"+ 1 %26+ 0% 254+ 1 % 2% +
123+ 1522+ 1 %2 +0%x2°

Which means (350),,=(101011110),

The subscript number (10 and 2) indicates its

number base.
(2) Convert a binary number to a decimal number
[Example]

Convert binary number 11001001 to a decimal
number

[Answer]

We rewrite the expression of the binary number as
shown below.

12

CHAPTER2 NUMBER BASICS

(11001001),

=127 +1%264+0%25+0%2%+1%23+0%2%+
0x2'+1x%x2°

=128+64+8+1
=(201),0

To practice conversion between decimal and binary,
Irecommend this online game: http://games.
penjee.com/binary-numbers-game/

[Math] Fractions in Decimal and Binary

(3) Convert a decimal point number (base 10) to a

binary number

We need to understand how we identify each digit
after the decimal point. For example, 4.3256

Remove integer part “4,” so we have 0.3256.

0.3256 x 10 = 3.256 = 3 is the 1st digit after the
decimal point

Remove integer part “3,” so we now have 0.256

0.256 x 10 = 2.56 > 2 is the 2nd digit after the
decimal point

Remove integer part “2,” so we now have 0.56

0.56 x 10 =5.6 = 51is the 3rd digit after the
decimal point

Remove integer part “5,” so we now have 0.6

0.6 x 10 = 6 > 6 is the 4th digit after the
decimal point

13

http://http
http://http

CHAPTER2 NUMBER BASICS

Remove integer part “6,’and we are done.

The same process applies when we convert a
fraction from a decimal to a binary.

Integer part of “4.3256” is “4,” which is 100 in binary.
From now on, we only look at the decimal part.

0.3256 x2 = 0.6512 = 0 is the 1st digit after the
decimal point

0.6512x 2 =1.3024 -> 1is the 2nd digit
0.3024 x 2 = 0.6048 - 0 is the 3rd digit
0.6048 x 2 = 1.2096 - 1 is the 4th digit
0.2096 x 2 = 0.4192 - 0 is the 5th digit
0.4192x 2 =0.8392 - 0 is the 6th digit
0.8392x2 =1.6784 - 1 is the 7th digit

Repeat until we finally get 0, or we see a repeating
pattern.

(100.0101001...), is the final answer.

[Math] Binary arithmetic: Addition, Subtraction,
Multiplication, Division, Square root

Binary addition and subtraction operations follow
rules such as these:

0+0=0>0-0=0
0+1=12>1-0=1
1+0=1

1+1=0(carryone)=10>10-1=1

14

CHAPTER2 NUMBER BASICS

Note As opposed to the decimal numeral system (a.k.a. base 10
numbers) that we are familiar with, a binary number has 2 as its base
and has only 0 or 1 as its representation for every digit. In an addition
operation, when any digit reaches 2, it becomes “carry one” to its

left digit. However, in a subtraction operation, a digit 0 will need to
borrow 2 from its left digit to subtract 1. However, this is the opposite
direction of the operation to the “carry one.”

Binary multiplication and division operations follow rules as the following:
0x0=0
0x1=0
1x0=0
1x1=1
This is an example of division between binary numbers.

11
11) 1011
=11
101
=11

10 > remainder (r)

Conversion between binary and other numeral systems:
e Hexadecimal - base 16 number system

Mapping between decimal and hexadecimal:

Hexadecimal: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal: 01t 2 3 45 6 7 8 9 1011 12 13 14 15

15

CHAPTER 2

16

NUMBER BASICS

Since every four digits in a binary forms one
hexadecimal digit, to convert a binary number to
its hexadecimal, we group every four digits in the
binary from the right.

For example, 100 in binary equals 4 in hexadecimal
and 1011 in binaryis 8 + 2 + 1 = B in hexadecimal.
Therefore, 1001011 in binary is 4B in hexadecimal.

Octal - base 8 number system

Every three digits in a binary forms one octal digit.
We can group every three digits in a binary from the
very right and convert it to its octal form.

For example,
To convert 10111011 in binary to its octal result:

Step 1 - group it by every three digits from the right:
(10),(111),(011),;

Step 2 - convert every group of up to three digits
(0 to 1) to an octal digit (0 to 7): (2)s(7)s(3)s,

Step 3 - the converted octal result is 273.

Inversely, to convert 273 in octal to its binary format,
we convert each octal digit to a three-digit binary
number:

2735 = (2)s(7)s(3)s = (010),(111),(011), = 010111011,

CHAPTER2 NUMBER BASICS

What Is Bit, Byte, KB, MB, GB, TB, and PB?

Bit means a binary digit, 0 or 1. It is the smallest unit of data.

Byte is a sequence of eight bits.
1 Byte (= 8 Bit), KB, MB, GB, TB, PB

1,024 Bytes=1KB KB:

1024KB =1MB MB:
1024MB =1GB GB:

1024GB =1TB TB:
1024TB =1PB PB:

Kilobyte
Megabyte
Gigabyte
Terabyte
Petabyte

What Is Bitwise?

In computers, an integer number is represented as a sequence of bits in

memory. We usually interact with decimal numbers in display through a

computer’s graphic user interface. However, its binary forms carry out the

actual calculations inside the computer. Bitwise is just a level of operations

that involves working with individual bits.

Bitwise operators contain three basic ones:

& -2 AND
0&0=0&1=1&0=0

1&1=1

Alogical AND (&) of each bit pair results in a 1, if the
first bitis 1 AND the second bit is 1. Otherwise, the

result is zero.
Examples:
01 & 00=00

11111111 & 01100101 =01100101

17

CHAPTER2 NUMBER BASICS

| > OR
0[0=0
0[1=1]0=1]1=1
Alogical OR (]) of each bit pair resultsin a1,
(1) ifthe first bitis 1 OR the second bit is 1.
(2) or, if both the first and the second bit are 1.
Otherwise, the result is zero.
Examples:
0101|0011=0111
0010|1000 =1010
AN NOT

A unary operation performs a logical negation on
each bit.

In other words, after this operation, a 1 bit is flipped
to a 0 bit and a 0 bit is flipped to a 1 bit.

Examples:
A 0011 =1100

A01010110=10101001

Problems

1. Why do computers use binary numbers?

2. What do Hexadecimal, Octal, and Bitwise mean?

18

CHAPTER 3

Java Basics

Today, computers use so many different kinds of programming languages.
Each of them plays an essential role in a certain area to solve a specific
type of problem. Java was invented and developed by Sun Microsystems
in the early 1990s; it was then acquired by Oracle, Inc. After 20 years of
development, Java has now become one of the most popular programming
languages in the world.

Java is a typical OOP, a.k.a. object-oriented programming language,
which deals with a bunch of “objects.” These objects contain data and
operations. Operations are about what can be done to data within the
object.

In the Java world, there is an open source development tool called
Eclipse. It has rich features, and it is free to use. Eclipse is also a suitable
tool for beginners. We will be using Eclipse to start exploration of the Java
world.

What Features Does Java Have?
Object-Oriented

An object is a “thing” that has some attributes (a.k.a. Properties). The
object performs a set of operations (a.k.a. Methods). The operations define
behaviors of the object.

© Ron Dai 2019 19
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_3

CHAPTER 3 JAVA BASICS

Property Method
(Attribute, State) (Function, Action)

Class-Based

A class is simply a representation of a type of object. It is a template that
describes details of an object. A class is composed of three elements: a

name, attributes, and operations.

Java Bytecode

Java bytecode is the machine language of the Java virtual machine (JVM).
Java bytecode will be translated to a machine-specific native code by the
JVM, when it runs on that machine. So, on a Windows computer, the JVM
bytecode is translated into Windows-specific native code; and on a Linux
computer, it is translated into Linux-specific native code. This is called
write once, run anywhere (shown in Figure 3-1).

Java .
Java code . Java bytecode VM Natll\{e code for
Compiler specific platforms

Figure 3-1. Write once, run anywhere

20

CHAPTER 3 JAVA BASICS

When a JVM loads a class file, it gets one stream of bytecodes for each

method in the class. The bytecodes for a method are executed when that

method is invoked during the execution of the program.

Although it might be overwhelming to beginners, we also want to

introduce some of the other powerful features built into the Java language

as well as its runtime engine.

Multi-threading

Java language supports multi-threading capabilities,
which enable multiple tasks running at the same
time. This feature boosts up the computing power
of the Java code and makes Java applications highly
responsive.

Secure code

Java doesn’t use pointers like in other languages
(i.e., C or C++). This has avoided a traditional
security loophole. In addition to runtime checking,
Java does static-type checking using strict rules
during compilation. Java has its exception handling
to catch unexpected errors. Java provides a
cryptographic security mechanism when users

are getting code across networks and so on. These
security functionalities make Java a more secure
programming language than other ones.

Garbage collection

Java has its own uniquely designed memory-
management mechanism. Unlike C/C++ language,
Java doesn’t require developers to take care of

21

CHAPTER 3 JAVA BASICS

memory management in terms of when to register
or free the memory. It will automatically collect
and free up the unused memories. This has made

development work much easier.

The last but not least powerful feature to mention is Java’s super-rich
open source libraries. This is one of the big reasons why Java is increasingly
so popular among developers. And, because Java’s developer community
is getting bigger and stronger, Java will evolve to be an even more powerful
programming language over time.

22

CHAPTER 4

Start Playing
with Java

Download and install a Java runtime environment (choose the right

version based on your computer’s operating system): https://www. java.

com/en/download/manual. jsp

Download and install Eclipse (look for the most recent stable version):

http://www.eclipse.org/downloads/
After installation, you should see an icon as shown—the “Neon”
version—as an example on your desktop.

&
EGlIpSepaval
INEON

Once you launch Eclipse, you will need to specify the Workspace
(Figure 4-1).

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_4

23

https://www.java.com/en/download/manual.jsp
https://www.java.com/en/download/manual.jsp
http://www.eclipse.org/downloads/

CHAPTER 4 START PLAYING WITH JAVA

© Eclipse Launcher X

Select a directory as workspace

Eclipse uses the workspace directory to store its preferences and development artifacts.

Workspace: [\mylava\workspace - Browse...

[Use this as the default and do not ask again

» Recent Workspaces

Cancel

Figure 4-1. Specifying the workspace

What Is the Difference Between the JRE
and the JDK?

The JRE is the “Java Runtime Environment.” It is where your Java programs
run. The JDK is the “Java Development Kit,” which is the full-featured
software development kit for Java, including JRE, the compiler, and tools
(e.g., JavaDoc, Java debugger) to create and compile programs.

When you only want to run Java programs on your browser or
computer, you will install the JRE. But if you want to do some Java
programming, you will also need to install the JDK.

Figure 4-2 shows the clear relationship between the JRE and JDK, as
well as their basic feature areas.

24

CHAPTER 4 START PLAYING WITH JAVA

JDK

java language

JRE

javac (compiler) java virtual machine
java debugger java plug-in
javadoc java standard API

etc. etc.

Figure 4-2. JDK and JRE compared

What Are a Workspace, Source,
and Package?

“Workspace” is used to group a set of related projects together. Usually
these projects will make up an application.

“Source” means source code, that is, the Java program and related
code.

“Package” indicates a collection of files.

What Are Edit, Compile, and Execute?

“Edit” writes code in a Java language.
“Compile” converts Java source code to Java bytecode.
“Execute” runs the program.

o Edit > create “*.java” file

o Compile = generate “*.class” file

25

CHAPTER 4 START PLAYING WITH JAVA

Creating Your First Program

Let’s get started:

1. Once Eclipse is launched, left-click on “File” in
the top menu bar and left-click on “New” in the
drop-down menu. Then select “Java Project” from
another drop-down menu as shown in Figure 4-3.

& workspace - Java Browsing - Eclipse

File Edit Source Refactor Navigate Search Project Run Window Help

New Alt+Shift+N > [* Java Project
Open File.. ™9 Project..

(", Open Projects from File System... #9 Package
Close Ctrl+W @& Class
Close All Ctrl+Shift+W € Interface
Save Ctrl+S & Enum
Save As... @ Annotation
Save All Ctrl+Shift+S &9 Source Folder
Revert 14 Java Working Set

Y Folder
_ Move... ™ File

EJ? Rename... 2 =

&' Refresh £S |;V Untitled Text File
Convert Line Delimiters To > [E] JUnit Test Case
Print.. Ctrlsp 3 Example..
Switch Workspace > -3 Other.. Ctri+N
Restart

£ Import...

iy Export...

Figure 4-3. Before we create a Java project or a Java class

2. Now create a Java project named MyFirstProgram,
as shown in Figure 4-4. Click “Finish.”

26

CHAPTER 4 START PLAYING WITH JAVA

& New Java Project

Create a Java Project

Create a Java project in the workspace or in an external location.

O X

Project name: | MyFirstProgram|

Use default location

Location: C\Users\ronosh\workspace\MyFirstProgram
JRE

® Use an execution environment JRE: JavaSE-1.8
() Use a project specific JRE: jre1.8.0_121

O Use default JRE (currently 'jre1.8.0_121)

Project layout

() Use project folder as root for sources and class files

(® Create separate folders for sources and class files

Working sets

[IAdd project to working sets

Working sets:

® < Back Next >

Figure 4-4. Creating a Java project

Browse...

Configure JRES...

Configure default...

Select...

27

CHAPTER 4 START PLAYING WITH JAVA

3. Select File » New » Class to create a Java class

(name: “Welcome”), as shown in Figure 4-5.

Make sure you select “public static void

main(String[] args).” Click on “Finish.”

& New Java Class

Java Class

\L The use of the default package is discouraged.

Source folder: ! MyFirstProgram/src

Package:

. (default)

[[] Enclosing type:

Name: Welcome

Modifiers: (® public O package private
[Jabstract [final static

Superclass: java.lang.Object

Interfaces:

Which method stubs would you like to create?

public static void main(String[] args)

[] Constructors from superclass
[JInherited abstract methods

protected

Do you want to add comments? (Configure templates and default value here)

D Generate comments

@

Figure 4-5. Creating a Java class

28

€

Browse...
Browse...

Browse...

Browse...

Add...

Ramnua

Cancel

CHAPTER 4 START PLAYING WITH JAVA

4. TheWelcome class and the public static void
main(String[] args) methods are automatically
created, as shown in Figure 4-6. Then manually add
the following output line:

System.out.println("Hello, friend,
you are welcome!");

5. Click on “Run” from the top menu bar, and then
click on “Run” from its drop-down menu, we will
see output text in the Console window as shown in
Figure 4-6.

1] Welcome java
» & MyFirstProgram ¥ B src b (default package) ¥ Q, Welcome ¥

1

2 public class Welcome {
3
4 public static void main(String[] args) {
&5 // TODO Auto-generated method stub
6 System.out.println("Hello, friend, you are welcome!");
7 }
8
9}
10
& console = x& 1

<terminated > Welcome [Java Application] C\Program Files\Java\jdk1.8.0_191\bin\javaw.exe (Jun 8, 2019, 6:14:59 PM)
Hello, friend, you are welcome!

Figure 4-6. Running the application

Exploring Class and main()

As you saw in Chapter 3, a “class” is a template that describes the behavior
that an object is supposed to show. You can create individual objects from
the class. This is called “class instantiation.” A class has local variables,
instance variables, class variables, and a number of methods.

29

CHAPTER 4 START PLAYING WITH JAVA

main() is a method name. When your Java program is executed, the
runtime starts your program by calling its main() method first. The main()
method is an entry point of your Java program.

Why Is It “public static void main(String[]
args)”?

This is a convention designed by Java language and JVM (don’t worry if
some of this doesn’t make sense, we’ll come back to it later in the book).

e mainisthe name of the method;

o String[] argsisthemain() method input parameters
as String array data type; the string values passed into
the main() method are called arguments; they can be
used as optional values to send to the program when it
is started;

e void means there is no return data from the main()
method call;

o public means the main() method is available for the
JVM to call in order to start the execution of the whole
program;

o staticindicates that the main() method cannot be
called with an object instance; in other words, the JVM
can call it directly and does not have to create extra
structures to call it.

If you change public to private, you will see the following error
during runtime.

30

CHAPTER 4 START PLAYING WITH JAVA

Error: Main method not found in class <your class name>, please

define the main method as:
public static void main(String[] args)
or a JavaFX application class must extend javafx.application.

Application

Problems

1.

2.

What is the difference between the Something. java
file and the Something.class file?

(a) A .javafileis a much larger binary file and a .class fileis a
smaller compressed version.

(b) The .class file is for object-oriented programming and the
.javafile is for procedural programming.

(c) A .javafile contains code written in the Java language, and a
.class file contains code written in the C++ language.

(d) The programmer writes the . class file first, and the . java
file is generated automatically later.

(e) Something.javais a source code file typed by the
programmer, and Something.class is a compiled executable
class file that is run by the computer.

Which of the following method headers is correct?
(a) public static foo void[]

(b) public static void foo()

(c) public void static foo{}

(d) public void static foo()

(e) public static foo()

31

CHAPTER 5

Variables

A variable is:

the location of storage

a container to store some kind of information for use
at a later time

retrievable by referring to a name that describes
said information

There are different types of variables:

Local variables

They are variables only valid in local scope, such as
inside a method or within a block of code.

Class variables and instance variables

We will see examples when we study basic class
concepts in the later chapters. Class variables define
data types for class fields and properties. When an
object is created from a class, the class variables of
the object become instance variables. Both class
variables and instance variables are declared inside
a class, but they don’t belong to any method of the
class.

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_5

33

CHAPTER 5 VARIABLES

e Method parameters

Parameters are also variables used to pass values
into a method from outside that method.

Defining a Variable Name

Variable names:

— cannot start with a number, or some special symbol,
such as a quotation mark ("), or parentheses like ")",
etc., but can start with an underscore (_) or dollar
sign ($).

— cannot be any keyword that is already being used in
the language, a.k.a. reserved word, for instance, if,
else, and etc.

Example

Which of the following can be used in a Java program as identifiers? There
is more than one answer.

1. ABC

2. B4

3. 24isThesolution
4. "hello"

5. AnnualSalary

6. _average

7. for

8. sum of data

34

9. first-name
10. println

Answer:1,2,5,6,8,and 10

CHAPTER 5 VARIABLES

You may type simple code as shown in Figure 5-1 to check which

strings are not qualified for variable names, because in Eclipse’s Java code

editor, all syntax errors are underlined in red.

public class Welcome {

public static void main(String[] args) {

int ABC = 1;

int B4 = 1;

int 24isThesolution =
int "hello" = 1;

int AnnualSalary = 1;
int _average = 1;

int for = 1;

int sum_of_data = 1;
int first-name = 1;
int println = 1;

}
Figure 5-1. Highlighting errors

1;

Different Types of Variables in Java

The types of variables will define the types of data as well as their size when
stored in a variable. Java provides eight primitive types of data. Java also

supports reference or object data types that are non-primitive types of data.

Primitive types:

e int
o long
e short

35

CHAPTER 5 VARIABLES

e float

e double
e char

o byte

e boolean

Reference types:
o String
o Object, Array, and so on

When we declare a variable in a program, we are actually reserving
room in the computer’s memory for operations. It is necessary to
understand common data types and the memory space they occupy. This
table shows a list of data types, their sizes in bits (and bytes), and the types
of value they represent.

36

Type Number of bits Value

int 32 bits (= 4 bytes) integer

short 16 bits (= 2 bytes) integer

long 64 bits (= 8 bytes) integer

byte 8 bits (= 1 byte) integer

float 32 bits (= 4 bytes) floating-point
double 64 bits (= 8 bytes) floating-point
char 16 bits (= 2 bytes) unicode character
boolean See below true / false

CHAPTER 5 VARIABLES

There are only two different values, true or false, for a Boolean data
type. A single bit of room seems to be just a good fit. In fact, Java actually
prepares for at least one byte’s room for the Boolean data type, even
though it only uses one bit of room. Put precisely, it is not clearly defined
because it will be dependent on the virtual machine of the platform.

Assigning a Value to a Variable

Here is how to assign value or content to a specific type of variable:

int numberi

3;
7;
int total = numberl + number2;

int number2

boolean flag = true;

String a = "welcome";
String b = "my friend";

String c = a + b;

You may then use the following method to display and validate the
current values of the variables. For example, this line will display the
current value of the string variable c:

System.out.println(c);

Lab Work

Referring to the first program we have created, utilize the System.out.
println() statement as described; compile and run it; and then from
the console window, verify the resulting value in each variable after each
operation.

37

CHAPTER 5 VARIABLES
Basic math operation:

int number = 9 / 8;
double number = 9 / 8;

Math operations with order:

int number
int number

6 + 8 * 5;
(6 -8) * (5+3);

38

CHAPTER 6

First Algorithm

Today there are many different types of algorithms running on computers.
An algorithm defines a set of instructions that a computer needs to follow
to solve a specific problem. A smart and performant algorithm leads to an
accurate and efficient working result.

Next is an example of creating an algorithm using real-world objects.
Here we will look at how to exchange different kinds of water (fresh water
and ocean water) between two containers of the same size. From common
sense, we know to use a third empty container with the same size. Here is a
series of actions you take to get this job done:

1. Pour fresh water from container A to container C
(empty);

2. Pour ocean water from container B to container A;

3. Pour fresh water from container C to container
B. Mission is accomplished.

© Ron Dai 2019 39
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_6

CHAPTER6 FIRST ALGORITHM

You can see how water in each container was changed after each step
from this table.

Operation Container A Container B Container C
Start Introduce C Fresh water Ocean water Empty
Afterstep1 A->C Fresh water -> Qcean water Empty -> fresh
empty water
Afterstep2 B—>A Empty -> Ocean water -> Fresh water
Ocean water empty
Afterstep3 C—>B Ocean water ~ Empty -> fresh Fresh water ->
water empty

In many programs we will often run into situations when we need to
set the value of a variable to that of another one. Let’s apply the same logic
we have learned from the last example to exchange values between two
variables. In other words, we’ll implement the algorithm we defined earlier.

Swapping Values Between Variables

Assume two integers, a = 5and b = 4. We want to switch their values so
that it willbecome a = 4and b = 5. Following the order of operations
listed in the next table, values in variables a and b will be switched over.

Step Operation a b c
0 int a = 5; int b = 4; 5 4

1 int ¢ = a; 5 4 5
2 a = b; 4 4 5
3 b =c; 4 5 5

40

CHAPTER6 FIRST ALGORITHM

Other Approaches

You may use other methods to swap values between the two integers
without using a temporary variable. One method is by utilizing
the + and - operators to exchange values:

a=a+b;>nowa=9,b=14

b=a-b;>nowa=9,b-=5

a=a-b;>nowa=4,b=>5
Successfully done!

41

CHAPTER 7

Input and Output

During runtime of a computer program, the program can ask the user to

input data, read the user’s input, and then show the user an output result.

Scanner is the tool we use to implement the user interaction feature on the

console window.

Importing java.util.Scanner

The Scanner utility class and its methods have been predefined in a

package. We use the import statement to integrate the Scanner class with

the program we are creating.

Approach 1. Add line import java.util.Scanner; at
the top of your Java code, and then add the following in
your main() class:

Scanner input = new Scanner(System.in);

Approach 2. Type code Scanner input = new
Scanner(System.in); inyour Java code directly, and
then use Eclipse’s IntelliSense to choose the right fix.
In other words, Eclipse will suggest that you add the
import statement because it spots that you might
need it.

As aresult, import java.util.Scanner; will be
added at the top of the class.

© Ron Dai 2019 43
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_7

CHAPTER 7 INPUT AND OUTPUT

Getting Input

There are several ways to read user input data from a program:

nextLine(): read a string input

next(): read a string input

nextInt(): read an integer input

— nextFloat(): read a float number input
What is the difference between nextLine() and next()?
— next() reads the input only until the space.

It cannot read two words separated by a space. And it
places the cursor at the same line after reading the
input stream, meaning it doesn’t change the line.

— nextLine() reads the input until the end of
the line (‘\n’).

It will automatically move the scanner down after

returning the current line.

Producing Output

System.out.printlnis a common way to display text in the console
window. Developers often use it to read a user’s input, provide general
information to the user, and log information (to the console) during
runtime in order to find out what is going on with key variables.

We often use the following special characters (i.e., escape characters)
to control the output format:

+: concatenates two StI'il’lgS;

\n: a newline character;

44

CHAPTER 7 INPUT AND OUTPUT

\1t: a tab key character that aligns text at the tab
width;

\\: a backslash character;
\1: a carriage return character;
\" and \": double quote characters.

Here is an example:

System.out.println("This demonstrates
table format\".\n");
System.out.println("123\t45\t6789\nab\tcde\tf");

+ "\"how to display a

This generates the following output:
This demonstrates "how to display a table format".

123 45 6789
ab cde f

Lab Work

Practice using the statement System.out.println() to:

1. display the string concatenation between two
substrings “I am” and “a developer” using +

2. display a newline

3. display quotes using \" and \"

Example

Which of the following is the correct syntax to output a message?
1. System.out.println("Hello, world!");
2. System.println.out('Hello, world!");

45

CHAPTER 7 INPUT AND OUTPUT

3. System.println("Hello, world!");
4. System.println(Hello, world!);
5. Out.system.println"(Hello, world!)";

Answer: 1

Example

What is the output from the following statements?

System.out.println("\"Quotes\"");
System.out.println("Forward slashes \\//");
System.out.println("How "\"profound' \"\\\" it is!");

Answer:

"Quotes"
Forward slashes \//
How '"profound' "\" it is!

Lab Work

What is the output from the following program? What if we replace the
next () with nextLine()?

public class TestScanner {
public static void main(String arg[]) {
Scanner sc=new Scanner(System.in);
System.out.println("enter string for c");
String c=sc.next();
System.out.println("c is "+c);
System.out.println("enter string for d");

46

CHAPTER 7 INPUT AND OUTPUT

String d=sc.next();
System.out.println("d is "+d);

Problems

1.

2.

3.

What is the output produced from the following
statements?

System.out.println("name\tage\theight");
System.out.println("Anthony\t17\t5'9\"");
System.out.println("Belly\t17\t5'6\"");
System.out.println("Bighead\t16\t6'");

What is the output produced from the following
statements?

System.out.println("\ta\tb\tc");
System.out.println("\\\\");
System.out.println("'");
System.out.printIn("\"\"\"");

Write a program in Java to print the following:

\/
\\//
\\\///

47

CHAPTER 8

Loop Structure - for

Loop

Simply put, the loop structure repeatedly does something until the state is

changed (see Figure 8-1).

Is the state
changed?

Do something

Figure 8-1. The for loop structure

Example

Here is an example:

for (int i = 0; i < 100; i++) {
<do something>

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_8

49

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

There are three key elements in the for statement:

e 1int i = 0:declare a counter variable and assign an
initial value to it;

e 1 < 100: define the condition to continue with the for
loop; as long as this condition is true the loop will run,
when it is not true, we stop and exit from the for loop;

e i++:increment the counter value; i++ is the same thing
asi =1+ 1.

So, how many times will the “<do something>" be repeated in the code
above?

Lab Work

1. Use the for loop to output “Hello!” 10 times.

2. Use the for loop to print out all integers from 1 to
25, inclusive.

3. Print out all integers from 1 to 25.

4. Output all even numbers from 3 to 99.

The for Loop Formula

The math model behind the for loop is actually an arithmetic sequence:

for (int counter=firstTerm;
counter <= lastTerm;
counter=counter + difference) {

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

The nth term in the counter series is equal to:

firstTerm + difference x (n - 1)

Finding the “for Loop” Formula
for an Arithmetic Sequence

As an example, here is a list of numbers:
-4,5, 14, 23, 32, 41, 50, 59, 68, 77, 86.
It follows an arithmetic sequence.
firstltem = -4
lastltem = 86
difference=5-(-4)=9
Translate this to a for loop:
for(int i=-4; i <= 86; i=i+9) { }

It will iterate through every single number in the list.

Math: Counting Strategically

You may finger count, but that will not work when you have an extremely
large amount of numbers in the series. The right approach is to prepare
these numbers by reorganizing them. The purpose is to find a good pattern
so that we can count systematically.

Finding a pattern here is to figure out a basic formula representing

every number in the series.

51

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

Look at this example: 3, 4, 5, 6, ..., 100, so we know the total count of
numbers is:

100-3+1=298.

A common method is to convert the number series to something
more straightforward. If we subtract 2 from every number in the series,
wegetl,2, 3,4, ... , 98. We now know the count is 98. And, the formula
representing every number will be x(i) =i + 2, (i=1, 2,,98).

What about5, 8, 11, 14, , 101? How do you use the “for loop” to
print it out?

It looks more complicated than the previous one, but you can try the
same approach.

1. Subtract 5 from every number; it becomes 0, 3, 6,

2. Divided by 3, it then becomes0, 1, 2, 3, ,32

3. Itisnothard to count from 0, one by one up to 32.
The total count is 33.

4. The general term for the i-th number in the series
willbex(i) =3 *i+5, (i=0, 1, 2, ,32).

Now, go back to the for loop construction, and it is obvious the answer
should be something like this:

for (i=0; i <= 32; i++) {
System.out.println(3 * i + 5);

52

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

Lab Work

e Write a for loop to produce the following list of
numbers:

1491625364964 81100

(Hint: watch for a common pattern.)

Example

What is the output of the following sequence of loops?

— for(inti=1;i<=2;i++){
- for (intj=1;j<=3;j++) {
for (intk=1; k<=4, k++) {
E System.out.print("*");
}
System.out.print("!");

}

System.out.printin();

.}

It prints out the following:

sokokok | skokokk | kokokok |

The external for loop (marked as “1”) has two iterations, so the output
will have two lines, by print1n().

The middle for loop (marked as “2”) has three iterations, so it will
in total by print().

“'”

printout2x3 =6
The internal for loop (marked as “3”) has four iterations, so it will print
out2x3x4=24“*"in total by print().

53

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

Lab Work

o Write a method exp() to compute an exponential
result, given the input of a base number and a power
(a.k.a. an exponent number). For example, exp(3, 4)
returns 81. The restriction is that the base and exponent

numbers are non-negative.

Problems

1. Whatis the output of the following sequence of
loops?
for (int i = 1; i <= 2; i++) {
for (int j = 1; j <= 3; j++) {

System.out.print(i + ""*"" +

VISR Sl IE SRR
}
System.out.println();

2. Write a for loop to produce the following list of
numbers:

51017263750

3. Write a for loop to produce the following list of
numbers:

182764125

4. Write a for loop to produce the following list of
numbers:

-1072663 124

54

CHAPTER 8 LOOP STRUCTURE - FOR LOOP

Use for loops to produce the following output:

sk
sokokokok
$okokokok

kkokokk

Write for loop code to output the following:
1

22

333

e

55

CHAPTER 9

Loop Structure -
while Loop

This is another way for the loop structure (Figure 9-1).

while(i == 0) {
<do something>; //the variable "i" may be
updated in this code block.

Is the state
changed?

No

v

Do something

Figure 9-1. The while loop

© Ron Dai 2019 57
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_9

CHAPTER9 LOOP STRUCTURE — WHILE LOOP

The state may be updated within the “Do something” process.

Question: What will happen if the state is never changed?

Answer: it will be an “infinite loop,” meaning the program will run
forever until it crashes or is terminated by the user.

Note You may have noticed the // next to the <do something>
line. This identifies a comment left by the developer. You should use
comments to annotate your code so it’s easier to understand for future
readers (who could be you, so be kind to your future self). The compiler
will ignore all comments when compiling your Java programs.

Example

How many times will the loop execute its body?

int x = 1;

while (x < 100) {
System.out.print(x + " ");
X += 10;

Answer: ten times (whenx=1, 11, 21, 31, 41, 51, 61, 71, 81, 91)

Example

How many times will the loop execute its body?

int max = 10;
while (max < 10) {
System.out.println("count down:

+ max);
max--;

Answer: zero.

58

CHAPTER9 LOOP STRUCTURE — WHILE LOOP

Both the for loop and while loop are loop structures to accomplish a
repetitive job (i.e., <do something>). The for loop has provided an easy
way to assign an initial counter value and to define how the counter value
is incremented (or decremented) within the same line of code, while the
while loop requires the user to define them in separate lines. The following
two examples have an equivalent functionality.

for(int i = 0; i < 10; i++) {
<do something>

}

int i = 0;

while(i < 10) {
<do something>
i++;

There is a good reason why we need the while loop option, in addition
to the for loop. This example shows one of many circumstances when we
prefer the while loop over the for loop.

boolean flag = true;

while(flag) {
< commit planned operations, during which time
the flag may be updated upon a certain codition
change, e.g. the operation is completed, or
failed for some reason.>

59

CHAPTER9 LOOP STRUCTURE — WHILE LOOP

The do-while Loop

Java also provides a do-while loop structure:

do {
<do something>
} while (expression);

The difference between do-while and while is that do-while evaluates
its Boolean expression at the bottom of the loop instead of the top.
Therefore, the statements within the do block (a.k.a. <do something>) are
always executed at least once. You may try the following program to see a
demo.

class DoWhileDemo {
public static void main(String[] args){
int count = 1;
do {
System.out.println("Count is:

+ count);
count++;
} while (count < 1);

Lab Work

1. Usethewhile loop to output “Hello!” 10 times.

2. Usethewhile loop to print out all integers from 1 to
25, inclusively.

60

CHAPTER9 LOOP STRUCTURE — WHILE LOOP

3. Explain what the following code snippet is trying to

do.

int n = 5;

while (n == 5) {
n=n+1;
System.out.println(n);
n--;

}

Problems

1. How many times will the loop execute its body?

int x = 250;
while (x % 3 != 0) {
System.out.println(x);

2. How many times will the loop execute its body?

int x = 2;

while (x < 200) {
System.out.print(x + " ");
X *= X;

3. How many times will the loop execute its body?

String word = "a";
while (word.length() < 10) {
word = "b" + word + "b";

}
System.out.println(word);

61

CHAPTER9 LOOP STRUCTURE — WHILE LOOP
4. How many times will the loop execute its body?

int x = 100;

while (x > 1) {
System.out.println(x / 10);
X =x/ 2;

}

5. Given the static method runWhilelLoop(), what is
its output when x = 10? You may want to copy this
method to your test class to try.

public static void runWhilelLoop(int x) {

int y = 1;

int z = 0;

while (2 * y <= x) {
y=y*2;
Z++;

}

System.out.println(y + +2);

62

CHAPTER 10

Logical Control
Structures

Very similarly to how we describe it verbally when there is a logical
conversation, the if and the if/else in programming languages
are common structures to make conditional decisions and choose

corresponding execution paths (Figure 10-1).

No

Yes

Figure 10-1. The if structure

if (a ==3) {
<do something>
}
This is similar to, but not completely the same, as:
if (a == 3) {
<do something>
} else {
<do something else>
}
© Ron Dai 2019

R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_10

63

CHAPTER 10 LOGICAL CONTROL STRUCTURES

Figure 10-2 is the whole workflow of the 1f/else logical control structure.

No _
Do something else

Yes

Do something

Figure 10-2. The if/else structure

Conditional Operators

The conditional operators listed in the next table are frequently used

in conditional statements. For example, we use a == 3 to evaluate “is a
equal to 3?” in a conditional statement. Java uses six different conditional
operators to express a relationship between two operands. The results of
the expressions are either true or false, a Boolean value, which determines
the “yes” or “no” path of execution.

Conditional Operators Description

== Is equal to

> Is greater than

>= Is greater than, or equal to
< Is less than

<= Is less than, or equal to

I= Is not equal to

64

CHAPTER 10 LOGICAL CONTROL STRUCTURES

Example
Which of the following if statement headers uses the correct syntax?

(a) ifx=10then{
(b) if (x equals 42) {
(c) if(x=>y){

(d) if[x==10]{

(e) if(x==y){

Answer

e

Example

Given the following method, what is the output from whatIsIt(9, 4)?

public static void whatIsIt(int x, int y) {

int z = 4;
if (z <= x) {
Z =X+ 1;
} else {
z=12+09;
}
if (z <=y) {
yt+t;
}
System.out.println(z + " " +y);
}
Answer
10 4

65

CHAPTER 10 LOGICAL CONTROL STRUCTURES

Lab Work

66

1.

2.

Define an integer variable and assign value “3” to it.

Use an if statement to output “Hello” when the
integer variable is assigned number 3.

Use an if/else statement to output “Goodbye”
when any number other than 3 is assigned to the
integer variable.

Is there anything wrong with the following code?

int n = 4;
if (n>=3) {
System.out.println("Hello!");
}
if (n == 4) {
System.out.println("Hello again!");
}

Use an if/else statement to implement the
following requirements:

e Output “less than 3” when the number is smaller
than 3

e Output “equals 3” when the number is 3

o Output “greater than 3” when the number is bigger
than 3

Input an integer number, and then,

e Output “The number is greater than 6” when the
input number is bigger than 6

e Output “The number is smaller than 6” when the
input number is smaller than 6

CHAPTER 10 LOGICAL CONTROL STRUCTURES

7. Explain what the following code snippet is trying
to do:

Scanner scan = new Scanner(System.in);
int n = scan.nextInt();

if (n>6) {
if (n > 8) {
System.out.println("n is greater
than 8");
}
else {
System.out.println("n is greater
than 6, but n is smaller than 9");
}
}

Sometimes you may need to use a logical combination of multiple
“true or false” conditions. Let’s introduce another concept here, in terms of
“Logical Operators.”

Logical Operators

Math: Logical Operators

Logical operators and logical operations:
&& = AND relation
|| = OR relation
! = NOT relation

A && B - indicates only when both A and B are
true, the result is true. For example, in (x> 3 &&x < 5),

Ais “x>3Bis “x< 5"

67

CHAPTER 10 LOGICAL CONTROL STRUCTURES

A || B = indicates when either A or B is true, the
result is true.

A = indicates when A is true, the result is false;
when A is false, the result is true. In the example of
“Ix>0),Ais “x>0"

In all of these examples, A and B are expressions or Boolean variables.

(A&& B) A=true A=false
B=true True False

B=false = False False

Summary - Result is true, only when both A and B are true. Otherwise,
result is false.

(AllB) A=true A=false
B=true True True

B=false True False

Summary - Result is false, only when both A and B are false. Otherwise,
result is true.

A final example of some properties of these operators:
e (x<0]x>0) <> (x!=0)
e I!(x==0]|y==0)isequivalent to (x!=0 && y!=0)
e I!(x>3&&x<5)isequivalent to (x >=5 || x <=3)

Using a Venn diagram will help us analyze some type of logical
problems.

68

CHAPTER 10 LOGICAL CONTROL STRUCTURES

Math: Analyzing Logical Problems

A Venn diagram is a visualization method to reveal logical relations among
data sets.

In Figure 10-3, the overlap area between circle A and circle C is in
area B.

ifwe defineA={x,y|x=0},C={x,y|y=0}, then B={x=0;y=0}.

Figure 10-3. A Venn diagram

Lab Work

1. Figure out the output of the following program.

public class LogicalOperation {
public static void main(String args[]) {
boolean a = true;
boolean b = false;
System.out.println("a && b = "
+ (ad8b));
System.out.println("a || b

+ (al|b));

69

CHAPTER 10 LOGICAL CONTROL STRUCTURES

System.out.println("!(a & b) = "
+ 1(a 8 b));

2. Write a static method called quadrant that takes as

parameters a pair of integer numbers representing
an (x, y) point on the Cartesian coordinate system.
It returns the quadrant number (i.e., 0,1,2,3,4, see
picture) for that point.

Below are sample calls on the method.

Call Value Returned

quadrant(12, 17)
quadrant(-2, 3)

1
2
quadrant(-15, -3) 3
quadrant(4, -42) 4

0

quadrant(o, 3)

Problems

70

1.

Translate the following English statements into

logical expressions:
(a) zisodd.

(b) xiseven

(c) yis positive.

(d) Eitherxoryiseven.

CHAPTER 10 LOGICAL CONTROL STRUCTURES

(e) yis a multiple of z.

(f) zisnot zero.

(g) yis a positive number, and y is greater in magnitude than z.
(h) xand z are of opposite signs.

(i) yis a nonnegative one-digit number.

(j) zis nonnegative.

Given the following variable declarations: int x = 4;
int y = -3; int z = 4;

What are the results (True or False) of the following

expressions?
X == 4 X == y
X == Z y == Z

X+y>0x-2z1=0
y*y<=zy/y==1
X*(y+2)>y-(y+2z)*2

71

CHAPTER 11

Errors and Tips

The following is a list of common coding mistakes that beginners can
easily make. It will help you overcome initial coding barriers if you are
mindful of these error patterns.

o Missing half of curly braces {}.
(It should always come with a pair.)
o Missing half of parentheses ().
(It should always come with a pair too.)
o Missing semicolon ; at the end of each line.
e Use one = signs in a condition check.
(Correct way is ==.
o Assigning a value to a variable that is not defined.

(Correct way is assigning a value to the variable only
after it has been defined.)

o Defining the same variable more than once.

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_11

73

CHAPTER 11

ERRORS AND TIPS

Forgetting to increment/decrement the counter inside
aloop structure.

Incorrect signature of main function.

It should be public static void main(String[]
args, so pay attention to public static void main,
and String[] args).

No output on console window - missing output line, for
example, System.out.println().

Differences between the variable name and the string:
e Variable name a is a string.
string a;

e Variable name a is a string with value “a’

string a = "a";
Mistakenly resetting value in an aggregator:
for (int i=1; i<n; i++) {
int sum = 0;

sum += 1i;

}

This program is to sum up all numbers from 1 up to n. To correct the

mistake, the line int sum = 0 needs to be moved out of the loop structure,

right before the for line.

74

CHAPTER 11 ERRORS AND TIPS

Programming Tips

How to increase/decrease the font size on text editors:
Use Ctrl + or Ctrl -.

On macOS that would be 38+ and 8-

Setting: Preferences => General => Keys

How to comment out a code section in Eclipse:

Select code block

Press CTRL and “/” (simultaneously)

On macOS, it is Command + “/”

How to make comments in a code block:

You may use the Java Comments feature to briefly
explain what a specific line of code or a code block
in your program is doing so that other people can
understand your implementation ideas. There are
basically two ways you can write Java Comments
among lines of code.

1. Use “//” as a prefix to write a statement in one

line, for example:

// count is a variable to track the total number
of clicks

int count = 0;

75

CHAPTER 11 ERRORS AND TIPS

2. Use “/+” and “x/” to write multiple lines of
comments, for example:

/%

This block of code tries to find a maximum
price value (in dollars) from the specified group
of products:

*/
e Watch out “for the colored underline” when coding:
Red line - error message: syntax, etc.

Orange line - warning message

Handling Exceptions

So far in this chapter we have explained how to avoid making mistakes
that will be caught by the compilation error detection process. What
about those errors during runtime? In Java, we use the following structure
to capture them and handle these conditions separately. This is called

exception handling.

try {
<main instruction code to execute>

} catch(IllegalArgumentException ex) {
<exception handling steps>

}

The code that could cause an error at runtime goes in the try
block, and the code to respond to an error at runtime goes in the catch
block. Here the catch block responds only to errors that throw an

76

CHAPTER 11 ERRORS AND TIPS

IllegalArgumentException. You can specify multiple catch blocks to
respond to different types of exceptions thrown at runtime because you
may want to respond differently to different types of runtime errors.
Finally, you can throw an error on purpose if your code detects some
problem at runtime. You'll see how to do this in Chapter 17.

Problems

1. The following program contains three errors.
Correct the errors and submit a working version of

the program.

public MyProgram {

public static void main(String[]

args) {
System.out.println("This is a test
of the")
System.out.Println("alarming system.");
System.out.printLn("Thank you for your
attention!")

2. The following program contains four errors. Correct
the errors and submit a working version of the

program.

public class FriendMessage {
public static main(string[] args) {
System.out.println("Speaking plum");
System.out.println("and eat);

77

CHAPTER 11 ERRORS AND TIPS

3. The following program contains at least 10 errors.
Correct the errors and submit a working version of
the program.

public class Many Errors {
public static main(String args) {
System.println(Hello, buddy!);
message()

}

public static void message {
System.out println("This program
cannot ";
System.out.println("have any
"errors" in it");

78

CHAPTER 12

Java Basics Summary

In this chapter we will summarize what we have learned so far in the Java

basics area and point out some common mistakes.

General Rules
How to Define a Variable Name

Variable name string
e case-sensitive
e okaytoinclude numbers0to9
o okay to have underscore _ or dollar sign $
Variable name string:
e cannot start with number

e cannot use reserved words, such as for, class, void,
if, else, etc

How to Output in Console

o System.out.print(<string + value>);

o System.out.println(<string + value>);

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_12

79

CHAPTER 12 JAVA BASICS SUMMARY

How to Listen to Input in Console

Scanner input = new Scanner(System.in);
input.nextLine();

input.next();

input.nextInt();

input.nextFloat();

How to Repeat an Operation

for(<initial state»; <condition check>; <increment/decrement
count>) {
<do something>;

}

while(<condition check>) {
<do something>

}

or,

do {
<do something>

}

while(<condition check>)

How to Control a Conditional Operation

if (<condition check>) {
<do something>;

}

80

CHAPTER 12 JAVA BASICS SUMMARY

if (<condition checks>) {
<do something>;

} else {
<do something else>;

}

if (<condition check>) {
<do something>;

}

else {
<do something else with the nested if/else statement(s)>;

}

Basic Coding Structure

public class MyClass {
public static void main(...) {
myMethod();

}
private static void myMethod(...) {

for (... ; ... ; ...) {

81

CHAPTER 12 JAVA BASICS SUMMARY

Curly Braces

o Always come with a pair of curly braces: “{...... }
e Always come first with: “{”, and then “}”

o Common patterns (two pairs of open/close as an
example)

e {{}}—> open, open, close, close
e {}{} > open, close, open, close
e {}}{ <€ wrong!
e }{}{ <€ wrong!
o What is the basic rule of these patterns?
e Atbeginning, start with “{”
e Finally, end with “}”

¢ Never has more “}” than “{”

Lab Work

1. Whatis the output produced from the following
program?

public class StoryOfMethods {
public static void main(String[] args) {
method1();
method2();
System.out.println("Done with main.");

82

CHAPTER 12 JAVA BASICS SUMMARY

public static void method1() {
System.out.println("This is from
method1.");

public static void method2() {
System.out.println("This is from
method2.");
method1();
System.out.println("Done with method2.");

2. What is the output produced from the following
program?

public class OrderOfFunctions {
public static void main(String[] args) {
second();
first();
second();
third();

public static void first() {
System.out.println("Inside
the first function.");

public static void second() {
System.out.println("Inside the
second function.");
first();

83

CHAPTER 12 JAVA BASICS SUMMARY

public static void third() {
System.out.println("Inside the third

function.");
first();
second();

84

CHAPTER 13

Java Basics Projects

A. Write code to print out the following graph.

oo ok ok ok o ok o o o o o oF o oF o
* *

* *

B. Write code to draw the following shape.

x k k %k k k %k ¥ ¥k %

* *
* *
* *
* *

* ok %k ¥ %k %k %k % ¥ ¥

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_13

CHAPTER 13 JAVA BASICS PROJECTS

C. Write code to make this triangle.

k

Xk

% %k >k

%k k sk k

b 3 S

% 2k 3k ok ok k
kkskk kKK

D. Write a function to check if an integer is divisible by
another integer.

For example:
(1) Given input 10, 5, output is “yes, 2”;
(2) Given input 11, 2, output is “no”;

E. Write Java code to draw the Christmas tree.

¥ ok
* %k

% 2k %k %k

% ok ok ok %k ok
¥ ok 2k ok ok ok ok %k
A ok 2k ok ok ok ok ok ok Xk
% 2k 2k %k %k 2k %k ok k %k k %k
3k 3k 2k ok 2k 2k ok ok %k ok %k ok %k k
2k 3k 2k 3k 2k ok ok 2k 2k ok ok ok ok ok %k ok
2k 3k 2k 3k 2k ok 2k 2k 2k ok ok ok ok ok ok %k Xk k

% ok %k ok
* %
* %k

86

CHAPTER 13 JAVA BASICS PROJECTS

Write code to find all factors for a given positive
integer.

For example, when a user inputs “10,” your program
should output 1, 2, 5, 10

Write a method that accepts a month (i.e., an integer
between 1 and 12) as a parameter and returns the
number of days in that month in the current year.

Write code to produce a product of two numbers
that are inputs from the console:

Please enter two numbers for multiplication
Next number --> 7

Next number --> 15

Product = 105

Write a method to examine whether a positive
integer is a prime number or not.

Write a method to convert an integer number to a
string of that number's representation in binary. For
example, given a parameter “19,” it should return
“10011”

87

CHAPTER 14

Java Basics Solutions

Here are the solutions from the previous chapters in the Java Basics part of
the book.
Chapter 5: Variables

(1) Signal (on/off) of the digital electronics
(2) OOP; Class-based; WORA

(3) (e)
(4) (b)
Chapter 7: Input and Output
(1)
name age height

Anthony 17 5'9"
Belly 17 5'6"
Bighead 16 6'

(2)

a b ¢
\\

© Ron Dai 2019 89
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_14

CHAPTER 14

90

JAVA BASICS SOLUTIONS

Chapter 8: Loop Structure -For Loop

(1)

(2)
(3)
(4)
(5)

Inner loop has three iterations without carriage

return; Outer loop has two iterations.

After subtracting one, you will find a clear pattern.

Cubic number pattern

Adding one to all numbers

Nested loops

Chapter 9: Loop Structure - While Loop

(1)
(2)
3)
(4)
(5)

Forever (dead loop)

Three times, x=2, 4, 16

Five times, final output is “bbbbbabbbbb”

Six times, when x = 100, 50, 25, 12, 6, 3

8 3 « There is a space in the middle

Chapter 10: Logical Control Structures

(1)

(a)
(b)
(c)
(d)
(e)
()
(8)
(h)
()

§)

Z% 2 ==

X%2==0

y>0

(x%2==0)|(y%2==0)

y%z==

z!=0
(y>0&&y>z&&Z>=0)||(y>0&&y>-z&&7z<0)
(x>0&&z<0)||(x<0&&z>0)
(y>=0&&y<10)

z>=0

PART Il

Java Intermediate

Readers should have completed Part I: Java Basic prior to this part.
Part IT focuses on how we learn Java programming and integrates basic
mathematical concepts.

Also in Part II, we demonstrate how to apply Java programming to
math problem solving through many practical examples.

Readers will have the opportunity to witness how Java programming
becomes a powerful tool in our experimental work.

I am sure you will be excited to find many intriguing examples of
applications throughout this part. Although this book doesn't touch every
single detail, it will cover the basic concepts of class and object-oriented
programming so that beginners are able to build a good foundation.

CHAPTER 15

Wright Brothers’ Coin
Flip Game

Programming helps us to understand and explain many complicated
problems. You can find an interesting online video, “The coin flip
conundrum,” which tells a historic story and explains a probability
problem solution using an analytic approach. The story is about the Wright
brothers, Orville and Wilbur, who played a coin flip game to determine
who should start the new flight experimentation first. They flipped a coin
continuously, until Orville got double heads consecutively, or Wilbur
received a head and a tail in a “neighboring” sequence. While the video
used probability plus algebraic concepts to calculate the winning edge

for the Wright brothers, we are going to try the experimentation with Java
programming. The following method simulates the Wright brothers’ game
and analyzes their results (note the helpful comments, marked by //, so
we can read the code more easily).

private static int count_a, count b, count_ab = 0;
private static int totalsteps a, totalsteps b = 0;

/// whoever gets below pattern first wins, or tie if both of
them reach targeted patterns at the same round

/// a: HH wins; b: HT wins; Use boolean 'true': head, 'false':
tail

© Ron Dai 2019 93
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_15

CHAPTER 15 WRIGHT BROTHERS’ COIN FLIP GAME

public static void flipCoin()

{
Random r = new Random();
/// initial value, or first round result
boolean current a = r.nextBoolean();
boolean current b = r.nextBoolean();

boolean win a = false;
boolean win b = false;
int round = 1;
while(true) {

round++;

boolean next a = r.nextBoolean();
boolean next b = r.nextBoolean();
if (current a && next a) {

win_a = true;

}

if (current b && !next b) {
win b = true;

}

if (win_a && win b) {
System.out.println("Both WIN!

- round: " + round);
count_ab++;
totalsteps_a += round;
totalsteps b += round;
break;

}

if (win_a && !win b) {
System.out.println("A WIN! - round:
+ round);

count_a++;

94

CHAPTER 15 WRIGHT BROTHERS’ COIN FLIP GAME

totalsteps a += round;
break;

}

if ('win_a && win_b) {
System.out.println("B WIN!
- round: " + round);
count_b++;
totalsteps b += round;
break;

}

current a = next_a;

current b = next_b;

Using the following main method, we can collect samples and get the
statistical summary.

public static void main(String[] args) {
final int MAX = 10000;
for(int i=0; i < MAX; i++) {

flipCoin();

}
System.out.println("Summary");
System.out.println("Total samples: " + MAX);
System.out.println("Winning counts: a - "
b-"+count b+ "; ab- " + count_ab);
int probability a = count_a * 100 / (count_a + count b);
int probability b = count b * 100 / (count_a + count_b);
System.out.println("Winning probability: HH=" +

+ count_a + °;

probability a + "%; HT=" + probability b + "%.");
double average a = totalsteps a / (count a + count_ab);

95

CHAPTER 15 WRIGHT BROTHERS’ COIN FLIP GAME

double average b = totalsteps b / (count b + count_ab);
System.out.println("Average rounds to win: HH=" +

average a + "; HT=" + average b + ".");

After we run many experiments with different parameters, we learn
what is actually going on and can then reach the conclusion that Wilbur
would have a significantly higher chance (roughly 62% vs. 37%) to win the
bet. The output should look similar to what follows.

B WIN! - round: 3
A WIN! - round: 2
A WIN! - round: 3
B WIN! - round: 2
B WIN! - round: 4
A WIN! - round: 4
B WIN! - round: 2
B WIN! - round: 2
B WIN! - round: 3
B WIN! - round: 2
A WIN! - round: 2
A

WIN! - round: 2
Both WIN! - round: 2
B WIN! - round: 3
Summary
Total samples: 10000
Winning counts: a - 3213; b - 5386; ab - 1401
Winning probability: HH=37%; HT=62%.
Average rounds to win: HH=2.0; HT=3.0.

96

CHAPTER 16

Pythagorean Triples

The Pythagorean Theorem is well known among elementary to middle
school students, given its elegantly looking equation that applies to all
right triangles.

Math: Pythagorean Triples

Inside a right triangle, a and b are the two legs, and c is the hypotenuse.
a’+b*=c?

When a, b, and c are positive integers satisfying the Pythagorean
Theorem, (a, b,) are called “Pythagorean Triples.” Obviously (3, 4, 5) is the
first Pythagorean triple, followed by (5, 12, 13), (6, 8, 10), and so forth. The
number of Pythagorean triples is infinite.

Example

So, how do we find all the Pythagorean triples below 100?

Answer

We can multiply (3, 4, 5) with any integer number to get (6, 8, 10),
(9,12, 15), ..., (57, 76, 95). We can use (5, 12, 13) as another base triple to
get (10, 24, 26), ..., (35, 84, 91). And so on.

But this approach will require us to first find out all the base
Pythagorean triples. Thus, we would essentially have to check every
positive integer below 100 for a, and then figure out b and c, assuming
a <b < c. By the way, a = b will not be possible. However, with a
programming approach, it is no longer a challenging math problem.

© Ron Dai 2019 97
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_16

CHAPTER 16 PYTHAGOREAN TRIPLES

This is the method to find out all the possible triples (a, b, c) satisfying
the Pythagorean Theorem.

private static int allPythagoreanNumbers(int upperBound) {
0;
for(int a = 1; a < upperBound; a++) {
for(int b = a; b < upperBound; b++) {
for(int c = b; c < upperBound; c++) {
if @*a+b*b==c*c){

int count

System.out.println
("("+a+", "+b+",
“rer')");

count++;

}

return count;

}
public static void main(String[] args) {

System.out.println("Total count: " +
allPythagoreanNumbers(100));

}
It will output something like what follows:
(3,4, 5)
(5,12, 13)
(6,8,10)
(7,24, 25)

(8,15, 17)

98

(9,12, 15)

(9, 40, 41)

(10, 24, 26)
(11, 60, 61)
(12, 16, 20)
(12, 35, 37)
(13, 84, 85)
(14, 48, 50)
(15, 20, 25)
(15, 36, 39)
(16, 30, 34)
(16, 63, 65)
(18, 24, 30)
(18, 80, 82)
(20, 21, 29)
(20, 48, 52)
(21, 28, 35)
(21, 72, 75)
(24, 32, 40)
(24, 45, 51)
(24, 70, 74)
(25, 60, 65)

(27, 36, 45)

CHAPTER 16 PYTHAGOREAN TRIPLES

99

CHAPTER 16 PYTHAGOREAN TRIPLES

(28, 45, 53)
(30, 40, 50)
(30, 72, 78)
(32, 60, 68)
(33, 44, 55)
(33, 56, 65)
(35,84, 91)
(36, 48, 60)
(36, 77, 85)
(39, 52, 65)
(39, 80, 89)
(40, 42, 58)
(40, 75, 85)
(42, 56, 70)
(45, 60, 75)
(48, 55, 73)
(48, 64, 80)
(51, 68, 85)
(54, 72, 90)
(57, 76, 95)
(60, 63, 87)
(65, 72, 97)

Total count: 50

100

CHAPTER 16 PYTHAGOREAN TRIPLES

This is just one of many demonstrations of how we can use programs

to solve problems.

Problems

1. Inthe example, we used three for-loops to iterate
a, b, c from 1 through 99. How do you improve it by
reducing to two for-loops?

2. Using the idea from the example, how do we find
out all the Pythagorean primes smaller than 100?
Pythagorean primes are explained below.

Math: Pythagorean Primes

Pythagorean primes are the sum of two squares. And, it needs to be in form
of 4n + 1, where n is a positive integer. Examples of Pythagorean primes are
5,13,17,29,37 and 41.

Hine Take advantage of the example code and see how to make
small changes to find a solution.

101

CHAPTER 17

Strong Typed
Programming

As we have learned at the beginning of this book in Part I, the Java
programming language has defined the integer, double, Boolean, String,
etc., as basic types. In Java, we cannot assign any value to a variable
without defining the variable with a type beforehand. Only after a variable
has been defined clearly by a type—for example, integer—are we then
allowed to assign an integer value to it and start using it as an integer in
the calculation. Once a variable’s type is defined, it cannot be assigned a
value with a different type, logically speaking. For instance, if a variable is
defined as Boolean, it cannot be assigned an integer value. Otherwise, we
will get a type mismatch compilation error.

Type Casting

However, if a variable is defined as a double, how do we assign an integer
value to it? Let’s do some experimentation.

public static void main(String[] args) {
double a = 5;
System.out.println(a);
double b = 3 * 5;
System.out.println(b);

© Ron Dai 2019 103
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_17

CHAPTER 17 STRONG TYPED PROGRAMMING

double x = 5 / 3;
System.out.println(x);
double y = (double)(5 / 3);
System.out.println(y);
double z - (double)s / 3;
System.out.println(z);
double t = 5.0 / 3;
System.out.println(t);
double u = 5 / 3d;
System.out.println(u);

}

This is the output:

5.0

15.0

1.0

1.0
1.6666666666666667
1.6666666666666667
1.6666666666666667

The following patterns are those we have learned from this
experiment:

¢ When the integer 5 is assigned to a double typed
variable, the variable will get an equivalent value with a
decimal point presentation, that is, double value 5.0.

o When an integer is divided by another integer, the
result follows the same integer type, for example,
5/ 3 =1.But when the fraction “5 / 3” is assigned to
a double typed variable, the resulting value will be
automatically converted to double value 1.0.

104

CHAPTER 17 STRONG TYPED PROGRAMMING

o (double)(5 / 3) converts an integer result of (5/ 3)
to a double value. This is called type casting. The result
is 1.0, a double value.

How do we produce a precise value from 5 / 3? The trick is to use
(double)s / 3,instead of 5 / 3. The outcome of (double)5 / 3isa
double value. Or, you may use 5.0 / 3 to generate the same outcome.
Anotherwayis 5d / 3,or5 / 3d. The outcomes of both expressions are
the same double value.

Math: Slope of a Line

In the x-y 2D Cartesian coordinates system, the slope of a line between
points (x1, y1) and (x2, y2) is equal to (y2 - y1) / (x2 - x1).

Example

Implement a public method called double getSlope(), which
returns the slope of a line. If the two points have the same x-coordinates,
the denominator is zero and the slope is undefined, so you should throw
an IllegalArgumentException in this case. This will stop your program
running and show the specified error message.

Answer

In a Line class, we define two points and a constructor:

private Point pi1;

private Point p2;

public Line(Point p1, Point p2) {
this.p1 = p1;
this.p2 = p2;

105

CHAPTER 17 STRONG TYPED PROGRAMMING
The Point class is designed as:

public class Point {
private int x;
private int y;
public Point() {
}

public void setX(int x) {
this.x = x;

}

public int getX() {
return x;

}

public void setY(int y) {
this.y = y;

}

public int getY() {
return y;

}

Now we add a method called getSlope() inside the Line class.

public double getSlope() {
if (this.p1l.getX() == this.p2.getX()) {
throw new IllegalArgumentException("Denominator
cannot be 0");
}
return (double)(this.p2.getY() - this.pi.getY()) /
(this.p2.getX() - this.pil.getX());

106

CHAPTER 17 STRONG TYPED PROGRAMMING

The method looks easy, but the tricky part is where we convert the
result of division between two integers to a double value, that is,

(double) (this.p2.getY() - this.pi.getY()) / (this.p2.getX() -
this.p1.getX())

Math: Collinearity

Points are collinear if a straight line can be drawn to connect them. Two
basic examples are when three points have the same x- or y-coordinate.
The more general case can be determined by calculating the slope of the
line between each pair of points and checking whether the slope is the
same for all pairs of points.

We use the formula (y2 - y1) / (x2 - x1) to determine the slope between
two points (x1, y1) and (x2, y2).

Add the following method to your Line class:

public boolean isCollinear(Point p)

It needs to return true if the given point is collinear with the points of
this line.

107

CHAPTER 18

Conditional
Statements

How do you identify and express the bigger number between the two

numbers, x and y?

Math: Hypothesis and Conclusion

In a mathematical formula, we have to introduce the absolute sign to form

an expression:) | |
+y)+[x-
The bigger number between x and y = (xy%

Recall the if/else structure:

if (x >=y) {

// x is the bigger number
} else {

// y is the bigger number

It is very straightforward and fairly easy to read!
The if/else structure follows a common experimentation of
hypothesis-to-conclusion.

© Ron Dai 2019
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_18

109

CHAPTER 18 CONDITIONAL STATEMENTS

if (<Hypothesis>) {
<Conclusion>

} else { // the hypothesis is NOT valid
<Different conclusion>

}

The <Hypothesis> part needs to be a Boolean value, which may
contain one variable or multiple variables in a math expression.

There are several types of structures for the conditional statements
(some you've seen, some that will be new to you).

e Simple if, or if/else clause.

e Alittle more complicated if/else ifladder.

if (.. {

} else {
}
e Nested if/else statement.
if (...) {
| otee %
if (...) {
! e %
}
}

110

CHAPTER 18 CONDITIONAL STATEMENTS

The final pattern is used to implement a tree-like structure. It will
depend on the type of problems we solve when we decide which pattern
to use.

Example

Is there anything wrong with the following block of code?

if (i > 50) {

<do something...>
} else if (i » 100) {

<do something...>
} else {

<do something...>

}

Answer

When i <= 50, itwillneverbei > 100, so the else if branchin
the middle is actually a dead path. An easy correction should be to just
exchange the position of “50” and “100” in the code. And pay attention to
this, when it says else if (i > 50) {...}in the following code block,
it actually means 50 < i <= 100.

if (i » 100) {

<do something...>
} else if (i » 50) {

<do something...>
} else {

<do something...>

}

Example
Create a method to map a student’s grades (0 to 100 integers) to a
standard GPA score.

111

CHAPTER 18 CONDITIONAL STATEMENTS

Answer

The first solution (v0) uses several if clauses. The problem is, for
example, when the marks are 69, it has to execute all four if clauses.
This is not an efficient approach.

public static char getGpaScore vo(int points) {
if (points > 89) {

return 'A’;

}

if (points < 90 && points > 79) {
return 'B’;

}

if (points < 80 && points > 69) {
return 'C’';

}

if (points < 70 && points > 64) {
return 'D’';

}

// if (points < 65) <-- this line can be omitted
return 'F';

}

The second solution (v1) utilizes a nested "if / else" statement.

It solves the problem observed from an earlier version - vO.

public static char getGpaScore vi(int points) {
if (points > 89) {

return 'A’;
} else {
if (points > 79) {
return 'B';
} else {

112

CHAPTER 18 CONDITIONAL STATEMENTS

if (points > 69) {
return 'C’';
} else {
if (points > 64) {
return 'D’;
} else {
return 'F';

}

To provide better readability into the code structure, the third solution
(v2) is introduced as shown.

/*
* 90 to 100 --- A
* 80 to 89 --- B
* 70 to 79 ---C
* 65 to 69 ---D
* below 65 --- F
*/
public static char getGpaScore v2(int points) {
if (points > 89) {
return 'A’;
} else if (points > 79) {
return 'B’';
} else if (points > 69) {
return 'C’';

113

CHAPTER 18 CONDITIONAL STATEMENTS

} else if (points > 64) {

return 'D’';
} else {
return 'F’';

Math: Quadrants

On the Cartesian coordinate system, a quadrant is determined by
whether the x and y coordinates are positive or negative numbers. There
are four quadrants, separated by the x-axis and the y-axis. Specifically,
all the points (x > 0, y > 0) belong to quadrant I (or 1st quadrant); all the
points (x < 0, y > 0) belong to quadrant II (or 2nd quadrant); all the points
(x< 0,y <0)belong to quadrant III (or 3rd quadrant); and all the points
(x> 0,y <0)belong to quadrant IV (or 4th quadrant)

Example

Can you write a method to identify which quadrant on the coordinate
system that any given point (x, y) belongs to? Both x and y are real
numbers. If a point falls on the x-axis or the y-axis, then the method should
return 0.

Answer

There are two variables, x and y, in this example. Define x and y as
float type of numbers. Do case work analysis as shown below:

Case 1: When a point falls on either x-axis or y-axis > y=0orx=0
Case 2: When a point falls in the 1st quadrant <> x>0 and y > 0
Case 3: When a point falls in the 2nd quadrant > x<0andy >0
Case 4: When a point falls in the 3rd quadrant 2 x<0andy <0
Case 5: When a point falls in the 4th quadrant 2> x>0 andy< 0

114

CHAPTER 18 CONDITIONAL STATEMENTS

Combining case 2 and case 5 to a category of x > 0, case 3 and case 4 to
a category of x < 0 produces a code structure as:

private static int quadrant(float x, float y) {
if (x==0 || y == 0) {

return 0;
}
else if (x > 0) // x>0andy<>0
{
if (y » 0) {
return 1;
}
return 4;
}
else // x <0andy<>0
{
if (y > 0) {
return 2;
}
return 3;
}

}

It uses float to hold x and y values, although it could also use double
to do so. Both float and double are numeric data types that are used for
storing floating-point numbers. The double type requires twice as much
space as the float type, as every float type of data is represented in 32
bits while one double type of data uses 64 bits

115

CHAPTER 18 CONDITIONAL STATEMENTS

TERNARY OPERATOR

Java enables you to assign a value directly from a Boolean expression (true or
false). This is called a ternary operator. For example:

int a, b, max;
max = a < b? b : a;

This implies, when a < b,max = b; otherwise max = a.

This syntax saves an if/else statement. For example, we may use the
following method to get an absolute value:

public int getAbsolutionValue(int a) {

if (a <0) {
return -a;
}
else {
Return a;
}

}
But by using the ternary operator, we will get it done by one line of code:

a=a<0?-a:a;

Problems

1. Please rewrite the code as below to improve its logic
and readability (num is an integer value).

if (num < 10 && num > 0) {
System.out.println("It's an one digit
number");

116

CHAPTER 18 CONDITIONAL STATEMENTS

else if (num < 100 && num > 9) {
System.out.println("It's a two digit
number");

}

else if (num < 1000 && num > 99) {
System.out.println("It's a three digit
number");

}

else if (num < 10000 && num > 999) {
System.out.println("It's a four digit

number™);

}

else {
System.out.println("The number is not
between 1 & 9999");

}

Take the following three if statements:

if (a==08 b ==0) {...}
if (a==08 b !=0) {...}
if (a'!=08 b !=0) {...}

Please simplify the code logic and combine them together.

117

CHAPTER 19

Switch Statement

Utilizing a switch conditional statement instead of an if statement can
sometimes present clearer code logic. When we have a variable or an
expression containing variables that may have different resulting values
followed by different actions, it is a good opportunity to use switch.

switch (<expression>) {
case <result 1>:
<action 1>;
break;
case <result 2>:
<action 2>;
break;
case <result n>:
<action n>;

break;
default:
<other actiony;
break;
}
© Ron Dai 2019

R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_19

119

CHAPTER 19 SWITCH STATEMENT

A simple application of a switch statement is when you take different
action under the case of x = 1,0orx = 2,orx = 3,..., as below:

switch (x) {
case 1: ...;
case 2: ...;
case 3: ...;
default: ...;
}

Example

Write a method to print out the month in an English word expression
given an integer value input.

Answer

We can use if/else ladder statements to translate an integer to a name
of the month.

public static void tellNameOfMonthByIfElse(int month) {

if (month == 1) {
System.out.println("January");

} else if (month == 2) {
System.out.println("February");

} else if (month == 3) {
System.out.println("March");

} else if (month == 4) {
System.out.println("April");

} else if (month == 5) {
System.out.println("May");

} else if (month == 6) {
System.out.println("June");

} else if (month == 7) {
System.out.println("July");

} else if (month == 8) {
System.out.println("August");

120

CHAPTER 19 SWITCH STATEMENT

} else if (month == 9) {
System.out.println("September");

} else if (month == 10) {
System.out.println("October");

} else if (month == 11) {
System.out.println("November");

} else if (month == 12) {
System.out.println("December");

} else {
System.out.println("Unknown month");

}

If we take advantage of the switch conditional statement to do the

same translation, it will work well too.

public static void tellNameOfMonthBySwitch(int month) {
String nameOfMonth;
switch (month) {
case 1: nameOfMonth = "January";

break;

case 2: nameOfMonth = "February";
break;

case 3: nameOfMonth = "March";
break;

case 4: nameOfMonth = "April";
break;

case 5: nameOfMonth = "May";
break;

case 6: nameOfMonth = "June";
break;

case 7: nameOfMonth = "July";
break;

121

CHAPTER 19 SWITCH STATEMENT

case 8: nameOfMonth = "August";
break;

case 9: nameOfMonth = "September";
break;

case 10: nameOfMonth = "October";
break;

case 11: nameOfMonth = "November";
break;

case 12: nameOfMonth = "December";
break;

default: nameOfMonth = "Unknown month";
break;

}
System.out.println(nameOfMonth);

There is an even better way. How about we define an array to store a
list of name strings representing all months in English, that is, the array
nameOfMonth. We are essentially building a mapping table between integer
numbers (from 0 to 12) and month name strings. Since an array starts with
the index 0, we intentionally assign "none" to the first element in the array.

private static String[] nameOfMonth = new String[] {
"none", "January", "February", "March",
"April", "May", "June",
"July", "August", "September", "October",
"November", "December"

};

public static void main(String[] args) {
System.owut.println(nameOfMonth[1]); // January
System.owut.println(nameOfMonth[8]); // August

122

CHAPTER 19 SWITCH STATEMENT

Example

Write a method to return the number of days in a month, given two
integer inputs: year and month.

Answer

Using the switch conditional statement:

public static int tellNumberOfDaysByYearMonth(int year,
int month) {
int numOfDays = 0;
switch (month) {
case 1: case 3: case 5:
case 7: case §: case 10:
case 12:
numOfDays
break;
case 4: case 6:
case 9: case 11:
numOfDays
break;

31;

30;

case 2:
if ((year % 4 == 0 88 year % 100
I=0) || year % 400 == 0) {

numOfDays = 29;
} else
numOfDays = 28;
}
break;
default:
break;

}

return numOfDays;

123

CHAPTER 19 SWITCH STATEMENT

Notice that it has a special logic to handle February for leap years.
Because of the complexity in figuring out the total number of days in
February, when we apply the static array approach mentioned earlier to
this situation, we will have to do the following:

private static int[] numberOfDaysByMonth = new int[] {
0, // none
31, // January
28, // February
31, // March
30, // April
31, // May
30, // June
31, // July
31, // August
30, // September

31, // October
30, // November
31 // December

}s

Before we use the integer array, we need to modify the value for
February according to the year value during runtime:

if ((year % 4 == 0 & year % 100 != 0) ||
year % 400 == 0) {
numberOfDaysByMonth[2] = 29;

124

CHAPTER 19 SWITCH STATEMENT

Problem

Use a switch conditional statement to write the following code.

char color ='C';
if (color=='R") {
System.out.println("The color is red");
}
else if(color=="G") {
System.out.println("The color is green");
}
else if(color=="B") {
System.out.println("The color is black");
}
else {
System.out.println("Some other color");

}

125

CHAPTER 20

Tracing Moving
Objects

Java provides a basic coding framework, such as for or while loops and if
or switch conditional statements. We can make use of them to keep track
of moving objects versus its times. First, we’ll work with a popular math
problem - bouncing ball scenario.

Math: Bouncing Ball

In a pure math approach, we’d build a table to record the height after each
bounce. It is not that hard, but if we change the height value in the original
problem setting, we will have to recalculate the values in the same table by
hand.

Example

A ball is dropped from a height of 3 meters. On its first bounce it rises
to a height of 2 meters. It keeps falling and bouncing to 2/3 of the height it
reached in the previous bounce. On which bounce will it rise to a height
less than 0.5 meters? This problem is selected from past AMC 8 (American
Mathematics competitions for up to 8th grade)

© Ron Dai 2019 127
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_20

CHAPTER 20 TRACING MOVING OBJECTS

Answer

The programming approach will largely reduce repetitive manual work.

public static void main(String[] args) {
System.out.println(ballBouncing(3.0));

}

private static int ballBouncing(double originalHeight) {
double currentHeight = originalHeight;
int count = 0;
while(currentHeight > 0.5) {
currentHeight = currentHeight * 2 / 3;
count++;
System.out.println("Bounce No=" + count +
"; current height=" +
currentHeight);

}

return count;

}

When you execute it, the output shows the current height after each
bounce.

Bounce No=1; current height=2.0

Bounce No=2; current height=1.3333333333333333
Bounce No=3; current height=0.8888888888883888
Bounce No=4; current height=0.5925925925925926
Bounce No=5; current height=0.3950617283950617
5

Changing the parameter originalHeight and re-executing the same
program will promptly output the detailed result. This is much more
efficient than solving it on paper in a traditional mathematical approach.

128

CHAPTER 20 TRACING MOVING OBJECTS

Example

A snail tries to get out of a well. Each day it climbs up the side of the
well 4 feet and each night it slides down the well 2 feet and 6 inches. If
the snail starts 40 feet down inside in the morning, how many days will it
take the snail take to get out of the well? This problem is selected from a
MathIsCool competition.

Answer

In order to keep using an integer value, we convert feet to inches by
calculation. Notice that we set the depth of the well as a constant variable
by utilizing the keyword final. We check if the snail has reached the top of
the well, after it climbs up every day, and before it slides down.

private static void snail() {
final int DEPTH = 12 * 40;
int currentHeight = 0;
int numOfDays = 0;
while (currentHeight < DEPTH) {
currentHeight += 12 * 4;
numOfDays++;
if (currentHeight >= DEPTH) {
break;

}

currentHeight -= 12 * 2 + 6;

System.out.println("No. " + numOfDays +
day - " +
(DEPTH - currentHeight) + "
inches to the top.");
}
System.out.println("No.

at the top.");

+ numOfDays + " day -

129

CHAPTER 20 TRACING MOVING OBJECTS
This is partial output from the program runtime:

No. 1 day - 462 inches to the top.
No. 2 day - 444 inches to the top.
No. 3 day - 426 inches to the top.
No. 4 day - 408 inches to the top.
No. 5 day - 390 inches to the top.
No. 6 day - 372 inches to the top.
No. 7 day - 354 inches to the top.
No. 8 day - 336 inches to the top.
No. 9 day - 318 inches to the top.
No. 10 day - 300 inches to the top.
No. 11 day - 282 inches to the top.
No. 12 day - 264 inches to the top.
No. 13 day - 246 inches to the top.
No. 14 day - 228 inches to the top.
No. 15 day - 210 inches to the top.
No. 16 day - 192 inches to the top.
No. 17 day - 174 inches to the top.
No. 18 day - 156 inches to the top.
No. 19 day - 138 inches to the top.
No. 20 day - 120 inches to the top.
No. 21 day - 102 inches to the top.
No. 22 day - 84 inches to the top.
No. 23 day - 66 inches to the top.
No. 24 day - 48 inches to the top.
No. 25 day - at the top.

130

CHAPTER 21

Counting

We have learned many mathematical methods to solve counting problems.
Some of these problems require a deep understanding of permutation
and combination. In this chapter, we will learn examples of how to use
programming to solve counting problems.

Example

Tickets on a bus were $4.00 and $6.00. A total of 45 tickets were
sold and $230 was earned. How many $4.00 tickets were sold? (2007/
MathIsCool problem at http://academicsarecool.com)

Answer

This can be solved by a single loop. We set the variable tickets as
the number of $4.00 tickets. Because the total number of tickets is 45, the
number of $4.00 tickets cannot be greater than 45. Therefore, tickets is an
integer under 46.

private static void calculateBusTickets() {
for(int tickets = 0; tickets < 46; tickets++) {
int totalMoney = 4 * tickets + 6 * (45 - tickets);
if (totalMoney == 230) {
System.out.println(tickets + " $4.00
tickets were sold.");
break;

© Ron Dai 2019 131
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_21

http://academicsarecool.com

CHAPTER 21 COUNTING

Example

A chair has 4 legs, a stool has 3 legs, and a table has 1 leg. At a birthday
party, there are 4 chairs per table and a total of 18 pieces of furniture. One
of the children counts 60 legs total. How many stools are there? (2016/
MathIsCool problem at http://academicsarecool. com)

Answer

In the following method, the variable tables represents number of
tables. Then, the number of chairs is 4 x tables, and the number of stools
is (18 - tables - 4 * tables).

private static void countFurniture() {
for(int tables = 0; tables < 19; tables++) {
if (tables + 4 * 4 * tables + 3 * (18 - tables -
4 * tables) == 60) {
System.out.println((18 - tables) + "
stools.");
break;

Example

A multiple-choice examination consists of 20 questions. The scoring
is +5 for each correct answer, -2 for each incorrect answer, and 0 for each
unanswered question. John’s score on the examination is 48. What is the
maximum number of questions he could have answered correctly? (1987/
AMCS8 problem at https://artofproblemsolving.com/wiki/index.
php/1987_AJHSME)

Answer

Unlike the previous two examples, in this one we will use two variables,
c and w, in the loop. Let’s assume the number of correct answers is ¢,
and the number of wrong answers is w. Their sum cannot be greater than

132

http://academicsarecool.com
https://artofproblemsolving.com/wiki/index.php/1987_AJHSME
https://artofproblemsolving.com/wiki/index.php/1987_AJHSME

CHAPTER 21 COUNTING

20 - the total number of problems. Because it may have more than one
solution, we don’t use break to exit the program right after it finds the first
solution. This is a different approach from in the previous examples.

private static void scoring() {
for(int ¢ = 0; ¢ < 20; c++) {
for(int w = 0; w < 20 - c; w++) {
if (5*c-2*w-==48) {
System.out.println("Correct
answers: " + ¢
+ "; wrong answers:

+ W);

The output is:

Correct answers: 10; wrong answers: 1
Correct answers: 12; wrong answers: 6

Example

How many distinct four-digit numbers are divisible by 3 and
have 23 as their last two digits? (2003/10B AMC problem at https://
artofproblemsolving.com/wiki/index.php/2003_AMC_8)

Answer

We need to pay attention to the wording, “distinct four-digit numbers,’
in this problem. The strategy is to separate all conditions into two parts.

— The 4-digit number is divisible by 3 and its last two
digits are “23”.

- All the four digits are different.

133

https://artofproblemsolving.com/wiki/index.php/2003_AMC_8
https://artofproblemsolving.com/wiki/index.php/2003_AMC_8

CHAPTER 21 COUNTING

private static void countNumbers() {
int totalCount = 0;
for(int i = 1000; i < 10000; i++) {
if (i %3 ==028&% 1% 100 == 23) {
int firstDigit = i / 1000;
int secondDigit = i / 100 % 10;
if (firstDigit != secondDigit &&
firstDigit != 2 &&
firstDigit != 3 8&&
secondDigit != 2 &&
secondDigit != 3) {
totalCount++;
System.out.println(i);

}
System.out.println("Total count = " + totalCount);

Its output is:

1023
1623
1923
4023
4623
4923
5823
6123
6423
6723
7023

134

CHAPTER 21

7623
7923
8523
9123
9423
9723
Total count = 17

We use one if clause to validate that all four digits are distinct.

if (firstDigit != secondDigit &&
firstDigit = 2 &&
firstDigit I= 3 &&
secondDigit != 2 &&
secondDigit != 3) {

Alternatively, we may create a general method to checkit.

if (isDistinct(firstDigit, secondDigit, 2, 3)) {

}

This is the implementation of isDistinct(...).

COUNTING

private static boolean isDistinct(int a, int b, int c,

int d) {
if (a == b) {
return false;
} else if (a == c) {
return false;
} else if (a == d) {
return false;
} else if (b == c) {
return false;

135

CHAPTER 21 COUNTING

} else if (b == d) {
return false;
} else if (c == d) {
return false;
} else {
return true;

}

An improved version in countNumbers2 () will be:

private static void countNumbers2() {
int totalCount = 0;
for(int i = 1000; i < 10000; i++) {
if (1 %3 ==08% 1% 100 == 23) {
int firstDigit = i / 1000;
int secondDigit = i / 100 % 10;
if (isDistinct(firstDigit, secondDigit,

2, 3)) {
totalCount++;
System.out.println(i);
}
}
}
System.out.println("Total count = " + totalCount);
}
Example

Ruthie has 10 coins, all either nickels, dimes, or quarters. She has N
nickels, D dimes, and Q quarters, where N, D, and Q are all different, and
are each at least 1. Amazingly, she would have the same amount of money
if she had Q nickels, N dimes, and D quarters. How many cents does Ruthie
have? (2012 MathIsCool problem at http://academicsarecool.com)

136

http://academicsarecool.com

CHAPTER 21 COUNTING

Answer
Two for-loops are to be used in the following solution.

private static void countCoins() {
for(int n = 1; n < 9; n++) {
for(int d = 1; d < 10 - n; d++) {
int q =10 - n - d;
if (5*n + 10*d + 25*%q == 5%q + 10*n + 25*%d){
System.out.println((5*n+10*d+25%q)+
" cents.");
System.out.println("N="+n+";
D="+d+"; 0="+q);

Output is:

155 cents.
N=1; D=5; Q=4

Example

Three friends have a total of six identical pencils, and each one has at
least one pencil. In how many ways can this happen? (2004 AMC8 problem
athttps://artofproblemsolving.com/wiki/index.php/2004_AMC_8)

Answer

We use two for-loops to simulate how we distribute the six identical
pencils to three people represented by variables, first, second, third.

private static void countWays() {
int count = 0;
for(int first=0; first <= 6; first++) {

137

https://artofproblemsolving.com/wiki/index.php/2004_AMC_8

CHAPTER 21 COUNTING

for(int second = 0; second <= 6 - first;
second++) {
int third = 6 - first - second;
if (first > 0 8& second > 0 && third > 0) {
count++;
System.out.println("first="
+ first + "; second=" +
second + "; third=" +
third); }

}

System.out.println("Total count=" + count);

The output is:

first=1; second=1; third=4
first=1; second=2; third=3
first=1; second=3; third=2
first=1; second=4; third=1
first=2; second=1; third=3
first=2; second=2; third=2
first=2; second=3; third=1
first=3; second=1; third=2
first=3; second=2; third=1
first=4; second=1; third=1
Total count=10

Example

Seven distinct pieces of candy are to be distributed among three bags.
The red bag and the blue bag must each receive at least one piece of candy;
the white bag may remain empty. How many arrangements are possible?
(2010/10B AMC problem at https://artofproblemsolving.com/wiki/
index.php/2010_AMC_10B)

138

https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B
https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B

CHAPTER 21 COUNTING

Answer

First, we design an experiment. In this experiment, we want to put
seven distinct strings (“A,” “B,” “C,” “D,” “E,” “E” “G”) into three String
arrays. The seven strings represent seven distinct pieces of candy.

The three arrays represent red, blue, and white bags. The order of the
placement doesn’t matter, but we need to make sure only the last array can
be empty after the placement is made. The goal is to find the number of
different placements.

When we place “A” in one of the three arrays, we need a for-loop for
three different arrays. Then we need another for-loop to place “B,” and
so on; in total we will need seven for-loops. In each for-loop, we append
the string to the existing array, that is, bag[1]. But after it is done, we need
to remove it from the tail of the array string in order for it to try the next

option. This is why we use bag[i].replace("A", "").The same applies to
the other six strings.
We come up with a “straightforward” but ugly-looking version as what

follows.

Note BAG —red: 0, blue: 1, white: 2; 3 in the loops represent the
three string arrays, that is, the three bags.

/// BAG - red: 0, blue: 1, white: 2
private static void distributeCandy() {
int count = 0;
String[] bag = { "", "", "" };
for(int i=0; i < 3; i++) {

bag[i] += "A";
for(int j=0; j < 3; j++) {
bag[j] += "B";

for(int k=0; k < 3; k++) {

139

CHAPTER 21 COUNTING

bag[k] += "C";
for(int 1=0; 1 < 3; 1++) {
bag[1l] += "D";
for(int m=0; m < 3; m++) {
bag[m] += "E";
for(int n=0; n < 3; n++) {
bag[n] += "F";
for(int p=0; p < 3; p++) {
bag[p] += "G";
if(bag[0].length() > 0 && bag[1].length()
> 0) {
count++;
System.out.println("Red=" + bag[0] +

Blue=" + bag[1] + " White=" + bag[2]);

}
bag[p] = bag[p].replace("c", ""); }
bag[n] = bag[n].replace("F", ""); }
bag[m] = bag[m].replace("E", ""); }
bag[1] = bag[l].replace("D", ""); }
bag[k] = bag[k].replace("C", ""); }
bagl3] = bag[j].replace("8", "*); }
bag[i] = bag[i].replace("A", ""); }
System.out.println("Total count: " + count);

The code structure looks too complicated. There are too many nested
for-loops. A better idea is to apply a recursive approach to improve its

simplicity. Now see a new version:

private static int count =
private static String[] bag =
private static String[] CANDY
D", "E", "F", "G" };

"""y
= new Strlng[] { "a", "B", "C",

140

CHAPTER 21 COUNTING

private static String RemovelLastChar(String s) {
if (s == null & s.length() < 1) {
System.out.println("Input string is invalid!");

return "";

}

return s.substring(o, s.length() - 1);
}
private static void distributeCandies Recursive(int pointer) {
for(int i=0; i < 3; i++) {
bag[i] += CANDY[pointer];
if (pointer == CANDY.length - 1) {
if (bag[o].length() > 0 && bag[1].
length() > 0) {
count++;
System.out.println("Red=" + bag[0]
+ " Blue=" + bag[1] + " White=" +

bag[2]);
}
}
else {
distributeCandies Recursive((pointer + 1));
}

bag[i] = RemovelLastChar(bag[i]);

We then include two following lines in the main function for execution.

distributeCandies Recursive(0);
System.out.println("Total count:

+ count);

141

CHAPTER 21 COUNTING

Example

A palindrome between 1000 and 10000 is chosen at random. What
is the probability that it is divisible by 7? (2010/10B AMC problem at
https://artofproblemsolving.com/wiki/index.php/2010 AMC 10B)

Answer

A palindrome number is a number that reads the same from its left to
right as from its right to left.

In the isPalindrome() method, we reverse the number string and
compare it with the original number string. If the reversed string turns out
to be the same as the original one, it is identified as a palindrome string.
For “8558 its reversed string “8558” is the same as itself.

We introduce StringBuffer class to leverage its reverse() method.
Every number within the range [1000, 10000] is converted to a string type,
before it is passed to the isPalindrome() method. The solution can be
applied to any range of integer numbers

public static void main(String[] args) {
countDivisibility();

}

private static boolean isPalindrome(String numberStr) {
String reversed = new StringBuffer(numberStr).reverse().
toString();
return reversed.equals(numberStr);

}
private static void countDivisibility() {
int count = 0;
int total = 0;
for(int i = 1000; i < 10001; i++) {
if(isPalindrome(Integer.toString(i))) {
total++;
if (1 %7 ==0){
count++;

System.out.println(i);
142

https://artofproblemsolving.com/wiki/index.php/2010_AMC_10B

CHAPTER 21 COUNTING

}
System.out.println("Probability="

+ count + "/" + total);

There is a different way in the method isPalindrome2 (), which
contains the same functionality as what the isPalindrome() method has.
Instead of using StringBuffer, you may simply compare each character
from the leading half of one with the trailing half of the original string.

private static boolean isPalindrome2(String s) {
int len = s.length();
for(int i = 0; i < len / 2; i++) {
if (s.charAt(i) != s.charAt(len - i - 1)) {
return false;

}

return true;

Example

A base-10 three-digit number n is selected at random. What is the
probability that the base-9 representation and the base-11 representation
of n are both three-digit numbers? (2003/10A AMC problem at https://
artofproblemsolving.com/wiki/index.php/2003_AMC_10A Problems)

Answer

The total count of base-10 three-digit numbers is 900. A three-digit
number 124 in base-10 is 147 in base-9, and 103 in base-11; 720 in base-10,
880 in base-9, and 5A5 in base-11.

The crucial method is countBase10Numbers ():

private static void countBase10Numbers() {
int count = 0;

for(int i = 100; i < 1000; i++) {
143

https://artofproblemsolving.com/wiki/index.php/2003_AMC_10A_Problems
https://artofproblemsolving.com/wiki/index.php/2003_AMC_10A_Problems

CHAPTER 21 COUNTING

String base9Number = convertToBaseN(i, 9);

String base1liNumber = convertToBaseN(i, 11);

if (base9Number.length() == 3 &&
base11Number.length() == 3) {
count++;
System.out.println(i +
base9Number +

; " + base1liNumber);

> "+

}

System.out.println(count + " out of " + (1000 - 100));

The supporting method is convertToBaseN().

private static String convertToBaseN(int base10, int n) {
if(n <2 || n> 16) {

return "";

}

String baseN = myOneDigit[base10 % n];

basel0 = basel0 / n;

while(base10 > 0) {
baseN = myOneDigit[base10 % n] + baseN;
basel0 = basel0 / n;

}

return baseN;

The myOneDigit array is:

private static String[] myOneDigit =
{ "O") Illll’ "2"’ II3II’ "4"’ II5II) "6"’ II7II’ II8II’ "9"’ IIAII’ "Bll’
"Cll, IIDII’ IIE", IIFII };

144

CHAPTER 21 COUNTING

It is actually equivalent to a method with implementation of the
switch conditional statement:

private static String convertDigit(int digit) {
String s = "";
switch(digit) {
case 10:
s = "A";
break;
case 11:
s = "B";
break;
case 12:
s = "C";
break;
case 13:
s = "D";
break;
case 14:
s = "E";
break;
case 15:
s = "F";
break;
default:
s = Integer.toString(digit);
break;

}

return s;

Obviously, the approach using a string array is simpler.

145

CHAPTER 21

COUNTING

Problems

146

1.

Richa and Yashvi are going to Jamaica with their
school. They plan on attending a fair where the
admission for children is $1.50 and $4.00 for adults.
On a specific day, 2,200 people enter the fair and
$5,050 is collected. How many children attended?
(2017 MathIsCool)

In a mathematics contest with 10 problems, a
student gains 5 points for a correct answer and loses
2 points for an incorrect answer. If Olivia answered
every problem and her score was 29, how many
correct answers did she have? (2002 AMCS)

How many positive integers not exceeding 2001 are
multiples of 3 or 4 but not 5? (2001 AMC10)

How many positive three-digit numbers contain
exactly two distinct digits (e.g., 343 or 772, but not
589 or 111)? (2006 MathIsCool)

Rebecca goes to the store where she buys five plants.
If the store sells three types of plants, how many
different combinations of plants can she buy?

(2005 MathIsCool)

CHAPTER 22

Factorization

In school math, we usually follow a procedure to find all factors for any
given positive integer number. This process is called factorization, and it
takes quite a lot of calculation depending on how big the integer number
is. With the Java programming environment, let’s create a simple program
to do the same job for us. We'd like to write code to find all factors of any
positive integer. When a user inputs “10,” the program is supposed to
output: 1, 2, 5, and 10. As the first step, we need to define the procedure
and then implement it by Java code.

Math: Finding Factors

Recalling how we found factors manually in school, we used an integer
number from the smallest (i.e., “1”) up to the largest (i.e., the given integer
itself), one by one, to check if it is divisible by the given number. When
the answer was yes, we knew it was a factor. Otherwise, we skipped it and
moved to the next number.

We create the following block of code to accomplish the procedure. We
label this version of code as “v1,” and we plan to make improvements from

here.

private static int listFactors vi(int n) {
int counter = 0;
for (int i = 1; 1 <= n; i++) {
if (n%1i==0){

© Ron Dai 2019 147
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_22

CHAPTER 22 FACTORIZATION

if (counter » 0) {
System.out.print(", ");

}

System.out.print(i);

counter++;

}
System.out.println();

System.out.println("Number of factors:
return counter;

+ counter);

The main method will look like this:

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

int iterations = 0;

while (true) {
iterations++;
System.out.println("Enter an integer number:");
int k = input.nextInt();
if (k < 0) {

k = -k;

}

System.out.println("Number of factors: " +
listFactors vi(k));

input.close();

148

CHAPTER 22 FACTORIZATION
When you compile and execute the code, you will see an output as:

Enter an integer number:
2018

1, 2, 1009, 2018

Number of factors: 4

Don’t think that we have a perfect solution to the problem. Actually, it
is far from complete.

Math: Halving the Problem

When we iterate every single number from 1 to n, in order to find all
possible divisors of n, we observe that any integer greater than n/2 will
not be a divisor of n. Therefore, we only need to check from 1 up ton/2,
instead of n. This change will save half of the iterations in the program. So,

we now have an immediate improvement in the following version 2.1.

private static int listFactors v21(int n) {
int counter = 0;
for (int i = 1; i <=n / 2; i++) {
if (n % 1i==0){
if (counter > 0) {
System.out.print(", ");

}
System.out.print(i);
counter++;
}
}
System.out.println(", " + n);
counter++;

System.out.println("Number of factors: " + counter);

return counter;

149

CHAPTER 22 FACTORIZATION

In addition to the algorithm change, we will remove one if clause
to reduce the complexity by a little bit. Then we will come up with the
following version 2.2 with minor modifications.

private static int listFactors v22(int n) {
System.out.print("1"); // "1" is always the 1st factor
int counter = 1;
for (int i = 2; i<=n/ 2; i++) {
if (n%1i==0){

System.out.print(", " + i);
counter++;
}
}
System.out.println(", " + n); // n is always the last
factor
counter++;

System.out.println("Number of factors: " + counter);

return counter;

Is it good enough? Actually not.

Math: Using the Square Root

If we remember in math how to test whether a positive integer number is
prime or not, we only use integers from 2, 3, up to the square root of n. We
will apply the same logic here to find a pair of factors in order to reduce the

number of iterations.

private static int listFactors v3i(int n) {
int counter = 0;
for (int i = 1; i <= Math.sqrt(n); i++) {

150

CHAPTER 22 FACTORIZATION

if (n % 1i==0) {

if (counter > 0) {
System.out.print(", ");

}

System.out.print(i);

counter++;

if (i !'=n/ 1) {
System.out.print(",
counter++;

+n / i);

}
System.out.println();

System.out.println("Number of factors: " + counter);
return counter;

The current version 3.1 is obviously better, because it only checks
numbers up to the square root of n, instead of n/2. Using n=100 as an
example, now we check from 1 to 10, not from 1 to 50. Obviously, the
reduction of iterations is significant. But we quickly discover an issue with

it. The output from the current solution is:
Output:

Enter an integer number:
2018

1, 2018, 2, 1009
Number of factors: 4

The list of factors is not in ascending order as we hoped, simply
because it prints out factors by pairs. To resolve the issue, we will create
two strings. One string stores the smaller one from every pair of factors.
The other string stores the bigger one from each pair.

151

CHAPTER 22 FACTORIZATION

private static int listFactors v32(int n) {

String s1 = "1";
String s2 = Integer.toString(n);
int counter = 2;
for (int i = 2; i <= Math.sqrt(n); i++) {
if (n%1i==0){
s1 +=", " + i,
counter++;
if (i!'=n/1i){
s2=n/1+"," +s2;
counter++;

}

System.out.println(s1 + ", " + s2);
System.out.println("Number of factors:

+ counter);
return counter;

Can we possibly make further improvements from the current version

3.2? The answer is still YES. Instead of storing the smaller number from

each pair of divisors to a string, we send it directly to the console. This

will save memory space of one string. It is another “little” change, but

potentially a big save, when we deal with a big number that may have a

huge list of factors. We finally landed on v3.3:

private static int listFactors v33(int n) {

152

String s = Integer.toString(n);

int counter = 2;

System.out.print("1");

for (int i = 2; i <= Math.sqrt(n); i++) {
if (n% i ==0) {

CHAPTER 22 FACTORIZATION

System.out.print(", " + i);

counter++;

if (i!'=n7/1i){
s=n/i+"," +s;

counter++;

}

System.out.println(", " + s);
System.out.println("Number of factors:
return counter;

+ counter);

Here is a summary of what we have done to solve this problem:

We kept thinking about how to improve our
implementation according to three basic rules:

(a) Adopt the best algorithm we know;

(b) Optimize code to consume less memory and
run faster;

(c) Write code that is easy to understand for future

maintenance.

We reduced the actual upper bound of the integer
number from n to n/2, then to the square root of n.

We avoided having to use an extra string for temporary
storage.

All these efforts have contributed to a well-optimized code. This is

indeed the art of programming.

153

CHAPTER 23

Exploratory
Experimentation of Pi

Scientists must always keep track of the population of fish in order to
monitor the impact on the fish life cycle from natural environmental
changes. There is a type of fish called AA in a lake for research. The
scientists set free a small group of labeled fish AA, whose total number
equals to #(total_labeled), to the lake. After a period of time, they capture
a number of fish AA randomly from the lake and use them as samples,
whose total number equals to #(total_captured). Among these sample
fish AA, they sort out the labeled fish AA, whose total number equals to
#(labeled_among_captured).

Math: Calculating a Population

Assuming all the fish, including the labeled and the unlabeled, are
distributed evenly in the lake, we use the following formula to figure out
the current population of fish AA in the lake.

#(total captured) * #(total labeled) / #(labeled among_captured)

The formula is expressed in a simple ratio form. The more evenly
distributed fish AA is in the lake, the more accurate result the formula will
produce. It is essentially a statistical idea that uses a small pool of sample

© Ron Dai 2019 155
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_23

CHAPTER 23 EXPLORATORY EXPERIMENTATION OF PI

data to predict a possibly large total number in a big picture. It attempts
to make a measurement from the unmeasurable object with a minimized
error margin.

The nature of the fish experimentation is based on probability theory.
It also applies to many other interesting problem areas. One of them is to
compute Pi: 3.14159.........

Example

How can we do basic programming to calculate the value of Pi?

Math: Pi from Probability Theory

We inscribe a circle into a square that leans closely against the x-axis and
y-axis in a Cartesian coordinate plane. Say the length of the square, which
is the diameter of the circle, is n. The area of the circle can be presented in

a formula as:
p x (n/2)?

p is something to figure out, that is, Pi.

If one randomly selects a point within the square, what is the
probability that the point is exactly inside the circle?

We know the answer after having learned the basic geometric
probability. It should be the ratio of an area between the circle and the
square. Since the area of the square is n?, the ratio will be p/4.

156

CHAPTER 23 EXPLORATORY EXPERIMENTATION OF PI

px(n/2)*:n*=p:4

Y

Answer

The probability p/4 indicates that if we repeat the same point selection
process as many times as possible, the ratio of the number of points
selected inside the circle versus the number of points selected inside the
square will be approaching to (and eventually equal to) p/4. Therefore,
once we find out the ratio, we know an approximation of Pi. This is the
algorithm we will use in the program.

public static double computePi(int total, int n) {
int count = 0;
for(int i=0; i < total; i++) {
double x = n * Math.random();
double y = n * Math.random();
if ((x - n/2) * (x - n/2) + (y - n/2) * (y - n/2)
< (n/2) * (n/2)) {

count++;

}
return (double)count * 4 / total;

157

CHAPTER 23

158

EXPLORATORY EXPERIMENTATION OF PI

In this method,

The integer parameter value total is the total number
of experiments (i.e., total number of the selected
sample points).

The integer parameter value n is the side length of the
square, or the diameter of the circle.

Math.random() is a Java built-in function from java.
util.Random package. It generates a random number
in double between 0 and 1. Multiplying it with n makes
the x and y coordinates’ values between 0 and n.

The inequality “(x - n/2)? + (y - n/2)? < (n/2)*” is to
check if the point lies inside the circle, whose center
point is at (n/2, n/2).

You may call the method by following lines from the
main method():

public static void main(String[] args) {
int onehMillion = 100 * 1000 * 1000;
for(int i=0; i < 10; i++) {
System.out.println(computePi(onehMillion,
100));

}

n = 100 is the side length. It doesn’t contribute to the
formula directly. You may use other numbers like 10
or 2 or any even numbers (due to the “n/2”) for an
extended experiment purpose.

CHAPTER 23 EXPLORATORY EXPERIMENTATION OF PI

— int onehMillion = 100 * 1000 * 1000 equals to 100
million. It indicates the total number of points we pick
in one exploratory test. The 100 * 1000 * 1000 is a
multiplication operation that will be executed during
the compilation time, prior to runtime. There is no
implication of extra computing time by the current
multiplicative expression in coding.

— The for-loop() drives the same experiments by
multiple times, that is, 10 times.

The output on the console will be like this:

.14150492
.14166436
14157872
.14143904
.14174756
14153872
.14161072
.14155196
.14198448
.14158056

w W w w w w w w w w

With less than 10 lines of code in the method, it takes about 5 seconds
to complete the execution and output the estimated Pi value.

Last but not least, we will need to change int to long if the values of
total and i are too big. Remember that int type of data can be up to
32 bits, which equals to 2*2. When the total is a larger number than that,
we will need to use long type, which supports 64 bits (equal to 2%).

public static double computePi(long total, int n) {
long count = 0;
for(long i=0; i < total; i++) {
double x = n * Math.random();

159

CHAPTER 23 EXPLORATORY EXPERIMENTATION OF PI

double y = n * Math.random();
if ((x - n/2) * (x - n/2) + (y - n/2) * (y - n/2)
< (n/2) * (n/2)) {
count++;

}

return (double)count * 4 / total;

The long value type of parameter needs to be passed as . . . L as shown
next. However, it will take much longer to execute, unless it runs on a high-
computing power PC.

public static void main(String[] args) {
long hugeNumber = 1000 * 1000 * 1000 * 1000L;
for(int i=0; i < 10; i++) {
System.out.println(computePi(hugeNumber, 100));

If we increase the value of total, it will have more coverage of the area
by a larger number of points and return a more accurate result of Pi. For
the 100-million points we pick in this program, it almost guarantees to
find out Pi = 3.141..., at the thousandth precision level. To achieve more
precision, we will need a more powerful computing machine. At least we
know that with an ideal computing platform, we will be able to nail down
the Pi value at a designated precision level.

From this example, we have learned that we can apply the same ratio
and probability concepts to finding out an area surrounded by any curve,
as long as we know the functional model of the curve.

160

CHAPTER 23 EXPLORATORY EXPERIMENTATION OF PI

Example
With the probability concept in mind, use Java programming to find
out the area among line x =0, y =0, and curve y = -2x* + 12x -18.

i

2 -1 I 3 5.6.7.8.9.1011.12.

[

y==2x*+12x-18

B S %o &

16

Answer
This approach has helped us solve a problem, while a pure
mathematical solution originally requires knowledge of Calculus.

public static double computeArea(int total) {
int count = 0;
for(int i=0; i < total; i++) {
double x = Math.random() * 3;
double y = Math.random() * -18;
if (-2 x % x+ 12 *x - 18 <y) {
count++;

}
return (double)count * 54 / total;

Problem

Create a program to find out Euler’s number e.

161

CHAPTER 24

Classes in
Object-Oriented
Programming

An object is essentially a representation of a thing. An object has some
attributes, just like everything has characteristics. However, a class in the
programming world is primarily a data structure designed for a specific
object. The class is also said to be a blueprint of an object. It keeps track of
a bundle of related things about the object. These related things are known
as fields, properties, and functions (or methods).

The fields are data members of a class. They must be declared and
initialized before they are used. They are mostly for class internal use.

Some fields may serve as properties, which are attributes of an object
(e.g., an employee’s name or a bank account’s balance).

The properties can be changed by setters, and they can be accessed by
getters from outside the class.

Getters and setters are methods to hide the internal implementations
of the class properties. This design enables developers to update some
of the existing implementations easily later on. It is an example of
encapsulation characteristics of object-oriented programming.

© Ron Dai 2019 163
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_24

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

164

In the following example class Student,

firstName, lastName, age are all fields. Since all these
fields have getter/setters, for example, getAge(),
setAge(), they are also properties.

public Student() is the default constructor defined in
the Student class. It is like a method, and it is executed
when the object is created from the Student class, that is:

Student student = new Student();

public Student(String firstName, String
lastName) is another constructor of the Student

class. It instantiates (or creates) an object by directly
assigning firstName and lastName to the fields, that is:

Student student = new Student("John", "Doe");

public String getFirstName(), public String
getLastName(), and public int getAge() are
methods to query values of the private fields
firstName, lastName, age. They are getters.

public void setAge(int age) is a method to assign a
value to the private field age. It is a setter.

The keywords public and private in front of data types
(e.g., String, int), or method names, are called access
modifiers. The public means it is visible to all, while
the private is only open to the current class scope.

public class Student {
private String firstName;
private String lastName;
private int age;

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

public Student() {
}

public Student(String firstName, String
lastName) {
this.firstName = firstName;
this.lastName = lastName;

public String getFirstName() {
return this.firstName;

public String getLastName() {
return this.lastName;

public int getAge() {
return this.age;

public void setAge(int age) {
this.age = age;

}

A simple structural view is:

class Student {
//fields, e.g. firstName, lastName, and age

//constructor

//setter/getter methods, e.g. get/set firstName,
lastName, and age

165

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

The keyword this inside the Student class is a reference to the
current object, whose fields (e.g., firstName, lastName, age) are being
used. By using this, the current object’s methods or constructors can be
invoked as well.

There are two kinds of so-called non-fields in a program.

— local variables inside methods

- parameters x1 and x2 in a method like: myMethod
(x1, x2)

Relationship between class and object:
- CanTIhave an object without having a class? NO
— CanTIhave a class without having an object? YES

— Can/I create multiple instances of a class? YES

Lab Work

Create a class called Name that represents a person’s name. The class
should have fields named firstName representing the person’s first name,
lastName representing their last name, and middleInitial representing
their middle initial (a single character). Your class should contain only
fields for now.

Lab Work

Create the outline of a public class named Vehicle.

public class Vehicle {

}

And then create a main program to operate the Vehicle object created.

166

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

Lab Work

Add a constructor to the Point class shown next that accepts another
Point as a parameter and initializes the new Point to have the same (x, y)
values. Use the keyword this in your solution.

Then, add methods named setX and setY to the Point class. Each
method accepts an integer parameter and changes the Point object’s x- or
y-coordinate to be the value passed, respectively.

public class Point {
int x;

int y;

// your code goes here

}

Problems

1. How is an object different from a class?

a) Objects are used in object-oriented programming
and classes are used in class-oriented programming.

b) An object is an entity that encapsulates related data
and behavior, while a class is the blueprint for a
type of object.

c) An object is not encapsulated, and a class is
encapsulated, making classes more powerful and
reusable than objects.

d) An objectis a kind of class that does not contain
any behavior.

e) A class is an instance of an object. One object can
be used to create many classes.

167

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

2. Describe a real-world scenario about how the
concepts of class and object are being used.

3. Design and write a class called Game. You will need
to think about what kind of fields this class should
have, and then add several methods to enrich the
class.

For example,

(1) you may define the price of the game;

(2) you may classify the game as “computer game” or
“video game”;

(3) you may define the platform on which the

” «u

game can be used, such as “xbox,” “playstation,

U

“nintendo,” etc.;
(4) you may define a constructor with a parameter;

(5) you may define methods to set/get any fields as
mentioned above;

(6) anything you can think about a Game, when you
want to define it as a class.

4. Given the following class, called NumberHolder,
write some code that creates an instance of the
class, initializes its two member variables, and then
displays the value of each member variable.

public class NumberHolder {
public int anInt;
public float aFloat;

}

168

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

5. Which of the following are differences between a
field and a parameter? There might be multiple
answers to this question.

(A) Afield is a variable that exists inside of an object,
while a parameter is a variable inside a method
whose value is passed in from outside.

(B) Fields can store many values while parameters
can store only a single value. Field syntax differs
because they can be declared with the private
keyword.

(C) Parameters must be primitive types of values,
while fields can be objects.

(D) Afield’s scope is throughout the class, while a
parameter’s scope is limited to the method.

(E) Afield takes up more memory in the computer
than a parameter does.

(F) You can only have one field per class, while you
can have as many parameters as you want.

(G) Fields are constant and can be set only once,
while parameters change on each call.

6. Suppose a method in the Account class is defined as:
public double computeInterest(int rate)

And suppose the client code has declared an
Account variable named acct. Which of the
following would be a valid call to the above method?

169

CHAPTER 24 CLASSES IN OBJECT-ORIENTED PROGRAMMING

170

(A) int result = Account.computeInterest(14);
(B) double result = acct.computeInterest(14);
(C) double result

computeInterest(acct, 14);
(D) new Account(14).computeInterest();

(E) acct.computeInterest(14, 15);

CHAPTER 25

Interface - Total
Abstraction

The concept of interface is a part of abstraction, one of the four OOP.
characteristics. Abstraction is about an abstract design of common
features, including operations of the object.

Interface is the blueprint of a class. However, it is neither a class nor
an object. All methods defined in an interface are abstract. There are no
implementation details allowed inside any method of the interface. The
class that is going to implement the interface will take care of the actual
implementation of the methods.

Let’s look at an example of an interface and classes implemented from
it. Auto is a general term representing vehicles. We use Auto to define an
interface.

public interface Auto {
void start();
void stop();
void turn();
void back();
void park();

© Ron Dai 2019 171
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_25

CHAPTER 25 INTERFACE — TOTAL ABSTRACTION

As two common types of automobiles, cars and buses are common
objects. Both cars and buses share the same type of behaviors defined
in Auto interface. When we create a class for cars and buses, we use the
keyword implements to implement car and bus from the same Auto
interface with different behavioral details.

We use class Car as an example:

public class Car implements Auto {
private String maker;

public void start() {
// car starts its engine

public void stop() {
// car stops its engine

public void turn() {
// car turns left or right at a corner

public void back() {
// car backs

public void park() {
// car parks

public String getMaker() {
return this.maker;

172

CHAPTER 25 INTERFACE — TOTAL ABSTRACTION

public void setMaker(String maker) {
this.maker = maker;

As you probably have noticed,
— Aninterface indicates what the object can do.

— When a class implements the interface, it defines what
the object is doing with the necessary details.

The design of the interface allows developers to modify the underlying
classes without altering the callers’ implementations; this is sometimes
called coding to the interface. There are at least two circumstances when
we should consider adopting an interface design.

— When we want to only specify the behavior of a
particular data type, without being concerned about
whoever implements its behavior.

For example:

We define an interface Auto that is an abstract
concept and a general term. In this interface, we
define several methods such as start, stop, turn,
back, and park by their signatures, without any
implementation details. We will add implement
details in these methods when we create Car or
Truck classes that implement the Auto interface.

173

CHAPTER 25 INTERFACE — TOTAL ABSTRACTION

— When all classes have the same structure, but they
totally have different functionalities.

For example:

Dogs and cats communicate in totally different
ways. A dog barks, but a cat meows. We may define
an interface Animal and create a class Dog and class
Cat, like shown here.

public interface Animal {
public void communicate();

}

public class Dog implements Animal {
public void communicate() {
System.out.println("bark, bark!");

}

public class Cat implements Animal {
public void communicate() {
System.out.println("meow, meow...");

}

Java supports multiple interface implementation: for example, if we
define another interface, MovingObject as shown.

public interface MovingObject {
void movingNorth();
void movingSouth();

174

CHAPTER 25 INTERFACE — TOTAL ABSTRACTION

Class Car can implement from both interfaces, Auto and MovingObject
as shown here.

public class Car implements Auto, MovingObject {
public void movingNorth() {

// car moves North

}

public void movingSouth() {
// car moves South

175

CHAPTER 26

Inheritance — Code
Reuse

As one of the OOP principles, inheritance is designed to centralize the
common functionality of many different objects. As a result of that, it
reduces duplicated code in many classes.

Inheritance introduces two types of classes: “superclass” and
“subclass.” The subclass inherits from the superclass. The superclass
is the same thing as the “base class.” The subclass contains not only all
the methods and the fields inherited from the superclass, but also other
methods and fields defined by the subclass.

For example, we define a new class called Sedan that inherits from the
Car class we created earlier. The Car class implements an interface called
Auto. In the Sedan class, we define a Boolean field isFourDoorHatchback
and a method called isFourlWheelDrive().

The keyword extends is used to describe the class that Sedan inherits
from class Car.

public class Sedan extends Car {
public Boolean isFourDoorHatchback;
public Boolean isFourWheelDrive(){
return true;

© Ron Dai 2019 177
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_26

CHAPTER 26 INHERITANCE — CODE REUSE

We then create a main method in a Driver class to play with the Sedan
class.

public class Driver {
public static void main(String[] args) {

Sedan sedan = new Sedan();
sedan.start();

sedan.stop();

sedan.turn();

sedan.back();

sedan.park();
sedan.setMaker("Toyota");
sedan.getMaker();

sedan.isFourDoorHatchback = true;
sedan.isFourhWheelDrive();

Asyou see, the Sedan object (i.e., sedan) has all the methods and fields
inherited from its superclass Car. In addition to that, Sedan class has its
own method and field. In the same main method, we add more code:

Car car = new Sedan();
car.start();
car.stop();

car.turn();

car.back();

car.park();
car.setMaker("Toyota");
car.getMaker();

178

CHAPTER 26 INHERITANCE — CODE REUSE

This example tells us that we can create an object from a superclass
(i.e., Car) instantiated from its subclass (i.e., Sedan). All the methods and
fields under its superclass are available as expected, but the methods and
fields under its subclass are not accessible.

If we try to do:

Sedan sedan2 = new Car();
We will get error message:
"Type mismatch: cannot convert from Car to Sedan".

This clearly tells us that we are not allowed to create a subclass object
(i.e., Sedan) instantiated from its superclass (i.e., Car).

In Java, however, it doesn’t support multiple inheritance. Instead, it
uses an interface to achieve the same goal as what multiple inheritance
attempts to do in other programming languages.

Problems

1. Which of the following is the correct syntax to
indicate that class A is a subclass of B?

(a) public class A : super B {
(b) public class B extends A {
(c) public class A extends B {
(d) public A(super B) {

(e) public A implements B {

179

CHAPTER 26 INHERITANCE — CODE REUSE

2. Consider the following classes:
public class Vehicle {...}
public class Car extends Vehicle {...}
public class SUV extends Car {...}

Which of the following are legal statements?

(a) Car c = new Vehicle();
(b) SUV s = new SUV();
(c) SW s = new Car();
(d) Car ¢ = new SUV();
(e) Vehicle v = new Car();
(f) Vehicle v = new SUV();

180

CHAPTER 27

Encapsulation
and Polymorphism

In addition to “abstraction” and “inheritance,” there are another two
principles in OOP, “encapsulation” and “polymorphism.”

Encapsulation

You may have heard the phrase “information hiding,” which intends to
conceal the detailed implementations of an object behind a higher level
of abstraction. Information hiding is mainly for security concerns, while
encapsulation is to keep data and class implementation details inside a
class for complexity concerns. However, encapsulation combines internal
data and methods and enables its internal data to be accessible from
outside through its public methods. And the class has private instance
variables that are only accessible by methods in the same class. This
helps managing code that is to be updated frequently. This is known

as: “encapsulate what varies,” which is one of the best practice design

principles.

© Ron Dai 2019 181
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_27

CHAPTER 27 ENCAPSULATION AND POLYMORPHISM

In the Student class created in an earlier chapter, we have the
following private field and public methods.

private int age; < only accessible from inside
class

public void setAge(int age); < setter accessible
from outside

public int getAge(); < getter accessible from
outside

This is a simple example of encapsulation, in terms of how we set a
student’s age value and how we access the age information.

public class TestStudent {
public static void main(String[] args) {
Student student = new Student("John", "Doe");
/*
student.age = 20;
This line will give compiler error
age field can't be used directly as it is
private
*/
student.setAge(20);
System.out.println("Student name:
getFirstName() + " " + student.getlLastName() + ";
age: " + student.getAge());

+ student.

There is a difference between abstraction and encapsulation.
Abstraction is hiding complexity (i.e., implementation details) by using
interfaces, while encapsulation is wrapping code (i.e., implementation)
and data (i.e., value of variables) within the same class.

182

CHAPTER 27 ENCAPSULATION AND POLYMORPHISM

Polymorphism

“Poly” means many. “Morph” indicates form or shape. “Polymorphism” is

an object’s ability to present the same interface with many different forms.

There are many examples of this in Java programming design.

With one interface, we can create multiple classes.
Each class implements the same method with different
details.

In the basic class design, we can create multiple
constructors with different input parameters.

Similarly, we can use the same method name with a
different set of input parameters in a class design. This
is also called “overloaded methods.”

In a subclass, we can “override a method” defined
originally in its superclass.

Problems

1.

2.

Write an interface called GeometricObject, which
declares two abstract methods: getPerimeter() and
getArea().

Write the implementation class Circle, with a
protected variable radius, which implements the
interface GeometricObject.

183

CHAPTER 28

Array — a Simple and
Efficient Data Structure

When we are in a situation where we need to store and manipulate a
bunch of the same types of data, we need to think about the right data
structure to use. Let’s say we want to deal with data representing the same
category of things such as students’ names and ages in your school. The
data will need to be sorted, queried or searched, and accessed easily. And,
we sometimes may need to update or delete some of the data.

Java provides a simple data structure called an array to meet these
requirements. An array supplies a lot of storage space to accommodate our
data. The label of each element of the storage space is called the “index.” It
is an integer number that starts from 0. The data stored in an array can be
all integers, characters, or other types of data.

For example:

int[] numbers = new int[7]

-> defines an integer array numbers with 7 elements
in total

char[] letters = new char[4]

-> defines a character array letters with 4 elements
in total

© Ron Dai 2019 185
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_28

CHAPTER 28 ARRAY —A SIMPLE AND EFFICIENT DATA STRUCTURE

There are different ways to assign or update element values in an array.

» Ifyou have to assign different values to each element,
you will need to declare the array with its size and then
assign values to each element like shown here:

int[] numbers = new int[5];

numbers[0] = 1;
numbers[1] = 3;
numbers[2] = 2;
numbers[3] = 4;
numbers[4] = 5;
or:

int[] numbers = new int[] { 1, 3, 2, 4, 5 };

o Ifthereis a clear pattern of values in the array elements,
you may assign the values in the following way:

int[] numbers = new int[7];
for (int i = 0; i < numbers.length; i++) {
numbers[i] = 2 * i + 1;

}

The property of the array, numbers. length, stores
the size value of the array numbers.

We can define the size of the array from input during runtime as shown
here:

int k = scan.nextInt();
int[] numbers = new int[k];

Example
Which of the following choices is the correct syntax for declaring and
initializing an array of 8 integers?

186

(a)
(b)

CHAPTER 28 ARRAY — A SIMPLE AND EFFICIENT DATA STRUCTURE
int a[8];
[]int a = [8]int;

(¢) int[8] a = new int[8];
(d) int[] a = new int[8];
(e) int a[8] = new int[8];
Answer

(d)

Lab Work

1.

Write a line of code to declare and initialize an
integer array variable named data with the element
values as 7, -1, 13, 24, and 6.

Write code that creates an array named odds that
stores all odd numbers between -16 and 48 into it
using a for loop. Make sure the array has exactly the
right capacity to store these odd numbers.

Problems

1.

Which of the following choices is the correct syntax
for initializing an array of five integers with a list of
specific values?

(a) int a { 14, 88, 27, -3, 2019 };
(b) int[] a = new { 14, 88, 27, -3, 2019 } [5];
(¢) int[5] a = { 14, 88, 27, -3, 2019 };

187

CHAPTER 28 ARRAY —A SIMPLE AND EFFICIENT DATA STRUCTURE

(d) int[] a = { 14, 88, 27, -3, 2019 };
(e) int[] a = new int[] { 14, 88, 27, -3,
2019 };

2. What element values do the array numbers have
after the following code is executed?

int[] numbers = new int[8];

numbers[1] = 4;
numbers[4] = 99;
numbers[7] = 2;

int x = numbers[1];
numbers[x] = 44;
numbers[numbers[1]] = 11;

188

CHAPTER 29

Common Pitfalls

In this chapter, I want to share several pieces of code that expose
common issues in coding practice. Using these examples to diagnose
root causes will help improve your understanding. I recommend thinking
independently before seeking answers. You may find some hints in the
final chapter.

Lab Work

1. Anything wrong here?

String aAsString;
String bAsString;

Scanner user input = new Scanner(System.in);

System.out.println("a=");
aAsString = user input.next();
a = Integer.valueOf(aAsString);

System.out.println("b=");
bAsString = user_ input.next();
b = Integer.valueOf(bAsString);

© Ron Dai 2019 189
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_29

CHAPTER 29 COMMON PITFALLS

2. Any errors here?

public class TestArray {

}

public static void main(String[] args) {
int[] myArray = new int[] { 11, 12, 13,
14, 15 };
System.out.printf("%d\n", myArray[5]);

3. Understand what the following function is trying to

do and think about how to improve it.

public static int CountStrings(String[] stringsArray,

String countMe) {

}

int occurences = 0;

if (stringsArray.length == 0) {
return occurences; // or, return O;

}

for (int i = 0; i < stringsArray.length; i ++) {
if (stringsArray[i].tolLowerCase().
contains(countMe.tolLowerCase())) {

oCcurences ++;

}

return occurences;

4. Spot the defect:

public class Rectangle {

190

public int width;
public int height;
public int getArea() {

CHAPTER 29 COMMON PITFALLS

return width*height;

}

public class SomethingIsWrong {
public static void main(String[] args) {
Rectangle myRect;
myRect.width = 40;
myRect.height = 50;
System.out.println("myRect's area is
+ myRect.area());

}
Spot the defect:

Scanner newscanner = new Scanner(System.in);
System.out.print("Please enter today's date (month
day):");

int z = newscanner.nextInt();

int y = news scanner.netInt();

if (z> 12 ||y > 31) {

System.out.println("You have entered an invalid
number.");
return;

} else if (y > 31 8% z » 12) {
System.out.println("Both numbers you have
entered are invalid.");
return;

191

CHAPTER 29 COMMON PITFALLS
6. Spotthe defect:

System.out.println("What month were you born in?
(1-12)");

Scanner sc = new Scanner(System.in);

String a = sc.nextLine();

Integer result = Integer.valueOf(a);

int al = result.intValue();

7. Spot the defect:

if (numToTake >= 2 && numToTake< 3) {
numToTake = 2;

} else if (numToTake > 2) {
System.out.println("The number you have entered
is invalid.");

192

CHAPTER 30

Design
Considerations

We have learned some fundamental concepts about classes and objects in
Java. Now let’s look at several examples from the class design perspective.

Practical Case 1

The following is a design of a Rectangle class. It wants to compute a
rectangle’s area, perimeter, and diagonal, given its width and height values
as input parameters.

public class Rectangle {
private int width;
private int height;
private int area;
private double diagonal;
private int perimeter;

public Rectangle (int width, int height) {
this.width = width;
this.height = height;
this.area = width*height;

© Ron Dai 2019 193
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_30

CHAPTER 30 DESIGN CONSIDERATIONS

this.diagonal = Math.sqrt(width * width + height
* height);
this.perimeter = (width + height) * 2;

public int getArea() {
return this.area;

public double getDiagonal() {
return this.diagonal;

public int getPerimeter() {
return this.perimeter;

The computations of area, parameter, and diagonal are being done
inside the Rectangle constructor, which is executed every time an object
of the Rectangle class is initialized. It works if we consistently want to get
the values of the area, perimeter, and diagonal of the rectangle. But when
we sometimes only want to query the area, perimeter, or diagonal of the
rectangle, some part of the computations become excessive. A much better
design approach is an “on-demand” implementation as shown here.

public class Rectangle {
private int width;
private int height;

public Rectangle (int width, int height) {
this.width = width;
this.height = height;

194

CHAPTER 30 DESIGN CONSIDERATIONS

public int getArea() {
return this.width * this.height;
}
public double getDiagonal() {
return Math.sqrt(this.width * this.width
+ this.height * this.height);
}
public int getPerimeter() {
return (this.width + this.height) * 2;

Practical Case 2

The following example is an implementation of a Game class design. It looks
good except for a couple of private field type design choices.

— The price for goods is usually a small integer plus two
decimal places to the right of the decimal point. Neither
float types nor double types can accurately represent
this form of number used for money calculations
because of floating-point inaccuracies. It is recom-
mended to represent the dollar price in cents, so you
only need the program to take care of the integer
computations. On some occasions, computing money
in dollars may be good enough.

195

CHAPTER 30 DESIGN CONSIDERATIONS

— The gameType should not be defined as a true/false
Boolean value. It should use “String” data type. (Or, we
may consider using enumeration, if we have a known
list of fixed names for the gameType.)

public class Game {
private int price;
private boolean gameType;
private String platform;

public Game() { }

public int getPrice() {
return this.price;

}

public int setPrice(int price) {
return this.price=price;

}

public boolean getGameType() {
return this.gameType;

}

public boolean setGameType(boolean gameType) {
return this.gameType=gameType;

}

public String getPlatform() {
return this.platform;

}

public String setPlatform(String platform) {
return this.platform=platform;

196

CHAPTER 30 DESIGN CONSIDERATIONS

Practical Case 3

How do we test a class we have designed in Eclipse?

There are at least two simple approaches. Assume you have designed
a class called MyClass. It has one public integer data field - myNumber, and
one method to double its integer number value - doubleMe().

Approach A

Both the original class and test code are contained in one Java file as
shown here:

public class MyClass {
// class design part of code
public int myNumber;
public MyClass() { }
public int doubleMe() {
return this.myNumber * 2;

}

// test part of code
public static void main(String arg[]) {
// declare and initialize an object
MyClass myObject = new MyClass();
myObject.myNumber = 2019;
int output = myObject.doubleMe();
// output the resulting data and validate it

System.out.println("My result is: " + output);

197

CHAPTER 30 DESIGN CONSIDERATIONS

Approach B

The following two classes are in separate Java files:
InMyClass. java:

public class MyClass {
public int myNumber;
public MyClass() {
}
public int doubleMe() {
return this.myNumber * 2;

In TestMyClass. java:

public class TestMyClass {
public static void main(String arg[]) {
MyClass myObject = new MyClass();
myObject.myNumber = 2019;
int output = myObject.doubleMe();
System.out.println("My result is:

Practical Case 4

+ output);

What are the differences between a static and a non-static field or method?

And, when do we use static fields and static methods?

In most of the code examples depicted earlier, we used non-static

fields and methods (a.k.a. instance fields and instance methods). Both an

instance field and an instance method belong to the object instantiated,

which means they are not activated until after the object has been created.

198

CHAPTER 30 DESIGN CONSIDERATIONS

However, static fields and static methods belong to the class level. They
can be accessed by class name, instead of by any object instantiated from
the class. The values stored in static fields and computed by static methods
are shared among all objects created from the same class.

The first and most familiar static method to us is “main()” method,
if you recall. It can reside in any public class. This method is a unique
entry point of any application. It has to be associated with a class. In other
words, it doesn’t live in any object instance.

In the Demo class example, there is a static field counter that tracks
the number of objects created during runtime. There is a non-static field
(i.e., instance field) - myNumber that is associated with an individual object
instance. The non-static method (i.e., instance method) - getNumber ()
also belongs to the object created.

public class Demo {
private static int counter;
public static int getCounter() {
return counter;

}

private int myNumber;
public int getNumber() {
return this.myNumber;

}

public Demo(int number) {
this.myNumber = number;
counter++;
System.out.println("I am no.
object so far.");

+ counter +

199

CHAPTER 30 DESIGN CONSIDERATIONS

The next is a test class to demonstrate how the static field (i.e.,

counter) and the static method (i.e., Demo.getCounter()) work, in
comparison to the non-static field (i.e., myNumber) and the non-static
method (i.e., getNumber()).

public class TestDemo {

System.out.println("demol myNumber:

public static void main(String[] args) {

Demo demol = new Demo(21);

+ demo1.getNumber());

System.out.println("object counts: " + Demo.
getCounter());

Demo demo2 = new Demo(57);
System.out.println("demo2 myNumber: " + demo2.

getNumber());
System.out.println("object counts:
+ Demo.getCounter());

Demo demo3 = new Demo(99);
System.out.println("demo3 myNumber: " +
demo3.getNumber());
System.out.println("object counts:
getCounter());

+ Demo.

The output from the console is:

I am no. 1 object so far.
demo1l's myNumber: 21
object counts: 1

I am no. 2 object so far.

200

CHAPTER 30

demo2's myNumber: 57
object counts: 2

I am no. 3 object so far.
demo3's myNumber: 99
object counts: 3

DESIGN CONSIDERATIONS

201

CHAPTER 31

|OU Computation

IOU means “Intersection Over Union.” It is used as a metric in image
detection technology. This metric computes a ratio of the overlap area
between two rectangles over their union area. For simplicity, the two
rectangles are in the same direction, as you will see R1 and R2 in Figure 31-1.

Figure 31-1. Two rectangles and their overlap

To figure out this ratio, we need to find out their overlap area named X.
If the areas for the two rectangles are R1.area and R2.area, then

IOU =X/ (Rl.area + R2.area - X)

We define the location of a rectangle by x_min, y min, x_max, and
y_max. Its four vertices can be represented by the four coordinates: (x_min,
y_min), (x_min, y max), (x_max, y_max), (x_max, y_min), started from the left
bottom vertex, going clockwise.

Let’s first find out under what circumstances there will be no overlap
area between R1 and R2, as shown in Figure 31-2.

© Ron Dai 2019 203
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_31

CHAPTER 31 10U COMPUTATION

Figure 31-2. Two rectangles that are apart from each other

It will be when:
Rl.x_max<=R2.x_min, (1)
or R1.x_min >= R2.x_max, (2)
or R1.y_max <= R2.y_min, (3)
or Rl1.y_min >=R2.y_max (4)

If one of the conditions from (1) to (4) is valid, the overlap area is 0.
Next, we notice that the overlap area is actually surrounded by four

lines, as shown in Figure 31-3.
x = max(R1.x_min, R2.x_min), x = min(R1.x_max,
R2.x_max)
y = max(R1.y_min, R2.y_min), y = min(R1.y_max,
R2.y_max)

Figure 31-3. Two rectangles and their overlap areas

204

CHAPTER 31 10U COMPUTATION

According to the mathematical inferences, we can come up with a
coding design solution as shown:

There are two classes, Rectangle and IntersectionOverUnion.

The Rectangle class defines a data model for a rectangle on an x-y
coordinate system.

public class Rectangle {
public float x_min;
public float x_max;
public float y min;
public float y max;

public Rectangle(float xmin, float ymin, float xmax,
float ymax) {
if (xmin >= xmax || ymin >= ymax) {
throw new IllegalArgumentException(“Not a valid rectangle!");
}
this.x_min = xmin;
this.y min = ymin;
this.x_max = xmax;
this.y max = ymax;

}

public float getWidth() {
return this.x max - this.x min;

}
public float getHeight() {

return this.y max - this.y min;

205

CHAPTER 31

I0U COMPUTATION

The IntersectionOverUnion class contains the main() method, which

drives the execution.

public class IntersectionOverUnion {

206

public

public

static void main(String[] args) {

// test case 1

Rectangle r1 = new Rectangle(3f, 2f, 5f, 7f);
Rectangle r2 = new Rectangle(4f, 1f, 6f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

// test case 2

rl = new Rectangle(3f, 2f, 5f, 7f);

12 = new Rectangle(1f, 1f, 6f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

// test case 3

rl = new Rectangle(3f, 2f, 5f, 7f);

12 = new Rectangle(6f, 1f, 7f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

static float getIOU(Rectangle r1, Rectangle r2) {
float areaR1l = ri.getHeight() * r1.getWidth();
float areaR2 = r2.getHeight() * r2.getWidth();
float overlapArea = of;
if (ri.x_min >= r2.x max || r1.x max <= r2.x_min ||
rl.y min >= r2.y max || ri.y max <= r2.y_
min) {
return of;
}
overlapArea = computeOverlap(
Math.max(r1.x _min, r2.x_min),
Math.min(r1.x _max, r2.x _max),

CHAPTER 31 10U COMPUTATION

Math.max(r1.y _min, r2.y min),
Math.min(r1l.y max, r2.y_
max));
System.out.println(overlapArea + " / (" + areaR1
+ "+ " +areaR2 + " - " +
overlapArea + ")");

return overlapArea / (areaR1 + areaR2 -

overlapArea);
}
private static float computeOverlap(
float x1,
float x2,
float y1,
float y2) {
float w = x2 - x1;
if (W< 0)w= -w;
float h = y2 - yi1;
if (h < 0) h = -h;
return w * h;
}

We are not done yet. We need to always think about how to improve
our class design and optimize code. In the Rectangle class, there are
gethWidth() and getHeight () methods. What if we add a method called
getArea() to the Rectangle class?

The Rectangle class is updated as:

public class Rectangle {
public float x_min;
public float x_max;
public float y min;
public float y max;

207

CHAPTER 31 10U COMPUTATION

public Rectangle(float xmin, float ymin, float xmax,
float ymax) {
if (xmin >= xmax || ymin >= ymax) {
throw new IllegalArgumentException("Not a valid rectangle!");

}

this.x_min = xmin;
this.y min = ymin;
this.x_max = xmax;
this.y max = ymax;

public float getWidth() {
return this.x max - this.x min;

public float getHeight() {
return this.y max - this.y min;

public float getArea() {
return this.getWidth() * this.getHeight();

And the rest of the code will look like:

import java.lang.Math;
public class IntersectionOverUnion {
public static void main(String[] args) {
// test case 1
Rectangle r1 = new Rectangle(3f, 2f, 5f, 7f);
Rectangle r2 = new Rectangle(4f, 1f, 6f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

// test case 2

208

public

CHAPTER 31 10U COMPUTATION

rl = new Rectangle(3f, 2f, 5f, 7f);
r2 = new Rectangle(1f, 1f, 6f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

// test case 3

rl = new Rectangle(3f, 2f, 5f, 7f);

12 = new Rectangle(6f, 1f, 7f, 8f);
System.out.println("IOU=" + getIOU(r1, 12));

static float getIOU(Rectangle r1, Rectangle r2) {
float areaR1l = ri.getArea();
float areaR2 = r2.getArea();
float overlapArea = of;
if (r1.x_min >= r2.x max || ri.x max <= r2.x _min ||
rl.y min >= r2.y max || ri.y max <= r2.y_
min) {
return of;
}
overlapArea = computeOverlap(
Math.max(r1.x min, r2.x min),
Math.min(r1.x _max, r2.x_max),
Math.max(r1.y min, r2.y min),
Math.min(r1l.y max, r2.y

max));
System.out.println(overlapArea + " / (" + areaR1
+ "+ " +areaR2 +" - " +

overlapArea + ")");
return overlapArea / (areaR1 + areaR2 -
overlapArea);

209

CHAPTER 31 10U COMPUTATION

private static float computeOverlap(

float x1,
float x2,
float y1,
float y2) {

float w = x2 - x1;

if (W< 0)w= -w;

float h = y2 - y1;

if (h < 0) h = -h;

return w * h;

The computation of area is now encapsulated inside the Rectangle
class. This change itself is not big, but we should get used to making small
changes at a time when we are still able to incrementally improve our
program design.

210

CHAPTER 32

Projects

I want to recommend a list of hands-on projects for you to practice
independently. Working through these projects will definitely help you
deepen your understanding of the basic Java programming concepts
described in this book.

Project A
Step 1

Write a class called Rectangle that represents a rectangular two-
dimensional region. The constructor creates a new rectangle whose top-
left corner is specified by the given coordinates and with the given width
and height.

public Rectangle(int x, int y, int width, int height)
Your Rectangle objects should have the following methods:

o public int getHeight() - Returns this rectangle’s
height.

o public int getWidth() - Returns this rectangle’s
width.

e public int getX() - Returns this rectangle’s

x-coordinate.

© Ron Dai 2019 211
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_32

CHAPTER 32 PROJECTS

o public int getY() - Returns this rectangle’s
y-coordinate.

e public String toString() - Returns a string
representation of this rectangle, such as:

"Rectangle[x=1,y=2,width=3,height=4]"

Step 2

Add the following accessor methods to your Rectangle class from the
previous exercises:

public boolean contains(int x, int y)
public boolean contains(Point p)

The Point class has been defined as shown:

public class Point {
private int x;
private int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int getX() {
return x;

}
public int getY() {

return y;

212

CHAPTER 32 PROJECTS

The two contains() methods return a Boolean state of whether the
given Point or coordinates lie inside the bounds of this Rectangle or not.
For example, a rectangle with [x=2, y=5, width=8, height=10] will return
true for any point from (2, 5) through (10, 15) inclusive, which means the
edges are included.

Project B

Design a program to find the number of days between the current day and
the user’s birthday, given four input values.

The program prompts for the user’s birthday. The prompt lists the
range of values from which to choose. Notice that the range of days printed
is based upon the number of days in the month the user typed. The
program prints the absolute day of the year for the birthday. January 1stis
absolute day #1 and December 31st is absolute day #365. Last, the program
prints the number of days until the user’s next birthday. Different messages
appear if the birthday is today or tomorrow. The following are four runs of
your program and their expected output (user input data is right after the

‘?” mark):

Please enter your birthday:
What is the month (1-12)? 11
What is the day (1-30)? 6
11/6 is day #310 of 365.

Your next birthday is in 105 days, counted from today.

Project C

The game rule is this: you start with 21 sticks, and two players take turns
either taking one or two sticks. The player who takes the last stick loses.
Can you design a program to simulate one of the two players in the game?
One player is a user and the other player is the computer.

213

CHAPTER 32 PROJECTS

Project D

Write a method named hasVowel () that returns whether a string has
included any vowel (a single-letter string containing a, €, i, o, or u, case-
insensitively).

Project E

Write a method named gcd() that accepts two integers as parameters and
returns the greatest common divisor (GCD) of the two numbers. The GCD
of two integers a and b is the largest integer that is a factor of both a and b.
The GCD of any number and 1 is 1, and the GCD of any number and 0 is
the number.

One efficient way to compute the GCD of two numbers is to use
Euclid’s algorithm, which states the following:

GCD(A, B) =GCD(B, A % B)

GCD(A, 0) = Absolute value of A

For example:

o gcd(24, 84)returns12
e gcd(105, 45) returns 15

o gcd(0, 8)returns8

Project F

Write a method named toBinary() that accepts an integer as a parameter
and returns a string of that number’s representation in binary. For
example, the call of toBinary(42) should return “101010”

214

CHAPTER 32 PROJECTS

Project G

Use the four numbers on the following cards to create a math expression
that equals 24. Each card can be used only once. Treat ace as a number
“1” You may use +, -, ¥, /, (and) in the math expression. Please find all

possible answers.

A
L)

*N

® o O

it & |

> ¢ <

[t 2

® & O

oe

> ¥

\ . w

215

CHAPTER 33

Java Intermediate
Solutions

For your reference, in this chapter I'll provide you with answer hints to
some of the problems in the earlier chapters. For example, “For 16.” means
“Hints for problems in Chapter 16.”

For 16. Pythagorean Triples

u_n

1. Instead of using “c,” we may check whether (a* + b?)
is a perfect square number, which is taking a square
root of it and validating if it is an integer value.

2. Use the example code and check whether the
resulting value of (a? + b?) matches the form
of “4n + 1"

For 17. Strong Typed Programming

public boolean isCollinear(Point p) {
if (p.getX() == pi.getX() && pil.getX() ==
p2.getX()) {
return true;

© Ron Dai 2019 217
R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3_33

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

if (this.getSlope(p) == this.getSlope()) {
return true;

}

return false;

}

public double getSlope(Point p) {
if (this.p1.x == this.p.x) {

throw new
I1legalStateException("Denominator cannot be 0");
}
return (double)(this.p.y - this.pil.y) / (this.p.x -
this.p1.x);

For 18. Conditional Statements

1. [Itisrewritten as shown here.

if (num < 10 && num > 0) {
System.out.println("It's a one-digit
number™);

}

else if (num < 100) {
System.out.println("It's a two-digit
number");

}

else if (num < 1000) {
System.out.println("It's a three-digit
number");

218

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

else if (num < 10000) {
System.out.println("It's a four-digit

number");
}
else {
System.out.println("The number is not
between 1 & 9999");
}
2. Asimplified version is shown here.
if (a == 0) {
if (b ==0) {...}
else {...}
} else {
if (b !=0) {...}
}

For 19. Switch Statement

switch(color) {

case 'R':
System.out.println("The color is red");
break;

case 'G':
System.out.println("The color is green");
break;

case 'B':
System.out.println("The color is black");
break;

219

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

case 'C":
default:

System.out.println("Some other color");
break;

For 21. Counting

220

Define x as the number of children and (2200 - x)
is the number of adults, then 1.5 * x + 4 * (2200 - x)
=5,050. Iterate x = 0 up to 2200 to find a solution for x.
And it is obvious that there is no more than one
solution.

Define x as the number of correct answers and

(10 - x) as the number of incorrect answers, then
5% x -2 (10 - x) = 29. Iterate x from 0 up to 10 to find
a possible solution for x.

Iterate a positive integer from 0 to 2001 and check its
divisibility with 3, 4, and 5.

Iterate every three-digit integer number, from 100
up to 999, and check its digits.

Use a recursive method (referring to the example)
to repeatedly pick a plant five times from the three
types of plants (defining three types as A, B, C).

And then remove duplicates from the combinations.
For example: {A, A, B, B, C} is a duplicate of {A, B, A,
B, C}.

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

For 23. Exploratory Experimentation of Pi

Utilize the following formula with integer number “r” and approximate the
value of “e”

For 24. Classes in Object-Oriented
Programming

1. a)
2. b)
3.

NumberHolder nh = new NumberHolder();
Nh.anInt = 5;
Nh.aFloat = 3.2;
System.out.printIn("anInt=" + Nh.anInt + "; aFloat=" +
Nh.aFloat);
4. (A),(D)

5. (B)

For 26. Inheritance — Code Reuse

1. (¢
2. (b), (d), (e), ()

221

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

For 27. Encapsulation and Polymorphism

1.

public interface GeometricObject {
public abstract double getPerimeter();
public abstract double getArea();

public class Circle implements GeometricObject {
private final double PI = 3.14159;
protected double radius;
public Circle(double radius) {
this.radius = radius;

}

// Implement methods defined in the interface
@0verride

public double getPerimeter() {

return 2 * PI * this.radius;

}

@0verride
public double getArea() {
return PI * this.radius * this.radius;

222

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

For 28. Array — a Simple and Efficient Data
Structure

1.

(d)

2. {0,4,0,0,11,0,0,2}

For 29. Common Pitfalls

1.

If you want to get an integer value, why not take an
integer input at the beginning?

This is a corrected version. It is significantly
simplified.

Scanner user input = new Scanner(System.in);
System.out.println("a=");

int a = user_input.nextInt();
System.out.println("b=");

int b = user_input.nextInt();

Does myArray[3] equal “13"?

Pay attention to the definition of the index of an
array element.

Is it necessary to check stringsArray.length
= 0? And, is it a good approach to do countMe.
toLowerCase() inside the for-loop?

223

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS
This is a recommended version:

public static int CountStrings(String[] stringsArray,
String countMe) {
int occurences
String keyword
for (int i = 0; i < stringsArray.length; i ++) {
if (stringsArray[i].tolLowerCase().
contains(keyword)) {
occurences ++;

0;
countMe.tolLowerCase();

}

return occurences;

4. Has the myRect ever been initialized?

There is an important line to update in the main()
method as shown here:

public class SomethingIsWrong {
public static void main(String[] args) {
Rectangle myRect = new Rectangle();
myRect.width = 40;
myRect.height = 50;
System.out.println("myRect's area is
" + myRect.area());

224

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

5. Since the variable temp has been assigned with the
value of the first element in array1, do we need to
iterate from i=0 inside the for-loop?

The simple fix is to change from for (int i = 0;
. to for (int = 1; ... inthe original function

as shown.

public static int getMaxLength(ArraylList<String>

arrayl) |
if(array1.iskEmpty()) {
return 0;
}
else {
String temp= arrayi.get(0);
for (int i = 1; i < arrayl.size(); i++) {
if (arrayi.get(i).length() >
temp.length()) {
temp= arrayl.get(i);
}
}
return temp.length();
}
}

6. Checkthe if/else clause.

The scopeof “y > 31 8% z > 12” is already covered
by the scope of “z > 12 || y > 31" Therefore,
the “else if (...)” partin the original code is

meaningless.

225

CHAPTER 33 JAVA INTERMEDIATE SOLUTIONS

7. Review the actual usage of the Scanner.

Due to the same reason stated in 1, the code can be
corrected as shown:

System.out.println("What month were you born in?
(1-12)");

Scanner sc = new Scanner(System.in);

int al = sc.nextInt();

8. Checkthe if/else clause

The scope of numToTake > 2 has included the scope
of numToTake >= 2 && numToTake < 3.The if and
else if conditional clauses need to be rewritten.

226

Index

A

Abstraction, 171, 182
Algorithms
creation, real-world
objects, 39, 40
swap values, 40-41
Array, 223
character, 185
data types, 185
defined, 185
element values, 186
index, 185
size, 186

B

Basic projects, 85-87

C

class instantiation, 29
Class variables/instance
variables, 33
Coding mistakes, 73, 74
Coding structure, 81

Coin flip game, 93, 94, 96

© Ron Dai 2019

Collatz conjecture
defining, 5
program, 5, 6
Collinearity, 107
Conditional operators, 64-67
Conditional statements, 218, 219
bigger number identification, 109
example, 111, 114
if clauses, 112
if/else if structure, 110
if/else structure, 109, 110
nested if/else structure, 110
quadrants, 114, 115
tree-like structure, 111
contains() method, 213
convertToBaseN() method, 144
countBasel0Numbers() method, 143
Counting, 220
countNumbers2(), 136
for-loop, 137, 139, 140
isDistinct(...), 135
single loop, 131
switch statement, 145
tables, 132
tickets, 131
Curly braces, 82

227

R. Dai, Learn Java with Math, https://doi.org/10.1007/978-1-4842-5209-3

https://doi.org/10.1007/978-1-4842-5209-3

INDEX

D

Design considerations
Demo class, 199
Game class, 195, 196
main() method, 199
MyClass class, 197, 198
Rectangle class, 193-195
static fields, 199
test class, 200
double getSlope() method, 105
do-while loop, 60-61

E

Encapsulation, 181, 182, 222
Error correction, 77, 78
Exception handling, 76-77

F

Factorization
definition, 147
finding factors, 147, 148
iterations, 149
square root, 150-153
Fields, 163
for loop
arithmetic sequence, 51
counting strategy, 51, 52
example, 49, 50
formula, 50, 51
list of numbers, 54
Math

228

example, 53

exp() method, 54

list of numbers, 53
structure, 49

G

gcd() method, 214

General rules
conditional operation, 80, 81
input in console, 80
output in console, 79
repeat an operation, 80
variable name, 79

getSlope() method, 106

Getters method, 163

Greatest common divisor (GCD), 214

H

hasVowel() method, 214
Hexadecimal-base 16 number
system, 15

if/else structure, 64, 109, 120

if structure, 63

Inheritance, 221
Car class, 177
Driver class, 178
isFourWheelDrive() method, 177
Sedan class, 177, 178

Input, read user data, 44

Integer to month name, example
if/else ladder, 120, 121
switch conditional

statement, 121, 122

Interface
Auto, 171
Car class, 172
circumstances, 173
definition, 171
design, 173
MovingObject, 174

Intersection over union (IOU)
getHeight() method, 207, 208
getWidth() method, 207, 208
IntersectionOverUnion

class, 206, 207
Rectangle class, 205, 207-210
rectangles, 203, 204
isPalindrome() method, 142, 143
isPalindrome2() method, 143

J, K
Java bytecode, 20-22
Java Development Kit (JDK), 24
Java, features

class, 20

bytecode, 20-22

object oriented, 19
Java program

class, 29

vs. class file, 31

creation

java class, 28

INDEX

methods, 29
eclipse launched, 26
main(), 30
public static void main
(String|[] args), 30
running application, 29
Java Runtime Environment
(JRE), 24, 25
Java virtual machine (JVM), 20, 30

L

Local variables, 33

Logical operators
operations, 67, 68
quadrant method, 70
Venn diagram, 69

main() method, 30
Math expression, 215

N

Number
binary to numeral system, 15
bit, 17
bitwise, 17, 18
decimal to binary, 11-14
hexadecimal-base 16 number
system, 15
octal-base 8 number system, 16
Numeral systems, 9, 10

229

INDEX

O

Object-Oriented programming, 221

access modifiers, 164
Account class, 169
characteristics, 163-165
class vs. object, 166, 167
field vs. parameter, 169
Game class, 168

Name class, 166
non-fields, 166
NumberHolder class, 168
Point class, 167

public int getAge() method, 164

public Student() method, 164
structural view, 165
public String getFirstName()
method, 164
public String getLastName()
method, 164
public void setAge(int age)
method, 164
Vehicle class, 166
Octal-base 8 number system, 16
Output
System.out.println, 44, 45
example, 45
problems, 47
special characters, 44

P,Q

Package, 25
Pi experimentation, 221

230

algorithm, 157

Calculus, 161

for-loop, 159

Java programming, 161

long value type, 159, 160

main method(), 158

Math.random() method, 158

population

calculation, 155, 156

Pitfalls, 189-191, 223-226
Point class, 106, 212
Polymorphism, 183, 222
Primitive types, 35-36
Programming tips, 75, 76
Properties, 163
Pythagorean

primes, 101

triples, 97-101, 217

R

Rectangle class, 211, 212
Reference types, 36
reverse() method, 142

S

Scanner utility class, 43
Setters method, 163
Slope of a line, 105, 106
Source, 25

Stick game, 213
StringBuffer class, 142

Switch Statement, 219
days in month
example, 123, 124
integer to month name
example, 121, 122
structure, 119
System.out.println, 44

T

Ternary operator, 116
toBinary() method, 214
Tracing moving objects
bouncing ball, 127, 128
snail example, 129, 130
Type casting, 103-105

U

User’s birthday prediction
program, 213

INDEX

Vv

Variables
assign value, 37
data types, 36, 37
definition, 33
name
defining, 34
example, 34, 35
primitive types, 35
reference types, 36
resulting value, 37, 38

types, 33
Venn diagram, 69

W XY,Z

While loop
example, 58, 59
structure, 57

Workspace, 24, 25

231

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Part I: Java Basic
	Chapter 1: Introduction
	Problems

	Chapter 2: Number Basics
	What Is a Numeral System?
	Why Do People Use Decimal Numbers, While Computers Use Binary Numbers?
	How to Convert a Number Between Different Numeral Systems
	What Is Bit, Byte, KB, MB, GB, TB, and PB?
	What Is Bitwise?

	Problems

	Chapter 3: Java Basics
	What Features Does Java Have?
	Object-Oriented
	Class-Based
	Java Bytecode

	Chapter 4: Start Playing with Java
	What Is the Difference Between the JRE and the JDK?
	What Are a Workspace, Source, and Package?
	What Are Edit, Compile, and Execute?
	Creating Your First Program
	Exploring Class and main()
	Why Is It “public static void main(String[] args)”?

	Problems

	Chapter 5: Variables
	Defining a Variable Name
	Example
	Different Types of Variables in Java

	Assigning a Value to a Variable
	Lab Work

	Chapter 6: First Algorithm
	Swapping Values Between Variables
	Other Approaches

	Chapter 7: Input and Output
	Importing java.util.Scanner
	Getting Input
	Producing Output
	Lab Work
	Example
	Example
	Lab Work
	Problems

	Chapter 8: Loop Structure – for Loop
	Example
	Lab Work
	The for Loop Formula
	Finding the “for Loop” Formula for an Arithmetic Sequence
	Math: Counting Strategically
	Lab Work
	Example
	Lab Work
	Problems

	Chapter 9: Loop Structure – while Loop
	Example
	Example
	The do-while Loop
	Lab Work
	Problems

	Chapter 10: Logical Control Structures
	Conditional Operators
	Lab Work

	Logical Operators
	Math: Logical Operators
	Math: Analyzing Logical Problems
	Lab Work
	Problems

	Chapter 11: Errors and Tips
	Programming Tips
	Handling Exceptions
	Problems

	Chapter 12: Java Basics Summary
	General Rules
	How to Define a Variable Name
	How to Output in Console
	How to Listen to Input in Console
	How to Repeat an Operation
	How to Control a Conditional Operation

	Basic Coding Structure
	Curly Braces
	Lab Work

	Chapter 13: Java Basics Projects
	Chapter 14: Java Basics Solutions

	Part II: Java Intermediate
	Chapter 15: Wright Brothers’ Coin Flip Game
	Chapter 16: Pythagorean Triples
	Math: Pythagorean Triples
	Problems
	Math: Pythagorean Primes

	Chapter 17: Strong Typed Programming
	Type Casting
	Math: Slope of a Line
	Math: Collinearity

	Chapter 18: Conditional Statements
	Math: Hypothesis and Conclusion
	Math: Quadrants
	Problems

	Chapter 19: Switch Statement
	Problem

	Chapter 20: Tracing Moving Objects
	Math: Bouncing Ball

	Chapter 21: Counting
	Problems

	Chapter 22: Factorization
	Math: Finding Factors
	Math: Halving the Problem
	Math: Using the Square Root

	Chapter 23: Exploratory Experimentation of Pi
	Math: Calculating a Population
	Example
	Math: Pi from Probability Theory

	Problem

	Chapter 24: Classes in Object-Oriented Programming
	Lab Work
	Lab Work
	Lab Work
	Problems

	Chapter 25: Interface – Total Abstraction
	Chapter 26: Inheritance – Code Reuse
	Problems

	Chapter 27: Encapsulation and Polymorphism
	Encapsulation
	Polymorphism
	Problems

	Chapter 28: Array – a Simple and Efficient Data Structure
	Lab Work
	Problems

	Chapter 29: Common Pitfalls
	Lab Work

	Chapter 30: Design Considerations
	Practical Case 1
	Practical Case 2
	Practical Case 3
	Approach A
	Approach B

	Practical Case 4

	Chapter 31: IOU Computation
	Chapter 32: Projects
	Project A
	Step 1
	Step 2

	Project B
	Project C
	Project D
	Project E
	Project F
	Project G

	Chapter 33: Java Intermediate Solutions
	For 16. Pythagorean Triples
	For 17. Strong Typed Programming
	For 18. Conditional Statements
	For 19. Switch Statement
	For 21. Counting
	For 23. Exploratory Experimentation of Pi
	For 24. Classes in Object-Oriented Programming
	For 26. Inheritance – Code Reuse
	For 27. Encapsulation and Polymorphism
	For 28. Array – a Simple and Efficient Data Structure
	For 29. Common Pitfalls

	Index

