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Foreword

This book collects my experiences after teaching an introductory undergradu-
ate course on the physics of the solar system at the University of Manchester.
The course is oriented to first-year undergraduate students first semester, i.e.
students just attending a university course for the first time. My philosophy
of teaching has been always to teach trying to achieve several objectives.

First, the course has to trigger interest in the student: this is relatively
easy because space, planets, etc., are a natural interesting subject for practi-
cally everybody. Who does not feel a sense of awe when thinking about the
Universe?

Second, students have the opportunity to learn how natural phenomena
are first observed carefully then modeled and finally calculated and estimated
more than just simply described. Every time there is a discovery in astro-
physics, newspapers are full of sensational reports of phenomena described
almost as mysteries of nature. Scientists are seen as “magicians” that myste-
riously know what a black hole is or what space-time is. First year students
are usually still in this mode of “acceptance” of qualitative explanations more
than critical evaluation and quantitative estimation.

Third, I wanted to write a book that is somehow “self-contained”, i.e. all
the maths and physics contained are explained starting from basic concepts
that any well-educated person can follow. I imagine my reader as a person
who has the curiosity to understand quantitatively how scientists can make
claims that apparently are “magic” like, for example, stating that the age of
the Earth is about 4.5 billion years. In this book, this person, with a little bit
of effort, will be able to convince himself or herself that the claim is perfectly
justified.

Lastly, when I was a young high school student I always wanted to read
about science but I also wanted to be “convinced” about the various scientific
claims. I never found a book that was easy enough to describe all the maths
and physics needed but complete enough to describe phenomena accurately.
About 45 years ago I promised to myself that, if I was capable, I would have
written such a book and here it is. Now I need a time machine to send it to
myself...
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Preface

This book is an attempt at having a self-contained treatment of some phe-
nomena happening in the solar system. Self-contained because all the maths
and physics needed are described starting from a few basic notions that ev-
ery logical person should have no difficulty to accept and digest. Instead of a
mere qualitative description of various phenomena, I tried to select a set of
representative phenomena happening in our solar system and describe them
quantitatively after a careful treatment of the maths and physics needed to
understand.

A correct title of this book should be: “How to Teach You Maths and
Physics Concepts Using Interesting Facts about the Solar System”. The first
chapter, for example, is designed to introduce all the geometry, trigonometry,
calculus, and vector calculus needed to understand planetary orbits and more.
I start the chapter by studying in detail Eratosthenes determination of the
circumference of the Earth and I show how such a simple geometry problem
contains in it a big number of assumptions. When determining an important
angle through inverting the sine function instead of just stating that an angle
α is such that its sine is 0.1256, I use this opportunity to introduce derivatives
and series expansion of functions. The maths is obviously treated without the
rigor usually associated with more complete and exhaustive textbooks that
the reader is warmly invited to consult.

My experience is that learning maths and physics using interesting prob-
lems gives the students, and I hope more generally the readers of this book,
additional enjoyment by showing how a variety of phenomena can be, and are,
calculated when the theory that we have is a good theory.

This approach has the risk that the book might be “too complex” for people
who do not have a technically oriented mind and “too easy” for people that
already know the basics. My writing is therefore always trying to excite anyone
who already “knows” and allowing to understand who does not know “yet”.
Who already “knows” might find, here and there, interesting new calculations
and perhaps different views of already known facts. Those who, instead do
not know enough, might still get the opportunity to try to understand how a
physicist works: I only ask some efforts in following carefully my maths and
physics explanations.

I strongly believe that science is fun, simple maths used in physics is un-
derstandable, and everybody equipped with patience, enthusiasm, and time

xi



xii � Preface

can enjoy the beauty of using maths to “predict” phenomena happening in the
solar system.

This book is my private acknowledgment of my hero, Galileo Galilei. He
was the first to understand that “the book of nature is written in the language
of mathematics”.



CHAPTER 1

Basic Concepts

CONTENTS
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THERE are several elementary concepts that need to be properly re-
viewed in order to fully understand the phenomena happening in our

solar system. Obviously, we do not have here the space or the time to review
the entirety of geometry, trigonometry, calculus, etc. However, especially for
those readers that need to refresh concepts that haven’t been used in some
time, we treat in some detail most of the useful mathematical concepts that
will be used in later chapters, especially the chapter on celestial mechanics.
Our treatment is by no means rigorous and is mostly used to prove statements
about our world and, more specifically, our solar system. We will see in the
next few sections how the knowledge of very simple geometry has allowed
ancient Greek philosophers to state that not only the Earth is spherical, but
also estimate the distance from the Earth to the Moon and the Earth to the
Sun.

We will use the Greek philosophers’ amazing achievements as an excuse
to introduce some of the concepts that are needed in the rest of the book
putting considerable attention to show how maths is deeply used – we would
say embedded – in the physical world. We will also often digress to show
how systems and concepts apparently disconnected from the study of the
solar system are actually used, sometimes so automatically that we forget
how important they are. An example is the case of digital electronics and
logic circuits inside computers.

1
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1.1 GEOMETRY
Now imagine you are a Greek philosopher, named Eratosthenes (see fig. 1.1),
residing in a beautiful city in Egypt (Alexandria). You are taking care of one
of the most complete and important libraries in existence and you have time
to read, study and think. Somebody has just told you that during one of his
trips to Syene (today’s Aswan) in the south of Egypt, he has noticed something
weird: at midday of the special day of summer solstice, i.e. the longest day
and shortest night of the year, the Sun shone directly down a deep vertical
well. In other words, looking directly down the well, your head blocks exactly
the reflection of the Sun by the water at the bottom of the well. The majority
of people when confronted with the news would simply think “that’s strange”
and then go back to their lives. But you have time to think ... and you run
outside at midday of the summer solstice in your city of Alexandria and plant
a vertical stick in the ground to check if the Sun is overhead in Alexandria
as well. It is not! You have time to think ... and all of a sudden you know
what all means: the Earth is not flat, it is a sphere! Not only that, but you are
capable of calculating the circumference of the Earth, as well. You just need
a bit of geometry.

Geometry is a beautiful construction of the human mind. The etymology
comes from the Greek word γεωµετρια (geo - earth, metron - measurement).
Geometry is the study of the properties and relations among a set of ele-
mentary concepts like points, lines, surfaces, solids. We can construct many
different geometries depending on the basic assumptions that we make. These
basic assumptions are called postulates and are given without proof. The most
familiar kind of geometry is Euclidean Geometry which is based on Euclid’s
postulates [6] given below:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the seg-
ment as radius and one endpoint as center.

4. All right angles are congruent1.

5. If two lines are drawn which intersect a third in such a way that the
sum of the inner angles on one side is less than two right angles then the
two lines inevitably must intersect each other on that side if extended
far enough. This postulate is equivalent to what is known as the parallel
postulate.

The fifth postulate disturbed Euclid at the point that, wherever possible,
he used only the first four. The usage of the fifth postulate gives rise to the
so-called Euclidean Geometry, i.e. the intuitive geometry that we have of space

1Congruent means exactly equal in size and shape.
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FIGURE 1.1 Eratosthenes (276 BC–194 BC) was a Greek mathemati-
cian who enjoyed writing about music, astronomy and poetry. He was
the first to calculate the circumference of the Earth based on simple
observations (see text).
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FIGURE 1.2 Straight Angle Theorem.

(also-called flat or parabolic geometry). If we do not accept Euclid’s fifth postu-
late we can construct other geometries that are completely self-consistent. By
stating a different fifth postulate, Lobachevsky and Bolyai-Gauss constructed
the so-called hyperbolic geometry while Riemann constructed an elliptic ge-
ometry. We will need a different geometry when we observe the sky because
the stars appear to be fixed to a gigantic rotating sphere. This means that we
need to consider the elementary concepts of points and lines now expressed
on the curved surface of a sphere. We will review this special geometry later
on in the book.

Theorems are statements that are proved to be true and are derived from
the postulates using logical steps. As an example of a theorem, let’s enunciate
the Straight Angle Theorem .

Straight Angle Theorem: Given three distinct points A, B and C, then
B lies between A and C if and only if ∠ABC = 180◦.

This theorem states something that appears obvious after looking at fig.
1.2 and we refer the reader to any good geometry book for the proof. Although
apparently obvious, the Straight Angle Theorem plays an important role in
most subsequent proofs. The next theorem – the Interior Angle Theorem –
was also used by Greek philosophers to estimate the radius of the Earth. Its
proof makes use of the Straight Angle Theorem (1.3).

Interior Angle Theorem: If two parallel lines are cut by a transverse,
then the pairs of alternate interior angles are congruent.

Let us discuss one of the most famous theorems attributed to the Greek
mathematician Pythagoras.

Pythagorean Theorem: The square of the hypotenuse of a right triangle
is equal to the sum of the squares of the other two sides.

The Pythagorean Theorem is perhaps one of the first ever geometric the-
orems that we all have studied at school. There are many ways to show its
validity and we choose here to show an algebraic-geometric proof.
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FIGURE 1.3 Interior Angle Theorem: two parallel lines are cut by a
transversal. The two interior angles α are congruent.

FIGURE 1.4 Proof of Pythagorean theorem.
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We start by looking at fig. 1.4. Start by drawing a square and identify a
point on one of its sides such that L = a + b. This square will have an area
equal to L2 = (a+b)2. By construction, the area of each of the 4 right triangles
is 1ab2 . We can now express the area of the large square in two different ways.
The first would be:

A = L2 = (a+ b)2 = a2 +B2 + 2ab (1.1)

The second way would be by adding the area of the square of side c to the
areas of the four right triangles of sides a, b and c.

1
A = c2 + 4 ab = c2 + 2ab (1.2)

2

equating equations 1.1 and 1.2 we have:

a2 + b2 + 2ab = c2 + 2ab (1.3)

after eliminating the two common terms in both sides of eq. 1.3, we are left
with:

c2 = a2 + b2 (1.4)

for any right triangles.
Let us see how Eratosthenes of Cyrene estimated the circumference of

the Earth about 200 BC (see fig. 1.11). Take into account that Eratosthenes
probably used different enunciation of the theorems. We will use here the
modern symbols and theorems.

There is an important observation made by Eratosthenes that allowed
him to make his extraordinary claim. At midday in Syene the Sun was exactly
overhead. At exactly the same midday in Alexandria the Sun is not exactly
overhead. In fact, he measured the length of the shadow cast by a vertical
stick at the same time as the Sun was perfectly vertical in Syene. He noticed
that if he can measure the length of the shadow, knowing the height of the
stick he can calculate the angle α in figs. 1.5 and 1.11. In order to do so he
had to solve a triangle where he knew two sides (the length of the stick and
the length of the shadow) and a non-included angle (see the small triangle at
the bottom right of fig. 1.5). Notice that we can assume that the shadow is
perpendicular to the light rays coming from the Sun.

To calculate the angle α we need some trigonometry.

1.2 TRIGONOMETRY
To find the angle α we need to review the concept of sine and cosine of an
angle. We refer to fig. 1.7 representing a circumference of unit radius OP = 1.
The center of the circumference is also the origin of a Cartesian coordinates
system (see fig. 1.6) with axes x and y. Let’s consider the point P of intersec-
tion between the circumference and the radius. We can project the point P
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FIGURE 1.5 Eratosthenes determination of the Earth’s circumference.
Determining the angle α.
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FIGURE 1.6 René Descartes (1596-1650) was a French mathematician
and philosopher. He was the first to develop the field of analytical
geometry and introduced the so-called Cartesian plane.
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FIGURE 1.7 Sine and cosine defined on the unit circle.

perpendicular to the x axis to the point Q. Because of the projection the angle
∠OQP is equal to 90◦. Notice that the lengths of the segments OQ and QP
depend on the angle α. In particular, when α is equal to zero then OQ = 1
and PQ = 0. We define the function sine of the angle α (sinα), the length of
the segment PQ, and the function cosine of the angle α (cosα) the length of
the segment OQ. It follows immediately that for any angle α, we have:

sin2α+ cos2α = 1 (1.5)

Equation 1.5 expresses the Pythagorean Theorem (see eq. 1.4) on the tri-
angle OPQ (see fig. 1.8). It is easy to see that the sine of α = 0 is equal to 0
while the sine of α = 90◦ is equal to 1.

Can we define the functions sine and cosine if the circle is not of radius
equal to 1? Obviously yes. With reference to fig. 1.7, suppose that the radius
of the circle is not unitary, then in general we have the following definitions:
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FIGURE 1.8 Pythagoras (570-495 BC) was one of the most important
Greek philosophers. He set the basis of Western Philosophy. He is
thought to have proposed many important theorems in geometry the
most famous of which is his Pythagorean Theorem on square triangles.
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sinα =
PQ

(1.6)
OP

cosα =
OQ

(1.7)
OP

Therefore, when the radius is not unity, to correctly express the sine of the
angle, we have to divide by the length of the radius.

Therefore, in general, in a right triangle the sine of an angle α is obtained
by taking the ratio of the side opposite to the angle α to the hypotenuse.
Equally, the cosine of an angle α is obtained by taking the ratio of the side
adjacent to the angle α to the hypotenuse. It follows that sine and cosine
functions are strictly related. If we consider a right triangle, we have seen
above that if the hypotenuse has a length equal to 1, then the sine and the
cosine of an angle are interpreted respectively as the projection to the y and x
axes of a Cartesian coordinate system. Now let us study fig. 1.9. Let’s project
the point P to the y axis on the point Q′. As a result of the projection, the
line PQ is parallel and equal to the line OQ′, while the line PQ′ is equal and
parallel to the line OQ.

We now show that the following two relationships are true:

cos (90− α) = sinα (1.8)
sin (90− α) = cosα (1.9)

In order to do so, see fig. 1.9. The segment PQ = OQ′ is opposite to the
angle α and therefore is the sinα. The segment OQ = PQ′ is adjacent to
the angle α and therefore is the cosα. The angle ∠Q′OP is equal to 90◦ − α
because the angle ∠Q′OQ is a right angle. We observe now that the segment
OQ′ is adjacent to the angle 90◦ − α and therefore it is the cos(90◦ − α). At
the same time, the same segment OQ′ is opposite to the angle α which means
that it is equal to the sinα. We have just proved the first of the eq. 1.9. The
other equation can be proved by doing a similar reasoning on the segment
Q′P .

We now give another very useful relationship: the law of sines .
Law of sines: Given the sides A, B and C and angles a, b and c of a

triangle (see fig. 1.10), the law of sines is the following equation 1.10:

A B
=

sin a

C
=

sin b
(1.10)

sin c

With reference to fig. 1.5, we call the height of the stick L, the length of
its shadow s. Assuming that the shadow is perpendicular to the light rays, it
means that the angle opposed to the tower is a right angle. Now let us find
the angle α using the law of sines.

In fig. 1.5 the triangle made of the stick, its shadow and the non-included
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FIGURE 1.9 Sine and cosine relationships.
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FIGURE 1.10 Generic triangle with sides A,B,C and angles a,b, and c.
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FIGURE 1.11 Geometry used by Eratosthenes. Knowing the angle α
and the distance between Alexandria and Syene, the circumference of
the Earth can be estimated (see text).
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angle α is evidenced. With a good approximation we can assume that the
shadow s is perpendicular to the stick L, i.e. the angle ∠sL is equal to 90◦.
We now know how to calculate the sine of the angle α as the ratio of the hy-
potenuse (found using the Pythagorean Theorem) to the length of the shadow
s. Eratosthenes found the ratio to be sinα = 0.1256. It is important to un-
derline that the angle α in the function sine is expressed in radians and not
degrees!

When an angle is obtained from a ratio of two segments, it is expressed in
radians. One radian is the angle subtended at the center of a circle by an arc
that is equal in length to the radius of the circle. It follows that an angle of
360◦ is equal to 2π rad where π = 3.1415927....

So, we have the sine of an angle. How do we obtain the angle if we know
its sine? Or, in other words, what is the inverse function of the sine? A good
scientific calculator has the inverse sine function built in. But in order to
understand it, we need calculus and Eratosthenes did not have a pocket cal-
culator after all. He had to do all his calculations by hand. We are lucky to
live in an era where a computer can do calculation at a speed and volume not
accessible to any human beings.

1.3 CALCULUS
In the previous section we followed the logical development of the calculation
of the Earth’s circumference and we found that we need to evaluate the inverse
of trigonometric functions. Let us ask: “how does a pocket scientific calculator
evaluate trigonometric and inverse trigonometric functions?” Modern pocket
calculators do much more, but for now, let’s see how the calculation is per-
formed. The trick is to express complex functions as the sum of many (often
infinite) simple functions that can be evaluated easily. Assuming that we can
build electronic circuitry that can add and subtract and if we can express any
function as a series of additions and subtractions, then our pocket computer
can evaluate any function, including the inverse trigonometric functions we
are after. We need to be sure that any trigonometric function, including its
inverse, can be expressed as a series of simple functions that can be evaluated
by just adding and subtracting numbers. Let’s first see briefly how simple elec-
tronics can add and subtract. Once we are convinced that it is possible, we
will study how to express functions as series of additions and multiplications.

It turns out that electronic circuits can easily perform additions and sub-
tractions. The arithmetic that we learn very early at school is based on 10
digits, from 0 to 9, probably because we have ten fingers. Electronic circuits
work by modifying the flow of an output current (mostly electrons) depending
on some input conditions. In other words, for our simple treatment here, an
electronic circuit can be schematized as a black box with one or more inputs
and one or more outputs. The outputs depend causally on the status of the
various inputs. We can try to implement arithmetic in electronic circuits by
associating a different voltage (for example) to each of the 10 digits. For ex-
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FIGURE 1.12 Electronic representation of the binary digits “1” and “0”.
Current flows and a lamp is lit when the switch is in the position “A”
or binary condition “1”. The lamp is off when the switch is in position
“B” corresponding to the binary digit “0”.

ample, we could associate 0 Volts to the digit “0”, 1 Volt to the digit “1”, and
so on up to 9 Volts to the digit “9”. So a simple 2 digit adder then would be
a sort of black box circuit that has two inputs and one output such that the
output voltage is the sum of the input voltages. The first scientists trying to
build a computing machine based on electronic circuits, found out that it is
much easier if we change our numbers from base-10 to base-2, i.e. a base where
we have only two digits “0” and “1”. This arithmetic is called binary. It turns
out that it is much easier and efficient to build electronics that consider only
two voltages, for example 0 Volts and 5 Volts, corresponding to the digits “0”
and “1”. A binary number is then a long and tedious collection of 0s and 1s
like, for example, the number 110101 which is the decimal 53.2

Simple electronics, called gates can do simple operations like addition of
two binary numbers. A computer or a pocket calculator takes your decimal
numbers, converts them into binary, does the arithmetic operation in binary
form, takes the result in binary and transforms it back to decimal, and finally
spits it out on your screen.

2A decimal number is expressed as a sum of increasing powers of 10. The number 53, for
example, is expressed as 5 · 101 +3 · 100. We can express numbers using other bases instead
of the number 10. In general we can express any number with a polynomial on base b as
a 0 1 2
0b +a1b +a2b + .... If b = 2 then we are expressing numbers in base 2. For example the

number 110101 is equal to 1 ·25 +1 ·24 +0 ·23 +1 ·22 +0 ·21 +1 ·20 = 32+16+4+1 = 53.
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FIGURE 1.13 Realization of the logical gates AND and OR through the
usage of switches. The logical symbols are also shown.

Let’s explore the basics of digital electronics because we believe that any
scientist using a computer should know what is happening inside his/her ma-
chine, or at least have a basic understanding. The fundamental unit in digital
electronics is the so-called gate. A simple electronic circuit that represents
binary digits is shown in fig. 1.12. A binary digit “1” can be represented by
the lamp “on” while the binary digit “0” by the lamp “off”. In fig. 1.12 the
switch position “A” allows current to go through the resistor and the lamp
and is associated with the digit “1”. The other switch position “B” interrupts
the current causing the lamp to switch off and is therefore associated with the
digit “0”.

Our objective is to show how to build a simple circuit that is capable of
adding binary numbers. We will use combinations of switches to show how
basic gates work and then we will show the final schematic of a simple full
adder. In order to do so we need to introduce a few concepts. In fig. 1.13 we
see the realization of logical gates. The top circuit is called the AND gate
while the bottom gate is called OR. The top circuit shows that the lamp will
be switched on if and only if both switches are closed or, if switch G1 AND
switch G2 are closed. If we identify the output C as the status of the lamp,
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FIGURE 1.14 Exclusive OR (XOR) gate. Only when either G1 OR G2,
but not both, are “1”, then the output is “1”. Remember that “1” is
when the switch is UP, therefore both switches UP or DOWN do not
allow current to flow.

“0” for off and “1” for on, then the switch circuit of the AND gate will obey
the AND gate table shown. The AND table tells us that in order to switch
on the lamp, both switches must be closed or, symbolically, to have a “1” at
the output C, both inputs G1 and G2 must be “1”. The bottom panel of fig.
1.13 shows another logical gate, called OR. This gate has an output of “1” if
either G1 OR G2 are “1”. The last gate we need in order to make an adder is
the so-called exclusive OR or XOR.

It takes a bit of patience, but it can be verified that the combination of
logical gates in fig. 1.15 performs the addition of two binary numbers including
the carry-in and carry-out.

How does a computer multiply two numbers? A multiplication between
two numbers x and y means that we add the number x, for example, to itself
y times. Equivalently, you can think of adding the number y to itself x times
and the result is the same. For example, 3×4 = 12 can be calculated by doing
(3 + 3) 4 times, i.e. 3 + 3 + 3 + 3 or (4 + 4) 3 times, i.e. 4 + 4 + 4. Both ways
we get the correct answer, 12.

A more interesting question is “how does a computer divide two numbers?”
While multiplication can be broken down to a series of additions, a division
can be broken down into a series of subtractions. Suppose we want to calculate
the ratio 13

2 . The calculation proceeds as follows: you subtract the denomi-
nator from the numerator and check if what you obtain is bigger than the
denominator. If the answer is “yes”, then you add 1 to a counter (set to zero
initially). If the answer is no, then the result of the division is the value of the
counter and the rest is the number obtained before the last subtraction. In
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FIGURE 1.15 Left: Schematics of a 1-bit full adder, i.e. the addition
takes into account the carry input Ci and produces the output S with
the carry output Co. The table describing the operations and a symbol
for the full adder is also shown. Right: 3 adder blocks are connected
to produce a 3-bit adder. This circuit adds A1A2A3 to B1B2B3 to
produce the output S1S2S3S4, which includes the carryover.
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the case of 13
2 , we set the counter c = 0 and subtract 2 from 13. The result is

11 and is bigger than 2, so add 1 to the counter. Now subtract 2 from 11 with
the result = 9 still bigger than 2. So add 1 to the counter. You discover that
you reach the number 1, less than two, after 6 subtractions. So the result is
13 = 62 with rest 1.

Now that we know how a computer or a pocket calculator can perform
the 4 operations, we can now understand how the inverse sine function can be
calculated. This is achieved by identifying a so-called series expansion , i.e. a
summation of usually infinite terms that better and better approximate the
value of our function, at a specific point, the more terms we add.

1.3.1 Functions

We have seen that in order to progress with Eratosthenes’ calculation we had
to define the function sine. But, what is a function? We can think of a function
as a “recipe” to calculate a number, given another number. For example, the
recipe “calculate the square” is a function that, given a number in input, spits
out its square. Feed 2 and spits out 4 or feed 8 and spits out 64, and so on.
In a Cartesian plane x, y, we can represent such a function with a plot (see
fig. 1.16). We can build such a plot because we can build couples of numbers
(x, y) where y = x2.

Usually a function is indicated with the notation y = f(x), which means
that the value y is a function (that’s why the letter f) of the value x. x is
indicated as the independent variable, meaning that x is the input value and we
can give any number we wish. y is the result of the calculation and is therefore
called the dependent variable because it is normally uniquely identified by the
“recipe”. In the case of fig. 1.16, the recipe is “input x, square it and assign
the output to y”, then build the plot by putting a dot at each (x, y) position
in the Cartesian coordinate plane.

1.3.2 Infinity in Maths

Zeno (see fig. 1.17) was a remarkable Greek philosopher living around 450
BC. His teacher, Parmenides, was another Greek philosopher with an inter-
esting view of reality, i.e. reality is just one timeless thing where changes are
impossible. As a consequence, in the Universe, nothing moves and the motion
we perceive is an illusion. We can assume that people found Parmenides’ the-
ories about motion a bit difficult to accept in view of the fact that motion
is everywhere as anybody can easily see. Zeno wanted to give substance to
Parmenides’ claim by proposing four famous paradoxes showing that motion
is an illusion or, at least, has some logical problem. Zeno’s first paradox (see
fig. 1.18) states that you cannot walk from point A to point B because before
reaching point B, you need to cross half-distance AB/2, then half of the re-
maining distance AB/4, then half of the remaining distance AB/8 and so on
for an infinite number of steps, smaller and smaller, but infinite in number.
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FIGURE 1.16 Plot of the function y = x2.
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FIGURE 1.17 Zeno of Elea (495-430 BC) was a Greek philosopher
known mostly for his subtle paradoxes.
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FIGURE 1.18 Zeno’s first paradox. Starting from point A point B cannot
be reached because before reaching B, you need to cross half-distance,
then half of the remaining distance, and so on. No matter how many
steps you take you never reach point B (or after an infinite number of
steps, not acceptable at Zeno’s time).

Zeno then argues that, no matter how many steps you take, you will always
be between A and B and incapable of reaching B.

You can imagine that such argument is very powerful and for many cen-
turies people could not refute it easily.

With a modern view, from Zeno’s paradox we learn something extremely
important: it is possible to divide a segment into an infinite number of smaller
and smaller segments. Or, alternatively, it is possible to sum an infinite num-
ber of numbers and end up with a finite number. In the case of Zeno’s paradox,
we just showed that:

AB =
AB

+
2

AB
+

4

AB
+

8

AB
+ ... (1.11)

16

AB =
1

AB(
1

+
2

1
+

4

1
+

8
+ ...) (1.12)

16
1

1 =
1

+
2

1
+

4

1
+

8
+ ... (1.13)

16

The number 1 can be obtained by adding an infinite number of smaller
and smaller fractions.∑There is a better way to write the last line of eq. 1.13
by using the symbol ∞

n=1 to indicate a summation of terms in which the
exponent n runs from 1 to ∞.
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FIGURE 1.19 Three cars running at different constant speed.

∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ ... = 1 (1.14)

It is important to notice that the series 1.14 belongs to the special class of
series that are said to be convergent, i.e. the summation converges to a finite
number. Many series do not converge and we refer the reader to specialized
books to study the convergence criteria of infinite series.

We are now equipped to show how to calculate velocities and areas and
show that these two operations are related.

1.3.3 Derivatives, Integrals and the Fundamental Theorem of Calcu-
lus

The study of physics concerns, very often, the study of how systems evolve
with time. For example, the orbital motion of a planet is well understood if
we can predict with some accuracy its position at a certain given time. It is
very important, therefore, to study how objects move in space and time and
what maths is appropriate to study time evolution. Let’s study the motion of
cars cruising at constant speed. We can draw a Cartesian coordinate system
where the horizontal axis is time and the vertical axis is space. Suppose that
three cars are traveling on a straight line, each with a different constant speed.
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This means that at a certain time 6, for example, car0 will be in the position
s0, car1 in the position s1, and car2 in position s2. How does a plot of these
positions look on a graph? In fig. 1.19 we notice that first, each car traces a
straight line in the graph; second, all the lines intersect at the point (0,0) and
third, the faster the car the more inclined the straight line is. For example,
car2 is faster than car1 because in the same time interval of 6 seconds, car2
has run a distance of 6 meters compared to the distance of 4 meters run by
car1. It is easy now to see that car1 is faster than car0. A car that does not
move will have a straight line coincident with the t-axis: as the time passes,
the car is at 0 distance. A car travelling at infinite speed will have a straight
line coincident with the s-axis, i.e. in zero time is at infinity!

There is clearly a relationship between how inclined the lines are and how
fast a car is going. It is a simple fact that the speed of a car is measured in
km/hour or miles/hour. The way to measure the speed is to calculate what
distance has been run by a car in a given time interval. If we use meters and
seconds for, respectively, the measurements of distances and time, we measure
speed in meters/second. With reference to fig. 1.20, we can see that our car
is moving from O to D in the time taken to go from O to A. So the segment
OD measures the space travelled by the car in meters while the segment OA
measures the time needed to go from O to D. The speed of the car is simply
the ratio of the two segments OD

OA
. We also notice that the segment OD is

proportional to the sine of the angle α, while the segment OA is proportional
to the cosine of the angle α. We therefore have that the speed of the car can
be expressed geometrically as the ratio:

speed =
sinα

cosα
= tanα (1.15)

where a new trigonometric function, tangent of α (tanα), has been intro-
duced3. In the motion of the car, we can also say that the space is a function
of time, i.e. given a time t we can calculate the space t. In order to do so, we
need to know the speed of the car which is:

speed =
space

time
= tanα (1.16)

What is the function that describes the position of the car with respect to
time? The function is:

s = k · t (1.17)

where k is the speed in m/sec. Putting together equations 1.15, 1.16 and 1.17,
we have that the speed is:

s = k · t =
sinα

cosα
· t = tanα · t (1.18)

3The speed contains the ratio of sinα and cosα and the proportionality factors cancel
out.
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FIGURE 1.20 Geometrical interpretation of velocity.

We have the important result that the speed of the car is equal to the
tangent of the angle made by the line representing the motion of the car in
a time/space diagram. Another important concept concerns the fact that the
speed represents the variation of space with respect to time, i.e. how space
is covered with passing time. If you cover more space within the same interval
of time, then you are going faster.

The case of a car cruising at constant speed was easily treated. A more
difficult problem would be to calculate the speed of a car that does not cruise at
constant speed. In this case the plot of the motion of the car is more complex.
Let’s consider, for simplicity, the case in which the function describing the
motion is quadratic with respect to time, i.e. doubling the time makes 4 times
the space, etc.:

s = t2 (1.19)

It is evident that the car is now moving with a motion such that the speed
changes constantly. So now, in addition to having variations of space with
time we also have variations of speed with time.

With the speed changing constantly it is now difficult to calculate the speed
of the car. We can calculate the average speed by taking two positions in space
whose distance is ∆s and calculate the time difference ∆t. The average speed
will be vavg = ∆s/∆t.

We can be a bit bold and ask whether it is possible to calculate the speed
at any time. In other words, given a time t, I know what space is covered
by the car s = t2, but can I calculate the instantaneous velocity? Is there
an expression, or a function that given how space changes with time, gives
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FIGURE 1.21 Calculation of average speed between t and t+dt. If dt
becomes smaller and smaller, the average speed tends closer and closer
to the instantaneous speed at P.

how speed changes with time? The answer is yes and the operation is called
a derivative.

Let’s now look at fig. 1.21. We want to be able to calculate the speed of
the car at exactly a point P. We can approximate the speed by calculating the
average speed between point P and a point Q very very close to P. If we trace
a straight line between P and Q then we know how to calculate the speed. It
is the tan α, i.e. the ratio of the segment f(t+dt) - f(t), i.e. the sinα, with
the length of the segment (t+dt) - dt = dt, i.e. the cosα. The closer to P
we choose the point Q, the better the estimation of the instantaneous speed
at P will be. If we make infinitesimally small the time interval dt, we are
infinitesimally close to the instantaneous speed. We define the derivative of
the function f(t):

df

dt
= lim
dt→0

f(t+ dt)− f(t)

dt
(1.20)

The symbol limit limdt→0 means that we are allowing the value of dt to
get closer and closer to zero. We immediately recognize the tangent of α after
the symbol lim. We now have a recipe to find the derivative of a function,
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in our case the instantaneous velocity of the car. If we plug into eq. 1.20 the
function describing the non-uniform motion of the car f(t) = t2, we have:

df

dt
= lim
dt→0

f(t+ dt)− f(t)

dt
= lim
dt→0

(t+ dt)2 − (t2)

dt

= lim
dt→0

t2 + 2tdt+ dt2 − t2

dt

= lim
dt→0

dt(2t+ dt)

dt

= lim
dt→0

(2t+ dt)

(1.21)

In the last equation we can safely allow dt to be exactly zero. It follows
that:

f(t) = t2

v =
df

dt
= 2t

(1.22)

There is a straightforward visualization of the derivative of the function
f(t) = t2. In fig. 1.22 the function f(t) = t2 is represented as a square of side
t. If each side is increased by dt, the total area increase will be tdt+tdt+dt2 ≈
2tdt. We neglect the term dt2 because it is the product of two infinitesimals
that can be ignored to the first order. The area change per unit dt is therefore
2tdt, which is the derivative of the function t2.

We have above a very powerful set of equations. If we want to calculate
where the car is at time = 2 seconds, we plug the number 2 into the first
equation in 1.22. But now if we want to know the instantaneous speed at time
t = 2 seconds, we plug the number 2 into the second of the equations 1.22. If
we do this, we obtain that the car has run for s = 4 meters and it has a speed
v = 4 meters/second. We see that the speed of the car depends on the time t
according to the function f = 2t.

In general, it can be shown that the derivative of any power of t can be
expressed as:

f(t) = ktn

df

dt
= nktn−1

(1.23)

where k is a constant and n is the power exponent. It can be checked easily
that applying eq. 1.23 to the function f = t2 gives the calculated answer.
Equation 1.23 allows us to calculate the derivative of polynomials4 of any

4A polynomial is a mathematical expression consisting of one or more variables and
numerical coefficients. The various terms in a polynomial are only added, subtracted and
multiplied while the variables appear only with integer exponents. A generic polynomial in
one variable x is P (x) = a+ bx+ cx2 + dx3 + ... where a, b, c and d are constants.
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FIGURE 1.22 Graphical representation of the derivative of the function
f(x) = t2.
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FIGURE 1.23 How to build the tangent line to point P.
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Function f(x) Derivative

xn nxn−1

sinx cosx

cosx − sinx

ex ex

bx bx ln (b)

ln (x) 1
x

sin−1 x 1√
(1−x2

cos−1 x −1√
(1−x2

TABLE 1.1 Table of derivatives.

degree. It is important to notice that the derivative of any constant is equal
to 0 since there is no change in value of the constant with time. Table 1.1
shows a list of calculated derivatives of some common functions.

We have a bonus concept out of our definition of derivative. What happens
to the straight line we used to define the average speed over smaller and smaller
time intervals? In fig. 1.23 we see how the straight lines approach, closer and
closer, the line tangent at the point P. Can we calculate the function defining
the tangent line to a point P over a curve?

Yes. First, the tangent is a straight line and the general equation for a
straight line is:

s = mt+ q (1.24)

in eq. 1.24, s is the space, t is the time. In order to uniquely define the tangent
to a curve, we need the equation of the curve and the coordinates of where to
calculate the tangent. Let’s call s = s(t) the function and let the point P have
coordinates (t0, s0). The equation of the tangent is:

s− s0 =

(
ds

dt

)
t=t0

· (t− t0) (1.25)

The symbol
(
ds
dt

)
t=t0

represents the value of the derivative calculated at
the point t = t0 and is therefore a number. Notice that equation 1.25 can be
written as eq. 1.24 if:

m = v =

(
ds

dt

)
t=t0

q = s0 + t0

(
ds

dt

)
t=t0

(1.26)
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where v is the speed (or the modulus of the velocity: we’ll see the meaning
and difference between speed and velocity later in the book).

Very often we will encounter functions that are the product of two func-
tions, usually depending on the time t variable. We need a recipe to calculate
the derivative of a function that is the product of functions. Given a function
w(t) = u(t) · v(t), its derivative is given by:

d

dt
[w(t)] =

d

dt
[u(t) · v(t)] = v · du

dt
+ u · dv

dt
(1.27)

We now show how to prove eq. 1.27. We start with the definition of deriva-
tive in eq. 1.20:

d

dt
[w(t)] = lim

∆t→0

w(t+ ∆t)− w(t)

∆t

= lim
∆t→0

u(t+ ∆t)v(t+ ∆t)− u(t)v(t)

∆t

(1.28)

We now add and subtract the same quantity, u(t)v(t+ ∆t), to the numer-
ator:

dw

dt
= lim

∆t→0

u(t+ ∆t)v(t+ ∆t)− u(t)v(t+ ∆t) + u(t)v(t+ ∆t)− u(t)v(t)

∆t

= lim
∆t→0

(u(t+ ∆t)− u(t)) · v(t+ ∆t) + u(t) · (v(t+ ∆t)− v(t))

∆t

= lim
∆t→0

u(t+ ∆t)− u(t)

∆t
· lim

∆t→0
v(t+ ∆t)

+ lim
∆t→0

v(t) · lim
∆t→0

v(t+ ∆t)− v(t)

∆t

=
du

dt
· v(t) + u(t)

dv

dt
(1.29)

In analogy to the case of the visual representation of the derivative of t2, we
can show visually the origin of the chain rule (see fig. 1.24). The increase in the
function is approximately equal to the sum of the area of the two rectangles
udv + vdu. The term dudv is higher order and can be neglected.

Another useful rule is the derivative of a function of a function, i.e. where
we have a function f = g[h(t)]. In this case, we have:

d

dt
g(h(t)) =

dg

dh

dh

dt
(1.30)

This is usually called the chain rule5.

5The proof of the chain rule is a bit tricky and we refer the reader to any good book on
calculus.
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FIGURE 1.24 Visual representation of the derivative of f = u · v.
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We have seen above that the concept of a derivative of a function is closely
connected with the study of how a function changes with respect to time. In
the case of the motion of a car, we have studied how to define the instantaneous
speed given the law of motion with respect to the variable time t. We would
like to ask now the opposite question, i.e. given the knowledge of the speed and
how it changes with time, how can we calculate the distance the car has run
since some initial time t = t0? The answer will bring us to integral calculus.
Notice that this question is the exact opposite of the previous question hinting
that integral calculus is somehow the reverse of differential calculus.

We have seen in eq. 1.22 that the speed is the derivative of the position
function s = s(t). If we now know instead the function v = v(t), can we obtain
the position s = s(t)? Yes, and the operation is called integration, which is
effectively the anti-derivative. Schematically we can write that:

f(t)�
∫
df(t)

dt
dt (1.31)

where the symbol
∫

is the integral operation. Eq. 1.31 represents the Fun-
damental Theorem of Calculus and it states that derivative and integral are
opposite operations or, differentiating and then integrating a function f(t)
leaves the function unaltered (almost, see later).

It is straightforward to see the geometrical interpretation of the integral.
In fig. 1.25, upper right, the diagram of a car running at constant speed is
shown where the vertical axis is the speed and horizontal axis is the time.
We know that the law of motion tells us the space travelled according to the
equation s = v(t)t, in general. In the particular case of a constant speed the
equation s = vt is telling us that the space travelled is equal to the area under
the curve A(t) = vt because the area of the rectangle is exactly A(t).

Let us now study the variation of the function A = A(t) in the small
interval between t and t+ δ. The area under the curve between t and t+ δ is
equal to the space travelled by the car in the small time interval δ. This space
can be written as:

|A(t+ δ)−A(t)| = v(t) · δ − ε (1.32)

where ε is the error in the area estimation due to the fact that the speed is
changing in the little interval δ. If we want this error to be smaller and smaller,
we just need to have δ smaller and smaller. We see that:

v(t) =
A(t+ δ)−A(t)

δ
− ε

δ
(1.33)

If we now assume that the ratio ε
δ → 0 as δ → 0 6 we have:

6It can be shown that the excess error ε is less or at least equal to the rectangle (v(t+

δ)− v(t)) · δ. Therefore we can write that ε
δ
≤ (v(t+δ)−v(t))·δ

δ
= v(t+ δ)− v(t) which goes

to 0 when δ goes to zero (for a continuous function).
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FIGURE 1.25 Geometric interpretation of the integration operation.
The upper right diagram shows that the displacement of a car run-
ning at constant speed is represented by the area under the line v =

constant. The area A(t) is the product of the constant speed with the
time t. The lower left diagram shows the general case where the speed
is a function of time v = v(t). Also in this case the area A(t) represents
the instantaneous distance run by the car at the time t.
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FIGURE 1.26 Interpretation of the definite integration operation as area
subtended under the function f(x). Note that the area is defined posi-
tive when contained in the y = f(x) > 0 semi-plane and negative when
contained in the y = f(x) < 0 semi-plane.

v(t) = lim
δ→0

A(t+ δ)−A(t)

δ
=
dA

dt
(1.34)

From eq. 1.20 we see that eq. 1.34 is telling us that the derivative of the
function A(t) is the function v(t) or, in other words, the function A(t) is the
anti-derivative of the function v(t). We can therefore write that:

A(t) =

∫
v(t′)dt′ (1.35)

So, the operation of integration of a function f(x) of a variable x, is asso-
ciated with the determination of the area under the curve represented by the
function f(x) in Cartesian coordinate (see fig. 1.26). More in general, the inte-
gral operation associates numbers to the summation of infinitesimal quantities
and therefore can be associated with physical quantities like, for example, dis-
placement, as well as geometrical quantities like areas, volumes, etc. When we
want to integrate a function f(x) over a specific interval a < x < b, we write:

F =

∫ b

a

f(x)dx (1.36)

where F is a number. Notice that with our definition the calculated area F
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can be a positive as well as negative number. For example, in fig. 1.26, we see
that when f(x) is above the line y = 0 the area is ≥ 0 while when f(x) is
below the line y = 0, the area is ≤ 0. If F (x) is a function such that F (x) = df

dx
then we have a recipe to calculate the definite integral:∫ b

a

f(x)dx = F (x)|ba = F (b)− F (a) (1.37)

1.3.4 Inverse Trigonometric Functions

Now that we have the techniques of infinitesimal calculus under our belt we
can approach the problem of calculating inverse trigonometric functions, i.e.
how to calculate the value of the angle whose sine (or cosine or tangent, etc.)
is a given number. In the case of Eratosthenes , we have that the sine of
the angle we need is the ratio of the lengths of two segments. There is a
simple device that does that for you and it is called a protractor. We can
imagine that Eratosthenes used such a device. Such a tool is good when the
accuracy requested is not particularly important. If we want to achieve higher
and higher accuracy, we need to find an approximate series that gives us the
inverse sine function, i.e. gives us the angle when we know its sine.

We have seen that a computer can easily calculate polynomials. What if
we can approximate functions with polynomials? Perhaps we can have poly-
nomials with infinite terms and we just need to add enough terms to reach
the precision that we need.

It turns out that we can approximate functions with polynomials. A generic
polynomial can be written as:

P (x) = a0 + a1x+ a2x
2 + a3x

3 + ... =
∞∑
n=0

anx
n (1.38)

The idea is to express any function as a series like eq. 1.38. There is a beau-
tiful relationship between the coefficients an in eq. 1.38 and the derivatives of
the function P (x). For polynomials, it is easy to verify that:

a0 = P (0)

a1 =

(
dP

dx

)
x=0

a2 =
1

2

(
d2P

dx2

)
x=0

a3 =
1

2 · 3

(
d3P

dx3

)
x=0

...

(1.39)
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For example, let’s check that the polynomial P (x) = 3 + 5x + 3x2 − 8x3

satisfies eq. 1.39:

a0 = P (0) = 3

a1 =

(
dP

dx

)
x=0

= 5 + 6x− 24x2 = 5

a2 =
1

2

(
d2P

dx2

)
x=0

=
1

2
(6− 48x) = 3

a3 =
1

2 · 3

(
d3P

dx3

)
x=0

=
1

6
(−48) = −8

(1.40)

so, polynomials can be written as:

P (x) = a0 + a1x+ a2x
2 + a3x

3 + ...

= P (0) +

(
dP

dx

)
x=0

+
1

2

(
d2P

dx2

)
x=0

+
1

2 · 3

(
d3P

dx3

)
x=0

+ ...
(1.41)

A compact way to express eq. 1.41 is:

f(x) = f(0) +
1

n!

∞∑
n=1

(
dnf

dxn

)
x=0

xn (1.42)

where n! = 1 · 2 · 3 · 4 · ... · n and is called factorial of the number n.
The important result is that, if a function f(x) can be (infinitely) differen-

tiated, then we can apply eq. 1.42 and express it as an infinite series of powers.
This will allow any computer to calculate any of these functions at any point
where the function is defined. Can we express the sine and cosine as power
series? Yes. The expansions are given below:

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
≈ x− 1

3!
x3 +

1

5!
x5 − ... (1.43)

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
≈ 1− 1

2!
x2 +

1

4!
x4 − ... (1.44)

The inverse trigonometric functions, that we need to calculate the Eratos-
thenes angle, are:

sin−1 x =
∞∑
n=0

(2n)!

4n(n!)2

x2n+1

(2n+ 1)
≈ x+

1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ ... (1.45)

cos−1 x =
π

2
− sin−1 x (1.46)
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We finally have an expression in terms of power series of the function
sin−1x. Remember that Eratosthenes obtained that x = sinα = 0.1256. By
using the first power series in eq. 1.46 we can write that:

α ≈ 180

π

(
x+

1

2

x3

3
+

1 · 3
2 · 4

x5

5
+ ...

)
=

180

π

(
x0.1256 +

1

2

(0.1256)3

3
+

3

6

(0.1256)5

5
+ ...

)
=

180

π
(0.1256 + 0.000330231 + 0.000003126 + ...)

= 7.2154◦

(1.47)

where the prefactor 180/π gives the answer in degrees. A pocket calculator
with inverse sine function will evaluate the angle α = 7.2154◦. The sum of the
first three terms in eq. 1.47 will also provide α = 7.2154◦.

1.4 ERATOSTHENES’S FINAL CALCULATION
Now we have all the ingredients to finally estimate the circumference (and
therefore the radius) of the Earth. Eratosthenes correctly measured the an-
gle α (see fig. 1.11). So, if the angle α corresponds to the distance between
Alexandria and Syene7, then when α = 360◦, the corresponding length is the
circumference of the Earth . Or, alternatively we can say that the ratio of the
distance between Alexandria and Syene to the angle α is equal to the ratio
of the circumference of the Earth to the full angle of 360◦ or 2π radians. It
follows that the circumference of the Earth must be equal to 2π

α times the dis-
tance from Alexandria to Syene. Let’s call D the distance between Syene and
Alexandria and C the circumference of the Earth we are trying to estimate.
We have:

C

D
=

2π

α
(1.48)

Eratosthenes’s tools most probably did not allow him to have a better
precision for α than 0.1◦. Therefore he measured α = 7.2◦. It is now easy to
estimate the circumference of the Earth C by inverting eq. 1.48 to extract
C. First notice that the ratio of the full angle 360◦ to the measured angle
α = 7.2◦ is exactly equal to 50. This means that the full circumference of the
Earth is 50 times the distance from Alexandria to Syene. Eratosthenes knew
the distance in stadia between the two cities D = 5000 stadia. Unfortunately
we do not have a value for such an ancient distance unit. If we assume that
a stadium is equal to 184.8 meters, as indicated by most of the experts, we
have the amazing result that the circumference of the Earth measured by

7We are assuming, as Eratosthenes did, that the arc connecting Alexandria and Syene
is a great circle, i.e. the largest circle that can be drawn on a sphere.
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Eratosthenes was C = 46, 000 km, or about 15% bigger than today’s accepted
value.

1.5 ARISTARCHUS’S CALCULATIONS
We conclude this chapter with another remarkable estimate of astronomical
quantities by the Greeks and based on simple observations of the Earth-Moon-
Sun system. There are a number of simple facts that we are all familiar with:
the Moon goes through phases, i.e. the surface of the Moon visible from Earth
is illuminated by the Sun and the shape of the portion illuminated directly
changes with time. The phases go from no illumination (New Moon) to fully
illuminated (Full Moon). There are also special times in which the Moon
completely covers the Sun (total solar eclipse) or it enters the shadow of the
Earth (lunar eclipse).

Aristarchus of Samos (see fig. 1.27) was a Greek mathematician and
philosopher known mostly for being the first to propose that the Sun is at
the center of the solar system well ahead of Copernicus . In his book On
the Sizes and Distances of the Sun and Moon, he discussed how he obtained
the ratio of distances from the Earth to the Moon and from the Sun to the
Earth. Aristarchus was aware of the phases of the Moon, and he used them
to perform his calculations. There is a special day when the face of the Moon
appears exactly half illuminated as seen from the Earth (see fig. 1.28). When
this happens, it means that the angle Sun-Moon-Earth is exactly 90◦. If now
we measure the angle θ Moon-Earth-Sun, we know that this angle is defined
as the ratio of the segments DEM (distance Earth–Moon) over DES (distance
Earth–Sun). We have:

cos θ =
DEM

DES
=

1

390
(1.49)

Aristarchus measured the angle θ = 87◦ which corresponds to a distance
from the Earth to the Sun about 20 times the distance from the Earth to
the Moon. The reasoning was correct but his measurements were inaccurate.
Today we know that the angle is θ = 89.853◦ very close to 90◦, thus putting
the Sun about 390 times the distance from the Earth to the Moon away.

Aristarchus made another observation: he noticed that a total solar eclipse,
i.e. when the disk of the Moon exactly covers the Sun, lasted only a few
minutes. This means that the apparent angular diameter of the Sun and the
Moon must be very close to each other. But Aristarchus already estimated
that the Sun is about 20 times farther away than the Moon and so it must
be 20 times bigger than the Moon. This conclusion is a consequence of the
definition of the tangent of an angle as a ratio of two segments as in fig. 1.29. In
this figure, the observer is at the point E, the Moon radius is RM = AM and
the Sun radius is RS = CS. From the figure it is evident that tanα is defined
equivalently as the ratio of AM

EM
or CS

ES
, where DEM = EM and DES = ES

are respectively the distance from the Earth to the Moon and from the Earth
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FIGURE 1.27 Aristarchus of Samo (310-230 BC) was a Greek philoso-
pher and astronomer. He was the first to propose that the Sun is at
the center of the solar system.
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FIGURE 1.28 Geometry used by Aristarchus of Samos to estimate the
distance from the Sun to the Earth in units of the distance from the
Earth to the Moon.

to the Sun while dS and dM are respectively the diameter of the Sun and the
Moon.

It follows that:

AM

EM
=
CS

ES
(1.50)

So, the radii of the Sun and the Moon are in the same ratio as their
distances from the Earth as Aristarchus pointed out. If we use diameters
instead of radii and we use the modern values, we have that the ratio of the
diameter of the Sun (dS) to the diameter of the Moon (dM ) is:

dS
dM

= 390 (1.51)

Or equivalently:

dS
DES

=
dM
DEM

(1.52)

Aristarchus then turned his attention to the observation of the lunar
eclipse, i.e. when the Moon enters the shadow of the Earth.

In fig. 1.30 the eclipse geometry used by Aristarchus is shown. In the
upper panel we see how, during a lunar eclipse, the Earth projects its shadow
in space. When the conditions are right, the orbital plane of the Moon is
such that it enters and exits the Earth’s shadow. Let’s study the medium and
bottom panel of fig. 1.30. The two right triangles 1 and 2 are similar. This
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FIGURE 1.29 Geometry of a total solar eclipse used by Aristarchus of
Samos to estimate the diameter of the Sun. The bottom panel shows
the perspective from an observer on the Earth at point E when the
Moon disk AB completely covers the Sun disk CD.
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FIGURE 1.30 Geometry used by Aristarchus of Samos to estimate var-
ious distances in the system Sun-Earth-Moon.
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means that we can identify a number of proportions between pairs of segments
of the two triangles. Let’s call R the half-length of the Earth’s shadow on the
Moon trajectory, RE the radius of the Earth, RS the radius of the Sun; DEM

the distance from the Earth to the Moon, DES the distance from the Sun
to the Earth and DEA the distance between the Moon and the apex of the
conical shadow of the Earth in space. The right triangle 1 has, as the short
side leg (or cathetus), the quantity (RE −R), and the corresponding short leg
of right triangle 2 is equal to (Rs−RE). The long legs of the two right angles
are DEM and DES for respectively triangle 1 and 2. Due to the similarity, we
can write:

DEM

(RE −R)
=

DES

(RS −RE)
(1.53)

Now, we know from eq. 1.50 that the distance Earth-Moon and Earth-Sun
are in the same ratio as their radii RM and RS , where RM is the radius of
the Moon. Plugging eq. 1.50 into eq. 1.53, we have:

DES

DEM
=

(RS −RE)

(RE −R)
=

RS
RM

(1.54)

With a little algebra (left as an exercise) we can rewrite eq. 1.54 as:

1 +
R

RM
=
RE
RM

+
RE
RS

(1.55)

Aristarchus observed a lunar eclipse and determined that the radius of the
shadow R was equal to twice the radius of the Moon RM . A modern value
is R = 2.6 · RM . With some more algebra we can rewrite eq. 1.54 to express
the ratio of the radius (diameter) of the Earth to the radius (diameter) of the
Moon:

RE
RM

=
dE
dM

=
1 + R

RM

1 + RM

RS

' 3.6 (1.56)

and we can rewrite eq. 1.54 to express the same ratios for the Sun:

RS
RE

=
dS
dM

=
1 + R

RM

1 + RS

RM

' 109 (1.57)

Aristarchus was able to express all the ratios in terms of the radius of the
Earth by looking at the angular diameter of the full Moon.

In fig. 1.31 an observer on the Earth, looking at the full Moon, measures a
diameter of the disk equal to 0.519◦ (modern value). Such a small angle allows
us to approximate the diameter dM with the segment of arc of radius DEM .
Under this approximation we can write the proportion:

0.519

360
=

dM
2πDEM

(1.58)



46 � Introduction to the Maths and Physics of the Solar System

FIGURE 1.31 Geometry to estimate the angular diameter of the Moon.

or

dM
DEM

= 9 · 10−3 (1.59)

giving the ratio between the diameter of the Moon to the distance from the
Earth to the Moon. We can also express the distance from the Earth to the
Sun in terms of the diameter of the Earth. Let’s write the ratio of the distance
from the Earth to the Sun DES , to the diameter of the Earth dE :

DES

dE
=
dS
dE

DES

dS
(1.60)

Recall from eq. 1.52 that dS
DES

= dM
DEM

→ DES

dS
= DEM

dM
. Eq. 1.60 becomes:

DES

dE
=
dS
dE

DEM

dM
(1.61)

Using the values calculated in eq. 1.59 and eq. 1.57, we have:

DES

dE
' 1.2 · 104 (1.62)

Finally, let’s calculate the distance from the Earth to the Moon in terms
of Earth diameter.

DEM

dE
=

1
dE
DEM

=
1

dE
dM
· DM

DEM

' 31 (1.63)

In summary, Aristarchus was able to calculate the distance to the Sun and
the Moon in terms of the Earth’s radius or diameter. But we have seen that
Eratosthenes was able to calculate the circumference and thus the radius of
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the Earth. So the Greeks were able to estimate distances in the solar system
without any special instruments but just using a lot of geometrical ingenuity.

Think About It...
Euclidean geometry is one example of synthetic geometries. Syn-
thetic geometry starts from statements given without demonstrations
(axioms) defining basic entities like points, lines, etc., and proceeds
through propositions about these objects without specifying where the
objects are located in space. Analytic geometry uses coordinates to
transform the propositions into algebraic formulas.
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I n chapter 3 we will study the motion of planets in the solar system. In
order to understand the physics, i.e. describe how the planets move with

time, we need to understand the mathematics used in such description. We
caution immediately that the math in this chapter and the next might be
challenging and we expect the reader to go over the material presented with
particular care making sure that all the concepts are understood and clear
before progressing.

2.1 VECTORS
We have seen in chapter 1 that we defined velocity and acceleration in terms of
time variation of, respectively, space and velocity. In other words, the velocity
is the variation of space with respect to time. The acceleration, in a similar
way, can be defined as the variation of velocity with respect to time. Both
velocity and acceleration are simple numbers. What happens if the object is
not traveling on a straight line? In this case velocity and accelerations cannot
be described anymore with simple numbers. There is additional information
that we have to give: direction with its associated orientation. We can walk at
constant speed on a street whose direction is, for example, North-South but

49
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we need to say what orientation, i.e. if we are going from N to S or from S
to N. It is customary to say “direction” for a vector implying that also the
orientation is specified.

A quantity defined by a magnitude and a direction is called a vector and is
indicated with a letter with a pointed arrow above it1. For example, the force
vector is indicated with the symbol

−→
F , telling us that the force is specified by

a magnitude and an orientation along a direction.
The length from the base to the tip is the magnitude while the direction is

identified by the orientation of the tip. In the case of velocity , we call speed
the magnitude of the velocity vector, i.e. how fast the object is moving. So
when a physicist asks about speed, he/she is expecting just a single number.
If instead the physicist asks about velocity, then he/she wants to know the
magnitude and the direction.

When we consider quantities that are completely defined by a number,
as is the case of an amount of space, magnitude of velocity, and acceleration
along a straight line, then we say that the quantity is a scalar quantity2.
But the concepts of velocity and acceleration become more complex if the
object is not constrained to move along a straight line but is free to move
in the 3-dimensional space like, for example, a planet orbiting the Sun. In
this case velocity and acceleration must be defined not only by giving the
magnitude but also the direction with associated orientation. In other words,
magnitude and direction can both change with time. So if we want to calculate
the derivative with respect to time, we have to consider that both magnitude
and direction can change.

For simplicity, we restrict ourselves to a 2-dimensional plane. In fig. 2.1 a
simple example of the displacement vector

−−→
AB on the plane xy is shown. An

object travels along the direction indicated by the dotted line for an amount
of space equal to the length of the segment AB (magnitude) and orientation
given by the arrow meaning that the object started in A and ended in B. This
displacement vector is represented in a particular Cartesian coordinate system
xy. In this particular coordinate system the vector is completely identified by
giving its coordinates, i.e. orthogonal projections3 of the points A and B to the
x and y axes. Let’s call −→u the vector

−−→
AB in fig. 2.1. This vector is completely

defined by giving its coordinates −→u = (ux, uy) where −→ex and −→ey are unit
vectors parallel, respectively, to the x and y axes4. It is easy to see that:

1This statement is not exactly true. A finite rotation around an axis can be described
by giving a direction (the rotation axis) and a magnitude (the amount of rotation) but it
is not a vector. Later in this chapter we will be more accurate.

2We need to specify that the straight line has an orientation, so positive velocities are
those with the same orientation as the straight line while negative velocities are in the
opposite orientation.

3By orthogonal projection we mean tracing a perpendicular line.
4The unit vectors are also called base vectors.
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FIGURE 2.1 Displacement vector indicating an object moving from
point A to point B (orientation) with a magnitude equal to the length
of the segment AB.

FIGURE 2.2 Geometric addition of two vectors (top) or more vectors
(bottom).
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ux = (xB − xA)

uy = (yB − yA)
(2.1)

Now, with reference to fig. 2.1, xB−xA is the magnitude of the vector −→u x
while yB − yA is the magnitude of the vector −→u y. Notice that by construction
the base vectors ex and ey belong to the same directions as, respectively, the
x and y axes of the coordinate system. This means that we can write:

−→u = −→e x · ux +−→e y · uy (2.2)

where we used the geometric rule to add vectors shown in fig. 2.2.
Looking at the triangle 4ACB, it is easy to verify that the magnitude of

the vector −→u can be written as:

‖−→u ‖ =

√
AC

2
+ CB

2
=
√
u2
x + u2

y (2.3)

where the symbol ‖u‖ indicates the magnitude of the vector −→u . The direction
is given by:

θ = arctan

(
BC

AC

)
= arctan

(
uy
ux

)
(2.4)

2.1.1 Change of Coordinate Systems

A vector in a specific coordinate system x, y, z is represented by 3 numbers cor-
responding to the 3 projections of the vector’s tip along the axis. We assume
that the base of the vector coincides with the origin of the coordinate system.
We can obviously represent the same vector in some other coordinate system
in which the vector will be represented by 3 other numbers. This means that
the same vector can have different components, i.e. 3 different coordinates,
depending on the choice of coordinate system. Therefore we need to be sure
that if we change coordinate system, the vector magnitude and direction does
not change. This requirement is dictated by requiring that the vector repre-
sents a physical quantity and we impose that the physical quantity stays the
same no matter what coordinate system we use.

In fig. 2.3, we have two different coordinate systems: one is labeled x, y and
the other is labeled x′, y′. The primed coordinate system is obtained by shifting
it by a quantity a in the x coordinate and a quantity b in the y coordinate. The
vector −→u can therefore be projected onto the two different coordinate systems
generating two independent sets of coordinates. To simplify the picture, we
have indicated the intercepts of −→u to the x′ and y′ axes by filled dots while the
intercepts to the x and y axes are indicated with open dots. The magnitude
of the vector −→u can be expressed in the x, y coordinate system by:
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FIGURE 2.3 A vector expressed in two shifted coordinate systems x, y
and x′, y′ maintains the same magnitude and direction.

‖−→u ‖ =
√

(x2 − x1)2 + (y2 − y1)2 (2.5)

We know that the primed coordinate x′, y′ can be expressed as a function
of the old coordinate x, y:

x′ = x− a
y′ = y − b

(2.6)

The same vector −→u expressed in the primed coordinate system must have
the same magnitude. Therefore:

‖−→u ‖ =
√

(x′2 − x′1)2 + (y′2 − y′1)2

=
√

[(x2 − a)− (x1 − a)]2 + [(y2 − a)− (y1 − a)]2

=
√

[x2 − a− x1 + a]2 + [y2 − a− y1 + a]2

=
√

(x2 − x1)2 + (y2 − y1)2

(2.7)

Eq. 2.7 compared with eq. 2.5 shows that the magnitude of the vector is
unchanged with a coordinate shift. It is easy to prove that the direction is also
unchanged and we leave the proof to the reader.
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FIGURE 2.4 A vector expressed in two coordinate systems x, y and x′, y′

rotated by an angle α.

Let’s now study the case in which the primed coordinate system is obtained
by rotating the original coordinate system by an angle α as shown in fig. 2.4
around a vertical axis (perpendicular to the page) which is also the common
origin of the two systems. For simplicity we have assumed that our vector has
its base coincident with the origin of the two coordinate systems. The point P
is the tip of the vector which has x coordinate equal to the segment OS and y
coordinate equal to the segment PS in the unrotated x, y coordinate system.
In the rotated coordinate system x′, y′, the coordinates of the point P are the
segments OQ and PQ for respectively the x′ and y′ coordinates. Let’s build a
rectangle RSTQ where the point R is the projection of the point S onto the
x′ axis. By construction, the angle ∠ORS is a right angle. The two triangles
4RSW and 4PQW are similar, i.e. they have all the angles equal5. They
both have a right angle, and the angle ∠RWS is equal to the angle ∠PWQ
because they are opposite. It follows therefore that the angle ∠RSW must be
equal to ∠WPQ. Now let’s turn our attention to the triangles 4OWS and
4ORS. By construction, the angle ∠ORS is a right angle and therefore the
angle ∠RSO is equal to 90◦ − α, from which we immediately see that the
angle ∠RSW must be equal to α. But we have seen that ∠RSW is equal to
∠WPQ. It follows that the angle ∠WPQ = α. By construction we also see
that RQ = ST and RS = QT .

In the triangle 4ORS we see that OR = OS · cosα = x · cosα. In the
triangle 4PST we have that TS = PS · sinα = y · sinα. We just found
how to obtain the x′ rotated coordinate of the point P if we know its x, y
coordinates and the angle of rotation α: x′ = x cosα + y sinα. In a similar
line of reasoning, looking at the triangles 4PST and 4ORS we see that

5Two triangles are similar if all their angles are equal. In this case all the corresponding
sides are in proportion.
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y′ = PQ = PT − QT = PT − RS = y · cosα − x · sinα. We can collect the
two relations we just found in a convenient way:

x′ = x cosα+ y sinα

y′ = −x · sinα+ y · cosα
(2.8)

We can look at eq. 2.8 as a recipe to transform the coordinates of a vec-
tor, in particular under a rotation of the coordinate system of an angle α.
The vector does not change: its representation in different coordinate systems
changes according to the recipe given. The vector, somehow, has its own ex-
istence independent from the coordinate system that we use to represent it.
It is easy to show that the rotation of the coordinate system in eq. 2.8 keeps
the magnitude of a vector constant.

The magnitude of a vector written in Cartesian coordinates is given by eq.
2.3. When the base of the vector is coincident with the origin of the coordinate
system (0, 0), we have:

‖u‖ =
√
x′2 + y′2 =

√
x2 + y2 (2.9)

Let us express the primed coordinates using eq. 2.8:

x′2 = x2cos2α+ y2 sin2 α+ 2xy sinα cosα

y′2 = x2sin2α+ y2 cos2 α− 2xy sinα cosα
(2.10)

we now add the two above equations:

x′2 + y′2 = x2(cos2 α+ sin2 α) + y2(sin2 α+ cos2 α) = x2 + y2 (2.11)

where we used the fact that (sin2 α+ cos2 α) = 1.
We can now formalize a bit more the definition of a vector: a vector is a

physical quantity that has a magnitude and a direction and its components
transform under a rotation according to the recipe given in eq. 2.8. All vec-
tors can be represented by 2 numbers on a 2-dimensional coordinate system.
However, not all pairs of numbers represent a vector!

Eq. 2.8 can be written in a different way:(
x′

y′

)
=

(
cosα sinα
− sinα cosα

)(
x
y

)
(2.12)

where the new primed coordinates are indicated as a two-dimensional vector(
x
y

)
, where as usual x, y are the original non-rotated coordinates. The object

A =

(
a b
c d

)
is called a 2×2 matrix. The rule to multiply a 2×2 matrix with

a two-dimensional vector is:
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A · −→u =

(
a b
c d

)(
ux
uy

)
=

(
aux + buy
cux + duy

)
(2.13)

where −→u is a two-component vector −→u =

(
ux
uy

)
. Eq. 2.13 tells us that the

matrix A is an object that acts on a vector to produce another vector. In the
specific case of the rotations of eq. 2.12, we can symbolically write:

−→
u′ = A(α)−→u (2.14)

where A(α) is given by:

A(α) =

(
cos(α) sinα
− sinα cos(α)

)
(2.15)

and indicates that the matrix A depends on the rotation angle α. In 3-
dimensional space, vectors have 3 components and matrices acting on these
vectors are 3× 3 tables of numbers.

2.1.2 Operations with Vectors

Having defined vectors we can ask if we can do operations with them. The
simplest operation is addition. Can we add two vectors? Yes, and the geo-
metrical recipe is simple and is called the parallelogram law. This is a law,
meaning that we consider it to be true because it is based on experimental
evidence. Various proofs have been given (including Newton) but they are
not accepted mathematically. The important fact, which is evidence based, is
that forces, among other vectors representing other physical quantities, always
obey the parallelogram law. This means that we are justified to use vectors
to represent forces, for example, and that experiments have confirmed that
where more forces are applied to the same object, they add according to the
parallelogram law. That’s why it is a law and is not proved but assumed to
be true within the experimental errors.

We have seen that we can add two vectors with the parallelogram rule. We
restate the parallelogram rule by saying that the sum of two vectors −→a and

−→
b

is obtained by placing them head to tail and drawing the vector from the free
tail to the free head. Alternatively, as shown in fig. 2.2, the sum is obtained
by placing the two tails together and drawing two lines (dotted) parallel to
each of the vectors. The vector sum −→c is obtained by drawing an arrow with
the tail coincident with common tails of the two addends and the head at the
intersection of the two dotted lines.

How do we calculate the vector sum of two vectors when they are expressed
in a Cartesian coordinate system? It is easy to verify that, given two vectors −→a
and
−→
b , of coordinates (ax, ay) and (bx, by) in a Cartesian coordinate system

x, y, the vector sum −→c = −→a +
−→
b will be written as:
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−→c = (ax + bx)−→ex + (ay + by)−→ey (2.16)

where the recipe to calculate the coordinate of the vector sum is given by
equation 2.16. It is easy to see that if we multiply a vector by a number k, the
vector does not change direction but it is stretched by an amount equal to k
(−→a = k−→c ). The vector −→a has a magnitude k−times the magnitude of −→c and
it will be expressed by:

−→a = k · −→c = kax
−→ex + kay

−→ey (2.17)

and the recipe is simply multiply the components by the stretching constant
k. The question is: can we multiply a vector by another vector? We know how
to multiply numbers but we really don’t know how to multiply things that
are not numbers. However, we can come up with a recipe that we call “vector
multiplication” that operates on the numerical components of the vector in
a certain coordinate system. Vector components are numbers and we know
how to multiply them. We actually have two recipes for two different vector
multiplications. One recipe takes the components of two vectors and generates
a number (or a scalar), as an output. This product is called the scalar product6.
There is another recipe that takes the components and generates a set of
components of another vector as an output. This product is called the vector
product7 because it generates another vector.

Let us now discuss the origin of the scalar and vector products. The scalar
product between two vectors −→a and

−→
b is indicated by −→a ·

−→
b and produces

a number (scalar). We have seen already (eq. 2.3) how to obtain the magni-
tude of a vector from its coordinates. We have also seen that the magnitude
of the vector is independent from the choice of coordinate system. When a
quantity does not depend on the choice of the coordinate system we say that
the quantity is invariant under that specific coordinate transformation. So,
the magnitude of a vector is invariant. Finding invariants is a very important
and useful thing in physics because if we can express physical laws in terms
of vectors, then we are insured that the laws are invariant and we have the
freedom to choose whatever coordinate system we want. We will see that cer-
tain problems are very difficult to treat in Cartesian coordinates while they
become more easily treated in other coordinate systems.

Let’s now consider 3 vectors −→a ,
−→
b and −→c with coordinates respectively

(ax, ay), (bx, by) and (cx, cy). Taken individually, each vector’s magnitude is
an invariant:

6The scalar product is also called the dot product. Mathematicians call it the inner
product or projection product.

7The vector product is also-called the cross product.
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‖−→a ‖2 = a2
x + a2

y

‖
−→
b ‖2 = b2x + b2y

‖−→c ‖2 = c2x + c2y

(2.18)

Suppose that the vector −→c is obtained by summing the two vectors −→a and−→
b , i.e. −→c = −→a +

−→
b . We must have:

‖c‖2 = (ax + bx)2 + (ay + by)2

‖c‖2 = a2
x + b2x + 2axbx + a2

y + b2y + 2ayby

‖c‖2 = ‖−→a ‖2 + ‖
−→
b ‖2 + 2(axbx + ayby)

(2.19)

The last equation in eq. 2.19 tells us that the quantity (axbx + ayby) must
be an invariant because all the other terms are invariant. We call this quantity
the scalar product of −→a and

−→
b :

−→a ·
−→
b = (axbx + ayby) (2.20)

If the vectors live in the 3-dimensional world, then their scalar product is:

−→a ·
−→
b = (axbx + ayby + azbz) (2.21)

where now we have the extra z axis. From the above definition, it follows that
the dot product of a vector with itself is equal to the square of its magnitude:

−→a · −→a = (a2
x + a2

y) = ‖−→a ‖2 (2.22)

The scalar product always gives a scalar as an output which is invariant
under change of coordinate systems8.

We now show that it is possible to calculate the invariant generated by
the dot product without knowing the coordinates of the vector but just their
magnitudes and directions. Let us consider two vectors −→a and

−→
b as shown in

fig. 2.5. We see from the figure that vector −→a is aligned with the x axis and
therefore has coordinates (ax, 0). The dot product, in this particular Cartesian
coordinate system will be:

−→a ·
−→
b = (axbx + ayby) = axbx (2.23)

but the component bx is the projection of the vector
−→
b onto the x axis. There-

fore, if α is the angle between the two vectors, we have that bx = ‖
−→
b ‖ cosα.

We already know that ‖−→a ‖ = ax and so the scalar product is:

8In reality we will see later that it is possible to generate a pseudoscalar if we make the
scalar product of a vector and a pseudovector (defined later).
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FIGURE 2.5 Geometric interpretation of the dot product as projection.

−→a ·
−→
b = axbx = ‖−→a ‖‖

−→
b ‖ cosα (2.24)

Eq. 2.24 tells us that the scalar product of two orthogonal (perpendicular)
vectors is zero.

In summary, we have that the dot product of two vectors can be calculated
in two different equivalent ways:

−→a ·
−→
b = (axbx + ayby)

−→a ·
−→
b = ‖−→a ‖‖

−→
b ‖ cosα

(2.25)

The first by using the coordinates of the vector in a given coordinate
system, the second by using the magnitudes and angle between the two vectors
(once their bases are put together).

The other operation involving two vectors is the so-called vector product .
The vector product can be defined by considering two vectors −→a and

−→
b not

having the same direction. In this case, these two vectors uniquely identify a
plane. We want to build a vector −→c that is perpendicular to this plane, i.e.
we request that −→c is both perpendicular to −→a and

−→
b . This problem can be

solved algebraically by requesting that the scalar products −→a ·−→c =
−→
b ·−→c = 0.

Using eq. 2.21 (because now we have vectors spanning the 3-dimensional
space), we have:
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FIGURE 2.6 Right-hand rule in the vector product.

Xax + Y ay + Zaz = 0

Y bx + Y by + Zbz = 0
(2.26)

where for clarity we called the components of the vector −→c , (X,Y, Z). The
system of equations 2.26 contains two equations with three unknowns. This
means that there are infinite solutions (coordinates) that represent the vector
perpendicular. All the solutions are parallel to each other and therefore we
should not be surprised. To find a convenient solution, let us multiply the first
equation of the system 2.26 by bx and the second equation by ax:

Xaxbx + Y aybx + Zazbx = 0

Y axbx + Y axby + Zaxbz = 0
(2.27)

If we subtract the second equation from the first and after a little bit of
algebra we find two solutions:

X =
(axbz − azby)

(axby − aybx)
Z

Y = − (axbz − azbx)

(axby − aybx)
Z

(2.28)
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If we choose the particular solution Z = (axby − aybx), then the vector
perpendicular has coordinates:

X = (aybz − azby)

Y = −(axbz − azbx)

Z = (axby − aybx)

(2.29)

When we made the arbitrary choice Z = (axby − aybx) we also defined
the orientation of the vector resulting from the vector product. In fig. 2.6 we
see the geometry of the vector product. The two vectors −→a and

−→
b identify a

plane. The vector −→a ×
−→
b , constructed to be perpendicular to the plane, can

point either upwards or downwards. The choice we made is to have it point
upwards. With this choice, the three vectors identify a right-handed coordinate
system: to decide where the vector product is pointing, we align the first vector
in the product (−→a ) with the index finger of a right hand (right panel in fig.
2.6). The second vector in the product (

−→
b ) is then aligned along the middle

finger. With this convention, the thumb indicates the direction of the vector
product. It follows immediately that the vector product satisfies:

−→a ×
−→
b = −

−→
b ×−→a (2.30)

i.e. is not commutative. You can convince yourself by now aligning the vector−→
b with the index finger and the vector −→a with the middle finger. Your thumb
now will point downwards instead of upwards. An alternative way to avoid
overexerting your wrists can be seen in the left panel of fig. 2.6: a right-
handed screw turned anti-clockwise (from −→a to

−→
b ) will advance upwards. If

you exchange the two vectors the screw will advance downwards.
We now show that, in analogy with eq. 2.25, there are two equivalent ways

to calculate the vector product. Eq. 2.29 already tells us how to calculate the
coordinates of the vector product given the coordinates of the two vectors
being multiplied by each other. We now show that there is a way to calculate
the magnitude of the vector product given the magnitude and direction of the
two vectors being multiplied. The following derivation is quite cumbersome
and lengthy and that’s probably why it is not often reported in textbooks.

To make the expressions a bit easier to follow we now consider two vectors
−→a and

−→
b with coordinates respectively (a1, a2, a3) and (b1, b2, b3). From eq.

2.29 let’s write the square of the magnitude of the vector product:
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‖−→a ×
−→
b ‖2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a2
2b

2
3 − 2a2a3b2b3 + a2

3b
2
2

+ a2
3b

2
1 − 2a1a3b1b3 + a2

1b
2
3

+ a1
2b22 − 2a1a2b1b2 + a2

2b
2
1

= a2
1(b22 + b23) + a2

2(b21 + b23) + a2
3(b21 + b22)

− 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

(2.31)

Let us now write the square of the magnitude of the dot product:

(‖−→a ‖‖
−→
b ‖ cosα)2 = (a1b1 + a2b2 + a3b3) · (a1b1 + a2b2 + a3b3)

= a2
1b

2
1 + a1a2b1b2 + a1a3b1b3

+ a2
2b

2
2 + a1a2b1b2 + a2a3b2b3

+ a2
3b

2
3 + a1a3b1b3 + a2a3b2b3

= a2
1b

2
1 + a2

2b
2
2 + a2

3b
2
3

+ 2(a1a2b1b2 + a1a3b1b3 + a2a3b2b3)

(2.32)

Now we add the two equations 2.31 and 2.32:

‖−→a ×
−→
b ‖2 + ‖−→a ‖2‖

−→
b ‖2 cos2 α = a2

1(b21 + b22 + b23)

+ a2
2(b21 + b22 + b23)

+ a2
3(b21 + b22 + b23)

= ‖−→a ‖2‖
−→
b ‖2

(2.33)

Eq. 2.33 reduces to:

‖−→a ×
−→
b ‖2 + ‖−→a ‖2‖

−→
b ‖2 cos2 α = ‖−→a ‖2‖

−→
b ‖2

‖−→a ×
−→
b ‖2 = ‖−→a ‖2‖

−→
b ‖2(1− cos2 α)

‖−→a ×
−→
b ‖2 = ‖−→a ‖2‖

−→
b ‖2 sin2 α

(2.34)

Taking the square root of the last equation, we have:

‖−→a ×
−→
b ‖ = ‖−→a ‖‖

−→
b ‖ sinα (2.35)

which is the analog of the second equation in eq. 2.25 for the vector product.
There is a geometric interpretation of the vector product (see fig. 2.7). The

vector product is a vector whose magnitude is the area of the parallelogram
identified by the two vectors −→u and −→v . We see immediately that the area of
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FIGURE 2.7 Geometric interpretation of the vector product .

the parallelogram ABDE is equal to the area of the rectangle HKDE whose
area is indeed ‖−→u ‖ ‖−→v ‖ sin θ. The direction is given by the right hand rule.

Let’s conclude this section by stating a useful formula for the vector prod-
uct of three vectors −→a ,

−→
b and −→c :

−→a × (
−→
b ×−→c ) =

−→
b (−→a · −→c )−−→c (−→a ·

−→
b ) (2.36)

2.1.3 Differentials and Derivatives of Vectors

Now that we have defined vectors and some operations, we need to see what we
can do with them. If we want to study the motion of planets, for example, we
need to know how things change with time. The planet’s position, for example,
can be indicated with three numbers corresponding to its coordinates in an
x, y, z Cartesian coordinate system. We understand the motion if we know
how to calculate the position of the planet after a certain interval of time. We
have seen that we can associate a vector to displacements and so if we want
to know how the position of the planet changes with time we need to study
how the position vector changes with time, i.e. we need to understand the
derivative of a vector quantity.

Let us first introduce the concept of a differential9. Let f(x) represent a
function that can be differentiated on an open interval containing the variable
x10. We define the differential dx as any non-zero real number11. We define
the differential of the function f(x) as:

dy = f ′(x)dx =
df

dx
dx (2.37)

Notice that the differential of the independent variable x is just a number

9The definition we give is not rigorous but good enough for the mathematical functions
found in the physical problems that we will encounter in celestial mechanics.

10An open interval is an interval that does not contain its endpoints. In our case it is
enough to say that the function f(x) is differentiable between −∞ and +∞.

11We always consider this number very small and tending to zero.
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FIGURE 2.8 Geometrical interpretation of the differential dy = f ′(x)dx

of a function f(x).

while the differential of a dependent variable, i.e. a variable that is a function
of one (or more) variables, is defined by eq. 2.37. In fig. 2.8 we can see a
geometric interpretation of the concept of the differential. The function f(x)
goes smoothly (differentiable) from the point (x0, y0) to (x1, y1). Suppose we
want to estimate the value of the function f(x1) evaluated at x1, knowing its
value f(x0) at x0. From the figure we see that a good approximation would
be to calculate the tangent to f(x) so as to estimate f(x1) with the value of
the tangent at x1. This estimate produces an error equal to ε. In fact we have:

dy = (y1 − y0)− ε
= ∆y − ε ≈ ∆y

(2.38)

where ε goes smaller and smaller as x1 approaches x0. The approximation
would be dy ≈ ∆y and becomes better and better as x1 → x0 with ε → 0.
If we accept an approximate value for the function f(x) at x1 then we can
“control” the accuracy by calculating the error ε. If the error is acceptable,
then we can evaluate the function f(x) at x1 by simply calculating the value
at x1 along the tangent instead of the function f(x). The equation of the
tangent at x0 of the function f(x) is given by:
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(y1 − y0) = m(x1 − x0)

m =
dy

dx

dy =
dy

dx
dx = f ′(x)dx

(2.39)

The described procedure to approximate the value of a function with the
value calculated along the tangent is called linear approximation.

We now give a few useful relations involving differentials . Given two func-
tions u and v and two constants p and q, it is easy to show that differentials
obey the following rules:

d(p) = d(q) = 0

d(u+ v) = du+ dv

d(qu) = qdu

d(uv) = vdu+ udv

d(u/v) =
(vdu− udv)

v2

(2.40)

Let us now go back to the meaning of the derivative of a vector. Suppose
we have a vector −→u that changes with time. We can write that −→u = −→u (t).
What is the derivative of this vector? Extending eq. 1.27 to the vector −→u we
can write:

d−→u
dt

= lim
∆t→0

−→u (t+ ∆t)−−→u (t)

∆t
(2.41)

If we think of the vector −→u in terms of magnitude and direction, we can
decompose its variation with time separately for the magnitude and for the
direction. We can then study the two variations independently. In fig. 2.9, left
panel, we see how a change of magnitude of a vector −→u produces a vector
d−→u which is parallel to the vector −→u . The right panel shows how a change in
direction produces a vector d−→u which is now perpendicular to the vector d−→u
when the angle dα gets smaller and smaller. Now suppose that the vector d−→u
is rotating counterclockwise without changing its magnitude. It is obvious that
the tip of the vector will describe a circumference. If the rate of change of the
angle α is constant, then the tip of the vector is describing what is commonly
called a uniform circular motion, i.e. ‖−→u ‖=constant and dα

dt=constant.
Let’s study mathematically (the physics will come later) a bit more in

detail the trajectory of a point in a 2-dimensional plane. The motion of a
point is fully described if we give the x = x(t) and y = y(t) coordinates as a
function of time (see fig. 2.10).
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FIGURE 2.9 Variation of a vector. Left panel shows the rate of change
of the vector with change of magnitude while the right panel shows the
rate of change of the vector with change of direction.

FIGURE 2.10 Trajectory of a moving point P on a x, y coordinate sys-
tem. The coordinates of the point P, during its motion are both function
of time, x = x(t), y = y(t).
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FIGURE 2.11 Cartesian and Polar coordinate systems in two dimen-
sions. Note the orientation of the unit vectors.

We have already seen how to represent symbolically a vector by writing:

−→s (t) =

(
x(t)
y(t)

)
(2.42)

The vector −→s changes with time during the motion of the point P and its
coordinates x = x(t) and y = y(t) must change with time accordingly. Let’s
now write down the derivative of the vector expressed in 2.42:

d

dt
−→s (t) =

d

dt

(
x(t)
y(t)

)
=

(
dx
dt
dy
dt

)
(2.43)

Eq. 2.43 shows that the derivative of a vector −→s can be represented by a
new vector whose components are the derivative of the components of −→s . This
new vector is tangent to the curve in the point P and tells us the instantaneous
velocity (magnitude and direction) of the point P . We know already that the
scalar product −→s · d

−→s
dt = 0, meaning that the two vectors are perpendicular.

2.1.4 Polar and Cylindrical Coordinates

We will see that in the study of the orbital motion of planets there are a
set of equations that need to be solved to obtain all the orbital parameter.
We have used, so far, Cartesian coordinates to describe various mathematical
quantities. However, quite often, equations written in Cartesian coordinates
can become quite difficult to treat. It is possible to express equations and var-
ious important vectors in a different coordinate system which is more natural
when treating orbital motion: polar coordinates .

With reference to fig. 2.11, we see that the position of a point P is uniquely
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FIGURE 2.12 The function y=atan2(x,y). From top to bottom, when
x > 0 and y is positive or negative, the atan2 is just the atan. When
x < 0 and y ≥ 0, then we need to add π to the calculated value of the
atan. Finally, when x > 0 and y < 0, then we need to subtract π to
the calculated value of atan.

identified by either giving its Cartesian coordinates (x, y), or its polar coordi-
nate (r, θ). In the polar coordinate system, the point P is identified by giving
the distance between a reference point O and the point P and the angle θ
between a reference axis and the polar axis. Simple trigonometry allows us
to write down the equations of transformation between Cartesian and polar
coordinate systems. Knowing the polar coordinate we can find the Cartesian
by using:

x = r cos θ

y = r sin θ
(2.44)

The reverse transformation, i.e. Cartesian-to-polar, is a bit more compli-
cated because of an ambiguity in the angle θ. The Cartesian to polar trans-
formations are given by:

r =
√
x2 + y2

θ = atan2(y, x)
(2.45)

where the function atan2(y, x) is defined in fig. 2.12.
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FIGURE 2.13 A point P in cylindrical coordinates.

The extension to three dimensions of polar coordinates is called cylin-
drical coordinates. A point P in space is identified with three coordinates
(r, θ, z) as represented in fig. 2.13. The coordinate transformation formulas
between Cartesian and cylindrical coordinate are:

r =
√
x2 + y2

θ = atan2(y, x)

z = z

(2.46)

The unit vectors of cylindrical coordinates are −→er ,−→eθ ,−→ez and they form a
right-handed coordinate base for which −→er = −→eθ × −→ez . Using the definition of
sin θ and cos θ we have:

−→er = −→ex cos θ +−→ey sin θ
−→eθ = −−→ex sin θ +−→ey cos θ
−→ez = −→ez

(2.47)

and using the chain rule (eq. 1.30), we can calculate the time derivatives of
the unit vectors:

d−→er
dt

=
d−→er
dθ

dθ

dt
= −→eθ

dθ

dt
d−→eθ
dt

=
d−→eθ
dθ

dθ

dt
= −−→er

dθ

dt

(2.48)
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2.1.5 Vectors in Physics

Why are vectors important in physics and in particular in the study of the mo-
tion of planets in the solar system? Because many physical quantities involved
in the study of motion cannot be described by just a numerical quantity, but
need more information to be completely determined. In particular, vectors are
quantities that are fully described if we give the magnitude and the direction.
An arrow is a good visual representation of a vector because the length can
be made proportional to the magnitude and the tip of the arrow indicates the
orientation.

There is one more important property of vectors. All the equations needed
to define the motion of celestial objects in our solar system consist of a re-
lationship among various vectors. This means that if we understand how to
manipulate vectors algebraically then we can manipulate the vector equation
describing the dynamics of our solar system objects.

Finally, if we express physical laws as relationships between vectors, these
relationships are independent from the specific coordinate axes that we
choose to represent the vectors. This is very powerful because we can choose
the most convenient coordinate system depending on the specific physical sys-
tem and its properties.

Notice that not all the laws in physics can be expressed in terms of vectors.
Tensors are instead used and they are more general entities for which the
vector is a particular case. 12

2.1.6 Polar and Axial Vectors

When we talked about operations with vectors we introduced two ways to
multiply two vectors: scalar product and vector product . These two opera-
tions, although both containing the word “multiply”, are inherently different.
The scalar product of two vectors, for example, generates a number or scalar.
The vector product of two vectors generates another vector. We will see that
vectors obtained through vector products are different from vectors like dis-
placement, velocity or acceleration. We have studied how the components of
a vector change under a coordinate transformation like a simple translation
or a rotation. Let’s look at the physics for a moment. Let us assume that the
distant stars are so distant that they do not move appreciably and therefore
they constitute a reference system to which we refer the motions on Earth13.

Let us study what happens to vectors once subject to a special kind of
coordinate transformation: parity. A parity transformation is a change of

12In the elementary discussion of this book we will not consider tensor algebra and its
application in physics. See further readings at the end of this chapter.

13For small Earth’s motion this is quite a good assumption. However, if we have to
consider, for example, the motion of the stars in our galaxy, then the distant stars reference
frame would not be adequate anymore and we should change to a system composed of
all distant galaxies. This system might also not be adequate if we study the large-scale
structure of the Universe.
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FIGURE 2.14 Parity transformation, x → x′ = −x, y → y′ = −y and
z → z′ = −z. Notice that the coordinate system in the left panel is
right-handed while the one in the right panel is left-handed. A polar
vector is represented.

coordinates obtained by reversing the directions of all the coordinate axes. If
we indicate with P the action of reversing the directions of the coordinate
axes, we have x′y′

z′

 = P

xy
z

 =

−x−y
−z

 (2.49)

A vector-like −→u will change its coordinates according to eq. 2.49 such that:

−→
u′ = P−→u = −−→u (2.50)

Eq. 2.50 tells us that in order for the vector −→u to keep the original magni-
tude and direction, in the new coordinate system where the axes are flipped,
the coordinates of −→u need to be flipped as well.

Now let us consider a simple displacement vector describing a space ship
traveling from the point O (origin of the coordinate system) to the point B in
space towards the star Alpha Centauri (see fig. 2.14). The displacement vector
−−→
OB with coordinates (x0, y0, z0) indicates that in a certain time interval the
spaceship has traveled from the point A to the point B in space. Obviously,
such displacement cannot depend on the choice of coordinate system and
therefore, in order for the vector

−−→
OB to still point in the same direction and

with the same magnitude, its coordinates have to change from (x0, y0, z0) to
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FIGURE 2.15 An axial vector under parity transformation.

(−x0,−y0,−z0). Same behavior must be expected for other vectors like the
velocity or the acceleration towards Alpha Centauri. Vectors that change their
coordinates according to eq. 2.49 are called polar vectors .

There are other vectors14 that, under parity transformation, do not change
sign but flip in the same way as the coordinates. This is the case of vectors
generated by the vector product of two polar vectors −→u and −→v :

P (−→u ×−→v ) = (
−→
u′ ×

−→
v′ ) = (

−→−u×−→−v) = (−→u ×−→v ) (2.51)

Vectors transforming their coordinates according to eq. 2.51 (see fig. 2.15)
are called axial vectors 15. We will see that polar vectors are mostly associ-
ated with forces that generate motion along the same direction as the vector.
For example, a simple impulse on a billiard ball coming from the cue stick
will result in the ball moving along the direction of the motion of the cue
(if no spinning effect is imparted to the ball). Example of polar vectors are:
displacement, velocity, acceleration, and gravitational attraction.

The vector multiplication of two polar vectors, as in eq. 2.29, generates an
axial vector. It can be shown that we must have:

1. (polar vector) × (polar vector) = (axial vector)

2. (axial vector) × (axial vector) = (axial vector)

3. (axial vector) × (polar vector) = (polar vector)

4. (polar vector) × (axial vector) = (polar vector)

14For the mathematically inclined, the objects we will be talking about now are not proper
vectors. It happens that in a 3-dimensional space they behave very much like vectors, while
in reality they are antisymmetric tensors.

15Also called pseudovectors.
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FIGURE 2.16 Angular velocity due to the rotation of the Earth.

Axial vectors are associated mostly with rotations. Let us try to define an
angular motion in the 3-dimensional space with a vector. Let us consider the
rotation of the Earth and a point P on its surface located in the Northern
Hemisphere at an angle α from the North Pole16. Due to the rotation of the
Earth, this point will rotate at an angle θ during a certain period of time.
We know already that the point P will return to its original position (relative
to the fixed stars, for example) after about 24 hours. We can calculate the
amount of space that the point P will travel along the arc length after a
rotation of an angle θ. If the point Q is on the equator, as in the fig. 2.16, it
will travel the maximum distance 2π · CQ = 2πR ≈ 40, 000 km, where R is
the radius of the Earth. This means that the point Q will travel the maximum
circumference of the Earth. However, if the point P is at a certain angle α
from the North Pole, then it will travel on a circumference that has a radius
equal to PP ′ = R sinα. Let us now calculate a small arc length ds (see square
insert in the upper left corner of fig. 2.16).

ds = dθ R sinα (2.52)

We can divide the above equation by the differential dt:

16This angle is 90◦ minus the latitude of the place.
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ds

dt
=
dθ

dt
R sinα = ω R sinα (2.53)

The quantity ds
dt is the instantaneous velocity −→v tangent to the point P .

Eq. 2.53 has the same form as eq. 2.35 defining the vector product, if we
identify ω and R with the magnitude of two vectors, respectively −→ω and

−→
R .

The vector
−→
R is clearly the radius R expressed as a polar vector. We therefore

re-write eq. 2.53 as:

−→v = −→ω ×
−→
R (2.54)

What is the vector −→ω ? First, we notice that −→ω is perpendicular to both−→
R and −→v , i.e. is perpendicular to the plane where the rotation is happening.
In the vector product in eq. 2.54, the output vector of the vector product is a
polar vector. Since

−→
R is also a polar vector, then −→ω must be an axial vector

because of rule 4 above. −→ω is aligned with the axis of rotation of the Earth
and its magnitude gives the radians per second of rotation. So, −→ω is called
angular velocity , and it is a vector aligned with the axis of rotation.

2.2 NEWTON’S LAWS AND GRAVITY
In the previous section we have developed a few useful mathematical tools.
We now switch to physics and study a few concepts that will be essential to
understand the motion of celestial bodies in the next chapter. It is a com-
mon experience among physicists that the more basic the quantity we try to
define the more difficult the task is. In this section we state the Newton’s
three conservation laws, mostly used in Newtonian mechanics (energy, mo-
mentum, angular momentum), and Newton’s gravitation law. Armed with
these formidable tools we will be ready to finally study in detail the motion
of planets under the influence of gravity.

Sky objects like stars and planets appear to move. They appear to rotate
around the north celestial pole (NCP)17. This motion is clearly a geometric
effect due to the rotation of the Earth. A more interesting question is: do the
stars move or are they fixed? If they move, what kind of motion is involved
and what is the origin of such motion?

We already know that planets move and they move into a closed path
around the Sun. If the Sun was not present, the planets would continue to
move on a straight line forever. In order to understand the motion, we need
the laws of motion, i.e. statements and equations that will help us calculate
how objects move. There are three laws and they were first presented in the
year 1687 by Isaac Newton [9].

The first law of motion was actually first formulated by Galileo Galilei as
his inertia definition. It can be stated as follows:

17The North Celestial Pole is the point in the sky obtained by extending the Earth’s
rotation axis into the sky where it intersects the celestial sphere.
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FIGURE 2.17 Sir Isaac Newton (1643 - 1727) is undoubtedly one of
the greatest scientists of all time. He laid the foundations of classical
mechanics and invented differential calculus, together with Gottfried
Wilhelm Leibniz. He has worked in optics, fluid dynamics and theory
of thermal conductivity.
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FIGURE 2.18 Galileo Galilei (1564 - 1642) is recognized as the father of
observational astronomy. He was the first to build himself a telescope
and use it to study the sky objects. Galileo was a strong advocate of
heliocentrism which caused him to be subject to the Roman Inquisition
in 1615. He was forced to recant his views and spent the rest of his life
under house arrest.

First Law: Every object will remain at rest or in uniform motion in a
straight line unless compelled to change its state by the action of a net external
force.

We can use the first law to define the concept of force: when a body
changes its state of motion, i.e. accelerates, decelerates, change direction or
a combination of the above, then a force is applied. There are contact forces
when the object has changed its state of motion as a result of having another
body coming in direct contact. Think, for example, of the change of trajectory
of a snooker ball when is hit by another snooker ball. There are also non-
contact forces able to act upon a body apparently without contact and across
empty space, like gravity or magnetic/electric forces.

What kind of quantity is a force? If we kick a football laying on the grass,
we know that the heavier the ball, the shorter the distance it will travel before
stopping. So the force must be proportional to the mass of the ball. We also
know that if we can kick the ball in a certain direction, the ball will go along
exactly that direction. So the force has a magnitude and a direction: it is a
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vector. This means that to define a force, we need to tell not only how strong
it is but also in which direction it is acting.

We now introduce an important concept: momentum of a particle of
mass m. The momentum of a particle of mass m moving with a velocity −→v is
a vector (polar) defined by:

−→p = m · −→v (2.55)

Newton stated the second law of motion as a relationship between force
and momentum:

Second Law: The change of motion, i.e. momentum of an object, is pro-
portional to the force impressed upon it, and is made in the direction of the
straight line in which the force is impressed.

The second law can be expressed mathematically as:

−→
F =

d−→p
dt

(2.56)

where
−→
F is the force and −→p is the momentum, defined as the product of the

mass times the velocity. A more familiar form of eq. 2.56 is shown in eq. 2.57
if we assume that the mass m is constant with time:

−→
F =

d
−−−→
(mv)

dt
= m

d−→v
dt

= m−→a (2.57)

Eq. 2.57 tells us that the force is a vector; it accelerates the body to which
it is applied and is aligned along the direction of the acceleration. In the SI
system 18 the unit of force is found by looking again at its definition: it is the
force that when applied to a body of mass 1 kg, impresses an acceleration of
1 meter per sec2. It should not surprise us that such a unit is called 1 Newton
to celebrate Isaac Newton who first proposed his second law of motion.

For completeness we enunciate also the third law of motion:
Third Law: To every action there is always opposed an equal reaction.

Alternatively the mutual actions of two bodies on each other are always equal
and opposite.

How do we use Newton’s laws to solve dynamical problems, i.e. how do we
use equation 2.56? This equation tells us that if we know the force vector

−→
F

and the mass m of the body, then we can calculate the acceleration. Let us
study the simple situation for which there are no external forces, i.e.

−→
F = 0.

For simplicity, let us restrict the system to just the x coordinate, i.e. the
motion is only along the x axis. Eq. 2.56 or 2.57 become:

18The SI is the International System of units where we measure physical quantities in
terms of seven base units: ampere (electrical current), kelvin (temperature), second (time),
meter (length), kilogram (mass), candela (luminous intensity) and mole (amount of sub-
stance).
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FIGURE 2.19 Geometry of the gravitational forces acting between two
bodies of masses m1 and m2.

m
d2x

dt2
= 0

m
dx

dt
= const

(2.58)

So the body of mass m in absence of external forces maintains a constant
speed. This is Newton’s first law, also known as Galileo’s inertia definition.
Another simple example concerns the weight force

−→
P = m−→g which is the

force due to the Earth’s gravitational attraction at the surface of the Earth.
We will talk extensively of gravitational attraction in the rest of this book.
So we now have Newton’s second law and a force specified. We can therefore
write:

m
d2x

dt2
= mg (2.59)

where g is the gravitational acceleration at the surface of Earth equal to
g = 9.81 meter · s−2. The mass m cancels out telling us that the free fall of
bodies of different masses follows exactly the same trajectory as notoriously
shown by Galileo and, more recently, by the Apollo 15 crew on the surface of
the Moon with a hammer and a feather. Eq. 2.59 describes the motion of a
body on the surface of the Earth subject only to the attraction of the Earth
and neglecting air resistance and Earth’s rotation. Eq. 2.59 is an example of a
differential equation where the unknown is the function x = x(t) describing
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the position x of the free falling body. It is straightforward to check that the
solution to eq. 2.59 is:

x(t) = x0 + v0t+
1

2
gt2 (2.60)

where the coordinate x now represents the vertical coordinate towards the
center of the Earth and x0 and v0 are respectively the initial position and
initial velocity of the free falling body.

Eq. 2.56 does not tell us the effect of a non-contact force between two
bodies of masses m1 and m2. In order to understand the motion of celestial
bodies, for example, we need to specify what force exists between the Sun and
a planet or the Earth and the Moon, etc. Newton, in his Principia book, first
describes such a force (gravity) acting between two bodies of masses m1 and
m2, separated by a distance r12:

−→
F 12 = G

m1m2

r2
12

−→
k 12 (2.61)

where G = 6.674 · 10−11 N · kg−2 · m2 and
−→
k12 is the unit vector along the

direction connecting the two masses.
−→
F is a polar vector in the sense that

the force is directed along the line 12. Notice the relatively small value of the
constant G, which is balanced by the large mass of the Earth, for example, to
justify the fact that we “feel” gravity anyway. In conclusion, we have seen that
Newton’s laws provide us with differential equations once we have understood
all the forces at play, i.e. we have defined all the vectors. The solutions to these
differential equations represent the motion of the bodies. Having defined the
force due to gravity between masses, we are now in a position to study the
orbital motion of planets.

2.3 THE CONCEPT OF MASS
In the previous section we have introduced the concept of momentum of a
particle as the product of a scalar quantity, its mass, times a quantity, its
velocity. We already know that multiplying a vector by a scalar produces
another vector and therefore the momentum is a vector. We now need to
define the mass of a body. Newton’s second law tells us that if we apply a
force

−→
F to a body at rest, it will start to accelerate with acceleration −→a . We

can define the mass m as follows:

m =
‖
−→
F ‖
‖−→a ‖

(2.62)

Eq. 2.62 tells us that, given the same force
−→
F applied to different bodies,

we will measure smaller and smaller accelerations for larger and larger masses.
The mass measured in this way is a measure of the inertia of a body, i.e. its
resistance to be accelerated, and it is called inertial mass . It is quite evident
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that it is easier to accelerate a motorcycle rather than a car simply because
the motorcycle is lighter than the car.

There is another kind of force that bodies are subject to: the weight. We
are all familiar with the concept of weight by simply comparing the amount
of effort we have to produce to hold different balls in our hands. A ball made
of iron will require much more effort than a ball of wool. The force that the
balls are subject to is called gravitational force and is directed towards the
center of the Earth. We might be tempted to use Newton’s second law with
this force to define the masses of the different balls. However, we know that
all the bodies subject to this force have all the same acceleration! In fact, the
accelerations of bodies left to fall to the ground are all the same no matter
how big or small or dense the body is. So what is going on?

First, let us define the weight
−→
P of an object19 using eq. 2.57:

−→
P = mg

−→g (2.63)

where g is the gravitational acceleration on the surface of the Earth. The force−→
P is a non-contact force and it is due to the gravitational attraction of the
Earth.

The only way to make sure that the acceleration −→g in eq. 2.63 is constant
is by assuming that the weight force

−→
P is proportional to the mass mg. Notice

that the gravitational mass defined in this way is different from the inertial
mass defined earlier. In fact, this mass is called gravitational mass 20. Are
gravitational mass and inertial mass of a body different? The answer is no:
the equivalence of gravitational mass and inertial mass is a well-established
experimental fact: as of 2018 [10] the two masses are measured to be equal21
to better than 1 part in 1013. Albert Einstein started from this equivalence to
build his general relativity theory.

Think About It...
We have stated that axial vectors are somehow related to rotations.
The magnetic field can be considered as an axial vector and, interest-
ingly, can be generated by having electrons rotating in a conducting
loop.

FURTHER READING

Goldstein, H. (2002), Classical Mechanics. Addison-Wesley.

19Remember that the weight is a force and therefore is a vector quantity.
20More precisely, this is the definition of Passive Gravitational Mass.
21This is also-called WEP for weak equivalence principle.



Math and Physics Toolkit � 81

Joag, P.S. (2016), An Introduction to Vectors, Vector Operators and Vector
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T he motion of planets is regulated by Kepler’s laws. Kepler was the as-
sistant of the Danish astronomer Tycho Brahe who spent several years

making accurate measurements of the position of stars and planets. Kepler
was a good mathematician and studied Tycho’s data with great attention.
He found that the motion of planets obeyed very well three empirical laws.
Kepler’s laws provided the foundation for Newton’s theory of gravitation.

We will see that Kepler’s laws can be obtained from Newton’s laws, and
not vice versa, which means that Newton’s laws are more fundamental than
Kepler’s laws. Most of the dynamical problems are usually treated by assuming
Newton’s laws plus a few extra laws called conservation laws: momentum,
angular momentum and energy. The usage of conservation laws and Newton’s
laws is the way in which orbital motion of planets is studied in undergraduate
courses.

83
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Then, when progressing to more modern mathematics and physics, it is
found that Newton’s laws are not the most fundamental but can be obtained
by a more general principle: the principle of least action1. This principle pro-
vides a beautiful description of dynamical phenomena that contains not only
Newton’s laws but also the conservation laws. In this sense, the principle of
least action is more fundamental than Newton’s laws. This principle is so gen-
eral that it actually has a fundamental role not only in classical mechanics,
but provides a direct link between classical mechanics and quantum physics.

In this chapter we will introduce immediately the principle of least action
and show that Newton’s laws are a consequence of it. After discussing the
conservation laws, we will then proceed to prove Kepler’s laws using a few
different methods: geometrical, using Newton’s methods, using the Laplace-
Runge-Lenz vector and finally using the least action principle.

The maths in this chapter is much more engaging than the previous two
chapters. However, we believe that at the end, a unified vision of celestial
motion will appear that is intellectually extremely satisfying.

3.1 THE PRINCIPLE OF LEAST ACTION
If we find ourselves at the very top of a mountain we experience a very peculiar
position: we are in the only flat place. In three dimensions, we can model the
mountain by a function z(x, y) of two variables z = f(x, y). The top of the
mountain is special because if we move just a tiny bit in the x or y direction,
the coordinate z does not change much. In effect, a technique to find the
maximum of a function consists of finding where the first derivative is zero,
i.e. what point shows the property that if we move a tiny bit we do not lose
altitude. Any other point that is not a maximum (or a minimum like a valley)
does not have this property.

Now we state a law which, as we previously specified many times, has to be
accepted as true until an observation contradicts it. The principle of least
action: Given two points in space P and Q, a particle will move from P to
Q along a trajectory which minimizes the following integral:

S =

∫ t=t2

t=t1

L dt (3.1)

where L is a special function called Lagrangian from the Italian mathematician
Joseph-Louis Lagrange (actually born in Turin (Italy) with the name Giuseppe
Lodovico Lagrangia). Notice that all the possible paths between P and Q have
to be traveled in the same time (t2 − t1) (see fig. 3.2).

Let us now study what conditions the function L must satisfy in order to
have the path PQ be the path of least action. Let us now restrict ourselves
to the simple unidimensional case in which the function L is a function of

1More accurately it should be stated as the principle of stationary action.
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FIGURE 3.1 Joseph-Louis Lagrange, born Giuseppe Luigi Lagrangia,
was an Italian mathematician and astronomer.
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FIGURE 3.2 Geometry of the principle of least action .

the space coordinate x and its derivative dx/dt. Let us indicate the derivative
dx/dt with the symbol2 ẋ. We make the following approximations:

1. The function L = L(x, ẋ) can be approximated with a Taylor’s expansion
limited to the first order.

2. All the segments in fig. 3.2 are infinitesimal.

We already encountered a power series expansion in eq. 1.41 where a func-
tion P (x) is approximated at a certain point x = x0 with an infinite series of
polynomials of increasing order whose coefficients are the derivatives calcu-
lated at x = x0. A Taylor’s expansion is exactly this. Our function L = L(x, ẋ)
is a function of two variables x and ẋ. In this case, the Taylor expansion limited
to the first order around the point R where x = x0 and t = t0, is the value of
the function at the point T (=L(0)) times the infinitesimal shift in x(= η∆t)
times the partial derivative of L with respect to x evaluated at t = t0 plus
the infinitesimal change in slope ẋ(= η) times the partial derivative of L with
respect to ẋ also evaluated at t = t0:

L = L(0) + ∆x
∂L
∂x

∣∣
t=t0

+ ∆ẋ
∂L
∂ẋ

∣∣
t=t0

(3.2)

where the symbol ∂L/∂x
∣∣
t=t0

means the derivative of L with respect to x,

2This is Newton’s convention and it is more compact than the dx/dt symbol by Leibniz.
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evaluated at t = t0, while keeping ẋ constant and ∂L/∂ẋ
∣∣
t=t0

means the
derivative of L with respect to ẋ, evaluated at t = t0, while keeping x constant.

The integral 3.1 can be written by taking the average of the function L.

S =

∫ t=t2

t=t1

L dt = Laverage(t2 − t1) (3.3)

Since we are dealing with a straight line, the average value is exactly in
the middle of the various segments.

We now study the path of minimal action PQ and we consider a simple
infinitesimal variation of this path by tracing two straight lines PR and RQ
(fig. 3.2). Our particle can go from P to Q either along the straight line PQ,
which is also the minimal action line, or along a path from PR and then RQ.
It is important to underline that the time taken along the path PQ is the
same as the total time to travel the path PQ + RQ. This means that the
particle will travel first at a slightly higher speed along PR than at a slightly
lower speed along RQ than along the path PQ.

Let’s estimate the action integral 3.1 by using eq. 3.2. The average value
of the action SPQ along PQ is given by the value of L at the point T , i.e.
L(x0, ẋ0), times the total time interval to go from P to Q, 2∆t:

SPQ ≈ 2∆tL(x0, ẋ0) (3.4)

Before calculating the two action integrals along PR and RQ, let’s estimate
the two variations h = HH ′ and k = KK ′. In order to do that, we need to
first calculate the value of the segment TR. This is easily accomplished by
writing explicitly the equation of the two straight lines PR = (ẋ + η)t and
PQ = ẋt where η is a small increase in the slope of the straight line PQ. The
segment TR is given by:

TR = (ẋ+ η)t0 − ẋt0 = ηt0 = η∆t (3.5)

In fig. 3.2 we have that, by construction, the point T divides exactly PQ
in half, i.e. PT = TQ = 1

2PQ. Similarly, PH = 1
2PT and TK = 1

2TQ. This
means that the triangles 4PRT and 4PH ′H are similar. If they are similar,
then we must have that h = 1

2TR = 1
2η∆t. The term ẋ− ẋ1 must be equal at

the variation of slope which is k = η .
We now have all the ingredients to estimate the action integral at point H ′,

which can be obtained by Taylor expansion around the point H, remembering
that now we are averaging over the line PR for a time interval ∆t:

SPR ≈ ∆t

[
L(x1, ẋ1) + h

∂L
∂x

∣∣
t=t1

+ k
∂L
∂ẋ

∣∣
t=t1

]
= ∆t

[
L(x1, ẋ1) +

1

2
η∆t

∂L
∂x

∣∣
t=t1

+ η
∂L
∂ẋ

∣∣
t=t1

] (3.6)
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In a similar way, by averaging along the segment RQ we have that the
action integral at point K ′ is:

SRQ ≈ ∆t

[
L(x2, ẋ2) + h

∂L
∂x

∣∣
t=t2
− k∂L

∂ẋ

∣∣
t=t2

]
= ∆t

[
L(x2, ẋ1) +

1

2
η∆t

∂L
∂x

∣∣
t=t2
− η ∂L

∂ẋ

∣∣
t=t2

] (3.7)

where we used the fact that ẋ2 = ẋ1, i.e. the slopes at points H and K are
equal to the value ∆x/∆t.

We are now ready to compare eqs. 3.4, 3.6 and 3.7 which express an es-
timate of the action integral along the corresponding segments. We now add
3.6 and 3.7 to obtain the action integral along the total trajectory PR plus
RQ:

SPR + SRQ ≈ ∆t [L(x1, ẋ) + L(x2, ẋ)]

+
1

2
η∆t2

[
∂L
∂x

∣∣
t=t1

+
∂L
∂x

∣∣
t=t2

]
+ η∆t

[
∂L
∂ẋ

∣∣
t=t1
− ∂L
∂ẋ

∣∣
t=t2

] (3.8)

The first terms on the right side of eq. 3.8 are averages of the actions at
their midpoints corresponding to t = t0. The last term is the difference of
the function between two points that are close in time which is approximated
by the derivative with respect to time of the function, times the infinitesimal
time interval ∆t. We can therefore write:

SPR + SRQ ≈ ∆t

[
2L(x0, ẋ) + η∆t

∂L
∂x

∣∣
t=t0
− η∆t

d

dt

∂L
∂ẋ

∣∣
t=t0

]
= ∆t

[
2L(x0, ẋ) + η∆t

(
∂L
∂x

∣∣
t=t0
− d

dt

∂L
∂ẋ

∣∣
t=t0

)] (3.9)

Comparing eq. 3.4 with eq. 3.9 we see that the two actions, in order to be
equal, must satisfy the following equation:

∂L
∂x

∣∣
t=t0
− d

dt

∂L
∂ẋ

∣∣
t=t0

= 0 (3.10)

Eq. 3.10 is known as the Euler-Lagrange equation. More in general, the
Euler-Lagrange is a set of equations referred to generic coordinates q and their
time derivatives q̇. Therefore, a more general Euler-Lagrange equation can be
written as:

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0 (3.11)
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where we can arbitrarily choose the coordinates qi, usually referred to as
generalized coordinates . The generalized coordinates refer to the coordinates
describing the configuration of the system. These coordinates must uniquely
define the configuration of the system relative to a reference configuration. The
generalized velocities q̇i are the time derivatives of the generalized coordinates
of the system. An example of a generalized coordinate is the angle that locates
a planet moving on its orbit around the Sun.

We can choose to describe the motion of a planet either by its Cartesian
coordinates x, y and associated velocities ẋ, ẏ or through the use of polar
coordinates r, θ and associated velocities ṙ, θ̇. It is a matter of convenience
which coordinate we want to use.

We have suffered quite a bit during our last proof, but we now show how
powerful and more fundamental the last equation is with respect to Newton’s
laws. Eq. 3.10 tells us that we have a function L(x, ẋ) of a variable x and its
derivative with respect to time ẋ which, if it is a solution, the particle will
travel along the “real” trajectory. We therefore need to specify this function
L(x, ẋ) called Lagrangian. It turns out that such a function is defined as:

L(x, ẋ) = T − V (3.12)

where T and V are, respectively, the kinetic and potential energy of the par-
ticle. Eq. 3.12 establishes an empirical fact, i.e. a law. Nobody knows exactly
why the Lagrangian must be as in eq. 3.12, but if we build the Lagrangian as
the difference between kinetic and potential energy, then the minimization of
the action integral with the function of eq. 3.12 describes the motion of the
particle.

3.1.1 Conservation Laws

There are three fundamental conservation laws that in Newtonian mechanics,
need to be given as laws. We will now show that these conservation laws
are actually derived from symmetries in nature. The first thing to do is to
define the energy terms in eq. 3.12. The kinetic energy of a particle of mass
m traveling with a speed v is:

T =
1

2
mẋ2 =

1

2
mv2 (3.13)

Let us now assume a simple form for the function V . We say that the
potential energy V (x) is a scalar function of the coordinate x. In this case,
the Lagrangian of a particle of mass m subject to a potential energy given by
a scalar function V = V (x) is:

L(x, ẋ) =
1

2
mẋ2 − V (x) (3.14)

Let us calculate the output of the Euler-Lagrange equation with a La-
grangian given by eq. 3.14. We have that:
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FIGURE 3.3 Definition of work done by the force f along the curve C.

∂L
∂x

=
dV

dx
∂L
∂ẋ

= mẋ

d

dt

∂L
∂ẋ

= mẍ = ma

(3.15)

Eq. 3.15 is Newton’s equation F = ma providing that the force F can be
derived as the derivative of a scalar potential V (x).

F = mẍ = −dV
dx

(3.16)

What kind of forces are generated by the derivative of a scalar function?
First, we need to introduce the concept of work . A force

−→
F does work if

there is a displacement of the point of application of the force along the force
direction. In fig. 3.15 a force is applied along the curve C from the point 1
to the point 2. According to the definition of work, an infinitesimal amount
of work dW is obtained from the scalar product between the infinitesimal
displacement d−→s and the force

−→
f :

dW =
−→
f · d−→s (3.17)

Eq. 3.17 tells us that the work is a scalar quantity (number). If we want
to find the total work done between the points 1 and 2 we need to sum over
all the infinitesimal displacement d−→s . The total work is therefore:

W12 =

∫ 2

1

−→
f · d−→s (3.18)

Now, let’s look back at eq. 3.16 and assume that the motion is happening
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only in one dimension x. The scalar product becomes simply the product fdx
and we have:

W12 =

∫ 2

1

fdx =

∫ 2

1

−dV
dx

dx = V (1)− V (2) (3.19)

where we have used the Fundamental Theorem of Calculus 1.31. Eq. 3.19 tells
us that the class of forces obtained as the derivative of a scalar function are
very special: the work done by these forces does not depend on the particular
path but only on the difference between the final and initial points. These
special forces are called conservative forces.

We can be a bit more specific about the function V = V (x), called poten-
tial energy. Without defining energy precisely, for the moment, let’s assume
we know what energy is, i.e. the capacity of doing work. Then the Lagrangian
3.12 is the difference between the kinetic energy and the potential energy
where the potential energy is that form of energy that depends only on the
position of a body with respect to another. Think about the potential of doing
damage that a brick located on the 20th floor of a building has. If dropped
from the height of 1 cm it can barely scratch your hand, but from the height
of 60 meters it will easily kill you. Two very important examples of conser-
vative forces are electric forces between two electric charges and gravitational
attraction between two masses.

So why does nature decide that the path that minimizes the difference
between kinetic and potential energy is the path that the system will follow?
Nobody knows why! The reality is that it works very well and has many useful
applications. One of the most elegant applications regards the symmetries of
the physical laws.

We have seen that the Lagrangian 3.12 is a function of the coordinate x
and its time derivative ẋ. In general, the Lagrangian can be also explicitly
a function of time t, L = L(x, ẋ, t). Now we discuss three different ways to
perform a specific experiment. Suppose we describe a system with a certain
Lagrangian L and we require that the same system is described with the same
Lagrangian but in a different location on the Earth. This means that if a
certain physical law is valid, for example, in Rome, then it must be valid also in
New York. We are asking under what conditions such a request can be satisfied.
In other words we request that if we change x into x+ ε, the Lagrangian does
not change. There is a very special situation that satisfies this requirement:
the Lagrangian does not contain the term x explicitly. In this case we are free
to choose whatever x we want because it is not explicitly contained in L. Now,
if the coordinate x is not present in L, then the corresponding derivative is
equal to zero and the Euler-Lagrange equation becomes:
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∂L
∂x
− d

dt

∂L
∂ẋ

= 0

∂L
∂x

= 0

d

dt

∂L
∂ẋ

= 0

∂L
∂ẋ

= constant

(3.20)

In the case of a free particle in absence of any external force, we have that
the Lagrangian is simply L = 1

2mẋ
2 and the last equation in 3.20 becomes:

∂

∂ẋ

(
1

2
mẋ2

)
= mẋ = constant (3.21)

The quantity mẋ is the momentum and eq. 3.21 tells us that the mo-
mentum is conserved. Alternatively, we say that since Lagrangian is invariant
for translations in space (i.e. we can choose whatever x we want since the
Lagrangian does not contain x explicitly), then momentum is conserved.

When the Lagrangian is independent from changes of one of its variables,
we say that the Lagrangian is symmetric with respect to that specific coor-
dinate. This concept is in complete analogy with the more familiar use of
the word “symmetric”. For example, we say that a square is symmetric under
rotation of 90◦ because under such rotation the square returns identical to
itself. On the other hand, we cannot say that a square is symmetric under any
rotation, because a small rotation will change its orientation. So a square is
not symmetrical under continuous rotation, meaning that it does change for
small rotations. A circumference is an example of continuous symmetry under
rotation. No matter how small the angle of rotation, the circumference does
not change.

The symmetry of the Lagrangian under continuous transformations gen-
erates conserved quantities. We have seen that under translations the mo-
mentum is conserved. What about if our Lagrangian is symmetric under con-
tinuous rotations in space? It means that our system does not change if we
rotate everything in the Universe. For this particular symmetry, we find that
expressing the Lagrangian in Cartesian coordinates is not convenient. First,
since we are rotating, we need a plane and so we need to express the generic
Lagrangian as L(x, ẋ, y, ẏ) because now we work on the plane x, y. We have
to transform the coordinates from x, y to r, θ. Using eq. 1.27 for finding the
derivative of a product of two functions and eq. 2.8 for the rule to rotate a
coordinate system, we have:
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x = r cos θ

y = r sin θ

ẋ = ṙ cos θ − rθ̇ sin θ

ẏ = ṙ sin θ + rθ̇ cos θ

To write down the Lagrangian, we need to express the kinetic energy T
and the potential energy V in the new coordinate system. The kinetic energy
is:

T =
1

2
m(ẋ2 + ẏ2) =

1

2
m

[(
ṙ cos θ − rθ̇ sin θ

)2

+
(
ṙ sin θ + rθ̇ cos θ

)2
]

=
1

2
m
(
ṙ2 + r2θ̇2

)
(3.22)

Now let us suppose our system is subject to a conservative force such that
the potential energy is only a function of r, V = V (r). The total Lagrangian
in polar coordinates will be:

L(r, ṙ, θ, θ̇) =
1

2
m
(
ṙ2 + r2θ̇2

)
− V (r) (3.23)

Looking at eq. 3.23 we immediately notice that there is no explicit de-
pendency on the coordinate θ. So this Lagrangian is already symmetric with
respect to rotations. In complete analogy with the case of invariance with
translations, where the Lagrangian did not have explicit dependence on x, we
now have no explicit dependence on θ. This means that the following equation
must hold:

∂

∂θ̇

1

2
m
[(
ṙ2 + r2θ̇2

)
− V (r)

]
= mr2θ̇ = constant (3.24)

Eq. 3.24 shows that the quantity mr2θ̇ is constant, i.e. is conserved. This
quantity is called the angular momentum.

The last symmetry we want to discuss concerns the invariance of the La-
grangian with respect to time shifts. In other terms, if an experiment is per-
formed today and we obtain a certain result, if we repeat the same experiment
under exactly the same conditions, we must find exactly the same result. Let’s
assume now that the Lagrangian depends only on one coordinate, its deriva-
tive, and the time t, L(x, ẋ, t). The condition of time invariance corresponds
imposing that the derivative of the Lagrangian with respect to time is zero.
Using the chain rule (eq. 1.30), we have:
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d

dt
L(x, ẋ, t) =

∂L
∂x

dx

dt
+
∂L
∂ẋ

dẋ

dt
+
∂L
∂t

=
d

dt

(
ẋ
∂L
∂ẋ
− L

)
= 0

(3.25)

Eq. 3.25 tells us that in order to have the Lagrangian not explicitly depend
on time (i.e. its derivative with time equal to zero) the term in parenthesis
must be equal to a constant:

ẋ
∂L
∂ẋ
− L = constant (3.26)

Using 3.21, we have that:

mẋ2 − L = 2T − (T − V ) = T + V = constant (3.27)

Time invariance of the Lagrangian requires that the quantity T + V is
constant. This term is the mechanical energy and therefore eq. 3.27 requires
the conservation of mechanical energy defined as the sum of the kinetic
energy plus the potential energy. The three conservation laws that we just
obtained are a consequence of one of the most beautiful theorems in mathe-
matics (and physics), called Noether’s theorem, named after the German
mathematician Amalie Emmy Noether, probably the most important woman
in the history of mathematical physics.

Let’s stop for a moment and reflect on what we have just stated. In addition
to Newton’s method of solving the motion of bodies subject to external forces
and therefore using vectors, we have found that an alternative, more powerful,
description can be obtained through the principle of least action3. The novelty
is that in order to use the machinery of the Euler-Lagrange equations, we need
to be able to write down the kinetic and potential energies which are scalar
and not vector quantities. One major advantage of Lagrangian formulation
is that it is extensible to other areas of physics like quantum mechanics and
optics. Finally, the symmetry properties of the Lagrangian give immediately
conserved quantities as we have seen with momentum, angular momentum,
and energy.

3.1.2 Newtonian and Lagrangian Problem Solving

We now show how to solve a simple problem with Newton’s approach, and
then we show how the Lagrangian produces identical results. Let us assume
we have a mass m attached to a spring of negligible mass. Suppose we have
verified that the spring, when compressed or extended, always reacts with a
force opposed to the compression (extension) and proportional to the amount

3In reality, we do not strictly need that the action is a minimum and therefore we should
request that the action is stationary.
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FIGURE 3.4 Amalie Emmy Noether.
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FIGURE 3.5 Mass m at position x on a frictionless table constrained
by a spring of elastic constant k.

of shift, i.e. the force from the spring is F = −kx where k is a constant
typical of the spring and the minus sign means that the force is opposed to
the compression (extension).

In fig. 3.5 a massm is on a frictionless table attached to a wall by a massless
spring of elastic constant k, i.e. capable of producing a force always opposed to
any pull or push. We assume that the strength of this reaction force from the
spring is linearly proportional to the amount of stretch or compression, and
opposed, i.e. the spring pushes away if compressed, or pulls back if extended.
If we call the spring reaction force F1, we can write that the reaction force
is F1 = −kx. Newton’s law then tells us that the mass will be subject to the
following equation:

F = ma = −kx (3.28)

Note that eq. 3.28 tells us that the mass m has zero force when in x = 0. If
we express the acceleration a as the second derivative of the space coordinate
x, we have:

d2x

dt2
= − k

m
x (3.29)

Eq. 3.29 is an example of a differential equation of the second order, mean-
ing that we are looking for a function x = x(t) that differentiated twice gives
the same function x(t) multiplied by a factor − k

m . An example of a function
that once differentiated twice comes back to itself is the function sine whose
derivatives are is listed in table 1.1. Let’s try a solution x(t) = A sin(ωt+ φ).
Let us use the notation ẋ ≡ dx

dt :

x = A sin(ωt+ φ)

ẋ = ωA cos(ωt+ φ)

ẍ = −ω2A sin(ωt+ φ)

(3.30)
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Let’s now insert 3.30 into 3.29:

ẍ = −ω2A sin(ωt+ φ) = − k
m
A sin(ωt+ φ)

−ω2 = − k
m

(3.31)

so, the solution to eq. 3.29 is:

x(t) = A sin(

√
k

m
t+ φ) (3.32)

which describes a sinusoidal oscillation of the mass m at a characteristic fre-
quency ω = 2πν =

√
k
m .

Let us solve the same problem using the Lagrangian formalism. First, we
need to identify the kinetic and the potential energies. The kinetic energy of
the mass m is T = 1

2mẋ
2. In order to find the potential energy we use a

generalization of eq. 3.19 that tells us that the potential energy is the integral
of the force along the trajectory. Since we are considering a simple case where
the mass is constrained along the x axis, the potential V (x) is obtained:

V (x) =

∫
dV

dx
dx = −

∫
Fdx =

∫
−kx dx =

1

2
kx2 (3.33)

so the Lagrangian is:

L = T − V =
1

2
mẋ2 +

1

2
kx2 (3.34)

We now use the Euler-Lagrange equations 3.10:

∂L
∂x

= kx

∂L
∂ẋ

= mẋ

d

dt

∂L
∂ẋ

= mẍ

mẍ = −kx

(3.35)

and so we obtain the equation 3.29.
You might ask: “why use the Lagrangian formalism to obtain the same

result as the Newtonian formalism?”; or equivalently, “is it worth the com-
plication of the Lagrangian formalism?” There are situations where using the
Newtonian formalism is not as simple as in the case of the harmonic oscillator.
For example, a system of 3 springs and two masses as in fig. 3.6 is quite compli-
cated to treat with Newton formalism. With the Lagrangian we need to write
the correct kinetic and potential energies. The kinetic energy of the system is
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FIGURE 3.6 Two masses m1 and m2 on a friction less table constrained
by three springs of elastic constant k1, k2 and k3.

just the sum of the two kinetic energies of each mass T = 1
2m1ẋ

2
1 + 1

2m2ẋ
2
2;

the potential energy is the sum of three terms because we have three springs
contributing to it: V (x) = 1

2k1x
2
1 + 1

2k2(x2−x1)2 + 1
2k3x

2
3. It is now relatively

easy, and we leave it to the reader to check that the equation of motions are:

m1ẍ1 = −k1x1 + k2(x2 − x1)

m2ẍ2 = −k2(x2 − x1)− k3x2

(3.36)

We will not discuss or solve eq. 3.36 because it is outside the objectives
of this book. The example was briefly discussed to show the power of the
Lagrangian formalism over the Newtonian for the specific case of a coupled
harmonic oscillator.

3.2 KEPLER’S LAWS
We now turn our attention to Johannes Kepler, born in Weil der Stadt (Ger-
many) in 1571. Kepler was a mathematician and astronomer who carefully
studied the motion of the Moon and the planets known at the time (Earth,
Mercury, Venus, Mars, Jupiter and Saturn). We have already mentioned that
he worked as an assistant to the Danish astronomer Tycho Brahe, who col-
lected a huge amount of naked eye observations of planet positions. Kepler
happened to be the right person at the right time to analyze this data. After
years of attempts, Kepler came up with three laws for the motion of the plan-
ets. Let us remind the reader that these laws are empirical in the sense that
they best interpret the data known at that time. Until there is experimental
data not explained, scientists assume that the laws are universally valid. To-
day we know that Kepler’s laws (and Newton’s laws) are not valid, but need
to be corrected using Einstein’s general relativity. In this book we consider
the celestial mechanics only from a classical point of view, leaving the more
advanced treatment of general relativity for specialized textbooks.

Let’s go back to Kepler and his laws. They can be written as follows:



Celestial Mechanics � 99

FIGURE 3.7 Johannes Kepler was a German astronomer and mathe-
matician most famous for his 3 laws governing the motion of planets
around the Sun.
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Kepler 1st law: Planets revolve around the Sun on elliptical orbits where
the Sun lies at one of the foci.

Kepler 2nd law: The segment ( radius vector) connecting the planets to
the Sun sweeps out equal areas in equal time intervals.

Kepler 3rd law: The square of the orbital period of each planet is pro-
portional to the cube of its orbital major axis.

Let’s now imagine that we go back to Kepler’s time with our modern
understanding of mathematics and see how we can re-obtain his beautiful
laws and the connection with Newton’s laws4. We will now review quite a lot
of math and the journey will be quite engaging, but it will be worth the effort
because at the end we will have a deeper understanding of the relationships
between geometry, calculus, and physics.

3.2.1 Theory of Conic Sections

We start our long journey with the mathematics of conic sections, i.e. the
special class of functions obtained by intersecting a cone with a plane. A deep
understanding of conic sections will allow us to study the orbital motion not
only for planets but also for artificial satellites. We will approach the conic
sections with some advanced math, namely matrix representation of conic
sections, which gives us the opportunity to introduce higher-level math. This
is not just per se, but it is used to show some inner symmetries and beautiful
connections with other fields in math and physics. Our brief discussion of
eigenvalues and eigenvectors, for example, can serve as a springboard to the
math used in quantum mechanics.

In fig. 3.8 we see that the circle, ellipse, parabola, and hyperbola are all
obtained by “sectioning” a double cone with a plane, thus the name conic
sections. There are also special cases when the plane intersection results in a
point, a line, or in a couple of crossing lines. In this case we say that the conic
section is degenerate.

The general equation of a conic is given by:

Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0 (3.37)

where the factors 2 are inserted to simplify later calculations. There is a spe-
cial quantity, called the discriminant, which allows us to classify the conic
sections depending on its sign. The discriminant of the quadratic form 3.37 is
given by:

∆2 = B2 −AC (3.38)

We have that:

1. If ∆ < 0 and B = 0 and A = C, then the conic is a circle.

4As we mentioned, we are not considering general relativity.
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FIGURE 3.8 Conic sections obtained by intersecting a plane with a dou-
ble cone.

FIGURE 3.9 A generic conic section defined as the locus of the point P
such that PF/PQ = e, where e is the eccentricity.
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FIGURE 3.10 Generic ellipse described by eq. 3.37 with center at x0, y0

and axes x′ and y′ rotated with respect to the x, y coordinate system.

2. If ∆ < 0, then the conic is an ellipse.

3. If ∆ = 0, then the conic is a parabola.

4. If ∆ > 0, then the conic is a hyperbola.

A conic section is defined as the locus of a point P that moves in the plane
of a fixed point F , called the focus, and a fixed line d, called the conic section
directrix (with F not on d) such that the ratio of the distance of P from F to
its distance from d is a constant e, called the eccentricity (see fig. 3.9). The
form 3.37 describes a conic section where the center is on a generic point on
the Cartesian plane and the axis can have any orientation (see fig. 3.10).

It is possible to find a coordinate transformation such that the conic is
expressed in a new Cartesian coordinate system x′, y′, such that the center is
at the origin and the axes are parallel to x′ and y′ axes. If we succeed then
the conic section is written in its canonical form.

Let’s state what characteristics such a coordinate transformation must
have. First, vectors must not change their length, and second, the angles
between vectors must not change. We have that the scalar product of two
vectors −→u · −→v defines both the lengths and the angle between two vectors −→u
and −→v . So we say that a coordinate transformation that preserves the scalar
product will make sure that we can shift and rotate our conic sections without
changing their shape (also termed as rigid transformations imagining that we
are moving a rigid object). Transformations that preserve the scalar product
are called orthogonal transformations.

In section 2.1.1 we have shown that a coordinate transformation, specifi-
cally a rotation of an angle α, can be represented with a square table of 2× 2
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numbers in a 2D coordinate system called a matrix. We now show how the
matrix formalism can clearly treat the problem of rigid transformations that
will allow us to express a conic section well centered in a coordinate system.
From now on, instead of talking about transformations, we will talk about
matrices being the two concepts absolutely equivalent. A matrix representing
an orthogonal transformation is called orthogonal matrix. The transpose of
a matrix A is a matrix where the rows are exchanged with the columns and
is indicated with the symbol AT :

A =

(
a b
c d

)
, AT =

(
a c
b d

)
(3.39)

Let us give a few definitions:
Definition: Let A be a square matrix of size n. A is a symmetric5 matrix

if AT = A.
Definition: A matrix P is said to be orthogonal if its columns are mu-

tually orthogonal.6
Definition: A matrix P is said to be orthonormal if its columns are unit

vectors7 and P is orthogonal.
Definition: A matrix D is said to be diagonal if all its elements are zero

except the element on the diagonal. Matrix A in 3.39 would be diagonal if
b = c = 0.

Definition: The determinant of a matrix A, 2 × 2 size, is a number cal-
culated in the following way:

|A| ≡ det(A) = det

(
a b
c d

)
= (ad− bc) (3.40)

The determinant of a 3× 3 matrix is a bit more complex. It can be broken
down to the sum of 3 determinants of 2× 2 matrices. The general formula is
given by:

det

a b c
d e f
g h i

 = a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
(3.41)

or equivalently:

det

a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg) (3.42)

5Clearly matrix A in eq. 3.39 is not symmetric. To be symmetric it must have b = c.
6Remember that vectors are orthogonal if their scalar product is zero. In 2D we would

say that they are perpendicular.
7A unit vector is a vector whose length is equal to 1.
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It is possible to express the general conic section form of eq. 3.37 in matrix
form as follows:

(x y)

(
A B
B C

)(
x
y

)
+ 2(D E)

(
x
y

)
+ F = 0 (3.43)

where the matrix Q is:

Q =

(
A B
B C

)
(3.44)

We read eq. 3.43 from left to right as follows: the (x y) is a row vector
with coordinates x, y. When multiplied with a column vector like, for example,

(x y)

(
x
y

)
gives the number x2 + y2. It is another way to indicate the scalar

product. The matrix Q multiplied by the vector
(
x
y

)
is then multiplied by

the vector (x y) to give Ax2 +2Bxy+Cy2. The remaining terms are obtained

by multiplying the two vectors 2(D E) with
(
x
y

)
to give 2Dx + 2Ey, with

F being just a number.
An equivalent matrix form, using a 3× 3 matrix AQ is:

(x y 1)

A B D
B C E
D E F

xy
1

 = 0 (3.45)

If we call −→z = (x y 1), then eq. 3.37 can be written in a very compact
form:

zTAQ z = 0 (3.46)

With ref. to fig. 3.10, we see that we can center and align the axis of the
conic section if we go from the system x, y to the system x′, y′. This operation
can be obtained by first shifting the coordinate system x, y to have a new origin
in x0, y0 corresponding to the center of the conic (in this case an ellipse) and
a rotation of the proper angle to align the coordinate axis to the ellipse axis.

Before shifting the coordinate system, let us find the center of the conic
(in this case an ellipse) taking into account that a parabola does not have
a center. Looking at fig. 3.10 we see that the coordinate of the center x0, y0

can be obtained by finding the four points S, R, P and Q. By definition, the
crossing of the two segments SR and PQ uniquely identifies the center of the
ellipse. The points S and R are obtained by imposing y = y0 in equation
3.37 while the points P and Q are obtained by imposing x = x0 in the same
equation. We have:{

Ax2 + 2Bxy + Cy2 + 2Dx2 + Ey + f = 0

y = y0

(3.47)



Celestial Mechanics � 105

Operating the substitution, eq. 3.47 becomes:

Ax2 + 2Bxy0 + Cy2
0 + 2Dx+ 2Ey0 + F = 0

Ax2 + (2By0 + 2D)x+ Cy2
0 + (2Ey0 + F ) = 0

(3.48)

Eq. 3.48 is a second-degree equation with two solutions x1 and x2. The
x−coordinate of the center is obtained by noticing that x0 = (x1 + x2)/2. If
we take the average of the two solutions of a second-degree algebraic equation
ax2 + bx+ c = 0, it is easy to see that the average is − b

a . We therefore have:

x0 = −1

2

b

a
= − (By0 +D)

A
(3.49)

where a and b are respectively the coefficients of the quadratic x2 and linear
x terms in eq. 3.48. Similarly, we find that the coordinate y0 of the center of
the ellipse is:

y0 = − (Bx0 + E)

C
(3.50)

Eqs. 3.49 and 3.50 can be rewritten as:{
Ax0 +By0 +D = 0

Cy0 +Bx0 + E = 0
(3.51)

and now you see why we used the factors 2. After a little bit of algebra, the
coordinates of the center of the ellipse are given by:

x0 = − (BE − CD)

B2 −AC
, y0 = − (AE −BD)

B2 −AC
(3.52)

Having found the coordinates of the center of the ellipse , a coordinate
transformation x→ x+ x0 and y → y + y0 will shift the center of the ellipse
at the center of the new coordinate system. Let’s verify that this is indeed the
case. With the substitution x→ x+ x0 and y → y + y0, eq. 3.37 becomes:

A(x+x0)2+2B(x+x0)(y+y0)+Cy2+2D(x+x0)+2E(y+y0)+F = 0 (3.53)

If we collect the various terms, we have:

Ax2 +Ax2
0 + 2Axx0 + Cy2 + Cy2

0+

+2Cyy0 + 2Bxy + 2Bxy0 + 2Bx0y + 2Bx0y0+

+2Dx+ 2Dx0 + 2Ey + 2Ey0 + F = 0

(3.54)

We can re-order the terms of eq. 3.54 to have:
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Ax2 + 2Bxy + Cy2+

+2x(Ax0 +By0 +D)+

+2y(Bx0 + Cy0 + E)+

+x0(Ax0 +By0 +D)+

+y0(Bx0 + Cy0 + E)+

+Ey0 +Dx0 + F = 0

(3.55)

The terms in parenthesis in the 2nd, 3rd, 4th and 5th row of eq. 3.55 are
all zero because of eq. 3.51. We have, therefore:

Ax2 + 2Bxy + Cy2 + (Ey0 +Dx0 + F ) = 0 (3.56)

where we managed to eliminate the linear terms in x and y. Now the conic
(with the exception of the parabola) is centered at the origin of our coordinate
system x, y. Notice that the constant term has now changed from F to (Ey0 +
Dx0 + F ). Eq. 3.56 can be written in matrix form as:

(x y)

(
A B
B C

)(
x
y

)
+ (Ey0 +Dx0 + F ) = 0 (3.57)

We are left with the last step, i.e. a rotation that will bring the axes of the
ellipse to be parallel to the new coordinate system. We need a transformation
where the new axes are rotated to be exactly aligned with the axis of the
conic section. We have already stated that a coordinate transformation is
represented by a matrix and therefore we need to find a matrix (or a group of
matrices) that does align the axis.

In order to find this matrix, we notice that if we find an operation that
makes the 2 × 2 matrix of eq. 3.57 diagonal, then the axis will be aligned.
This process is called diagonalization of a matrix and is a very powerful tool
in many physical situations.

Definition: A vector −→u and a scalar λ such that A−→u = λ−→u are called
respectively the eigenvector and eigenvalue of A.

The eigenvalues are found by solving the so-called characteristic equation
associated with the matrix Q:

det(Q− λI) = det

(
A− λ B
B C − λ

)
= (A− λ)(C − λ)−B2 = 0 (3.58)

The characteristic equation 3.58 becomes:

(A− λ)(C − λ)−B2 = λ2 − λ(A+ C) + (AC −B2) = 0 (3.59)
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which has the two solutions8 (eigenvalues) λ1 and λ2 given by:

λ1 =
−(A+ C) +

√
(A− C)2 − 4B2

2

λ2 =
−(A+ C)−

√
(A− C)2 − 4B2

2

(3.60)

In order to find the eigenvectors , we need to solve the two equations:

(Q− λ1I)−→u = 0

(Q− λ2I)−→v = 0
(3.61)

Solving eq. 3.61 will produce the components of two eigenvectors for which
we are given only the direction. By normalizing them to one, i.e. −→e u =

−→u
‖u‖

and −→e v =
−→v
‖v‖ , we get the unit vectors of the rotated coordinate system where

the conic section has been aligned.
Having calculated the eigenvalues λ1 and λ2, the new representation of the

rotated conic section is given by:

(x y)

(
λ1 0
0 λ2

)(
x
y

)
+ (Ey0 +Dx0 + F ) = 0 (3.62)

With a bit of extra work we can find a simpler expression for the constant
term (Ey0 +Dx0 + F ). Let’s recall the form of the matrix AQ from eq. 3.45.
Its determinant is:

det

A B D
B C E
D E F

 = A(CF − E2)−B(BF − ED) +D(BE − CD) (3.63)

Another useful determinant is det(Q) = (AC−B2). With a bit of algebra,
it can be shown that eq. 3.62 can be written as:

(x y)

(
λ1 0
0 λ2

)(
x
y

)
+
det(AQ)

det(Q)
= 0 (3.64)

If we now use the property that determinants of matrices are invariant ,
then det(Q) = λ1λ2 and equation 3.64 becomes:

(x y)

(
λ1 0
0 λ2

)(
x
y

)
+
det(AQ)

λ1λ2
= 0 (3.65)

We conclude this (long) excursion by writing eq. 3.65 in algebraic form:

8It can be proved, and we do not do it here, that the eigenvalues of a symmetric matrix
are real.
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λ1x
2 + λ2y

2 = −det(AQ)

λ1λ2

x2

λ2
+
y2

λ1
= −det(AQ)

λ2
1λ

2
2

(3.66)

In summary, given a conic section of the general Cartesian form given by
eq. 3.37, it is possible to translate and rotate the conic such that it is centered
at the origin of the Cartesian coordinate system and with axes aligned with
the x and y axis. We say that the conic section is in canonical form.

Here we report the canonical forms of the conic sections:

1. circle: x2 + y2 = r2

2. ellipse: x
2

a2 + y2

b2 = 1

3. parabola: y2 = 4ax

4. hyperbola: x
2

a2 −
y2

b2 = 1

Notice that none of the canonical forms (except the parabola) have linear
terms in x and y, nor mixed terms in xy.

Let us now study in detail the canonical form of the ellipse (see fig. 3.11).
Let us first verify that the ellipse in fig. 3.11 is described by the canonical
form. The formula expressing the distance between two points (x1, y1) and
(x2, y2) in the Cartesian plane is:

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.67)

Eq. 3.67 is simply the Pythagorean Theorem.
An alternative definition of the ellipse is the following: the ellipse is the

locus of points P (x, y) for which the distance
−−→
F1P +

−−→
PF2 = 2a is constant. By

placing the point P coincident with the point P1(a, 0) we immediately verify
that the constant is = 2a where a is the semi-major axis. Let us now verify
that the condition

−−→
F1P +

−−→
PF2 = 2a gives the ellipse in canonical form.
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FIGURE 3.11 Canonical ellipse centered at the origin and with foci F1

and F2 along the x axis.

−−→
F1P +

−−→
PF2 = 2a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a√
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2

(x+ c)2 + y2 = 4a2 + (x− c)2 + y2 − 4a
√

(x− c)2 + y2

x2 + c2 + 2xc+ y2 = 4a2 − 4a
√

(x− c)2 + y2 + x2 + c2

− 2xc+ y2

2xc = 4a2
√

(x− c)2 + y2 − 2xc

a2 − a
√

(x− c)2 + y2 − xc = 0

a
√

(x− c)2 + y2 = a2 − xc
a2[(x− c)2 + y2] = a4 + x2c2 − 2a2xc

a2x2 + a2c2 + a2y2 = a4 + x2c2

x2(a2 − c2) + a2y2 = a2(a2 − c2)

x2b2 + a2y2 = a2b2

x2

a2
+
y2

b2
= 1

(3.68)

where b is called the semi-minor axis.
In fig. 3.11 we see an ellipse centered at the origin (0, 0) with foci F1 and

F2 along the x axis. The two axes dir1 and dir2 are called directrix and define
the ellipse through the relationship
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e =
PF2

PQ
(3.69)

where the constant e is called the eccentricity. If the point P is coincident
with the point P1 then again using the Pythagorean theorem, we see that
b2 + c2 = a2.

Let us now calculate the distance from the directrix dir1 to the origin OQ′.
If we place the point P coincident with Q′, we can write eq. 3.69 as:

e =
P0F2

P0Q′
=

(a− c)
d− a

(3.70)

Equivalently, if we place the point P coincident with P1, we can write:

e =
P1F2

P1Q”
=
a

d
(3.71)

Equating 3.70 and 3.71 we have:

e =
(a− c)
d− a

=
a

d
(3.72)

Solving for d gives:

d =
a2

c
, e =

c

a
(3.73)

The focal parameter p = a(1−e2)
e is the distance between the focus and

its closest directrix and is equal to the segment F2Q′. We have:

p = F2Q′ = P0F2 + P0Q′

P0F2 = a− c

P0Q′ = d− a =
a2

c
− a

p =
a2

c
− a+ a− c =

a2

c
− c =

a2 − c2

c
c = ae

p =
a2 − c2

c
=
a2 − a2e2

ae

p =
a(1− e2)

e

(3.74)

We conclude this section by showing the equation of a conic section in polar
coordinates. In fig. 3.12 the geometry of the polar definition of a conic section
is shown. We have already seen that the definition of a conic section requires
that the P (x, y) of the conic is such that the distance PF to the fixed focus F
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FIGURE 3.12 Geometry to express conic sections in polar form.

is proportional to the distance to the directrix line PQ, i.e. PF = ePQ where
the constant e is the eccentricity. From fig. 3.12 we can immediately write the
conic condition:

PF = ePQ

r =
(a
e
− ae− r cos θ

) (3.75)

which simplifies to:

r =
a(1− e2)

(1 + e cos θ)
=

p

(1 + e cos θ)
(3.76)

The above equation lets us express the semi-latus rectum9 p = FP ′:

p = a(1− e2) (3.77)

3.2.2 Kepler’s 1st Law as Discovered by Kepler Himself in the Years
1600 - 1630

At the time of Kepler, the regularity of the motion of stars and planets was
assumed to be a reflection of the perfection of the Creator. Therefore only

9The latus rectum of a conic section is the chord through a focus parallel to the directrix
of the conic section.
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FIGURE 3.13 Kepler’s construction of an elliptical orbit.

perfect geometrical figures were considered, like the circle. However, Kepler
was quite modern in his quest to explain the available observations of the
motion of planets in the sky with respect to the fixed stars through the usage
of mathematical reasoning. He believed that the mechanisms of nature can
be understood and the explanation would contain some inner beauty. This
view is shared still today by (probably) the majority of scientists. Kepler was
a talented mathematician and was lucky enough to attract the attention of
Tycho Brahe, who collected 30 years of accurate measurements of positions of
planets in the sky.

Kepler happened to be the right person at the right time, with the proper
attitude toward detailed calculations and accuracy. Kepler was after an ex-
planation of the motion of planets and he was looking for any law that would
help him understand the large amount of data he had access to. In addition,
he adopted the Copernican view that the Sun was at the center of the orbits
of the planets and this view was certainly quite novel for his times. It is prob-
able that Kepler liked the Copernican system because it was simpler than the
alternative proposal of having a geocentric system requiring complex superpo-
sition of circumferences whose center was moving along other circumferences
(epicycles).

In line with his thinking that the motion of sky objects must be obtained
with the aid of circles, Kepler started to construct complex geometries to
try to find the best match to Tycho’s data. In this approach Kepler showed
how modern his thinking was: he constructed a theory based on geometric
intuition, then he checked that the theory correctly explained the data. If it



Celestial Mechanics � 113

FIGURE 3.14 Tycho Brahe was a very accurate Danish astronomer. He
generated a large amount of good-quality observational data used later
by Kepler.
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FIGURE 3.15 Nicolaus Copernicus was a Polish mathematician who for-
mulated the first successful theory of heliocentrism.
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did not, then he kept searching. He eventually found a geometric construction
(see fig. 3.13) that was capable of correctly validating the data he had for the
motion of Mars. It is important to underline that Kepler was looking for a
physical theory to be validated by experimental data and not just finding
the best curve approximating the planetary motions (see [2]).

Looking at fig. 3.13, let us draw the main auxiliary circle10 of center O and
diameter AB. Let us choose an arbitrary point Q on the auxiliary circle and
draw a segment QV perpendicular to the diameter AB. From Q again, draw
a straight line to O extending it to the point T such that the segment TS is
perpendicular to QT . This identifies the point S, which we will see later is one
of the two foci of the constructed ellipse. Take a drawing compass pointed at
S and select a length SR equal to the segment QT . Draw a circle centered at
S from R to intercept the segment QV at the point P . Choosing other points
like Q on the main auxiliary circle and repeating the same procedure will
obtain the ellipse with semi-minor axis b = OK and semi-major axis a = OA.
It can be shown [5] that this construction is such that:

PV

QV
=
OK

OA
=
b

a
(3.78)

and it is an alternative definition of the ellipse known since Apollonius of
Perga around 200 B.C. [3].

So Kepler identified correctly the shape of the orbit of the planet Mars.
Unfortunately he did not have the physics to explain why the orbit had that
specific shape. We now turn our attention to the details of this problem and
we will solve it using different techniques. Some will appear a bit convoluted
and others will show a beautiful simplicity but all are useful and will allow us
to look at this central problem from various perspectives.

3.2.3 Kepler’s Problem: Geometrical Solution

The Kepler problem consists in the determination of the functional form with
the distance of the force that is exerted between the Sun and a planet such
that the orbit is elliptical. The inverse Kepler problem is the opposite: given
a force, what is the shape of the resulting orbit. We will now proceed to
both proofs using only geometrical arguments. In certain cases we will use
small intervals of time ∆t, space ∆R, or velocity ∆v, and narrow triangles
or segments. This is not an attempt to hide a limiting process and therefore
the use of calculus. The main difference between the proof we now give and
the proof using calculus is the fact that the geometrical proofs are somehow
more general and do not require the transition to infinitesimal quantities and
the limit operations that we have encountered earlier in the book. The ∆-
quantities are not required to go to zero. That is the reason why, in few places

10There is also a minor auxiliary circle of radius OK with center O and tangent to the
ellipse in K and the symmetric point to K not shown.
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FIGURE 3.16 Another geometric construction of the ellipse.

in the following, we need to be a bit convoluted when introducing auxiliary
geometrical construction. The theory of orbits with calculus will be done later
once we have the solid knowledge of the geometrical theory.

There is a story regarding Edmund Halley (the discoverer of the famous
comet) and Isaac Newton about the inverse Kepler problem. In 1684 Halley
had the curiosity to meet the famous Newton in Cambridge to discuss the
mechanics of celestial bodies. At that time there were a lot of discussions about
the source of the force that is capable of keeping the planets on their orbits and
there was the suggestion that a force proportional to the inverse square of the
distance might have been the right answer but nobody was able to demonstrate
this conjecture. It was already known, thanks to Kepler, that the orbits were
elliptical and Halley wanted to see if Newton knew how to demonstrate the
conjecture. After all, he (later) invented differential calculus and proposed
that the gravitational attraction between two bodies was proportional to the
product of their masses and inversely proportional to the square of the distance
between them, so it seemed natural for Halley to ask Newton. When asked on
the spot, Newton claimed that he had calculated it but somehow he misplaced
it and asked Halley to be patient. Newton effectively sent a demonstration to
Halley a few months later but he did not want to publish it because he was
not satisfied. So Newton kept working on it until few years later he published
not only the demonstration but much more: he published the Principia. We
probably need to thank Halley for triggering such monumental work!

Let us state again what we will be demonstrating: we start from Kepler’s
equal area in equal times law (Kepler 2nd) and by using Newton’s 1st law we
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FIGURE 3.17 Congruence of two triangles (SAS - Side-Angle-Side),
(SSS - Side-Side-Side), (ASA - Angle-Side-Angle) and (AAS - Angle-
Angle-Side).

deduce that the source of the force attracting the planets is directed along
the line connecting the planet and the Sun. We then use Kepler’s 3rd law,
orbital periods are proportional to distance from the Sun to the power of 3/2,
together with Newton’s laws to show that the force of gravity is proportional
to the inverse square of the distance between the planet and the Sun. Finally,
again using Newton’s laws, we will deduce that the orbit is elliptical11.

Let us discuss another interesting geometrical fact about circles and el-
lipses: we will now show that given a circle and a point off-center located
inside it, it is possible to geometrically build an ellipse.

With reference to fig. 3.16, we start by arbitrarily choosing two points F
and C. Now we draw from the point F a line in any direction we like FQ
(another choice could be FQ′, which will produce a different point of the
ellipse). Let’s choose a point T over the line FQ through which we trace a
perpendicular line TP which bisects the segment FQ, i.e. cuts it in half so
that FT = TQ. The line TP has two important properties: first, if we draw
the line CQ, then we have that PFPQ and so the point P belongs to the
ellipse shown with a dashed line in fig. 3.16; second, the line TP identifies
the tangent to the ellipse at the point P . In fact, as the point Q moves
around the circle, called the directrix circle, (for example, to point Q′), the

11More accurately, we will show that the orbit is a conic section.
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FIGURE 3.18 The tangent t at P is the external angle bisector of the
angle ∠F1PF2, i.e. α = β.

corresponding points obtained with the recipe above trace the ellipse. In other
words, there is a one-to-one correspondence between the ellipse and the circle.

We prove the first property if we show that the two triangles 4FTP and
4QTP are congruent12. Two triangles are congruent (see fig. 3.17) if:

1. SAS (Side-Angle-Side): two pairs of sides of two triangles are equal in
length, and the angles in between them are equal;

2. SSS (Side-Side-Side): three pairs of sides of two triangles are all equal
in length;

3. ASA (Angle-Side-Angle): two pairs of angles of two triangles are equal,
and the sides between them are equal in length;

4. AAS (Angle-Angle-Side): two pairs of angles of two triangles are equal,
and a pair of corresponding non-included sides are equal.

The two triangles4FTP and4QTP are congruent because of SAS: PT is
shared, QT = TF by construction, and angles ∠QTP = ∠FTP are both right
angles by construction. If the two triangles are congruent, then PQ = CP .
But eq. 3.68 tells us that an alternative definition of an ellipse is by requiring
that the distance PQ+CP = constant. We know a bit more: from eq. 3.68 we
know the value of the constant to be twice the semi-major axis of the ellipse,
PQ + CP = 2a. Therefore the big circle centered at C also has radius equal
to 2a.

We now prove the second property, i.e. that the line TP in fig. 3.16 iden-
tifies the tangent to the ellipse at the point P . We already have defined the

12Let’s repeat here that congruent means exactly equal in size and shape.
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tangent line to a curve when we discussed instantaneous velocity (see eqs. 1.24
and 1.25). Here we prefer to use a different equivalent definition: a tangent to
a curve at a point P is a line that has only one point P in common with the
curve.

We first prove that the tangent line is the external bisector13 of the angle
∠F1PF2 in figs. 3.18 and 3.19. In fig. 3.18 the two lines from F1 and F2 to
the line t are traced to be perpendicular to t. These two lines generate two
triangles 4F1PQ and 4F2PR. Let’s call the segment m = PQ and k = RQ.
Applying the Pythagorean Theorem we have:

F1P
2

= m2 + F1Q
2

PF2
2

= (k −m)2 + F2R
2

(3.79)

Now we ask: what is the value of m that minimizes the path y = F1PF2?
This is equivalent to asking that the derivative with respect to m of the path
length y be zero:

d

dm
(F1P + PF2) =

dy

dm
= 0

d

dm
(

√
m2 + F1Q

2
+

√
(k −m)2 + F2R

2
) = 0

(3.80)

remembering that d
dx

√
x = 1

2
√
x
, we have:

dy

dm
=

m√
m2 + F1Q

2
− (k −m)√

(k −m)2 + F2R
2
)

= 0 (3.81)

the two terms in eq. 3.81 are respectively sinα and sinβ. Therefore the mini-
mal path is obtained when sinα = sinβ → α = β. The minimal path is also
the path that a light ray will follow according to Fermat’s principle of least
time. If a light ray originated in F1, it will hit the ellipse in P with a certain
angle α. If we assume that the inside of the ellipse is made of a reflecting
material, like a mirror for example, then the light ray is reflected exactly to-
wards F2 with the same angle α. Or, in optics terms, the incidence angle is
equal to the reflection angle. This means that if we rotate an ellipse around its
major axis, we obtain an ellipsoid shape which, if internally reflecting, has the
beautiful property that any light ray originated in F1 will end up in F2. Laser
cavities or even pizza ovens are designed based on this focusing property of
the ellipse. This property is the reason why the two special points F1 and F2

are called foci.
Now we are ready to prove that the line t is tangent to point P . With

13The external angle bisectors of a triangle 4ABC are the lines bisecting the angles
formed by the sides of the triangles and their extensions.
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FIGURE 3.19 Geometry to show that the line t is tangent at point P of
the ellipse.

reference to fig. 3.19, consider a point Q different from P on the line t exterior
angle bisector and let F ′2 be the point you get by reflecting F2 across the line
t. We have that QF2 = QF ′2 and PF2 = PF ′2.

Since PQ ≡ t is the exterior angle bisector of ∠F1PF2, the point P lies on
the line F1F . Now let’s look at the straight line F1F ′2 through P and compare
it with the path F1QF

′
2 = F1Q + QF ′2. Clearly the path F1Q + QF ′2 must

be longer than the path F1F ′2 because the shortest path through two points
in Euclidean geometry is the straight line. It follows that the point Q cannot
be on the ellipse because F1QF2 > F1PF2. So the only point on the exterior
angle bisector belonging to the ellipse must be P and therefore t is tangent in
P .

At this point we have reviewed all the math needed to prove Kepler prob-
lems. We now turn to the physics, specifically Newton’s laws, and prove Ke-
pler’s second law of equal areas swept in equal times. Newton’s first law (iner-
tia) tells us that a planet with no external forces applied, either stays still or
moves at constant velocity (remember that velocity is a vector and therefore
constant velocity means constant speed and constant direction).

Let’s first prove that the equal areas law is valid in the special case of
absence of forces. In fig. 3.20 a planet is moving with respect to the Sun S

from A to E at constant velocity v = AB
∆t = BC

∆t = CD
∆t = .... We are assuming

that the Sun does not exert any gravitational force on the body. It is easy to
see that all the triangles 1, 2, 3, etc. all have the same area because they have
equal base and they all share the same height SA.

Let us now “switch on” the gravitational attraction from the Sun. This
means that, because of Newton’s second law, the planet now will feel a force
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FIGURE 3.20 Equal areas law in absence of external forces.

FIGURE 3.21 Newton’s geometrical construction of the orbital path of
a planet under a central force directed towards the Sun.
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FIGURE 3.22 Geometry to prove the equal areas law in an orbit with
central force.

directed exactly towards the Sun (see fig. 3.21). Newton imagined that the
planet moves from A to B with constant velocity and then receives an instan-
taneous impulse of force FB when in B. Because of Newton’s second law, the
force FB is directed exactly towards the Sun. The effect is that the planet,
instead of progressing freely to C ′, bent to C. If the vector indicated by FB
has a length equal to the amount the force would displace if the planet did not
have lateral motion, then the actual travel of the planet will be the parallel-
ogram between the displacement vectors BC ′ and FB or, in vector notation,
−−→
BC =

−→
FB +

−−→
BC ′. The real trajectory will be obtained by making the seg-

ments infinitesimal so that the orbit becomes a continuous curve. Note that
the segment CC ′ is parallel to the vector FB by construction.

We now prove that Kepler’s area law is valid also in the case of a planet
orbiting the Sun. To this end we enlarge a portion of fig. 3.21 into fig. 3.22.

We want to prove that the area of the triangle 4SAB is equal to the area
of the triangle 4SBC. We just proved that the area of 4SAB is equal to the
area of 4SBB′, which is the case of absence of external forces on the planet.
Now if we prove that the area of 4SBB′ is equal to the area of 4SBC, we
are done. This is easily demonstrated by noticing that the line CB′ is parallel
to the line SB and therefore the two triangles 4SBB′ and 4SBC share the
same base SB and the same height CB = B′D. We just proved that Kepler’s
second law is a consequence of Newton’s first and second laws. Note that we
only assumed that the force is central, i.e. directed towards the Sun, and so the
inverse square law with distance dependence of the force has no connection
with Kepler’s second law.

Let us discuss the value of the constant in the Kepler’s second law using
a bit of basic calculus. The area swept by the radius vector −→r (t) in the small
time interval ∆t is indicated by ∆A in fig. 3.23 and is equal to the area of the
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FIGURE 3.23 Geometry to show that area swept in unit time is propor-
tional to angular momentum.
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triangle 4SPQ. We already have seen (see fig. 2.7) that the vector product
represents the area of the parallelogram identified by the two vectors being
multiplied. We have that the area ∆A is half the area of the parallelogram
SPQR. Therefore we have:

∆A =
1

2
−→r (t)×−→r (t+ ∆t) (3.82)

The area swept in unit time is then:

∆A

∆t
=

1

2∆t
−→r (t)×−→r (t+ ∆t)

=
−→r (t)× [−→r (t) +

−→̇
r (t)∆t]

2∆t

(3.83)

because of the sine term, the vector product of a vector with itself is zero. The
time derivative of the vector −→r is the velocity vector −→v . We therefore have:

∆A

∆t
=
−→r (t)×−→̇r (t)∆t

2∆t

=
1

2
−→r ×−→v

=

−→
L

2m

(3.84)

where we define the angular momentum vector as:

−→
L = −→r ×m−→v

= m−→r × (−→ω ×−→r )

= m−→ω (−→r · −→r )−m−→r (−→r · −→ω )

= mr2−→ω

= mr2 dθ

dt

= mr2θ̇

(3.85)

We see that
−→
L is directed as −→ω , i.e. perpendicular to the plane of the

orbit. In eq. 3.85 we have used the triple vector product formula 2.36 and the
fact that −→r and −→ω are perpendicular, and therefore their scalar product is
zero. Therefore, Kepler’s second law translates into the conservation of angular
momentum for a central force.

Proof of the Kepler problem. We are now ready to prove that an
inverse square law force directed to the Sun is a consequence of Kepler’s third
law. We will use the geometrical fact that the length of the circumference of a



Celestial Mechanics � 125

circle of radius x is L = 2πx. Let us restrict ourselves to the case of a circular
orbit. The speed of a planet in circular orbit is constant while the direction
changes. The constant speed can be written as the length of the circumference
divided by the time needed for the planet to complete one revolution. This
time is called the period and is indicated with T . We have that the speed is:

v =
2πR

T

where R is the radius of the circular orbit. The speed is the total amount of
space traveled by the planet divided by the period. Let us now look at the
changes of the velocity: the velocity vector keeps its magnitude constant but
changes direction continuously. If the velocity vector starts at a time t = 0 in
a certain direction, it will return to that point exactly in the same direction
after a full revolution of the planet, i.e. after exactly one period T . In analogy
with eq. 3.2.3 which gives the total amount of space in one period, we can
write that the total amount of velocity change14 in one period is:

∆v

∆t
=

2πv

T

Newton’s second law (see eq. 2.57) tells us that the force directed towards
the Sun is proportional to the change in velocity. Therefore we have:

F ∝ ∆v

∆t
=

2πv

T
=

(2π)2R

T 2
(3.86)

Kepler’s third law tells us that T 2 ∝ R3. So, eq. 3.86 becomes:

F ∝ (2π)2R

T 2
=

(2π)2R

R3
→ F ∝ 1

R2
(3.87)

We just proved geometrically that Kepler’s equal area law together with
Newton’s first and second laws imply that the central force must be an inverse
square law of the distance between the Sun and the planet.

Proof of the Kepler inverse problem. We need to prepare the proof
with some more geometrical facts. Following Feynman15 [7] we proceed to
prove that the magnitude of the variation of velocity of a planet orbiting the
Sun is constant and therefore will only change direction in such a way that it is
constantly pointing towards the Sun (Newton’s second law). We can represent
Kepler’s equal areas law in fig. 3.24 (a) where the two shaded areas are swept
in equal time ∆t. It follows that the time is proportional to the area swept,
∆t ∝ (area swept).

We now proceed to prove that the area swept is proportional to the distance

14The amount of velocity change in one period is the average acceleration which for a
uniform circular motion is constant.

15Richard P. Feynman was one of the most influential physicists of the 20th century. He
won the Nobel prize in 1965 (together with S. Tomonaga and J. Schwinger) for his work on
quantum electrodynamics.
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FIGURE 3.24 (a) Kepler’s first law of equal areas in equal times. The two
shaded areas are equal. (b) Geometry to show that area is proportional
to R2. The portion of orbit CC ′ sweeps the same angle of the portion
of orbit BB′.
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FIGURE 3.25 Richard P. Feynman was an American theoretical physi-
cist who made substantial contributions to quantum mechanics and
quantum electrodynamics.
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FIGURE 3.26 A planet crossing a half-line from the Sun twice at points
A and B. It can be shown that in an inverse square central force, points
A and B must be coincident and the curve is closed.

to the Sun squared (area swept) ∝ R2. Fig. 3.24 (b) on the left shows two
portions of orbit corresponding to the same angle, since the angle ∠CAC ′ is
opposite to angle ∠BAB′. Without losing generality we can approximate the
curved segments CC ′ and BB′ with their straight segments CC ′ and BB′.
Let us now consider the triangles on the right of fig. 3.24 (b) obtained by
rotating the triangle 4ABB′ around the point A by 180◦. The two triangles
4ABB′ and 4ACC ′ are similar by construction. We have:

AH

BB′
=
AH ′

CC ′
(3.88)

and the area of the triangle4ABB′ is 1
2AH ·BB′. Now we study what happens

to this area when AH ′ = 2AH, i.e. we double the distance to the Sun. Eq.
3.88 becomes:

AH

BB′
=

2AH

CC ′

→ CC ′ = 2BB′
(3.89)

Doubling the distance to the Sun has also doubled the base of the triangle
4ABB′. This means that the area of the triangle 4ABB′ becomes:

1

2
AH BB′ → 1

2

(
2AH

) (
2BB′

)
= 4

1

2
AH BB′ (3.90)

Therefore doubling the distance makes the area 22 = 4 times the area
bigger, i.e. (area swept) ∝ R2. But we have demonstrated above that ∆t ∝
(area swept) and therefore ∆t ∝ R2.

An inverse square law central force has as a consequence that time inter-
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FIGURE 3.27 Equal times equal areas versus equal angle diagrams.

vals along the orbits are proportional to the distance to the Sun squared16.
Newton’s second law tells us that the force F = ∆v

∆t or ∆v = F∆t. We have
that:

∆v = F∆t ∝ 1

R2
·R2 = 1 (3.91)

Eq. 3.91 tells us that Kepler’s second law plus Newton’s second law for a
force ∝ 1

R2 has the important consequence that the magnitude of the velocity
change ∆v is constant and always directed toward the Sun or, in other
words, ∆v does not depend on R. No matter where on the orbit the planet is,
the ∆v change is constant provided that the angle is the same.

Let us now find the value of the constant. We can write Newton’s second
law as:

−→a = −GM
r2
−→e r =

∆v

∆t
=

∆v

∆θ

∆θ

∆t
(3.92)

where −→e r is the unit vector connecting the Sun to the planet and −→a is the
acceleration always towards the Sun. In eq. 3.92 we have used the chain rule.

We have seen that Kepler’s second law of equal area implies conservation
of angular momentum. This means that in a central force, the magnitude L
is constant. We have:

∆θ

∆t
=

L

mr2
(3.93)

Using eq. 3.92, we have:

∆v

∆θ

L

mr2
= −GM

r2
−→e r (3.94)

Eq. 3.94 shows that the vector ∆v is oriented like −→e r towards the Sun.
Ignoring the unit vector, we have that eq. 3.94 can be re-written as:

16This demonstration is not rigorous but for our purposes is good enough. A more rigorous
demonstration can be found in [7].



130 � Introduction to the Maths and Physics of the Solar System

FIGURE 3.28 Hodographs obtained by dividing the orbit of a planet
into equal angle sectors. The left panel is relative to an elliptical orbit
while the right panel is relative to a circular orbit. Notice that ∆v

has the same magnitude for each sector. vp and va are respectively the
perihelion and aphelion velocities in an elliptical orbit.

‖∆v‖ =
GMm

L
∆θ (3.95)

Eq. 3.95 tells us that the magnitude of the change in velocity ∆v is pro-
portional to the change in angle ∆θ. If we divide the trajectory of the planet
into sectors of equal angles, then the vector sum of all the ∆v will make a
regular polygon, because the successive changes in the velocity vectors are all
inclined to each other at the same angle ∆θ, and all the magnitudes ∆v will
be equal. If we imagine taking smaller and smaller ∆θ, the vector sum of all
the magnitudes ∆v are equal and will approximate a circle better and better.
This circle is called the hodograph (see fig. 3.28) and its constant radius is
u = GMm

L . The important result is that given a central force proportional to
the inverse square of the distance, the tips of the velocity vectors around the
orbits describe a circle if traced from a common base point. Fig. 3.27, left
panel, tells us that the velocity vp of the planet is maximal at the point closer
to the Sun (perihelion) and minimal va at the opposite point most distant
(aphelion).

We just proved that an inverse square distance central force generates a
circular hodograph. We are left to show that a circular hodograph implies an
orbit that is an ellipse. Let us study the relationships between a hodograph and
the associated orbit. We already know the two vectors va and vp, correspond
to the minimal and maximal orbital speed (see fig. 3.29): their sum is equal
to the diameter of the hodograph, i.e. va + vp = 2u = 2GMm

L . Point Q on the
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FIGURE 3.29 Relationship between an elliptical orbit and its circular
hodograph. The hodograph has been rotated 90◦ clockwise to better
show the two equal angles θ.

orbit, obtained after a rotation of an angle θ = ∠QSP from the perihelion
P , corresponds to the point q on the hodograph where θ = ∠qCp. Similarly
the point a on the hodograph (aphelion) corresponds to the point A on the
orbit. Notice that in order to have the segments Cq and SQ be parallel, we
needed to rotate the hodograph 90◦ counterclockwise. Any radius vector for
every point on the orbit will correspond to a radius velocity vector on the
hodograph displaced by exactly the same angle. Notice also that the velocity
at the point Q on the orbit corresponds to the vector

−→
Cq on the hodograph.

Each angle θ on the hodograph identifies the direction of the tangent to the
orbit: evidently this is not enough to build the orbit. The line Sq is parallel
to the tangent to the point Q while the line Cq identifies the direction to the
Sun. Clearly the two above conditions do not uniquely identify a point on the
orbit. However, we are able to construct an orbit whose shape is the correct
one because all the directions are properly identified.

Let’s start the construction of the orbit by starting from a given hodograph
(see fig. 3.30) of radius Cq. The line Sq is parallel to the velocity at the point
Q on the orbit, while the line Cq identifies the direction to the Sun. Let’s
draw the line t obtained by rotating the segment Sq around its midpoint. The
line t bisects the segment Sq. The line t intersects the radius Cq at a point Q.
If we now move the point q around the circle to new points q1, q2, ... the new
bisecting tangents intersect the corresponding radii at Q1, Q2, .... The locus
of points Qi describes an ellipse whose foci are S and C. But we have done
exactly the same construction in fig. 3.16, where we demonstrated that such
construction generated an ellipse. We have therefore proved geometrically that
a circular hodograph is associated with an elliptical orbit. But only an orbit
whose central force is proportional to the inverse square of the distance to-
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FIGURE 3.30 Construction of an elliptical orbit starting from a circular
hodograph and a non-concentric focus S within the circle.

gether with Newton’s laws, generates circular hodographs. Therefore it follows
that an inverse square force generates elliptical orbits.

More generally it can be proved that Newton’s laws, plus a central force
proportional to the inverse square of the distance, generate orbits that are
conic sections. It can be shown that the position of the point S, i.e. the
common origin of the velocity vectors, with respect to the circle centered in
C discriminates the orbit. In fig. 3.31 (a) we see the case discussed of the
point S within the circle. When the point S is exactly on the circumference,
then the orbit is a parabola, while if the point is external to the circle, the
orbit is an hyperbola. Fig. 3.31 panel (c) shows that there is an angle for
which the tangent ST is perpendicular to the radius CT . There is another
specular point T ′ on the left for which the same condition applies. When the
orbiting planet is in this condition it means that the change in velocity is in
the same direction as the velocity or, in other words, the satellite is moving on
a straight line. On this specific orbit the planet is coming from infinity along
the direction parallel to ST , swings around the Sun, and proceeds towards
infinity approaching more and more the line parallel to ST ′. The parabola is
the limiting case in which the planet will reach infinity with zero velocity. In
fact, the parabola hodograph has maximum perihelion vp and zero aphelion
va velocities.

3.2.4 Kepler’s Problem: Newton’s Solution Using Calculus

In this section we work out the solutions to Kepler problems using the standard
treatment given in the majority of undergraduate physics books, i.e. we will
use calculus. We cannot certainly exhaustively cover the theory and practice
of differential calculus: instead, we will give hints on the various techniques,
always trying to be self-consistent.
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FIGURE 3.31 The hodographs for ellipse (a), parabola (b), and hyper-
bola (c).

Let us show how to prove that the ellipse is the curve that a planet follows
in its orbit around the Sun. We assume that the gravitational force is central
and is proportional to the inverse square of the distance between the Sun and
the planet. We assume we have enough experimental evidence to state that
the force between the Sun and a planet is given by eq. 2.61. In the following
equations we indicate vectors with bold characters like, for example, velocity
v. Scalars will be indicated with italics to signify that they are just numbers.
Finally, unit vectors will be indicated by a hat symbol over the quantity. For
example, a velocity vector aligned along the x axis can be written as v = v x̂
where v is the magnitude of the velocity. The time derivative will be indicated
either with the symbol d

dt or with a dot above the quantity to be derived. A
double dot means second derivative. Sometimes we might find it convenient
to mix the two notations.

We have already stated that the gravitational attraction is a central force
and therefore it depends only on the distance between the Sun and the planet.
If r is the radius vector joining the Sun with the planet, the central force F
can be written as:

F = F (r)r̂ (3.96)

where r̂ is the unit vector aligned as r. A planet of mass m�M , where M is
the mass of the Sun, subjected to the gravitational force will obey Newton’s
second law:

mr̈ = F (r)r̂ (3.97)
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FIGURE 3.32 Angular momentum vector L perpendicular to the plane
of the orbit. Note the unit vectors x̂, ŷ, and ẑ.

This is the equation that we need to solve to obtain the orbit of the planet
around the Sun.

We have already encountered a quantity that we called angular momentum
(eq. 3.24), which is conserved in a gravitational orbit. Let us study the concept
more in detail. We call angular momentum with respect to a point O in
space the following quantity:

L = r× p = r×mv = r×mṙ (3.98)

where p = mv = mṙ is the linear momentum of the planet of mass m and O is
the reference point. Since the gravitational attraction is central, if we choose
the point O to coincide with the position of the Sun, then (1) the angular
momentum is conserved and (2) the orbit is planar, i.e. the planet orbits in
a plane passing through O and perpendicular to the vector L. To show this,
let’s take the vector product of eq. 3.97:

r×mr̈ = r× F (r)r̂ = F (r) r× r̂ = 0 (3.99)

The vector product r × r̂ = 0 because the two vectors are parallel and
therefore sinα in eq. 2.35 is equal to zero. We can write:

dL

dt
=

d

dt
(r×mṙ) = m(r× r̈) +m(ṙ× ṙ) = 0

L = r×mṙ = constant
(3.100)



Celestial Mechanics � 135

FIGURE 3.33 Polar coordinate system showing the unit vectors r̂ and
θ̂.

Eq. 3.100 tells us that the derivative of the angular momentum is zero and
therefore is a conserved quantity and this proves point (1) above.

To prove point (2) we now take the scalar product with r of the angular
momentum:

r · L = 0 (3.101)

because L is the vector product of r, ṙ is perpendicular to the plane identified
by these two vectors and so is perpendicular to both. So L and r are always
perpendicular: the orbit is confined to the plane containing r and ṙ through
O. This proves point (2) above (see fig. 3.32).

We have therefore established that the orbit under a central force is con-
fined to be on a plane through O. It is now natural to choose a coordinate
system with origin at O where the Sun is located and where we use polar
coordinates (r, θ) with r spanning the plane perpendicular to L.

Let’s equip ourselves with some useful vector relationships. In fig. 3.33 we
see that we defined the two unit vectors r̂ and θ̂ in the direction of increasing
r and θ. We have already discussed how to rotate vectors by a certain angle.
Eq. 2.8 gives us the recipe to rotate a vector when expressed as a 2-component
column vector. Since r̂ and θ̂ are perpendicular, from fig. 3.33 we see that we
can obtain the coordinates of the rotated vector by using eq. 2.8:(

r̂

θ̂

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̂
ŷ

)
(3.102)

Remember that eq. 3.102 is a compact way to write the components of the
rotated vectors as:
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r̂ =

(
cos θ
sin θ

)
θ̂ =

(
− sin θ
cos θ

) (3.103)

which simply means that the new unit vectors can be expressed as:

r̂ = cos θ x̂+ sin θ ŷ

θ̂ = − sin θ x̂+ cos θ ŷ
(3.104)

Using matrix notation we can write the vector r as:

r = r

(
cos θ
sin θ

)
= r r̂ (3.105)

Studying the motion of the planet means studying the time derivatives of
the various vectors involved. Let’s start with the vector r and let’s express
the derivative using the matrix notation in eq. 3.105. We need to establish
how to take derivatives of column vectors. The rule is simple: the derivative
of a vector is a new vector whose components are the derivative of the vector
components being derived. Given a generic vector w:

w =

(
w1

w2

)
(3.106)

Its derivative is:

ẇ =

(
ẇ1

ẇ2

)
=

(
dw1

dt
dw2

dt

)
(3.107)

If w1 and w2 are themselves functions w1 = w1(x) and w2 = w2(x), then
we can apply the chain rule and we have:

ẇ(x) =

(
dw1

dx
dx
dt

dw2

dx
dx
dt

)
= ẋ

(
dw1

dx
dw2

dx

)
(3.108)

Now that we have the recipe to derive column vectors, let’s take the time
derivative of the vector 3.105:

dr

dt
=

d

dt

[
r

(
cos θ
sin θ

)]
= ṙ

(
cos θ
sin θ

)
+ rθ̇

(
− sin θ
cos θ

)
(3.109)

Using eq. 3.103, we have:

ṙ = ṙr̂ + +rθ̇θ̂ (3.110)
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Eq. 3.110 gives us the polar components of the velocity in polar coor-
dinates. The time variation of the vector r can be decomposed in a radial
component and a transverse component (see fig. 3.33). The radial compo-
nent is ṙ and the transverse component is rθ̇.

The components of the acceleration can also be expressed in terms of the
polar unit vectors. Taking the derivative of eq. 3.109 we have:

r̈ = r̈

(
cos θ
sin θ

)
+ ṙθ̇

(
− sin θ
cos θ

)
+ ṙθ̇

(
− sin θ
cos θ

)
+ ṙθ̈

(
− sin θ
cos θ

)
+ rθ̇2

(
− cos θ
− sin θ

)
(3.111)

Collecting the terms:

r̈ = (r̈ − rθ̇2)

(
cos θ
sin θ

)
+ (2ṙθ̇ + ṙθ̈)

(
− sin θ
cos θ

)
(3.112)

or equivalently:

r̈ = (r̈ − rθ̇2)r̂ + (2ṙθ̇ + ṙθ̈)θ̂ (3.113)

Let’s look at the second term on the right-hand side of eq. 3.113. We notice
that it can be written as:

2ṙθ̇ + ṙθ̈ =
1

r

d

dt
(r2θ̇) (3.114)

Using eq. 3.114, eq. 3.113 can be written as:

r̈ = (r̈ − rθ̇2)r̂ +
1

r

d

dt
(r2θ̇)θ̂ (3.115)

Eqs. 3.110 and 3.115 give us the radial and traverse components of velocity
and acceleration. Let’s now insert the expression of r̈ we just found into the
equation of motion of the planet 3.97.

mr̈ = F (r)r̂

m[(r̈ − rθ̇2)r̂ +
1

r

d

dt
(r2θ̇)θ̂] = F (r)r̂

(3.116)

The above vector equation, i.e. an equation containing vector quantities,
can be re-expressed in terms of relations between the scalar components of
the vectors. In fact, two vectors are equal if and only if their components are
equal. In the case of the second equation 3.116, the scalar components of r̂ on
the left-hand side must equal the scalar components of r̂ on the right-hand
side. Same for θ̂. The vector eq. 3.116 becomes two scalar equations:

m(r̈ − rθ̇2) = F (r)

m

r

d

dt
(r2θ̇) = 0

(3.117)
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These two equations can be solved by finding the two functions of time
r = r(t) and θ = θ(t) which satisfy eq. 3.117. The orbit can then be reproduced
as follows17: for each time t, we can plot the point P = P (r, θ). Varying the
time t moves the point P which describes the orbit.

With a little bit of algebra we can reduce the two eqs. 3.117 to a single
equation whose solution is directly the equation of the orbit r = r(θ). The
second equation in 3.117 immediately gives us the conservation of angular
momentum, which we write as:

θ̇ =
h

r2
(3.118)

where the scalar h is the angular momentum per unit mass h = L
m (see eq.

3.24). We can now eliminate θ̇ from the first equation in 3.117 which becomes:

m(r̈ − h2

r3
) = F (r) (3.119)

Let’s now insert Newton’s gravitational force expression for F (r):

m(r̈ − h2

r3
) = −GMm

r2
(3.120)

This differential equation is quite difficult to solve in this form. We will
show that it is possible to transform eq. 3.120 into a simpler equation in some
other function u such that we can easily apply the techniques to solve ordinary
second-order differential equations.

To this end, let us define a new function u = 1
r . We will show that such

a choice simplifies the equations. In fact, taking into account that if r = r(θ)
then we must have that u = u(θ) and the derivatives are:

ṙ = − 1

u2

du

dt
= − 1

u2

du

dθ
θ̇ = − 1

u2

du

dθ
hu2 = −hdu

dθ

r̈ =
d

dt
(−hdu

dθ
) = −hθ̇ d

2u

dθ2
= −h2u2 d

2u

dθ2

(3.121)

We now insert the expression for r̈ into eq. 3.120:

m(r̈ − h2

r3
) = −GMm

r2

m(−h2u2 d
2u

dθ2
− h2

r3
) = −GMmu2

mh2u2 d
2u

dθ2
+mh2u = −GMmu2

(3.122)

Dividing by mh2 we finally have the equation:

17This method of representing curves is called parametric representation.
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d2u

dθ2
+ u =

GM

h2
(3.123)

This is a second-order constant coefficients inhomogeneous differential
equation.

The solution involves two steps. Step (1): find the solution to the homo-
geneous equation, i.e. the equation without the constant term:

d2u

dθ2
+ u = 0 (3.124)

The solution to eq. 3.124 is called the complementary function uCF . Step
(2): find a particular solution uPS which, in the case of our equation 3.123, is
simply uPS = GM

h2 as can be seen by direct substitution. The general solution
is then u = uCF + uPS .

In order to find the complementary function, we make use of an impor-
tant property of the solutions of linear homogeneous second-order differential
equations: if u1(θ) and u2(θ) are linearly independent solutions18, then the
general solution is:

uCF = C1u1 + C2u2 (3.125)

where C1 and C2 are two arbitrary constants that must be given or determined
by the physics of the problem.

If we look at the homogeneous equation 3.124 we see immediately that the
trigonometric functions sine and cosine are solutions because deriving twice
they return the same function with a changed sign. So the general solution to
the homogeneous equation is:

uCF = C1 cos θ + C2 sin θ (3.126)

Using the trigonometric identity:

cos(α− β) = cosα cosβ + sinαsinβ (3.127)

and taking C1 = A cos θ0 and C2 = A cos θ0, we have that eq. 3.126 can be
written as:

uCF = A cos(θ − θ0) (3.128)

and the general solution is:

u = A cos(θ − θ0) +
GM

h2
(3.129)

θ0 is the initial angle that for simplicity we can assume to be zero so the

18The functions u1(θ) and u2(θ) are linearly independent if one function is not a multiple
of the other function.
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planet starts its revolution around the Sun at θ = 0. We can finally bring back
the radius vector r = 1

u and we have:

1

r
= A cos(θ − θ0) +

GM

h2

h2

GM

1

r
= A cos(θ − θ0) + 1

(3.130)

or, extracting r we finally have the equation of the orbit:

r =
h2

GM

1 + e cos θ
(3.131)

where we indicated the constant A with the symbol e.
Eq. 3.130 is the polar form of a conic section as proved by eq. 3.77. Com-

paring the two equations we see immediately that the semi-latus rectum is:

p = a(1− e2) =
h2

GM
(3.132)

We have finally proved that a conic section is the orbit of a planet of mass
m subject to a central force proportional to the inverse square of the distance
to the Sun.

3.2.5 Kepler’s Problem: Solution Using Geometric Algebra with the
Laplace-Runge-Lenz Vector

We have seen two different ways to prove the inverse Kepler’s problem. We
now introduce a third one. We left for the finale what we think is the most
elegant solution. We will make use of what is known as geometric algebra
(GA), i.e. a different way to use geometric objects like, points, lines, planes,
etc. The new approach consists of using the geometric objects as members
of an algebra19 without relying on equations between the coordinates of the
objects. It follows that GA does not use coordinates. Once we have defined
what the objects of the GA are, geometric operations on these objects like,
for example rotations, are done by using the algebraic operations instead of
equations involving the coordinates. However, we will find that sometimes we
need to use coordinates in some situations.

Let us try to justify why we can use GA instead of using the more familiar
vector algebra. When we introduced operations with vectors in section 2.1.2
(page 56), the vector product (or cross product) was defined as an operation
between two vectors a and b20 producing another vector c perpendicular to

19Let us briefly define an algebra: a set of objects where two operations are defined
(addition and multiplication). The mathematical reader will have noticed that we have just
defined a ring in mathematics.

20We continue to use the notation whereas vectors are indicated with boldface symbols.
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both a and b. Because of this definition, c cannot belong to the plane defined
by a and b. So, the vector c extends the plane into a 3rd dimension. We
have also seen that the vector c is not exactly like the two vectors a and b,
but is what we called a pseudovector because of the anti-symmetric property
a × b = −b × a. We say that the 2D vector space is not closed with respect
to cross product, i.e. the result of the vector product produces an object that
does not belong to the original space where the vectors a and b “live”. It would
be desirable to have a definition of multiplication between vectors that does
not require adding an extra dimension. In order to do so, we need to define
how we multiply the unit vectors x and y. Given a vector x, the metric axiom
of GA is:

Metric axiom: xx = x2 = ‖x‖2 (3.133)

From the metric axiom 3.133, it follows that:

x̂x̂ = x̂2 = 1 (3.134)

x̂ (and ŷ) that are the unit vectors perpendicular to each other.
Another important consequence of the metric axiom derives from the

Pythagorean Theorem applied to the vector x̂+ ŷ sum of the two unit vectors,
which has magnitude

√
2. Since its magnitude is ‖x̂ + ŷ‖2 = 2 we must have:

‖(x̂ + ŷ)‖2 = ‖(x̂ + ŷ)(x̂ + ŷ)‖2

= ‖x̂x̂ + x̂ŷ + ŷx̂ + ŷŷ‖2

= ‖1 + x̂ŷ + ŷx̂ + 1‖2

= 2

(3.135)

Equation 3.135 is true if and only if:

xy = −yx (3.136)

Let us try to see what happens if we multiply two vectors algebraically.
Suppose we have two vectors a = axx̂ + ayŷ and b = bxx̂ + abŷ. And let’s
multiply them using the usual algebra:

xy = (axx̂ + ayŷ)(bxx̂ + byŷ)

= axbxx̂x̂ + axbyx̂ŷ + aybxŷx̂ + aybyŷŷ

= (axbx + ayby) + (axby − aybx)x̂ŷ

(3.137)

If we multiply the coordinates algebraically, we end up with an interesting
relation:

xy = (axbx + ayby) + (axby − aybx)x̂ŷ (3.138)
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FIGURE 3.34 Geometric interpretation of the wedge product as an ori-
ented area. The left panel shows that the orientation u∧ v is opposite
to v ∧ u = −u ∧ v.

The first term on the right-hand side is the scalar (dot) product of the two
vectors, while the second term reminds us of the z−component of the vector
(cross) product, i.e. the area of the parallelogram built with the two vectors a
and b. The first object is a scalar quantity (number) while the second quantity
is a new object that we call bivector and we indicate the new operation with
the wedge symbol ∧. Therefore we have a new definition of the product of two
vectors:

xy = x · y + x ∧ y (3.139)

The geometric product of two vectors in eq. 3.139 produces a scalar and a
bivector. So if we define the algebra to contain these objects, then the algebra
is closed, i.e. the outputs of the multiplication are elements within the original
space. The wedge product has an immediate geometric interpretation which
is partially shared with the conventional vector product: the wedge product
represents the area of the parallelogram built with the two vectors. The sign
depends on the orientation of the area as shown in fig. 3.34.

The basic blocks of this new 2D algebra therefore are: scalars, called grade
0, 2 orthogonal unit vectors x̂ and ŷ, called grade 1, and bivectors, called
grade 2. This classification is analogous to the more familiar classification
of standard geometrical objects where a point has zero dimension, a line is
1-dimensional and a plane is 2-dimensional. Any object in this GA algebra
can be expressed as a combination of these basic blocks. These new objects,
combinations of the basic blocks, are called multivectors and we indicate
them with capital letters. An example of a multivector can be written as:

A = 1 + 3x̂− 5ŷ − 7x̂ ∧ ŷ (3.140)

where we see that all the basic blocks have been used. Multiplication of mul-
tivectors generates other multivectors so the algebra is closed.

An interesting object is the square of the product of two unit vectors:
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(x̂ŷ)2 = (x̂ŷ)(x̂ŷ)

= −ŷx̂x̂ŷ
= −ŷx̂2ŷ

= −ŷŷ
= −1

(3.141)

Eq. 3.141 tells us that the square of the bivector x̂ŷ is equal to −1, indicat-
ing a possibly close connection with the imaginary number i =

√
−1. In other

words, pure geometry shows that the imaginary numbers have a geometric
meaning. In close analogy we define:

x̂ŷ = I (3.142)

This bivector is connected with rotations just like imaginary number i.
Let’s see what happens if we multiply a vector u = ax̂ + bŷ by I from the
right:

u′ = uI = (ax̂ + bŷ)x̂ŷ

= ax̂x̂ŷ + bŷx̂ŷ

= −bx̂ + aŷ

(3.143)

It can be easily shown that the new vector u′ = uI is obtained by rotating
u by 90◦ CCW. The vector u′ = Iu instead rotates by 90◦ CW.

We now turn our attention again to the motion of a planet in the solar
system. We now show that GA has many benefits over the more traditional
approach of previous sections.

Let’s define a bivector:

H = r ∧ ṙ (3.144)

This vector is the angular momentum per unit mass L/m. Let’s verify that
it is conserved in the presence of a central force.

dH

dt
=

d

dt
(r ∧ ṙ) =���ṙ ∧ ṙ +���r ∧ r̈ = 0 (3.145)

H is conserved because the wedge product of a vector by itself is zero and
r is parallel to r̈ because of the central force being in the same direction as
r. We have seen that this conservation law implies that the orbital motion is
confined to a plane and that the radius vector r sweeps equal areas in equal
times.

The definition of unit vector a is r̂ = r
r , so we can express the vector

r = rr̂. Eq. 3.144 becomes:
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H = (rr̂) ∧ (ṙr̂ + r ˙̂r)

=��
���(rr̂) ∧ (ṙr̂) + (rr̂) ∧ (r ˙̂r)

= r2(r̂ ∧ ˙̂r)

= r2(r̂ ˙̂r− r̂ · ˙̂r)

= r2r̂ ˙̂r

(3.146)

where we have used the definition of a geometric algebra product of two vectors
and the fact that r̂ · ˙̂r = 0.21

We now want to show how to obtain the shape of the orbit of a planet
orbiting the Sun. The planet is subject to the force:

f = r̈ = −GM
r2

r̂ (3.147)

Let’s multiply the two equations 3.146 and 3.147:

H r̈ = r2r̂ ˙̂r(−GM
r2

)r̂

= −GM r̂ ˙̂rr̂

(3.148)

The two vectors r̂ and ˙̂r are perpendicular and therefore anti-commute.
Eq. 3.148 becomes:

H r̈ = GM ˙̂rr̂r̂

= GM ˙̂rr̂2 = GM ˙̂r
(3.149)

Let’s rewrite eq. 3.149 as:

H r̈−GM ˙̂r = 0 (3.150)

Since we proved that H is constant, we notice that eq. 3.150 can be written
as:

d

dt
(H ṙ−GM r̂) = 0

A = H ṙ−GM r̂ = constant
(3.151)

The vector A is a constant of motion, i.e. it stays the same no matter where
it is calculated along the orbit. This vector is called the Laplace-Runge-
Lenz (LRL) vector. From the LRL vector it is straightforward to obtain the
equation of the orbit and therefore solve the inverse Kepler problem.

21r̂ · ˙̂r = 1
2
d
dt
(r̂ · r̂) = 1

2
d
dt
(‖r̂‖2) = 0.
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Let’s rewrite eq. 3.151 as:

H ṙ = A+GM r̂ (3.152)

and multiply by r:

H ṙr = Ar +GM r̂r (3.153)

and expand the products:

H(ṙ · r + ṙ ∧ r) = A · r +A ∧ r +GM r̂ · r +(((
((

GM r̂ ∧ r (3.154)

We know that H = r∧ ṙ and so ṙ∧r = −H. We also know that r̂ and r are
parallel and therefore their scalar product is simply r. We therefore simplify
eq. 3.154 into:

(ṙ · r)H −H2 = Ar cos θ +A ∧ r +GMr (3.155)

Let us discuss the various terms in eq. 3.155. The first term in the left-
hand side is a bivector, the second term in the left-hand side is a scalar. The
three terms on the right hand side are respectively a scalar, a bivector, and
a scalar. Eq. 3.155 equates two multivectors and they are equal if and only if
separately the various components are equal, i.e. the scalars on the right hand
side must be equal to the scalars on the left-hand side, and the same for the
vectors and bivectors.

Equating the scalars in eq. 3.155 we have:

H2 = Ar cos θ +GMr (3.156)

where the angle θ is the angle between the LRL vector A and the radius vector
r. Eq. 3.156 can be written in a more familiar way:

r =
H2

GM

1 + A
GM cos θ

(3.157)

The orbit described in eq. 3.157 is identical to the orbit obtained in the
previous section in eq. 3.131. We see that the eccentricity is e = A

GM while
the scalar H2 is exactly equal to h2.

3.3 ENERGY AND ORBITS
In section 3.1.1 we have seen that if a dynamical system is invariant un-
der rotations and time translations, then it conserves, respectively, angular
momentum and energy. A planet of mass m, subject to a central force pro-
portional to the inverse square of the distance, orbiting the Sun of mass M
(where m << M), falls under this category. The total conserved energy of the
planet can be written as:
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FIGURE 3.35 Potential energy of a planet orbiting the Sun. The two
components, centrifugal and gravitational, are plotted as dashed lines.

E =
1

2
m(ṙ2 + r2θ̇2)− GMm

r
(3.158)

Using the expression of the angular momentum given by eq. 3.85, eq. 3.158
can be written as:

E =
1

2
mṙ2 +

1

2

L2

mr2
− GMm

r
(3.159)

where we use the fact that the potential associated with the gravitational force
is:

V (r) =
d

dr

−GMm

r2
= −GMm

r
(3.160)

The total energy is the sum of three components: kinetic energy, a term
containing the total angular momentum, and the potential energy. We already
know that the third term is the gravitational potential whose derivative is
the conservative gravitational force. In complete analogy, we can express the
second term as a potential Uc:

Uc =
1

2

L2

mr2
(3.161)
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FIGURE 3.36 Relationship between orbits and energy.

whose derivative produces an associated force equal to:

Fc = −∂Uc
∂r

= − ∂

∂r

(
1

2

L2

mr2

)
=

L2

mr3
= mrθ̇2 (3.162)

This force is called centrifugal force and is directed from the Sun to the
planet exactly opposite to the gravitational attraction. The potential 3.161
can be regarded as a centrifugal potential energy. If we include it with the
gravitational potential energy U(r) we have an effective potential energy for
central forces:

V (r) = −GMm

r
+

L2

2mr2
(3.163)

Notice that the centrifugal potential reduces the effect of the gravitational
potential because of the opposite signs in the forces. The potential V (r) is
plotted in fig. 3.35 as a continuous line, while the two components of the ef-
fective potential are plotted as dashed lines. There are a few interesting facts to
underline: first, the potential rises up at small r proportional to r−2, meaning
that the centrifugal force becomes stronger than the attractive gravitational
force acting effectively as a repulsive force. Second, the potential has a min-
imum, therefore excluding orbits below the corresponding energy for a given
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angular momentum. Third, for large r the gravitational potential dominates
over the centrifugal term.

We can see very clearly the relationship between the energy of a planet
and its possible orbits (see fig. 3.36). By studying the plot of the effective
potential we can see the relationship between the energy and the type of
conic section. In fig. 3.163 we plot again the effective potential, but now we
study the consequences of changing the total energy of the planet. For total
energy Ehyp > 0, a planet coming from the right (r = ∞) in the plot has
enough energy to approach the Sun up to a minimum distance r = rh and
then fly back to reach infinity. The special case E = 0 represents a planet
coming from infinity with exactly zero energy and flying back to infinity along
a parabolic trajectory. As the energy becomes negative, the planet is bound
and confined between the two distances re1 < re2 with oscillatory motion. The
corresponding orbit is an ellipse. The final special case is a planet that has
the minimum energy allowed for which the planet’s orbit at a fixed minimum
distance r = rm corresponds to a circular orbit.

3.4 THE UNIVERSAL LAW OF GRAVITATION: ONE VERY
FAMOUS APPLE

In the previous sections we have described in some detail the relationship
between Newton’s laws of motion, Kepler’s laws, and Newton’s law of gravita-
tion. We have seen that Newton’s laws are somehow more basic than Kepler’s
laws in that these last can be obtained by the former. Newton’s law of gravita-
tion has been introduced without a good discussion because we were interested
mostly in the mathematical structure. We now go into the foundation of the
fantastic intuition that Newton had when he made gravity a universal force
of attraction between masses.

In 1665 and 1666 the bubonic plague, also-called black death, spread in
London forcing a lot of people to leave the city and repair in the isolation of
small villages hoping that the disease would not reach them. The University
of Cambridge was also closed and young Isaac Newton was sent 94 miles north
of London to his native village of Woolsthorpe-by-Colsterworth. Like one of
the Greek philosophers, Newton had all the time to ponder about maths and
physics. The legend says that one day Newton noticed an apple falling to the
ground and this put in motion a series of speculations. First, according to his
second law of motion F = ma, since the apple is accelerating when falling,
it means that there is a force attracting the apple to the ground and this
force is proportional to the mass of the apple. Newton was interested also in
another problem. Why is the Moon going around the Earth? According to
his first law, the Moon should have left the Earth unless a force is keeping it
circling around in a circular orbit. He knew it was more or less a circular orbit
because the apparent diameter of the Moon does not change with time. We
can imagine how Newton might have reasoned at this point: there is a force
that is attracting the apple to the ground. Could it be the same force that is
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attracting the Moon to the Earth? Additionally, why doesn’t the Moon fall to
the Earth and destroy it?

In order to prove this hypothesis, Newton made some calculations. He
knew that the orbit of the Moon is almost circular since its apparent diameter
does not change with time and he knew that the period of revolution of the
Moon around the Earth is about 27.3 days (lunar month). He also knew that
the distance from the Earth to the Moon is about 31 times the diameter of the
Earth (see Aristarchus’s estimate in chapter 1). We can immediately calculate
the speed of the Moon while orbiting the Earth:

v =
πDEM

4T
= 3680 km/h (3.164)

where DEM = 384, 400 km is the distance from the Earth to the Moon and
T = 27.3 days is the period of revolution of the Moon around the Earth. We
know that a body on a circular motion at constant velocity is subject to an
acceleration ∼ v2/R which, in the case of the Moon is:

aM =
v2

DEM
= 0.0027 m/s2 (3.165)

Newton also knew about the acceleration of a free-falling body at the
surface of the Earth. This is usually indicated with g and is equal to 9.81
m/s2. This value is much larger than the value calculated for the Moon and
this fact sparked an idea in Newton22. Is it conceivable that the acceleration
of the Moon is due to the attraction of the Earth and is much smaller because
the Moon is far away? What kind of relationship with distance must such
force have in order to explain the values of g and aM?

The suggestion that the Earth’s attraction is responsible for both the
falling of an apple and the fact that the Moon stays in orbit around the
Earth is quite bold. Can it be proved experimentally, perhaps checking that
effectively g is different between different heights? In 1662 and 1665 Hooke
reported to the Royal Society the results of a series of experiments conducted
on the towers of Westminster Abbey and old St. Paul’s Cathedral. Hooke did
not find evidence of difference in the force of gravity between weights whose
heights were 90 feet apart. Negative results notwithstanding, Hooke effectively
proposed an inverse square law and Newton must have known about Hooke’s
hypothesis.

Let’s return to Newton’s calculations. If the Moon is 62 times more distant
than the apple, then the two accelerations must be in the ratio:

22Newton was not the first to come up with the idea of a universal force of gravitation.
Robert Hooke (1635-1703) was a contemporary of Newton and claimed that he was the
original proposer of the inverse square law for the gravitational attraction. A long and
bitter dispute between the two scientists started when Newton published his work on the
spectral content of white light in 1672. Hooke dismissed Newton’s work on optics and this
fact certainly upset Newton who, probably as a retaliation, did not mention Hooke’s work
in his Principia.
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FIGURE 3.37 Newton’s cannonball thought experiment where cannon-
balls are shot horizontally with different velocities. For velocities less
than a special value, the cannonball will fall on Earth, although at
increasing distances A,B,C with increasing the velocity. There is a spe-
cial velocity for which the cannonball does not fall on Earth but keeps
falling constantly and eventually will hit the cannon from behind!
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FIGURE 3.38 Geometry to estimate the orbital speed in Newton’s can-
nonball thought experiment.

a

g
=

1

622
→ a =

g

622
= 0.0026 m/s2 (3.166)

This value is in good agreement with the value estimated in eq. 3.165. So
it seems that the force attracting the apple on the surface of the Earth is the
same force that attracts the Moon to the Earth. There are two things to still
discuss: why does the Moon not fall to the Earth like the apple? Second, and
most important, the estimates above assume that all the mass of the Earth is
located at its center as depicted in fig. 3.39.

The first question has been brilliantly answered by Newton. He seems to
have been the first to realize that the action of a force perpendicular to the
direction of motion will change the direction but not the magnitude of the
velocity vector. So, qualitatively, the Moon does not fall on the Earth because
its velocity vector is perpendicular to the force of attraction of the Earth.
Newton then performs a thought experiment, i.e. a mental image of an
experiment difficult or impossible to realize in practice, where a hypothesis
is tested and the consequences are analyzed. He imagined to be on the top
of a mountain where a cannon horizontally shoots cannonballs with different
velocities as depicted in fig. 3.37. Increasing the horizontal velocity of the
cannonball has the effect of increasing the distance where the cannonball lands.
Landing points A, B and C correspond to increasing horizontal velocities.
Newton then brings the argument further and realizes that if the horizontal
speed is high enough, the cannonball does not land but keeps circling the
Earth. In other words, the cannonball keeps falling but it keeps the same
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altitude over the Earth’s surface: the curvature of the cannonball trajectory
matches exactly the curvature of the surface of the Earth. This fact allows
us to calculate the orbital speed if we know the radius of the Earth RE , the
height of the mountain h, and gravity acceleration g.

Fig. 3.38 shows the geometry of a cannonball shot horizontally with re-
spect to the Earth’s surface (the arc PS). The cannon is located at height
h = PQ and shoots horizontally in the direction of the vector indicated. The
condition for a closed circular orbit requires that the cannonball has exactly
the necessary velocity such that the curved path m = QT is exactly parallel
to the curved path PS representing the surface of the Earth. Suppose that
the mountain PQ has an altitude of h = 8, 000 meters and that the radius of
the Earth RE = 6, 371 km. The acceleration due to gravity at Q is h = 9.7783
m/s2 which is about 0.3% less than the acceleration at sea level. If the can-
nonball has no horizontal speed, the free-fall time from Q to P is given by:

h =
1

2
gt2

t =

√
2h

g
= 40.4 sec

(3.167)

Since h � RE we can assume that the segment n = QS ≈ m = QT . We
have:

m ≈ n =
√

(RE + h)2 −R2
E =

√
h2 + 2hRE = 319.4 km

vorb =
319.5

40.4
= 7, 906 m/s

(3.168)

The orbital velocity calculated in eq. 3.168 gives the correct value as can
be verified by using the usual formula vorb =

√
GM
RE

.

3.4.1 Newton’s Shell Theorem Using Calculus

The second question, also known as Newton’s shell theorem, is quite important
and requires a bit of effort. The universal law of gravitation between two
planets is expressed by eq. 2.61 that we conveniently report here:

−→
F 12 = G

m1m2

r2
12

−→
k 12 (3.169)

Eq. 3.169 contains the distance r2
12 representing the distance between the

centers of the two planets of masses m1 and m2. Eq. 3.169 assumes that the
two planets have spherical symmetry and have densities depending only on r.
Before publishing his Principia, Newton had to prove the above statement,
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FIGURE 3.39 The force of gravitational attraction of the Earth on an
apple. On the left, the force is due to the distributed mass of the Earth.
On the right, the mass of the Earth is all concentrated in its center.
Are the two forces equal?

FIGURE 3.40 Geometry for proving Newton’s shell theorem using cal-
culus.
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FIGURE 3.41 Force dF exerted by a ring of infinitesimal thickness along
the symmetry axis passing through the center of the sphere and the
point mass m. Each of the dfi is pointing towards an infinitesimal mass
dm around the ring and they are all disposed on a cone of semi-angle
ϕ. The projection of each dfi on the symmetry axis is dfi cosϕ.

which he did using a geometric argument. We will show the proof of the shell
theorem by using various methods.

Let us start with the modern proof based on calculus (see fig. 3.40). Con-
sider a spherical shell of infinitesimal thickness of total mass M and consider
a point mass m located at a distance r from the center of the spherical shell.
We want to calculate the gravitational force exerted on the mass m at point P
by the thin shell. In order to do this we divide the shell in an infinite number
of rings of infinitesimal size (shaded area in fig. 3.40). Once we calculate the
force exerted by the ring, we sum over all the rings obtained by moving the
point Q from S to T . When we do this, we see that the angle θ varies from 0
to 2π, the angle ϕ varies from 0 to a max value corresponding to θ = π/2, and
` increases from a minimum value equal to r − RE to a max value equal to
r + RE . From simple geometry, we know that the total area of the sphere of
radius RE is 4πR2

E . We immediately see that the mass density σ of the shell
is the total mass M divided by the total surface area 4πR2

E :

σ =
M

4πR2
E

(3.170)

The force dF exerted by the infinitesimal ring is oriented along the sym-
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metry axis and is obtained by projecting each dfi, i.e. by multiplying by cosϕ
(see fig. 3.41). Using Newton’s universal gravitational formula, we have:

dF =
Gm dM

`2
cosϕ (3.171)

where dM is the mass of the infinitesimal ring and the cosϕ factor takes into
account the symmetrical disposition of all the dfi. We need to calculate the
mass dM of the infinitesimal ring and then add all the rings to cover all the
surface of the planet. Going back to fig. 3.40, we see that the shaded area of
the ring is equal to REθ, so the infinitesimal area of the ring will be:

dA = 2πh ·REdθ
= 2πR2

E · sin θdθ
(3.172)

The mass of the ring is simply the product of the mass surface density
3.170 times the area dA 3.172:

dM = σ · dA
= σ · 2πR2

E · sinθdθ

=
M

4πR2
E

· 2πR2
E · sinθdθ

=
1

2
M sin θdθ

(3.173)

Eq. 3.171 becomes:

dF =
Gm

`2
cosϕ · 1

2
M sin θdθ (3.174)

We now need to integrate all the dF corresponding to all the rings covering
the sphere in fig. 3.40.

F =

∫
Gm

`2
cosϕ · 1

2
M sin θdθ (3.175)

Both cosϕ and ` depend on θ. In order to evaluate the integral 3.175 we
now show that it is possible to eliminate θ and ϕ, so that the integrand in
3.175 depends only on `. Let’s look again at fig. 3.40. We can apply the law
of cosines to the triangle 4PQO in two different ways:

R2
E = r2 + `2 − 2r` cosϕ (3.176)

from which we obtain:

cosϕ =
r2 + `2 −R2

E

2r`
(3.177)
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The other law of cosines is:

`2 = r2 +R2
E − 2rRE cos θ (3.178)

We now differentiate both terms of eq. 3.178:

2`d` = −2rRE(− sin θdθ) (3.179)

from which we extract:

dθ =
`d`

rRE sin θ
(3.180)

Inserting eq. 3.180 and eq. 3.177 into eq. 3.175 and simplifying all the
common terms, we have:

F =

∫ r+RE

r−RE

Gm

`2
cosϕ · 1

2
M sin θdθ

=
GmM

4r2RE

∫ r+RE

r−RE

r2 + `2 −R2
E

`2
d`

=
GmM

4r2RE

∫ r+RE

r−RE

(
1 +

r2 −R2
E

`2

)
d`

(3.181)

where the integral in eq. 3.181 now depends only on the variable `, which
we have already shown varies between r − RE and r + RE . We now use
the Fundamental Theorem of Calculus , expressed in eq. 1.31, and look for
the function whose derivative is equal to the integrand, i.e. the function in
parenthesis in eq. 3.181.

It is easy to verify that the function:

G(`) = `− r2 −R2
E

`
(3.182)

satisfies the condition. Therefore, using eq. 1.37 we have:

F =
GmM

4r2RE

∫ r+RE

r−RE

r2 + `2 −R2
E

`2
d`

=
GmM

4r2RE
(G(r +RE)−G(r −RE))

=
GmM

4r2RE

(
r +RE −

r2 −R2
E

r +RE
−
(
r −RE −

r2 −R2
E

r −RE

))
=
GmM

4r2RE
· 4R =

GmM

r2

(3.183)

which proves that the force on a mass m at a distance r from a spherical



Celestial Mechanics � 157

FIGURE 3.42 Geometry to prove Newton’s shell theorem when the mass
m is inside the shell.

shell can be calculated by considering the mass of the shell collapsed into its
center. We can now imagine that a solid spherical body can be decomposed
into an infinite number of concentric shells. In this case, each shell of total
mass dM can be collapsed to the common center and the sum of all shells
will correspond to the total mass of the planet being collapsed into its center.
It is also evident that the argument is valid if and only if the density of the
planet is a function of r, its distance from the center, or in other words, each
infinitesimal shell has a constant surface density.

It is now simple to calculate the force on the point mass m if it is inside
the shell. In this case, fig. 3.40 is modified into fig. 3.42. If the point mass m
is inside the shell, we now see that the variable ` is varying between RE + r
and RE − r.

Eq. 3.183 needs to be evaluated inserting the new integration limits:

F =
GmM

4r2RE

∫ RE+r

RE−r

r2 + `2 −R2
E

`2
d`

=
GmM

4r2RE
(G(RE + r)−G(RE − r))

=
GmM

4r2RE

(
RE + r − r2 −R2

E

RE + r
−
(
RE − r −

r2 −R2
E

RE − r

))
=
GmM

4r2RE
· (RE + r − (RE − r)− (r −RE − (−(r −RE))) = 0

(3.184)

The total gravitational force on a mass m inside a shell is zero.



158 � Introduction to the Maths and Physics of the Solar System

3.4.2 Newton’s Shell Theorem Using Geometry

After having gone through the standard proof of Newton’s shell theorem using
calculus, let’s now discuss how Newton himself proved it using a geometrical
construction23. As is well known, Newton did not use calculus in his proofs,
even though he just invented it! Instead, he relied on geometrical arguments
coupled to his laws of motion and gravitation. Newton proved his shell theorem
in the year 1685 and he inserted his proof in the Principia as Proposition 71
of Book 1.

Without diminishing at all Newton’s greatness, we have to say that the
proof as reported in the Principia is not straightforward. Therefore we will
spend some extra effort in order to make sure that the reader appreciates in full
the beauty of geometry applied to physics. We now proceed to calculate the
gravitational force exerted by an extended spherical body on a point mass m.
Newton assumed that the spherical body was made up of an infinite collection
of infinitesimal particles whose density was only a function of the radius RE
of the body. He then proceeded to calculate the force exerted by each particle
and summed vectorially over all the particles. Let’s consider fig. 3.43, which
uses the same exact notation used by Newton. In the top panel we have a point
mass m located at the point P belonging to the plane passing through the
center of the shell S. The bottom panel is exactly the same but this time the
point mass m is located closer to the center S. We consider a ring obtained by
rotating the arc HI around the axis PS and the corresponding ring obtained
by rotating the arc hi around the axis pS. We want to show that the ratio of
the gravitational force due to the HI ring (F1) to the gravitational force due
to the hi ring (F2) is equal only to pS

2
/PS

2
, i.e. depends only on the inverse

of the distance squared to the center of the shell.
It is absolutely critical that the reader understands the way in which New-

ton built the geometry shown in fig. 3.43, taken straight from Newton’s Prin-
cipia, including the letters labelling the various points. As we have already
discussed in the previous section, we want to calculate the gravitational force
at Point P due to the matter belonging to a ring obtained by rotating the
small arc IH around the axis PB. We then calculate the force at point p
due to the matter belonging to a ring obtained by rotating the small arc ih
around the axis pb. In the limit in which the chord IH is small and can be ap-
proximated with the segment IH, we have that the area of the ring obtained
rotating around the axis PB is:

AP = 2π · IH · IQ (3.185)

And, if we consider the bottom panel in fig. 3.43, we have that the corre-
sponding area is:

Ap = 2π · ih · iq (3.186)

23We will present an extended discussion following the work of Weinstock [11].
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FIGURE 3.43 Newton’s geometry of his proof of the shell theorem when
the mass m is outside the shell.
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FIGURE 3.44 Auxiliary geometry to show that the segments in fig. 3.43
obey to the equalities SE = se and IL = il.

Due to the symmetry of the ring with respect to the axis where the points
P and p are placed, the corresponding forces that the rings exert on a point
mass m of unit mass is24:

F1 = GM
AP

PI
2

PQ

PI

F2 = GM
Ap

pi
2

pq

pi

(3.187)

where we used Newton’s universal law of gravitation. The factors PQ

PI
and pq

pi

take into account the cosine of the angles ∠KPB and ∠kpb in fig. 3.43.
We want to show that the ratio F1/F2 ∝ ps2/PS

2
. To this end we need

to carefully study fig. 3.43. Newton built the figure 3.43 very cleverly: he
traced the line PIEL and he divided the chord IL into two segments IE and
EL such that the segment SE is exactly perpendicular to PIEL. Now the
clever bit: he chose another point p along the same axis and such that the
line piel identifies the chord il and the segment se, perpendicular to piel. It
turns out that you can build the segment iel equal in length to the segment
IEL and the segment se equal to the segment SE and both perpendicular
to respectively PIEL and piel. In fig. 3.44 we show in fact that the triangle

24The force per unit mass is the field intensity.
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4ISL is obtained by rotating the bold triangle 4isl. The two triangles are in
fact congruent because the segment SE is equal to the segment se being two
radii of the same smaller circle. The segment SL is equal to the segment sl
because they are the radii of the same larger circle and, by construction, the
angles ∠SEL and ∠sel are both right angles. It follows that the two triangles
4ISL and 4isl are congruent as has been discussed earlier in this chapter
(SAS condition in fig. 3.17). The exact same reasoning can be applied to the
triangles 4SHD and 4shd. Therefore we have the first set of equalities:

se = SE

sd = SD
(3.188)

If the segments IH and ih are small, then we can assume that:

PF ' PE
SF ' SE
pf ' pe
sf ' se

(3.189)

Looking again at fig. 3.43 we can write now a chain of equalities:

df = sd− sf = sd− se = SD − SE = SD − SF = DF (3.190)

Newton now uses similarity between triangles. Let us refer to the fig. 3.45
where we isolated the two triangles4PES and4PIQ. By construction, these
are both right triangles because the point I is projected onto the point Q and
the point S is projected onto the point E. They also share the same angle
∠EPS and, as a result, the last angles ∠PIQ and ∠PSE are equal.

Therefore the two triangles are similar having all angles equal. It follows
that we can write the following relations:

PI

PS
=
IQ

SE
(3.191)

and

PI

PS
=
PQ

PE
=
PQ

PF
(3.192)

Similarly, for the lower case triangles, we have:

pi

ps
=
iq

se
(3.193)
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FIGURE 3.45 Auxiliary geometry to exploit similarities between trian-
gles 4PES and 4PIQ.

and

pi

ps
=
pq

pe
=
pq

pf
(3.194)

We now turn our attention to two similar triangles 4PIR and 4PFD as
shown in fig. 3.46.

We have:

PI

PF
=

RI

DF
(3.195)

and, for the lowercase:

pf

di
=
df

ri
(3.196)

We can now multiply the left-hand side of the first equation with the left-
hand side of the second equation in eq. 3.195:

PI

PF
· pf
pi

=
RI

DF
· df
ri

=
RI

ri
(3.197)

We need two more figures to study before proceeding to the final calcu-
lation. Let us now consider fig. 3.47 showing the two triangles 4IRH and
4IES. Notice that we expanded the triangle 4IRH to show the difference
between the arc IH and the segment IH. In the limit of the pointH approach-
ing point I, the line HI approaches better and better, the tangent at point I.
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FIGURE 3.46 Auxiliary geometry to exploit similarities between trian-
gles 4PIR and 4PFD.

FIGURE 3.47 Auxiliary geometry to show the relationships between tri-
angles 4IRH and 4IES.
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FIGURE 3.48 Auxiliary geometry to show that the triangles4IRH and
4IES are similar.

This means that, for angle ∠RPI sufficiently small, the triangle 4IRH can
be approximated as a right triangle where the segment HI is the hypothenuse
perpendicular to the radius SI. Now we already know that, by construction,
RI is perpendicular to PH and therefore, in the small arc approximation, RI
is perpendicular to IE.

Now the key point: when the point H approaches the point I, the two lines
PH and PE become more and more parallel. In the limit, we can consider
them parallel as shown in fig. 3.48. In this figure, the line HI cuts the two
parallel lines RH and IE. This means that the angle α = ∠RHI is equal to
the angle ∠ISE. Since the angle ∠HIS is a right angle as is ∠RIE, it follows
that the angle β = ∠RIH is equal to the angle ∠EIS. The two triangles
4IRH and 4IES are similar because they have all their angles equal. If we
look again at fig. 3.44 we see that the triangle 4IES is congruent to triangle
4ies, therefore triangle 4irh is similar to triangle 4IRH. We can finally
write:

RI

ri
=
HI

hi
(3.198)

and eq. 3.197 becomes:

pf

PF

PI

pi
=
HI

hi
(3.199)

We have all the ingredients to evaluate the ratio of the two forces F1/F2.
We will show that F1/F2 = ps2/PS

2
. Using eq. 3.187 we have:
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FIGURE 3.49 Fluid flowing at constant velocity through an infinitesimal
pipe of cross section dA.

F1

F2
=

PQ·HI·IQ
PI

3

pq·hi·iq
pi

3

=
PQ ·HI · IQ
pq · hi · iq

· pi
3

PI
3 (3.200)

Inserting in eq. 3.200 IQ from eq. 3.191, iq from eq. 3.193, PQ from eq.
3.192, and pq from eq. 3.194, we have:

F1

F2
=
PI

PS

PF

pq
· HI
hi
· PI
PS

SE

iq
· pi

3

PI
3

=
PF

pf

pi

PI
· HI
hi
· SE
se
· ps

2

PS
2

(3.201)

Finally, using eq. 3.188 and eq. 3.199, we have:

F1

F2
=

ps2

PS
2 (3.202)

which shows that the ratio of the forces at P and p are inversely proportional
to the distance to the center of the shell. Newton then claims that, given
the symmetry, the same result is obtained if we consider the whole shell and
all the concentric shells until we consider the whole planet. In other words,
the force on a particle external to a spherical body can be calculated assuming
the total mass is concentrated in the center of the body.

3.4.3 Newton’s Shell Theorem Using Gauss’s Law

In this section we will derive Newton’s shell theorem using an elegant theo-
rem due to Gauss and Ostrogradsky called the divergence theorem. Gauss’s
theorem is beautiful, elegant, and useful in many diverse fields, from electro-
magnetism to fluid dynamics. As is customary in this book, we will introduce
all the concepts needed for full comprehension of the theorem first.

Gauss’s law expresses a mathematical relationship between the flux of a
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FIGURE 3.50 Carl Friedrich Gauss was a German mathematician and
physicist who made substantial contributions to algebra, astronomy,
and electromagnetism.

vector field out of a surface enclosing a tridimensional volume and the source
of the field, i.e. the distribution of masses inside the tridimensional volume25.

We need to introduce the concept of field and the associated flux out of a
surface. A field (in physics) is a region of space where a physical quantity is
associated with each of the points of the region. For example, the temperature
of a room can be represented by a temperature field T = T (x, y, z) where a
temperature T is associated with each point (x, y, z) in Cartesian coordinates.
In this case we say that the temperature T is a scalar field because the tem-
perature is a scalar quantity, i.e. is a number. Another important scalar field
is the density, i.e. the number of particles per unit volume ρ = ρ(x, y, z) at
each of the points in space (x, y, z).

In complete analogy we can define a vector field
−→
F =

−→
F (x, y, z) where a

vector is associated with each point in space. An important example is the
gravitational field26, i.e. the force that a mass M >> m exerts on a unit mass

25Gauss’s theorem is heavily used in electromagnetism, where instead of masses we have
electric charges.

26Here the treatment is purely Newtonian, which is an approximation of a more accurate
theory of gravitation due to A. Einstein and called the General Theory of Relativity. The
gravitational field is described by the field equations of general relativity that equate the
Einstein tensorG to the stress-energy tensor T . While in Newtonian gravity the gravitational
field depends only on the spatial distribution of matter, in general relativity the field depends
on the distribution of matter and energy.
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m. Depending on where in space we put our unit test mass m, this will feel a
force (per unit mass):

−→g (r) = −
−→
Fg
m

= −GM
r2

r̂ (3.203)

where r =
√
x2 + y2 + z2. −→g (r) is the gravitational field at the point r and r̂

is the unit vector directed from the test particle to the mass generating the
gravitational field.

The air velocity in a room is another example of a vector field because at
each point in space is associated a vector indicating direction and speed of the
air. The fields just described are stationary, i.e. the values they have at the
specified points in space do not depend on time. More in general, the fields
might depend on time so that a generic field can be written as f = f(x, y, z, t).

Having defined a vector field we now turn our attention to the concept of
flux of a vector field through a surface. Fig. 3.49 shows a pipe with infinitesimal
circular cross section. Inside the pipe we have a fluid flowing from left to right
at constant velocity −→v which we define as positive. Imagine that, on the
other end of the pipe, there is a bucket collecting the fluid. We can associate
the concept of flux, in this example, with the amount of fluid collected per
unit time. What is the amount of water per unit time? It can be found by
multiplying the fluid velocity times the area d

−→
A as in fig. 3.49. How do we

choose the area d
−→
A? It seems obvious that the “correct” area to choose is

the one parallel to the velocity −→v . If we want to make the calculation more
general, we can choose any area d

−→
A′ oriented at angle θ with respect to the

velocity vector. However, in order to make sure that the flux calculated, i.e.
the amount of water collected stays the same, we need to adjust for the fact
that d

−→
A′ is bigger than d

−→
A and tilted by an angle θ.

It is easy to verify that the (infinitesimal) flux dΦ of the velocity vector
can be written as a dot product:

dΦ = −→v · d
−→
A′ (3.204)

We now need to define properly what we mean with the symbol d
−→
A′. What

does it mean, a vector associated with an area? We can associate a vector to
an area by defining:

d
−→
A = −→n dA (3.205)

where −→n is a unit vector perpendicular to the area dA. There is still an
ambiguity to resolve: any surface has two faces and therefore two perpendicular
vectors. When we decide the orientation of the unit vector −→n , we break the
ambiguity and we talk about oriented area. In the case of the flux above, we
decided that the area dA is oriented as the vector −→v so that the flux is defined
as a positive quantity. The other choice will obviously give a negative flux.
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The common convention is to define the unit vector −→n outwards from any
closed surface.

With this definition of the area as a vector, we can rewrite eq. 3.204 as:

dΦ = (−→v · −→n )dA′ (3.206)

where now dA′ is a scalar quantity equal to the infinitesimal area.
If the surface for which we want to calculate the flux is finite (see fig.

3.51) we can proceed by dividing the surface in many small surfaces dAi with
associated unit vectors ni. Obviously now the vector −→v must be evaluated at
each area element and therefore it will be now a set of vectors −→vi associated
with the respective infinitesimal area elements dAi. The finite flux Φ is the
sum over all the small areas:

Φ =
∑
i

(−→vi · −→ni)dA′i (3.207)

What we just described is a special kind of integral called a surface integral
and is written as:

Φ =

∮
S

(−→v · −→n )dA (3.208)

where the symbol
∮
S
in eq. 3.207 represents the limit for the areas dA tending

to zero over the whole surface S.
Let’s turn to physics and suppose we have a point source of incompressible

fluid (for example, water) inside a big container. Let’s suppose the source is
outputting F cubic meters of water per second. We assume that the water
exits the point source equally in all directions, i.e. isotropically (see fig. 3.52).
If the closed spherical surface S completely surrounds the source, then the
water exiting the surface must equal the water exiting the point source27. Here
we see the importance of the fluid being incompressible. The requirement of
isotropic output flow can be restated by assuming that the velocity of the
water depends only on the radius v = v(−→r ). We can now use eq. 3.208:

F =

∮
S

(−→v · −→n )dA =

∮
S

−→v · d
−→
A = v

∮
S

dA (3.209)

The last equality in eq. 3.209 follows from the fact that the velocity vector
of the water−→v is perpendicular to the area element d

−→
A . In the case of isotropic

flow, the velocity v is constant at the surface of the sphere and therefore can
be put outside the integral sign.

Eq. 3.209 tells us something very interesting: the value of F depends only
on the presence of the source inside the closed surface S. It is important that

27If the source is not isotropic, the amount of fluid exiting the closed surface is still
equal to the amount of fluid generated by the source. In this case the velocity vector is not
constant on the surface of the sphere.
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FIGURE 3.51 Representation of the flux of a vector −→v through a surface
S.
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FIGURE 3.52 Water source inside a spherical closed surface S.
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FIGURE 3.53 Geometry to determine the area element dA of S.
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the vector −→v = −→v (r) is a function only of the radius r, so that it has a
constant value on the surface of the sphere S and points radially out.

We are left with estimating the value of the integral
∮
S
dA. The little square

dA in fig. 3.53 is obtained by multiplying the height rdθ by the base r sin θdθ.
The whole surface of the sphere is described when the angle φ is allowed to
range between 0 and 2π and when the angle θ is allowed to range between 0
and π. Eq. 3.209 becomes:

F = v

∫ 2π

0

dφ

∫ π

0

r2 sin θdθ = 4πr2v (3.210)

What if the source of water is not in the exact center of the sphere? In this
case, the water velocity field −→v = −→v (x, y, z) will be a function that depends
on the three Cartesian coordinates x, y and z. However, since we assume that
the fluid is incompressible, so much water is output by the source, so much
must exit out of the closed surface providing that the source is contained inside
the closed surface S. So we conclude, without having to calculate a difficult
integral, that no matter where inside the sphere the source is located, the
total integrated flux output must be the same. Obviously, when the source is
shifted from the center, the vector −→v will not be constant at the surface of
the sphere.

There is a special class of vector fields for which the flux has remarkable
properties. Suppose the vector field depends on the inverse square of the dis-
tance. In this case, eq. 3.209 gives a flux that is always constant, independent
from the radius of the sphere. This happens because as the area grows as r2,
the vector field decreases as r2 so the product is constant.

Let’s now turn to gravitation. We have seen that the gravitational field
is expressed in eq. 3.203. Let’s insert the gravitational field −→g (r) instead of
−→v (r) in eq. 3.209. We have:

F =

∮
S

(−→g · −→n )dA = −
∮
S

GM

r2
−→n · r̂ dA (3.211)

In the case of a field depending only on r, we know that the vector −→n and
r̂ are parallel. Using eq. 3.210 with g instead of v we have:

F =

∮
S

(−→g · −→n )dA = −GM
r2

4πr2 = −4πGM (3.212)

We therefore obtain the so-called Gauss’s law for gravitation28:

F =

∮
S

(−→g · −→n )dA = −4πGMenc (3.213)

28There is an equivalent, and more used Gauss’s Law in electrostatics relating the electric
field vector

−→
E to the enclosed charge qenc. In the vacuum we have F =

∮
S(
−→
E ·−→n )dA = qenc

ε0
,

where ε0 is the vacuum permittivity.
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where we explicitly indicate with Menc the mass contained inside the closed
surface S. This kind of surface is usually called a Gauss surface.

Proving Newton’s shell theorem is now relatively straightforward and is a
direct consequence of eq. 3.213. A homogeneous spherical shell or a spherically
symmetric mass both have an important property: the vector −→n is directed
towards the point of symmetry. This means that the gravitational field of
the shell or the spherical mass is directed exactly to the center of symmetry
exactly as if all the mass was concentrated in that point. The field is radially
symmetric −→g = g(r)−→n where −→n points towards the center. We can then use
eq. 3.213 to find what g(r) we obtain for a radially symmetric shell or sphere:

−→g = g(r)−→n∮
S

(−→g · −→n )dA = g(r)

∮
S

dA = 4πr2

g(r)4πr2 = −4πGMenc

g(r) = −GM
r2

(3.214)

The last equation in eq. 3.214 proves Newton’s shell theorem.

3.5 PLANET’S MOTION USING EULER-LAGRANGE EQUA-
TIONS

We conclude this chapter with showing how to obtain the equation of motion
of a planet (eq. 3.120) using the Euler-Lagrange equation 3.11 reported here
for convenience in its general form:

∂L
∂q
− d

dt

∂L
∂q̇

= 0 (3.215)

where the coordinates q and q̇ are generic coordinates, not necessarily Carte-
sian. We have seen that we define the Lagrangian L as a scalar quantity
obtained by subtracting the potential energy to the kinetic energy of the sys-
tem, L = T − V . We have already calculated the potential and kinetic energy
of a planet of mass m orbiting the sun of mass M (see eq. 3.22). We now
choose to use polar coordinates:

T =
1

2
m(ṙ2 + r2θ̇2)

V = −GMm

r

(3.216)

The Lagrangian can then be written as:

L = T − V =
1

2
m(ṙ2 + r2θ̇2) +

GMm

r
(3.217)
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We now show how to quickly obtain eq. 3.120, whose solution gives the
orbit of a planet in the solar system.

Let us now apply Euler-Lagrange equations with respect to the two coor-
dinates r and θ. We have:

∂L
∂θ
− d

dt

∂L
∂θ̇

= 0

∂L
∂r
− d

dt

∂L
∂ṙ

= 0

(3.218)

The Lagrangian of eq. 3.216 does not have an explicit dependence on θ and
we have seen that this implies the conservation of the associated momentum.
The first equation in 3.218 gives:

∂L
∂θ̇

= mr2θ̇ = L = const. (3.219)

The second equation in 3.218 gives:

mr̈ −mrθ̇2 = −GMm

r2
(3.220)

Using eq. 3.219 and h = L
m we finally have:

m(r̈ − h2

r3
) = −GMm

r2
(3.221)

which is exactly eq. 3.120.

Think About It...
Looking at fig. 3.37 by Newton, we can certainly state that Newton
was the first to think about the possibility of sending satellites in orbit
around the Earth.
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W e spent considerable effort in the previous chapters to calculate the
functional form of the orbit of a planet around the Sun and various

different methods to prove it. We have seen that Kepler’s laws are derived
from Newton’s laws. In addition, we have seen that if the gravitational force
is central, the planet/Sun system conserves the angular momentum. If the
central force has the special dependence of the inverse square of the distance
from the planet to the Sun, then the orbit is a conic section. The energy dis-
criminates between closed orbits (circle and ellipses) or open orbits (parabola
and hyperbola).

We now explore briefly how the motion of planets has been crucial in
determining the law of gravitation. We need to go back in time and study
how scientists have worked out that the Sun is at the center of the solar
system and that the gravitational attraction is universal and is proportional
to the inverse square of the distance between the masses.

4.1 GEOCENTRIC VERSUS HELIOCENTRIC
Let us now follow the reasoning of an ancient philosopher willing to build a
model that explains all the observations above.

The first natural assumption, first dictated by the fact that the sky effec-
tively rotates east to west regularly, was to place the Earth at the center of
the Universe. This vantage position was justified also by religious assumptions
about the special place that humans also have in the cosmos. If humans are
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FIGURE 4.1 Aristotle’s model.

central, then the Earth where we live must be special and so it does not look
unreasonable to put it at the center, as well.

Aristotle (384 - 322 BC) was the most influential philosopher to put for-
ward this geocentric view of the cosmos. He was so influential that his model
survived 18 centuries before being superseded by the work of Copernicus
around the 15th century. Aristotle demanded few strict conditions for the
motion of objects in the sky: since they appear to move in circles and circles
are perfect geometric figures, the substance making up the stars and planet
must also be perfect and their shape must be spherical. So the Earth and the
planets must be spherical1.

1Aristotle supported his proposal of a spherical Earth with observations. He noticed that
during a lunar eclipse, the Earth’s shadow is circular and this can be only explained by a
spherical Earth.
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FIGURE 4.2 Aristotle (384—322 BC) was a very influential Greek
philosopher. His views on astronomy survived several centuries, until
the Renaissance.



180 � Introduction to the Maths and Physics of the Solar System

Since the sphere is the perfect geometrical figure with maximum symmetry,
then its center is the natural place to position the Earth. All the astronomical
objects are fixed to rotating transparent spheres made of an ethereal, trans-
parent fifth element (quintessence) to be added to the canonical four elements
fire, air, earth, and water. Aristotle noticed that the relative position of all
the stars did not change and therefore they must be fixed to the same sphere
– the sphere of fixed stars – which is behind all other objects (see fig. 4.1).
Starting from the Earth in the center, the Moon is embedded into the first
sphere. This sphere is still quite close to the Earth and therefore is subjected
to its influence: this explains why the Moon has phases and dark spots. We
then have the spheres for Venus, Mercury, the Sun, Mars, Jupiter and Saturn
and fixed stars. All these spheres rotate at constant different angular velocities
and the motion is generated by an additional more external sphere which is
“unmoved”. This geocentric model explains pretty well why stars appear not to
move with respect to each other. In fact, constellations preserved their shape
with time. The apparent stable luminosity of Venus was also believed to be
another fact in favor of geocentrism. Stable luminosity means that Venus is
always at the same distance from Earth.

Aristotle needed 55 spheres to accommodate the astronomical data at his
disposal. He spent a large amount of effort in perfecting his system so as
to have a good agreement between theory and observations. In this respect
he is quite modern. As observational data became more accurate and more
abundant, Aristotle’s model needed to be updated. The most important facts
were the apparent change in luminosity of Mercury, Mars and Jupiter during
the year and the retrograde motion (see fig. 4.3). It was in fact noticed that
Mars and Jupiter were showing a retrograde motion, a phenomenon where
they would seem to slow down, go backwards, and then move forwards against
the fixed stars.

As measurements became more abundant and accurate, the spherical ap-
proach needed to be modified while still maintaining the philosophical require-
ments of “perfection” of circular motion. Ptolemy (around AD 140), a Roman
citizen of Greek origin living in Alexandria, needed to introduce few modifica-
tions to concentric spherical models by introducing a combination of circular
motions (epicycles) imposed on other circular motions (deferent circles). This
complication was absolutely needed because it was evident that the motion
of the Sun, the Moon, and the planets as seen from the Earth was not simply
circular. He also removed the Earth from the center of the spheres to allow for
planets and other objects to vary their distance to the Earth. This modifica-
tion immediately explained the variations of luminosity of some planets. The
introduction of the epicycles qualitatively explained the retrograde motion.

Therefore, according to Ptolemy, the Earth is the center of the Universe but
occupies a shifted position with respect to the center of the celestial spheres
as shown in fig. 4.4. In the opposite position with respect to this center, there
is a point called equant from which the planets appear to move at constant
angular speed. This geometry accounted for velocity variations and retrograde
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FIGURE 4.3 Retrograde motion of Mars in summer 2018. Libra con-
stellation is at RA = 15h, δ = −15◦.
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FIGURE 4.4 Ptolemy’s deferent and epicycle circles.

motion of planets. It was quite complicated but, with refinements, was able
to explain the observed motions. Ptolemy was happy with his system because
it was capable of explaining most of the observations. But, most importantly,
was giving the Earth a central position in the Universe and this was a ba-
sic requirement for any scientific theory at those times because of religious
compatibility.

In fig. 4.3 we see the apparent motion of Mars against the fixed constella-
tions of Libra, Scorpius, and Ophiuchus while in fig. 4.4 we see the solution
proposed by Ptolemy. The right panel of fig. 4.4 shows 4 sequential positions
of the planet moving along the epicycle as seen from Earth. If ω1 < ω2, i.e. if
the angular velocity of the radius vector joining the center of the epicycle is
less than the angular velocity of the radius describing the epicycle, then when
the planet is describing the arc contained within the deferent from point 2 to
point 3, it appears to be moving in a retrograde motion. Ingenious but not
good enough. In fact, although qualitatively capable of explaining retrograde
motion, epicycles were more and more difficult to adapt to new and more
accurate data.

Already in ancient times, some philosopher attempted to propose new
models where the Earth was not at the center of the Universe. Aristarchus of
Samos (see chapter 1) was among the first to propose that the Sun, instead
of the Earth, was in the center. Although basically correct, his theory did
not have much success, probably because of the highly influential figure of
Aristotle. We need to wait a couple of millennia before the times are ripe for
a revolutionary proposal. Copernicus is the figure that more than others had
the stature and charisma to propose a heliocentric model.
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FIGURE 4.5 Ptolemy.
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FIGURE 4.6 Retrograde motion of Mars in Copernicus’s heliocentric
model.
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Many of the observed phenomena that we described above can be explained
in a simpler way by the heliocentric hypothesis. For example, stars rise east
and set west on a very regular period of 24 hours rotating around the star
Polaris. It is not the sky that rotates, with all its complex structure. Instead,
it is much simpler to assume that the Earth is not fixed but is free to move.
Having freed the Earth, we can now accept that it can spin around its axis
and the axis is pointing towards the star Polaris.

The retrograde motion was explained very easily as shown in fig. 4.6. But
above all, all the complications of several spheres with epicycles were not
needed anymore. Copernicus indicated the right way and, even though his
model was not accurate, he paved the road for other scientists to refine his
heliocentric model. Copernicus wrote his proposal in a hand-written book that
he initially distributed just to his friends. In this book, in addition to placing
the Sun in the center of the Universe, he attributed the Sun’s rising and
setting to the Earth rotating around its axis. The apparent circular motion
of the stars was also explained by this rotation. The revolution of the Earth
around the Sun also accounted for the seasons. He did not publish his book,
De Revolutionibus Orbium Coelestium, until 1543 just two months before his
death.

It was Kepler who finally corrected Copernicus’s wrong assumption of
circular orbits with elliptical orbits. When Galileo took Copernicus’s ideas
seriously to restate in 1632 that the Sun is at the center of the Universe,
the church condemned him to house arrest for heresy and subjected him to
inquisition.

4.2 MOTION AND COORDINATES
Before delving into the maths and physics, let’s orient ourselves and observe
the sky, paying attention to the various phenomena. In the western part of
the world we enjoyed an amazing number of ancient philosophers, mostly
Greek, that had the opportunity and the geniality to ponder over fundamental
questions. The majesty of the night sky has certainly provided the ground for
speculations about not only the origin of the world but also the mechanism
responsible for the observed regularity of motion of stars and planets.

The are some observations that have sparked a number of debates among
the ancient philosophers. We can try to get a feeling for what the Universe
looked like at those times by pretending we know nothing about the solar
system and trying to see what can we deduce by simply observing the sky. The
first thing we observe is that, at night and if it is clear, there are lots of point-
like objects called stars. In fig. 4.7 various important lines are shown. Suppose
we are located at mid-latitude in the Northern Hemisphere and observe the
sky. The big sphere around us is the apparent sphere where all sky objects seem
to be located like, for example, the stars, the planets, and the Sun. If we look
straight up, we define our local zenith. If we project our local horizon towards
the celestial sphere, we define a circle also called the horizon. Obviously every
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FIGURE 4.7 Motion of the Sun in the sky as seen by an observer located
on Earth at mid-latitude in the Northern Hemisphere.
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FIGURE 4.8 How to determine due north at mid-latitude in the North-
ern Hemisphere. Dotted lines show the traces of various stars.

observer has its own zenith and its own horizon and if we want to compare
what we see in the sky we need to define a reference system common to all
observers. Experience has demonstrated that cardinal points are very useful
when orienting and traveling. So, let’s determine the cardinal points using the
motion of sky objects.

After looking at the stars for some time we notice immediately that the
whole sphere seems to rotate around a fixed point very close to a star called
Polaris (see fig. 4.8). If we bring down a line2 perpendicular to the horizon,
where this line intercepts the horizon, that is (almost) due north. Having
found north, it is now easy to find east, south and west by turning 90◦ CCW
in sequence. As a bonus, if we measure the angle between the Polaris and
north, that angle is equal to the latitude of the observer as shown in fig. 4.7.

2In reality we need to identify the great circle passing through Polaris: North is where
the great circle intercepts the horizon.
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FIGURE 4.9 Apparent motion of the Sun with respect to the back-
ground of fixed stars.

Now we turn our attention to the motion of the Sun. First, we notice that
the Sun culminates, i.e. reaches the highest point in the sky, always towards
south while the rising and setting points R and S depend on the time of the
year. In summer, the day is longer than the night and the Sun culminates
very high in the sky. In winter the exact opposite happens: nights are longer
than days and the Sun culminates low in the sky. There are two special days
in spring and in autumn when the length of the day is equal to the length of
the night. These days are termed as equinox from the Latin equi, or “equal”
and nox, or “night”. The other remarkable observation consists of the fact that
the path of the Sun in the sky during the winter season (P1) is lower than
the path (P3) during the summer as observed from our mid-latitude place
in the Northern Hemisphere. There are two special days during which the
Sun reaches the maximum and minimum altitude in the sky. The one in the
summer is called summer solstice3 (highest altitude of the Sun), while the
one in the winter is called winter solstice (lowest altitude of the Sun). The
duration of the daytime hours is minimum at the winter solstice and maximum
at the summer solstice.

If we have time to spare, and apparently the ancient philosophers had

3From the Latin solstitium, the point at which the Sun seems to stand still. Sol, or “Sun”,
and sistere, or “stand still”.
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plenty, we can trace the motion of the Sun with respect to the fixed stars over
a long period of time. We cannot obviously see the Sun and the background
stars because of the strong sunlight. But imagine for a moment that you can
do that: we immediately notice that the Sun moves eastward with respect to
the background stars at almost the same speed as the fixed stars behind. The
Sun moves and comes back in the exact same position with respect to the
fixed stars after 1 year or 365 days. Well, not exactly: after 365.2422... days.
This means that, with respect to the fixed stars, because one complete turn is
360◦, the Sun moves at a speed of slightly less than 1◦ per day eastward. With
a bit of patience, we can trace the full path of the Sun with respect to the
fixed stars and this line is called ecliptic4. As seen from Earth, the Sun moves
along the ecliptic line and, depending on the month of the year, it crosses 12
famous constellations contained in the Zodiac. The Zodiac is a band in the sky
centered on the ecliptic and about 16◦ wide. We notice another remarkable
fact: the Moon and the visible planets are always contained within this band.

With even more patience we notice another interesting fact: the Sun seems
to be moving along the ecliptic at a slightly faster speed during the summer
months than the winter months.

These simple observations are hinting at something extremely interesting:
the observations are consistent with having the Sun, the Earth, and the other
planets including the Moon, orbiting more or less in the same plane! That is
quite remarkable and hints at something very profound about the origin of
the solar system.

Let’s look at the Moon: it is spherical, rotates around us always showing
the same face, and it goes through phases, i.e. the portions of the face directly
illuminated. These portions change with time going from no illumination (new
Moon) to full illumination (full Moon) and back to no illumination in about
29.53 days (synodic month). The synodic month is not stable but varies dur-
ing the year. If we record how much time is needed for the Moon to rotate
around the background of fixed stars we find that the cycle is about 27.32
days (sidereal month).

In addition to the obvious motion of the Sun and the Moon, there are other
point-like objects (planets5) that also move with respect to the background of
fixed stars. The ancients cataloged Mercury, Venus, Mars, Jupiter, and Saturn
as planets. To complicate things a bit more, some of these planets experience
strange patterns by showing retrograde motion, i.e. the path against the fixed
stars shows loops with changes of direction between the direct motion and
the motion in the opposite direction or retrograde. In fig. 4.3, the motion
of Mars is represented against the fixed constellations of Libra, Ophiuchus
and Scorpius. From early February to early April, Mars seems to move in
the general direction from east (to the right) to west (to the left). Then from

4The word ecliptic comes from the Greek word εkλιπτιkος“of an eclipse”. The ancients
in fact noticed that eclipses happened when the Moon was close to the ecliptic line.

5In ancient Greek, the word πλανητης means “wanderer”.
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early April to mid-May Mars seems to drift from west to east then reversing
direction again back to the west.

All these observations naturally lead to considering the Earth at the center
of a rotating Universe. We have seen in the previous sections some history of
how this assumption was challenged. Let us now discuss how we can identify
stars in the sky and how we can tell another observer how to find a specific
star. Suppose that during a very nice and clear night we see a bright star in the
sky and we want to understand what star it is. We open an astronomy book
and in it we find that stars are identified by two coordinates: right ascension
(RA) and declination (Dec). The problem is that if I use two coordinates
that are easy for me to determine like, for example, the azimuth and the
elevation of a star, these numbers change constantly with time. So it seems
like I need 3 numbers to identify a star, the azimuth, the elevation and the
time at which these two numbers were recorded. Another observer in, say
London, will find it completely useless to know that star A had a certain
azimuth and a certain elevation in Rome (so we need also to add the local
coordinates of Rome, longitude and latitude). The problem is, how can we
uniquely identify a star in the sky in such a way that each observer can point
his/her telescope to it being sure that they are looking at exactly the same
star? The first solution that comes to mind, and it is a good solution, would
be to express the position of the stars on a coordinate system where the stars
are fixed. In other words, we express the coordinates of stars on a rotating
coordinate system. It is natural to assume as fixed rotating axis, the axis
that goes through the North Celestial Pole, which coincides with the Earth’s
rotation axis. If we now project the Earth’s equator in the sky, we have a great
circle called the celestial equator (see fig. 4.10). We define this circle as the
line of declination equal to zero. All objects on this circle will have declination
= 0 coordinate.

Now that we have a reference system where the stars do not move6, we
want to know how to calculate the local azimuth (A) and elevation (E) of a
star given its α and δ. In order to proceed with this calculation we need to
know with some accuracy the local time (LT) and the coordinates of where
our telescope is located, i.e. the latitude λ and the longitude θ.

It is useful to look at the perspective of an observer looking at the sky in
the Northern Hemisphere as in fig. 4.11. The great circle going through south
is the meridian. The celestial equator and the ecliptic intersects in the point γ,
also called first point of Aries or vernal equinox. This point is the zero point
of right ascension. There is also another intersection point, called first point
of Libra located exactly at 180◦ which does not have any special meaning.

In order to find the azimuth and elevation of a star at a certain location
and at a certain time, we need to make a few calculations. The first calcula-

6In reality all stars move also with respect to this reference but we neglect their motion
because it is very small given their distance to Earth.
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FIGURE 4.10 Right ascension (RA, α) and declination (Dec, δ) of a
star. Right ascension zero is defined as the meridian passing through
the special point obtained by intersecting the celestial equator and the
meridian passing at the Greenwich observatory in England.
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FIGURE 4.11 Celestial coordinates of a star as seen from an observer
on Earth in the Northern Hemisphere.

tion consists of finding the Hour Angle H from the right ascension α. The
conversion formula is:

H = LST − α (4.1)

where LST is the Local Sidereal Time. The observer knows his/her local time
as given by his/her watch. Therefore we need to transform the local time (LT)
into local sidereal time (LST).

In everyday life we are used to knowing our local time, i.e. the time given
by our watch. Local time, by convention, is measured with respect to the
Sun: we take the time between two successive crossings of the Sun at the
meridian and this defines 24 hours. With some degree of approximation, 12:00
noon Universal Time (UT) is the time when the Sun crosses the meridian at
Greenwich. However, unfortunately there is a problem: keeping the time with
the Sun in this way is not very accurate. The Earth spins around its axis in
a very regular way, but its orbit around the Sun is not exactly circular as we
have seen in the previous chapter, but is slightly elliptical. In addition, the
spin axis of the Earth is inclined by 23.5◦ with respect to the plane of the
orbit. These effects make the time kept with the Sun, for example through



A Few Facts about the Solar System � 193

FIGURE 4.12 The Equation of Time plot. The EoT line represents the
deviation in minutes with respect to the day of the year of a sundial
clock on Earth with respect to a sundial orbiting around the Sun on a
circular orbit and spinning around an axis perpendicular to the plane
of the orbit. The EoT is the sum of the two terms A and B taking into
account, respectively, the elliptical orbit and the tilt of the Earth’s spin
axis.
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a sundial, run faster or slower depending on the position of the Earth on its
orbit around the Sun. The difference between a clock running on a circular
orbit spinning perpendicularly to the orbital plane (uniform clock) and the
sundial clock can be as high as several minutes. The time kept by this uniform
clock is referred to as Universal Time (UT). On Feb. 12th, the Sun can be
behind by as much as 14 min and 6 sec, while around Nov. 3rd the Sun can
be ahead by as much as 16 min and 33 sec.

Historically the difference between UT and a sundial is plotted into a so-
called Equation of Time 7 (EoT), which is needed to correct the sundial time.
It can be shown (see later) that a good approximation to the EoT is given by:

∆T = A+B = −7.659 sin d+ 9.863 sin(2d+ 3.5932) (4.2)

where d is the day of the year. The first term A in eq. 4.2 is due to the effect
of the elliptical orbit while the second term is due the Earth’s tilt.

A good watch therefore will keep the Universal Time UT corrected for the
longitude. Astronomers, on the other hand, have a lot of difficulties using UT
when studying the motion of stars. The reason is that there is a discrepancy
between the time elapsed between two successive transits of the Sun at the
meridian and two successive transits of a distant star at the meridian. Two
successive transits of the Sun at the meridian define exactly 24 hours or 86,400
seconds. If we clock two successive transits of a distant star at the meridian,
we discover that this happens faster, i.e. after 86,164.0905 seconds, or in 23
hours, 56 minutes and 4.0905 seconds. Therefore a clock running on successive
transits of stars runs faster than a clock set on the successive transits of the
Sun. This is a consequence of the fact that the Earth is orbiting the Sun!

In fig. 4.13 the Earth is orbiting the Sun in counterclockwise direction from
the point A to the point B. At A, an observer on the surface of the Earth sees
the Sun passing at its meridian at a certain time t exactly when a star is
directly behind the Sun. So both the Sun and a star are transiting at the
meridian when the Earth is at A. One day after, when the Earth is at point
B along the orbit, the Sun will cross the meridian after one complete 360◦

revolution plus a little angle, while the star will have crossed the meridian a
little bit earlier. So the star will transit the meridian slightly before the Sun.
It means that one “star” day is shorter than one “Sun” day, thus justifying the
difference reported above between solar time and sidereal8 time.

It is possible to calculate the Local Sidereal Time, at least in an approxi-
mate way, by using eq. 4.3 [1]:

LST = 6.697374558 + 0.06570982441908D +H + 0.000026

(
JD

36525

)2

(4.3)

7This is not intended as a proper equation, but rather a reconciliation of a difference.
8The word sidereal comes from the Latin sidereus, meaning “starry” or “of the constel-

lations”.
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FIGURE 4.13 Sidereal time is shorter than solar time because the Earth
is orbiting the Sun. At the meridian of an observer on the surface of
the Earth, a distant star will transit every 23 hours, 56 minutes and
4.1 seconds rather than 24 hours. This is happening because in one
day the Earth has moved from point A to point B and to have the Sun
crossing the meridian there is an extra angle to be rotated.
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where H is the Universal Time UT, D = JD−2451545.0 and JD is the Julian
Date. In the calculations involving time it is often convenient to use the so
called Julian Day (JD). When dealing with astronomical events, very often
it is important to calculate the time difference between two events. Dealing
with dates expressed in year, month, day, and time of the day makes the
calculation of differences not practical. Therefore astronomers prefer to use
a continuous count of days starting from a Julian Day zero corresponding to
noon of Monday, January 1st 4,713 BC. The Julian Date can be considered like
a clock constantly advancing and identifying exactly any particular instant.
The fraction of the day is added to JD, so any instant of time is identified as
a integer, associated with the day, and a decimal fraction of a day, associated
with the time. The Julian Date of any instant is the Julian Day number for
the preceding noon in Universal Time plus the fraction of the day since that
instant and this is unique all over the world, i.e. is not a local time.

Having the RA, DEC, H, and latitude (LAT) of the observing site, we can
now calculate the altitude (ALT) and azimuth (AZ). We first calculate the
altitude:

ALT = sin−1[sin(DEC) sin(LAT ) + cos(DEC) cos(LAT ) cos(H)] (4.4)

We now calculate the quantity A:

A = cos−1[
sin(DEC)− sin(ALT ) sin(LAT )

cos(ALT ) cos(LAT )
] (4.5)

Finally, if sin(H) < 0 then AZ = A, otherwise AZ = (2π −A).
Today, nobody manually calculates these quantities. Several web sites as

well as computer programs will do this calculation accurately and rapidly.

4.3 THE ANALEMMA
Let’s now take a picture of the position of the Sun every day at the same time
– let’s say noon – and see what kind of graph we obtain. It is certainly fun
to do this with a real camera, but if we don’t want to wait a full year we can
use a website9 to download the calculated positions of the Sun. The result is
shown in fig. 4.14 where an oddly shaped figure-of-eight curve is shown. This
curve is called the analemma and it reveals very interesting features. We
notice immediately that the Sun reaches its maximum and minimum altitude
respectively on the 21st of June and the 22nd of December. These two dates are
respectively the summer and winter solstices. If we now trace a horizontal line
exactly in the middle of these two solstice lines, we intercept the analemma at
two remarkable points: the two equinoxes (vernal and autumnal). This special
altitude is exactly equal to 90◦ minus the latitude of the observer which,
in the case of Manchester (UK) is about 53.5◦. We notice also that the two

9See, for example, https://ssd.jpl.nasa.gov/horizons.cgi.

https://ssd.jpl.nasa.gov
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FIGURE 4.14 The analemma for the city of Manchester (UK) at longi-
tude = 2.2◦ W and latitude = 53.5◦ N. Each black dot represents the
recorded azimuth and elevation of the Sun at 12 noon every day for
the year 2019. Notice that the two equinoxes happen at an altitude of
δ = 90◦ minus the latitude of Manchester. The two solstices happen
at altitudes of respectively δ + ε and δ − ε, where ε is the tilt of the
Earth’s axis with respect to the plane of the orbit around the Sun. The
asymmetry is explained in the text.
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FIGURE 4.15 Perihelion and aphelion points along the Earth’s orbit.

altitudes, maximum and minimum, can be obtained by adding to δ the special
angle ε = 23.4◦. We will see shortly the significance of this angle.

The analemma in fig. 4.14 shows an evident tilted asymmetrical figure-of-
eight shape having the lower loop bigger than the upper.

The analemma is due to the combination of two causes: the eccentricity of
the Earth’s elliptical orbit and the tilt of the Earth’s spin axis with respect
to the plane of the orbit [8]. These two effects have different periodicity: the
eccentricity generates an effect proportional to a period of 365 days (annual)
while the Earth’s tilt generates an effect with half the period (semi-annual),
or twice the frequency. These two periodicities are connected with the two
periods shown in fig. 4.12 thus hinting at a close relationship between the
Equation of Time and the analemma. We now show that this is indeed the
case and we justify the functional form of eq. 4.2.

In this demonstration we follow closely the reference [8]. We want to find
the variations of the periodicities of the motions of the Earth when spinning
around its axis and when revolving around the Sun, with respect to the ideal
motion of the Earth revolving around the Sun in a perfect circular orbit and
with its axis perpendicular to the plane of the orbit. We will see that these
deviations are responsible for the Equation of Time and analemma features.
We start with the definition of angular momentum of the Earth as expressed
in eq. 3.24. If we consider the angular momentum per unit mass, we can
write h = r2θ̇ and we know that this quantity is constant during the orbital
motion. Let’s consider the two special points perihelion and aphelion which
are, respectively, the closest and farthest points of the Earth’s orbit around
the Sun (see fig. 4.15).

Using equations 3.76 and 3.77, the distances from the Sun to the Earth at
perihelion and aphelion can be written as:

rP = (1− e)a
rA = (1 + e)a

(4.6)
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where we used the conditions of θ = 0 and θ = π respectively for the perihelion
and the aphelion. In fig. 4.15 it is also evident that, for an elliptical orbit, the
angular velocities ωP = ˙θP and ωA = ˙θA will be different. Kepler’s laws tell
us that the planet will be faster at perihelion and slower at aphelion in order
to keep constant the areas swept by the radius vector per unit time. We can
therefore write:

h = r2θ̇ = (1− e)2a2ωP = (1 + e)2a2ωA = const. (4.7)

where the Earth’s orbital eccentricity is e = 0.0167086. From eq. 4.7 we notice
that, during one orbit, the angular velocity varies between a minimum value
ωA and a maximum value ωP given by:

ωA =
h

a2

1

(1− e)2

ωP =
h

a2

1

(1 + e)2

(4.8)

We now use the fact that e� 1 to approximate eq. 4.8:

ωA =
h

a2

1

(1− e)2
≈ h

a2
(1 + 2e)

ωP =
h

a2

1

(1 + e)2
≈ h

a2
(1− 2e)

(4.9)

where we used only the first-order term of the series expansion for 1
(1±e)2 ≈

(1∓ 2e). We can now estimate an average value for the angular velocity ω̄:

ω̄ ≈ (ωA + ωP )

2
=

h

a2
(4.10)

and eq. 4.9 becomes:

ωA = ω̄(1 + 2e)

ωP = ω̄(1− 2e)
(4.11)

If we call Ω the very stable Earth’s rotation angular velocity, an inspection
of fig. 4.13 shows that the apparent rotation of the Sun, as seen from Earth,
happens with angular velocity Ω − ω. In fact, the rotation of the Earth Ω
compounds with the revolution of the Earth ω to make the crossing of the
Sun at the meridian happen later than the same crossing of a distant star.
Now we want to estimate the maximum fractional change:

∆ =
(Ω− ωA)− (Ω− ωB)

Ω
=
ωB − ωA

Ω
≈ 4eω̄

Ω
(4.12)



200 � Introduction to the Maths and Physics of the Solar System

The quantity ∆ represents the maximum variation of the solar day and
can be calculated to be of the order of ± 2eω̄

Ω ≈ 0.00009 seconds per second.
In a day this deviation amounts to about 7.6 seconds. The functional form
of the length of the solar day due to the eccentricity of the Earth’s orbit can
then be expressed by a co-sinusoidal law with amplitude ± 2eω̄

Ω according to:

∆ecc =
2eω̄

Ω
cos(

2πd

365
) (4.13)

where d is the number of days elapsed since the perihelion. Eq. 4.13 explains
the first term in the Equation of Time 4.2. The explanation of the effect of
the Earth’s tilt, or obliquity, is an exercise of spherical trigonometry and we
leave it to the interested reader (see [8]).

4.4 TIDES IN THE SOLAR SYSTEM
The Sun is certainly the most prominent object in the sky and we will dedicate
a chapter later on about some interesting physics about it. After the Sun, the
Moon is the next most prominent object. We will study now one of the most
important effects that the Moon exerts over the Earth: the tides. This impor-
tant phenomenon has captivated philosophers for many years mainly because
of the observation of the changing of the height of the sea level twice a day.
One of these philosophers, Seleucus of Seleucia10, was particularly intrigued
by the regularities of the rising and falling of the sea level, what today we call
tides.

Seleucus noticed many other regularities, including a yearly cycle. It seems,
but it is not certain, that based on this observation Seleucus made the hy-
pothesis that the Earth-Moon system rotates around the Sun. He certainly
was the first to propose that tides are generated by the Moon.

Let’s understand why we have tides and what causes them. Tides are the
regular increasing and decreasing of the sea level that can be observed at the
sea side. The amplitude of the variation is strongly dependent on the loca-
tion. The highest tidal range, i.e. the height difference between the highest
and lowest tides, is in the Bay of Fundy in Canada. In this specific coastal
location the tidal range can be as high as 16.3 meters. In the United Kingdom,
in the Severn estuary11, the tidal range can reach 15 meters. In open sea the
tidal range is of the order of 0.6 meter and therefore some sort of amplifica-
tion must occur where the coastal line has favorable shapes. We can imagine
that if a water flow is compressed or funneled, then the tidal range might
be increased. The Severn estuary is clearly shaped as a funnel and there are
situations for which the leading edge of the incoming tide can produce a wave
capable of propagating upstream against the direction of flow of the river.
This anomalous wave is called tidal bore.

10Somewhere near Baghdad in Iraq close to the west bank of the Tigris river.
11The estuary of the river Severn is located in the southern UK. The Severn is the longest

river in the UK and its mouth becomes the Bristol channel.
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FIGURE 4.16 Diurnal and semi-diurnal tide variations. Figure adapted
from https://co-ops.nos.noaa.gov/restles4.html.

https://co-ops.nos.noaa.gov
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In fig. 4.16 we see a plot of a typical tidal range. The top panel shows the
semi-diurnal variation, i.e. two complete low-high tides per day. The bottom
panel shows a rarer diurnal tide, i.e. one complete low-high tide per day. The
center panel shows the mixed tide. We will see that the semi-diurnal tide
is due to tidal forces associated with the Moon while the diurnal is due to
interference phenomena with the lands obstructing the flow of water.

Let’s see if Newtonian mechanics is capable of giving a dynamical explana-
tion of the tides. In order to do so, we need to set up a model and we need to
make a series of simplifying assumptions. In the following we will assume that
the gravitational force obeys Newton’s gravitational law of inverse square. We
ignore the gravitational attraction of the Sun, although we will calculate later
what tides are due to the Sun. We assume that the Earth is completely cov-
ered in water so as to disregard effects due to the coastal lines, and finally,
we put ourselves on a reference system where also the Earth’s gravitational
pull is switched off: this is not difficult to imagine because artificial satellites
orbiting the Earth are in this exact situation. Therefore, the Moon is the only
important source of gravity and we can now study its effects at the surface of
the Earth.

Let us now consider a system orbiting the Earth like, for example, the
International Space Station (ISS). It is well known that the astronauts and
the objects on board do not experience any gravity due to the Earth because
they are constantly free falling. Being in orbit, as we have seen in previous
chapters, is like falling constantly with enough horizontal velocity that you
come back to the same original point after one revolution around the Earth.
Now suppose that you do a little experiment inside the ISS: imagine dispersing
a collection of little stones on a perfectly spherical shell like in fig. 4.17. Let
us suppose that an observer is positioned in the center of such a shell at point
C. An external observer will see the forces as depicted in the left panel of
fig. 4.17. All the forces, and accelerations will be directed towards the center
of the Earth O and since the shell has a finite size, the four masses will feel
different forces in direction and/or intensity. If we call R the distance OC
between C and the center of the Earth O, and r the radius of the shell, we
see immediately that the force in P1 is less than the force in P4 because P4 is
farther away than P1. These two forces are directed along the same direction
but differ in strength.

The two masses in P2 and P3 are located at the same distance from O,
but since they displaced by 2r, the direction of the force is not the same and
so the two forces are different in direction but of equal intensity. If we call

−→
f0

the force in C and
−→
f1,
−→
f2,
−→
f3 and

−→
f4 the forces at respectively P1, P2, P3 and

P4, we can analyze the forces and their differences.
The tidal forces are the forces observed in the reference frame centered in

C. This means that in order to calculate the tidal force on the points P1, P2,
P3 and P4 we need to subtract the Earth force

−→
f0. First let’s calculate the

tidal forces t1 and t4 on the points P1 and P4. We have:
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FIGURE 4.17 Tidal forces in a free-falling reference frame centered in
C. The 4 non-interacting small masses P1, P2, P3 and P4 are subject
to different forces. When viewed by an observer in C, tidal forces are
evident as in the right panel of the figure.

−→
t4 =

−→
f4 −

−→
f0

−→
t1 =

−→
f1 −

−→
f0

(4.14)

All the vectors in eq. 4.14 are parallel and therefore the t vectors will be
parallel to the f vectors. In addition, we immediately know that t4 is positive
because f4 is bigger than f0 and therefore t4 is oriented towards the center
of the Earth. This also means that the particle at P4 will be subject to an
acceleration towards the Earth and will drift away from the point C. The
observer in C will see the point in P4 drifting away from him/her in the
direction of the Earth. The opposite happens for the point P1. In this case,
now the vector t1 is negative because f0 is bigger than f1. This means that now
the vector t1 is oriented in the exact opposite direction away from the center of
the Earth. This means that the observer in C will see that point P1 will drift
away in the opposite direction with respect to the Earth. Having determined
the direction of the two vectors we can now calculate their magnitude. Using
Newton’s law of gravitation for the magnitudes, eq. 4.14 becomes:

f4 =
GMm

(R− r)2
− GMm

R2

f1 =
GMm

(R+ r)2
− GMm

R2

(4.15)

where M is the mass of the Earth, m is the mass of the particles, R = OC
and r is the radius of the shell. If we restrict our calculation to accelerations,
we divide numerator and denominator by R2 and remembering that a = f/m,
then we can re-write eq. 4.15 as:
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a4 =
GM

R2(1− r
R )2
− GMm

R2

a1 =
GM

R2(1 + r
R )2
− GMm

R2

(4.16)

We now use the fact that r << R so we can simplify eq. 4.16. Let’s study
the function:

f(
r

R
) =

1

(1∓ r
R )2

(4.17)

Having assumed that r << R we can use the series expansion 1.42. If we
set x = r

R , the first few terms of the series are:

f(x) ≈ f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ ... (4.18)

where f(0) is the value of the function f(x) evaluated at x = 0, f ′(0) = df
dx |x=0

is the first derivative evaluated at x = 0, f ′′(0) = d2f
dx2 |x=0 is the second

derivative evaluated at x = 0, and so on. If we additionally neglect terms in
x2, we just need to evaluate the first two terms of the series expansion 4.18.
Using the function 4.17 we have:

f(0) = 1

f ′(0) = ± 2

1 + x3 = ±2
(4.19)

and so we can finally write:

f(
r

R
) =

1

(1∓ r
R )2
≈ 1± 2r

R
+ ... (4.20)

Inserting this last expression into eq. 4.16 and simplifying, we finally obtain
a good approximated formula for the intensity of the radial tidal acceleration:

a4 = −2GMr

R3

a1 = +
2GMr

R3

(4.21)

The minus sign for a4 indicates that the acceleration is towards the Earth
while the plus sign for a1 indicates that the acceleration is opposite. Eq. 4.21
gives the magnitude of the two tidal vectors a4 and a1 of the right panel in
fig. 4.17.

For the two transverse components a2 = t2
m and a3 = t3

m we need to look
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FIGURE 4.18 Transverse tidal forces in a free-falling reference frame
centered in C.

at the vectors in 2 dimensions since now forces or accelerations are not along
the same line.

Fig. 4.18 is a simplified version of fig. 4.17 where we have explicitly indi-
cated the vectors needed to calculate the transverse tidal acceleration. The
line HP3 is drawn parallel to the axis OC. The angle α = ∠P3OC is equal
to the angle α = ∠HP3O. Omitting for simplicity for now the vector signs
above the symbols, from the figure it is easy to realize that the transverse
tidal acceleration is a3 + f0/m = f3/m. From the triangle 4P3OC we see
that tanα ≈ α = r

R since r << R. In the same limit, we can approximate the
length OP3 ≈ OC = R so we can write:

f3/m ≈ −
GM

R2

a3 = −GM
r2

sinα ≈ −GM
r2

r

R

(4.22)

and similar expressions for the other transverse acceleration a2 = −a3. Com-
paring eq. 4.22 with eq. 4.21 we see immediately that the longitudinal compo-
nent of the tidal force is twice as big as the transverse component. In addition,
both accelerations are proportional to R−3.

We just learned that tidal forces in finite objects originate from the dif-
ference in the gravitational force between the top and the bottom part of the
body as well as the different direction between the left and the right side of
the body. These forces tend to elongate and stretch the object from spherical
to ellipsoidal shape. In particular, tidal effects will be more noticeable with
water where the intermolecular forces are not strong enough to preserve the
shape. Water can easily change shape and we will see next how this is related
to the phenomenon of tides.
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FIGURE 4.19 Top view of the Earth-Moon orbital plane. The arrows
show the tidal forces on the surface of the Earth due to the gravitational
attraction of the Moon. The Earth is assumed to be completely covered
in water. Tidal forces due to the Moon will deform the spherical mass
of water into an ellipsoidal shape. During one day, the Moon will orbit
around the Earth from O to O′ while the Earth would have done a
complete rotation around its axis. The tidal bulge will be oriented
always towards the Moon while the Earth will rotate. As a consequence,
an observer on the surface of the Earth in one day will see a high tide in
A, a low tide in B, a high tide in C, and a low tide in D, thus explaining
the semidiurnal tide cycle.

We are now equipped to study the effect of the Moon’s gravity on Earth
and specifically how sea tides on Earth are generated by the Moon. Let us
now assume that the Earth is free falling towards the Moon12 or, in other
words, let’s see what tidal forces are present on the surface of the Earth due
to the moon. Let also assume that the Earth is completely covered in water
as depicted in fig. 4.19.

We know as a fact that the Moon completes one revolution around the
Earth in about 27 days. In fig. 4.19 we see the Moon, of mass M , on the
right orbiting the Earth counterclockwise. Since the orbital period is about 27
days, in one day the Moon will move from the point O to the point O′. During
this time, the Earth would have completed one full counterclockwise rotation
around its axis so the observer from A will go to the positions B, C and D

12In reality the Earth-Moon system orbits around the common center of mass and there-
fore a more accurate statement would be that the Earth and the Moon are free-falling
towards each other.
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in sequence. We assume that the Earth is completely covered in water so that
we can neglect all the complexities coming from the continents impeding the
flow of water.

We have seen that the tidal forces will deform a spherical shape of weakly
or non-interacting bodies into an ellipsoidal shape. Since water can be easily
deformed, the spherical shape of water will be changed into an ellipsoidal
shape. There will be two protruding bulges in A and C and two restrictions in
B and D. The ellipsoid will track the Moon during its revolution around the
Earth, while the Earth will rotate around its axis. Since the Earth’s rotation
is much faster than the Moon’s revolution, the Earth will rotate inside the
ellipsoid. An observer in A will therefore see a high sea level when in A, then
a low sea level when in B, then again a high sea level when in C, and finally
a low sea level when in D. This explains the semi-diurnal tide cycle (see fig.
4.16.

We might wonder what would be the tidal forces on Earth due to the Sun.
After all, the Sun has a huge mass compared with the Moon. Let’s compare
these tidal forces. The gravitational force and the tidal forces due to the Moon
are given by:

Fmoon =
GMEMM

R2
EM

' 1.98 · 1020N

Tmoon =
2GMEMM

R3
EM

RE ' 6.6 · 1018N

(4.23)

where G is Newton’s constant, RE is the radius of the Earth, ME is the mass
of the Earth, MM is the mass of the Moon, REM is the distance from the
Earth to the Moon, and N is the Newton unit of force: 1 Newton of force will
accelerate the mass of 1 kilogram to an acceleration of 1 meter per second per
second.

Let us now calculate the same quantities for the Sun, i.e. the gravitational
and tidal forces exerted on the Earth by the Sun:

Fsun =
GMEMS

R2
ES

' 3.5 · 1022N

Tsun =
2GMEMS

R3
ES

RE ' 3.0 · 1018N

(4.24)

where MS is the mass of the Sun and RES is the distance from the Earth to
the Sun.

Comparing eq. 4.23 with eq. 4.24 we see that while the Sun clearly and
fortunately dominates the gravitational attraction, the Moon has a tidal in-
fluence on Earth roughly double that of the Sun. This means that Sun-related
tides should also be visible but with less amplitude.

Looking at equations 4.23 and 4.24 we notice that the gravitational at-
traction of the Sun on the Earth is more than 100 times the gravitational
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FIGURE 4.20 Top view of the Earth-Moon orbital plane. The rotation
of the Earth around its spin axis pushes the tidal bulge ahead of the
Moon position (top panel). The closest bulge to the Moon feels a force
F1 bigger than the force due to the far bulge on the opposite side F2.
The resultant force is not exactly aligned along the Earth-Moon axis
EM having a component perpendicular to EM and directed against
the rotation of the Earth (bottom panel). This component tends to
slow down the Earth’s rotation and push away the Moon into higher
orbit.

attraction of the Moon. This is no surprise since it is the Sun that keeps all
planets in orbit. However, the tidal force of the Sun is now about half of the
tidal force exerted by the Moon. The R−3 dependence of the tidal force wins
over the largest mass of the Sun. We can therefore establish that it is the Moon
that dominates the observed sea tides on the Earth as properly established by
many physicists including Newton.

We have mentioned earlier that the Earth’s rotation period (1 day) is much
faster than the Moon’s rotation period (27 days). If the Earth were rotating
at exactly the same rate as the Moon’s rotation then the tidal bulge would
always be oriented towards the Moon as shown in fig. 4.19. But we know that
the Earth spins much faster and therefore we expect that the bulge is pushed
ahead of the apparent position of the Moon as shown in fig. 4.20, top panel.
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There are two observational evidences: 1) The Earth rotation period (the
length of the day) is increasing, i.e the duration of one day is increasing with
time; 2) the Moon is increasing its distance from the Earth with time. These
two effects are very small but measurable. It is believed that the duration
of the day was 21 hours 600 million years ago13. In a perfectly spherical
Earth, i.e. without bulges, there is no mechanism to apply a torque capable of
counteracting the rotation of the Earth. In order to be able to apply a torque,
it is necessary that the body is non-spherical. In particular, if the deformation
is ellipsoidal, like the case of tidal forces, then a differential pull exerted on
the two bulges has a resulting component acting against the rotation of the
Earth. The effect is referred to as tidal friction because it slows down the
rotation like the friction applied by a brake.

An interesting question arises: if the Earth’s rotation period is increasing,
its angular velocity is decreasing with time. This means that the angular
momentum is decreasing with time instead of being conserved. Where is the
angular momentum going? The answer is that the Moon is acquiring the
angular momentum lost by the Earth by slightly accelerating and therefore
increasing the orbital radius. So, as a result, the Earth’s day is slowing down
and the Moon is receding from the Earth. The rate is about 4 cm per year.
The non-zero torque applied to the Earth must be exactly balanced so as
to have conservation of angular momentum for the Earth-Moon system. The
only way to balance the angular momentum is to have the Moon increasing
the orbital radius. The Moon is therefore slowly spiraling out towards larger
and larger circular orbits.

Will the Moon continue to recede from Earth? Will the Earth’s rotation
continue to slow down until it stops? As we have seen, the Earth’s rotation
around its axis is slowing down due to tidal friction. There will be a time, in
the far future, when the Earth’s rotation spin will exactly match the Moon’s
rotation spin. This special condition will be evident because the Earth and
the Moon will always show the same face to each other. This means that the
Moon will only be visible from one side of the Earth and the length of the
day will match the Moon’s orbital rate. This condition is referred to as tidal
locking.

We can try to make a simple order-of-magnitude estimation of the Earth-
Moon tidal locking. We start by calculating the total angular momentum of
the Earth-Moon system, considered as isolated from the influence of other
solar system bodies. We have very briefly mentioned the concept of angular
momentum defined in eq. 3.24. If we call ω = θ̇ the angular velocity , i.e. for a
spinning object the amount of degrees/sec of its rotation, we can rewrite eq.
3.24 as:

L = mωR2 (4.25)

13There are various indications that the day was shorter in the past. By studying tidal
rhythmites, i.e. layers of sediments deposited cyclically with tides, it is possible to empiri-
cally determine that the duration of the day is slowly increasing.
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wherem is the mass of the object rotating at a distance R around a fixed point
with angular velocity ω. In isolated systems the total angular momentum is
conserved. There is an equivalent conservation law for linear momentum: the
total linear momentum of an isolated system is conserved. Linear momentum
of a particle of mass m and velocity v is p = mv. There is a crucial difference
between linear and angular momentum: while linear momentum does not de-
pend on where we locate the coordinate system, the angular momentum does
depend on where we put the origin of the coordinate system. Linear momen-
tum contains the derivative of the position (in one dimension v = ẋ) while
angular momentum contains r and θ̇. So angular momentum does not depend
on the initial value of the angle of rotation but does depend on where the
origin of the coordinate system is.

We need to make an important distinction: there are two types of angular
momentum. There is angular momentum due to a particle of mass m orbiting
around a center: this is called orbital angular momentum. If the body, like the
Moon or the Earth is a solid body, then it can spin around an axis passing
through its center of mass. The angular momentum associated with the spin
motion is called spin angular momentum.

Before we can study the tidal locking of the Earth-Moon system, we need
to express the various terms in the total angular momentum. Since the Earth
is more massive that the Moon we can assume that it is the Moon revolving
around the Earth instead of the more correct assumption of the Earth-Moon
system orbiting around the center of mass of the system. The angular mo-
mentum of the Earth-Moon system will be the sum of the spinning angular
momentum of the Earth plus the orbital angular momentum of the Moon
orbiting the Earth. Neglecting other sources of angular momentum and as-
suming that the Earth is a solid sphere of constant density, then the total
angular momentum is the sum of two terms:

L0 = LsE + LoM = IEωE +mR2ωM (4.26)

where IE is the moment of inertia of the Earth, ωE is the spinning angular
velocity of the Earth, i.e. one rotation per day, m is the mass of the Moon, R
is the distance from the Earth to the Moon and ωM is the orbital period of the
Moon which is about 28 days. The moment of inertia is the equivalent of the
mass in linear momentum. It gives an indication of inertia to spin an object
around an axis, for example, a symmetry axis passing through the center of
mass. It depends strongly on the mass distribution inside the body. In the
case of the Earth, considering that the shape is not exactly spherical and that
the internal mass distribution is non-trivial, the calculation of the moment
of inertia is somehow complicated. It turns out that an accepted value14 is
IE = 8 · 1037 kg m2/s.

14The reader might wonder where the mass M of the Earth is in this calculation. It is
contained in the spinning moment of inertia which, for a homogeneous sphere spinning
around an axis passing through its center is equal to 2

5
MR2 where M is the mass of the

Earth and R is its radius. If we use this formula using as R the Earth’s mean radius and
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We can calculate the total angular momentum L0 of the Earth with the
known parameters as of today. If we insert for the mass of the Moon m =
7.35 · 1022 kg, for the distance from the Earth to the Moon R = 3.84 · 108 m,
for the Earth spinning angular velocity ωE = 2π/86, 400 = 7.26 ·10−5 rad/sec,
for the Moon orbital angular momentum ωM = 2π/(27 · 86, 400) = 2.7 · 10−6

rad/sec, we have:

L0 = IEωE +mR2ωM = 5.8 · 1033 + 2.9 · 1034 = 3.48 · 1034 m2kg/s (4.27)

Notice that in eq. 4.27, although the Moon has a smaller mass than the
Earth, its orbital angular momentum is 5 times larger.

We want to study under what conditions there will be a tidal locking in
the Earth-Moon system. We have seen that the Earth is transferring angular
momentum to the Moon, i.e. its spinning is slowing down. The angular mo-
mentum acquired by the Moon pushes it far away. There will be a time when
the spinning angular velocity of the Earth exactly matches the orbital angular
velocity of the Moon: let’s call this angular velocity ωL. The new distance from
the Earth to the Moon when this will happen is indicated with s. Because the
total angular momentum is conserved, we can write:

L0 = ms2ωL + IEωL (4.28)
In order to simplify the calculation, let’s neglect the second term on the

right-hand side of eq. 4.28. We are somehow justified because we already
noticed that today the spinning angular momentum is only 20% of the total
angular momentum. In the future it will be much less. With this assumption,
we have:

ms2ωL = L0 (4.29)
In eq. 4.29 we have two unknowns, s and ωL. But we can find a relationship

between these two quantities by imposing that, for a body orbiting another
larger body, the centripetal force must exactly balance the gravitational force.
We have:

m
v2

s
=
GMm

s2

v = ωLs

mω2
Ls

2

s
=
GMm

s

ωL =

√
GM

s3

(4.30)

for M its mass, we obtain a higher value for the Earth’s moment of inertia of 9.7 · 1037 kg
m2/s. The fact that the value calculated in this way is higher than the accepted value is an
indication that the inner Earth is not homogeneous and its core density must be somehow
higher.
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where M and m are, respectively, the mass of the Earth and of the Moon.
Inserting the expression for ωL found in eq. 4.30 into eq. 4.29 we have:

s =
L2

0

m2GM
' 560, 000 km (4.31)

We can finally find the orbital period TL = 2π
ωL

by using Kepler’s third
law:

TL =

√
4π2s3

GM
' 48 days (4.32)

4.5 ROCHE LIMIT
Tidal forces are of fundamental importance in the solar system, not only for
the influence of the Moon on Earth but also for other interesting phenomena.
Suppose we have a small planet of radius r and mass m orbiting a much
larger planet of mass M . We would like to ask the following question: under
what conditions are the tidal forces, due to the large planet, equal to the
gravitational force of attraction on the surface of the small planet due to the
large planet? Why is this interesting?

Let’s start with the simple case of a small planet which is composed of a
collection of small particles held together by just the gravitational attraction
among them. We can imagine taking a large collection of small stones of total
mass m, and disperse them in a spherical shape or radius r while orbiting a
large planet of mass M located at distance R. We have seen that tidal forces
will produce a deformation of the spherical shape into an elliptical shape but
now we have to take into account that the little particles are gravitationally
attracted to each other. We have two cases: if the tidal forces are larger than
the gravitational force among the particles, then the spherical shape will dis-
integrate and will tend to form rings. If the gravitational forces are larger than
the tidal forces, then the particles will not disperse and remain bound into an
ellipsoidal shape.

Let’s write down the tidal force FT and the gravitational force FG at the
surface of the spherical collection of particles as shown in fig. 4.21:

FG =
Gmµ

r2

FT =
2GMµ

R2

r

R

(4.33)

The Roche limit is obtained by equating the two expressions in eq. 4.33.
We have:
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FIGURE 4.21 Roche limit for a spherical collection of gravitationally
bound particles of total mass m and radius r. A small particle of mass
µ at the surface and situated at a large distance R >> r will be subject
to a tidal force FT towards the large body and a gravitational force FG
towards the center of the collection of particles. The Roche limit (shown
as a dashed line) is the distance at which the two forces are equal.

Gmµ

r2
=

2GMµ

R2

r

R

R = r

(
2M

m

)1/3 (4.34)

The R expressed in eq. 4.34 is the so-called Roche limit.
We can express the Roche limit as a function of the radius H of the large

body and the ratio of the densities of the large body and the small gravita-
tionally bound body. Assuming constant densities, it is easy to show that the
Roche limit can also be expressed as:

R = H

(
2ρM
ρm

)1/3

(4.35)

where ρM and ρm are, respectively, the densities of the large and the small
bodies. We need to point out that the case we have studied is very simpli-
fied. In the solar system, rigid bodies are held together by strong forces and
consequently the Roche limit will be different.

4.6 MEASURING THE SPEED OF LIGHT IN THE SOLAR
SYSTEM

One of the major problems in ancient times was the determination of the
longitude of a ship. Many lives have been lost because ships lost their position
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in the open sea. The main cause of death was the scurvy disease, i.e. vitamin
C deficiency due to the long times at sea without fresh fruits or vegetables.
It is not difficult to imagine what enormous commercial problem uncertain
navigation was. A spherical coordinate system is obviously the best choice of
coordinates on a sphere like our Earth. The equator main circle identifies the
origin of the latitude coordinates. Such a choice is quite natural due to the
rotation of the Earth with respect to the stars. The equator is the line that
is exactly equidistant from the two poles. The poles are determined by the
intersection of the Earth’s rotation axis with the surface of the Earth. Having
identified the equator, we can trace a set of parallel circles at intervals of equal
angles called latitude. The equator is at latitude zero while the two poles are
at latitude +90◦ and −90◦ for respectively the North and the South Poles.

If we are lost at sea, the stars provide an easy way to determine the latitude
of our position. If we use the fact that the star Polaris is aligned with the
Earth’s rotation axis15 we notice that it appears practically stationary in the
sky with all the other stars rotating around it. If we measure the height above
the horizon of Polaris, this angle is the latitude of our position. In addition,
as an added bonus, Polaris also gives due north. Unfortunately, in addition to
the latitude, we need another coordinate: the longitude.

Unfortunately, we absolutely need the longitude especially, if we want to
go east to west on the ocean. This problem was so important that in the 18th
century a substantial prize (US $1.5M today) was to be awarded to the first
person to produce a reliable method to find the longitude. In fig. 4.22, we see
the Earth spinning along its North-South spin axis. The sphere is an extremely
symmetric solid. The rotation provides an axis which uniquely identifies the
equator. The latitude can be constructed by the set of all the circles parallel
to the equator. An observer at point P on the Earth will possess the latitude
given by the angle ∠POR, which we already stated can be determined by
measuring the height of Polaris above the local horizon.

The other coordinate can be built by constructing the set of all the cir-
cles passing through the North and the South Poles. These circles, also-called
meridians, all have the poles in common. There is not an easy method to
determine the angle ∠ROP because its zero is completely arbitrary and can-
not easily be associated with sky objects. In a completely arbitrary way, the
zero longitude is associated with the meridian passing through the city of
Greenwich in England.

One way to determine the longitude would consist of determining the local
midday, i.e. when the Sun reaches its highest altitude in the sky. If we had
with us a clock that tells us the local time at Greenwich at the exact local
midday, then we obtain the longitude by transforming the time difference in
degrees. Since in one day there are 24 hours, then the longitude in degrees at
the equator would simply be L = ∆t · 360/24 where ∆t is the time difference

15Polaris is not exactly aligned with the Earth’s rotation axis and is slightly less than a
degree off (0.66◦ in 2018).
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FIGURE 4.22 Spherical coordinates of an observer located at point P
on the surface of the Earth. The latitude varies between −90◦ (at the
South Pole) and +90◦ at the North Pole. The longitude is measured
from 0◦ to 180◦ east or west of the Greenwich meridian defined at 0◦

longitude.
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FIGURE 4.23 Geometry of the Sun-Earth-Jupiter system. The Sun illu-
minates Jupiter (J) creating a conical shadow behind. The innermost
satellite Io enters and exits this shadow, respectively, at points I and
E. When Io enters the conical shadow in I, its disappearance can be
observed from the Earth along the curve DM2B. The emergence from
the shadow can be observed when the Earth is instead along the path
BM1D. When the Earth is in the special points B and D, Jupiter is
said to be, respectively, in opposition and in conjunction.

in hours between the local position and Greenwich. If the result is bigger than
180◦ the longitude is ` = 360◦ − L in the west, otherwise the longitude is
` = L in the east direction. The last step would be to correct for the latitude
by multiplying for the cosine of the latitude.

We have therefore seen that the problem of determining the longitude is
equivalent to finding a good time-keeping device. Unfortunately, before the
realization of accurate clocks, mariners did not have this technique. For this
reason early astronomers proposed to use the apparent regular motion of plan-
ets and satellites to provide such an accurate clock. Galileo was one of the first
to make such a suggestion when he discovered that Jupiter has satellites orbit-
ing around it. The innermost satellite Io, in particular, has an orbiting period
of only 42.5 hours, which must be extremely stable. After all, it has been
orbiting Jupiter for the last few billion years.

The regularity of Io’s orbits can be used as a “tick” of a cosmic clock. In
particular, the appearance and disappearance of Io when it emerges or enters
Jupiter’s shadow, constitutes a very regular time-keeping device. Obviously
this tick is very slow: instead of once per second it is once every 42.5 hours.
For this reason a few astronomers in the past have spent many days observing
Jupiter and its satellites taking a lot of observations of the orbits. Giovanni
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Domenico Cassini, an Italian astronomer, was the first to use the timing of
the eclipse of Jupiter’s Moons to measure the longitude exactly in the way
that Galileo suggested. Cassini managed to measure the longitude difference
between Paris and the island of Hven near Copenhagen where he sent one of
his colleagues. By measuring the difference in local times of the moment of the
same eclipse of Jupiter’s moons Cassini, correctly determined the difference
in longitude between the two sites.

So everything was fine until the astronomical measurements started to be
of good enough quality to see anomalies. In fact, a remarkable phenomenon
appeared: the apparent ticking of the orbit of Io was not regular, but it changed
in a strange way. When the Earth was receding from Jupiter, the timing of
the orbit seemed to be slowing down, while, when the Earth was approaching
Jupiter, the timing of the orbit seemed to be accelerating. The differences were
remarkable and of the order of several minutes. This was a mystery because
there was nothing more regular than the motion of planets or satellites. Think,
for example, of the motion of the Moon around the Earth or the motion of the
Earth around the Sun. These motions are extremely regular and predictable.
There is nothing in Newton’s equations that can explain the irregularities
observed in the timing of the disappearance (or reappearance) of Io when
entering (or exiting) its shadow with respect to the Sun (see fig. 4.23). How
could the motion of the Earth around the Sun influence the orbit of Io?

The astronomer Ole Roemer gave an interesting explanation of the timing
anomaly. In order to understand it, let us tell the story of Jim and Jane. Jim
travels very often and in order to communicate with Jane he brings with him
a cage full of carrier pigeons. Jim agreed that every day, always at the same
time, he would send a message to Jane using one of the carrier pigeons. Jane
does not know how far away Jim is and at what speed the pigeons fly. Jane
knows that Jim will be moving along a straight line either towards her or away
at a constant speed of 10 km/hour. Let’s call T the time interval according
to Jim of sending the pigeons: in this example it is T = 24 hours. Let’s call c
the speed of the pigeons and v Jim’s speed with respect to Jane.

Day 1: Jane receives the first pigeon at 22:00. She does not know how
far away Jim is because she does not know at what time Jim sent the pigeon.
However, she knows that the day after, Jim will send another pigeon at exactly
the same time. So the period T , i.e. the time interval between sending pigeons,
is exactly 24 hours.

Day 2: Jane receives the letter at 17:36 and she immediately says: “I know
that Jim is moving towards me and I also know at what speed the pigeons are
flying!” How is this possible?

If Jim was not moving at all, Jane would have received the letter at exactly
the same time as the day before, i.e. 10:00 pm. Jane does not know how far
away Jim is.

In order to solve the problem, Jane does something clever: she assumes
that Jim is exactly at the distance d = cT where, as we said before, c is the
speed of the pigeon and T = 24 hours is the time interval between sending
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FIGURE 4.24 Jim sends a letter to Jane from location A on day 1. After
exactly 24 hours Jim sends the second letter to Jane from position B
on day 2. Being closer, Jane will receive the letter in less than 24 hours.

two letters by Jim. In fig. 4.24 we see the geometry: Jane is at point C and
she is assuming that on day 1 Jim, at position A, has sent the first letter. The
distance that the pigeon had to travel is therefore cT . On day 2, Jane receives
the letter earlier than the day before, even though Jim has waited exactly 24
hours. Since Jim has traveled towards Jane, now Jim is at point B and the
pigeon has to travel less distance cT1. The distance between the point A and
B is equal to vT . It follows that:

AC = AB +BC

cT = vT + cT1

(4.36)

Jane knows that T = 24 hours, that Jim travels at v = 10 km/h, and she
has recorded the time of arrival of the pigeon T1 < T . She can now obtain the
speed of the pigeon:

c =
vT

T − T1
(4.37)

We leave it to the reader to plug in the numbers and verify that the pigeon
is flying at a speed of c = 100 km/h16. Notice that with this method, Jane
cannot find the distance AC, since she does not know at what time Jim is
sending the pigeon.

Is it possible that Io’s anomaly is due to the fact that the speed of light is
finite? Can we infer the speed of light from the deviations observed in the tim-
ing of Io’s occultations? What we just described is a well-known phenomenon
in physics called the Doppler effect. In fact, the Doppler effect can be invoked
to explain Io’s anomaly [4].

16It seems that the average speed of carrier pigeons is around 97 km/h.
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FIGURE 4.25 Deviation from the theoretical timing of Io’s occultations
with respect to the measured ones. When Io is receding from Earth,
the timing appears to be slowing down. When it is approaching Earth,
instead it seems to be accelerating.

Let’s go back to fig. 4.23. If we record the deviations from the calculated
real timing of the immersion or emersion of Io into/from Jupiter’s shadow,
we obtain a plot resembling fig. 4.25 adapted from [4]. If we start numbering
Io’s orbits when the Earth is in opposition to Jupiter (point B), the system
Jupiter/Io has zero velocity with respect to Earth, i.e. the Earth is moving
exactly at 90◦ with respect to the axis connecting the Sun S and Jupiter J.
From now on, the Earth will be moving counterclockwise along the Earth’s
orbital path BM1D. Along this path, the Earth will be receding from the
system Jupiter/Io and the immersion events of Io in Jupiter’s shadow will
appear to happen with increasing delay according to fig. 4.25. The delays in
this figure are delays between successive rotations of Io. So if we keep track of
the number of rotations, we can see that the delays will accumulate until orbit
number 113. It turns out that after about 113 revolutions of Io around Jupiter,
the Earth is now in conjunction at D and the accumulated delay is about 990
seconds. The distance BD is equal to twice the mean distance from the Earth
to the Sun, i.e. twice the so-called Astronomical Unit = 149, 597, 871 km. We
finally obtain, with this method, that the speed of light is about 300,000 km/s.

Think About It...
In the vicinity of black holes, tidal forces are so strong that objects
are subject to extreme vertical stretching and horizontal pressure. Any
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object falling into a black hole will therefore be stretched into a long
thin shape, thus the term spaghettification.
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